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Abstract. The recent prevalence of electronic medical records offers a
new way to detect the drug-side effect causality. However, this approach
faces with the problem of identifying the likely causal relation between
drugs and side effects in a huge space of possible relations in which many
relations are not causal ones, but frequently observed. In existing work,
the likely causal relation is almost detected by using frequency-based
measures of drug-side effect pair co-occurrence, but the accuracy is rather
low due to the frequent co-occurrence of non-causal pairs. Our key as-
sumption on the causality of the drugs and side effects is that the causal-
ity occurring at a medication event has an association with the therapy
history of this event. The assumption is employed as a constraint in the
proposed sequential-based model named Medication Therapy Progress-
based Model (MTPM). Experiments show a significant improvement of
accuracy from 4% to 9% when comparing MTMP and existing methods,
as well as reflect the likelihood of the assumption.

1 Introduction

Drug side effect (also called adverse drug reactions) can be understood as un-
desirable effect, reasonably associated with the use of the drug that may occur
as a part of the pharmacological action of a drug or may be unpredictable in its
occurrence. Drug side effect detection plays an essential role in drug safety. The
side effect can be caused by various reasons such as over dosing, the interaction
between the drug and off-target, or the interaction between drugs. Before being
approved for using, a drug has to go through a series of clinical trials to evaluate
expected indications and its possible side effects. Such trials are often conducted
under ideal and controlled circumstances, called explanatory clinical trials, that
can only test efficacy of the drug but not its effectiveness.

The effectiveness of a drug is evaluated by pragmatic clinical trials [24], i.e.,
to see how well the drug works in the “real world”. However, pragmatic clinical
trials (PCT) are much more difficult to do [10]. Carrying out pragmatic clinical
trials to detect drug side effects is basically analyzing textual data coming from



patient spontaneous reports, reports in social network, and electronic medical
record (EMRs) [12], [24], [30]. The clinical texts from EMRs contain almost all
the facts about drug effects observed under the real condition of a huge patient
cohort. EMRs are well recognized as a precious resource for pragmatic clinical
trials. The difficult problem is to recognize the side effect and to assess causality
between drugs and side effects [9].

EMR data has considerable advantages in assessing the drug-side effect causal-
ity in comparision with the patient spontaneous reports and social media data. In
the force of pragmatism in clinical research and from the EMR opportunity, there
have been research, even still in its infancy, to use electronic medical records for
pragmatic clinical trials, under the abbreviation EMRPCT [8], [25], [29]. In [3],
the authors present and analyze the theoretical advantages and disadvantages,
the ethical and regulatory aspects of EMRPCT, as well as prospects of EMR-
PCT in drug effectiveness study. Typically, EMR data has two main properties,
one is longitude and the other is heterogeneity [19] that bring a new opportu-
nity in clinical research as well as pose many challenges in analyzing and mining
EMR clinical text [13]. EMR clinical text is less bias than patient reports or
social networks because it is captured more objectively and sufficiently by med-
ical experts. Moreover, EMR data includes more diverse populations and rare
diseases.

Several work has been pursued to detect drug-side effect causality from
EMRs. They commonly follow a two-step framework, the first one is to rec-
ognize two sets of named entities for drugs and effects, and the second one is to
detect drug-side effect causal pairs from those two sets. Note that the set of side
effects is subset of the effect set extracted from the clinical text. The common
point of those work is to investigate the causality of drug-side effect pairs based
on observing their co-occurrence in documents, quantified by frequency-based
measures. In [20], Liu et al. measured the association between side effects and
statin drugs by using log-likelihood ratio based on the proportion between the
number of statin drug reviews and non-statin drug reviews. In [5], [21], [28],
χ2 statistics was commonly used to confirm the association between drugs and
effects. In [27], Wang et al. used Pairwise Mutual Information (PMI) for this
target. Roitmann et al. [23] considered the morbidity caused by drugs through
investigating the co-occurrence of adverse events. Besides, the drug-effect causal-
ity is also represented in the form of association rules, and strength of rules is
supported by well-known measures such as RR [11], support, confidence, lever-
age [2], [15], [16], [31]. In addition, in [26], a hypothesis of an association between
side effects and therapeutic indication was investigated by using a predictive
model.

The methods in the above mentioned work were conducted on documents
from patient report systems, social networks, and EMRs, but while being ap-
propriate for the first two kinds of textual data they do not work well on EMR
clinical data. The main reason lies in the difference between those data types. In
patient reports, the causal relation is more explicit, even is mentioned directly by
patients. As such relation comes from the feeling or perception of the patients,



so the certainty in identifying the causality is fairly high. On the other hand, the
clinical notes in EMRs are basically narratives, written in an objective way with
a high proportion of noun for describing observations [7], so the causality almost
has not mentioned in such text causing uncertainty in the detection. In addi-
tion, there is a huge space of possible relations due to multiple use of drugs and
objectively noting observations, in which many non-causal drug-side effect pairs
coincidentally observed in a high frequency that makes the pairwise association
measures need to be adapted for EMR clinical text.

2 Problem Formulation

Side effects can be caused by a single drug, or interaction among multiple drugs.
Identifying side effects caused by multiple drugs is more complicated than that
caused by single drug, but is promising to discover new effects beyond human
knowing. This problem can be simplified by converting to the problem of de-
tecting side effects caused by the single drug because the side effects of a drug
combination can be considered side effects caused by each drug in this combina-
tion.

Fig. 1. Bipartite graph represents all possible associations between drugs and side
effects observed in a time window T , in which, function w(Di, Ej) is weight of an
association link that measures the association strength between the drug Di and the
effect Ej .

In EHRs/EMRs, all possible temporal associations between drugs and ob-
served side effects are often investigated within a identified time window T during
a therapy period to find likely ones [15], [16]. These associations can be repre-
sented by a bipartite graph illustrated in Figure 1 with the function w(Di, Ej)
used to measure the association strength between the drug Di and the effect
Ej . The problem of identifying/selecting likely causal drug-side effect pairs can



be viewed as a problem of ranking all candidates of pairs in the bipartite graph
according to their association strength. Therefore, the groundwork for effectively
ranking is to find a measure of drug-side effect relation strength that well reflects
the real causal relation, which is the objective of our work.

3 Existing Methods of Measuring Drug-Side Effect
Causal Relation Strength

Most of researches on identifying drug-side effect causal relations so far present
the causal relations between drugs and side effects in form of temporal associ-

ation rules Di
T−→ Ej with various pairwise statistical association measures for

quantifying strength of rules [15], [16], [22].
The association strength can be estimated through several kinds of measures

such as Confidence (conf), Leverage (lev) [15], [16], χ2 test [5], and Relative
Reporting Ratio (RR, which basically is similar to Pointwise Mutual Informa-
tion) [11] as follows:

conf(A
T−→ C) =

supp(A
T−→ C)

supp(A
T−→)

(1)

where supp(A
T−→) is proportion of T−constrained sub-sequences containing A.

lev = supp(A
T−→ C)− supp(A T−→)× supp( T−→ C) (2)

RR = N × S(A ∪B)/S(A)S(B) (3)

where N is total number of records in the data, S(A∪B), S(A), S(B) are support
measure of A ∪B, A, B, respectively.

4 Sequence-based Measuring Drug-Side Effect Causal
Relation Strength

In the general framework of detecting drug-side effect causal relation, before es-
timating the temporal causal association strength between drugs and side effects
to select likely causal pairs, a hospitalization period needs to be divided into time
windows T , then two sets of names entities for drugs and effects within such win-
dows need to be identified that is presented in Subsection 4.1. In the scope of
our study, we concentrate on measuring the causal relation between drugs and
their side effects that is intensively mentioned in Subsections 4.2, 4.3, 4.4.

4.1 Forming Time Window in Hospitalization Period from
Electronic Medical Records

Our work was conducted on a practical electronic medical record databases
named MIMIC-III (Medical Information Mart for Intensive Care III)1 [17]. This

1 https://mimic.physionet.org



database contains prescriptions, and clinical notes of a large number of patients
during their hospitalization, attached with timestamps when the drugs are pre-
scribed and the clinical notes are recorded.

Fig. 2. An example of determining time windows based on information of starting and
ending time of drug usage given in EMRs. The orange bars indicate the drug usage
period, t0, t1, t2 are starting dates corresponding to the drugs D1, D2, D3, respectively.

Splitting a patient’s hospitalization period into time windows is based on
starting time of drugs used during the treatment period that is illustrated in
Figure 2. A drug is determined to belong to a window if the time interval bounded
by this window is in the drug usage period. For example, in Figure 2, in the
window T1 only the drug D1 is prescribed, then in T2, the drug D2 is started to
use with D1, and the last window, all three drugs are prescribed together. After
forming time windows, the clinical notes are also mapped to their corresponding
window by the time of the notes creation.

After mapping the clinical notes, the set of drug effects is determined by ex-
tracting words, phrases expressing symptoms, abnormalities from these clinical
notes using MetaMap2[1]. MetaMap is a well-known Natural Language Process-
ing system for analyzing biomedical text based on Unified Medical Language
System (UMLS) Metathesaurus. Two main functions of MetaMap are medical
terminology recognition and category (often called semantic type) identification.
In order to identify effects in clinical text, we use four semantic types including
“Acquired Abnormality” and “Finding” and “Sign or Symptom”.

4.2 Assumption about Sequential Association among Drug Effects

In pharmaceutical science, drug is essentially a chemical compound, and drug
target is considered as a mass of protein molecules including receptors that
receive chemical signal from outside a cell. Due to being protein, the drug target
is associated with observed diseases, symptoms which are called phenotype in
general [14]. To understand about the mechanism of drug effects, we briefly
introduce some relevant biological concepts.

2 https://metamap.nlm.nih.gov



– Transcription factor: A protein required to bind to regulatory region of DNA
(Deoxyribonucleic acid), and helps to translate “genetic message” in DNA
into RNA (Ribonucleic acid) and protein.

– Regulatory region of DNA: A region in the DNA sequence that needs specific
proteins to turn it on or sometimes off.

– Gene expression: A process by which information from a gene is used to
synthesize protein.

Fig. 3. Assumption about the association among side effects due to the relation with
the same target, and the target interaction.

When drugs come in the body, they activate transcription factors, then the
transcription factors can bind to regulatory regions of DNA. The DNA changes
its status that leads to the gene expression process taking place to change RNA
and protein. The change of protein causes phenotype exposure known as diseases,
or symptoms.

Besides the interaction between drugs and drug targets, the drug targets
also interact with each other due to the protein-protein interaction. Commonly,
protein-protein interaction can be understood as physical contacts between pro-
teins that occur in cell or in living organism [6]. The physical contacts mean
the functional sharing between proteins. Therefore, the change in functions of a
protein can lead to the change in functions of the others.

Relying on the interaction between drugs and targets, and the interaction
between the targets which essentially is protein-protein interaction, we make
an assumption that there exists the potential association between side effects
because of two following reasons:

1. The exposing side effects may has a relation with the same target. This is
illustrated in Figure 4.2 that all elements in the set of {Ei

1, E
i
2} or the set of

{Ej
1, E

j
2, E

j
3} may has an association with each other because of relating to

the same Targeti, Targetj , respectively. Intuitively, this reason explains the
co-occurrence of side effects in a same family. For example, both respiratory



tract infection, and rhinitis, which are diseases of respiratory system, are
side effects of Salbutamol (the drug used to treat asthma)3.

2. The side effects associated with different targets may have the relation with
each other due to the target-target interaction. In Figure 4.2, as Targeti,
Targetj are interactive, so there may exist an association between elements
in their two corresponding effect sets. For practical example, we observe that
headache, and fever lie in the list of Salbutamol’s side effects. Excluding the
reason that the drug impacts directly on the brain, another reason can be
considered that respiratory side effects cause breathing difficulty that leads
to the headache and fever.

Since the duration of drug action depends on several factors such as the
amount of drug given (doses), the pharmaceutical preparation, the reversibility
of drug action, the half-life of the drug, the slope of the concentration-response
curve, the activity of metabolites, the influence of disease on drrug elimina-
tion [4], and different time of taking drug, the co-occurrence of associated side
effects is not simultaneous. That means the observation of associated side effects
is sequential.

Assumption: There exists the potential sequential association among side
effects of a drug.

4.3 Inspiration of Sequence-based Drug-Side Effect Causal Relation
Suspicion

The medication treatment in the Intensive Care Unit (ICU) often gradually
become more complicated due to the appearance of additional diseases (comor-
bidity) requiring more drugs used. The increase of number of drugs used pulls
the increase of number of side effects, which make the causal relation identi-
fication become more difficult due to the huge number of possible candidates.
This makes most of previous work become ineffective in detecting causal re-
lation, particularly in detecting the low frequency or rare relations [22]. The
assumption about the association between side effects inspires us to supplemen-
tally exploit the relation between side effects observed in historical medication
events with the current ones for reducing the uncertainty in identifying. The
idea of sequence-based drug-side effect causal relation suspicion is illustrated in
Figure 4.

Figure 4 shows that assuming the side effect observed in the time window T1
is properly caused by the drug Di, if the effect in the window T2 strongly related
to the previous proper one, it will be suspected to be the side effects caused by
the drug Di.

4.4 Model

In this subsection, we introduce our proposed sequence-based measure to quan-
tify the strength of drug-side effect causal relation that bases on the assumption

3 http://sideeffects.embl.de/drugs/2083/



Fig. 4. Idea of Sequence-based drug-side effect causal relation suspicion. The orange
and gray solid lines indicate the relations between the drug and the previous effect and
between the current effect and the previous one, respectively, which are assumed to be
proper. The orange dashed line indicate the relation between the drug and the current
effect that is suspected to exist.

about the sequential association between side effects. Identifying causal drug-side
effect pairs includes two steps:

1. Identifying likely causal drug-side effect pairs in a hospitalization.
2. Aggregating likely causal drug-side effect pairs observed in several hospital-

izations.

Identifying likely causal drug-side effect pairs in a hospitalization We
consider the prescription and clinical notes of a patient hospitalization h, in
which D is the set of all used drugs and E is the set of all side effects. The
hospitalization period is divided into time windows, mentioned in Subsection 4.1.
For each drug Di, ni is the number of time windows belonging to this drug usage
period. We form all possible candidate for selecting likely drug-side effect pairs
in ni windows of the drug Di, then define the measure of causal relation strength
for each candidate wh(Di, Ejk) where 1 ≤ i ≤ |D|, 1 ≤ j ≤ |E|, and 1 ≤ k ≤ ni
by a recursive function as below:

wh(Di, Ejk) =

{
log
(
P (Di|Ejk)

)
if k = 1

Q if 2 ≤ k ≤ ni
(4)

where Q is defined as following:

Q =
1

k
×

(
log
(
P (D|Ejk)

)
+ log

(
P (Ejk|Ej(k−1))

)
+ wh(Di, Ej(k−1))

)
The probability P (Di|Ejk) called emission probability measures the associa-

tion between the side effect and the drug within the window k, and P (Ejk|Ej(k−1))
is called transition probability that measure the association between side effects
observed in two consecutive windows. The emission and transition probability
are estimated, respectively, as follows:



P (Di|Ejk) =
count(Di, Ejk) + λ

count(Ejk) + λ× |E|

P (Ejk|Ej(k−1)) =
count(Ej(k−1), Ejk) + λ

count(Ej(k−1)) + λ× |E|

where count(Di, Ejk), count(Ejk, Ej(k−1)), count(Ej(k−1)) are number of pa-
tients taking the drug Di and the effect Ejk observed, number of patients that
both Ejk and Ej(k−1), and only Ej(k−1) are observed, respectively. The prede-
fined constant λ is Laplacian smoothing coefficient that often takes the value of
0.1.

We would like to make the cumulative process in estimating wh(Di, Ejk)
smooth to avoid the problem of imprecisely estimating transition and emission
probability because of the coincident observation of side effects caused by mul-
tiple drugs. The smooth means no rapid change in value of the function wh

between two consecutive windows. For this purpose, we add the smoother 1
k .

Clearly, the recursive function shows that if the effect in the previous window
is causally related to the considering drug, and the effect in the current window
is strongly associated to it, the current effect is more suspected to has relation
to the drug. That reflects our idea mentioned in Subsection 4.3

As the assumption about the sequential association among side effects of
a drug, so for each drug Di, we find an effect sequence (Ê1, Ê2, ..., Êni

) that
maximizes the value of w(Di, Ejni), which is illustrated in Figure 5. The value of
w(Di, Ejni) is the cumulative value of the sequence that measures how strongly
the effects in this sequence are related to the drug. Therefore, the side effects
in the selected sequence are identified to have causal relation with the drug in
the hospitalization h. The most likely sequence is discovered by using Viterbi
algorithm.

Fig. 5. Detecting the sequence of side effects in ni windows that has the strongest
relation to the drug Di (lies on red dashed line).



Algorithm 1: Viterbi Algorithm

best score = {}
back trace = {}
for k := 1 to ni do

if k == 1 then
for x := 1 in |Ek| do

Compute w(Di, Exk) according to Eq.4
best score[Di, Exk] = wh(Di, Exk)
back trace[Di, Exk] = None

else
for x := 1 in |Ek| do

for y := 1 in |Ek−1| do
Compute all values of wh(Di, Exk) according to Eq. 4 with
different value of wh(Di, Ey(k−1)) then store the results in
an array W
max val = max(W )
ymax = W .index(max val)

best score[Di, Exk] = max val
back trace[Di, Exk] = Eymax(k−1)

for x := 1 in |Eni
| do

Select Êni having maximum value of wh(Di, Exni)

Get the sequence (Ê1, Ê2, ..., Êni
) using back trace

Aggregating likely causal drug-side effect pairs observed in several
hospitalizations The drug-side effect pair (Di, Ej) can be observed in several
hospitalizations H of different patients with different values of wh(Di, Ej) where
h ∈ H, so to make the final decision whether there exists the causal relation
between the drug and the side effect, we aggregate all values of wh(Di, Ej) by
taking their maximum value.

w(Di, Ej) = max
h∈H

(
wh(Di, Ej)

)

5 Experimental Evaluation

5.1 Experimental Design

The data set used for the experiments is MIMIC III (Medical Information Mart
for Intensive Care III) briefly mentioned in Subsection 4.1. This data set is large
and freely accessible that contains over 40,000 patients who stayed in the Beth
Israel Deaconess Medical Center between 2001 and 2012 [17]. It includes various
information of demographics, laboratory test, medication events, clinical notes.



For the scope of this study, we used prescriptions and clinical notes for the
experiments.

From the MIMIC III database, we exported the prescriptions and clinical
notes of 10,000 patients, in which, we detect causal drug-side effect pairs in
randomly selected 50 patients by collating with the rest which is used to estimate
transition, emission probabilities in our proposed model. The exported raw data
was pre-processed by the mechanism mentioned in Subsection 4.1. We select 49
drugs to detect their side effects using proposed model. The performance of the
model is evaluated through checking how many causal drug-side effect pairs that
are confirmed by SIDER4 [18] in the retrieval pairs.

We compare the performance of our proposed model with existing methods
mentioned in Section 3. The key point is to investigate the quality of association
measures used in those methods in reflecting the real drug-side effect causal
relation. In previous work, estimating the value of probabilities such as supp,
conf was carried out in a different way from our method, so for fairly comparison,
we make a consensus of probability computing which is based on the proportion
between the number of patients presenting the relation or property over the total
patients. That means we count number of patients whom the drug-effect pairs,
effect-effect pairs are observed on, instead of counting the frequency of these
pairs mentioned in the clinical text.

5.2 Evaluation Metrics

In this study, we evaluate the performance of the methods in identifying drug-
side effect causal relation by Precision K (PrecK) which is defined as the fraction
of known side effects occurring in the top K ones of the list returned by each
method for a specific drug [22].

PrecK =

∑K
i=1 y(i)

K

where y(i) = 1 if the ith side effect is the proper one, and is 0 for otherwise.

5.3 Experimental Results and Discussion

Identifying drug-side effect causal relation in electronic health records or elec-
tronic medical records is a challenging problem. The solution for this problem
so far is still in early stage that just used conventional statistical measures to di-
rectly estimate the strength of drug-side effect relation, which mostly produces
low performance. For example, in [16], the authors used leverage measures to
detect causal drug-effect pairs in the Queensland Linked dataset, and got the
Prec10 is about 0.313.

In order to investigate the likelihood of the proposed assumption about the
sequential association between side effects appearing in a hospitalization as well

4 http://sideeffects.embl.de



as the effectiveness of the sequence-based measure utilization for solving this
problem, we make a comparison between the proposed method and existing
methods with multiple values of K that is showed in Table 1.

Table 1. Performance comparison between sequence-based method and existing meth-
ods in identifying drug-side effect causal relation

Method Prec5 Prec10 Prec15 Prec20 Prec25 Prec30

RR 0.331 0.33 0.33 0.337 0.333 0.339

conf 0.403 0.375 0.386 0.387 0.389 0.39

lev 0.373 0.337 0.343 0.343 0.339 0.335

χ2 test 0.373 0.346 0.356 0.367 0.369 0.363

Sequence-based measure 0.437 0.447 0.439 0.439 0.433 0.427

Equation 4 shows that the function wh(Di, Ejk) with k = 1 (without previous
windows)

6 Conclusion

This paper presents our proposed model called Medication Therapy Progress-
based Model to recognize drug-side effect causality that is based on the assump-
tion about the association between a drug-side effect causality occurring in a
medication event and the therapy history of this event. The experiment shows
that the proposed model as well as the assumption can improve the recogniz-
ing accuracy and provide an effective score for highlighting causal pairs and
distinguishing the causal pairs from non-causal pairs. However, the model has
a drawback that the probabilities in the model are estimated from a sample
of patients without integrating medical knowledge that is not good for giving
the precise probabilities and makes the improvement is not significant. Thus, in
the future work, we target to exploit more constraints and incorporate domain
knowledge make a significant improvement.
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