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Abstract. In this paper, we propose a novel visual learning frame-
work for developmental robotics agents which mimics the developmental
learning concept from human infants. It can be applied to an agent to
autonomously perceive depths by simultaneously developing its visual
sensory representation, eye movement control, and depth representation
knowledge through integrating multiple visual depth cues during self-
induced lateral body movement. Based on the active efficient coding
theory (AEC), a sparse coding and a reinforcement learning are tightly
coupled with each other by sharing a unify cost function to update the
performance of the sensory coding model and eye motor control. The
generated multiple eye motor control signals for different visual depth
cues are used together as inputs for the multi-layer neural networks for
representing the given depth from simple human-robot interaction. We
have shown that the proposed learning framework, which is implemented
on the Hoap-3 humanoid robot simulator, can effectively learn to au-
tonomously develop the sensory visual representation, eye motor control,
and depth perception with self-calibrating ability at the same time.

1 Introduction

For living organisms such as humans and mammals, visual perception is one
of the most important function. It gives the organism an ability to learn and
interact with environments around them. However, when they were born, they
do not instantly understand how to use the information they perceived. So,
for their lifetime they continuously learn and improve their perception, while
interact with the environments. In biological vision systems, the data that is
collected by human or animals organs are very noisy and messy data. It is not
self-explanatory meaningful information [10]. So, it is quite difficult for us to
make use of these non-obvious data. In [17], they discussed that our brain is
not programmed to know how to use those data, but instead the brain is trained
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autonomously to understand how to translate those noisy unordered information
into visual perception. In the same way, the developmental robotics agents which
are not programmed with visual perception ability faced the same problem that
they do not know how to utilize the data. Thus, to use those information, we
must create a representation of the data that is packed with the vast information.

In the previous studies, an active efficient coding proposed in [1, 2, 4] is em-
ployed to encode and represent the information perceived by the robot by tak-
ing advantages of redundancies. Reinforcement learning algorithm is used as a
learning scheme for the robot to generate eye movements based on the encoded
information. It has been proven to be successful when learning of vergence and
smooth pursuit eye movement are needed [7,12,15,18,19]. In [16], they have suc-
cessfully demonstrated generating multiple eye movements, which are smooth
pursuit and vergence to track a moving object, but depth perception is not in-
cluded in the learning framework. Moreover, all of the generated eye movement
information could not be used for depth perception because stationary observer
cannot extract depth information from motion parallax or optic flow without a
priori knowledge such as object size.

Especially, to actively perceive the depth information, the biological vision
systems can autonomously generate multiple visual depth cues during the lateral
body movement such as stereo disparity and motion parallax. When they keep
the visual fixation during the body movement, both of the visual depth cues
and eye movements are autonomously generated by the same intrinsically moti-
vated learning principal to maximize the redundancy between sensory inputs in
binocular and monocular viewing. In [12], they have proposed a developmental
learning framework for active depth perception with self-induced lateral body
movement, but they only considered a single depth cue as motion parallax. In-
terestingly, the organism does not use only one visual depth cue for their whole
lifetime. They can integrate the information about multiple visual depth cues
and analyze the eye movements to perceive the spatial information about the sur-
rounding environment. Generally, in psychology, dominant eye is a concept that
implies that one eye moves before another eye does. Recently there are studies
that support the dominant eye hypothesis [6,13,14]. Also, according to [5], they
reported that when a motion is self-induced by active observer, two visual depth
cues (stereo vision and motion parallax) will be sequentially activated which is
not observable in a static observer. Therefore, we may consider that two eye
movements for different visual depth cues during the self-induced lateral body
movement can be sequentially generated in an independent process to minimize
the conflict of multiple cues and then finally multiple eye movements are used
to analyze the depth information by integrating each of them. To the best of
our knowledge, no one has attempted to propose such a learning framework for
developmental robots under the efficient coding theory. This approach enables
to autonomously learn not only sensory representation and eye movement con-
trols for the multiple visual depth cue analysis but also active depth perception
during self-induced body movements.
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2 Methods

We combine the sparse coding and reinforcement learning algorithm together
to achieve active efficient coding for learning of multiple cues from the domi-
nant and non-dominant eyes, respectively. Sensory coding model learns how to
encode and represent the two images which are generated by the dominant eye
with self-induced lateral body movement for motion parallax and two eyes for
stereo disparity. Reinforcement learner controls the motor based on the encoded
information done by the sensory coding model to increase the efficiency of the
coding model.

Fig. 1. Model architecture. (1) At the first step k1, to perform the motion parallax,
the robot captures the successive images Im,k1(t) during the self-induced lateral body
movement which are fed into the sensory encoders with multiple image scales. Later,
an output reward signal, Rm,k1(t), is sent to the reinforcement learner to generate an
appropriate eye movement to hold the fixation during the body movement. Finally,
pan command Pm,k1(t) is sent to the robot and it generates the smooth pursuit eye
movement for dominant eye camera to maximize the redundancy between the successive
images. (2) At the second step k2, stereo images Is,k2(t) are captured from both two
cameras and sent to the sensory encoders. An output reward signal, Rs,k2(t), is sent to
the reinforcement learner to generate the vergence command Ps,k2(t) to maximize the
redundancy between the stereo images. The visual dictionaries are then updated based
on visual reconstruction errors for both of visual depth cues. Finally, the stored eye
movements (q1, q2, q3, and q4) are used as an input for the neural network to represent
the depth information which is given by human-robot interaction.
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2.1 Model Architectures

Since the concept of integrating two cues with dominant eye requires that one
eye should move before the another one, the framework is divided into 2 steps
which are motion parallax for the dominant eye first and stereo vision for the
non-dominant eye. The framework (Fig. 1) sequentially perform motion paral-
lax, stereo vision and their integration to represent the depth information. In
one iteration t, it is subdivided to 2 steps k1 and k2. At step k1, the robot
will perform motion parallax by moving laterally from original position to the
leftmost position. Then at sub-iteration k2, the robot will execute stereo vision
after the motion parallax is done. After h iterations, the robot will perform the
motion parallax again, but it will move laterally to the rightmost position. Then,
the stereo vision is performed and the entire process is repeated for another h
iterations with a certain visual fixation with different texture of the object and
depth between the robot and the object.

Step k1: the framework receives the input image from the dominant eye as
the monocular viewing. Two successive images Im1

(t) and Im2
(t) are captured at

different positions during self-induced lateral body movement. The two images
Im,k1

(t) =
[
Im1(t) Im2(t)

]
are then used as an input for the framework to learn

not only sensory representation of motion parallax but also smooth pursuit eye
movement for the dominant eye.

Step k2: after the smooth pursuit eye movement learner successfully sent
the pan command, the dominant eye panned respect to the command. Then
both eyes capture images Is1(t) and Is2(t) which are combined to Is,k2

(t) =[
Is1(t) Is2(t)

]
. The stereo images are sent to the framework to learn the sen-

sory representation of stereo disparity and vergence eye movement for the non-
dominant eye.

2.2 Sensory Coding Model

Two input images are then cropped by 128x128 pixels and 80x80 pixels from the
center of the images. Two cropped images represent fine scale and coarse scale
respectively. We use two scales of the images to represent the foveal system in
human eyes. The fine scale image represents a foveal region ion our eyes which has
more detail from the center of vision. While, coarse scale represents parafoveal
area which has lower detail. Discussions and comparisons between using one scale
and two scales have been done in [7]. They discussed how gaining the access of
multi-scale images could improve the learning of the framework. While, having
only one scale might prevent the system to learn.

After cropping, the cropped images are then convert to gray scale. 10 by
10 pixels patches are extracted from the gray scale images whose locations are
generated by 1 pixel and 4 pixels shifts horizontally and vertically for coarse
scale and fine scale, respectively. The image patches are then sub-sampled using
Gaussian pyramid algorithm by a factor of 8 for coarse scale, and factor of 2
for fine scale. The patches are reshaped to be one-dimensional vectors which
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have zero mean and unit norm, xji (t). Where, i is the index of the patch, and
j ∈ {C,F}. C is for coarse scale and F stands for fine scale.

For coarse scale and fine scale, the two one-dimensional vectors are then
combined into a single vector xj(t). The first 100 elements of the vectors are
from the first image and the remaining are from the second image. The combined
vectors (xC(t) and xF (t)) will consist of P = 200 elements.

Later, the patches are encoded by sparse coding algorithm in linear fashion.
Each patch can be represented by a linear combination of basis functions picked
from an over-complete dictionary φj(t) = {φjn(t)}Nn=1 [11]. We use N = 288 basis
functions. Two pairs of dictionaries are randomly initialized and normalized each
pair contains coarse scale and fine scale dictionary for stereo vision (d = s)
and motion parallax (d = m) as shown in Fig. 1. We use matching pursuit
algorithm [8] to estimate and find the sparse representation of the input vector
by the weighted sum as follows:

xji (t) ≈ x̂
j
i (t) =

N∑
n=1

aji,n(t)φjn(t) . (1)

The matching pursuit algorithm suits to concept of sparse coding, which can
estimate xi(t) by using a limited number of coefficients. In this research, the
maximum number of non-zero scalar coefficients ai,n(t) is set to be 10 elements
to ensure sparseness of the efficient coding. For later use in reinforcement learner
part, pooled activity, fn(t), which represent the activity of each neuron cell is
calculated from the coefficients from matching pursuit algorithm as follows:

f j(t) =


f j1 (t)

f j2 (t)
...

f jP (t)

 . (2)

Where, each element of the vector f j(t) is described as:

fn(t) =

P∑
i=1

ai,n(t)2. (3)

A reconstruction error is introduced as a cost function to be used in sensory
coding model and reinforcement learner. It measures the estimation error of
vector x(t). The reconstruction error is defined as:

e(t) =
1

P

P∑
i=1

‖xi(t)−
∑N

n=1 ai,n(t)φn(t)‖2

‖xi(t)2‖
. (4)

Gradient descent method is used to update the dictionaries with the recon-
struction error as a cost function. After each update, the dictionaries are then
normalized.
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2.3 Reinforcement Learning

The state representation of the reinforcement learner can be described by com-
bination of coarse scale and fine scale pooled activity, fn(t) as follows:

f(t) =

[
fC(t)
fF (t)

]
. (5)

The reward that is given to the learning agent is a negative of the summation
of reconstruction error from both scales which is described as:

Rd,k(t) = −(eC(t) + eF (t)) . (6)

Where, k ∈ {k1, k2} and d ∈ {m, s}. m is for motion parallax. s is for stereo
vision. An actor-critic algorithm number 3 proposed in [3] is employed for the
leaner agent. For action selection, we use Gibbs distribution (softmax) for prob-
abilistically choosing an action as follows:

π(f(t), at) =
eza∑

a′∈A e
za′

. (7)

For each action, the activation value za is given by:

za =

N∑
n=1

wa(t)fn(t) , (8)

where wa(t) is a weight vector from the state f(t) to action a that is ini-
tially random. The action is pan angle of the cameras in degrees. Possible
actions a are contained in a set of actions A. In this research we use A =
{−0.2◦,−0.1◦,−0.05◦, 0◦, 0.05◦, 0.1◦, 0.2◦}. Thus, the policy maps f(t) to a ∈ A.
The selected actions are Pm,k1

(t) for motion parallax and Ps,k2
(t) for stereo vi-

sion.

2.4 Depth Representation

A simple feed forward neural network with two layer is used to interpret between
eye movements to the object’s distance. In each iteration after stereo vision is
executed, the eye movements are stored and accumulated for depth estimation.
When the robot successfully performs motion parallax and stereo vision at both
leftmost position and rightmost position, the amount of eye movements q are
then used to train the neural network. q contains:

1. q1, Left eye’s pan movement at leftmost position
2. q2, Vergence eye movement at leftmost position
3. q3, Left eye’s pan movement at rightmost position
4. q4, Vergence eye movement at rightmost position

We use Levengerg-Marquardt method [9] for training the neural network.
A sigmoid transfer function is used in the hidden layer which has 10 neurons.
The input of the neural network is q. While, the target is ground truth depth
provided by supervisor.



A Joint Learning of Visual Sensory For Developmental Robotic Agents 7

3 Simulations & Results

3.1 Experimental Setup

We use V-REP, a robot simulator, as a 3D environment visualization for the
framework. The framework is implemented and developed in MATLAB. The
environment in the simulator comprises HOAP3 robot, an object with inter-
changeable texture, and a still background image. The lateral movement of the
robot is simplified to be changing the position of the robot directly to cut out
the travel time.

In this simulation, we test the multiple cues to estimate the depth between the
robot and the object and it is from 1 meter to 3 meters with an 0.1 meter interval,
i.e. 1.0,1.1,1.2,...3.0 meters. The distance between the leftmost position and the
rightmost position is 0.2 meter, i.e. δ = 0.1. The baseline, distance between
two eyes, is 0.06 meter. The number of iterations h is 30 iterations. We prepare
100 different images to learn the various visual textures of the environment. To
evaluate the eye movement training, we define mean absolute error (MAE) for
evaluating eye movements as follows:

MAE(t) =
1

1000

999∑
k=0

|θ(t + 29 + 30k)− θ∗(t + 29 + 30k)| . (9)

Where,

1. θ(t) represents the pan/vergence angle of the eye at time t
2. θ∗(t) represents the optimal pan/vergence angle at time t

3.2 Adaptive Visual Dictionary

The principal component analysis (PCA) is applied to visualize the distribution
of the visual dictionaries. Because the visual dictionaries were randomly initial-
ized, most of the elements are quite redundant between each other. The first
and the second PCs are used to visualize the distribution of visual dictionary as
shown in Figs. 2(a) - 2(c). We can see that the trained visual dictionaries are
more sparsely distributed than the initial dictionary.

3.3 Joint Development of Active Depth Perception

The results of the training are shown in Fig. 3. Fig. 3(a) shows the MAE of
eye movements. The red line shows the MAE of the stereo vision, while the
blue line shows the MAE of the smooth pursuit. To test the depth perception,
all of the eye movements q with different experimental conditions are used as
inputs for the neural networks. The outputs from the neural network are used
to calculate the MAE at every time steps. We applied a moving average window
with window size of 1,000 iterations to observe trend of the depth learning as
shown in Fig. 3(b).

From the simulation results, we can see that the framework could jointly
learn to improve the sensory encoding and represent the visual stimuli while
learning to generate multiple eye motor control with depth perception.
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(a) Coarse scale for
stereo disparity

(b) Fine scale for
stereo disparity

(c) Coarse scale for
motion parallax

(d) Fine scale for
motion parallax

Fig. 2. Visualization of development of the visual dictionaries. The distribution of the
visual dictionaries using the first and second PCs at the initial time and the end of
training, respectively.

(a) MAE of eye movements (b) MAE of depth perception

Fig. 3. Development in each part of the system. The figures visualize the evolution
of the visual representation (coding), eye movement and depth estimation. (a) repre-
sents the eye movement errors in form of mean absolute error. (b) shows how depth
estimation develops through the learning.

4 Robustness Test

To verify the adaptation properties of the framework, perturbations are simu-
lated by applying a constant in-plane roll rotation of each camera at a time as
shown in Fig. 4. In Fig. 4(a), noticeable increases in eye movement errors are
observed after inducing the disturbance which are presented by the gray dotted
line in the figures. Smooth pursuit eye movements are not largely effected by
the disturbance, while vergence eye movements are more susceptible to the in-
terference. Because the vergence eye movements are dependent to the results of
smooth pursuit eye movements. Even though the vergence control MAE is dras-
tically increased as shown in Fig. 4(a), the MAE of depth perception is slowly
increased at that time. Because, the depth perception is done by integrating
both of eye movements and it could be recovered with the supports from both
cues as shown in Fig. 4(b).
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(a) MAE of eye movements with perturba-
tion

(b) MAE of depth perception with pertur-
bation

Fig. 4. Adaptation property from the perturbation. (a) MAE of the eye movements
during execution of learning time with the perturbation. (b) MAE of the depth per-
ception during execution of learning time with the perturbation

5 Conclusion

In this research, we proposed a novel developmental learning framework to ac-
tively the active depth perception during self-induced lateral body movements.
The proposed framework can simultaneously develop the sensory representation,
eye movement control and integration of the visual depth cues such as stereo dis-
parity and motion parallax. In order to avoid the conflict of multiple eye move-
ments, the two different eye movements are sequentially trained and generated,
while they share the same learning architecture. Finally, the generated multiple
eye movements are effectively used to represent the depth information. Also,
the proposed learning framework can be seamlessly recovered from the external
perturbations. To extend this to fully autonomous architecture, an unsupervised
learning method will be employed instead. Moreover, the dominant eye may be
competitively selected during the learning period.
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