
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Investigation of Applications of State

Machines [課題研究報告書]

Author(s) Ferdous, Mohammad Farhan

Citation

Issue Date 2018-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15470

Rights

Description Supervisor:緒方　和博, 情報科学研究科, 修士

An Investigation of Applications of State Machines

By Mohammad Farhan Ferdous

A research project report submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Kazuhiro Ogata

An Investigation of Applications of State Machines

By Mohammad Farhan Ferdous (1510215)

A research project report submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Kazuhiro Ogata

and approved by
Professor Kazuhiro Ogata

Professor Kunihiko Hiraishi
Professor Toshiaki Aoki

August, 2018 (Submitted)

Copyright c© 2018 by Mohammad Farhan Ferdous

Acknowledgements

This Masters research report would not have been understandable without the proper
direction and the help of my main supervisor Professor Kazuhiro Ogata. I might want to
offer my genuine thanks to him for the continuous support of my exploration as well as
my life. I also grateful to others professors our dean Professor Tojo, Professor Iida and
others Professors.

My true thanks additionally go to Nguyen Thi Thanh Tam for making the SMGA for
graphical animations of state machine tool which is a free web-based illustration appli-
cation for originators and designers. The tool has helped me to actualize my thought in
this examination.

To wrap things up, I might want to thank my parents for their sacrifice for me and
continuous support me. To each one of those individuals especially my all labs members
and all JAIST and Bangladeshi friends who helped me to survive the JAIST life.

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Aim and Contribution . 6
1.3 Report Outline . 6

2 Preliminaries 8
2.1 Mutual Exclusion . 8
2.2 State Machine and Invariants . 8
2.3 Kripke Structures and LTL . 10
2.4 Maude . 11
2.5 SMGA . 12

3 Ticket Mutual Exclusion Protocol 15
3.1 FTicket: A Flawed Version of Ticket Protocol 15

3.1.1 Specification of FTicket in Maude and State Transition Diagram . . 15
3.1.2 Specification of FTicket as State Machines 16
3.1.3 Model Checking of FTicket . 18
3.1.4 Graphical animations of FTicket Counterexamples 19

3.2 Ticket Protocol . 20
3.2.1 Specification of Ticket in Maude and State Transition Diagrams . . 22
3.2.2 Specification of Ticket as State Machines 23
3.2.3 Model Checking of Ticket . 24
3.2.4 Graphical Animations of Ticket . 26

3.3 Non-deterministic version of Ticket Protocol 28
3.3.1 Specification of ND-Ticket . 30
3.3.2 Specification of ND-Ticket as State Machines 30
3.3.3 Model Checking of ND-Ticket . 32

4 Anderson Mutual Exclusion Protocol 33
4.1 FAnderson: A Flawed Version of Anderson Protocol 33

4.1.1 Specification of FAnderson in Maude and State Transition Diagrams 34
4.1.2 Specification of FAnderson as State Machines 34
4.1.3 Model Checking of FAnderson . 37
4.1.4 Graphical Animations of FAnderson Counterexamples 37

1

4.2 Anderson Protocol . 39
4.2.1 Specification of Anderson in Maude and State Transition Diagrams 40
4.2.2 Specification of Anderson as State Machines 41
4.2.3 Model Checking of Anderson . 43
4.2.4 Graphical Animations of Anderson 45

4.3 Non-deterministic version of Anderson Protocol 46
4.3.1 Specification of ND-Anderson in Maude and State Transition Dia-

grams . 48
4.3.2 Specification of ND-Anderson as State Machines 49
4.3.3 Model Checking of ND-Anderson 51

5 Qlock Mutual Exclusion Protocol 52
5.1 FQlock0: A Flawed Version of Qlock0 Protocol 52

5.1.1 Specification of FQlock0 in Maude and State Transition Diagrams . 52
5.1.2 Specification of FQlock0 as State Machines 53
5.1.3 Model Checking of FQlock0 . 55
5.1.4 Graphical Animations of FQlock0 Counterexamples 56

5.2 FQlock1 Protocol . 57
5.2.1 Specification of FQlock1 in Maude and State Transition Diagrams . 59
5.2.2 Specification of FQlock1 as State Machines 59
5.2.3 Model Checking of FQlock1 . 61
5.2.4 Graphical Animations of FQlock1 63

5.3 Qlock Mutual Exclusion Protocol . 64
5.3.1 Specification of Qlock in Maude 66
5.3.2 Specification of Qlock as State Machines 67
5.3.3 Model Checking of Qlock . 68
5.3.4 Graphical Animations of Qlock . 71

5.4 Non-deterministic version of Qlock . 72
5.4.1 ND-Qlock . 73
5.4.2 Specification of ND-Qlock as State Machines 74
5.4.3 Model Checking of ND-Qlock . 76

6 Discussion 77
6.1 Summarized diagram of the report . 77
6.2 Model checking protocol code testing . 77
6.3 Model checking protocol design testing . 78

7 Conclusion 80

2

List of Figures

2.1 Mutual exclusion . 9
2.2 State Machine . 9
2.3 Invariant . 10
2.4 Kripke structures and LTL . 11
2.5 A picture of Maude display screen . 13
2.6 A picture of QLOCK protocol . 13

3.1 State Transition Diagram of FTicket . 17
3.2 Counterexample for FTicket of states 0 and 1 20
3.3 Counterexample for FTicket of states 3 and 6 21
3.4 Counterexample for FTicket of states 12 and 20 21
3.5 Counterexample for FTicket of state 28 . 21
3.6 State Diagram of Ticket . 23
3.7 States 0 and 1 of Ticket . 27
3.8 States 3 and 7 of Ticket . 27
3.9 States 10 and 12 of Ticket . 28
3.10 States 16 and 20 of Ticket . 28
3.11 States 22 and 24 of Ticket . 28
3.12 States 26 and 28 of Ticket . 29
3.13 State 30 of Ticket . 29
3.14 State Transition Diagram of ND-Ticket . 31

4.1 State Transition Diagram of FAnderson . 35
4.2 Counterexample for FAnderson of states 0 and 1 38
4.3 Counterexample for FAnderson of states 3 and 6 39
4.4 Counterexample for FAnderson of states 12 and 20 39
4.5 Counterexample for FAnderson of state 28 39
4.6 State transition diagram of Anderson . 41
4.7 States 0 and 1 of Anderson . 46
4.8 States 3 and 7 of Anderson . 46
4.9 States 10 and 12 of Anderson . 46
4.10 States 16 and 20 of Anderson . 47
4.11 States 22 and 24 of Anderson . 47
4.12 States 26 and 28 of Anderson . 47
4.13 State 30 of Anderson . 48

3

4.14 State transition diagram of ND-Anderson 49

5.1 State Transition Diagram of FQLOCK0 . 54
5.2 Counterexample for FQlock0 of states 0 and 1 57
5.3 Counterexample for FQlock0 of states 3 and 6 58
5.4 Counterexample for FQlock0 of states 13 and 23 58
5.5 Counterexample for FQlock0 of state 33 58
5.6 State Transition Diagram of FQLOCK1 . 60
5.7 States 0 and 1 of counterexample of the lockout freedom property for

FQLOCK1 . 64
5.8 States 2 and 3 of counterexample of the lockout freedom property for

FQLOCK1 . 64
5.9 States 4 and 5 of counterexample of the lockout freedom property for

FQLOCK1 . 65
5.10 States 6 and 7 of counterexample of the lockout freedom property for

FQLOCK1 . 65
5.11 States 8 and 9 of counterexample of the lockout freedom property for

FQLOCK1 . 65
5.12 States 10 and 11 of counterexample of the lockout freedom property for

FQLOCK1 . 66
5.13 State 12 of counterexample of the lockout freedom property for FQLOCK1 66
5.14 State Transition Diagram of QLOCK . 67
5.15 States 0 and 1 of QLOCK . 72
5.16 States 2 and 3 of QLOCK . 72
5.17 States 4 and 5 of QLOCK . 72
5.18 State 6 of QLOCK . 73
5.19 State Transition Diagram of ND-QLOCK 75

6.1 Summarize diagram of the project report 78
6.2 Model checking protocol code testing . 79
6.3 Model checking protocol design testing . 79

7.1 Summarize results of all protocols . 82

4

Chapter 1

Introduction

1.1 Overview

The world essentially relies upon programming. It is difficult to try and envision our lives
without utilization of any software. The societal dependability is nearly the same as that
of programming. How many individuals rely upon programming must addition later on.
In this manner, we need dependable innovations to make programming genuinely solid.

State machines[1] are spoken to utilizing state diagrams. The output of a state machine
is a component of the input and the present state. State machines assume a noteworthy
part in regions, for example, electrical engineering, phonetics, software engineering, biol-
ogy, science, mathematics, and logic. They are best utilized as a part of the displaying of
utilization conduct, software engineering, the design of hardware digital systems, network
protocols, compilers, and the study of computation and languages.

The state machine consists of a set of states, some of which are initial states and
a binary relation over states. Elements of binary relation are called (state) transitions.
State machines can be used to formalized various kind of systems, such as mutual exclusion
protocols, communication protocols, and authentication protocols.

The mathematical expression of the state machine as follows:
A state machine M is 〈S, I, T 〉, where S is a set of states, I ⊆ S is the set of initial

states, and here T ⊆ S × S is a binary relation over S. (s, s′) ∈ T is called a state
transition of state machine M and defined as s→ s′. Where s′ called a successor state of
s. The set R of reachable states : (1) I ⊆ R and (2) if s ⊆ R and s→ s′ , then s′ ∈ R. A
state machine predicate p is invariant then we can write M iff (∀s ∈ R) p(s). We can see
from Fig.4 about invariant. A state predicate p can be interpreted as a set P of states
where we can write (∀s ∈ P)p(s) and (∀s /∈ P)¬p(s).

In the project report, We used Maude which is a rewriting logic-based computer lan-
guage equipped with model checking facilities. We also conduct SMGA which is a state
machine graphical animation tool. We have used as the concrete example of different
types of mutual exclusion protocol such as Ticket, Anderson, and Qlock wrong, right and
Non-deterministic version respectively. SMGA[2] is a graphical animation tool which used
for drawing such a mutual exclusion protocol in each state.

5

1.2 Aim and Contribution

The aim of the project research is to learn state machines, how to mathematical formalize
as the state machine, how to formalize systems as state machines, how to describe state
machines in a formal specification language such as Maude, and how to model check
that state machine enjoys properties based on such formal specification. How to develop
graphical animations of the state machines used in the case studies with SMGA[2] by
rebuilding the graphical animations.

There are many possible ways to describe state machines in many formal specification
languages. One possible way formal specification language is Maude[3], a direct successor
of OBJ3, the most famous algebraic specification language. Maude has been used to
describe many state machines formalizing various kinds of systems and model check that
such state machines enjoy desired properties formalized as invariants based on such formal
specification in Maude.

It is worth learning machines, how to formalize systems as state machines, how to
describe state machines in Maude and how to model check that state machines, how to
describe state machines in Maude and how to model check that state machines desired
in invariant properties based on such formal specifications with Maude. Some mutual
exclusion protocols, such as the Flawed version of Ticket protocol, the right version of
Ticket, Non-deterministic version of Ticket protocol, Flawed version of Anderson protocol,
the right version of Anderson, Non-deterministic version of Anderson protocol. The flawed
version of QLOCK0, version of QLOCK1, the right version of QLOCK, Non-deterministic
version of QLOCK protocol, used as concrete examples to conduct the project.

A tool called SMGA for graphical animations of state machines has been developed.
We used in the different case studies such as FTicket, Ticket, FAnderson, Anderson,
FQLOCK0, FQLOCK1 , QLOCK with SMGA by rebuilding the graphical animations.

1.3 Report Outline

The rest of the project report is organized as follows :

• Chapter 2: Preliminaries

This chapter presents some preliminaries such as Mutual exclusion, State Machine
and Invariants, Kripke Structures and LTL, Maude and SMGA.

• Chapter 3: Ticket Mutual Exclusion Protocol

This chapter presents FTicket: A Flawed Version of Ticket Protocol, Ticket Proto-
col, Non-deterministic version of Ticket Protocol,

• Chapter 4: Anderson Mutual Exclusion Protocol

This chapter presents FAnderson: A Flawed Version of Anderson Protocol, Ander-
son Protocol,Non-deterministic version of Anderson Protocol,

6

• Chapter 5: Qlock Mutual Exclusion Protocol

This chapter presents FQlock0: A Flawed Version of Qlock0 Protocol, FQlock1
Protocol, Qlock Mutual Exclusion Protocol, Non-deterministic version of Qlock.

• Chapter 6: Discussion

This chapter discusses summery of the project work.

• Chapter 7: Conclusion

This chapter concludes the research project.

7

Chapter 2

Preliminaries

2.1 Mutual Exclusion

A mutual exclusion (mutex) [4] is a program object that averts synchronous access to
a shared resource. This idea is utilized as a part of simultaneous programming with a
critical section, a bit of code in which procedures or strings get to a shared resource. Just
a single string claims the mutex at once, in this way a mutex with a remarkable name is
made when a program begins. At the point when a string holds a resource, it needs to
bolt the mutex from different strings to anticipate simultaneous access of the resource.
After discharging the asset, the string opens the mutex.

Expect that many agents (or procedures) are viewing for a equipment, however, at any
moment of time just a single agent can utilize the equipment. That is, the operators are
commonly barred from utilizing the equipment. A convention (component or calculation)
which can accomplish the mutual exclusion is called ”mutual exclusion protocol”.

For example: How to make sure at most one person is given the permission to use
the shared bike? A queue may be used to do so. Here suppose Emma, David and Alice
enqueue their initials into the queue in this order. Emma is the 1st person who is given
the permission. When her use is done, the queue is dequeued. David is the 1st person
who is given the permission. Fig. 2.1 shows a mutual exclusion protocol for use of the
shared bike [5].

2.2 State Machine and Invariants

A state machine M is 〈S, I, T 〉, where S is a set of states, I ⊆ S is the set of initial states,
and here T ⊆ S × S is a binary relation over S. (s, s′) ∈ T is called a state transition
of state machine M and defined as s → s′. Where s′ called a successor state of s. Fig.
2.2 shows that the concept of state machine [5]. The state machine and their properties
can be used to formalize various system and requirements. Systems verification can then
conducted by theorem proving the state machines enjoy properties.

A case of a straightforward system that can be demonstrated by a state machine is a
turnstile [6]. We principally utilized a turnstile for control access to metros and event

8

Figure 2.1: Mutual exclusion

Figure 2.2: State Machine

congregation rides, is a door with three turning arms at midriff tallness, one over the
passage. Essentially, arms are bolted at first, obstructing the passage, keeping supporters
from going through. In the wake of putting a coin or token in a space on the entryway at
that point opens the arms, enabling a solitary client to push through. At the point when
the client goes through after arms are bolted again until the point when another coin is
embedded.

On the off chance that we considered as a state machine, here are two conceivable
conditions of the entryway: Locked and Unlocked. There are two conceivable sources of
info that influence its state: putting a coin in the slot (coin) and pushing the arm (push).
In the locked state, pushing on the arm has no impact; regardless of how often the info

9

Figure 2.3: Invariant

push is given, it remains in the bolted state. When putting a coin in the machine that is,
giving the machine a coin input moves the state from Locked to Unlocked. In the opened
state, putting extra coins in has no impact; that is, giving extra coin inputs does not
change the state. In any case, a client pushing through the arms, giving a push input,
move the state back to Locked.

The set R of reachable states : (1) I ⊆ R and (2) if s ⊆ R and s→ s′, then s′ ∈ R. A
state machine predicate p is invariant then we can write M iff (∀s ∈ R) p(s). We can see
from Fig. 2.3 about the invariant. A state predicate p can be interpreted as a set P of
states where we can write (∀s ∈ P)p(s) and (∀s /∈ P)¬p(s).

2.3 Kripke Structures and LTL

A kripke structure [5] K is 〈S, I, P, L, T 〉, where S, I, T are same as state machine M ,
although S is total. The set I ⊆ S of initial states. Where T ⊆ S × S is a binary
relation of states. A set P ⊆ U of atomic state propositions. L is a labeling function
whose type S → 2p. A path π of a kripke structure K is s0;; si; si+1;......of S such that
(si, si+1) ∈ T for each i. π is defined as a computations if π(0) ∈ I. Here ⊆ P is defined
set of all the paths of ⊆ K ⊆ C is all computation of ⊆ K and ⊆ K is set of all kripke
structures. Here for the kripke structure K is 〈S, I, P, L, T 〉.

The formulas of the linear temporal logic (LTL) is denoted as : ϕ ::= T |p|¬ϕ|ϕ ∧
ϕ|Oϕ|ϕuϕ where p ∈ P . We can in like manner see from Fig. 2.4 of Kripke structures
and LTL. Let F be the set of all formulas in LTL for K. An arbitrary path π ∈ P of K
and an arbitrary LTL formula ϕ ⊆ F of K, K, π |= ϕ is inductively defined as K, π |= >,

10

Figure 2.4: Kripke structures and LTL

K, π |= p if and only if (iff) p ∈ L(π(0)), K, π |= ¬ϕ1 iff K, π 2 ϕ1, K, π |= ϕ1 ∧ ϕ2

iff K, π |= ϕ1 and K, π |= ϕ2, K, π |= ©ϕ1 iff K, π1 |= ϕ1 K, π |= ϕ1 ∪ ϕ2 iff there
exists a natural number i s.t. K, πi |= ϕ2 and for all natural numbers j < i, K, πj |= ϕ1,
where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ iff K, π |= ϕ for each computation
π ∈ C of K. The temporal connectives O and U are called the next operator and the
until operator, respectively. The other logical and temporal connectives are defined as
usual as follows: ⊥, ¬>, ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ ϕ2, ♦ϕ , >Uϕ,
�ϕ , ¬(♦¬ϕ), and ϕ1 ϕ2 , �(ϕ1 ⇒ ♦ϕ2). ♦,� and are called eventually, always
and leadsto operators.

2.4 Maude

Maude[3] is a rewriting logic-based based computer languages and framework. It is one
of the immediate successors of OBJ3 [7], the most well known mathematical particular
dialect and framework for the most part planned by Joseph A. Goguen. Details can be
composed in Maude adaptably. Acquainted as well as commutative parallel administrators
can be uninhibitedly utilized as a part of details and after that complex simultaneous and
circulated frameworks can be concisely indicated. Maude is furnished with numerous
functionalities, among which are show checking (the Maude look summon and the Maude
LTL display checker), and meta-programming. A metaprogram is a program that takes
programs as sources of info and plays out some valuable calculations. Other than that,
Maude is outfitted with the pursuit summon that thoroughly crosses the reachable states
from an offered state to discover states that match some example and fulfill some condition

11

in a broadness first way. It is likewise outfitted with a metalevel work that is the partner
of the inquiry summon. Fig. 2.5 shows the initial screen of Maude and how to feed the
maude file in the system.

Maude underpins in a methodical and effective way legitimate reflection. This makes
Maude strikingly extensible and ground-breaking, bolsters an extensible polynomial math
of module creation activities, and permits numerous progressed metaprogramming and
metalanguage applications. Undoubtedly, the absolute most intriguing uses of Maude are
metalanguage applications, in which Maude is accustomed to making executable condi-
tions for various rationales, hypothesis provers, dialects and models of calculation.

2.5 SMGA

On the off chance that the state machine graphical movement apparatus manages state
machines inside, we have to outline an interior portrayal of state machines or embrace some
current ones. It is cumbersome to request that human clients compose state machines
in such an inside portrayal. Subsequently, we have to outline a particular dialect for
state machines or receive some current ones. Provided that this is true, it is important
to decipher state machines written in a detail dialect into those written in an interior
portrayal. We ought to build up various interpreters for numerous particular dialects to
make it workable for any state machines to be graphically enlivened. Since numerous
detail dialects have been and would be proposed, in any case, it would not be shrewd
to build up an interpreter for every particular dialect since it’s anything but a minor
assignment to grow even one interpreter for one determination dialect. we would like to
make is extensible as well as maintainable as much as possible. one of such technologies
is Scalable Vector Graphics(SVG) used to define graphics for the web. SVG has several
methods for drawing paths, boxes, circles, texts and graphics vector. It is helpful to use
SVG for drawing pictures of state machines. Since SVG supported by almost all major
web browsers it makes it possible to make the tool available in as many platforms and/or
environments possible. Several tools with which SVG animations can be made have been
developed. one of them is DRAW-SVG [8], which we have used in this research. DRAW-
SVG is a free online drawing application for designers and develops, making it possible to
create fully standard compliant SVG. Fig. 2.6 demonstrates the case of Qlock protocol of
an initial state which is drawing by SMGA.

We have not planned the state machine graphical movement apparatus to such an ex-
tent that it manages state machines inside however composed it with the end goal that
it essentially takes a limited calculation of a state machine. This is on the grounds that
devices, for example, show checkers, that can manage state machines can create limited
calculations of state machines. We have to settle how to speak to each condition of state
machines and limited arrangements of states. It would be significantly less demanding,
in any case, to change some extraordinary state portrayals to that utilized for the state
machine graphical movement device than to decipher state machines written in a deter-
mination dialect into those written in another. In addition, it is clear to change some
extraordinary portrayals of limited state successions to that utilized for the state machine

12

Figure 2.5: A picture of Maude display screen

Figure 2.6: A picture of QLOCK protocol

graphical liveliness apparatus once unique state portrayals have been changed into that
utilized for the device.

If each state in a finite computation of a state machine is graphically represented, the
finite computation is essentially a film of a graphical animation of the state machine.
Therefore, it would suffice to allow human users to intuitively design graphical state
representations (or images or pictures) of state machines.

We have actualized a state machine graphical activity device [9] mostly in light of the

13

fact that human clients could perceive some valuable examples in energized limited cal-
culations of state machines and guess helpful lemmas from the examples. Tam Thi Than
Nguyen executed an instrument which is open on the site https://tamntt.bitbucket.io
/Research/GraphicalAnimation/. The apparatus fundamentally takes a limited calcula-
tion and plays its graphical movement. The device enables human clients to configuration
pictures or flares of liveliness, change the speed of movements, and select a few expresses
that fulfill a few conditions and additionally limitations from a limited calculation.

14

Chapter 3

Ticket Mutual Exclusion Protocol

3.1 FTicket: A Flawed Version of Ticket Protocol

The FTicket protocol [10] is a mutual exclusion protocol based on issuing tickets to a
critical section. next and serve are natural number variables share by all process. ticket[i]
is a natural number variable that is local to process i.

FTicket for a process i can be described as follows:

Loop: ”Remainder Section”
rs: ticket [i] := next ;
l1: next := (next+1) % N ;
ws: repeat until ticket [i] = serve;

”Critical Section”
cs: serve:= (serve+1) % N ;

Here are four locations rs (remainder section), l1 (label 1), ws (waiting section), cs
(critical section). We suppose that there are N processes. For each process i, there are
two local variables: ticketi whose value is in {0, 1,. . . ,N - 1}. Initially, ticketi = 0. Two
global variables shared by the N processes: next whose value is in {0, 1,. . . ,N - 1} and
serve whose value is in {0, 1,. . . ,N - 1}. Initially the value of next = 0 and serve = 0.
next represents the next ticket to the critical section that is to be issued to a process,
while serve represents the ticket whose owner is in critical or allowed to enter it. When
a process i tries to enter the critical section, it takes a ticket. A process’s ticket is equal
to serve, so it enter the critical section. When a process leaves there, it increments serve
remainder N .

3.1.1 Specification of FTicket in Maude and State Transition
Diagram

Here are two processes whose are denoted by p1 and p2. I, X and Y are Maude variables
of process IDs, next and serve are process IDs, successively. ticket[i] is a natural number

15

variable that is local to process i.
The state transitions of FTicket are specified as the following four rewrite rules:

rl [setTicket] : (pc[I]: rs) (ticket[I]: X) (next: Y)

=> (pc[I]: l1) (ticket[I]: Y) (next: Y) .

rl [incTicket] : (pc[I]: l1) (next: Y)

=> (pc[I]: ws) (next: ((Y + 1) rem N)) .

rl [wait] : (pc[I]: ws) (ticket[I]: X) (serve: X)

=> (pc[I]: cs) (ticket[I]: X) (serve: X) .

rl [incServe] : (pc[I]: cs) (serve: X)

=> (pc[I]: rs) (serve: ((X + 1) rem N)) .

setTicket, incTicket, wait, incServe are the names of the four rewrite rules, respectively.
The details description of four rewrite rule follows:

rule 1(setTicket) : a process I is located at rs, the content of ticket is X, the content of
next is Y. After that a process I is located at l1, the content of ticket is Y, the content of
next is Y.

rule 2(incTicket) : a process I is located at l1, the content of next is Y. After that a
process I is located at ws, the content of next is increments Y remainder N. Here the
number of processes N = 2.

rule 3(wait) : a process I is located at ws, the content of ticket is X, the content of
serve is X. After that a process I is located at cs, the content of ticket is X, the content
of serve is X.

rule 4(incServe) : a process I is located at cs, the content of serve is X. After that a
process I is located at rs, the content of serve is increments X remainder N. Here is the
number of processes N = 2.

Fig. 3.1 shows the four state transition setT icketI , incT icketI , waitI and incServeI
respectively. After the transition from one state to another state, we can indicate the
process IDs I.

3.1.2 Specification of FTicket as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, l1, cs, ws} of locations.
Four kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (ticket[i] : XN) - It says that the content of ticketi is XN ;

• (serve : Z) - It says that the content of serve is Z;

• (next : Y) - It says that the content of next is Y ;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc and
XN ∈ Pid Nat are values and X1,. . . ,XN , Y, Z ∈ Nat . We suppose that there are N
processes whose identifiers are p1, . . . , pn ∈ Pid participating in FTicket.

16

Figure 3.1: State Transition Diagram of FTicket

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN)

(ticket[1] : X1). . . . (ticket[N] : XN) (next : Y) (serve : Z)

| L1 ,. . . , LN ∈ Loc, X1,. . . ,XN , Y, Z ∈ Nat}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs)

(ticket[1] : 0). . . (ticket[N] : 0) (next : 0) (serve : 0)}

• TsetT icket = {((pc[1] : L1). . . (pc[I] : rs) . . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN) (next : Y) (serve : Z),

(pc[1] : L1) . . . (pc[I] : l1) . . . (pc[N] : LN)

17

(ticket[1] : X1). . . (ticket[I] : Y). . . (ticket[N] : XN) (next : Y) (serve : Z))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . ,XN , Y, Z ∈ Nat}

• TincT icket = {((pc[1] : L1) . . . (pc[I] : l1). . . (pc[N] : LN)

(next : Y) (serve : Z) (ticket[1] : X1). . . (ticket[I] : Y). . . (ticket[N] : XN),

(pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN) (serve : Z)

(next : ((Y + 1)rem N) (ticket[1] : X1). . . (ticket[I] : Y). . . (ticket[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . ,XN , Y, Z ∈ Nat}

• Twait = {((pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN) (serve : Z) (next : Y),

(pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN)

(ticket[1] : X1) . . . (ticket[I] : X). . . (ticket[N] : XN)

(next : Y) (serve : Z))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . ,XN , Y, Z ∈ Nat}

• TncServe = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (serve : Z) (next : Y)

(ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (serve: ((Z + 1)rem N))

(next : Y) (ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , Y, Z ∈ Nat}

3.1.3 Model Checking of FTicket

The following search command used for checking the FTicket.

search [1] in FTICKET : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

Maude finds a solution meaning FTicket does not enjoy the property. Here is also used
following path search command : show path 28. This command shows each state of the
FTicket version by Maude.

Where FTICKET is the module in which FTicket is specified and S is a Maude variable
of state fragments. The search command finds the following counterexample:

state 0, Sys: next: 0 serve: 0 (pc[p1]: rs)

(pc[p2]: rs) (ticket[p1]: 0) ticket[p2]: 0

===[rl next: Y (pc[I]: rs) ticket[I]: X =>

(next: Y ticket[I]: Y) pc[I]: l1 [label setTicket] .]===>

state 1, Sys: next: 0 serve: 0 (pc[p1]: l1)

(pc[p2]: rs) (ticket[p1]: 0) ticket[p2]: 0

18

===[rl next: Y (pc[I]: rs) ticket[I]: X =>

(next: Y ticket[I]: Y) pc[I]: l1 [label setTicket] .]===>

state 3, Sys: next: 0 serve: 0 (pc[p1]: l1)

(pc[p2]: l1) (ticket[p1]: 0) ticket[p2]: 0

===[rl next: Y pc[I]: l1 =>

next: ((Y + 1) rem 2) pc[I]: ws [label incTicket] .]===>

state 6, Sys: next: 1 serve: 0 (pc[p1]: ws)

(pc[p2]: l1) (ticket[p1]: 0) ticket[p2]: 0

===[rl next: Y pc[I]: l1 =>

next: ((Y + 1) rem 2) pc[I]: ws [label incTicket] .]===>

state 12, Sys: next: 0 serve: 0 (pc[p1]: ws)

(pc[p2]: ws) (ticket[p1]: 0) ticket[p2]: 0

===[rl serve: X (pc[I]: ws) ticket[I]: X =>

serve: X pc[I]: cs [label wait] .]===>

state 20, Sys: next: 0 serve: 0 (pc[p1]: cs)

(pc[p2]: ws) (ticket[p1]: 0) ticket[p2]: 0

===[rl serve: X (pc[I]: ws) ticket[I]: X =>

serve: X pc[I]: cs [label wait] .]===>

state 28, Sys: next: 0 serve: 0 (pc[p1]: cs) (pc[p2]: cs)

(ticket[p1]: 0) ticket[p2]: 0

Maude can generate counterexample without any type of difficulties, which non-experts
can not do it. Fig. 3.2 to 3.5 show that counterexample which found by Maude software
for FTicket version.

3.1.4 Graphical animations of FTicket Counterexamples

There are three regions: ###keys, ###textDisplay and ###states. In the main
region ###keys, the names of the detectable parts are composed. The request in which
the names are composed ought to be the same as the request in which the comparing
discernible parts are composed in each state. In the second region ###textDisplay,
we could think of a few mandates about how to show accumulations, for example, lines
and records. For instance, a rundown is on a level plane showed naturally with the end
goal that the best component seems left-most and the base component seems acceptable
most. We could guide the instrument to show a rundown in the turn around arrange or
potentially vertically. In the third area ###states, a limited calculation is composed.

###keys

next serve pc[p1] pc[p2] ticket1 ticket2

###textDisplay

###states

(next: 0 serve: 0 (pc[p1]: rs) (pc[p2]: rs) (ticket1: 0) (ticket2: 0)) ||

19

Figure 3.2: Counterexample for FTicket of states 0 and 1

(next: 0 serve: 0 (pc[p1]: l1) (pc[p2]: rs) (ticket1: 0) (ticket2: 0)) ||

(next: 0 serve: 0 (pc[p1]: l1) (pc[p2]: l1) (ticket1: 0) (ticket2: 0)) ||

(next: 1 serve: 0 (pc[p1]: ws) (pc[p2]: l1) (ticket1: 0) (ticket2: 0)) ||

(next: 0 serve: 0 (pc[p1]: ws) (pc[p2]: ws) (ticket1: 0) (ticket2: 0))||

(next: 0 serve: 0 (pc[p1]: cs) (pc[p2]: ws) (ticket1: 0) (ticket2: 0)) ||

(next: 0 serve: 0 (pc[p1]: cs) (pc[p2]: cs) (ticket1: 0) (ticket2: 0)

• keys: This is a list of keys which are names of observable components in a state.
The order in which the keys appear must be the same as the order in which the
corresponding observable components appear in each state.

• textDisplay: This part specifies how the value of an observable component is dis-
played. When displaying a queue, if nothing is specified, it is displayed horizontally
and its top appears left most. There may be the case, however, where its top should
appear right most. Some values, such as stacks, may have to be displayed vertically
instead.

• states: This is a finite computation of a state machine, namely a finite sequence of
states. The sign || is a separator used to distinguish adjacent states.

We used SMGA for drawing the seven pictures for FTicket version. These pictures
make it possible to reorganize at which location the each process is, what the value stored
in next and serve and what the value stored in ticket1 and ticket2. The details description
of each Fig. written in the discussion section. Here is only next: 1 in the state 6. But for
the others states natural numbers variables next, serve, ticket1, ticket2 values are zero.

3.2 Ticket Protocol

The Ticket protocol [10] is a mutual exclusion protocol based on issuing tickets to a critical
section. next and serve are natural number variables share by all process. ticket[i] is a

20

Figure 3.3: Counterexample for FTicket of states 3 and 6

Figure 3.4: Counterexample for FTicket of states 12 and 20

Figure 3.5: Counterexample for FTicket of state 28

natural number variable that is local to process i.

Ticket for a process i can be described as follows:

Loop: ”Remainder Section”

21

rs: ticket [i] := fetch&incmode(next,N);
ws: repeat until ticket [i] = serve;

”Critical Section”
cs: serve:= (serve+1) % N ;

There are used fetch&incmode atomic operation for implement the protocol. This is
atomically reads a memory location, increments the value modulo N , writes the result
into the memory location and return the old value. Here are three locations rs (remainder
section), ws (waiting section), cs (critical section). We suppose that there are N processes.
For each process i, there are two local variables: ticketi whose value is in {0, 1,. . . , N - 1}.
Initially, ticketi = 0. Two global variables shared by the N processes: next whose value
is in {0, 1,. . . , N - 1} and serve whose value is in {0, 1,. . . , N - 1}. Initially the value
of next = 0 and serve = 0. next represents the next ticket to the critical section that is
to be issued to a process, while serve represents the ticket whose owner is in critical or
allowed to enter it. When a process i tries to enter the critical section, it takes a ticket,
that is, it indivisibly copies into it local variable ticket and increments next remainder N
using fetch&incmode. A process’s ticket is equal to serve, so it enter the critical section.
When a process leaves there, it increments serve remainder N .

For the variable x and a constant c whose type of natural numbers
fetch&incmode(x,n) conducts the following atomically (or indivisibly):
t := x ; x := (x + 1)%n; return t

3.2.1 Specification of Ticket in Maude and State Transition Di-
agrams

There are two processes whose are denoted by p1 and p2. I, X and Y are Maude variables
of process IDs, next and serve are process IDs, successively. ticket[i] is a natural number
variable that is local to process i.

The state transitions of Ticket are specified as the following three rewrite rules :

rl [incNxt&St] : (pc[I]: rs) (ticket[I]: X) (next: Y)

=> (pc[I]: ws) (ticket[I]: Y) (next: ((Y + 1) rem N)) .

rl [wait] : (pc[I]: ws) (ticket[I]: X) (serve: X)

=> (pc[I]: cs) (ticket[I]: X) (serve: X) .

rl [incServe] : (pc[I]: cs) (serve: X)

=> (pc[I]: rs) (serve: ((X + 1) rem N)) .

incNxt&St, wait, incServe are the names of the three rewrite rules, respectively. The
details description of three rewrite rules follows:

rule 1(incNxt&St) : a process I is located at rs, the content of ticket is X, the content
of next is Y. After that a process I is located at ws, the content of ticket is Y, the content
of next is incremented Y remainder N. Here is the number of processes N because of N =
2.

22

Figure 3.6: State Diagram of Ticket

rule 2(wait) : a process I is located at ws, the content of ticket is X, the content of
serve is X. After that a process I is located at cs, the content of ticket is X, the content
of serve is X.

rule 3(incServe) : a process I is located at cs, the content of serve is X. After that a
process I is located at rs, the content of serve is incremented X remainder N. Here is the
number of processes N and N = 2.

Fig. 3.6 shows the three state transition incNxt&StI , waitI and incServeI respectively.
After the transition from one state to another state, we can indicate the process IDs I.

3.2.2 Specification of Ticket as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws} of locations.
Four kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (ticket[i] : XN) - It says that the content of ticketi is XN ;

• (serve : Z) - It says that the content of serve is Z;

• (next : Y) - It says that the content of next is Y ;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc and
XN ∈ Pid Nat are values, ticket ∈ Pid Nat and serve, next ∈ Nat . We suppose that
there are N processes whose identifiers are p1, . . . , pn ∈ Pid participating in Ticket .

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN)

23

(ticket[1] : X1). . . (ticket[N] : XN) (next : Y) (serve : Z)

| L1,. . . ,LN ∈ Loc, X1,. . . ,XN , Y, Z ∈ Nat}.

• Initial State, I = {(pc[1] : rs). . . (pc[N] : rs)

(ticket[1] : 0). . . (ticket[N] : 0) (next : 0) (serve : 0)}.

• TincNxt&St = {((pc[1] : L1). . . (pc[I] : rs) . . . (pc[N] : LN)

(ticket[1] : X1) . . . (ticket[I] : XI) . . . (ticket[N] : XN) (next : Y) (serve : Z),

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (serve : Z)

(ticket[1] : X1). . . (ticket[I] : YI). . . (ticket[N] : XN) (next : ((Y + 1)rem N)))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , Y, Z ∈ Nat}

• Twait = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : XI) . . . (ticket[N] : XN) (serve : Z) (next : Y),

(pc[1] : L1) . . . (pc[I] : cs). . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : X). . . (ticket[N] : XN) (serve : Z) (next : Y))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , Y, Z ∈ Nat}

• TncServe = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (serve : Z) (next : Y)

(ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (serve: ((Z + 1)rem N))

(next : Y) (ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , Y, Z ∈ Nat}

3.2.3 Model Checking of Ticket

• Maude search command

The following search command used for checking the Ticket.

search [1] in TICKET : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

Maude finds no solution meaning Ticket likely to enjoy the mutual exclusion property.
Here is also used following path search command: show path 30 . This command shows
each states of the Ticket version by Maude.

Where TICKET is the module in which Ticket is specified and S is a maude variable
of state fragments. The search command finds the follows:

24

state 0, Sys: next: 0 serve: 0 (pc[p1]: rs) (pc[p2]: rs) (ticket[p1]: 0)

ticket[p2]: 0

===[rl next: Y (pc[I]: rs) ticket[I]: X => (next: ((Y + 1) rem 2)

ticket[I]: Y) pc[I]: ws [label incNxt&St] .]===>

state 1, Sys: next: 1 serve: 0 (pc[p1]: ws) (pc[p2]: rs) (ticket[p1]: 0)

ticket[p2]: 0

===[rl next: Y (pc[I]: rs) ticket[I]: X => (next: ((Y + 1) rem 2)

ticket[I]: Y) pc[I]: ws [label incNxt&St] .]===>

state 3, Sys: next: 0 serve: 0 (pc[p1]: ws) (pc[p2]: ws) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X (pc[I]: ws) ticket[I]: X => (serve: X ticket[I]: X)

pc[I]: cs [label wait] .]===>

state 7, Sys: next: 0 serve: 0 (pc[p1]: cs) (pc[p2]: ws) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X pc[I]: cs => serve: ((X + 1) rem 2)

pc[I]: rs [label incServe].]===>

state 10, Sys: next: 0 serve: 1 (pc[p1]: rs) (pc[p2]: ws) (ticket[p1]: 0)

ticket[p2]: 1

===[rl next: Y (pc[I]: rs) ticket[I]: X => (next: ((Y + 1) rem 2)

ticket[I]: Y) pc[I]: ws [label incNxt&St] .]===>

state 12, Sys: next: 1 serve: 1 (pc[p1]: ws) (pc[p2]: ws) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X (pc[I]: ws) ticket[I]: X => (serve: X ticket[I]: X)

pc[I]: cs [label wait] .]===>

state 16, Sys: next: 1 serve: 1 (pc[p1]: ws) (pc[p2]: cs) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X pc[I]: cs => serve: ((X + 1) rem 2)

pc[I]: rs [label incServe] .]===>

state 20, Sys: next: 1 serve: 0 (pc[p1]: ws) (pc[p2]: rs) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X (pc[I]: ws) ticket[I]: X => (serve: X ticket[I]: X)

pc[I]: cs [label wait] .]===>

state 22, Sys: next: 1 serve: 0 (pc[p1]: cs) (pc[p2]: rs) (ticket[p1]: 0)

ticket[p2]: 1

===[rl serve: X pc[I]: cs => serve: ((X + 1) rem 2)

pc[I]: rs [label incServe] .]===>

state 24, Sys: next: 1 serve: 1 (pc[p1]: rs) (pc[p2]: rs) (ticket[p1]: 0)

ticket[p2]: 1

===[rl next: Y (pc[I]: rs) ticket[I]: X => (next: ((Y + 1) rem 2)

ticket[I]: Y) pc[I]: ws [label incNxt&St] .]===>

state 26, Sys: next: 0 serve: 1 (pc[p1]: ws) (pc[p2]: rs) (ticket[p1]: 1)

ticket[p2]: 1

===[rl serve: X (pc[I]: ws) ticket[I]: X => (serve: X ticket[I]: X)

25

pc[I]: cs [label wait] .]===>

state 28, Sys: next: 0 serve: 1 (pc[p1]: cs) (pc[p2]: rs) (ticket[p1]: 1)

ticket[p2]: 1

===[rl serve: X pc[I]: cs => serve: ((X + 1) rem 2)

pc[I]: rs [label incServe] .]===>

state 30, Sys: next: 0 serve: 0 (pc[p1]: rs) (pc[p2]: rs) (ticket[p1]: 1)

ticket[p2]: 1

• LTL Model Checking

The following LTL search command used for checking the Ticket.

red in TICKET-CHECK : modelCheck(init,lofree) .

We get the following result :
rewrites: 365 in 2ms cpu (8ms real) (169530 rewrites/second) result Bool: true

To use the Maude LTL model checker to check if Ticket enjoys the lockout freedom
property, we need two kinds of atomic propositions wait(P) and crit(P), where P is
a process ID. Users are also supposed to specify a labeling function. For our purpose,
we declare the three equations : eq(pc[P] : ws) S | = want(P) = true., eq (pc[P]
: cs) S | = crip(P) = true., and eq S | = PROP = false [owise] ., where P
is a Maude variable of process IDs, S is a Maude variable of atomic propositions. The
three equations say a state s satisfies want(P) if and only if (pc[P] : ws) appears
in s and s satisfies crit(P) if and only if (pc[P] : cs) appears in s. Then, users are
supposed to specify LTL formulas to check. The lockout freedom property is expressed
as want(P) crit(P), where is the LTL leadsto operator. In Maude, the formula
is specified as eq lofree = (wait(p1) 7→ crit(p1)) /\ (wait(p2) 7→ crit(p2)), where
the operator 7→ denotes the leadsto . The model checking is conducted by reducing
modelCheck(init,lofree(p1)), finding true, that means the ticket protocol likely enjoy
the lockout freedom property.

3.2.4 Graphical Animations of Ticket

The Fig. 3.7 to 3.13 show that each state which found by Maude software for Ticket
version. We used SMGA for drawing the thirteen pictures. These pictures make it
possible to reorganize at which location of located each process is, what the value stored
in next and serve and what the value stored in ticket1 and ticket2.

###keys

next serve pc[p1] pc[p2] ticket1 ticket2

###textDisplay

26

Figure 3.7: States 0 and 1 of Ticket

Figure 3.8: States 3 and 7 of Ticket

###states

(next: 0 serve: 0 (pc[p1]: rs) (pc[p2]: rs) (ticket1: 0) (ticket2: 0)) ||

(next: 1 serve: 0 (pc[p1]: ws) (pc[p2]: rs) (ticket1: 0) (ticket2: 0)) ||

(next: 0 serve: 0 (pc[p1]: ws) (pc[p2]: ws) (ticket1: 0) (ticket2: 1)) ||

(next: 0 serve: 0 (pc[p1]: cs) (pc[p2]: ws) (ticket1: 0) (ticket2: 1)) ||

(next: 0 serve: 1 (pc[p1]: rs) (pc[p2]: ws) (ticket1: 0) (ticket2: 1)) ||

(next: 1 serve: 1 (pc[p1]: ws) (pc[p2]: ws) (ticket1: 0) (ticket2: 1)) ||

(next: 1 serve: 1 (pc[p1]: ws) (pc[p2]: cs) (ticket1: 0) (ticket2: 1)) ||

(next: 1 serve: 0 (pc[p1]: ws) (pc[p2]: rs) (ticket1: 0) (ticket2: 1)) ||

(next: 1 serve: 0 (pc[p1]: cs) (pc[p2]: rs) (ticket1: 0) (ticket2: 1)) ||

(next: 1 serve: 1 (pc[p1]: rs) (pc[p2]: rs) (ticket1: 0) (ticket2: 1)) ||

(next: 0 serve: 1 (pc[p1]: ws) (pc[p2]: rs) (ticket1: 1) (ticket2: 1)) ||

(next: 0 serve: 1 (pc[p1]: cs) (pc[p2]: rs) (ticket1: 1) (ticket2: 1)) ||

(next: 0 serve: 0 (pc[p1]: rs) (pc[p2]: rs) (ticket1: 1) (ticket2: 1)

27

Figure 3.9: States 10 and 12 of Ticket

Figure 3.10: States 16 and 20 of Ticket

Figure 3.11: States 22 and 24 of Ticket

3.3 Non-deterministic version of Ticket Protocol

The ND-Ticket protocol is a mutual exclusion protocol based on issuing tickets to a
critical section.next and serve are natural number variables share by all process. ticket[i]

28

Figure 3.12: States 26 and 28 of Ticket

Figure 3.13: State 30 of Ticket

is a natural number variable that is local to process i. Where Stm1 | Stm2 is a non-
deterministic choice statement s.t either Stm1 or Stm2 is non-deterministically chosen.
This version is called ND-ticket.

ND-Ticket for a process i can be described as follows:

Loop: ”Remainder Section”
rs: ticket [i] := fetch&incmode(next, N) | goto rs;
ws: repeat until ticket [i] = serve;

”Critical Section”
cs: serve:= (serve+1) % N ;

29

3.3.1 Specification of ND-Ticket

Here are two processes whose are denoted by p1 and p2. I, X and Y are Maude variables
of process IDs, next and serve are process IDs, successively. ticket[i] is a natural number
variable that is local to process i. From some time on, a process may never try to enter
the critical section but keep on staying at rs, or equivalently it may try to enter the critical
section a finitely many times.

The state transitions of ND-Ticket are specified as the following three rewrite rules :

rl [incNxt&St] : (pc[I]: rs) (ticket[I]: X) (next: Y)

=> (pc[I]: ws) (ticket[I]: Y) (next: ((Y + 1) rem N)) .

rl [ds] : (pc[I]: rs) => (pc[I]: rs) .

rl [wait] : (pc[I]: ws) (ticket[I]: X) (serve: X)

=> (pc[I]: cs) (ticket[I]: X) (serve: X) .

rl [incServe] : (pc[I]: cs) (serve: X) => (pc[I]: rs) (serve: ((X + 1) rem N)) .

incNxt&St, wait, incServe are the names of the three rewrite rules, respectively. The
details description of three rewrite rules follows:

rule 1(incNxt&St) : a process I is located at rs, the content of ticket is X, the content
of next is Y. After that a process I is located at ws, the content of ticket is Y, the content
of next is increments Y remainder N. Here is rem N because processes N = 2.

rule 2(ds) : From some time on , a process may never try to enter the critical section
but keep on staying at rs, or equivalently it may try to enter the critical section a finitely
many times.

rule 3(wait) : a process I is located at ws, the content of ticket is X, the content of
serve is X. After that a process I is located at cs, the content of ticket is X, the content
of serve is X.

rule 4(incServe) : a process I is located at cs, the content of serve is X. After that a
process I is located at rs, the content of serve is increments X remainder N. Here is the
number of processes N = 2.

Fig. 3.14 shows the four state transition incNxt&StI , dsI , waitI and incServeI respec-
tively. After the transition from one state to another state we can indicate the process
IDs I.

3.3.2 Specification of ND-Ticket as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws} of locations.
Four kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (ticket[i] : XN) - It says that the content of ticketi is XN ;

• (serve : X) - It says that the content of serve is X;

30

Figure 3.14: State Transition Diagram of ND-Ticket

• (next : Y) - It says that the content of next is Y ;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc
and XN ∈ Pid Nat are values, tickett ∈ Pid Nat and X1,. . . ,XN , X, Y ∈ Nat . We
suppose that there are N processes whose identifiers are p1, . . . , pn ∈ Pid participating
in ND-Ticket.

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[N] : XN) (next : Y) (serve : X)

| L1,. . . ,LN ∈ Loc, X1,. . . ,XN , X, Y ∈ Nat}.

• Initial State, I = {(pc[1] : rs). . . (pc[N] : rs)

(ticket[1] : 0). . . (ticket[N] : 0) (next : 0) (serve : 0)}.

• TincNxt&St = {((pc[1] : L1). . . (pc[I] : rs) . . . (pc[N] : LN)

(ticket[1] : X1) . . . (ticket[I] : XI) . . . (ticket[N] : XN) (next : Y) (serve : X),

31

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (serve : X)

(ticket[1] : X1). . . (ticket[I] : Y). . . (ticket[N] : XN) (next : ((Y + 1)rem N)))

| I ∈ {1, . . . , N}, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , X, Y ∈ Nat}

• Tds = {((pc[1] : L1). . . (pc[I] : rs) . . . (pc[N] : LN)

(next : Y) (serve : X) (ticket[1] : X1). . . (ticket[I] : XI) . . . (ticket[N] : XN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN)

(next : Y) (serve : X) (ticket[1] : X1). . . (ticket[I] : XI) . . . (ticket[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , X, Y ∈ Nat}

• Twait = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : XI) . . . (ticket[N] : XN) (serve : X) (next : Y),

(pc[1] : L1) . . . (pc[I] : cs). . . (pc[N] : LN)

(ticket[1] : X1). . . (ticket[I] : X). . . (ticket[N] : XN) (serve : X) (next : Y))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , X, Y ∈ Nat}

• TncServe = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (serve : X) (next : Y)

(ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (serve: ((X + 1)rem N))

(next : Y) (ticket[1] : X1). . . (ticket[I] : XI). . . (ticket[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , X, Y ∈ Nat}

3.3.3 Model Checking of ND-Ticket

The following search command used for checking the ND-Ticket.

search [1] in ND-TICKET : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

Maude finds no solution meaning ND-Ticket likely to enjoy the mutual exclusion prop-
erty.

Where ND-TICKET is the module in which ND-Ticket is specified and S is a maude
variable of state fragments.

red in ND-Ticket-CHECK : modelCheck(init,lofree) .

A counter example is found.
The LTL found the following counter example:

counterexample({next: 0 serve: 0 (pc[p1]: rs) (pc[p2]:rs) (ticket[p1]: 0)

ticket[p2]: 0,’incNxt&St}, {next: 1 serve: 0 (pc[p1]:ws) (pc[p2]: rs)

(ticket[p1]: 0) ticket[p2]: 0,’ds})

Althogh p1 is ready to entering the critical section, p2 is always chosen and the rewrite
rule ds for p2 is taken, which is not fair for p1.

32

Chapter 4

Anderson Mutual Exclusion Protocol

4.1 FAnderson: A Flawed Version of Anderson Pro-

tocol

The FAnderson is an array-based queuing mutual exclusion protocol. This is a wrong
version of Anderson protocol. It might be viewed as a change of Fticket calculation. next
and array are number variables share by the N processes. place[i] is a natural number
variable that is local to process i.

FAnderson for a process i can be described as follows:

Loop: ”Remainder Section”
rs: place[i] := next ;
l1: next := (next+1) % N ;
ws: repeat until array[place[i]];

”Critical Section”
cs: array[place[i]], array[(place[i]+1) % N := false, true;

Here are four locations rs (remainder section), l1 (label 1), ws (waiting section), cs
(critical section). We suppose that there are N processes. For each process i, there are
two local variables: placei whose value is in {0, 1,. . . ,N - 1} to process whose ID is i in {0,
1,. . . , N - 1}, initially placei = 0. Two global variables shared by the N processes: next
whose value is in {0, 1,. . . , N - 1} and array whose value is in {0, 1,. . . , N - 1}. Initially
the value of next = 0, array[0] = true and array[i] = false. next represents the next to
the critical section that is to be issued to a process, while array represents the Boolean
array whose size is N array[0], array[1],..,array[N - 1] and array[j] = 0 for each j. The
place of the procedure is set to the next. At that point, the next is computed expanded
first and discover update when isolated by the number of procedures. In waiting section
up area, it will rehash until the point when the cluster of the procedure put. In the basic
segment, the variety of process put is false and an array of the expanded process put
partitioned the quantity of process genuine.

33

4.1.1 Specification of FAnderson in Maude and State Transition
Diagrams

Here are two processes whose are denoted by p1 and p2. I, X and Y, X1 are Maude
variables of process IDs and natural number and B1, B2 are boolean successively. place[i]
is a natural number variable that is local to process i.

The state transitions of FAnderson are specified as the following four rewrite rules:

rl [setPlace] : (pc[I]: rs) (place[I]: X) (next: Y)

=> (pc[I]: l1) (place[I]: Y) (next: Y) .

rl [incNxt] : (pc[I]: l1) (next: Y)

=> (pc[I]: ws) (next: ((Y + 1) rem N)) .

rl [wait] : (pc[I]: ws) (place[I]: X) (array[X]: true)

=> (pc[I]: cs) (place[I]: X) (array[X]: true) .

crl [chArray] : (pc[I]: cs) (place[I]: X) (array[X]: B1) (array[X1]: B2)

=> (pc[I]: rs) (place[I]: X) (array[X]: false) (array[X1]: true)

if X1 = (X + 1) rem N .

setPlace, incNxt, wait, chArray are the names of the four rewrite rules, respectively.
The details description of four rewrite rule follows:

rule 1(setPLace) : a process I is located at rs, the content of place is X, the content of
next is Y. After that a process I is located at l1, the content of place is Y, the content of
next is Y.

rule 2(incNxt) : a process I is located at l1, the content of next is Y. After that a
process I is located at ws, the content of next is increments Y remainder N. Here is N =
2.

rule 3(wait) : a process I is located at ws, the content of place is X, the content of array
is true. After that a process I is located at cs, the content of place is X, the content of
array is true.

Conditional rule 4(chArray) : a process I is located at cs, the content of place is X and
the contains of array are B1 and B2 . After that a process I is located at rs, the content
of place is X, the contains of array are false and true, increments X remainder N. Here is
N = 2.

Fig. 4.1 shows the four state transition setP laceI , incNxtI , waitI and chArrayI re-
spectively. After the transition from one state to another state we can indicate the process
IDs I.

4.1.2 Specification of FAnderson as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, l1, cs, ws} of locations.
Five kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (array[0] : true) - It says that the content of array[0] is true;

34

Figure 4.1: State Transition Diagram of FAnderson

• (array[1] : false) - It says that the content of array[1] is false;

• (place : X) - It says that the content of place is X;

• (next : Y) - It says that the content of next is Y;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc and
XN ∈ Pid Nat are values, X ∈ Pid Nat and X, Y, B1, B2 ∈ Nat Bool. We suppose that
there are N processes whose identifiers are p1, . . . , pn ∈ Pid participating in FAnderson.

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN) (next : Y)

(array[X] : B1) (array[X1] : B2)

(place[1] : X1) . . . (place[N] : XN)

| L1, . . . , LN ∈ Loc, X1, . . . ,XN , X, Y ∈ Nat, B1, B2 ∈ Bool}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs)

(place[1] : 0) . . . (place[N] : 0) (next : 0) (array[0] : true) (array[1] : false)}.

35

• TSetP lace = {((pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : XI) . . . (place[N] : XN)

(next : Y) (array[X] : B1) (array[X1] : B2),

(pc[1] : L1) . . . (pc[I] : l1) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : Y) . . . (place[N] : XN)

(next : Y)) (array[X] : B1) (array[X1] : B2))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc, X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• TincNxt = {((pc[1] : L1) . . . (pc[I] : l1) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : Y) . . . (place[N] : XN)

(next : Y) (array[X] : B1) (array[X1] : B2),

(pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN) (next : ((Y + 1)rem N))

(place[1] : X1) . . . (place[I] : Y) . . . (place[N] : XN)

(array[X] : B1) (array[X1] : B2))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc,

X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• Twait = {((pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : XI) . . . (place[N] : XN) (array[X] : true),

(pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : true)

(place[1] : X1) . . . (place[I] : X) . . . (place[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc,

X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• TChArray = {((pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : B1) (array[X1] :
B2)

(place[1] : X1) . . . (place[I] : XI) . . . (place[N] : XN),

(pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN) (array[X] : false) (array[X1] : true) if X1
= (X +1)rem N

(place[1] : X1) . . . (place[I] : X) . . . (place[N] : XN))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc,

X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

36

4.1.3 Model Checking of FAnderson

The following search command used for checking the FAnderson.

search [1] in FAnderson : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

Maude finds a solution meaning FAnderson does not enjoy the property. Here is also
used following path search command : show path 28 . This command shows each states
of the FAnderson version by Maude.

Where FAnderson is the module in which FAnderson is specified and S is a Maude
variable of state fragments. The search command finds the following counterexample:

state 0, Sys: next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 0) (array[0]: true) array[1]: false

===[rl next: Y (pc[I]: rs) place[I]: X => (next: Y place[I]: Y)

pc[I]: l1 [label setPlace] .]===>

state 1, Sys: next: 0 (pc[p1]: l1) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(

array[0]: true) array[1]: false

===[rl next: Y (pc[I]: rs) place[I]: X => (next: Y place[I]: Y)

pc[I]: l1 [label setPlace] .]===>

state 3, Sys: next: 0 (pc[p1]: l1) (pc[p2]: l1) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false

===[rl next: Y pc[I]: l1 => next: ((Y + 1) rem 2) pc[I]: ws [label incNxt] .

]===>

state 6, Sys: next: 1 (pc[p1]: ws) (pc[p2]: l1) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false

===[rl next: Y pc[I]: l1 => next: ((Y + 1) rem 2) pc[I]: ws [label incNxt] .

]===>

state 12, Sys: next: 0 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X) array[X]:

true) pc[I]: cs [label wait] .]===>

state 20, Sys: next: 0 (pc[p1]: cs) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X) array[X]:

true) pc[I]: cs [label wait] .]===>

state 28, Sys: next: 0 (pc[p1]: cs) (pc[p2]: cs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false

4.1.4 Graphical Animations of FAnderson Counterexamples

Maude can generate counterexample without any type of difficulties, which non-experts
cannot do it. The Fig. 4.2 to 4.5 show that counterexample which found by Maude
software for FAnderson version. We used SMGA for drawing the seven pictures. These

37

Figure 4.2: Counterexample for FAnderson of states 0 and 1

pictures make it possible to reorganize at which location each process is, what the value
stored in next, what the value stored in place1 and place2, array a Boolean array whose
size is array[0] and array[1]. Here is only next: 1 in the state 6. But for the others states
natural numbers variables content of next, place1, place2 values are zero and array0 and
array1 contain true, false respectively.

###keys

next pc[p1] pc[p2] place[p1] place[p2] array[0] array[1]

###textDisplay

###states

(next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: l1) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: l1) (pc[p2]: l1) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 1 (pc[p1]: ws) (pc[p2]: l1) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: cs) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: cs) (pc[p2]: cs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)

38

Figure 4.3: Counterexample for FAnderson of states 3 and 6

Figure 4.4: Counterexample for FAnderson of states 12 and 20

Figure 4.5: Counterexample for FAnderson of state 28

4.2 Anderson Protocol

The Anderson is an array-based queuing mutual exclusion protocol. This is a right version
of Anderson protocol. It might be viewed as a change of Ticket calculation. next and

39

array are number variables share by the N processes. place[i] is a natural number variable
that is local to process i. In the Anderson protocol , each process is waiting on a different
location, in a different cache line, if some process is in critical section.

Anderson for a process i can be described as follows:

Loop: ”Remainder Section”
rs: place[i] := featch&incmode(next,N) ;
ws: repeat until array[place[i]];

”Critical Section”
cs: array[place[i]], array[(place[i]+1) % N := false, true;

There are used fetch&incmode atomic operation for implement the protocol. This is
atomically reads a memory location, increments the value modulo N . Here are four
locations rs (remainder section), l1 (label 1), ws (waiting section), cs (critical section).
We suppose that there are N processes. For each process i, there are two local variables:
placei whose value is in {0, 1,. . . , N - 1} to process whose ID is i in {0, 1, . . . , N - 1},
initially placei = 0. Two global variables shared by the N processes: next whose value is
in {0, 1,. . . , N - 1} and array whose value is in {0, 1, . . . , N - 1}. Initially the value of
next = 0, array[0] = true and array[i] = false. next represents the next to the critical
section that is to be issued to a process, while array represents the Boolean array whose
size is N array[0], array[1], . . . ,array[N - 1] and array[j] = 0 for each j. When a process
i tries to enter the critical section, it indivisibly copies into it local variable place and
increments next remainder N using fetch&incmode.

For the variable x and a constant c whose type of natural numbers
fetch&incmode(x,n) conducts the following atomically (or indivisibly):
t := x ; x := (x + 1)%n; return t

4.2.1 Specification of Anderson in Maude and State Transition
Diagrams

Here are two processes whose are denoted by p1 and p2. I, X and Y are Maude variables
of process IDs, next and serve are process IDs, successively. ticket[i] is a natural number
variable that is local to process i.

The state transitions of Anderson are specified as the following three rewrite rules :

rl [setPlace] : (pc[I]: rs) (next: X) (place[I]: Y)

=> (pc[I]: ws) (next: ((X + 1) rem N)) (place[I]: X) .

rl [wait] : (pc[I]: ws) (place[I]: X) (array[X]: true)

=> (pc[I]: cs) (place[I]: X) (array[X]: true) .

crl [chArray] : (pc[I]: cs) (place[I]: X) (array[X]: B1) (array[X1]: B2)

=> (pc[I]: rs) (place[I]: X) (array[X]: false) (array[X1]: true)

if X1 = (X + 1) rem N .

setPlace, wait, chArray are the names of the three rewrite rules, respectively. The
details description of three rewrite rule for Anderson follows:

40

Figure 4.6: State transition diagram of Anderson

rule 1(setPLace) : a process I is located at rs, the content of place is Y, the content of
next is X. After that a process I is located at ws, the content of place is Y, the content of
next is increments X remainder N. Here is number of processes N = 2.

rule 2(wait) : a process I is located at ws, the content of place is X, the content of array
is true. After that a process I is located at cs, the content of place is X, the content of
array is true.

conditional rule 3(chArray) : a process I is located at cs, the content of place is X and
the contains of array are B1 and B2 . After that a process I is located at rs, the content
of place is X, the contains of array are false and true, increments X remainder N. Here is
number of processes N = 2.

Fig. 4.6 shows the three state transition setP laceI , waitI and chArrayI respectively.
After the transition from one state to another state we can indicate the process IDs I.

4.2.2 Specification of Anderson as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws} of locations.
Five kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (array[0] : true) - It says that the content of array[0] is true;

• (array[1] : false) - It says that the content of array[1] is false;

• (place : Y) - It says that the content of place is Y;

41

• (next : X) - It says that the content of next is X;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc and
XN ∈ Pid Nat are values, next ∈ Pid Nat and array ∈ Nat Bool . We suppose that there
are N processes whose identifiers are p1, . . . , pn ∈ Pid participating in Anderson.

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN) (next : X)

(array[X] : B1) (array[X1] : B2)

(place[1] : X1) . . . (place[N] : XN)

| L1, . . . , LN ∈ Loc, X1, . . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs)

(place[1] : 0) . . . (place[N] : 0) (next : 0) (array[0] : true) (array[1] : false)}.

• TSetP lace = {((pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : YI) . . . (place[N] : XN) (next : X) (array[X] : B1)
(array[X1] : B2),

(pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : X) . . . (place[N] : XN) (next : ((X + 1) rem N))

(array[X] : B1) (array[X1] : B2))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• Twait = {((pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(place[1] : X1). . . . (place[I] : XI). . . (place[N] : XN) (array[X] : true) (next : X),

(pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : true)

(place[1] : X1) . . . (place[I] : X). . . (place[N] : XN)) (next : X))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• TChArray = {((pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : B1) (array[X1] :
B2) (place[1] : X1) . . . (place[I] : XI) . . . (place[N] : XN) (next : X),

(pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN) (array[X] : false) (array[X1] : true) if X1
= (X + 1) rem N

(place[1] : X1) . . . (place[I] : X). . . (place[N] : XN)) (next : X))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

42

4.2.3 Model Checking of Anderson

• Maude Search Command

The following search command used for checking the Anderson:

search [1] in Anderson: init =>* (pc[p1]: cs) (pc[p2]: cs) S .

Maude finds no solution meaning Anderson likely to enjoy the mutex property. Here
is also used following path search command: show path 30 . This command shows each
states of the Anderson version by Maude.

Where Anderson is the module in which Anderson is specified and S is a maude variable
of state fragments. The search command finds the follows:

state 0, Sys: next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 0) (array[0]: true) array[1]: false

===[rl next: X (pc[I]: rs) place[I]: Y => (next: ((X + 1) rem 2)

place[I]: X) pc[I]: ws [label setPlace] .]===>

state 1, Sys: next: 1 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 0) (array[0]: true) array[1]: false

===[rl next: X (pc[I]: rs) place[I]: Y => (next: ((X + 1) rem 2)

place[I]: X) pc[I]: ws [label setPlace] .]===>

state 3, Sys: next: 0 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0)

(place[p2]: 1) (array[0]: true) array[1]: false

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X)

array[X]:true) pc[I]: cs [label wait] .]===>

state 7, Sys: next: 0 (pc[p1]: cs) (pc[p2]: ws) (place[p1]: 0)

(place[p2]: 1) (array[0]: true) array[1]: false

===[crl (pc[I]: cs) (place[I]: X) (array[X]: B1) array[X1]: B2 =>

(((array[X]: false) array[X1]: true) place[I]: X) pc[I]: rs if X1

= (X + 1) rem 2 [label chArray] .]===>

state 10, Sys: next: 0 (pc[p1]: rs) (pc[p2]: ws) (place[p1]: 0)

(place[p2]: 1) (array[0]: false) array[1]: true

===[rl next: X (pc[I]: rs) place[I]: Y => (next: ((X + 1) rem 2)

place[I]: X) pc[I]: ws [label setPlace] .]===>

state 12, Sys: next: 1 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0)

(place[p2]: 1) (array[0]: false) array[1]: true

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X)

array[X]: true) pc[I]: cs [label wait] .]===>

state 16, Sys: next: 1 (pc[p1]: ws) (pc[p2]: cs) (place[p1]: 0)

(place[p2]: 1)(array[0]: false) array[1]: true

===[crl (pc[I]: cs) (place[I]: X) (array[X]: B1) array[X1]: B2 =>

(((array[X]: false) array[X1]: true) place[I]: X) pc[I]: rs if X1

= (X + 1) rem 2 [label chArray] .]===>

43

state 20, Sys: next: 1 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 1) (array[0]: true) array[1]: false

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X)

array[X]: true) pc[I]: cs [label wait] .]===>

state 22, Sys: next: 1 (pc[p1]: cs) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 1) (array[0]: true) array[1]: false

===[crl (pc[I]: cs) (place[I]: X) (array[X]: B1) array[X1]: B2 =>

(((array[X]: false) array[X1]: true) place[I]: X) pc[I]: rs if X1

= (X + 1) rem 2 [label chArray] .]===>

state 24, Sys: next: 1 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 1) (array[0]: false) array[1]: true

===[rl next: X (pc[I]: rs) place[I]: Y => (next: ((X + 1) rem 2)

place[I]: X) pc[I]: ws [label setPlace] .]===>

state 26, Sys: next: 0 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 1)

(place[p2]: 1) (array[0]: false) array[1]: true

===[rl (pc[I]: ws) (place[I]: X) array[X]: true => ((place[I]: X)

array[X]: true) pc[I]: cs [label wait] .]===>

state 28, Sys: next: 0 (pc[p1]: cs) (pc[p2]: rs) (place[p1]: 1)

(place[p2]: 1) (array[0]: false) array[1]: true

===[crl (pc[I]: cs) (place[I]: X) (array[X]: B1) array[X1]: B2 =>

(((array[X]: false) array[X1]: true) place[I]: X) pc[I]: rs if X1 =

(X + 1) rem 2 [label chArray] .]===>

state 30, Sys: next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 1)

(place[p2]: 1) (array[0]: true) array[1]: false

• LTL Model Checking

The following LTL search command used for checking the Ticket.

red in Anderson-CHECK : modelCheck(init,lofree) .

We get the following result:
rewrites: 323 in 1ms cpu (2ms real) (162067 rewrites/second) result Bool: true

To use the Maude LTL model checker to check if Anderson enjoys the lockout freedom
property, we need two kinds of atomic propositions wait(P) and crit(P), where P is
a process ID. Users are also supposed to specify a labeling function. For our purpose,
we declare the three equations : eq(pc[P] : ws) S | = want(P) = true., eq (pc[P]
: cs) S | = crip(P) = true., and eq S | = PROP = false [owise] ., where P
is a Maude variable of process IDs, S is a Maude variable of atomic propositions. The
three equations say a state s satisfies want(P) if and only if (pc[P] : ws) appears
in s and s satisfies crit(P) if and only if (pc[P] : cs) appears in s. Then, users are
supposed to specify LTL formulas to check. The lockout freedom property is expressed
as want(P) crit(P), where is the LTL leadsto operator. In Maude, the formula

44

is specified as eq lpfree = (wait(p1) 7→ crit(p1)) /\ (wait(p2) 7→ crit(p2)), where
the operator 7→ denotes the leadsto . The model checking is conducted by reducing
modelCheck(init,lofree(p1)), finding true, that means the Anderson protocol likely
enjoy the lockout freedom property.

4.2.4 Graphical Animations of Anderson

The Fig. 4.7 to 4.13 show that the each state which found by Maude software for Anderson
correct version. We used SMGA for drawing the thirteen pictures. These pictures make
it possible to reorganize at which location of located the each process is, what the value
stored in next and array[0], array[1] and what the value stored in place1 and place2.

###keys

next pc[p1] pc[p2] place[p1] place[p2] array[0] array[1]

###textDisplay

###states

(next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 1 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 1)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: cs) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 1)

(array[0]: true) (array[1]: false)) ||

(next: 0 (pc[p1]: rs) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 1)

(array[0]: false)(array[1]: true)) ||

(next: 1 (pc[p1]: ws) (pc[p2]: ws) (place[p1]: 0) (place[p2]: 1)

(array[0]: false) (array[1]: true)) ||

(next: 1 (pc[p1]: ws) (pc[p2]: cs) (place[p1]: 0) (place[p2]: 1)

(array[0]: false) (array[1]: true)) ||

(next: 1 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 1)

(array[0]: true) (array[1]: false)) ||

(next: 1 (pc[p1]: cs) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 1)

(array[0]: true) (array[1]: false)) ||

(next: 1 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 1)

(array[0]: false) (array[1]: true)) ||

(next: 0 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 1) (place[p2]: 1)

(array[0]: false) (array[1]: true)) ||

(next: 0 (pc[p1]: cs) (pc[p2]: rs) (place[p1]: 1) (place[p2]: 1)

(array[0]: false)(array[1]: true)) ||

(next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 1) (place[p2]: 1)

(array[0]: true) (array[1]: false)

45

Figure 4.7: States 0 and 1 of Anderson

Figure 4.8: States 3 and 7 of Anderson

Figure 4.9: States 10 and 12 of Anderson

4.3 Non-deterministic version of Anderson Protocol

The ND-Anderson protocol is a mutual exclusion protocol and Non-deterministic version
of Anderson protocol. next and array are natural number variables share by all process.
place[i] is a natural number variable that is local to process i. Where Stm1 | Stm2 is a non-
deterministic choice statement s.t either Stm1 or Stm2 is non-deterministically chosen.

46

Figure 4.10: States 16 and 20 of Anderson

Figure 4.11: States 22 and 24 of Anderson

Figure 4.12: States 26 and 28 of Anderson

This version is called ND-Anderson. ND-Anderson for a process i can be described as

follows:

Loop: ”Remainder Section”
rs: place[i] := fetch&incmode(next,N) | goto rs;

47

Figure 4.13: State 30 of Anderson

ws: repeat until array[place[i]];
”Critical Section”

cs: array[place[i]], array[(place[i]+1) % N := false, true;

4.3.1 Specification of ND-Anderson in Maude and State Tran-
sition Diagrams

Here are two processes whose are denoted by p1 and p2. I, X and Y, X1 are Maude
variables of process IDs, natural numbers and boolean, successively. place[i] is a natural
number variable that is local to process i. From some time on, a process may never try
to enter the critical section but keep on staying at rs, or equivalently it may try to enter
the critical section a finitely many times.

The state transitions of ND-Anderson are specified as the following four rewrite rules :

rl [setPlace] : (pc[I]: rs) (next: X) (place[I]: Y)

=> (pc[I]: ws) (next: ((X + 1) rem N)) (place[I]: X) .

rl [ds] : (pc[I]: rs) => (pc[I]: rs) .

rl [wait] : (pc[I]: ws) (place[I]: X) (array[X]: true)

=> (pc[I]: cs) (place[I]: X) (array[X]: true) .

crl [chArray] : (pc[I]: cs) (place[I]: X) (array[X]: B1) (array[X1]: B2)

=> (pc[I]: rs) (place[I]: X) (array[X]: false) (array[X1]: true)

if X1 = (X + 1) rem N .

incNxt&St, ds, wait, chArray are the names of the four rewrite rules, respectively. The
details description of four rewrite rules follows:

rule 1(setPlace) : a process I is located at rs, the content of place is Y, the content of
next is X. After that a process I is located at ws, the content of place is X, the content of
next is increments X remainder N. Here is rem N and the number of processes N = 2.

48

Figure 4.14: State transition diagram of ND-Anderson

rule 2(ds) : From some time on, a process may never try to enter the critical section
but keep on staying at rs, or equivalently it may try to enter the critical section a finitely
many times.

rule 3(wait) : a process I is located at ws, the content of place is X, the content of array
is true. After that a process I is located at cs, the content of place is X, the content of
array is true.

conditional rule 4(chArray) : a process I is located at cs, the content of place is X, the
content of array[X] is B1 and array[X1] is B2. After that a process I is located at rs, the
content of place is X, Here is rem N and the number of processes N = 2.

Fig. 4.14 shows the four state transition setP laceI , dsI , waitI and chArrayI respec-
tively. After the transition from one state to another state we can indicate the process
IDs I.

4.3.2 Specification of ND-Anderson as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws} of locations.
Three kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (array[0] : true)- It says that the content of array[0] is true;

49

• (array[1] : false) - It says that the content of array[1] is false;

• (place : Y) - It says that the content of place is Y;

• (next : X) - It says that the content of next is X;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, l ∈ Loc and
XN ∈ Pid Nat are values, next ∈ Pid Nat and array ∈ Nat Bool . We suppose that there
are N processes whose identifiers are p1, . . . , pn ∈ Pid participating in ND-Anderson.

• Set of States, S = {(pc[1] : L1) . . . (pc[N] : LN) (next : X)

(array[X] : B1) (array[X1] : B2) (place[1] : X1) . . . (place[N] : XN)

| L1, . . . , LN ∈ Loc , X1, . . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs) (place[1] : 0) . . . (place[N] : 0) (next :
0) (array[0] : true) (array[1] : false)}.

• TSetP lace = {((pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : YI) . . . (place[N] : XN) (next : X) (array[X] : B1)
(array[X1] : B2),

(pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(place[1] : X1) . . . (place[I] : X) . . . (place[N] : XN) (next : ((X + 1) rem N))

(array[X] : B1) (array[X1] : B2))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• Tds = {((pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN) (next : X) (place[1] : X1).
. . . (place[I] : XI). . . (place[N] : XN) (array[X] : B1) (array[X1] : B2),

(pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN) (next : X) (place[1] : X1) . . . (place[I] :
XI). . . (place[N] : XN) (array[X] : B1) (array[X1] : B2))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• Twait = {((pc[1] : L1) . . . (pc[I] : ws) . . . (pc[N] : LN)

(place[1] : X1). . . . (place[I] : XI). . . (place[N] : XN) (array[X] : true) (next : X),

(pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : true)

(place[1] : X1) . . . (place[I] : X). . . (place[N] : XN)) (next : X))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

• TChArray = {((pc[1] : L1) . . . (pc[I] : cs) . . . (pc[N] : LN) (array[X] : B1) (array[X1] :
B2) (place[1] : X1) . . . (place[I] : XI) . . . (place[N] : XN) (next : X),

(pc[1] : L1) . . . (pc[I] : rs) . . . (pc[N] : LN) (array[X] : false) (array[X1] : true) if X1
= (X + 1) rem N

(place[1] : X1) . . . (place[I] : X). . . (place[N] : XN)) (next : X))

| I ∈ {1, . . . , N }, L1 ,. . . , LN ∈ Loc , X1,. . . , XN , X, Y ∈ Nat, B1, B2 ∈ Bool}

50

4.3.3 Model Checking of ND-Anderson

The following search command used for checking the ND-Anderson.

search [1] in ND-Anderson : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

No solution. states: 31 rewrites: 169 in 1ms cpu (3ms real) (122641 rewrites/second).
Maude finds no solution meaning ND-Anderson likely to enjoy the mutual exclusion

property.
Where ND-Anderson is the module in which ND-Anderson is specified and S is a maude

variable of state fragments.
Maude can be confirmed by reducing the following terms :

red in ND-Anderson-CHECK : modelCheck(init,lofree) .

A counter example is found. The LTL found the following counter example :

counterexample({next: 0 (pc[p1]: rs) (pc[p2]: rs) (place[p1]: 0)

(place[p2]: 0) (array[0]: true) array[1]: false,’setPlace},

{next: 1 (pc[p1]: ws) (pc[p2]: rs) (place[p1]: 0) (place[p2]: 0)

(array[0]: true) array[1]: false,’ds})

Althogh p1 is ready to entering the critical section, p2 is always chosen and the rewrite
rule ds for p2 is taken, which is not fair for p1.

51

Chapter 5

Qlock Mutual Exclusion Protocol

5.1 FQlock0: A Flawed Version of Qlock0 Protocol

The FQlock0 protocol [11] is a mutual exclusion protocol. Where queue is a queue of
process IDs shared by all process. The standard function of queues are enq, top and deq.
While tmpi is a local to each process i. In FQLOCK0, it is not atomic to enqueue a
process ID i in queue and it is not atomic to dequeue queue. The processes are located
at five labels rs (Remainder Section), es (Enqueuing Section), ws (Waiting Section), ds
(Dequeuing Section) and cs (Critical Section). Initially each process is at rs (Remainder
Section) and queue is empty.

FQlock0 for a process i can be described as follows:

Loop: ”Remainder Section”
rs: queue := enq(queue,i) ;
es: queue := tmpi
ws: repeat until top (queue) = i ;

”Critical Section”
cs: tmpi := deq (queue)
ds: queue := tmpi

5.1.1 Specification of FQlock0 in Maude and State Transition
Diagrams

There are two processes whose are denoted by p1 and p2. Each state is exposed as
(pc[p1] : l1)(pc[p1] : l2)(queue : q) (tmp[p1] : q1)(tmp[p2] : q2), where li is the situated
where process i is, q is the queue stored in queue and qi is the queue stored in tmpi.
Initially, li is rs, q is empty and qi is empty. Let init be the term console the initial state.

The state transitions of FQlock0 are specified in maude as the following five rewrite
rules:

rl [eq1] : (pc[I]: rs) (queue: Q) (tmp[I]: R)

52

=> (pc[I]: es) (queue: Q) (tmp[I]: enq(Q,I)) .

rl [eq2] : (pc[I]: es) (queue: Q) (tmp[I]: R)

=> (pc[I]: ws) (queue: R) (tmp[I]: R) .

rl [wt] : (pc[I]: ws) (queue: (I Q))

=> (pc[I]: cs) (queue: (I Q)) .

rl [dq1] : (pc[I]: cs) (queue: Q) (tmp[I]: R)

=> (pc[I]: ds) (queue: Q) (tmp[I]: deq(Q)) .

rl [dq2] : (pc[I]: ds) (queue: Q) (tmp[I]: R)

=> (pc[I]: rs) (queue: R) (tmp[I]: R) .

I, Q and R are Maude variables of process IDs and queues of process IDs, respectively.
There are five rewrite rules eq1 (Enqueuing 1), eq2 (Enqueuing 2), wt (Waiting), dq1
(dequeuing 1) and dq1 (dequeuing 2) respectively. I Q represents the queue such that I
is the top element and Q is the queue obtained by deleting the top.

eq1, eq2, wt, dq1 and dq2 are the names of the five rewrite rules, respectively. The
details description of five rewrite rule follows:

rule 1(eq1) : a process I is located at rs, the content of queue is Q, the content of tmp
is R. After that a process I is located at es, the content of queue is Q, the content of tmp
is enq(Q, I).

rule 2(eq2) : a process I is located at es, the content of queue is Q, the content of tmp
is R. After that a process I is located at ws, the content of queue is R, the content of tmp
is R.

rule 3(wt) : a process I is located at ws, the content of queue is (I Q). After that a
process I is located at cs, the content of queue is (I Q).

rule 4(dq1) : a process I is located at cs, the content of queue is Q, the content of tmp
is R. After that a process I is located at ds, the content of queue is Q, the content of tmp
is deq(Q).

rule 5(dq2) : a process I is located at ds, the content of queue is Q, the content of tmp
is R. After that a process I is located at rs, the content of queue is R, the content of tmp
is R.

Figure 5.1 shows the five state transition diagram eq1I , eq2I , wtI , dq1I and dq2I re-
spectively. The every transition of one state to another state we can indicate the process
IDs I.

5.1.2 Specification of FQlock0 as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, ds, es, cs, ws} of
locations, and PidQueue be the set of queues of process identifiers. empty ∈ PidQueue is
the empty queue. if p ∈ Pid and q ∈ PidQueue, then p|q ∈ PidQueue. The two function
enq and deq for PidQueue are defined as follows: for each q ∈ PidQueue and each p, p′ ∈
Pid, enq(empty,p) = p | empty, enq(p′ | q, p) = p′ | enq(q, p), deq(empty) = empty, and
deq(p | q) = q.

Three kinds of observable components are used:

53

Figure 5.1: State Transition Diagram of FQLOCK0

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (tmp[p] : qp)- It says that the content of tmpp is qp;

• (queue : q) - It says that the content of queue is q;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, queue is a
name, and l ∈ Loc and q ∈ PidQueue are values. We suppose that there are N processes
whose identifiers are p1, . . . , pn ∈ Pid participating in FQlock0.

• Set of States, S = {(pc[1] : L1). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[N] : RN)

| L1. . .LN ∈ Loc, Q, R, R1 . . .RN ∈ Queue}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs) (queue : empty)

(tmp[1] : empty). . . (tmp[N] : empty)}.

54

• Teq1 = {((pc[1] : L1) . . . (pc[I] : rs). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : es). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: enq(Q,I)). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Label, Q, R, R1 . . .RN ∈ Queue}

• Teq2 = {((pc[1] : L1) . . . (pc[I] : es). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN) (queue : R))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Label, Q, R, R1 . . .RN ∈ Queue}

• Twt = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN)

(queue : (I,Q)) (tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : cs) . . . (pc[N] : LN) (queue : (I,Q))

(tmp[1] : R1). . . (tmp[I]: RI . . . (tmp[N] : RN))

| I ∈{1, . . . , N}, L1, . . . , LN ∈ Label, Q, R, R1 . . .RN ∈ Queue}

• Tdq1 = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : ds). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: deq (Q)). . . (tmp[N] : RN))

| I ∈1, . . . , N, L1, . . . , LN ∈ Label, Q, R, R1 . . .RN ∈ Queue}

• Tdq2 = {((pc[1] : L1). . . (pc[I] : ds). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (queue : R)

(tmp[1] : R1). . . (tmp[I]: R). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Label, Q, R, R1 . . .RN ∈ Queue}

5.1.3 Model Checking of FQlock0

The following search command used for checking the FQlock0.

search [1] in FQlock0 : init =>* (pc[p1]: cs) (pc[p2]: cs) S .

55

Maude finds a solution meaning FQlock0 does not enjoy the property. Here is also used
following path search command : show path 28 . This command shows each states of the
FQlock0 version by Maude.

Where FQlock0 is the module in which FQlock0 is specified and S is a Maude variable
of state fragments. The search command finds the following counterexample:

state 0, Sys: queue: empty (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty)

tmp[p2]: empty===[rl queue: Q (pc[I]: rs) tmp[I]: R =>

(queue: Q tmp[I]: enq(Q, I)) pc[I]:es [label eq1] .]===>

state 1, Sys: queue: empty (pc[p1]: es) (pc[p2]: rs) (tmp[p1]: p1 empty)

tmp[p2]: empty===[rl queue: Q (pc[I]: rs) tmp[I]: R => (queue: Q

tmp[I]: enq(Q, I)) pc[I]:es [label eq1] .]===>

state 3, Sys: queue: empty (pc[p1]: es) (pc[p2]: es) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty===[rl queue: Q (pc[I]: es) tmp[I]: R =>

(queue: R tmp[I]: R) pc[I]: ws [label eq2] .]===>

state 6, Sys: queue: (p1 empty) (pc[p1]: ws) (pc[p2]: es)

(tmp[p1]: p1 empty)tmp[p2]: p2 empty===[rl queue: (I Q) pc[I]: ws =>

queue: (I Q) pc[I]: cs [label wt] .]===>

state 13, Sys: queue: (p1 empty) (pc[p1]: cs) (pc[p2]: es)

(tmp[p1]: p1 empty) tmp[p2]: p2 empty===[rl queue: Q (pc[I]: es)

tmp[I]: R => (queue: R tmp[I]: R) pc[I]: ws [label eq2] .]===>

state 23, Sys: queue: (p2 empty) (pc[p1]: cs) (pc[p2]: ws)

(tmp[p1]: p1 empty) tmp[p2]: p2 empty===[rl queue: (I Q) pc[I]: ws =>

queue: (I Q) pc[I]: cs [label wt] .]===>

state 33, Sys: queue: (p2 empty) (pc[p1]: cs) (pc[p2]: cs)

(tmp[p1]: p1 empty) tmp[p2]: p2 empty

Maude can generate counterexample without any type of difficulties, which non-experts
can not do it.

5.1.4 Graphical Animations of FQlock0 Counterexamples

We used SMGA for drawing the seven pictures. The Fig. 5.2 to 5.5 show that coun-
terexample which found by Maude software for FQlock0 version. These pictures make
it possible to reorganize at which location the each process is, what the value stored in
queue and what the value stored in tmp1 and tmp2.

###keys

queue pc[p1] pc[p2] tmp[p1] tmp[p2]

###textDisplay

queue::::REV::::_ _

tmp[p1]::::REV::::_ _

tmp[p2]::::REV::::_ _

56

Figure 5.2: Counterexample for FQlock0 of states 0 and 1

###states

(queue: (empty) (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty)

tmp[p2]: empty) ||

(queue: (empty) (pc[p1]: es) (pc[p2]: rs) (tmp[p1]: p1 empty)

tmp[p2]: empty) ||

(queue: (empty) (pc[p1]: es) (pc[p2]: es) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty) ||

(queue: (p1 empty) (pc[p1]: ws) (pc[p2]: es) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty) ||

(queue: (p1 empty) (pc[p1]: cs) (pc[p2]: es) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty) ||

(queue: (p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty) ||

(queue: (p2 empty) (pc[p1]: cs) (pc[p2]: cs) (tmp[p1]: p1 empty)

tmp[p2]: p2 empty)

5.2 FQlock1 Protocol

The FQlock1 protocol [11] is a mutual exclusion protocol. Where queue is a queue of
process IDs shared by all process. The standard function of queues are enq, top and deq.
While tmpi is a local to each process i. In FQLOCK1, it is not atomic to enqueue a
process ID i in queue and it is not atomic to dequeue queue. The processes are located at
four labels rs (Remainder Section), ws (Waiting Section), ds (Dequeuing Section) and cs
(Critical Section). Initially each process is at rs(Remainder Section) and queue is empty.

FQlock1 for a process i can be described as follows:

57

Figure 5.3: Counterexample for FQlock0 of states 3 and 6

Figure 5.4: Counterexample for FQlock0 of states 13 and 23

Figure 5.5: Counterexample for FQlock0 of state 33

Loop: ”Remainder Section”
rs: queue := enq(queue,i) ;
ws: repeat until top (queue) = i ;

”Critical Section”
cs: tmpi := deq (queue)
ds: queue := tmpi

58

5.2.1 Specification of FQlock1 in Maude and State Transition
Diagrams

There are two processes whose are denoted by p1 and p2. I, Q and R are Maude variables
of process IDs and queues of process IDs, respectively. There are four rules eq1 (Enqueu-
ing), wt (Waiting), dq1 (dequeuing 1) and dq2 (dequeuing 2) respectively. I Q represents
the queue such that I is the top element and Q is the queue obtained by deleting the top.
There are only difference between FQlock0 and FQlock1 is that it is atomic to enqueue a
process ID i into queue in FQlock1, while it is not in FQlock0.

The state transitions of FQlock1 are specified as the following four rewrite rules :

rl [eq] : (pc[I]: rs) (queue: Q)

=> (pc[I]: ws) (queue: enq(Q,I)) .

rl [wt] : (pc[I]: ws) (queue: (I Q))

=> (pc[I]: cs) (queue: (I Q)) .

rl [dq1] : (pc[I]: cs) (queue: Q) (tmp[I]: R)

=> (pc[I]: ds) (queue: Q) (tmp[I]: deq(Q)) .

rl [dq2] : (pc[I]: ds) (queue: Q) (tmp[I]: R)

=> (pc[I]: rs) (queue: R) (tmp[I]: R) .

eq, wt, dq1 and dq2 are the names of the four rewrite rules, respectively. The details
description of four rewrite rule follows:

rule 1(eq) : a process I is located at rs, the content of queue is Q. After that a process
I is located at ws, the content of queue is enq(Q, I).

rule 2(wt) : a process I is located at ws, the content of queue is queue(I Q). After that
a process I is located at cs, the content of queue is queue(I Q).

rule 3(dq1) : a process I is located at cs, the content of queue is Q, the content of tmp
is R. After that a process I is located at ds, the content of queue is Q, the content of tmp
is deq(Q).

rule 4(dq2) : a process I is located at ds, the content of queue is Q, the content of tmp
is R. After that a process I is located at rs, the content of queue is R, the content of tmp
is R.

Fig. 5.6 shows the four state transition eqI , wtI , dq1I and dq2I respectively. After the
transition from one state to another state we can indicate the process IDs I.

5.2.2 Specification of FQlock1 as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, ds, cs, ws}, of
locations, and PidQueue be the set of queues of process identifiers. empty ∈ PidQueue is
the empty queue. if p ∈ Pid and q ∈ PidQueue, then p|q ∈ PidQueue. The two function
enq and deq for PidQueue are defined as follows: for each q ∈ PidQueue and each p, p′ ∈
Pid, enq(empty,p) = p | empty, enq(p′ | q, p) = p′ | enq(q, p), deq(empty) = empty, and
deq(p | q) = q.

Three kinds of observable components are used:

59

Figure 5.6: State Transition Diagram of FQLOCK1

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (tmp[p] : qp) - It says that the content of tmp is qp ;

• (queue : q) - It says that the content of queue is q ;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, queue is a
name, and l ∈ Loc and q ∈ PidQueue are values. We suppose that there are N processes
whose identifiers are p1, . . . , pn ∈ Pid participating in FQlock1.

• Set of States, S = {(pc[1] : L1). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[N] : RN)

| L1. . .LN ∈ Loc, Q, R∈ Queue}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs) (queue : empty)

(tmp[1] : empty). . . (tmp[N] : empty)}.

60

• Teq = {((pc[1] : L1) . . . (pc[I] : ds). . . (pc[N] : LN)

(queue : Q) (tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (queue : enq (Q, I))

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q, R, R1 . . .RN ∈ Queue}

• Twait = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN)

(queue : (I Q)) (tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : cs) . . . (pc[N] : LN) (queue : (I Q))

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q, R, R1 . . .RN ∈ Queue}

• Tdq1 = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : ds). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: deq (Q)). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q, R, R1 . . .RN ∈ Queue}

• Tdq2 = {((pc[1] : L1). . . (pc[I] : ds). . . (pc[N] : LN) (queue : Q)

(tmp[1] : R1). . . (tmp[I]: RI). . . (tmp[N] : RN),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (queue : R)

(tmp[1] : R1). . . (tmp[I]: R). . . (tmp[N] : RN))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q, R, R1 . . .RN ∈ Queue}

5.2.3 Model Checking of FQlock1

The search command does not find any counterexamples [12] that FQlock1 enjoys the
mutex property. Therefore, FQlock1 is likely to enjoy the mutex property.

The following LTL search command used for checking the FQlock1.

red in FQLOCK1-CHECK : modelCheck(init,lofree) .

To use the Maude LTL model checker to check if FQlock1 enjoys the lockout freedom
property, we need two kinds of atomic propositions wait(P) and crit(P), where P is
a process ID. Users are also supposed to specify a labeling function. For our purpose,
we declare the three equations : eq(pc[P] : ws) S | = want(P) = true., eq (pc[P]
: cs) S | = crip(P) = true., and eq S | = PROP = false [owise] ., where P
is a Maude variable of process IDs, S is a Maude variable of atomic propositions. The
three equations say a state s satisfies want(P) if and only if (pc[P] : ws) appears
in s and s satisfies crit(P) if and only if (pc[P] : cs) appears in s. Then, users are

61

supposed to specify LTL formulas to check. The lockout freedom property is expressed
as want(P) crit(P), where is the LTL leadsto operator. In Maude, the formula
is specified as eq lpfree = (wait(p1) 7→ crit(p1)) /\ (wait(p2) 7→ crit(p2)), where
the operator 7→ denotes the leadsto . The model checking is conducted by reducing
modelCheck(init,lofree(p1)), finding a counterexample. A counterexample generated
by Maude LTL model checker consists of a finite computation leading to an infinite loop
in which a finite path repeats forever. In the counterexample generated by Maude LTL
model checker of the lockout freedom property for FQlock1.

Counterexamples generated by the Maude LTL model checker are not necessarily the
shortest ones. Therefore, the second author mainly developed a meta-program in Maude
that takes a counterexample generated by the Maude LTL model checker and generates
a shorter one[12]. For the counterexample generated by Maude LTL model checker of
the lockout freedom property for FQlock1, the finite computation in the shortened one
consists of nine states and the finite path in the loop of the shortened one consists of four
states. The finite computation in the shortened one is as follows:

counterexample({queue: empty (pc[p1]: rs) (pc[p2]: rs)

(tmp[p1]: empty) tmp[p2]: empty,’eq}

{queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: empty)

tmp[p2]: empty,’eq}

{queue: (p1 p2 empty)(pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: empty)

tmp[p2]: empty,’wt}

{queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: empty)

tmp[p2]: empty,’dq1} {queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws)

(tmp[p1]: p2 empty) tmp[p2]:empty,’dq2} {queue: (p2 empty) (pc[p1]: rs)

(pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty,’eq} {queue: (p2 p1 empty)

(pc[p1]: ws) (pc[p2]: ws)(tmp[p1]: p2 empty) tmp[p2]: empty,’wt}

{queue: (p2 p1 empty) (pc[p1]: ws)(pc[p2]: cs) (tmp[p1]: p2 empty)

tmp[p2]: empty,’dq1} {queue: (p2 p1 empty)(pc[p1]: ws) (pc[p2]: ds)

(tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq2} {queue: (p1 empty) (pc[p1]: ws)

(pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’eq} {queue: (p1 p2 empty)

(pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’wt}

{queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: p2 empty)

tmp[p2]: p1 empty,’dq1} {queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws)

(tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq2} {queue: (p2 empty) (pc[p1]: rs)

(pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’wt} {queue: (p2 empty)

(pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: p1 empty,’dq1}

{queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]:p2 empty)

tmp[p2]: empty,’eq}

{queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]:ds) (tmp[p1]: p2 empty)

tmp[p2]: empty,’dq2}, {queue: empty (pc[p1]: ws) (pc[p2]: rs)

(tmp[p1]: p2 empty)

tmp[p2]: empty,’eq} {queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ws)

(tmp[p1]: p2 empty) tmp[p2]: empty,’wt}

62

{queue: (p2empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty)

tmp[p2]: empty,’dq1} {queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ds)

(tmp[p1]: p2 empty) tmp[p2]:empty,’dq2})

5.2.4 Graphical Animations of FQlock1

The Fig. 5.7 to 5.13 show that the each state which found by Maude software for FQlock1
version. We used SMGA for drawing the thirteen pictures. These pictures make it possible
to reorganize at which location of located the each process is, what the value content in
queue and tmp.

###keys

queue pc[p1] pc[p2] tmp[p1] tmp[p2]

###textDisplay

queue::::REV::::_ _

tmp[p1]::::REV::::_ _

tmp[p2]::::REV::::_ _

###states

(queue: empty (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty)

tmp[p2]: empty) ||

(queue: (p1 empty) (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: empty)

tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: empty)

tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: empty)

tmp[p2]: empty) ||

(queue: (p1 p2 empty) (pc[p1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ws) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty)

tmp[p2]: empty)||

(queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty)

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty)

63

Figure 5.7: States 0 and 1 of counterexample of the lockout freedom property for
FQLOCK1

Figure 5.8: States 2 and 3 of counterexample of the lockout freedom property for
FQLOCK1

tmp[p2]: empty) ||

(queue: (p2 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty)

tmp[p2]: empty)

5.3 Qlock Mutual Exclusion Protocol

The Qlock protocol [13] is a mutual exclusion protocol that uses an atomic queue of
process identifiers. Where queue is a queue of process IDs shared by all processes. The
standard function of queues are enq, top and deq. The processes are located at three labels
rs (Remainder Section), ws (Waiting Section) and cs (Critical Section). We suspect that
each of enqueuing an element into queue and dequeuing queue is atomic, and so is one is
one iteration of the loop at ws. Initially each process is at rs (Remainder Section) and
queue is empty.

64

Figure 5.9: States 4 and 5 of counterexample of the lockout freedom property for
FQLOCK1

Figure 5.10: States 6 and 7 of counterexample of the lockout freedom property for
FQLOCK1

Figure 5.11: States 8 and 9 of counterexample of the lockout freedom property for
FQLOCK1

The pseudo-code Qlock for a process i can be described as follows:

65

Figure 5.12: States 10 and 11 of counterexample of the lockout freedom property for
FQLOCK1

Figure 5.13: State 12 of counterexample of the lockout freedom property for FQLOCK1

Loop: ”Remainder Section”
rs: enq(queue,i);
ws: repeat until top(queue) = i ;

”Critical Section”
cs: deq(queue);

5.3.1 Specification of Qlock in Maude

We assume that there are five processes whose are denoted by p1, p2, p3, p4 and p5. I
and Q are Maude variables of process IDs, successively. There are three rewrite rules : eq
(Enqueuing), wt (Waiting) and dq (dequeuing). There are two Maude variables I and Q
and process ID queues. I Q represents the queue such that I is the top element and Q is
the queue obtained by deleting the top.

The state transitions of Qlock are specified as the following three rewrite rules :

rl [eq] : (pc[I]: rs) (queue: Q) => (pc[I]: ws) (queue: enq(Q,I)) .

66

Figure 5.14: State Transition Diagram of QLOCK

rl [wt] : (pc[I]: ws) (queue: (I Q)) => (pc[I]: cs) (queue: (I Q)) .

rl [dq] : (pc[I]: cs) (queue: Q) => (pc[I]: rs) (queue: deq(Q)) .

eq, wt and dq are the names of the three rewrite rules, respectively. The details de-
scription of three rewrite rules follows:

rule 1(eq) : a process I is located at rs, the content of queue is Q. After that a process
I is located at ws, the content of queue is enq(Q, I).

rule 2(wt) : a process I is located at ws, the content of queue is (I Q). After that a
process I is located at cs, the content of queue is (I Q).

rule 3(dq) : a process I is located at cs, the content of queue is Q. After that a process
I is located at rs, the content of queue is deq(Q).

Fig. 5.14 shows the three state transition eqI , wtI and dqI respectively. After the
transition from one state to another state we can indicate the process IDs I.

5.3.2 Specification of Qlock as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws}, of locations,
and PidQueue be the set of queues of process identifiers. empty ∈ PidQueue is the empty
queue. if p ∈ Pid and q ∈ PidQueue, then p|q ∈ PidQueue. The two function enq and

67

deq for PidQueue are defined as follows: for each q ∈ PidQueue and each p, p′ ∈ Pid,
enq(empty,p) = p | empty, enq(p′ | q, p) = p′ | enq(q, p), deq(empty) = empty, and deq(p
| q) = q.

Two kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (queue : q) - It says that the content of queue is q;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, queue is a
name, and l ∈ Loc and Q ∈ PidQueue are values. We suppose that there are N processes
whose identifiers are p1, . . . , pn ∈ Pid participating in Qlock.

• Set of States, S = {(pc[1] : L1). . . (pc[N] : LN) (queue : Q)

| L1. . .LN ∈ Loc, Q ∈ PidQueue}.

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs) (queue : empty)}.

• Teq = {((pc[1] : L1) . . . (pc[I] : rs). . . (pc[N] : LN) (queue : Q),

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (queue : enq(Q, I)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

• Twt = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (queue : (I, Q)),

(pc[1] : L1). . . (pc[I] : cs) . . . (pc[N] : LN) (queue : (I, Q)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

• Tdq = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (queue : Q),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (queue : deq(Q)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

5.3.3 Model Checking of Qlock

• Confirming Characteristics with Maude

Pro. 1 can be confirmed as follows:

search [1] in QLOCK : init =>*

(pc[I]: L1) (pc[J]: L2) S such that

not (L1== cs implies not (L2 == cs)) .

Where QLOCK is the module in which Qlock is specified, I and J are Maude variables
of process IDs, L1 and L2 are Maude variables of labels, and S is a Maude variable
observable component soups. Prop. 1 can be rephrased as that whenever a process I is at
cs, no other process J is at cs. The search tries to find a state in which Prop. 1 is broken.

68

No such state was found by the search command. Thus, we have confirmed Prop. 1 with
Maude.

We have guessed the whatever there is a process at cs, queue is not empty. The guessed
property is called Pro. 2, which will be confirmed by the following search command:

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not (L1== cs implies not (Q == empty)) .

Where I is a Maude variable of process IDs, L1 is a Maude variables of labels, Q is a
Maude variables of process ID queues, and S is a Maude variables of observable component
soups. The search command did not find any states, and then we have confirmed Prop.
2.

Hence, Prop. 2 can be refined as follows: whenever there is a process at cs, the process
is the top of queue. The guessed property is called Prop. 3, which will be confirmed by
the following search command:

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: (J Q)) S such that

not (L1 == cs implies I == J) .

Where I and J are Maude variables of process IDs, L1 is a Maude variable of labels, Q
is a Maude variables of ID queues, and S is a Maude variable of observable component
soups. The search command did not find any states, and then we have confirmed Prop.
3.

The five properties will be confirmed by the following five search commands:

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not (Q == empty implies L1 == rs) .

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not ((L1 == ws or L1 == cs) implies I \in Q) .

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not (I \in Q implies (L1 == ws or L1 == cs)) .

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not ((not I \in Q) implies L1 == rs) .

search [1] in QLOCK : init =>*

(pc[I]: L1) (queue: Q) S such that

not (L1== rs implies (not I $ \in$ Q)) .

69

Where I is a Maude variable of process IDs, L1 is a Maude variable of labels, Q is a
Maude variable of process ID queues, and S is a Maude variable of observable component
soups. Each of the five search commands did not find any states, and therefore we have
confirmed five guessed properties.

The maude search command find the follows:

state 0, Sys: queue: (empty) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]:

rs) (pc[p4]: rs) pc[p5]: rs

===[rl queue: Q pc[I]: cs => queue: deq(Q) pc[I]: rs [label dq] .]===>

state 1, Sys: queue: (p3 p2 p1 p4 p5 empty) (pc[p1]: ws)

(pc[p2]: ws) (pc[p3]: ws) (pc[p4]: cs) pc[p5]: ws

===[rl queue: (I Q) pc[I]: ws => queue: (I Q) pc[I]: cs [label wt] .]===>

state 3, Sys: queue: (p3 p2 p1 p5 empty) (pc[p1]: ws) (pc[p2]: ws)

(pc[p3]: ws) (pc[p4]: rs) pc[p5]: ws

===[rl queue: Q pc[I]: cs => queue: deq(Q) pc[I]: rs [label dq] .]===>

state 5, Sys: queue: (p2 p3 p1 p5 empty) (pc[p1]: ws) (pc[p2]: ws)

(pc[p3]: cs) (pc[p4]: rs) pc[p5]: ws

===[rl queue: (I Q) pc[I]: ws => queue: (I Q) pc[I]: cs [label wt] .]===>

state 8, Sys: queue: (p2 p1 p5 empty) (pc[p1]: ws) (pc[p2]: ws)

(pc[p3]: rs) (pc[p4]: rs) pc[p5]: ws

===[rl queue: Q pc[I]: cs => queue: deq(Q) pc[I]: rs [label dq] .]===>

state 13, Sys: queue: (p1 p2 p5 empty) (pc[p1]: ws) (pc[p2]: cs)

(pc[p3]: rs) (pc[p4]: rs) pc[p5]: ws

===[rl queue: (I Q) pc[I]: ws => queue: (I Q) pc[I]: cs [label wt] .]===>

state 19, Sys: queue: (p1 p5 empty) (pc[p1]: ws) (pc[p2]: rs)

(pc[p3]: rs) (pc[p4]: rs) pc[p5]: ws

===[rl queue: Q pc[I]: cs => queue: deq(Q) pc[I]: rs [label dq] .]===>

• LTL Model Checking

The following LTL search command used for checking the Qlock.

red in QLOCK-CHECK : modelCheck(init,lofree) .

rewrites: 11279 in 42ms cpu (46ms real) (266863 rewrites/second) result Bool: true
Maude LTL model checker for Qlock did not find any counterexamples. The Qlock

protocol likely to enjoy the lockout freedom property.
We suppose that there are five processes p1, p2, p3, p4 and p5 and let init denote the

initial state in which the five processes participate in Qlock protocol.
To use Maude LTL model checker, users are supposed to specify atomic propositions.

Let us suppose we model check Qlock protocol enjoys the lockout freedom property when
there are five processes. The lockout freedom property says whenever each process wants
to enter the critical section, it will eventually be there. To express the property in LTL,
we need two kinds of atomic propositions wait(P) and crit(P), where P is a process ID.

70

Users are also supposed to specify a labeling function. For our purpose, we declare the
three equations : eq(pc[P] : ws) S |= want(P) = true., eq (pc[P] : cs) S |= crip(P)
= true., and eq S | = PROP = false [owise] ., where P is a Maude variable of process
IDs, S is a Maude variable of state fragment. The three equations say a state s satisfies
want(P) if and only if (pc[P] : ws) appears in s and s satisfies crit(P) if and only if
(pc[P] : cs) appears in s. Then, users are supposed to specify LTL formulas to check. The
lockout freedom property is expressed as want(P) crit(P), where is the LTL leadsto
operator. In Maude, the formula is specified as eq lpfree = (wait(p1) 7→ crit(p1))
/\ (wait(p2) 7→ crit(p2)) /\ (wait(p3) 7→ crit(p3)) /\ (wait(p4) 7→ crit(p4)) /\
(wait(p5) 7→ crit(p5)) . , where the operator 7→ denotes the leadsto operator . The
model checking is conducted by reducing modelCheck(init,lofree(p1)), finding did not
any counterexample.

5.3.4 Graphical Animations of Qlock

The Fig. 5.15 to 5.18 show that each state which found by Maude software for Qlock
version. We used SMGA for drawing the seven pictures of each state. These pictures
make it possible to reorganize at which location of located each process is, what the value
stored in the queue.

The contents of an input file that can be fed into the tool are as follows :

###keys

queue pc[p1] pc[p2] pc[p3] pc[p4] pc[p5]

###textDisplay

queue::::REV::::_ _

###states

(queue: (empty) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (pc[p4]: rs)

(pc[p5]: rs)) ||

(queue: (p5 p4 p3 p2 p1 empty) (pc[p1]: ws) (pc[p2]: ws) (pc[p3]: ws)

(pc[p4]: cs) (pc[p5]: ws)) ||

(queue: (p5 p3 p2 p1 empty) (pc[p1]: ws) (pc[p2]: ws) (pc[p3]: ws)

(pc[p4]: rs) (pc[p5]: ws)) ||

(queue: (p5 p3 p2 p1 empty) (pc[p1]: ws) (pc[p2]: ws) (pc[p3]: cs)

(pc[p4]: rs) (pc[p5]: ws)) ||

(queue: (p5 p1 p2 empty) (pc[p1]: ws) (pc[p2]: ws) (pc[p3]: rs) (pc[p4]: rs)

(pc[p5]: ws)) ||

(queue: (p5 p2 p1 empty) (pc[p1]: ws) (pc[p2]: cs) (pc[p3]: rs) (pc[p4]: rs)

(pc[p5]: ws)) ||

(queue: (p5 p1 empty) (pc[p1]: ws) (pc[p2]: rs) (pc[p3]: rs) (pc[p4]: rs)

(pc[p5]: ws)

71

Figure 5.15: States 0 and 1 of QLOCK

Figure 5.16: States 2 and 3 of QLOCK

Figure 5.17: States 4 and 5 of QLOCK

5.4 Non-deterministic version of Qlock

The ND-Qlock protocol is a mutual exclusion protocol that uses an atomic queue of
process identifiers and can be regarded as an abstract version of the Dijkstra’s binary

72

Figure 5.18: State 6 of QLOCK

semaphore.
Where queue is an atomic queue of process identifiers shared by all processes and

stm1 | stm2 is a non-deterministic choice statement such that either stm1 or stm2 is
non-deterministically chosen and executed by the process i. This version is called non-
deterministic Qlock.

The pseudo-code ND-Qlock for a process i can be described as follows:

Loop: ”Remainder Section”
rs: enq(queue,i) | goto rs;
ws: repeat until top (queue) = i ;

”Critical Section”
cs: deq (queue);

We suppose that each process is at one of the three locations rs (remainder section),
ws (waiting section) and cs (critical section). Initially, queue is empty and each process
is located at rs (remainder section). When the process i is at rs, it can choose one two
actions (1) to update queue by adding i into it at the end and go to ws, (2) to do something
else and stay at rs. When the process is at ws, it waits there until the top of queue is i. If
the top of queue is i, then the process enters the cs (critical section). When the process
leaves CS, it deletes the top from queue and goes back to rs. We suppose that queue and
goes back rs. We suppose that queue is used in neither Remainder Section nor Critical
Section.

5.4.1 ND-Qlock

There are two processes whose are denoted by p1 and p2. Where I and Q are Maude
variables of process IDs and queues of process IDs, The four rewrites names are eq (En-
queuing), ds (desequence), wt (waiting), dq (dequeuing) respectively.

The state transitions of ND-Qlock are specified as the following four rewrite rules :

73

rl [eq] : (pc[I]: rs) (queue: Q) => (pc[I]: ws) (queue: enq(Q,I)) .

rl [ds] : (pc[I]: rs) => (pc[I]: rs) .

rl [wt] : (pc[I]: ws) (queue: (I Q)) => (pc[I]: cs) (queue: (I Q)) .

rl [dq] : (pc[I]: cs) (queue: Q) => (pc[I]: rs) (queue: deq(Q)) .

I and Q are Maude variables of process IDs and queues of process IDs, From some time
on, a process may never try to enter the critical section but keep on staying at rs, or
equivalently it may try to enter the critical section a finitely many times. eq, ds, wt, and
dq are the names of the four rewrite rules, respectively. We suspect that each of enqueuing
an element into queue and the dequeuing queue is atomic, and so is one iteration of the
loop at ws. Initially, the process is located at rs (remainder section) and queue is empty.

The details description of four rewrite rules follows:
rule 1(eq) : a process I is located at rs, the content of queue is Q. After that a process

I is located at ws, the content of queue is enq(Q, I).
rule 2(ds) : From some time on, a process may never try to enter the critical section

but keep on staying at rs, or equivalently it may try to enter the critical section a finitely
many times.

rule 3(wt) : a process I is located at ws, the content of queue is (I Q). After that a
process I is located at cs, the content of queue is (I Q).

rule 4(dq) : a process I is located at cs, the content of queue is Q. After that a process
I is located at rs, the content of queue is deq(Q).

Fig. 5.19 shows the four state transition eqI , dsI , wtI and dqI respectively. After the
transition from one state to another state, we can indicate the process IDs I.

5.4.2 Specification of ND-Qlock as State Machines

Let Pid is the set (or type) of process identifiers, Loc be the set {rs, cs, ws}, of locations,
and PidQueue be the set of queues of process identifiers. empty ∈ PidQueue is the empty
queue. if p ∈ Pid and q ∈ PidQueue, then p|q ∈ PidQueue. The two function enq and
deq for PidQueue are defined as follows: for each q ∈ PidQueue and each p, p′ ∈ Pid,
enq(empty,p) = p | empty, enq(p′ | q, p) = p′ | enq(q, p), deq(empty) = empty, and deq(P
| q) = q.

Two kinds of observable components are used:

• (pc[pi] : lp) - It says that a process pi is located at lp;

• (queue : q) - It says that the content of queue is q;

Where (pc[pi]) is the parametrized name in which pi ∈ Pid is a parameter, queue is a
name, and l ∈ Loc and q ∈ PidQueue are values. We suppose that there are N processes
whose identifiers are p1, . . . , pn ∈ Pid participating in ND-Qlock.

• Set of States, S = {(pc[1] : L1). . . (pc[N] : LN) (queue : Q)

| L1. . .LN ∈ Loc, Q ∈ PidQueue}.

74

Figure 5.19: State Transition Diagram of ND-QLOCK

• Initial State, I = {(pc[1] : rs) . . . (pc[N] : rs) (queue : empty)}.

• Teq = {((pc[1] : L1) . . . (pc[I] : rs). . . (pc[N] : LN) (queue : Q),

(pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (queue : enq(Q, I)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

• Tds = {((pc[1] : L1) . . . (pc[I] : rs). . . (pc[N] : LN) (queue : Q),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (queue : Q))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

• Twt = {((pc[1] : L1). . . (pc[I] : ws). . . (pc[N] : LN) (queue : (I Q)),

(pc[1] : L1). . . (pc[I] : cs) . . . (pc[N] : LN) (queue : (I Q)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

75

• Tdq = {((pc[1] : L1). . . (pc[I] : cs). . . (pc[N] : LN) (queue : Q),

(pc[1] : L1). . . (pc[I] : rs). . . (pc[N] : LN) (queue : deq(Q)))

| I ∈ {1, . . . , N}, L1, . . . , LN ∈ Loc, Q ∈ PidQueue}

5.4.3 Model Checking of ND-Qlock

The following search command used for checking the Ticket.

red in NDC-QLOCK-CHECK : modelCheck(init,mutex) .

This command verifies that ND-Qlock satisfies the mutex property with the model
checker when two processes are involve. The command successfully verifies it.

red in NDC-QLOCK-CHECK : modelCheck(init,lofree) .

This command find a conterexample showing that ND-Qlock does not satisfy the lockout
freedom property with the model checker.

The LTL found the following counter example:

counterexample({queue: empty (pc[p1]: rs) pc[p2]: rs,

’eq}, {queue: (p1 empty) (pc[p1]: ws) pc[p2]: rs,’ds})

Although p1 is ready to entering the critical section, p2 is always chosen and the rewrite
rule ds for p2 is taken, which is not fair for p1.

76

Chapter 6

Discussion

6.1 Summarized diagram of the report

The picture 6.1 shows that followed diagram of the report what we have done in research
project.

• The need of system specification : Requirement on a system specification detail,
for example, an arrangement of conditions and an arrangement of rewriting rules
(transition) with the goal that the system specification determination can be viably
executed. For prerequisite on conditions: terminating and confluence. For the
necessity of changing principles: admissible and coherence.

• State transition diagram : A state diagram comprising of circles to represent to
states and guided line portions to represent to transitions between the states. At
least one activities (outputs) might be related with each transition. We can see how
to change starting with one state then onto the next. The graph represents a finite
state machine.

• State machine mathematical representation : We represent what is the set of
states, initial state, and state transitions. We understood which location is located
on each label, where each process located, the value of global and local variable etc.

• Model checking : We used Maude search command and LTL model checker to
find out the protocol enjoy mutex property and lockout freedom property or not.

• Graphical Animation by SMGA : At last, we used SMGA which is a state
machine graphical animation tool. We draw each state picture and it also helps to
understand counterexamples which are generated by Maude.

6.2 Model checking protocol code testing

Picture 6.2 shows that model checking protocol code testing. First, we make the Maude
code based on the specific mutual exclusion protocol version, then we can test the Maude

77

Figure 6.1: Summarize diagram of the project report

code here is any bug or not. If we found any bug then we can check and build it again.
We can modeling based on some properties such as Finite-state model extractions, Sim-
plifications, Restrictions. Finally, we can do the model check here is an error or correct.
In the event that the model is not right of course, we will re-plan the Maude code. Last
(expensive) arrange in the program improvement, Consistency the issue amongst code
and model, mostly limited to simplified systems.

6.3 Model checking protocol design testing

Picture 6.3 demonstrates that model checking convention configuration testing. Exe-
cutable Design Specifications Abstraction from low-level to high-level operations. Dis-
playing Specification of Finite-state demonstrates extraction. Confirmation where uti-
lized State space lessening procedure. There are a few focal points: Applied prior in
the outline cycle (Earlier bug discovery) The immediate interpretation of casual program
into formal punctuation (no disentanglements), Separation of concerns: the reflection of
control from data, Space particular property determination. We can model testing by
Maude then understand if any counterexamples happened or true. If the protocol has any
counterexamples then we can correct it.

78

Figure 6.2: Model checking protocol code testing

Figure 6.3: Model checking protocol design testing

79

Chapter 7

Conclusion

We have analysis, mathematical formalize as a state machine, describe state machines
in a formal specification by Maude, model check that state enjoys properties based on
such formal specification. We have developed state pictures, which graphical animations
generated by SMGA make it possible for us to quickly recognize each state picture.

We used some mutual exclusion protocol, such as FTicket, Ticket, ND- Ticket, FAnder-
son, Anderson, ND- Anderson, FQlock0, FQlock1, Qlock, ND-Qlock as concrete examples
to conduct the project report.

Where FTicket does not enjoy the mutex property, while Ticket likely enjoys the mutex
property. Where FAnderson does not enjoy the mutex property, while Anderson likely en-
joys the mutex property. We have also analyzed two flawed versions FQlock0 and FQlock1
of Qlock, a mutual exclusion (mutex) protocol with Maude and SMGA. Where FQlock0
does not enjoy the mutex property, while FQlock1 does but does not enjoy the lockout
freedom property. We have reported on a case study in which we guessed properties
of Qlock, a mutex protocol, by observing a graphical animation of Qlock displayed by
SMGA. We used Maude search command and the Maude LTL model checker.

We can observe from the Fig. 7.1 the summarize results of all protocols which used
in the project report. We understood why the FTicket does not enjoy mutext property
but why the Ticket enjoys mutex property. The reason, we used fetch&incmode atomic
operation to implement the Ticket protocol but did not use for FTicket protocol. This
can atomically read a memory location, increment the value modulo N processes, then
writes the result into the memory location and return the old value. This is the main
point why Ticket enjoy mutex property and lockout freedom property. But in the case for
FTicket we got counterexamples, then produced pictures of each state by SMGA, which
make it possible feasible for us to rapidly reorganize the reason why FTicket does not
enjoy the mutex property.

On the other hand, ND-Ticket enjoys the mutex property but does not enjoy lockout
freedom property. If we compare with Ticket protocol then remark that there used another
rewrite rule which said that, from some time on, a process may never try to enter the
critical section but keep on staying at rs, or equivalently it may try to enter the critical
section a finitely many times. For the argument, we have taken counterexamples by
Maude LTL model checker.

80

In the case of FAnderson and Anderson protocol, there used one conditional rule for
execution of the protocols. There also used Boolean which describes one of two values:
true or false. We realized that why the FAnderson does not enjoy mutext property but
why the Anderson enjoys mutex property. The cause, we used fetch&incmode atomic
operation to execute the Anderson protocol but it did not use for FAnderson protocol.
This can atomically read a memory location, increment the value modulo N processes,
then writes the result into the memory location and return the old value. When a process
i tries to enter the critical section, it indivisibly copies into it local variable place and
increments next remainder N using fetch&incmode.

Moreover, ND-Anderson enjoys the mutex property but does not enjoy lockout freedom
property. If we comparison with Anderson protocol then the observation that there used
another new rewrite rule which said that, from some time on, a process may never try to
enter the critical section but keep on staying at rs, or equivalently it may try to enter the
critical section a finitely many times. For the reason, we have received counterexamples
by Maude LTL model checker.

As opposed to, we realized why the FQlock0 does not enjoy mutex property but why
the FQlock1 enjoys mutex property. The reason, we used in FQlock1 is that it is atomic
to enqueue a process ID i into the queue in FQlock1, while it is not in FQlock0. But in
FQlock0, it is not atomic to enqueue a process ID i into the queue and it is not atomic
to dequeue queue. This is the main condition why FQlock1 enjoy mutex property but
FQlock0 does not enjoy mutex property. But in the case for FQlock1 we got counterex-
amples for Maude LTL model checking, then produced pictures of each state by SMGA,
which make it possible feasible for us to rapidly reorganize the reason why FQlock1 does
not enjoy the lockout property.

In addition, Qlock enjoys the mutex property and enjoy lockout freedom property.
We have indicated on some case study in which we guessed properties of Qlock, a mutual
protocol, by observing a graphical animation of Qlock displayed by SMGA, we can confirm
the guessed properties by model checking the properties with the Maude search command
and also checked by Maude LTL model checker. If we compare with ND-Qlock protocol
then the observation that there used another new rewrite rule which said that, from some
time on, a process may never try to enter the critical section but keep on staying at rs, or
equivalently it may try to enter the critical section a finitely many times. For the reason,
we have received counterexamples for ND-Qlock by Maude LTL model checker.

There are a few suppositions from the mutual exclusion protocol, numerous procedures
are calculated for the common equipment, however, at any snapshot of time just a single
procedure can utilize the equipment, That is, the procedures are mutually excluded from
utilizing the equipment. The mutex property is that at most one process is the critical
section in any reachable states. common search navigates the reachable states from an
offered state to discover states with the end goal that some condition hold. The charge
can be utilized to discover the convention fulfills the property or not. In the event that
we discovered counterexamples then the property does not enjoy the property.

We used the number of processes N = 2 for model checking of some protocol such as

81

Figure 7.1: Summarize results of all protocols

Ticket, Anderson mutual exclusion protocol. If we increased the processes N value then
observed that the number of states also increased. The values changes in each state are
shown in red color in the state picture by SMGA.

82

Bibliography

[1] : https://www.techopedia.com/definition/16447/state-machine, (techopedia)

[2] Tam Thi Thanh Nguyen, Kazuhiro Ogata: Graphical animations of state machines.
(In: 15th IEEE International Conference on Dependable, Autonomic and Secure
Computing (15th DASC), IEEE) To appear.

[3] M. Clavel, F. Duran, S.Ekar, P.Lincoln, N. Mart-Oliet, J. Meseguer, and
C. Talcott.: All about maude. In: LNCS 4350., Springer, (2007)
DOI=https://doi.org/10.1007/978–3–540–71999–1.

[4] : (https://en.wikipedia.org/wiki/mutual exclusion)

[5] Kazuhiro Ogata: i613 algebraic formal methods. In: Term 2-2 course at JAIST,
Japan. (2017.)

[6] : (https://en.wikipedia.org/wiki/finite-state machine)

[7] Joseph A. Goguen, Timothy Winkler, Jos Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud: (Introducing obj,)

[8] J. Liard: Draw svg website. In: http://www.drawsvg.org/. (2015.)

[9] T. T. T. Nguyen and K. Ogata: Graphical animations of state machines. In: in 15th
IEEE DASC. IEEE, 2017. (2017)

[10] Kazuhiro Ogata, Kokichi Futatsugi: (Specification and verification of some classical
mutual exclusion algorithms with cafeobj)

[11] May Thu Aung, Tam Thi Than Nguyen, K.O.: Analysis of two flawed versions of a
mutual exclusion protocol with Maude and SMGA. In: 7th International Conference
on Software and Computer Applications (ICSA 2018), ACM (2018) to appear.

[12] Tam Thi Than Nguyen, Kazuhiro Ogata,: A way to comprehend counterexamples
generated by the maude ltl model checker. In: 2017 International Conference on
Software Analysis, Testing and Evolution, IEEE (2017) DOI 10.1109/SATE.2017.15.

83

[13] May Thu Aung, Tam Thi Than Nguyen, K.O.: Guessing properties of the Qlock
mutual exclustion protocol based on its graphical animations and confirming the
properties by model checking. In: 7th International Conference on Software and
Computer Applications (ICSA 2018), ACM (2018) to appear.

84

