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Abstract  Classical control methods such proportional integral derivative (PID) are common in thermal comfort control 

applications as they are lightweight in terms of the computing power and well-received in the industry sector. Such thermal 
comfort classical controllers often suffer from non-optimal control input as they do not anticipate any future process. In this 
paper, we present a model predictive control (MPC) based thermal comfort system, which also incorporates the cyber-physical 
systems (CPS) approach into the system. The proposed system is evaluated and verified in a cyber-physical smart home system 
simulation using raw environmental data from the experimental smart house, iHouse. 

Keywords  Model Predictive Control, iHouse, Cyber-Physical Systems, Smart Homes, Thermal Comfort 
 
1. INTRODUCTION 

Recent increase in home automation efforts validates 
the growing importance of improving quality of life 
(QOL) and energy efficiency, especially in residential and 
office buildings [1,2]. Besides, many vital elements in a 
smart home coincide with the cores of CPS, which 
rationalizes the need of CPS in smart homes. 

Our previous effort in application of CPS in smart 
homes involves the Energy Efficient Thermal Comfort 
Control (EETCC) algorithm [3] and its implementation in 
an actual experimental smart home [4]. EETCC aims to 
promote energy efficient by prioritizing the utilization of 
natural resource to maintain thermal comfort than using 
HVAC (heating, ventilation and air-conditioner) system. 
Although EETCC achieved its goals, it is still a reactive 
controller by design that suffers from non-optimal control 
strategy as it senses and estimates deviations in thermal 
comfort level without foreseeing any future events. Thus, 
to address this shortcoming, this paper aims to implement 
predictive thermal comfort controller into the smart home 
environment using CPS approach. By integrating 
predictive capability, controller should be able to compute 
optimal control strategies to further enhance energy 
efficiency and thermal comfort in CPS home systems.  

The rest of the paper is organized as follows. Section 2 
introduces the background on relevant topics to this paper. 
The EETCC system, plant modeling and MPC controller 
details are described in Section 3. Proposed controllers are 
simulated under various seasons while its results and 
discussions are presented in Section 4. Finally, some 

relevant conclusions and future works are summarized in 
Section 5. 
 

2. BACKGROUND 
2.1. Cyber-Physical Systems 

CPS encompass many real-life systems today, where 
their physical and computational resources are strictly 
interlinked together [5]. CPS often requires deep 
integration between sensing, computation, communication 
and control, which shares a lot of similarities to the more 
popular term: Internet-of-Things (IoT). However, IoT 
slightly differs from CPS as it focused on the openness of 
the system while CPS focused on the closed-loop system. 
 

2.2. iHouse 
iHouse is an advanced experimental smart house, 

located at Nomi City, Ishikawa prefecture, Japan as shown 
in Fig. 1. It is a conventional two-floor Japanese-styled 
house featuring more than 300 sensors, home appliances, 
and electronic house devices that are connected using 
ECHONET Lite version 1.1 and ECHONET version 3.6. 

 
Fig. 1: iHouse – experiment house of smart homes.
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2.3. Thermal Comfort 
Thermal comfort is defined as the state of the mind that 

expresses satisfaction with its thermal surrounding [6]. 
Temperature only control systems are commonly used to 
regulate thermal level in indoor spaces. However, thermal 
comfort takes into account many factors such as wind 
speed, humidity, metabolic rate, clothing insulation and 
radiant temperature [6]. Thus, thermal comfort regulation 
not only provides greater comfort but also the possibility 
of energy saving when compared to regulation of air 
temperature. Predicted Mean Vote (PMV) thermal comfort 
is described by a seven-point thermal sensation scale, 
where hot sensations are depicted by positive numbers and 
cold sensations are depicted by negative numbers. 
 

3. THERMAL COMFORT CONTROL SYSTEM 
3.1. EETCC System Architecture 

The EETCC system architecture is shown in Fig. 2, 
which is comprised of three main components: (i) 
controller; (ii) communication protocol; and (iii) plant. 
The plant simulated in this paper is the iHouse Bedroom A. 
Modeling of the plant and controllers are discussed while 
networking components are excluded in this paper. 

 
Fig. 2: System architecture. 

 

3.2. Mathematical Representation 
The plant room temperature can be modeled with heat 

equations. Thus, the dynamic room temperature equation 
of the plant model is given by 

𝑑𝑑𝑇𝑇#$$%
𝑑𝑑𝑑𝑑

=
1
𝛽𝛽

𝑄𝑄+,, (1) 

where 𝑇𝑇#$$% is the temperature of the room in ℃, 𝛽𝛽 is 
the product of air density in 𝑘𝑘𝑘𝑘/𝑚𝑚2, volume of the room 
in 𝑚𝑚2 and specific heat capacity of air in 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘℃. 𝑄𝑄+,, 
is the total heat gain of the room, which comprised of heat 
gain from HVAC, conduction and solar radiation through 
window and occupants in the room. 

The heat gain from the HVAC is can be given by 

𝑄𝑄+4#5$67 = 1.08×𝐶𝐶𝐶𝐶𝐶𝐶× 𝑇𝑇?@A − 𝑇𝑇#$$%  (2) 

where 𝐶𝐶𝐶𝐶𝐶𝐶 is the room volumetric airflow in 𝑓𝑓𝑓𝑓2/𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑇𝑇?@A is the setting temperature of HVAC in ℃. 

Heat gain from conduction through window is given by 

𝑄𝑄5$67F5A4$6 = 𝑢𝑢H𝐴𝐴H× 𝑇𝑇$FA − 𝑇𝑇#$$%  (3) 

where 𝑢𝑢H  is the u-value of the window, 𝐴𝐴H  is surface 
area of the window and 𝑇𝑇$FA is the outdoor temperature. 
Heat gain from solar radiation through window is given by 

𝑄𝑄?$,+# = 𝑞𝑞#+7𝐴𝐴H𝑔𝑔H (4) 

where 𝑞𝑞#+7 is the measured solar radiation and 𝑔𝑔H is the 
solar energy transmittance for the window. Heat gain from 
occupant sensible and latent heat in the room is given by 

𝑄𝑄$55F = 𝑁𝑁 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑁𝑁 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿  (5) 

where 𝑁𝑁 is the number of occupant in the room, 𝑆𝑆𝑆𝑆𝑆𝑆 is 
the sensible heat gain by each occupant, 𝐶𝐶𝐶𝐶𝐶𝐶  is the 
cooling load factor for each occupant and 𝐿𝐿𝐿𝐿𝐿𝐿  is the 
latent heat gain by each occupant. 

 
Fig. 3: Electrical model of thermodynamic of a room. 

 
The plant can also be modelled using RC 

(Resistance-Capacitance) method as shown in Fig. 3. 
Using this method, temperature of an element is similar to 
its voltage while voltage source describes a constant 
temperature regardless of heat flow (outdoor temperature). 
Heat source is described as a current source as heat flow is 
similar to current. The thermal conductivity of a material 
is similar to an electrical resistor while the multiplication 
of thermal capacitance and volume of an element is similar 
to electrical capacitance. 

The plant model in Eqn. (1) can be transformed into a 
discrete model as shown in the equations below 

𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝐴𝐴 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘 +𝑊𝑊𝑊𝑊 𝑘𝑘  (6) 

𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝐶𝐶 𝑘𝑘 + 𝜉𝜉 𝑘𝑘  (7) 

where 𝑥𝑥 is system state vector, 𝑢𝑢 is system input vector, 
𝑦𝑦 is system output vector, 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝑊𝑊 are constant 
state-space matrices of coefficients. 𝜉𝜉 𝑘𝑘  is the 
disturbance at time 𝑘𝑘 comprised of the heat gain from 
outdoor temperature, solar radiation and occupant. 
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3.3. MPC Controller 
The section will discuss about MPC formulation, 

especially on the optimization problem for various control 
strategies. A general MPC controller is shown in Fig. 4, 
where process block is the plant, prediction block is MPC 
internal estimated plant and optimization block performs 
control signal optimization with respect to the imposed 
cost and constraints. The plant is the iHouse Bedroom A, 
where its input is HVAC cooling or heating power and its 
output is the temperature of the room. 

 
Fig. 4: MPC controller system. 

 
A general optimization problem can be formulated 

where its cost function, 𝐽𝐽W  penalizes both the output 
deviation from the reference set point and the plant input 
control error can be given by 

𝐽𝐽W = 𝑤𝑤4
Y 𝑟𝑟 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 − 𝑦𝑦 𝑘𝑘 + 𝑖𝑖|𝑘𝑘

\
6]

4^_

+ 𝑤𝑤4∆F ∆𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘
\

6ab_

4^c

 

(8) 

where 𝑛𝑛Y  is the prediction horizon, 𝑛𝑛F  is the input 

horizon, 𝑤𝑤4
Y  is the plant output tuning weight at 𝑖𝑖 th 

prediction horizon step, 𝑤𝑤4∆F is the change in plant input 
tuning weight at 𝑖𝑖 th prediction horizon step, 𝑟𝑟  is the 
reference, 𝑦𝑦  is the predicted output and ∆𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘  is 
the change in the optimal plant input signal at time 𝑘𝑘 + 𝑖𝑖 
computed at interval 𝑘𝑘. 

Every sensors and actuators have their performance 
limits. Since HVAC is used to cool and heat the room, it 
has its saturation point which can be defined as hard 
constraints in MPC formulation. Hence, hard constraint 
based on both HVAC saturation points, 𝑢𝑢%46  and 𝑢𝑢%+d 
can be presented as 

𝑢𝑢%46 ≤ 𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑢𝑢%+d (9) 

 
A) Temperature Boundary, PMV Boundary and 
Temperature Reference Optimization 

This control strategy performs similarly to classical PID 
controller as tracking reference signal is their main 
objective. Multiple constraints can also be imposed on 

MPC, where in scenarios such as the given reference 
signal is out-of-bound, the MPC controller will attempt to 
satisfy the reference signal without violating any of its 
constraints. Similar implementation with PID controller 
would be complex. 

The cost function for this control strategy is shown in 
Eqn. (8), where the sum of both tracking error and input 
control error are minimized while bounded by the 
following constraints 

𝑢𝑢%46 ≤ 𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑢𝑢%+d
𝑦𝑦A,%46 ≤ 𝑦𝑦A 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑦𝑦A,%+d

𝑦𝑦ghi,%46 ≤ 𝑦𝑦ghi 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑦𝑦ghi,%+d
 (10) 

where 𝑦𝑦A  is the plant output temperature, 𝑦𝑦ghi  is the 
computed plant PMV, 𝑦𝑦A,%46  and 𝑦𝑦A,%+d  are the plant 
output temperature boundary, 𝑦𝑦ghi,%46 and 𝑦𝑦ghi,%+d  are 

the plant PMV boundary. 
 
B) PMV Boundary and Minimizing Energy Cost 

This control strategy objective is to minimize the 
energy consumption of HVAC while maintaining thermal 
comfort according to ASHRAE standards. The cost 
function can be given by 

𝐽𝐽W = 𝑤𝑤4F 𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 − 𝑢𝑢A+#j@A 𝑘𝑘 + 𝑖𝑖|𝑘𝑘
\

6a

4^_

 (11) 

where 𝑤𝑤4F  is the plant input tuning weight at 𝑖𝑖 th 
prediction horizon step and 𝑢𝑢A+#j@A is the target reference 

for the plant input. The plant input target reference can be 
represented by the availability of green energy, variable 
rate energy tariff or just a nominal value for the energy 
consumption optimization. 

While minimizing energy consumption, the optimizer is 
also bounded by the following constraints 

	𝑢𝑢%46 ≤ 𝑢𝑢 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑢𝑢%+d
	𝑦𝑦ghi,%46 ≤ 𝑦𝑦ghi 𝑘𝑘 + 𝑖𝑖|𝑘𝑘 ≤ 𝑦𝑦ghi,%+d

 (12) 

 

4. NUMERICAL SIMULATION 
This section investigates the performance of MPC under 

various constraints, where PID is used as baseline 
controller. The simulation utilizes outdoor environment 
data from the iHouse that are sampled every 10 second. 
Hence, the time-step size for the simulation is 10 second. 
The MPC sample time is also equal to the simulation 
time-step while its prediction and control horizon is 
configured to 5 minutes. The prediction horizon used in 
this simulation is very short when compared with most 
MPC implementations. This is due to the sampling time of 
most MPC implementation are generally about 1 hour, 
justifying their long prediction time horizon between 5 to 
48 hours [7]. 
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Fig. 5: Summer outdoor environment – temperature and 

solar radiation. 
 

The controllers are simulated under different seasons to 
evaluate their performances. Fig. 5 and Fig. 6 shows the 
outdoor temperature and solar radiation on 26th August 
2016 and 3rd January 2018, which represents typical sunny 
day during summer and fair weather during winter. The 
remaining simulation parameters are listed in Table 1. 
 

Table 1: Simulation parameters and settings. 

Parameter Value [unit] 

Volume of room 𝐿𝐿×𝑊𝑊×𝐻𝐻 , 𝑉𝑉#$$% 5.005×4.095
×2.4	𝑚𝑚2 

Density of air, 𝜌𝜌+4# 1.2	𝑘𝑘𝑘𝑘/𝑚𝑚2 
Specific heat capacity of air, 𝐶𝐶r 1.005	𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘℃ 

Air volume flow rate, 𝐶𝐶𝐶𝐶𝐶𝐶 300	𝑓𝑓𝑓𝑓2/𝑚𝑚𝑚𝑚𝑚𝑚 

Max cooling load of HVAC, 𝑢𝑢%46 5	𝑘𝑘𝑘𝑘 

Max heating load of HVAC, 𝑢𝑢%+d 6.3	𝑘𝑘𝑘𝑘 

Coefficient of performance, 𝐶𝐶𝐶𝐶𝐶𝐶 3.44 

Area of window type 1, 𝐴𝐴H_ 1.815	𝑚𝑚\ 
Area of window type 2, 𝐴𝐴H\ 0.66	𝑚𝑚\ 
U-value of window type 1, 𝑢𝑢H_ 3.4	𝑊𝑊/𝑚𝑚\℃ 
U-value of window type 2, 𝑢𝑢H\ 1.7	𝑊𝑊/𝑚𝑚\℃ 
Solar transmittance of window type 1, 𝑔𝑔H_ 0.79 

Solar transmittance of window type 2, 𝑔𝑔H\ 0.41 

Sensible heat gain by occupant, 𝑆𝑆𝑆𝑆𝑆𝑆 0.09𝑚𝑚\℃/𝑊𝑊 
Cooling lead factor for occupant, 𝐶𝐶𝐶𝐶𝐶𝐶 1 

Latent heat gain by occupant, 𝐿𝐿𝐿𝐿𝐿𝐿 190	𝐵𝐵𝐵𝐵𝐵𝐵/ℎ 
𝑃𝑃 of HVAC controller, 𝐾𝐾r 9.38680 

𝐼𝐼 of HVAC controller, 𝐾𝐾4 0.087469 

𝐷𝐷 of HVAC controller, 𝐾𝐾7 −38.854 
Lower bound of room temperature, 𝑦𝑦A,%46 20℃ 
Upper bound of room temperature, 𝑦𝑦A,%+d 30℃ 

 
Table 2: Three categories of thermal comfort demands. 

Category PMV 

𝐴𝐴 −0.2 < 𝑃𝑃𝑃𝑃𝑃𝑃 < +0.2 

𝐵𝐵 −0.5 < 𝑃𝑃𝑃𝑃𝑃𝑃 < +0.5 

𝐶𝐶 −0.7 < 𝑃𝑃𝑃𝑃𝑃𝑃 < +0.7 

 
Fig. 6: Winter outdoor environment – temperature and 

solar radiation. 
 

4.1. Results and Discussion 
A) Temperature Reference Tracking 

This subsection investigates the reference tracking 
performance of MPC and PID. The simulation weather is 
set in summer as shown in Fig. 5 while the temperature 

reference signal of 25°C is applied throughout the day. 
The MPC cost function for reference optimization is 
shown in Eqn. (8) while bounded by constraints shown in 
Eqn. (9). The result is shown in Fig. 7 where MPC 
outperformed PID in closed-loop temperature regulation. 

The peak tracking error of PID and MPC are 0.22°C and 
0.03°C respectively during daytime (06:00 – 20:00). 

 

 
Fig. 7: Result of reference tracking for MPC versus PID. 

 
MPC applied aggressive control strategies compared to 

PID as shown in Fig. 7. This is due to heavier penalty 
imposed on the error in output reference tracking 
compared to the HVAC input control rate of change, which 
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MPC will compute the required cooling or heating power 
to minimize the error in the shortest time without violating 
its pre-defined constraints. Thus, MPC temperature 
regulation is better than PID even under large disturbance. 
This is consistent with the transient analysis results shown 
in Fig. 8 and Table 3. Rise time is the time taken for the 
controller response to increase from 10% of its 
steady-state value to 90% of output reference while 
settling time is the time taken for the controller response 
reach and stay within 5% of the output reference signal. 

 
Fig. 8: Comparison between MPC and PID step response. 

 
Table 3: Three categories of thermal comfort demands. 

Controller Rise Time (s) Settling Time (s) 

𝑃𝑃𝑃𝑃𝑃𝑃 208.89 293.13 

𝑀𝑀𝑀𝑀𝑀𝑀 114.80 135.65 

 
B) PMV Boundary and Energy Minimization Based MPC 
Optimization 

This subsection explores the potential of MPC multi 
objective optimization in providing energy efficient 
thermal comfort regulation. While optimal thermal 
comfort occurs when PMV is zero, the subsequent energy 
cost would be higher than the energy cost required to 
maintain thermal comfort at its demand boundary. Thus, 
PMV Category B thermal comfort demand from Table 2 is 
chosen as the MPC constraint. Besides, two environmental 
scenarios are considered for this simulation: (i) summer 
season; (ii) winter season. 

The simulation result during summer and winter is 
shown in Fig. 9 and Fig. 10 respectively. As observed 
from the simulation result in summer, the initial room 

temperature at 23.5°C gradually increases from midnight 
to early morning (00:00 – 05:00) before the MPC 
controller starts applying corrective input control to 
maintain thermal comfort in the room. Since MPC 
controller considers only PMV thermal comfort and 
energy cost to cool and heat the room, the room 
temperature is not directly considered as thermal comfort 

comprised of several other factors as noted in the earlier 
section. Nevertheless, the resulting room temperature still 
serves as a practical indicator. 

 

 
Fig. 9: Result of energy minimization MPC versus 

reference tracking PID during summer. 
 

MPC controller minimize HVAC energy consumption by 
exploiting the greater flexibility introduced by PMV 
thermal comfort band, where it allows the room to warm 
up naturally by conduction and apply only necessary 
control inputs to cool the room during summer, and vice 
versa for MPC control strategy during winter. The control 
scenarios presented in this paper assumes that the room 
temperature or thermal comfort have to be constantly 
maintained throughout the simulation period. This is not 
practical in real life as thermal comfort should be 
maintained only when there is occupancy. Thus, further 
energy efficiency can be achieved by integrating 
occupancy detection and prediction in near future. 
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Fig. 10: Result of energy minimization MPC versus 

reference tracking PID during winter. 
 
C) Energy Consumption 

This subsection focuses on the energy consumption of 
control strategies by MPC and PID that are simulated in 
this paper. The energy consumption of HVAC is given by 

𝐸𝐸+4#5$67 =
1
𝐶𝐶𝐶𝐶𝐶𝐶

𝑄𝑄+4#5$67 𝑡𝑡 𝑑𝑑𝑑𝑑
A~�€

AÅ‚ƒ„‚
 (13) 

where 𝐶𝐶𝐶𝐶𝐶𝐶 is the coefficient of performance, 𝑡𝑡?A+#A and 
𝑡𝑡@67 is the start and end time of the simulation. Fig. 11 
shows that PID utilize more energy compared to various 
MPC controllers except for reference optimization MPC in 
summer. Aggressive control strategy by reference 
optimization MPC during summer contributes to lower 
tracking error at the expense of higher energy 
consumption. 

Comparing reference optimization MPC to PMV bound 
energy minimization MPC, improvements of 10.4% and 

12.1% is observed during summer and winter respectively. 
This improvement is also consistent with other research 
finding [8]. 

 
Fig. 11: Comparison between multiple controller energy 

consumptions for summer and winter. 
 

5. CONCLUDING REMARKS 
This paper summarizes the implementation details of 

MPC in smart home environment using CPS approach. 
Various MPC implementations are carried out under two 
seasons to evaluate the performance and advantages of 
predictive capabilities in the domain of thermal comfort 
control. Simulations showed improvements in both 
temperature reference tracking and PMV boundary energy 
minimization based MPC. Further work can be expanded 
to economic based controller that takes into account the 
availability of green energy and electricity tariff. 

 

References 
[1] C. Wilson, T. Hargreaves, R. Hauxwell-Baldwin, 

“Benefits and risks of smart home technologies”, 
Energy Policy, pp.72-83, 2017. 

[2] G. Lobaccaro, S. Carlucci, E. Löfström, “A Review 
of Systems and Technologies for Smart Homes and 
Smart Grids”, Energies, pp.348-380, 2016. 

[3] Z. Cheng, W.W. Shein, Y. Tan, A.O. Lim, “Energy 
efficient thermal comfort control for cyber-physical 
home system”, IEEE Int. Conf. on Smart Grid Comm., 
pp.797-802, 2013. 

[4] Y. Lim, S.E. Ooi, M. Yoshiki, T.K. Teo, R. Alfred, Y. 
Tan, “Implementation of Energy Efficient Thermal 
Comfort Control for Cyber-Physical Home Systems”, 
Advanced Science Letters, pp.400-407, 2016. 

[5] S. Zanero, “Cyber-Physical Systems”, Computer, 
pp.14-16, 2017. 

[6] ASHRAE Standard 55-2010, “Thermal Environment 
Conditions for Human Occupancy”, 2010. 

[7] A. Afram, F. Janabi-Sharifi, “Theory and applications 
of HVAC control systems – a review of model 
predictive control (MPC)”, Building and 
Environment, pp.343-355, 2014. 

[8] J. Cigler, S. Prívara, Z. Vána, E. Žáčeková, L. Ferkl, 
“Optimization of Predicted Mean Vote index within 
Model Predictive Control framework: 
Computationally tractable solution”, Energy and 
Building, pp.39-49, 2012. 

- 34 -


