
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A Study of Reducing Jitter and Energy Consumption

in Hard Real-Time Systems using Intra-task DVFS

Techniques

Author(s) Tseng, Bo-Yu

Citation

Issue Date 2018-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15464

Rights

Description
Supervisor:田中　清史, 先端科学技術研究科, 修士

（情報科学）

A study of reducing jitter and energy consumption in
hard real-time systems using Intra-task DVFS

techniques

BO-YU TSENG

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

September, 2018

Master’s Thesis

A study of reducing jitter and energy consumption in
hard real-time systems using Intra-task DVFS

techniques

1610105 BO-YU TSENG

Supervisor : Associate Professor Kiyofumi Tanaka
Main Examiner : Associate Professor Kiyofumi Tanaka

Examiners : Professor Mineo Kaneko
Professor Yasushi Inoguchi
Associate Professor Yuto Lim

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]

August, 2018

Abstract

In some real-time control applications, the predictability of task’s timing behaviour is as
important as energy consumption. That predictability includes the response time and
short finish time jitter. This thesis presents a jitter-aware Intra-task DVFS scheme for
mitigating finish time jitter in hard real-time systems; meanwhile, the system still can
consume energy efficiently. This work exploits Dynamic Voltage and Frequency Scaling
(DVFS) technique to proactively manipulate actual execution/response times of tasks.
The strategy proposed in this paper mainly applies control and data flow analysis of task
program to insert additional frequency scaling codes (instructions to change processors
voltage and frequency). Moreover, it determines the appropriate frequency scaling factor.
Through evaluation by multitasking simulation, it is shown that jitter can be reduced by
up to 16.2%-19.4%, and energy saving by up to 13.6%-18.39% as side effect.

Acknowledgments

First of all, I would like to extend my sincere gratitude to my supervisor, Associate
Professor Kiyofumi Tanaka, who has been helping me a lot of things during my master
programme in addition to previous research student duration. He is really a responsible
and professional advisor. During this two years and a half, he was always willing to be
patient with me, especially whenever I got stuck in designing the algorithm, literature
review, or even had problem on my presentation and writing skill (e.g., making a presen-
tation within laboratory seminars, writing the papers and thesis). Furthermore, I really
need to appreciate him that he helped me to write the recommendation for scholarship
application. Thanks to his support, I could get scholarship. Although I did not study
well and accomplish any successful research at all, I will still keep going in the following
three-year’s doctoral programme until I become a good researcher and let him be proud
of me.

Next, I must thank for the NTT DOCOMO, INC., which granted me two-year scholar-
ship. Thanks to their financial aid, I did not need to worry about the tuition fee and daily
expenses. In addition, because of this scholarship, I feel I have much more responsibility
in the future for doing well in my research and making contribution to our industrial field.

Besides, I would like to thank to my laboratory senior, Amr Mostafa M. Ashmawy and
Doan Duy. They also kindly assisted me whenever I had difficulties or got stress in my
research, e.g., research plan, programming (when I was confused about how to design the
simulator efficiently), and even correcting my English all the time. Moreover, a special
thank to Dr.Diego Pinheiro from Institute of Computing IComp, Federal University of
Amazonas, who provided me the analysis toolset for analysing the benchmark programs,
and spent few time to teach me how to use the tool, although we have never met each
other.

Last but not least, I really have to express my gratitude to my lovely family (including
my family’s future member) who are always with me since I decided to go for master
degree. It is definitely not easy to study aboard, there are a lot of pressure from financial
and psychological aspects. Thanks to their unconditional support, encouragement and
love, and without which I would not have come this far.

BO-YU TSENG

1

Contents

Abstract 1

List of Figures 4

List of Tables 6

1 Introduction 7

2 Related Work 8
2.1 Dynamic Voltage and Frequency Scaling 8
2.2 Energy/Power-Aware Scheduling . 8
2.3 Intra-task DVFS . 10
2.4 Jitter Reduction . 10

3 Static Timing Analysis toward Jitter 12
3.1 Characteristic of Real-Time Task . 12
3.2 Rate Monotonic Scheduling Algorithm . 13
3.3 The sources and definition of Jitter . 13
3.4 Modelling Timing Attributes of Jitter . 15

4 Jitter-Aware Intra-Task DVFS Scheme 18
4.1 System Framework . 18
4.2 Runtime Profiling . 19

4.2.1 Recorded Maximum/Minimum Response Time 19
4.2.2 Updating the Recorded Slack Time 20
4.2.3 Updating Actual Interference Time 20

4.3 Control and Data Flow Analysis . 21
4.3.1 Extracting Control Flow graph . 21
4.3.2 Data Flow Tracing against Loop Variability 21

4.4 Execution Cycle Estimation . 23
4.4.1 Estimation of Processing Cost . 23
4.4.2 Checkpoint and Mining Table Placement 24

4.5 Frequency-Scaling Point Placement . 29
4.6 Frequency-Updated Ratio Calculation . 31

4.6.1 Static-Based DVFS . 32
4.6.2 Profile-Based DVFS . 34
4.6.3 Discrete Bound Handling . 35

5 Evaluation 37
5.1 Experimental Setup . 37

5.1.1 Benchmark Programs . 37

2

5.1.2 Task-Set and Test Pattern Generation Algorithm 38
5.1.3 Jitter Constraint Settings . 42
5.1.4 Implementation of Simulator . 42

5.2 Experimental Results . 46

6 Conclusion 51
6.1 Summary . 51
6.2 Future Work . 51

7 Publication 53

Appendices 54

A The Required Execution Cycles for each instruction 54

B CFGs of Benchmarks 55

C Annotation of Scaling Point 60

Bibliography 61

3

List of Figures

2.1 Original task scheduling . 9
2.2 Inter-task DVFS . 9
2.3 Intra-task DVFS . 9
2.4 The workflow of existing Intra-task DVFS scheme 10

3.1 The timeline of one periodic task’s feature 12
3.2 Example of Rate-Monotonic scheduling . 14
3.3 Example of Rate-Monotonic task scheduling 15
3.4 The input-output delay in a control task. The symbol h is period of the

control task. [11] . 16
3.5 The target response time from the perspective of Jitter Margin 17

4.1 The framework of Jitter-aware Intra-task DVFS scheme 19
4.2 The task control blocks featuring tasks for system kernel to manage 20
4.3 Extracting CFG using OTAWA WCET analyser 22
4.4 Control flow of target task’s source code 23
4.5 Example program with for-loop . 23
4.6 An example of loop dependency . 24
4.7 The control flow graph after processing cost estimation 25
4.8 The location of B-type checkpoint . 26
4.9 The location of L-type checkpoint . 27
4.10 The location of P-type checkpoint . 29
4.11 The finish time jitter caused by the variance of interference time 30
4.12 An example of user-specified target response time 32
4.13 The discrete bound of practical processor 36

5.1 Generating fifty execution path patterns for compress’s CFG 40
5.2 The header file as input element to configure the DVFS settings 43
5.3 The configuration files of target task . 44
5.4 The states of every task during runtime . 45
5.5 The structure of preemption stack . 45
5.6 The whole system framework . 45
5.7 Absolute finish time jitter of task-set 1 . 46
5.8 Jitter reduction rate of task-set 1 . 47
5.9 Energy consumption of task-set 1 . 47
5.10 Energy-saving rate of task-set 1 . 48
5.11 Absolute finish time jitter of task-set 2 . 48
5.12 Jitter reduction rate of task-set 2 . 49
5.13 Energy consumption of task-set 2 . 49
5.14 Energy-saving rate of task-set 2 . 50

4

B.1 The CFG of bs.c . 55
B.2 The CFG of compress.c . 56
B.3 The CFG of case study . 57
B.4 The CFG of matmult.c . 58
B.5 The CFG of ludcmp.c . 59

C.1 The annotation file for configuring the frequency-scaling points at every CFG 60

5

List of Tables

4.1 B-type mining table . 26
4.2 L-type mining table . 27
4.3 P-type mining table . 29
4.4 The DVFS-aware code instrumentation in task’s source code 31
4.5 The operating points of Sitara AM335x family processor 36

5.1 The information of chosen benchmarks . 38
5.2 The generated task sets . 39
5.3 The result of response-time analysis . 39
5.4 The sets of jitter-sensitivity tasks . 42

A.1 The list of required execution cycles of each instruction 54

6

Chapter 1

Introduction

In the hard real time systems, every periodic task is required to perform deterministic
timing behaviour, i.e., explicit timing constraint (specific deadline, low jitter). Among
them, schedulability of multitasking is the highest criticality in hard real-time system
which is not allowed to be violated. To maintain the schedulability, feasible task schedul-
ing algorithms have been studied for decades. However, predictability of response times
of periodic tasks is also a critical concern in some real-time applications, e.g., control
system or data acquisition. In the context of task scheduling, due to the task interaction
(preemption, precedence constraint or synchronisation protocol), memory access latency,
shared-resource contention or I/O device accesses, systems may face great runtime varia-
tion in response time, called finish time jitter. Especially, in the real-time control appli-
cations, finish time jitter can be tolerated whilst it does not lead a degradation of system
performance. However, large jitter can impact predictability in terms of timing domain.
This unpredictability can degrade stability (some fluctuation behaviour) or processing
accuracy of system [11,22]. Thereby jitter ought to be kept as low as possible.

The objective of this paper is to reduce finishing time jitter under Rate-Monotonic
scheduling (RM) whilst keeping the system consuming energy efficiently. A jitter-aware
Intra-task DVFS scheme is proposed to make task scheduling adapt to runtime vari-
ations due to both interference and execution time. The Intra-task DVFS approach
[25,31,33,35] promises finer granularity of frequency scaling within one instance of task’s
execution. Thus, it relatively outperforms the Inter-task DVFS approach in terms of
energy reduction. Apart from the effect of energy efficiency, it is expected that the Intra-
task DVFS approach manipulates finishing time jitter. The proposed algorithms target
at reducing variation in both execution time and interference time.

This work is the first to control the finishing time jitter using Intra-task DVFS, to the
best of the authors knowledge.

7

Chapter 2

Related Work

As stated in Chapter 1, this research is to mitigate the finish time jitter whilst keeping
the energy efficiency using the Intra-task DVFS techniques. Therefore, it is necessary
to introduce the concept of DVFS, how the task scheduling can cooperate with DVFS
mechanism, and the existing solutions of jitter reduction.

2.1 Dynamic Voltage and Frequency Scaling

There are enormous techniques which have been proposed for reducing energy consump-
tion or thermal issue in CMOS devices (e.g., processor). One of the widely used approaches
is Dynamic Voltage and Frequency Scaling (DVFS). Nowadays, most of processors (e.g.,
Intel XScale PXA270 [20], Texas Instruments Sitra AM335x [16], AMD Zacate [27]) sup-
port the DVFS mechanism for energy efficiency of embedded system platforms, laptop or
cloud datacenters [37] when they are in active states. With the DVFS mechanism, pro-
cessors can perform multiple levels of supply voltage and operating frequency in various
system requirement. For instance, whilst the application’s processes do not need to be
executed at the high computational performance, processor may scale down the operating
frequency and its corresponding supply voltage to avoid energy dissipation.

Specifically, DVFS technique is to deal with energy consumption caused by dynamic
power (Pdynamic)

1. When the processor is operating at clock frequency f with supply
voltage Vdd. The Pdynamic can be written as follows:

Pdynamic = α× Ceff × V 2
dd × f (2.1)

where α is the switching activity, Ceff is the load capacitance.
According to the equation 2.1, the dynamic power is proportional to the operating

frequency and quadratically proportional to the supply voltage. Therefore, the processor
reduces operating frequency and supply voltage together, to achieve the energy saving.

2.2 Energy/Power-Aware Scheduling

In the energy-aware task scheduling, the DVFS techniques are classified into Inter-task
and Intra-task according to the scaling granularity. Inter-task DVFS [2, 7, 12, 19] de-
termines the supply voltage and operating frequency for each execution duration on
task-by-task perspective. That is, system assesses adequate operating frequency(and its
corresponding supply voltage) for every instance of tasks. On the other hand, Intra-task

1Energy consumption of a CMOS device includes two sources [36]: dynamic power and static power.

8

DVFS [3,25,28,29,31–33,35,39] adjusts the supply voltage and operating frequency within
each individual-task boundary. Therefore, the major difference between them is that the
former deals with the existing slack time during any two consecutive instances of tasks,
whereas the latter manages to predict the upcoming slack time generated by the running
task itself. The Figure 2.1 to 2.3 illustrate the difference between Inter-task and Intra-task
DVFS scheduling. The Figure 2.1 is the original task scheduling without DVFS mecha-
nism. Because both task 1 and task 2 finish their execution times earlier than worst-case
execution times, system leaves some slack times in which the processor is in idle state.
Consequently, in Figure 2.2, if Inter-task DVFS mechanism is enabled, every instance of
any task will combine the slack time (left by previous running task) with its available
execution and decide a lower operating frequency to run through. On the other hand,
in Figure 2.3, if Intra-task DVFS mechanism is enabled, every instance of any task will
be run under multiple operating frequency by predicting the upcoming slack time arising
from the current instance’s execution itself.

Figure 2.1: Original task scheduling

Figure 2.2: Inter-task DVFS

Figure 2.3: Intra-task DVFS

9

2.3 Intra-task DVFS

As for the main scheme of Intra-task DVFS, the objective is to decide in which execution
points the processor should adjust its processing speed within the execution of one task’s
program; moreover the specific speed-updated ratio is assessed in order to reduce the
energy consumption whilst preventing deadline miss. There are two different approaches
to achieve Intra-task DVFS, i.e., stochastic-based Intra-task [38] and path-based Intra-
task [25, 29, 31–33]. The former divides every task’s program into several code sections
and furthermore analyses the stochastic information of each code section (e.g., average
execution time, probabilistic distribution, etc.). On the other hand, the procedures of
path-base Intra-task can be generally organised into timing analysis (control and data flow
information), placement of program checkpoint and calculation of speed-updated ratio.
First, timing analysis can give tight WCET bounds of every program by the control flow
graph (CFG) and data flow information (e.g., loop dependencies). It provides the hints
about the locations where the runtime variation(i.e., the causes of slack times in the future)
may occur. The example is the appearance of branch instruction or loop (a multiple
iteration of branch instruction). Second, the program checkpoints are inserted at some
program regions in order to trace the actual control flow during runtime. Accordingly, the
locations of checkpoints can be at the exits of branch instructions and loops (corresponding
to the B-type voltage-scaling point and L-type voltage-scaling point respectively [25, 31,
32]). Thus, the actual execution flow of one task within any instance becomes clear. Last,
every program checkpoint decided by previous step is regarded as a candidate for speed
adjustment (voltage/frequency scaling). If the successive execution path (of the current
control flow) where it is directing is not the longest path (the execution path taking the
largest execution cycles among its all branches), processor slows down the processing
speed but still makes task complete before the given WCET/deadline and overall energy
consumption can be further reduced.

The existing approaches of Intra-task DVFS scheme are summarised in the illustration
of Figure 2.4.

Figure 2.4: The workflow of existing Intra-task DVFS scheme

2.4 Jitter Reduction

To reduce jitter, a deadline assignment algorithm by linear programming was proposed [17]
under the EDF scheduling environments [21]. Deadline assignment attempts to shorten

10

relative deadlines of some periodic tasks whilst keeping the schedulability, by promoting
priorities of certain tasks to reduce the number of preemptions. Variation in preemption
duration makes contribution to jitter. Accordingly the less the preemption, the less the
jitter. In addition, some similar researches propose the period adjustment algorithms
[6, 22] for fixed-priority preemptive scheduling environment. Especially, they apply the
notion of jitter margin [11] (it will be introduced in Chapter 3) with feedback loop control
technique to reduce the impact of task scheduling on the presence of jitter. Although
those ideas reduce the finish time jitter by shortening the start time jitter, the variance
of actual execution time is not directly handled. In particular, if the periods of tasks are
much greater than finish time jitters then the effectiveness obtained from such approach is
relatively small; moreover, the nature of their approaches manages to change the priorities
of some tasks from original task schedules, whilst the literature [15] shows that it may
violate the schedulability of the system in some cases.

Other works exploit DVFS to handle jitter [1, 23, 24]. They proves that DVFS mecha-
nism enables the system to control the actual execution/response times of periodic tasks,
thus it is applicable to reducing finish time jitter. Mochocki, et al. exploit only the suitable
portion of slack time to scale down the operating frequency for some lower-priority tasks
instances instead of aggressively using all slack time for energy reduction [23]. However,
their work is based on Inter-task perspective, hence frequency scaling can be performed
only at the start time of every instance of tasks.

On the other hand, Phatrapornnant and Pont point out the issue of DVFS-induced
variance in task scheduling. This issue is discussed that, the usage of DVFS-based task
scheduling schemes mainly aim at minimising systems energy consumption under the
constraints of schedulability. But it also incurs a great deal of uncertainty about actual
response times (especially the duration of execution time).

Hence they proposed a similar jitter-aware DVFS algorithm called TTC-jDVS algo-
rithm. This algorithm manages to suppress the impact of DVFS on response times’s pre-
dictability. Firstly, It assumes that some tasks require low jitter (defined as reduced-jitter
tasks) and others are unnecessary. Then system would intentionally add certain length of
delays after the completions of particular tasks which are not reduced-jitter tasks. Thus,
the following reduced-jitter tasks only can get fewer slack time to perform the DVFS op-
eration. Consequently the aggressive frequency scaling can be avoided. However, despite
of their effort on TTC-jDVS algorithm, the variation in actual execution time is still not
dealt with directly (the finish time jitter is still overlooked).

11

Chapter 3

Static Timing Analysis toward Jitter

3.1 Characteristic of Real-Time Task

In the real-time systems, the features of every periodic task τi in timing domain are
depicted in Figure 3.1, where

Figure 3.1: The timeline of one periodic task’s feature

1. Release. The time at which task requests for execution; it also means the time at
which task becomes ready for execution.

2. Execution time. The total amount of processing time necessary for execution
without interruption.

3. Deadline. The maximum time within which task must complete its execution.

4. Start. The time at which system starts to run the task.

5. Finish. The time at which system completes the execution of task.

6. Response time. The total amount of time for system to respond to request of
task, i.e., the interval between release and finis time.

7. Period. The interval between task’s consecutive release times, i.e., the request rate
of execution.

12

For ease of timing analysis by mathematics, those features can be denoted by the notations
below.

• ri,j denotes the release time of jth instance of task τi.

• si,j denotes the start time of jth instance of task τi.

• Ti denotes the period of task τi.

• di,j denotes the absolute deadline of jth instance of task τi.

• Di denotes the relative deadline of task τi.

• Ri,j denotes the response time of jth instance of task τi.

• fi,j denotes the finish/completion time of jth instance of task τi.

• Ci denotes the execution/computation time of task τi.

• prti denotes the priority which is assigned to task τi in task scheduling.

3.2 Rate Monotonic Scheduling Algorithm

This research is based on the Rate-Monotonic algorithm as the task scheduling policy.
Hence this section is to introduce the idea of it.

Rate-Monotonic (RM) is a fixed-priority preemptive algorithm for periodic tasks [9].
Its rule is to assign priority to every periodic task according to the length of its period.
That means the periodic task with shorter period is assigned higher priority. Note that,
since the period of every periodic task is constant, every task’s priority is decided before
execution and does not change during runtime.

Figure 3.2 is an example of Rate-Monotonic algorithm for scheduling three periodic
tasks. Task 1 τ1 has execution time 1 ms and period 6 ms (=relative deadline). Task 2 τ2
has execution time 2 ms and period 7 ms. Task 3 τ3 has execution time 3ms and period
10 ms. According to the RM algorithm, τ1 has the highest priority, τ2 has middle priority
and τ3 has the lowest priority. In the execution point 12 ms of Figure 3.2’s timeline, the
third instance of τ1 is released; meanwhile, the second instance of τ3 is still executing. In
this case, because τ1 has higher priority than priority of τ3, the τ3,2 is suspended from its
execution until τ1,3 finishes, which is called preemption.

3.3 The sources and definition of Jitter

In the real-time task scheduling, different instances of a task may vary their computational
behaviour in timing domain. Such variation in timing domain is called jitter. According
to the characterisation of a periodic task τi defined by [9], there are four types of jitter
described below.

• Relative Start Time Jitter. The maximum variation between relative start times
of any two consecutive instances, expressed by equation (3.1):

RRJi = max
k
|(si,k − ri,k)− (si,k−1 − ri,k−1))| (3.1)

13

Figure 3.2: Example of Rate-Monotonic scheduling

• Absolute Start Time Jitter. The maximum variation of relative start times
among all instances, expressed by equation (3.2):

ARJi = max
k

(si,k − ri,k)−min
k

(si,k − ri,k) (3.2)

• Relative Finish Time Jitter. The maximum variation between response times
of any two consecutive instances, expressed by equation (3.3):

RFJi = max
k
|(fi,k − ri,k)− (fi,k−1 − ri,k−1))| (3.3)

• Absolute Finish Time Jitter. The maximum variation of response times among
all instances, expressed by equation (3.4):

AFJi = max
k

(fi,k − ri,k)−min
k

(fi,k − ri,k) (3.4)

According to the equation above, it is clear that start time jitter is one part of finish time
jitter, hence finish time time jitter is the aim of jitter reduction metrics in this research.
Furthermore, finish time jitter of one task is regarded as composition of execution time
variance and interference time variance.

As for execution time variance, its causes can be traced by structure of its source code
(described in Chapter 4.3) and target processor’s architecture (such as pipline and cache
hierarchy) [14, 26]. The former will be the main focus in this study. On the other hand,

14

interference time variance denotes runtime variation of the total duration in which the
task is suspended in Ready Queue at any instance, i.e., the preemption duration. As a
result, the interference time variance of a task is dominated by the timing behaviour of
higher-priority tasks.

The Figure 3.3 shows an example of presence of finish time jitter with three periodic
tasks under Rate-Monotonic scheduling1. The first periodic task τ0 has period T0 = 40 ms
and worst-case execution time WCET0 = 10 ms, the second task τ1 has T1 = 80 ms and
WCET1 = 20 ms. Last, the task τ2 has T2 = 120 ms and WCET2 = 30 ms. And thereby
those tasks show their priorities in a descend order. Because task τ0 gets the highest
priority, the variability of its response times among all instances only arises from runtime
variation of actual execution time between different instances. On the other hand, the
sources of finish time jitters happening to both task τ1 and τ2 do not only depend on their
execution time variance, but also interference time variances which are inherently affected
by their higher-priority tasks’ jitters.

Figure 3.3: Example of Rate-Monotonic task scheduling

Accordingly, if a task τi is assigned a lower priority, then the more impacts from higher-
priority tasks that the response time of task τi will be greatly uncertain. Hence the
downside of low-priority task in terms of jitter reduction’s complexity will be taken into
account in proposed methodology of this research.

3.4 Modelling Timing Attributes of Jitter

To further quantify the possible finish time jitter of every periodic task regarding its
WCET, period and the chosen task scheduling algorithm, Cervin et al. [10,11] introduced
the notion of jitter margin. It defined the upper and lower bound of input-output jitter2

of a periodic task in real-time control system, which can help designers to guarantee
the system stability of their task scheduling algorithm. In their definition, the input-
output delay means the response time of a control task is divided into a constant delay,
L ≥ 0 and time-varying delay (the jitter), Jm ≥ 0 shown in Figure 3.4. The minimum
possible delay is equal to L, and the maximum possible delay is given by L+Jm. Therefore,
jitter margin is defined as the largest variance of input-output delay, Jm(L).

Accordingly, this thesis redefines the viewpoint of original jitter margin. That is, every
periodic task’s execution must take system a constant interval of response time denoted
as constant response Rconstant. Moreover, system would spend an uncertain interval of

1In Rate-Monotonic scheduling, relative deadline Di of one task τi is equal to its period Ti
2In the general real-time system’s point of view, input and output time of a control task are

equivalent to release and finish time respectively.

15

Figure 3.4: The input-output delay in a control task. The symbol h is period of the
control task. [11]

response time denoted as variance response Rvariance. The Rconstant and Rvariance of each
periodic task can be computed by response-time analysis (for fixed priority preemptive
scheduling environments) [8, 18].

• Calculation of best-case response time (BCRTi): it is assumed that task τi
will spend its best-case execution time (BCETi) at one instance whilst all higher-
priority tasks which are released during τi’s one period, also perform their BCETs.
In this case, the best-case response time of τi (BCRTi) is derived. The calculation
of BCRTi can be done by the recursive manner in the equation

BCRTi = BCETi +
∑

j∈hp(i)

⌈
BCRTi
Tj

− 1

⌉
·BCETj (3.5)

where hp(i) indicates the set of tasks assigned higher priorities than task τi. Ac-

cordingly, the corresponding best-case interference time (ibest(i)) is∑
j∈hp(i)

⌈
BCRTi

Tj
− 1
⌉
·BCETj.

• Calculation of worst-case response time (WCRTi): first, defining the upper
bound of variance response by the notion of worst-case response time. That
is, assuming one instance of task τi takes its worst-case execution time (WCETi);
meanwhile, all higher-priority tasks released within the period of τi’s instance will
perform their WCETs as well. The WCRTi is given by the equation

WCRTi = WCETi +
∑

j∈hp(i)

⌈
WCRTi
Tj

⌉
·WCETj (3.6)

Accordingly, the corresponding worst-case interference time (iworst(i)) is

∑
j∈hp(i)

⌈
WCRTi

Tj

⌉
·WCETj.

• The bounds of Rconstant and Rvariance: based on the response-time analysis
above, the BCRTi can be regarded as constant response Rconstant.

Rconstant = BCRTi (3.7)

16

On the other hand, because the maximum possible response time of τi is WCRTi
thereby the range of variance response is within the interval of [0,WCRTi −Rconstant],
which is so-called jitter margin in this research’s definition. It can be represented
by a parametric way below

Rvariance
i = αi · (WCRTi −BCRTi) (3.8)

which the αi value ranges from 0.0 to 1.0 (0% to 100%).

Finally, the response time of a task τi can be illustrated by Figure 3.5.

Figure 3.5: The target response time from the perspective of Jitter Margin

The detail of utilising this jitter margin for DVFS operation will be addressed in Section
4.6.

17

Chapter 4

Jitter-Aware Intra-Task DVFS
Scheme

The timing attributes of finish time jitter of periodic tasks and its causes have been
analysed in Chapter 3, and then bring out the clue how DVFS mechanism of target
processor can handle the addressed problem. In order to reduce finish time jitter of
periodic tasks, a DVFS-centric design called Jitter-aware Intra-task DVFS scheme
is proposed in this chapter. Simply speaking, this scheme manages to provide a general
systematic approach for DVFS mechanism of target processor to operate under hard real-
time systems without modifying task scheduling policy of system kernel.

The chapter is organised into six sections: first shows a framework of proposed approach;
second is a preliminary including some extension work about runtime profiling for system
kernel; the following three sections are off-line works for giving DVFS operation guideline;
and sixth is an runtime (on-line) work for performing DVFS operation.

4.1 System Framework

In this section, the framework of proposed Jitter-aware Intra-task DVFS scheme
is presented, in which the implementation is based on the idea of existing Intra-task
DVFS [31,33] and makes an extension.

The main strategy of this scheme is to control the actual response time of periodic tasks
(within any instance) by changing the processing speed of the system, according to the
runtime variation in both interference and execution times. The overall framework of the
proposed approach is shown in Figure 4.1. It consists of four phases, that is

1. Control and data flow analysis. Analysing the diversity of every periodic task’s
execution behaviours at source code level.

2. Execution cycle estimation. Evaluating the processing cost of each task’s exe-
cution behaviours.

3. Frequency-scaling point placement. Determining the invocation points of DVFS
operation within each task’s runtime.

4. Frequency-updated ratio calculation. Deciding the new operating frequency
for meeting given jitter constraints.

As shown in Figure 4.1, in the off-line stages, source code (C codes) of given target
tasks are analysed in order to obtain their control flow graphs (CFGs) and data flow
information. Then each basic block of CFGs is examined by execution trace mining [33]

18

Figure 4.1: The framework of Jitter-aware Intra-task DVFS scheme

to record the worst-case remaining execution cycles (processing cost). Finally, locations
of frequency-scaling points are determined. The details are described in Section 4.3 to
Section 4.5.

In the run-time stage, the system mainly performs DVFS operation as a part of the
task scheduling. The new operating frequency is decided by referring to the given fre-
quency(and power) settings and scaling point lists. The details are described in Section
4.6.

4.2 Runtime Profiling

In this section, a simple runtime profiling mechanism is proposed to make system kernel
clarify the specific runtime situation arising from finish time jitter at every instance of all
periodic tasks. Those profiling informations will be the references for DVFS operation to
decide an adequate frequency-updated ratio, detailed in Section 4.6, and also be evaluation
metric of jitter reduction.

In any practical real-time operating system, there is one main data structure, called
Task Control Block (TCBi), for storing the feature of every task [9]. In particular, it
characterises the set of tasks in a relation of Γ{τi(Prti, Ci, Ti, Di), i = 1, ..., n} by design-
ers, and provides the kernel for managing the task scheduling. The illustration of TCBi

is shown in Figure 4.2.
Based on this context, there are three additional control parameters added into TCBi

to get required profiling information: (i) recorded maximum response time Rmax
i , (ii)

recorded minimum response time Rmin
i , and (iii) actual interference time Iactual(i)). In

addition, there is one global control parameter for the whole task set: global slack time
Slackglobal.

4.2.1 Recorded Maximum/Minimum Response Time

Rmax
i and Rmin

i are used to record the maximal and minimal response time among all past
instances of task τi. Assuming that τi,j is the currently running task, at start time of τi,j,
Rmax

i is initialised to zero and Rmin
i is initialised to ∞. Once τi finishes its execution, the

system kernel will check if the actual response time of τi,j, denoted Ractual
i,j , is bigger than

Rmax
i or not. Then updating Rmax

i by assigning the value of Ractual
i,j otherwise keeping the

19

typedef struct TCB {
char TskID;
proc (*addr)();
int type;
int state;
long dline;
int period;
int prt;
int wcet;
float util;
int *context;
proc next;
proc prev;

} tcb t;

(a) An example of imple-
menting TCBi

(b) Structure of TCBi

Figure 4.2: The task control blocks featuring tasks for system kernel to manage

current value of Rmax
i . Similarly, updating Rmin

i by assigning the value of Ractual
i,j if Ractual

i,j

is smaller than Rmin
i .

4.2.2 Updating the Recorded Slack Time

In regard to the execution time variance discussed in Chapter 3.3, once a running task
finishes its current instance’s execution, it may show an earliness on actual execution
time. And then leaving a certain length of idle time during which processor serves none
of tasks, such idle time is called slack time or laxity. This slack time will be one of basic
factors that enables the usage of DVFS [2].

The Slackglobal is used to record such slack time arising from a running task at its
completion time. However, when the ready queue is empty, that means that even if
a running task finishes early no other task can make use it to perform DVFS. Thus,
Slackglobal will be updated to currently remaining slack time otherwise reset to zero.

4.2.3 Updating Actual Interference Time

According to the interference time variance discussed in Chapter 3.3, the total interference
time of a running task is dependent to higher-priority tasks’ finish time jitter (how long
the running task have to wait for completion of higher-priority tasks’ preemptions). The
actual interference time Iactual(i) is proposed to record the maximum bound of interference
time within every task’s instance in order to give DVFS operation a tighter response time1

against overestimation of WCRT .

1A more accurate interference time information inside the lower bound (best-case interference time)
and upper bound (worst-case interference time)

20

At release time of the task, the Iactual(i) of a running task is initialised to its Iworst(i).
Then Iactual(i) will be updated by Iactual(i) = Iactual(i) − Slackglobal at start and resume
time of the running task.

4.3 Control and Data Flow Analysis

From perspective of task’s possible execution flows, the execution time variance always
occurs whenever (i) there is a branch in the control flow [4] of task’s source code and
each partial execution path (right after the branch) involves different execution cycles
(processing cost); or (ii) there is a loop and the number of actual loop iterations varies
between instances’ execution. Hence this research attempts to extract control flow graph
(CFG) of every task’ source code, and identify the execution-varying factors from those
CFGs. In addition, to support prediction of the number of actual loop iterations during
runtime, data flow analysis is made use of to trace the loop dependency in CFG [30, 35]
(or called data flow tracing).

4.3.1 Extracting Control Flow graph

To extract CFG from every task’s source code, an open source toolbox [5] for WCET
analysis is utilised. The procedures are shown in Figure 4.3 and the result from the
toolbox is visualised in Figure 4.4. In this example, the chosen task’s source code is
compiled to get binary code and then the generated binary code is imported to OTAWA
WCET analyser. This toolbox can break the code into several basic blocks connected with
arrows.

One basic block represents a sequence of instructions from corresponding binary code.
Moreover, one basic block with multiple outgoing arrows represents that the last instruc-
tion inside the basic block is a branch instruction2, such as the partial execution paths
of

• BB2→BB3→BB5→BB7→BB8→BB9→BB2→BB10→end

• BB2→BB10→end

in Figure 4.4 show a presence of branch instruction in basic block B2. On the other hand,
the partial execution path marked by grey colour in Figure 4.4 represents a loop region.

Accordingly, the presences of branch and loop inside CFGs are regarded as execution-
varying factors in this research.

4.3.2 Data Flow Tracing against Loop Variability

Regarding the loop structure in a program, there are two data-flow boundaries defined in
this research and a for-loop example is introduced in Figure 4.5.

• Static loop bound (Boundstatic). Defining the maximum iteration regardless
of any variable or parameter assignment during runtime. The line 4 in Figure 4.5
shows ten as maximum possible iterations.

• Runtime loop bound (Boundruntime). Defining the actual iteration setting at
runtime. The line 3 in Figure 4.5 decides the actual iteration, for instance, if x is
assigned to 5 then the actual iteration of following for-loop will be five iterations.

21

Figure 4.3: Extracting CFG using OTAWA WCET analyser

In [30,35]’s idea, they managed to move the frequency-scaling points to earlier execution
point with respect to the task’s actual control flow in any instance. They proved that
if system can predict the execution time variance and perform DVFS operation earlier,
then much more workload will be involved in new operating frequency hence energy
consumption will be further reduced. Accordingly, this thesis makes use of their concept
to let more basic blocks under the control flow deal with reduction of execution time
variance (for ease of explanation and comprehension, another source code is given with
corresponding CFG for illustration as shown in Figure 4.6).

Specifically, when a source code contains either while- or for-loop, the runtime loop
bound is determined by particular variables. In the example of Figure 4.6a, the runtime
loop bound of while-loop depends on the variable x. Thus it is regarded as the induction
variable of the while-loop. Since the value of induction variable can differ from one
instance to another, it varies task’s execution time. Thereby the line 1 of Figure 4.6a is
the point making system possible to predict the execution time early. Furthermore, the
line 1’s instructions are mapped to the basic block BB1 in Figure 4.6b, thus basic block
BB1 is said to be loop dependency of the following loop region.

2In the C/C++ language, a branch instruction can be a if-statement.

22

(a) One basic block represents a sequence of intructions

(b) CFG of chosen task’s program

Figure 4.4: Control flow of target task’s source code

1: void output(void) {
2: int i;
3: x = func1(); /*x = 0 ... 9*/
4: for(i = x; i < 10; i++) {
5: func2();
6: }
7: }

Figure 4.5: Example program with for-loop

4.4 Execution Cycle Estimation

4.4.1 Estimation of Processing Cost

The control flow graphs of target tasks are extracted, then in order to know the total
processing costs of CFG’s execution paths, a CFG-based computation tool called cfg-
wcec3 [25], is used to obtain the execution cycles.

The calculation of processing cost using cfg-wcec tool in this research, is done by the
following procedures:

1. Converting CFG of every task (obtained from previous section) into graph xml
format (.graphml) file [34], and inputting the .graphml file and task’s assembly
code to the tool.

2. Computing the number of execution cycles required for processing each basic block’s

3The open source tool can be found on https://github.com/diegoValhalla/cfg-wcec

23

1: x = func1();
2: func2();
3: while(x != 0) {
4: y = func3();
5: if(y != 0)
6: func4();
7: z = func5();
8: x-=1;
9: }
10: if(z != 0)
11: func6();
12: a = func7();
13: if(a == 1)
14: func8();
15: else
16: func9();
17: func10()

(a) Source code

(b) CFG

Figure 4.6: An example of loop dependency

corresponding sequence of instructions. The example of Figure 4.4 is presented in
Figure 4.7a. Additionally, the required execution cycles for running each instruction
is based on the specification of target processor. The detail can be referred to
Appendix A.

3. Finding the best-case execution path (BCEP) and worst-case execution path (WCEP).
For instance, the BCEP costing 1000 execution cycles, and WCEP costing 9750
exeuction cycles are shown in Figure 4.7b and Figure 4.7c respectively. In addition,
the processing costs through BCEP and WCEP are denoted as BCEC and WCEC
respectively.

4.4.2 Checkpoint and Mining Table Placement

After analysing the CFGs and processing cost of each basic block, next step is to mark
the location of execution-varying points and quantify the execution time variance from
each of them. The approach here is to calculate the total processing cost of each partial
execution path until the end of CFG’s traversal (i.e., the basic block with the identifier:
end). Specifically, there are two steps to make the quantification of the execution time
variance happening at execution-varying point: (i) checkpoint insertion and (ii) mining
table establishment [33].

In the first step, it is expected that basic blocks corresponding to the three factors
(branch, loop entry and loop dependency) should be selected as the location of execution-
varying points, also known as program checkpoints in this thesis. A B-type checkpoint is
inserted right after every branch’s corresponding basic block in [33], in order to trace the
execution time variance from each . Also, a L-type checkpoint is inserted at every loop
exit to trace the variety of runtime loop bound (referring to the Section 4.3.2) in [25,31].
However, the research manages to analyse more fine granularity of execution time variance
in every CFG. Consequently, it not only makes use of B-type checkpoint from previous

24

(a) CFG with annotation of pro-
cessing cost

(b) The
bset-case
execution
path with
process-
ing cost
of 1000
cycles

(c) The worst-case execution
path with processing cost of 9750
cycles

Figure 4.7: The control flow graph after processing cost estimation

work but also redefines the L-type checkpoint and extends a new type of checkpoint
against loop dependency, called P-type checkpoint.

In the second step, the purpose is to calculate remaining worst-case execution cycles
(RWCECs) from each checkpoint to the end of the task’s execution. The remaining worst-
case execution cycles here mean the maximum processing cost through every checkpoint’s
successor execution paths. According to the Execution Trace Mining [33], RWCECs
of execution paths from each B-type checkpoint as well as their corresponding instruction
addresses can be recorded in a mining table. Therefore, the approach here makes an
extension of mining table, constructing the B-type, L-type and P-type mining tables
which correspond to their types of checkpoints. The details of checkpoints and mining
tables are described below.

• B-type checkpoint and mining table. The example shown in the Figure 4.8
presents a simple CFG containing a branch after basic block Block1. There are
two successor execution paths: (i) Successor1 : Block1→Block2→end, and (ii)
Successor2 : Block1→Block3→Block2→end. Hence a checkpoint is inserted right
after Block1.

Referring to the Table 4.1, there are two successor execution paths from B-type
checkpoint. And because none of them contains another branch or loop, hence the
RWCECs under successor execution paths are exactly equal to their total process-
ing cost, i.e., RWCECsuccessor1 = 150 cycles and RWCECsuccessor2 = 350 cycles.
In addition, the first column, Address, indicates the location of its corresponding
checkpoint.

In summary, the RWCEC of B-type checkpoint can be formulated according to the

25

Figure 4.8: The location of B-type checkpoint

B-type Mining Table
Address Successor1 RWCECsuccessor1 Successor2 RWCECsuccessor2

#1(Block1) Block2 100(cycles) Block3 300(cycles)

Table 4.1: B-type mining table

mining table

RWCEC =

{
RWCECsuccessor1 , (successor = Successor1)

RWCECsuccessor2 , (successor = Successor2)
(4.1)

• L-type checkpoint and mining table. As for the insertion of L-type checkpoint
in [25,31], they put the checkpoint at the end of every loop exit, only. Their strategy
is to focus on the difference between the static loop bound and runtime loop bound
which can be known after the process of the loop; meanwhile, if there are multiple
partial execution paths in the loop (due to the presence of branch inside), task’s
execution will always branch to the longest path in terms of processing cost. For
example, in the loop region in the Figure 4.9, five partial execution paths might occur
during runtime, each of which is called loop-inner execution path in this thesis:

1. Block1 → Block3

2. Block1 → Block2 → Block4 → Block6 → Block1

3. Block1 → Block2 → Block5 → Block4 → Block6 → Block1

4. Block1 → Block2 → Block4 → Block7 → Block6 → Block1

5. Block1 → Block2 → Block5 → Block4 → Block7 → Block6 → Block1

It is clear that the fifth partial execution path will cost system the most execution
cycles and thereby the original usage of L-type checkpoint always considers the only
possibility of fifth partial execution path during every loop iteration. However, no
matter how much the target reduces the energy consumption or finish time jitter,
the execution time variance caused by such diverse partial execution paths in one
loop can affect the effectiveness of DVFS operation significantly. According to the
drawback of previous work, instead of inserting this type of checkpoint at loop exit,
this research relocates the checkpoint to any branch inside the loop (called loop-inner

26

branch in this research). For instance, the Block1, Block2 and Block4 are defined
as checkpoints’ locations.

Figure 4.9: The location of L-type checkpoint

Similar to the B-type mining table, the P-type mining table records the RWCECs of
successor execution paths of every loop-inner branch. In addition, the last column
of the mining table, RWCECafter loop, indicates the remaining worst-case execution
cycles after the process of loop, i.e., the processing cost of path Block3 → end.

L-type Mining Table
Boundstatic : 10 (iterations)

WCECiter : 830 (cycles)

Loopentry : Block1, Loopexit : Block1

Address Successor1 RWCECsuccessor1 Successor2 RWCECsuccessor2 RWCECafter loop

#1(Block1) Block2 830(cycles) Block3 500(cycles) 500(cycles)

#2(Block2) Block4 580(cycles) Block5 780(cycles) 500(cycles)

#3(Block4) Block6 250(cycles) Block7 280(cycles) 500(cycles)

Table 4.2: L-type mining table

There are three different possible RWCECs whilst task’s execution reaches a L-
type checkpoint. First case is that task branches to the Successor1 referring to the
condition1 in equation 4.2. Second case is that task branches to the Successor2
referring to the condition2. Last case is that when task’s execution passes through
the loop exit (Block1) and branches to a successor which does not belong to loop
(such as Block1 branches to Block3), it also means the end of loop process. The

27

RWCECs of those three cases can be calculated by following equation.

RWCEC =

{
RWCECsuccessor1 +WCECiter · (Boundruntime − Iterexecuted) +RWCECafter loop , (condition1)

RWCECsuccessor2 +WCECiter · (Boundruntime − Iterexecuted) +RWCECafter loop , (condition2)

RWCECafter loop , (otherwise)

(4.2)

where

– condition1 : successor = Successor1 ∧ Address 6= Loopexit

– condition2 : successor = Successor2 ∧ Address 6= Loopexit

Consequently, more accurate quantification of execution time variance in a loop is
expected.

• P-type checkpoint and mining table. This type of checkpoint is designed
to exploit the data flow tracing of Boundruntime predicting its value in advance
(knowing the value of Boundruntime before the task’s execution reaches upcoming
loop process). The concept of P-type checkpoint is similar to the idea of original
L-type checkpoint [25, 31] which takes the loop-inner execution path of maximum
processing cost into account within every loop iteration. However, it is located at
loop dependency’s corresponding basic block instead of loop exit.

Assuming that the Block1 of Figure 4.10 contains the instruction deciding the
Boundruntime and thereby Block1 is considered as a loop dependency (according
to the principle defined in Section 4.3.2). In this case, a P-type checkpoint can be
inserted right after Block1. Once task’s execution finishes the process of Block1 the
P-type checkpoint here can predict that the workload required for upcoming loop
process is equal to

max{∀C(loop-inner execution paths)} ·Boundruntime (4.3)

where the C(x) indicates the processing cost of execution path x.

Subsequently, the P-type mining table is to give the identification that each loop
region belongs to which specific loop dependency, by pointing the location of check-
point to the loop entry of target loop region. Such as the Table 4.3, the loca-
tion of one loop dependency is at Block1 and the loop entry of its target loop
region is Block2. The fourth (WCECiter) column records the processing cost of
max{∀C(oop-inner execution paths)}, and the fifth column (RWCECoutside loop)
records the required workload from checkpoint to the the end of CFG excluding the
workload of the loop region. In this example, the processing cost of partial execution
path Blcok4 → end is the only required workload outside the loop region, thus the
RWCECoutside loop : 500 cycles.

The RWCEC at the checkpoint is calculated by following equation.

RWCEC = C(LoopEntry) +Boundruntime ·WCECiter+

RWCECoutside loop

(4.4)

28

Figure 4.10: The location of P-type checkpoint

P-type Mining Table
Address Loop Entry Boundstatic WCECiter RWCECoutside loop

#1(Block1) Block2 10(iterations) 830(cycles) 500(cycles)

Table 4.3: P-type mining table

In conclusion, the research manages to make P-type checkpoint cooperate with
L-type checkpoint for dealing with the execution time variance arising from loop
region. The procedure of their cooperation is described below.

1. First, P-type checkpoint is utilised to obtain the information of the number
of actual loop iteration against upcoming loop, then operating frequency is
adjusted against loop-iteration variance.

2. Second, the variance of loop-inner execution paths is further identified to handle
the exact execution time of the loop region.

4.5 Frequency-Scaling Point Placement

In order to shorten the finish time jitter, variance of interference and execution time is
handled. The main purpose of this phase is to determine when the system invokes DVFS
operation to reduce those variances. There are four execution points where performing
frequency-scaling is possible. The frequency-scaling point at each of them targets specific

29

Figure 4.11: The finish time jitter caused by the variance of interference time

factor of jitter. The following bullet points describe the location of frequency-scaling point
in addition to the summary/review of jitter factors addressed in Section 3 and 4.2.

• Start-time frequency-scaling point. Referring to the actual interference time
in Section 4.2.3, this type of frequency-scaling point is placed at start time si,j. It
aims to reconfigure a default operating frequency due to updated actual interference
time. Namely, it focuses on interference time variance affected by higher-priority
tasks.

For example, in Figure 4.11, τ1 has WCET of 3 and period(=Deadline) of 5, and τ2
has WCET of 2 and period(=Deadline) of 5, with τ1 having higher priority than τ2.
This example shows a finish time jitter of one tick for τ2 where response times of
τ1,1 and τ1,2 are not constant. This leads to different interference times on the τ2’s
instances. It is obvious that the actual start time of lower-priority task is affected
by higher-priority tasks. Here, frequency-scaling points are inserted at the start
time of a lower-priority task. As a result, shorter response time for τ2,1 or longer
response time for the τ2,2 is obtained, which can reduce the difference from all τ2’s
instances.

• B-type frequency-scaling point. It is placed at every B-type checkpoint’s cor-
responding execution point. It focuses on variant processing cost among successor
execution paths of branches.

• P-type frequency scaling point. It is placed at every P-type checkpoint’s cor-
responding execution point. It focuses on variant processing cost due to different
Boundruntime on loops.

• L-type frequency scaling point. It is placed at every L-type checkpoint’s cor-
responding execution point. It focuses on variant processing cost among loop-inner
execution paths of every loop’s iteration.

On the other hand, as the aforementioned variety of execution paths in one task’s CFG,
it incurs variation in execution time. Therefore, frequency-scaling points are placed at
respective checkpoint’s corresponding location. Such approach can equalise the response
times of the running task even if it follows different execution paths. Table 4.4 shows an
example of task’s source code with its corresponding frequency-scaling points’ location.

Finally, although performing DVFS operation at start time can handle the interference
time variance, the exact resume times of the running task which is preempted by higher-
priority tasks is another factor. A strategy for placing frequency-scaling points either (i)

30

(a) Source code (b) CFG (c) DVFS code

1: x = func1();
2: func2();
3: while(x != 0)
{
4: y = func3();
5: if(y != 0)
6: func4();
7: z = func5();
8: x-=1;
9: }
10: if(z != 0)
11: func6();
12: a = func7();
13: if(a == 1)
14: func8();
15: else
16: func9();
17: func10()

1: x = func1();
2: freq scaling(P type 1);
3: func2();
4: while(x != 0) {
5: y = func3();
6: if(y != 0) {
7: freq scaling(L type 1);
8: func4();
9: }
7: freq scaling(L type 1);
10: z = func5();
11: x-=1;
12:}
13: if(z != 0) {
14: freq scaling(B type 1);
15: func6();
16:}
17: a = func7();
18: if(a == 1) {
19: freq scaling(B type 2);
20: func8();
21:}
22: else {
23: freq scaling(B type 2);
24: func9();
25:}
26: func10()

Table 4.4: The DVFS-aware code instrumentation in task’s source code

right after resume time, (ii) or somewhere after resume time but before completion time,
can further control response time. As a result, this enhancement is left for the future
work.

4.6 Frequency-Updated Ratio Calculation

To identify and mitigate the execution and interference time variance, previous sections
have already determined the specific execution points in which DVFS operation can be
performed such as Table 4.4(c). Consequently, the next step is to design the functionality
of DVFS operation. First, the response time constraint is imposed to every periodic
task. Second, the frequency-updated ratio (frequency-scaling factor) is determined for
respective frequency-scaling point. There are two different contexts of DVFS operatoin
proposed in this research, (i) static-based DVFS and (ii) profile-based DVFS.

Regarding to the response time constraint, more specifically, giving every jitter-sensitive

31

task4 τ jitteri an guideline called target response time Rtarget
i . Ideally, once the DVFS

operation is invoked by any frequency-scaling point of τ jitteri , the system starts calculating
the frequency-updated ratio in the aim of making actual response time get closer/equal
to given Rtarget

i . In this manner, the range of execution time variance and interference
time variance can be mitigated even if each instance takes different amount of execution
cycles.

4.6.1 Static-Based DVFS

Assignment of Response Time Constraint

According to the timing attributes of jitter described in Section 3.4, the lower bound and
upper bound of finish time jitter of a periodic task, jitter margin, is assessed regardless
of frequency scaling. This section further utilises the jitter margin to determine the
tolerable variance of response time of every τ jitteri . Similarly, ∀τ jitteri are given one
specified target response time ratio αi ranging from 0 to 1 (or 0% - 100%) by user in
advance. Hence all instances of every τ jitteri are requested to respond with target response
time:

Rtarget
i = BCRTi + αi · (WCRTi −BCRTi) (4.5)

An example of specifying Rtarget
i is depicted in Figure 4.12. If the value of αi is assigned

to 0.0, it means that all jth instances of τ jitteri are demanded to finish its execution at
ri,j + BCRTi as shown in Figure 4.12a. On the other hand, αi = 0.6 and αi = 1.0
mean all jth instances of τ jitteri are demanded to perform the actual response time of
ri,j +Rvariance

i · 0.6 and ri,j +WCRTi respectively, as shown in Figure 4.12b and 4.12c.

(a)

(b)

(c)

Figure 4.12: An example of user-specified target response time

4The specific task which is highly sensitive to jitter, i.e., low jitter tolerance.

32

Ideal Operating Frequency

In order to get an ideal operating frequency at a frequency-scaling point, the system has
to know the available time before Rtarget

i expires and the remaining worst-case execution
cycles (RWCECi) which τ jitteri is supposed to spend from the current time. The ideal
operating frequency is calculated by the following equation.

fideal =
RWCECi

Rtarget
i − timeexecutedi − Iactual(i)

(4.6)

In this equation, Rtarget
i − timeexecuted

i − Iactual(i) represents the available time for
task τi at the considered frequency-scaling point. The available time is substantially
subject to the length of interference time Iactual(i) from higher-priority tasks.

To further distinguish the DVFS opertion between (i) start-time frequency-scaling point
and (ii) B-/L-/P-type frequency-scaling point, this thesis shows each of their algorithms
by pseudo-codes below.

• Start-time frequency-scaling point. The line 1 of the Algorithm 1 is to cal-
culate the so-called expected actual response time based on the assumption that,
current instance will spend its worst-case execution cycles (WCECi) under the de-
fault operating frequency (fdefault). In addition, the Ractual

i here is aware of actual
interference time (Iactual(i) depicted in Section 4.2.3). The timeelapsed is the dura-
tion from release time to start time, denoted as ri,j − si,j. Next, from line 2 to line
4 is to deal with the interference time variance that, if higher-priority tasks finish
earlier and leave some global slack (Slackglobal) then current instance can scale down
the operating frequency to avoid the Rmin

i being updated in the future. The line
5 manages to handle the discrete bound of operating frequencies range which will
be introduced in Section 4.6.3. Finally, the line 9 is really to configure the new
operating frequency to the target processor.

Algorithm 1: Slack Reclamation at Start Time

1 Ractual
i ← timeelapsed +

WCECi
fdefault

+ Iactual(i) ;

2 if Slackglobal > 0 then
3 if Ractual

i − Slackglobal < Rmin
i then

4 fideal ← WCECi
Rmini −Iactual(i)+Slackglobal

;

5 fnew ← Discrete freq handle(fideal);
6 freq config(fnew);

7 else
8 fnew ← fdefault;
9 end

10 end

33

• B-/L-/P-type frequency-scaling point. When the task τ jitteri ’s execution reaches
one certain frequency-scaling point (no matter B-type, L-type or P-type), first step
in line 1 of Algorithm 2 is going to look the RWCECi up in each point’s correspond-
ing mining table. Then the available execution time (timeavailable) from current time
to specified Rtarget

i is calculated in line 2. From line 3 to line 5 is to calculate the
new operating frequency with discrete bound handling according to the RWCECi

and timeavailable.

Algorithm 2: User-specified DVFS Operation

Input: i, blockcurrent
1 RWCECi ← mining table(blockcurrent);

2 timeavailable ← Rtarget
i − Iactual(i)− timeexecuted;

3 fideal ← RWCECi/timeavailable;
4 if fideal 6= fcurrent then
5 fnew ← Discrete freq handle(fideal);
6 freq config(fnew);

7 end

4.6.2 Profile-Based DVFS

Assignment of Response Time Constraint

In the profile-base DVFS settings, the target response time (Rtarget
i) of task τ jitteri will

be kept regulating by system during runtime, instead of being specified by user/designer
statically.

The system performs one procedure called dynamic assignment of target response time
during runtime. It decides a target response time by referring to the profiling informa-
tions (Rmax

i and Rmin
i defined in Section 4.2) as well as estimating the currently expected

response time given by the following equation.

Rexpect
i = timeexecutedi +

RWCECi

fcurrent
+ Iactual(i) (4.7)

The Rexpect
i indicates the actual response time if current operating frequency (fcurrent) is

kept to run the task τ jitteri until the end of its execution. The timeexecutedi is the duration
from start time to current time which indicates the total amount of time system spent
for executing task τ jitteri .

In the second step, the obtained Rexpect
i is compared with Rmin

i and Rmax
i at any type

of frequency-scaling point. Then target response time Rtarget
i is assigned in the manner of

the following equation.

Rtarget
i =

{
Rmin

i (Rexpect
i < Rmin

i)

Rmax
i (Rexpect

i > Rmax
i)

(4.8)

34

However, there is one exception that DVFS operation is not performed. That is, when
Rmin

i ≤ Rexpect
i ≤ Rmax

i . In this case, the response time of the current instance will not
increase the finish time jitter even if the system keeps the current operating frequency
fcurrent. Hence Rtarget

i does not need to be considered.

Ideal Operating Frequency

• Start-time frequency-scaling point. The strategy of start-time frequency-scaling
point in profile-based DVFS settings is same as the algorithm addressed in static-
based DVFS.

• B-/L-/P-type frequency-scaling point. As for the procedure of deciding the
new operating frequency in the Algorithm 3, from line 2 to line 4 is to check if
current operating frequency will make Rexpect

i end up with new (shorter) Rmin
i , and

calculate a lower operating frequency for fideal. Similarly, From line 6 to line 9 is
to check whether Rexpect

i will lead to longer Rmax
i or not, and calculate a higher

operating frequency for fideal. Otherwise, the DVFS operation does not change the
current operating frequency (fcurrent).

Algorithm 3: Profile-based DVFS Operation

1 Rexpect
i ← timeexecuted +

RWCECi
fcurrent

+ I(i)actual;

2 if Rexpect
i < Rmin

i then

3 fideal ← RWCECi
Rmini −timeexecutedi −I(i)actual

;

4 fnew ← Discrete frequ handle(fideal);
5 freq config(fnew);

6 else if Rexpect
i > Rmax

i then

7 fideal ← RWCECi
Rmaxi −timeexecutedi −I(i)average

;

8 fnew ← Discrete freq handle(fideal);
9 freq config(fnew);

10 else
11 fnew ← fcurrent;
12 end

4.6.3 Discrete Bound Handling

The ideal operating frequency assumes that the system can use continuous frequencies
from one to infinity. However it is impossible in practical processors which can operate
only with a limited number of discrete operating frequencies(from maximal frequency
fmax to minimal frequency fmin). For instance, in the Texas Instruments Sitara AM335x

35

Processor (ARM Cortex-A8) [16], there are only five operating points (OPPs) which
microprocessor unit subsystem (MPU) can perform as shown in Table 4.5.

MPUOPP MPU Frequency (MHz) Supply V oltage (v) V DD MPU Power (mW)

OPP50 300 0.95 114.38

OPP100 600 1.1 303.15

OPP120 720 1.2 437.49

Tubo 800 1.26 542.73

Nitro 1000 1.325 736.08

Table 4.5: The operating points of Sitara AM335x family processor

Therefore, the obtained ideal operating frequency needs to be converted to one of
those practical frequencies in the target processor model. We assume the set of practical
frequencies Fdiscrete = {f1, f2, ..., fn} where f1 and fn are fmin and fmax, respectively.
The frequency conversion corresponding to the function Discrete freq handle(fideal) in
previous section’s algorithm is described as follows.

fnew =

fmin (fideal ≤ f0)

fa+1 (fa < fideal ≤ fa+1)

fmax (fideal ≥ fn)

(4.9)

If fideal is between fa and fa+1, fa+1 is chosen as the updated frequency fnew in order to
avoid deadline misses. Because this research targets to the hard real-time systems, thus
the criticality of deadline miss is higher than low jitter or energy demand. The selection
of practical frequency is illustrated in Figure 4.13.

Figure 4.13: The discrete bound of practical processor

36

Chapter 5

Evaluation

5.1 Experimental Setup

To evaluate the proposed jitter reduction approach, a multitasking simulator, benchmark
programs representing periodic tasks, and task sets as well as timing constraint parame-
ters are essential. And the evaluation way is basically based on the comparison of abso-
lute finish time jitter and energy saving between (i) the environment of Rate-Monotonic
scheduling with single operating frequency and (ii) the environment of Rate-Monotonic
scheduling with DVFS mechanism.

This section is organised into four subsections: Section 5.1.1 introduces the chosen
benchmark programs, Section 5.1.2 will show the algorithm how to generate the test
patterns, and Section 5.1.3 will give each chosen periodic task’s timing constraints. Section
5.1.4 is about the framework of simulator.

5.1.1 Benchmark Programs

In this experiment, five benchmark programs are prepared for periodic task set. Those
contain four programs (written in C) which are provided by WCET project [13], and one
simple case study’s CFG is created. The description of benchmarks is shown below.

• bs.c: Binary search for the array of fifteen integer elements, including one loop with
four loop-inner execution paths.

• compress.c: Data compression program which contains three loops.

• matmul.c: Matrix multiplication program containing four nest loop structures1

and one branch.

• ludcmp.c: LU decomposition algorithm containing six nest loop structures and
four branches.

• cfg 1: Simple CFG containing one loop with two loop-inner execution paths and
one branch.

The former four programs were input into the off-line timing analysis introduced in the
proposed system framework of Section 4.1, e.g., (i) control and data flow analysis, (ii)
execution cycle estimation and (iii) frequency-scaling point placement. In addition, the
case study CFG, cfg 1 was input from the second phase, execution cycle estimation. The
results of those off-line timing analysis are shown in Appendix B.

1The program structure that one loop is inside the other loop.

37

Finally, the informations of these benchmarks which will be used in simulation, are
summarised as task models in Table 5.1. The second column shows the number of basic
blocks of each benchmark CFG, the third column indicates the number of frequency-
scaling points placed inside each CFG. The fourth and fifth columns present the worst-case
execution cycles (WCECs) and best-case execution cycles (BCECs) of each CFG.

Task # Basic Block # Scaling Point WCEC (cycle) BCEC (cycle)

bs 10 2 9750 1000
compress 11 4 11 950 52

cfg 1 9 3 1810 260
matmul 23 4 1 890 395 95
ludcmp 46 9 27 546 338

Table 5.1: The information of chosen benchmarks

5.1.2 Task-Set and Test Pattern Generation Algorithm

After obtaining the CFGs of target benchmarks, next steps are to (ii) make the feasible
task sets for simulating the task scheduling, and (ii) generate the various execution paths
for each CFG to reflect runtime variation in execution of the target tasks among instances.

Generating task sets

The worst-case execution time (WCET) and best-case execution time (BCET) of every
task are essential for generating the task set. In this experiment, the occurrence of WCET
(ns) is considered that task takes its WCEC (cycles) under the default operating frequency,
i.e, WCET = WCEC

fdefault
. On the other hand, the BCET (ns) occurs in the case that the task

takes its BCEC (cycles) under the default operating frequency, i.e., BCET = BCEC
fdefault

.

The frequency settings is referred to the Texas Instruments Sitrara AM335x processor
shown in Table 4.5 in which the running clock frequency is set to 300, 600, 720, 800,
or 1000 MHz. The default operating frequency is always set to its maximal frequency,
fdefault = fmax = 1000MHz.

The content of one task set here contains the five target tasks’ features in terms of
timing domain. Every task’s feature includes priority2, computation time, period, relative
deadline, τi(Prti, Ci, Ti, Di), i = 1, ..., 5. The generation procedures are described below.

1. Calculation of utilisation bound. According to the Rate-Monotonic scheduling
policy, the utilisation bound is N × (21/N − 1) where N is the number of tasks.
Therefore, the utilisation bound of scheduling five tasks is 0.74349 (74.349%)3.

2. Random assignment of utilisation of every task. Next step is to randomly
assign an utilisation to every task τi in the range of [0.001,0.4] by exponential distri-
bution, denoted as Utili. In addition, the accumulation of those five tasks’ assigned
utilisation values (

∑5
n=1 Utili) is limited by the bound 0.74349. If

∑5
n=1 Utili ex-

ceeds the bound, this step will randomly select one task and keep decreasing its
utilisation value until

∑5
n=1 Utili ≤ 0.7439.

2The priority is based on descend order, i.e., the smaller the value, the higher the priority.
3In the uniprocessor system, the full utilisation is up to 1.0 (100%)

38

3. Calculation of period of each task. The utilisation of each task τi can be simply
considered as the following equation, Util = Ci

Ti
. Therefore, the period of every task

can be set to Ti = WCETi

Utili
. Moreover, the relative deadline of every task is set to be

equal to its period.

In this experiment, there are two task sets which were generated as shown in Table 5.2.

Task WCET (ns) Period (ns) Deadline (ns) Priority

bs 9750 75582 75582 0
compress 11950 173189 173189 3

cfg 1 1810 164546 164546 2
matmul 1890395 9110699 9110699 4
ludcmp 27546 84239 84239 1

(a) The task-set 1 whose total utilisation is 0.74349

Task WCET (ns) Period (ns) Deadline (ns) Priority

bs 9750 162500 162500 3
compress 11950 35949 35949 0

cfg 1 1810 35951 35951 1
matmul 1890395 37807900 37807900 4
ludcmp 27546 121349 121349 2

(b) The task-set 2 whose total utilisation is 0.71976

Table 5.2: The generated task sets

In addition, in order to perform the static-based DVFS settings, the response-time
analysis (described in Section 3.4) ought to be done. Table 5.3 shows the WCRTi, BCRTi
and Rvariance

i of every task τi. The analysis result of task-set 1 is shown in Table 5.3a,
and the result of task-set 2 is shown in Table 5.3b

Task WCRT BCRT Rvariance
i

bs 9750 1000 8750
compress 11950 1650 10300

cfg 1 39106 1598 37508
matmul 4108449 1745 4106704
ludcmp 37296 1338 35958

(a) Task-set 1

Task WCRT BCRT Rvariance
i

bs 64816 1650 63166
compress 11950 52 11898

cfg 1 13760 312 13448
matmul 5778963 1745 5777218
ludcmp 55066 650 54416

(b) Task-set 2

Table 5.3: The result of response-time analysis

Generating various execution paths

In Section 3.4, the concept of variance response/jitter margin has been addressed. The
possible variance response of a task τi is in the range of [0,WCRTi−Rconstant]. In order to
make simulation reflect such bounded variance during every instance of the running task
a text pattern generator is built. The generator randomly generates fifty execution
paths for every target task that is based on their CFG structure.

39

The strategy of generating those execution path patterns is described in Algorithm 4.
Initially, through the Input port, number of execution path patterns which is required
for generating, e.g., 50 is given in this experiment. And the CFG of target task and static
loop bound of every loop (introduced in Section 4.3.2) are input. On the other hand, the
output port is to return a set of execution path patterns, each of which is constructed as
a linking list. Hence fifty linking lists will be obtained from output port.

From line 2 to line 4, generator starts to traverse the CFG from its first basic block.
Once the generator passes through a basic block, it will put it into current test pattern’s
linking list; moreover, line 4 randomly determines the runtime loop bound (Boundruntime)
of each loop region in the range of [0,Boundstatic]

4. From line 5 to line 23 are to make
different combination of basic blocks by following three manners:

• line 6 - line 7: When generator reaches a branch’s corresponding basic block, it
will randomly take one of successor execution paths and continue traversing.

• line 8 - line 17: These lines deal with the pattern of loop-inner execution path.
The given Boundruntime by line 4 is set as a counter, and it will keep generating
Boundruntime number of execution paths from its loop entry to loop exit. Each
of those execution path is to simulate the inner-execution path within every loop
iteration. When generator reaches a loop exit’s corresponding basic block, if the
counter is subtracted to 0 then the generator will leave the loop region.

• line 19 - line 20: When generator reaches a basic block which is neither a loop
entry/exit nor branch, it will traverse to its only successor basic block.

The illustration of generating the execution path patterns for benchmark compress’s
CFG is presented in Figure 5.1.

Figure 5.1: Generating fifty execution path patterns for compress’s CFG

4The number of loops inside CFG can be known by counting the number of loop entries

40

Algorithm 4: Randomly Generating Execution Path(s)

Input: number of required patterns, target Control Flow Graph,
Boundstatic of every loop

Output: A set of test patterns
1 while pattern num 6= 0 do
2 cur NodeID ← CFG path.startBlock;
3 insert Block(cur NodeID) into current test pattern;
4 Boundruntime[i] ← random number from [0,Boundstatic[i]],

∀i ∈ CFG paths′ LoopIndex;
5 repeat
6 if Block(cur NodeID) is a branch then
7 succ NodeID ← random number ε Block(cur

NodeID).successors ;

8 else if Block(cur NodeID) is a loop exit then
9 cur NodeID ← Block(Loop[loop ID]’s entry);

10 loop ID ← search LoopEntryID(cur NodeID);
11 insert Block(cur NodeID) into current test pattern;
12 if Boundruntime[LoopID] = 1 then
13 succ NodeID ← random number ε

Block(cur NodeID).successorsBlock(cur NodeID).successorsBlock(cur NodeID).successors ∧ outside loop;

14 else
15 Boundruntime[LoopID] ← Boundruntime[LoopID] - 1;
16 succ NodeID ← random number ε

Block(cur NodeID).successorsBlock(cur NodeID).successorsBlock(cur NodeID).successors ∧ inside loop;

17 end

18 else
19 succ NodeID ← Block(cur NodeID).succssor[0];
20 end
21 cur NodeID ← succ NodeID;
22 insert Block(cur NodeID) into current test pattern;

23 until cur NodeID = CFG path.sinkBlock ;
24 insert current test pattern into test pattern set;
25 pattern num ← pattern num - 1;

26 end

41

5.1.3 Jitter Constraint Settings

For each task set, it randomly classifies certain tasks into the jitter-sensitivity task τ jitteri

aforementioned in Section 4.6. Every task set is configured to have five different com-
bination of jitter-sensitivity tasks as shown in Table 5.4. For instance, the set of jitter-
sensitivity tasks in the first row of Table 5.7, (bs, compress), indicates that this experiment
setting only focuses on reducing the finish time jitter of task bs and task compress. More
specifically, when system starts running, the DVFS operation will only be invoked dur-
ing the executions of task bs and task compress; meanwhile, the rest of tasks will be
executed under the default operating frequency without frequency scaling.

Set Targeted Jitter-sensitive Tasks

1 (bs, compress)
2 (bs,compress,cfg 1)
3 (bs,compress,cfg 1,ludcmp)
4 (bs,cfg 1,ludcmp)
5 (compress,cfg 1)

(a) Task-set 1

Set Targeted Jitter-sensitive Tasks

1 (compress,cfg 1)
2 (bs,compress,cfg 1)
3 (compress,cfg 1)
4 (bs,cfg 1)
5 (bs,compress,cfg 1,ludcmp)

(b) Task-set 2

Table 5.4: The sets of jitter-sensitivity tasks

5.1.4 Implementation of Simulator

In this subsection, the simulation environment is introduced. A CFG-based multitask-
ing simulator is built for evaluating jitter reduction and energy saving by the proposed
approach in C++11 and Bash script. The simulator mainly is composed of (i) CFG
traversing model and (ii) task scheduling model. The former is built for simulating a
processor’s behaviour, and the latter is to simulate the real-time kernel’s task scheduler.

The platform used for running the simulator is Intel Core i5-5200U 2.20GHz with 4GB
main memory, in which in on the top of openSUSE Leap 42.2 Linux kernel 4.4.27.

CFG traversing model

Basically, this model is based on the Intra-task perspective, and simulate every single
task’s execution paths individually. First, before running the CFG traversing model,
there are several configuration files which must be input. And there are dedicated parsers
for reading each kind of configuration file. The files are listed below.

After CFGs of target tasks are input with aforementioned configuration files, the CFG
traversing model is started running. It is performed on a tasks’ CFGs basis, where exe-
cution cycles of traversed basic blocks are counted.

• Input

– DVFS settings. The voltage-frequency sets and corresponding power con-
sumption constructed by the C++ head file, shown in Figure 5.2.

– Frequency-scaling point list. To tell the simulator in which the DVFS
operation should be invoked. The informations are arranged by a file called
scaling list.txt in Figure C.1 of Appendix C. In addition, the content of this
file is used for building the mining tables.

42

Figure 5.2: The header file as input element to configure the DVFS settings

– Execution path patterns. There are two configuration files related to the
execution path pattern. One is the list of fifty patterns. The example of task
bs’s corresponding file is shown in Figure 5.3a. Another one is the list of
Boundruntime for each loop which is generated by Algorithm 4’s line 4. The
example of task matmul’s corresponding file is shown in Figure 5.3b.

Task scheduling model

This model is based on the Inter-task perspective. It is responsible for scheduling the target
task set based on Rate-Monotonic scheduling, and giving the CFG traversing model the
instruction to run the prioritising task (the task in the Run state) at any time. Simply
speaking, the task scheduler keeps managing every task in the three states: Ready, Run,
and Idle. The relation of those three states is explained below and an illustration is shown
in Figure 5.4.

• Idle. The task is in the Idle state if it has not been released yet.

• Ready. Once the task is released but it is not prioritised, in this case, task will
transits from Idle to Ready. That is, the task in the state Ready means it is waiting
for the processor to execute it in the ready queue.

• Run. Once the task is assigned the highest priority, it transits from Ready to
Run. Then the dispatcher will assign processor to execute the task’s corresponding
program.

43

(a) List file of exeuction
path patterns

(b) List file of Rruntime
i of

all loops

Figure 5.3: The configuration files of target task

As for the simulation of preemption, the mechanism designed in this simulator is based
on an Interrupt timer and a preemption stack to manage. There is an interconnection bus
which connects the task scheduling model, CFG traversing model and time management
for communication. First the time management includes one system tick for counting the
elapsed time from starting point of simulation (the time unit is nanosecond);
meanwhile the time management also includes an interrupt timer. Such interrupt timer is
used for periodically pausing the work of both task scheduling model and CFG scheduling
model, to see if it is necessary to perform preemption5. If preemption occurs, the execution
context of the CFG which is run by the CFG traversing model will be extracted and
temporarily saved in the preemption stack, for instance, the task identifier of the current
CFG in the model, the basic block where the model currently traverses to, the execution
path pattens which current model is following and the current operating frequency. The
preemption stack is constructed by a data structure as shown in Figure 5.5.

Finally, the framework of whole simulator is depicted in Figure 5.6

5If there is any task just released with the highest priority comparing to the priorities of all tasks in
the ready queue

44

Figure 5.4: The states of every task during runtime

Figure 5.5: The structure of preemption stack

Figure 5.6: The whole system framework

45

5.2 Experimental Results

In the experiments, the following three settings are compared:

• NonDVFS. A system without DVFS operation (with fixed operating frequency of
fmax).

• StaticDVFS. A system with DVFS using the user-specified target response times
for jitter-sensitive tasks referred to as the Static-based DVFS context in Section
4.6.1.

• ProfileDVFS. A system with DVFS using the profile-based target response times
for jitter-sensitive tasks referred to as the Profile-based DVFS context in Section
4.6.2.

Each target task set is simulated five times with different execution paths generated by
the test pattern generator, and every task scheduling of each task set is run until the the
system tick counts of 500000 nanosecond. The average value of (i) absolute finish time
jitter and (ii) energy consumption of the jitter-sensitive tasks are used in the comparison.

Figure 5.7 shows the mean value of absolute finish time jitter for each set of jitter-
sensitivity tasks, in task-set 1; moreover, Figure 5.8 shows each of their corresponding
jitter reduction rates.

Figure 5.7: Absolute finish time jitter of task-set 1

46

Figure 5.8: Jitter reduction rate of task-set 1

Figure 5.9 shows the energy consumption for each set of jitter-sensitivity tasks, in
task-set 1; moreover, Figure 5.10 shows each of their corresponding energy-saving rates.

Figure 5.9: Energy consumption of task-set 1

47

Figure 5.10: Energy-saving rate of task-set 1

Figure 5.11 shows the mean value of absolute finish time jitter for each set of jitter-
sensitivity tasks, in task-set 2; moreover, Figure 5.12 shows each of their corresponding
jitter reduction rates.

Figure 5.11: Absolute finish time jitter of task-set 2

48

Figure 5.12: Jitter reduction rate of task-set 2

Figure 5.13 shows the energy consumption for each set of jitter-sensitivity tasks, in
task-set 2; moreover, Figure 5.14 shows each of their corresponding energy-saving rates.

Figure 5.13: Energy consumption of task-set 2

49

Figure 5.14: Energy-saving rate of task-set 2

50

Chapter 6

Conclusion

6.1 Summary

This research proposed a jitter-aware Intra-task DVFS techniques for reducing finish time
jitter in hard real-time systems. It exploited DVFS technique to reduce runtime variation
in both interference and execution time, with the cooperation of control and data flow
analysis. To decide effective frequency-scaling factor at every DVFS operation, a jitter
margin was defined to clarify the lower and upper bounds of possible finish time jitter,
also four control parameters were prepared for profiling runtime situation manipulated
by system. Through the simulation, it was shown that jitter can be reduced by 16.2% to
19.4%; meanwhile, the system still could get some opportunity to scale down the operating
frequency. Thereby it was shown that energy was saving by 13.6% to 18.39% as the side
effect.

However, the proposed approach may have some drawback which leads to larger finish
time jitter . For instance, the experimental result of task-set 1 on the setting of third
set of jitter-sensitivity shown in the third bar of Figure 5.8, ended up with 32.74% larger
finish time jitter comparing with the result under NonDVFS settings. Similarly, the
experimental result of task-set 2 on the setting of second set of jitter-sensitivity shown in
the second bar of Figure 5.12, ended up with 10.66% larger finish time jitter comparing
with the result under NonDVFS settings. That is because of the jitter-sensitivity task
τ jitteri ’s assigned priority. When the higher-priority task and lower-priority task are defined
as τ jitteri at the same time, the response time control by DVFS operation for higher-priority
task would inherently give the lower-priority task additional interference time variance.
Therefore, even if the lower-priority task performs DVFS operation, the effectiveness of
its jitter reduction is still violated.

Besides, because the practical processor only can work under limited number of oper-
ating frequencies, the discrete bound handling in Chapter 4.6.3 would make the actual
response time of τ jitteri present a big gap to the given target response time. Thus, such
gap caused by discrete frequency bound is one of the significant factors which will degrade
the effectiveness of proposed approach of jitter reduction.

6.2 Future Work

According to the drawback of proposed approach mentioned in the previous section, a
further strategy for limiting the DVFS operation on higher-priority task is necessary.
In addition, an enhancement algorithm of the discrete bound handling in Chapter 4.6.3
should be taken into account.

51

On the other hand, currently the ongoing work is trying to find a tradeoff between jitter
and energy. Different power profiles are being mapped to the frequency settings used in
this research. Moreover, thorough assessment under various jitter and energy constraints
is to be considered as the future extension. Currently overlooked switching overhead could
possibly limit the number of frequency-scaling points.

52

Publications

1. Boyu Tseng, Kiyofumi Tanaka. Reducing Jitter and Energy in Hard Real-time
Systems Using Intra-task DVFS Technique. In IPSJ80, volume 2018, pages 113-
114, mar 2018.

2. Bo-Yu Tseng, Kiyofumi Tanaka. Jitter Reduction in Hard Real-Time Systems using
Intra-task DVFS Techniques. In Proceedings of the 14th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Application, in conjunction
with 30th Euromicro Conference on Real-Time Systems (ECRTS), Barcelona, Spain,
2018.

53

Appendix A

The Required Execution Cycles for
each instruction

According to the open source tool developed by [25], it arranged about the information
of every ARMv7 instruction’s execution cycles which processor need to spend. Note
that, in their specification, the architectural-level accuracy is not taken into account, e.g.,
regardless of (i) cache miss/hit and (ii) dependency within any consecutive instructions
(pipeline hazards).

Instruction Cycles Instruction Cycles Instruction Cycles Instruction Cycles

ADC 3 MCR 3 LDM 6 SMULL 4
ADFD 3 MRC 4 LDR 5 STC 4
ADCS 3 MUFD 3 LDFD 5 STM 3
ADD 3 MNFD 3 LDRB 5 SUFD 3
DVFD 3 MLA 3 LDRH 5 STFD 3
ADDS 3 MLAL 4 LDRSB 5 STR 3
AND 3 MOV 3 LDRSH 5 STRB 3
ANDS 3 MOVS 3 STRH 3 NOP 3
B 3 MRS 3 SUB 3 POP 3
BL 3 MSR 3 SUBS 3 PUSH 3
BLS 3 MUL 3 SWI 3 ROR 3
BIC 4 MULL 3 SWP 4 RRX 3
BICS 4 MVN 3 SWPB 4 stmfd 4
BNE 4 MVNS 3 TEQ 3 stmia 4
BX 3 ORR 3 TST 3 ldmia 6
CDP 3 ORRS 3 UMLAL 4 bge 3
LDC 4 RSB 3 UMULL 4 BGT 3
CMN 3 RSC 3 ADR 3 BMI 3
CMF 3 RSBS 3 ADRL 3 BEQ 3
CMFE 3 RSCS 3 ASR 3 BLT 3
CMP 3 SBC 3 LSL 3 LDMFD 4
EOR 3 SBCS 3 LSR 3 ldmea 6
EORS 3 SMLAL 4 ble 3

Table A.1: The list of required execution cycles of each instruction

54

Appendix B

CFGs of Benchmarks

Figure B.1: The CFG of bs.c

55

Figure B.2: The CFG of compress.c

56

Figure B.3: The CFG of case study

57

Figure B.4: The CFG of matmult.c

58

Figure B.5: The CFG of ludcmp.c

59

Appendix C

Annotation of Scaling Point

Figure C.1: The annotation file for configuring the frequency-scaling points at every CFG

60

Bibliography

[1] Alireza Salami Abyaneh and Mehdi Kargahi. Energy-efficient scheduling for stability-guaranteed
embedded control systems. In Real-Time and Embedded Systems and Technologies (RTEST), 2015
CSI Symposium on, pages 1–8. IEEE, 2015.

[2] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mej́ıa-Alvarez. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600, 2004.

[3] Ana Azevedo, Ilya Issenin, Radu Cornea, Rajesh Gupta, Nikil Dutt, Alex Veidenbaum, and Alexan-
dru Nicolau. Profile-based dynamic voltage scheduling using program checkpoints. In Design, Au-
tomation and Test in Europe Conference and Exhibition, 2002. Proceedings, pages 168–175. IEEE,
2002.

[4] Thomas Ball and James R Larus. Using paths to measure, explain, and enhance program behavior.
Computer, 33(7):57–65, 2000.

[5] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa: an open toolbox
for adaptive wcet analysis. In IFIP International Workshop on Software Technolgies for Embedded
and Ubiquitous Systems, pages 35–46. Springer, 2010.

[6] Moris Behnam and Damir Isovic. Real-time control and scheduling co-design for efficient jitter
handling. In null, pages 516–524. IEEE, 2007.

[7] Muhammad Khurram Bhatti, Cécile Belleudy, and Michel Auguin. An inter-task real time dvfs
scheme for multiprocessor embedded systems. In Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, pages 136–143. IEEE, 2010.

[8] Reinder J Bril, Elisabeth FM Steffens, and Wim FJ Verhaegh. Best-case response times and jitter
analysis of real-time tasks. Journal of Scheduling, 7(2):133–147, 2004.

[9] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and ap-
plications, volume 24. Springer Science & Business Media, 2011.

[10] Anton Cervin. Stability and worst-case performance analysis of sampled-data control systems with
input and output jitter. In American Control Conference (ACC), 2012, pages 3760–3765. IEEE,
2012.

[11] Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik Arzén, and Giorgio Buttazzo. The jitter margin
and its application in the design of real-time control systems. In Proceedings of the 10th Interna-
tional Conference on Real-Time and Embedded Computing Systems and Applications, pages 1–9.
Gothenburg, Sweden, 2004.

[12] Marco ET Gerards, Johann L Hurink, and Jan Kuper. On the interplay between global dvfs and
scheduling tasks with precedence constraints. IEEE Transactions on Computers, 64(6):1742–1754,
2015.

[13] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET bench-
marks – past, present and future. pages 137–147, Brussels, Belgium, July 2010. OCG.

[14] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The heptane static worst-case execution time
estimation tool. In 17th International Workshop on Worst-Case Execution Time Analysis (WCET
2017), volume 8, page 12, 2017.

[15] Shengyan Hong, Xiaobo Sharon Hu, and Michael D Lemmon. Reducing delay jitter of real-time
control tasks through adaptive deadline adjustments. In Real-Time Systems (ECRTS), 2010 22nd
Euromicro Conference on, pages 229–238. IEEE, 2010.

[16] Texas Instruments. AM335x Power Consumption Summary. http://processors.wiki.ti.com/

index.php/AM335x_Power_Consumption_Summary, 2016. [Online; accessed 19-July-2008].

61

[17] Taewoong Kim, Heonshik Shin, and Naehyuck Chang. Deadline assignment to reduce output jitter
of real-time tasks. IFAC Proceedings Volumes, 33(30):51–56, 2000.

[18] Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael González Harbour. A practitioners
handbook for real-time analysis: guide to rate monotonic analysis for real-time systems. Springer
Science & Business Media, 2012.

[19] Keqin Li. Scheduling precedence constrained tasks with reduced processor energy on multiprocessor
computers. IEEE Transactions on Computers, 61(12):1668–1681, 2012.

[20] Y Liang, P Lai, and C Chiou. An energy conservation dvfs algorithm for the android operating
system. Journal of Convergence, 1(1), 2010.

[21] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[22] Pau Marti, Josep M Fuertes, Gerhard Fohler, and Krithi Ramamritham. Jitter compensation for
real-time control systems. In Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd
IEEE, pages 39–48. IEEE, 2001.

[23] Bren Mochocki, Razvan Racu, and Rolf Ernst. Dynamic voltage scaling for the schedulability of
jitter-constrained real-time embedded systems. In Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, pages 446–449. IEEE Computer Society, 2005.

[24] Teera Phatrapornnant and Michael J Pont. Reducing jitter in embedded systems employing a time-
triggered software architecture and dynamic voltage scaling. IEEE Transactions on Computers,
55(2):113–124, 2006.

[25] D. Pinheiro, R. Goncalves, E. Valentin, H. d. Oliveira, and R. Barreto. Inserting dvfs code in
hard real-time system tasks. In 2017 VII Brazilian Symposium on Computing Systems Engineering
(SBESC), pages 23–30, Nov 2017.

[26] Jan Reineke. Challenges for worst-case execution time analysis of multi-core architectures. 2014.

[27] Sonal Saha and Binoy Ravindran. An experimental evaluation of real-time dvfs scheduling algo-
rithms. In Proceedings of the 5th Annual International Systems and Storage Conference, page 7.
ACM, 2012.

[28] Hiroshi Sasaki, Yoshimichi Ikeda, Masaaki Kondo, and Hiroshi Nakamura. An intra-task dvfs tech-
nique based on statistical analysis of hardware events. In Proceedings of the 4th international con-
ference on Computing frontiers, pages 123–130. ACM, 2007.

[29] Jaewon Seo, Taewhan Kim, and Ki-Seok Chung. Profile-based optimal intra-task voltage scheduling
for hard real-time applications. In Proceedings of the 41st annual Design Automation Conference,
pages 87–92. ACM, 2004.

[30] Dongkun Shin and Jihong Kim. Optimizing intra-task voltage scheduling using data flow analysis. In
Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005.,
volume 2, pages 703–708 Vol. 2, Jan 2005.

[31] Dongkun Shin and Jihong Kim. Optimizing intratask voltage scheduling using profile and data-flow
information. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(2):369–385, 2007.

[32] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra-task voltage scheduling for low-energy hard
real-time applications. IEEE Design & Test of Computers, 18(2):20–30, 2001.

[33] Tomohiro Tatematsu, Hideki Takase, Gang Zeng, Hiroyuki Tomiyama, and Hiroaki Takada. Check-
point extraction using execution traces for intra-task dvfs in embedded systems. In Electronic Design,
Test and Application (DELTA), 2011 Sixth IEEE International Symposium on, pages 19–24. IEEE,
2011.

[34] GraphML Team. The graphml file format. Homepage: http://graphml. graphdrawing. org, 2015.

[35] Burt Walsh, Robert Van Engelen, Kyle Gallivan, Johnnie Birch, and Yixin Shou. Parametric intra-
task dynamic voltage scheduling. In Proceedings of the Workshop on Compilers and Operating
Systems for Lower Power (COLP 2003), 2003.

[36] Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems perspective. Pearson
Education India, 2015.

62

[37] Chia-Ming Wu, Ruay-Shiung Chang, and Hsin-Yu Chan. A green energy-efficient scheduling al-
gorithm using the dvfs technique for cloud datacenters. Future Generation Computer Systems,
37:141–147, 2014.

[38] Changjiu Xian and Yung-Hsiang Lu. Dynamic voltage scaling for multitasking real-time systems
with uncertain execution time. In Proceedings of the 16th ACM Great Lakes symposium on VLSI,
pages 392–397. ACM, 2006.

[39] Thorsten Zitterell and Christoph Scholl. Improving energy-efficient real-time scheduling by exploiting
code instrumentation. In Computer Science and Information Technology, 2008. IMCSIT 2008.
International Multiconference on, pages 763–771. IEEE, 2008.

63

