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Abstract. This paper proposes a novel approach to automating origami
or paper folding. The folding problem is formulated as a combinatorial
optimization problem to automatically find feasible folding sequences to-
ward the desired shape from a generic crease pattern, minimizing the dis-
similarity between the current and desired origami shapes. Specifically,
we present a discrete particle swarm optimization algorithm, which can
take advantage of the classical particle swarm optimization algorithm
in a discrete folding action space. Through extensive numerical experi-
ments, we have shown that the proposed approach can generate an op-
timum origami folding sequence by iteratively minimizing the Hausdorff
distance, a dissimilarity metric between two geometric shapes. More-
over, an in-house origami simulator is newly developed to visualize the
sequence of origami folding.

Keywords: Mathematical Origami, Folding Sequence Generation,
Combinatorial Optimization Problem, Particle Swarm Optimization

1 Introduction

Many innovative products, such as bendable electronics, deployable solar array,
foldable paper lithium-ion battery, are inspired by origami, the art of paper
folding. From the 1930s, problems related to the folding and unfolding have at-
tracted a large attention in the computational geometry community [10]. Recent
advances in computing environment allow researchers to study complex folding
systems that include programmable matters [8, 11] and folding machines [3, 7].
However, few researches have addressed the following issues: (1) how to find a
crease pattern of a desired origami shape without going through the unfolding
process, (2) how to generate a folding sequence to create a desired shape from a
generic crease pattern.

Three main areas of origami in computational geometry, related to folding
problems are origami simulator, folding sequence generation, and multiple object
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folding from a single sheet, respectively. Freeform Origami [14–16] is a well-
known folding simulator providing users with an environment to interact with
a virtual paper. Users are able to fold papers and interactively modify crease
patterns, and generate crease patterns for polyhedra. Using the quadrilateral
mesh information of the 3D input shape, Freeform Origami first unfolds the
input shape to get the candidate crease pattern which is then simultaneously
folded and controlled through affine transformations. This process is iterated
until the desired shape is achieved. Another interesting research performed by
Akitaya et al. [1] is how to generate folding sequences of flat-foldable origami. To
accomplish this goal, the framework builds a new graph-like data structure called
the extended crease pattern. This data is constructed using the input crease
pattern by which the input shape is unfolded. The folding sequence can then be
found by inverting the unfolding process. However, users are often requested to
decide the next step in the unfolding sequence, because multiple outcomes are
possible from the extended crease pattern. Therefore, it is considered a semi-
autonomous system. An et al. [2] studied how the 3D shapes can be transformed
using the programmable matter. They designed a programmable sheet with a
set of hinges. Multiple shapes can be constructed and transformed using the
programmable sheet, without considering any folding action sequences. In the
above-mentioned literatures, origami problems and their solution approaches are
mainly studied from a mathematical perspective. It is important to note that
crease patterns were folded into desired shapes, but the crease patterns could
only be obtained through the unfolding process of the desired shapes.

In this paper, we aim to present an algorithmic framework for automating the
folding process. We show how to find the folding sequence from a generic crease
pattern. A generic crease pattern could possibly folded into multiple shapes. Our
approach tries to find an optimal solution through the sequential combination
of appropriate folding actions. Specifically, in our problem definition, the inputs
are a generic crease pattern and a desired shape, and the output is a folding se-
quence. Our proposed algorithm can create folded shapes from the given generic
crease pattern, maximizing the similarity with the desired shape. We formulate
our problem as a combinatorial optimization problem (COP) and employ a dis-
crete particle swarm optimization (DPSO) algorithm. The proposed approach
will be described in detail in the following sections.

2 Methodology

2.1 Problem Formulation

Problem Definition Figure 1 shows a diagram of the proposed folding au-
tomation system. The input to our system consists of

1. A square sheet of paper, OriginalPaper
2. A set of n predefined creases, ActionSet = {Action1, Action2, ..., Actionn}
3. A desired folded shape, InputObject
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Fig. 1. Overview of the proposed approach

All of the following are outputs from the proposed system.

1. An optimal folding sequence g from the given generic crease pattern
2. A final folded shape OutputObject achieved by applying the folding sequence

g to OriginalPaper
3. The similarity score between InputObject and OutputObject

Feasible Solution We define a nominal folding action called Action0 causing
the current shape to remain unchanged. Adding the Action0 to the ActionSet,
our new ActionSet becomes

ActionSet = {Action0, Action1, Action2, ..., Actionn}

A folding process is a list of actions chosen out of ActionSet, meaning that the
list of actions are sequentially applied to the original paper to be folded into an
object shape.
From the above description, a feasible solution x is defined as a folding process
with a fixed length n given by{

x = (x1, x2, ..., xn)

xi ∈ ActionSet, 1 ≤ i ≤ n

Search Space We define a search space A which is a set of all feasible solutions.
Typically, A is a n− dimensional integer lattice, denoted by ZZn, which is the
lattice in the Euclidean space IRn. Because each candidate solution x is a vector
of n elements, and we also have n+1 candidates for each element, then the set A
has a cardinality (the total number of feasible solutions) of (n+ 1)n. The size of
the search space A increases exponentially with the number of folding actions.
Figure 2 illustrates the search space A and the feasible solutions with n = 2 and
n = 3, respectively.
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(a) n = 2 (b) n = 3

Fig. 2. Examples of search space. (a) With n = 2, 9 feasible solutions exist. (b) With
n = 3, 64 feasible solutions exist. The green dots are feasible solutions.

Objective Function Let h(x) be a function that converts a feasible solution
x into an object shape (Sect. 2.3). Also let f(x) : ZZn → IR be a function that
assesses the degree of similarity between h(x) and InputObject. A lower value
of f(x) indicates a high degree of similarity with InputObject, and vice versa.
The function f is the objective function to be minimized. We can now formulate
our problem as an optimization problem in the following way:

Given f : A→ IR from A to the real number,
Seek an element g in A such that f(g) ≤ f(x) for all x in A.

2.2 Problem Optimization: DPSO Algorithm

We choose DPSO as a meta-heuristics algorithm that can provide an approxi-
mate solution to our problem. A basic variant of the PSO [9] algorithm contains
a list of feasible solutions called particles which are members of a swarm. These
particles are initially given their positions and velocities randomly. Each particle
employs the objective function to evaluate its position. It also uses its velocity
to move to new positions. Here the moving function should be carefully designed
by users. Moreover, (1) the particle’s current direction, (2) the particle’s best-
known position, as well as (3) the swarm’s best-known position, are combined
to update the particle’s velocity. When a particle discovers a new best position,
it will communicate and update the entire swarm. The process of updating and
relocation of the swarm is repeated, and by doing so, it is expected, but not
guaranteed, that an optimal solution will eventually be explored.

As having described, obviously, the most important things in PSO algorithm
are the particle’s velocity and position. The behavior of particles is directly af-
fected by the velocity. In order to move, three information are processed that
are (1) particle’s current direction, (2) particle’s previous best position and (3)
swarm’s best-known position [4]. In this research, we redefined these concepts
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and mathematical operations. This discretization method helps adjust the clas-
sical PSO’s properties and make it capable of searching in the discrete search
space of our problem.

The above description can be formalized by the following moving functions,{
vt+1
i ← ω ⊗ vti ⊕ ϕprp ⊗ (pti 	 xt

i)⊕ ϕgrg ⊗ (gt 	 xt
i)

xt+1
i ← xt

i ⊕ vt+1
i ,

(1)

where

– vti velocity at time step t of particle i
– xt

i position at time step t of particle i
– pti particle i’s best known position at time step t
– gt swarm’s best known position at time step t
– ω, ϕprp, ϕgrg ∼ U(0, 1) social/cognitive confidence coefficients
– a⊗ b = a× b mod (n + 1)
– a⊕ b = a + b mod (n + 1)
– a	 b = a− b mod (n + 1)

The pseudo code of DPSO is introduced in Algorithm 1.

Algorithm 1 Discrete Particle Swarm Optimization

1: for all particle i do
2: xi ← InitializeParticle(n)
3: for all dimension d do
4: vi,d ∼ U{0, n}
5: while termination condition not reached do
6: for all particle i do
7: Pick random numbers rp, rg ∼ U(0, 1)
8: Update particle’s velocity and position using Eq. (1)
9: Evaluate the fitness f(xi)

10: if f(xi) < f(pi) then
11: pi ← xi

12: if f(pi) < f(g) then
13: g ← pi

14: g is the proposed solution of the algorithm

2.3 Converting Folding Sequences into Object Shapes

In order to convert a feasible solution x into an object shape (function h(x)
in Sect. 2.1) and visualize the proposed sequence of folding, we develop an in-
house origami simulator. This system was originally presented by Miyazaki et
al. [12]. We can construct flat folding origami shapes from generic crease patterns.
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Specifically, we use faces, edges, and vertices to describe the state of the folded
paper. Each flat sheet of paper is represented by a face. A face contains multiple
edges. Moreover, each edge has two vertices. A folded paper is a list of faces.

Based on the idea that each crease will separate the origami plane into
two half-planes, we construct a binary tree structure, in which the root is the
OriginalPaper. Each node of the tree is a face and stores the information about
the relative position of the plane with the original plane. When applying a fold-
ing action, we traverse from the root and find all the leaves that contain the
crease, make these leaves become parent nodes, and create two new children
nodes (as two new faces which are created by the folding action). Obviously, two
nodes with the same parent will share one common edge. Finally, we combine
all the leaves of the binary tree to get the final shape.

An example is shown in Fig. 3, where we apply the folding actions in the
following order: Action1 → Action2 → Action3. E1, E2, E3, E4, and E5 are the
common edges between faces. When we combine all the leaves F5, F6, F7, F8,
F9, and F10, we can get the object shape. The states of the origami shape after
each folding action are shown in Table 1.

Fig. 3. Example of converting a feasible solution into an object shape

We also implement a function to calculate the similarity among folded origami
papers using the point cloud data (function f(x) in Sect. 2.1). With the PCL
library [13], we convert the object shapes into the point cloud data based on the
information about faces, edges, and vertices of shapes. We normalize the point
cloud data in size and density. Then, the Hausdorff distance [6] between two
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Table 1. The states of the origami shape after each folding action in Fig. 3

Applied action Leaf nodes Parent nodes Common edges

Begin {F0} ∅
Action1 {F1, F2} {F0} {F1 ∩ F2 = E1,
Action2 {F1, F3, F4} {F0, F2} F3 ∩ F4 = E2, F5 ∩ F6 = E3,
Action3 {F5, F6, F7, F8, F9, F10} {F0, F1, F2, F3, F4} F7 ∩ F8 = E4, F9 ∩ F10 = E5}

object shapes can be calculated. The lower the Hausdorff distance, the higher
the similarity between two shapes, and vice versa.

3 Experimental Evaluation

3.1 Experimental Set-up

Original Origami Paper The original paper used in our experiments is a flat
square paper with a size of 60 × 60 units. The front side of the paper is blue
and the back side is white.

Predefined Crease Patterns We use four predefined crease patterns in our
experiments as shown in Fig. 4. Each crease represents a valley fold or a mountain
fold.

(a) Orthogonal CP1 (b) Orthogonal CP2 (c) Orthogonal CP3 (d) Interlaced CP

Fig. 4. Crease patterns used in experiments

Experimental Objective Models Using the same folding simulation was
introduced in Sect. 2.3, we fold the desired shapes shown in Fig. 5. In the figures,
the black dashed lines represent the original paper.

DPSO Parameters Referring to Standard Particle Swarm Optimization [5],
we choose the parameters of DPSO algorithm as follows:

– The swarm size S = 35 + B(10, 0.5). B(10, 0.5) is a binomial distribution,
where 10 is the number of trials and 0.5 is success probability in each trial.

– The maximum number of iterations is 100
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(a) Desired Shape 1 (b) Desired Shape 2 (c) Desired Shape 3

(d) Desired Shape 4 (e) Desired Shape 5 (f) Desired Shape 6

Fig. 5. Desired shapes used in experiments

– ω ' 0.721
– ϕp = 1
– ϕg = 1

3.2 Experimental Results

We report the experimental results obtained from the 6 test sets in Table 2.

Table 2. Results of experiments

Predefined crease pattern Objective model
Haursdoff distance Iteration Avg. runtime

(ms)Min Max Avg Min Max Avg

E1 Orthogonal CP1 Desired Shape 1 0.0 0.0 0.0 1 4 1.06 838.24
E2 Orthogonal CP2 Desired Shape 2 0.0 0.0 0.0 1 90 18.33 35064.85
E3 Orthogonal CP2 Desired Shape 3 0.0 3.75 0.07 1 100 20.50 33893.63
E4 Interlaced CP Desired Shape 4 0.0 5.32 2.98 1 100 73.42 45533.28
E5 Orthogonal CP1 Desired Shape 5 8.5 8.50 8.50 100 100 100 78594.77
E6 Orthogonal CP2 Desired Shape 6 3.3 16.37 6.0 100 100 100 164159.70

In the experiments E1-E4, the folding sequence of the desire shape is a subset
of ActionSet, which means we can fold the desire shape from the given predefined
crease pattern. It was confirm that if the desired shape is built using a set of
creases chosen out of the generic input crease pattern, then our method can
always find the optimal solution.

Furthermore, in the experiments E1-E4, different types of shapes (square,
rectangular and heart shape) are employed to evaluate our system. As expected,
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our experiments prove that with a suitable generic crease pattern, we can create
arbitrary shapes. Moreover, our system also provides an efficient way to trans-
form shapes.

To evaluate the cases where the desired shapes are not built from the folding
actions of ActionSet, we perform the experiments E5 and E6. In the experiment
E5, the desired shape in Fig. 5e is a square with a size of 1

4OriginalPaper.
Obviously, we cannot construct any shape that is the same as the desired shape
from the Orthogonal CP1. In Fig. 6a, the proposed solution of our algorithm
for the experiment E5 is shown. Because attempting to get 0.0 in Hausdorff
distance is impossible, the shapes that are most similar to the desired shape are
presented. Correspondingly, in the experiment E6, the desired shape is neither
a rectangle nor a square but an octagon. We need to find a folding sequence
to build it from the Orthogonal CP7. The shape of the optimal solution has
been obtained and introduced in Fig. 6b. To summarize, our approach is quite
successful in finding the minimum Hausdorff distance between the desired shape
and the feasible solutions.

(a) Output Shape of E5 (b) Output Shape of E6

Fig. 6. Output shapes of experiments E5 and E6

From the test cases, we see that the computational time increases with the
number of creases. There are two reasons for it. First, the calculation time of the
folding simulation is dependent on the size of the ActionSet. The more folding
actions we apply to the origami paper, the longer time the program needs to
build the object shape. Secondly, as we discussed in Sect. 2.1, the search space
exponentially grows with the input size. Therefore, the computational costs for
arriving at feasible solutions in the search space A increase accordingly as the
input size increases.

4 Conclusion

We presented a combinatorial optimization approach to automating origami.
The DPSO algorithm was employed to solve the folding problem. Moreover, an
in-house origami simulator was newly developed to perform extensive numerical
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experiments. Our method was verified to show an efficient technique to generate
feasible folding sequences in an autonomous way. We have confirmed that, with
a properly prepared generic crease pattern, various types of origami shapes can
be folded easily with the proposed method.

References

1. Akitaya, H.A., Mitani, J., Kanamori, Y., Fukui, Y.: Generating folding sequences
from crease patterns of flat-foldable origami. In: ACM SIGGRAPH 2013 Posters.
pp. 20:1–20:1. SIGGRAPH ’13, ACM, New York, NY, USA (2013), http://doi.
acm.org/10.1145/2503385.2503407

2. An, B., Benbernou, N., Demaine, E.D., Rus, D.: Planning to fold multiple objects
from a single self-folding sheet. Robotica 29(1), 87–102 (Jan 2011)

3. Balkcom, D.J., Mason, M.T.: Robotic origami folding. The International Jour-
nal of Robotics Research 27(5), 613–627 (2008), http://dx.doi.org/10.1177/

0278364908090235
4. Clerc, M.: Discrete Particle Swarm Optimization, illustrated by the Traveling Sales-

man Problem, pp. 219–239. Springer Berlin Heidelberg, Berlin, Heidelberg (2004),
https://doi.org/10.1007/978-3-540-39930-8_8

5. Clerc, M.: Standard Particle Swarm Optimisation (Sep 2012), https://hal.

archives-ouvertes.fr/hal-00764996, 15 pages
6. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Encyclopedia of Distances,

pp. 1–583. Springer (2009)
7. Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for build-

ing self-folding machines. Science 345(6197), 644–646 (2014), http://science.

sciencemag.org/content/345/6197/644
8. Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D.,

Rus, D., Wood, R.J.: Programmable matter by folding. Proceedings of the Na-
tional Academy of Sciences 107(28), 12441–12445 (2010), http://www.pnas.org/
content/107/28/12441.abstract

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995.
Proceedings., IEEE International Conference on. vol. 4, pp. 1942–1948 vol.4 (Nov
1995)

10. Margalit, F.: Akira Yoshizawa, 94, Modern Origami Master. The New York Times
(Apr 2005)

11. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered
miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA). pp. 1490–1496
(May 2015)

12. Miyazaki, S., Yasuda, T., Yokoi, S., Toriwaki, J.i.: An origami playing simulator
in the virtual space. The Journal of Visualization and Computer Animation 7(1),
25–42 (1996), http://dx.doi.org/10.1002/(SICI)1099-1778(199601)7:1<25::

AID-VIS134>3.0.CO;2-V
13. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE Inter-

national Conference on Robotics and Automation. pp. 1–4 (May 2011)
14. Tachi, T.: Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable

Planar Quadrilateral Mesh, pp. 87–102. Springer Vienna, Vienna (2010), https:
//doi.org/10.1007/978-3-7091-0309-8_6

15. Tachi, T.: Freeform variations of origami. J. Geom. Graph 14(2), 203–215 (2010)
16. Tachi, T.: Freeform origami. www.tsg.ne.jp/TT/software/ (2010–2016)

http://doi.acm.org/10.1145/2503385.2503407
http://doi.acm.org/10.1145/2503385.2503407
http://dx.doi.org/10.1177/0278364908090235
http://dx.doi.org/10.1177/0278364908090235
https://doi.org/10.1007/978-3-540-39930-8_8
https://hal.archives-ouvertes.fr/hal-00764996
https://hal.archives-ouvertes.fr/hal-00764996
http://science.sciencemag.org/content/345/6197/644
http://science.sciencemag.org/content/345/6197/644
http://www.pnas.org/content/107/28/12441.abstract
http://www.pnas.org/content/107/28/12441.abstract
http://dx.doi.org/10.1002/(SICI)1099-1778(199601)7:1<25::AID-VIS134>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1099-1778(199601)7:1<25::AID-VIS134>3.0.CO;2-V
https://doi.org/10.1007/978-3-7091-0309-8_6
https://doi.org/10.1007/978-3-7091-0309-8_6
www.tsg.ne.jp/TT/software/

	Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization
	Introduction
	Methodology
	Problem Formulation
	Problem Definition
	Feasible Solution
	Search Space
	Objective Function

	Problem Optimization: DPSO Algorithm
	Converting Folding Sequences into Object Shapes

	Experimental Evaluation
	Experimental Set-up
	Original Origami Paper
	Predefined Crease Patterns
	Experimental Objective Models
	DPSO Parameters

	Experimental Results

	Conclusion


