
sensors

Article

A Design of Overlapped Chunked Code over
Compute-and-Forward for Multi-Source
Multi-Relay Networks†

Rithea Ngeth * ID , Brian M. Kurkoski, Yuto Lim and Yasuo Tan

School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292,
Japan; kurkoski@jaist.ac.jp (B.M.K.); ylim@jaist.ac.jp (Y.L.); ytan@jaist.ac.jp (Y.T.)
* Correspondence: ngethrithea@jaist.ac.jp
† This paper is an extended version of our paper: Ngeth, R.; Lim, Y.; Kurkoski, B.M.; Tan, Y. A Design of

Overlapped Chunked Code over Compute-and-Forward in Multi-Source Multi-Relay Networks.
In Proceedings of 2018 IEEE Global Communications Conference: Wireless Communications, Abu Dhabi,
UAE, 9–13 December 2018.

Received: 2 August 2018; Accepted: 21 September 2018; Published: 25 September 2018
����������
�������

Abstract: This paper investigates the design of overlapped chunked codes (OCC) for multi-source
multi-relay networks where a physical-layer network coding approach, compute-and-forward (CF)
based on nested lattice codes (NLC), is applied for the simultaneous transmissions from the sources to
the relays. This code is called OCC/CF. In this paper, OCC is applied before NLC before transmitting
for each source. Random linear network coding is applied within each chunk. A decodability
condition to design OCC/CF is provided. In addition, an OCC with a contiguously overlapping,
but non-rounded-end fashion is employed for the design, which is done by using the probability
distributions of the number of innovative codeword combinations and the probability distribution
of the participation factor of each source to the codeword combinations received for a chunk
transmission. An estimation is done to select an allocation, i.e., the number of innovative blocks per
chunk and the number of blocks taken from the previous chunk for all sources, that is expected to
provide the desired performance. From the numerical results, the design overhead of OCC/CF is low
when the probability distribution of the participation factor of each source is dense at the chunk size
for each source.

Keywords: overlapped chunked code; compute-and-forward; nested lattice code; multi-source
multi-relay; empirical rank distribution; decodability

1. Introduction

This paper is an extended version of the work in [1].
In the current situation, wireless network nodes are ubiquitous and have increasing density.

Since the wireless channel bandwidth is limited, the interference between nodes can affect the data
transmission between nodes, e.g., causing message loss, longer latency, high energy consumption, etc.
In order to solve this issue, the handshaking mechanism is applied to share the channel between nodes
via a control message, e.g., request-to-send and clear-to-send. In addition, the transmit power control
approach can allow multiple sources to transmit their messages simultaneously with appropriate
interference between nodes. On the other hand, some proposed solutions exploited the interference
instead of dealing with (or compensating) it. One of these solutions is physical-layer network coding
(PNC) [2], which can also allow multiple sources to transmit their messages to the common receivers
simultaneously.

Sensors 2018, 18, 3225; doi:10.3390/s18103225 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4227-6518
http://www.mdpi.com/1424-8220/18/10/3225?type=check_update&version=1
http://dx.doi.org/10.3390/s18103225
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 3225 2 of 32

In the packet switching network, a message file is divided into small packets or blocks. Network
coding is a scheme where the outgoing block of the sender is a function of incoming blocks.
By considering the form of data, network coding can be divided into straightforward network coding
(SNC) and PNC. Straightforward network coding works with binary or with a symbol in the finite field,
and PNC works with signal forms, i.e., with real values. Exclusive or (XOR) is a simple method of SNC.
It was applied in a two-way relay channel with inter-flow network coding approach to improve the
network throughput and also the energy efficiency [3]. Linear network coding is a general approach of
XOR. It linearly combines the incoming blocks in a finite field of size q, Fq (q = 2 for XOR). The combined
coefficients are randomly drawn from Fq for random linear network coding (RLNC). The application of
RLNC was widely studied in wireless multi-hop networks for reliable communication [4,5].

PNC, sometimes called analog network coding, performs additive mixing of received
electromagnetic waves (received signals) from different sources naturally at a receiver, then transforms
and maps the superimposed received signals into a desired function of transmitted source signals.
The time to complete the message transmission can be shorter with PNC if comparing with
SNC for example in a two-way relay channel [2], cross atom topology [6], because PNC allows
multiple sources to transmit their data simultaneously, i.e., via a non-orthogonal channel. Nazer and
Gastpar [7] proposed a PNC method, compute-and-forward (CF) based on nested lattice codes (NLC),
for multi-source multi-relay channels. All sources encode their blocks of message into NLC codewords
and simultaneously transmit them to the relays. Each relay computes the superimposed codeword
signals to obtain the linear combination of the codewords of all sources with a combination integer
coefficient vector, then forwards the codeword combination to the destination. The destination can
recover the original blocks of all sources from the codeword combinations forwarded from the relays if
it receives enough linearly independent (i.e., innovative) codeword combinations. The cooperation
between relays can provide the opportunity for the destination to collect enough linearly independent
codeword combinations with desired purposes such as obtaining the highest sum rate [8,9] or the
highest throughput [10] while the sources also take part.

However, in some cases, codeword combinations are not qualified to be forwarded to the
destination, i.e., considered as unsuccessfully received, and the codeword combinations at the different
relays might be linearly dependent on each other since all relays compute the superimposed signals
independently. Retransmission and feedback sending back to the sources will be needed if the relays
cannot provide enough linearly independent codeword combinations to the destination to recover the
original blocks of all sources. However, feedback might be lost, has some delay in reaching the sources
and causes some energy consumption. These shortcomings are called protocol overhead in this paper.

In the traditional communication network, when a block or a packet is correctly received by the
destination, a feedback, i.e., an acknowledgment (ACK), is sent back to the source to manage the
next transmission. Negative ACK (NACK) is used to inform about the unsuccessful reception of a
sending block. Block ACK (BACK) can be used to reduce the needed ACKs as transmitting a certain
number of blocks, and a BACK containing the reception states of the sending blocks is sent back to
the source. However, if feedback is lost or its transmission time is significant, (e.g., the transmissions
between ground stations and satellite), then the protocol overhead can affect the end-to-end network
performance, especially in the lossy multi-hop communication multi-source networks because feedback
needs to be forwarded via the intermediate nodes to the sources.

On the other hand, RLNC can be applied to reduce the protocol overhead because an ACK is
needed when the receiver can decode the received coded blocks. However, if the number of input
blocks is large, then the encoding and decoding computational complexity, which depends on the
number of input blocks, especially decoding complexity, will be high and not practical. The large
number of blocks is grouped into disjoint generations or chunks [11,12], then the computational
complexity can be reduced. Nevertheless, when the number of blocks per chunk, i.e., size of the
chunk, is too small, the protocol overhead is still significant. If the message success rate (MSR) of
the transmission link is known, then the sources can transmit each chunk with an expected number

Sensors 2018, 18, 3225 3 of 32

of coded blocks, and feedback can be avoided [4]. However, if MSR is not constant, then there will
be some chunks that are not decodable, i.e., undecodable. To deal with this problem, the works
in [13,14] proposed overlapped chunk code (OCC), where a block can belong to more than one chunk.
A decoded chunk can be used to help to decode the other undecodable chunks by back-substitution,
i.e., blocks from decoded chunks are substituted into the undecodable chunks that also have them
as input blocks. The other designs of OCCs and those of the codes similar to OCC were proposed
then such as in the works of [15–18]. These designed codes are mainly for single flow transmission or
multicast transmission, i.e., the transmission of a source data. Up to the present, there is no design of
OCC for the data transmission in multi-source multi-relay networks.

This paper considers the design and the application of OCC for the data transmissions in
multi-source multi-relays networks where CF based on NLC is employed. The designed OCC
is denoted as OCC/CF in this paper. The aim is to investigate the advantage of OCC/CF over
a feedback-based transmission scheme. In addition, low computational complexity is considered
such that the proposed work is applicable to low specification wireless nodes, e.g., wireless sensor
nodes. This paper considers varying channel states where only receivers have knowledge of channel
coefficients. The blocks of each source message are grouped into chunks. RLNC is done within each
chunk before encoding with NLC. Only the transmissions from the sources to the relays are considered.
The challenge to apply OCC in a multi-source multi-relay network is how to design OCC/CF such
that the decodability of each chunk of all sources at the destination is ensured or the desired network
performance is achieved. The contributions of this paper are as follows:

• analyzing the decodability for chunks received at the destination to design OCC for each source
and providing a decodability condition to design OCC/CF;

• based on the condition of decodability, designing OCC/CF by employing an OCC with a
contiguously overlapping, but non-rounded-end fashion at each source. The design is done
by using the empirical rank distribution, i.e., the probability distribution of the number of linearly
independent codeword combinations received at the destination per chunk transmission, as in the
work of [17,18], and by using the probability distribution of the participation factor of each source
to the received codeword combinations per chunk transmission. These two keys depend on the
channel states from the sources to the relays, and they are applicable for any channel distribution;

• providing a decoding scheme based on the feature of the employed OCC. The decoding scheme
considers the other opportunity of starting decoding besides back-substitution, the combination
of chunks. The decoding complexity is bounded by the maximum number of combined chunks,
and the storing overhead can be reduced;

• estimating the performance of the designed OCC/CF by following the decoding scheme and using
table lookup for all allocations, i.e., the number of innovative blocks per chunk and the number of
contiguously overlapped blocks for each source. The estimation is to determine which allocation
can provide the desired performance such as high decodability, highest channel efficiency and
acceptable decoding complexity;

• reducing the number of candidates for the linear combination coefficient vector computed at each
relay. This is achieved by a trade-off between computational latency and the performance in the
frame error rate.

The numerical results demonstrate that the design of OCC/CF not only depends on the
empirical rank distribution, but also on the probability distribution of the participation factor of
each source. The chance to improve the network performance by employing OCC/CF depends on
the feedback latency and feedback reception success rate if comparing with a feedback-based CF
transmission scheme.

The remainder of this paper is organized as follows. Related works are described in Section 2.
A short review of NLC and CF is introduced in Section 3. Section 4 describes the system model of this
paper work, which includes the scenario, channel model, encoding scheme at sources and computing
at relays, acquiring the linear combination coefficient vector at each, the considered empirical rank

Sensors 2018, 18, 3225 4 of 32

distributions and the analysis of decodability. Section 5 talks about the design of OCC/CF by using
an OCC and the applied decoding scheme. The estimation of decodability for the OCC/CF designed
is given in Section 6. The performance analysis and the reference schemes are described in Section 7.
Section 8 shows the numerical results and discussion. At the end, Section 9 gives the conclusion.

2. Related Works

To complete the message transmission without the need for feedback, the code to be mentioned
would be rateless code where the number of coded blocks is unlimited and the transmitter keeps
sending the coded blocks until the receiver can recover all original blocks or packets. Fountain code [19]
is an erasure code and a rateless code. The feature of fountain code is low computational complexity
in encoding and decoding processes since they are done in the binary field, i.e., F2. This includes
LTcode [20], Raptor code [21] and online code [22]. The decodability for LT code depends on the degree
distribution, which is determined based on the soliton distribution. Degree is the number of input
blocks to generate a coded block. The input blocks for each coded block are randomly selected. Raptor
code applied the precoding process before encoding such that while a fraction of coded blocks are
received, then all original blocks are recoverable. Online codes applied a precoding process for the
distributed networks. The decoding process, while employing fountain codes, starts when at least a
one-degree coded block, i.e., plain block, exists and stops when there are no more one-degree coded
blocks. The decoded blocks are back-substituted into the new received coded blocks, which also have
them as input blocks. The application of the inactivation decoding method [23] was studied in the
work [24] for the decoding process of LT code and Raptor code to reduce the decoding complexity
because the transfer matrix of the received coded blocks, i.e., the coding coefficient matrix of the
received coded blocks, is a sparse matrix.

For RLNC, each element of the coding coefficient matrix of the sending coded blocks are randomly
drawn from a finite field Fq (normally, q is enough large, e.g., q = 28). The linear independence between
coded blocks with RLNC is higher than with sparse network coding (the generated coding coefficient
matrix of the coded blocks is a sparse matrix) especially in lossy communication networks, but the
computational complexity of RLNC is higher. RLNC was employed within each chunk for OCC
proposed in the work of [13] where two overlapping fashion were given: rectangular grid code and
diagonal grid code. The number of chunks is finite, but the decodability of received chunks was
not clearly analyzed. The overlapping fashion of OCC in the work of [14] is contiguous and in a
rounded-end fashion. The decodability is analyzed with chunk size, the number of contiguously
overlapped blocks and the number of received coded blocks. However, achieving high decodability,
i.e., the probability that a chunk is decodable, requires a large chunk size, which can make the
computational complexity more significant. A small sized chunk was analyzed then in their later
work [15]. However, the decoding process would start when the receiver has collected a sufficient
number of coded blocks of all chunks in the worst case, i.e., when there are no more decodable chunks.
Then, higher storing ability at the receiver would be required, and the decoding complexity is still
significant. The design of OCC with the other overlapping fashion was proposed in the work of [16],
where the overlapped blocks, i.e., the blocks taken from the other chunks, are randomly selected.
Although the performance in decodability is better than OCC with the contiguously overlapping
fashion [14], the decoding process still might start when a sufficient number coded blocks are received.

Batched sparse (BATs) codes proposed in the work of [17] inherit the feature of rateless code by
employing fountain codes as the outer code (chunk size obeys a degree distribution) and random linear
network code as the inner code (RLNC is employed within each chunk). The degree distribution is
determined using the empirical rank distribution to obtain the optimal performance in achievable rate.
The decoding process starts when there is at least a decodable chunk, and back-substitution is done
then. The inactivation decoding method might be applied when there are no more decodable chunks.
The other design, which also employs the empirical rank distribution, is in the work of [18], where

Sensors 2018, 18, 3225 5 of 32

chunk size is fixed. Two degree distributions are defined, and a degree distribution is determined
when another degree distribution is fixed to obtain the optimal achievable rate.

This paper provides the design of OCC/CF with a condition of decodability, which can be applied
with the designs of codes for single flow transmission, which are described above. This paper employs
an OCC in a contiguously overlapping fashion to design OCC/CF because it is simpler to determine
which allocation for each source to obtain the desired performance since there are only two variables
to be determined for each source. Although its performance in rate (channel efficiency, for this paper)
is not higher than the other designs in single flow transmission, it has a potential to reduce the storage
overhead and the computational complexity to suit its application with a low specification wireless
node in multi-source multi-relay networks.

3. Preliminaries

3.1. Notation

Boldface letters are used for vectors, e.g., a. The capital boldface letters are for matrices, e.g.,
G. Superscripts T and −1 refer to matrix transposition operation and inverse operation, respectively.
R and Z denote the field of real values and the field of integer values, respectively. In addition, sign ·
refers to the multiplication operation, and sign × is used to express the size of the matrix.

3.2. Nested Lattice Codes

An n-dimensional lattice Λ is a linear additive subgroup of Rn, i.e., if x1, x2 ∈ Λ, then x1 + x2 ∈ Λ
and −x1 ∈ Λ. A lattice point x ∈ Λ is generated by the generator matrix G ∈ Rn×n and an integer
vector b ∈ Zn by:

x = G · b. (1)

The fundamental Voronoi region of Λ, V , is the space that is closer to the origin xo (xo = 0) than
to the other lattice points. A scaled lattice Λp = p ·Λ is obtained by scaling the generator matrix of
Λ, i.e., Gp = p ·G. A lattice Λp is nested in Λ if Λp ⊆ Λ. If p is a non-zero positive integer, then
Λp = p ·Λ is nested in Λ.

NLC is formed by a coding lattice Λc and a shaping lattice Λs, where Λs ⊆ Λc. The codebook
of NLC is the coset leaders of Λc/Λs, i.e., the lattice points (codewords) of Λc that are inside the
fundamental Voronoi region of Λs, Vs. If taking Λs = qΛc, where q is a prime number, and the
generator matrix of Λc, Gc, is full rank, then the coding rate of NLC is R = log2 q. The number
of codewords is qn. The feature of NLC is that the linear combination of two codewords is still a
codeword. The encoding process of NLC can be done as below.

x = [Gc · b] mod Vs, (2)

where b ∈ Fn
q is the information, x is the NLC codeword corresponding to b and [] mod Vs is the

operation mapping a lattice point of Λc into Vs. This operation restricts the transmit power of a sending
codeword by an assigned maximum transmit power Pmax.

The decoding process can be done as below:

b =
[
G−1

c · x
]

mod q, (3)

where [] mod q is the modulo operation by q or the operation mapping an integer value into the
finite field Fq.

3.3. Compute-and-Forward

If K sources transmit their codeword simultaneously, the accumulative codeword at relay l can be
expressed by:

Sensors 2018, 18, 3225 6 of 32

yl =
K

∑
k=1

hkl · xk + zl , (4)

where xk ∈ Rn is an n-dimensional NLC codeword, which is transmitted from source k for
k ∈ {1, 2, · · · , K}. hkl ∈ R is a real channel coefficient of the link from source k to relay l. For the
case of a complex channel coefficient, the derivation can be done as in the work of [7]. On the other
hand, zl ∈ Rn is additive white Gaussian noise (AWGN).

Relay l computes yl to obtain a linear combination of the codewords of K sources, vl , where:

vl =
K

∑
k=1

akl · xk, (5)

where al = [a1l , a2l , · · · , aKl]
T ∈ ZK is a linear combination integer coefficient vector used at relay l

and akl is called the k-th element of al . vl is mapped into Vs to obtain ul before forwarding to obey the

transmit power constraint, i.e.,
1
n ∑n

n′=1 u2
ln′ ≤ Pmax, where uln′ is the n′-th element of ul , and Pmax > 0.

ul = [vl] mod Vs =

[
K

∑
k=1

βkl · xk

]
mod Vs, (6)

where βl = [β1l , β2l , · · · , βKl]
T ∈ FK

q and βl = [al] mod q. βl is a combination coefficient vector for
codeword combination ul .

4. System Model

4.1. Scenario

This paper takes a scenario of a K sources L relays single-destination network as shown in Figure 1,
which is in the case K = L = 2. Each node is equipped with a single antenna. The direct links from
the sources to the destination are not considered, and only the transmissions from the sources to the
relays are considered. In this paper, all sources apply the NLC with the same coding rate R = log2 q.
This paper assumes that the transmissions from the relays to the destination are lossless. The process
of forwarding the codeword combinations to the destination can be done as in the works of [8,9] by
exploiting the coordination from the destination via control messages between the relays and the
destination to select which codeword combinations are to be forwarded and which relays to forward.1

S"

S#

R"

R#

D

SNR","

SNR#,#

SNR",#

SNR#,"

ℎ""

ℎ#"

ℎ"#

ℎ"#

Figure 1. Scenario for the case of a two-source two-relay single-destination network. hkl is the channel
coefficient corresponding to the instantaneous received signal-to-noise ratio (SNR) of the link from
source k to relay l, where k ∈ {1, 2, · · · , K} and l ∈ {1, 2, · · · , L}. SNRkl denotes the average received
SNR of the link from source k to relay l.

This scenario is considered as data collection in wireless sensor networks or data backhauling
in ultra-dense networks, and it is a part of the topologies of these networks. On the other hand, if its
application in cognitive radio (CR) network is considered, the primary user (PU) is one of K sources,
and the other sources are secondary users (SUs). Alternatively, all sources can be assigned as SUs.

Sensors 2018, 18, 3225 7 of 32

There is a relay assigned for each source if the transmissions (used for reference schemes) via the
orthogonal channel are considered.

4.2. Channel Model

This paper assumes that time is slotted and synchronized. Only real channel coefficients are
considered, and the block channel fading is assumed, i.e., the channel coefficient for a whole block
signal within a time slot along a channel link is constant. In addition, Rayleigh fading is considered,
and the channel coefficient is independently and identically distributed for each channel link. Hence,
the real channel coefficient is normally distributed. The average received signal-to-noise ratio for the
link from source k to relay l is denoted by SNRkl . On the other hand, AWGN has zero mean and unit
variance in this paper.

4.3. Computing Combination Coefficient Vector

Rl (hl , al) is defined as the computation rate region corresponding to the channel coefficient
vector hl = [h1l , h2l , · · · , hKl]

T and correspondent al . According to the work in [7],Rl is achievable for
any large enough n and for the existing encoders and decoders such that the receiver can recover the
desired codeword combination with al 6= 0 with the average probability of error ε > 0 if the maximum
coding rate of all sources, i.e., R for this paper, satisfies the condition:

Rl (hl , al) > R. (7)

In this paper, al is determined by applying the method proposed by U. Fincke and M. Pohst [25]
as in the work of [26] to obtain the highest Rl (hl , al). By considering the hardware specification of
sensor nodes, this paper exploits Condition (7) to reduce the computational overhead by reducing the
number of candidates of al in searching, for which al can provide the highestRl (hl , al). In addition,
Condition (7) is also used to filter codeword combination for forwarding to the destination at each
relay. Since R = log2 q, the higher value q results in a high message loss rate. In this paper, only a
small value of q is considered. Reducing the number of candidates of al , i.e., reducing the bounds
of the value of the elements of al , can be done as in the works of [26,27] by replacing the condition
Rl (hl , al) > 0 withRl (hl , al) > R.

However, this modification causes some decrease in performance in the block error rate or
frame error rate (FER) because codeword combination might be correctly received without satisfying
Condition (7). By comparing with the case that applies condition Rl (hl , al) > 0, the number of
candidates, FER and computational latency are shown in Figure 2. The specification of the employed
platform is shown in Table 1. The lattice code E8/7E8 is used for NLC in this comparison, where q = 7,
and E8 is a well-known n = 8 lattice.

The result is obtained by considering the codeword combinations of two sources at relay l and
taking SNR2,1 = 0 → 35 dB and SNR1,l with two cases: SNR1,l = 35 dB and SNR1,l = SNR2,l = 0 →
35 dB. The FER for conditionRl (hl , al) > 0 was obtained by comparing the codeword combination
with the combination of the original codewords. For the case with Condition (7), the codeword
combination is filtered with Condition (7) first before comparing with the combination of the original
codewords. From Figure 2, this setting performs the trade-off between the computational latency and
the FER performance.

Table 1. Specification of the simulation platform.

Term Description

Processor 2.5-GHz Intel Core i7
Memory 16-GB 1600-MHz DDR3

Operating System Mac OS
Software Tool MATLAB

Sensors 2018, 18, 3225 8 of 32

0 5 10 15 20 25 30 35
10-4

10-3

10-2

10-1

100

101

102

103

104

(a)

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9
1

(b)

0 5 10 15 20 25 30 35
10-2

10-1

100

101

(c)

Figure 2. The performance applying condition Rl (hl , al) > R, compared with condition
Rl (hl , al) > 0. (a) Number of candidates; (b) frame error rate (FER); (c) computational latency.

Sensors 2018, 18, 3225 9 of 32

4.4. Encoding and Computing

A big file message is divided into small blocks, and blocks are selected to group into chunks or
batches. For source k where k ∈ {1, 2, · · · , K}, the i-th chunk consists of d(i)k blocks and is expressed by

B(i)
k =

[
b(i)

k1 , b(i)
k2 , · · · , b(i)

kd(i)k

]
. D(i) and dmax denote ∑K

k=1 d(i)k and max{d(i)k , 1 ≤ k ≤ K, ∀i}, respectively.

RLNC is applied among chunks to generate M coded blocks, W(i)
k =

[
w(i)

k1 , w(i)
k2 , · · · , w(i)

kM

]
. The m-th

coded block, w(i)
km, is obtained by:

w(i)
km =

 d(i)k

∑
d=1

χ
(i)
kmd · b

(i)
kd

 mod q, (8)

where χ
(i)
km =

[
χ
(i)
km1, χ

(i)
km2, · · · , χ

(i)
kmdk

]T
is randomly drawn from Fd(i)k

q . It is the coding vector of coded

block w(i)
km. Superscript (i) is sometimes omitted here for convenience. The computational complexity

of the encoding process depends on chunk size d(i)k .
The coded blocks of each chunk are then NLC encoded before transmitting to generate M NLC

codewords, X(i)
k =

[
x(i)k1 , x(i)k2 , · · · , x(i)kM

]
, as shown in Figure 3. All sources transmit these M codewords

for each chunk simultaneously to the relays.

RLNC
Encoder

!"
($) = '"(

($), '"*
($), … , '",-(.)

($)

/"0
($) = 1 2"0,

($) 3 '",
($),-

(.)

,4(
	mod	9

NLC
Encoder

/"0
($)

:"0
($)

S"

:"0
($) = <= 3 /"0

($) 	mod	>?	

Figure 3. Encoding process at source k for chunk i. RLNC, random linear network coding.

The coding vector χ
(i)
km and the information of chunk i for source k, such as source ID (k), d(i)k , etc.,

can be attached to the transmitting data, e.g., at the header of the frame. However, the location of
the attached information for a source should not overlap with those of the other sources, as shown in
Figure 4. Hence, the small chunk size is preferred for the header with a limited length. This paper
assumes that the length of the attached information is negligible compared with the length of the
sending block. Alternatively, this information can be known by the receivers (relays or destination) by
broadcasting from each source, for example. This paper assumes that the content of this information is
correctly received.

ID:1 "#$(&)(#(&), …

ID:2 ",$(&)(,(&), …

⋮

ID:. "/$(&)(/(&), …

SK

gap

S2

S1

Figure 4. Locations of the attached information in the header of the sending frame of all sources for

chunk i, where “d(i)k , . . . ” refers to the information about chunk i for source k such as chunk size d(i)k ,
information about overlapped blocks, etc.

Sensors 2018, 18, 3225 10 of 32

Relay l for l ∈ {1, 2, · · · , L} computes the superposition of K codewords
[
x(i)1m, x(i)2m, · · · , x(i)Km

]
to

obtain their linear combination u(i)
lm ∈ Rn to forward to the destination, which is:

u(i)
lm =

[
K

∑
k=1

β
(i)
klm · x

(i)
km

]
mod Vs, (9)

where β
(i)
lm =

[
β
(i)
1lm, β

(i)
2lm, · · · , β

(i)
Klm

]T
∈ FK

q is the combination coefficient vector computed at relay l

for the m-th blocks of all sources for chunk i. Then, the combined coding coefficient vector of u(i)
lm ,

c(i)lm ∈ FD
q , is:

c(i)lm =

([
β
(i)
1lm · χ

(i)
1m, β

(i)
2lm · χ

(i)
2m, · · · , β

(i)
Klm · χ

(i)
Km

]T
)

mod q. (10)

4.5. Empirical Probability Distributions

Since lossless transmissions from the relays to the destination are assumed, the total number of
linearly independent codeword combinations at the relays for each chunk is the same at the destination.
r(i) (r for any chunk) denotes the number of linearly independent codeword combinations correctly
received at the relays (destination) for chunk i. Hence, r(i) is the rank of matrix C(i) ∈ FD(i)×r(i)

q , which is

a set of r(i) linearly independent vectors taken from L ·M vectors
[
c(i)11 , · · · , c(i)L1 , c(i)12 , · · · , c(i)L2 , · · · , c(i)LM

]
.

The original blocks of all sources for chunk i are recoverable if there are D(i) linearly independent
received codeword combinations for chunk i, i.e., r(i) = D(i). If the channel state is stable, i.e., r(i) is
constant for all i, all chunks can be decoded with a suitable value of M without the need for feedback
from the destination. However, with the unstable channel state, r(i) varies with different chunks. Hence,
without the aid of feedback, there are some chunks that are undecodable. As in the works of [17,28],
in this paper, ρ (r) denotes the empirical probability distribution of r, for r ∈ {0, 1, · · · , Dmax}, where
Dmax = max{D(i), ∀i}.

On the other hand, in this paper, θ
(i)
k (θk for any chunk) denotes the rank of the part of the matrix

C(i) from row 1 + ∑k−1
k′=1 d(i)k′ to row ∑k

k′=1 d(i)k′ . θ
(i)
k is defined as the participation factor of source k

in C(i), i.e., in the forwarded codeword combinations of chunk i. In addition, λk (θk) denotes the
empirical probability distribution of θk, for θk ∈ {0, 1, · · · , dk}.

In practical applications, ρ (r) and λk (θk) can be collected by employing a feedback-based
transmission scheme only for the chunks without feedback loss, as in the work of [29], for example.
The overhead caused by the linear dependence between coded blocks and between codeword
combinations, i.e., due to the small value of finite field size q, is taken into account in the data
collections of ρ (r) and λk (θk). In addition, exploiting the probability distributions for the design of
OCC/CF enables OCC/CF to be applicable to the other channel distributions, ensuring its robustness.

4.6. Decodability

In order to analyze the decodability, in this paper, pd and pk denote the probabilities that chunk i
is decodable, i.e., r(i) = D(i) and θ

(i)
k = d(i)k , respectively, when employing an OCC, which is designed

by using ρ (r) and λk (θk), respectively, in single-transmission flow, i.e., transmission from a source
to a relay via an orthogonal channel. The overlapping fashions of OCCs corresponding to ρ (r) and
λk (θk) are the same.

This paper considers the case that K ≥ L, M = dmax, and source k generates M coded
blocks by the RLNC encoder with d(i)k linearly independent coded blocks for chunk i and all k, i.e.,[

χ
(i)
k1 , χ

(i)
k2 , · · · , χ

(i)
kM

]
∈ Fd(i)k ×M

q would be pseudorandom to ensure the linear independence between
coded blocks. When employing OCC/CF, the codeword combinations of chunk i are recoverable at

Sensors 2018, 18, 3225 11 of 32

the destination if there are D(i) received linearly independent codeword combinations, i.e., r(i) = D(i).
To determine the probability that a chunk is decodable, this paper studies two cases as below:

• Case I: β
(i)
lm =

[
β
(i)
1lm, β

(i)
2lm, · · · , β

(i)
Klm

]
is a unit vector, i.e., only an element of β

(i)
lm is equal to one,

and the others are zero;
• Case II: β

(i)
lm does not have zero elements; there are only M linearly independent codeword

combinations, and they are only forwarded by a relay.

For Case I, r(i) can be written as r(i) = ∑K
k=1 θ

(i)
k . Hence, the decodability of each chunk only

depends on the OCC design using λk (θk) for all k. In this case, the original blocks of each source can
be recovered independently since every received codeword combination corresponds to the coded
blocks from only one source. By assuming that chunk i for all sources is decodable, i.e., r(i) = D(i),
if the chunks of all sources are decodable, thus the probability that a chunk for all sources is decodable,
pdec, can be written as pdec = ∏K

k=1 pk, which is independent of pd or ρ (r).
For Case II, since M ≥ max{d(i)k , 1 ≤ k ≤ K, ∀i} and there are d(i)k linearly independent

coded blocks from source k for chunk i, hence θ
(i)
k = d(i)k for chunk i. This case

assumes that chunk i is not decodable and there are γ
(i)
k ≤ d(i)k blocks inside chunk i

for source k with k ∈ {1, 2, · · · , K}, which also belong to the other chunks. If these
γ
(i)
k blocks have been already recovered with the decoded chunks, then there are still

∑K
k=1

(
d(i)k − γ

(i)
k

)
= D(i) − ∑K

k=1 γ
(i)
k to recover for chunk i. From another point of view,

it is equivalent to the case that matrix C(i) has γ
(i)
k eliminated rows, which are between row

1 + ∑k−1
k′=1 d(i)k′ and row ∑k

k′=1 d(i)k′ , and becomes a
(

D(i) −∑K
k=1 γ

(i)
k

)
× M matrix, C′(i). Since χ

(i)
km

is randomly drawn from Fd(i)k
q for m ∈ {1, 2, · · · , M}, hence C′(i) can be approximately also drawn from

Fd(i)k
q . In addition, C′(i) can be approximately obtained by eliminating ∑K

k=1 γ
(i)
k rows from a D(i) ×M

matrix, which is randomly drawn from FD(i)×M
q . It looks like ∑K

k=1 γ
(i)
k blocks are back-substituted into

a chunk i when employing OCC in single-flow transmission. Then, the decodability of each chunk
when employing OCC/CF is the same as when employing OCC designed using ρ (r) in single-flow
transmission. Hence, in this case, pdec = pd. With Case II, the feature is that already recovered
γ
(i)
k ≤ d(i)k blocks can be back-substituted into chunk i without waste.

In contrast, for the other case, by taking θ
(i)
k < d(i)k and γ

(i)
k = d(i)k − θ

(i)
k for example,

these recovered blocks can successfully increase the number of linearly independent received coded
blocks in chunk i if they are linearly independent of the existing received coded blocks in chunk i.
In addition, the value of γ

(i)
k should be appropriately selected by using θ

(i)
k or λk (θk) for all chunks.

From the point of view of C(i), an example taking K = 2, d(i)1 = 2, d(i)1 = 2, M = 3, γ
(i)
1 + γ

(i)
2 = 2

(according to the OCC design using ρ (r)) and q = 7 is shown in Figure 5. In Figure 5a,b, r(i) = 3,
θ
(i)
1 = 2 and θ

(i)
2 = 2 are given. By taking γ

(i)
1 = 1 and γ

(i)
2 = 1, then there are five linearly independent

blocks in chunk i after back-substitution, i.e., chunk i is decodable, with four out of six chances.
On the other hand, if taking γ

(i)
1 = 0, γ

(i)
2 = 2 as in Figure 5b, then chunk i is decodable with all

three possibilities. Therefore, a suitable selection of γ
(i)
1 and γ

(i)
2 can provide better performance for

OCC/CF. Hence, the OCC design using λk (θk) for all k is needed. In Figure 5c, r(i) = 3, θ
(i)
1 = 2 and

θ
(i)
2 = 3 are given. By taking any two different recovered blocks, chunk i is decodable with nine of ten

chances. The undecodable outcome should be caused by the selection of γ
(i)
1 + γ

(i)
2 = 2, i.e., the OCC

design using ρ (r). Figure 5c represents Case II where θ
(i)
1 = d(i)1 = 2, θ

(i)
2 = d(i)2 = 3.

Sensors 2018, 18, 3225 12 of 32

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

or

0
0
0
1
0

or

0
0
0
0
1

)(+)

combined coding
coefficient vectors
of recovered blocks

of Source 1

or

combined coding
coefficient vectors
of recovered blocks

of Source 2

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

0 0
0 0
1
0
0

0
1
0

or

0 0
0 0
1
0
0

0
0
1

or

0 0
0 0
0
1
0

0
0
1

)(+)
combined coding coefficient vectors of

recovered blocks of source 2

1 2 4
2 1 6
3
4
5

4
5
3

5
3
4

1
0
0
0
0

,

0
1
0
0
0

,

0
0
1
0
0

,

0
0
0
1
0

,

0
0
0
0
1

)(+)
combined coding coefficient vectors of

recovered blocks of source 1 and source 2

Selecting any two of five recovered blocks
/(+) = 3, 12(+) = 2, 13(+) = 2
4 of 6 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 2
All 3 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 3
9 of 10 possibilities are decodable

52(+) = 2, 53(+) = 3, 62(+) = 1, 63(+) = 1

52(+) = 2, 53(+) = 3, 62(+) = 0, 63(+) = 2

52(+) = 2, 53(+) = 3, 62(+) + 63(+) = 2

(a)

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

1
0
0
0
0

or

0
1
0
0
0

0
0
1
0
0

or

0
0
0
1
0

or

0
0
0
0
1

)(+)

combined coding
coefficient vectors
of recovered blocks

of source 1

combined coding
coefficient vectors
of recovered blocks

of source 2

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

0 0
0 0
1
0
0

0
1
0

or

0 0
0 0
1
0
0

0
0
1

or

0 0
0 0
0
1
0

0
0
1

)(+)
combined coding coefficient vectors

of recovered blocks of Source 2

1 2 4
2 1 6
3
4
5

4
5
3

5
3
4

1
0
0
0
0

,

0
1
0
0
0

,

0
0
1
0
0

,

0
0
0
1
0

,

0
0
0
0
1

)(+)
combined coding coefficient vectors of

recovered blocks of source 1 and source 2

Selecting any two of five recovered blocks
/(+) = 3, 12(+) = 2, 13(+) = 2
4 of 6 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 2
All 3 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 3
9 of 10 possibilities are decodable

52(+) = 2, 53(+) = 3, 62(+) = 1, 63(+) = 1

52(+) = 2, 53(+) = 3, 62(+) = 0, 63(+) = 2

52(+) = 2, 53(+) = 3, 62(+) + 63(+) = 2

(b)

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

1
0
0
0
0

or

0
1
0
0
0

0
0
1
0
0

or

0
0
0
1
0

or

0
0
0
0
1

)(+)

combined coding
coefficient vectors
of recovered blocks

of source 1

combined coding
coefficient vectors
of recovered blocks

of source 2

1 2 3
2 4 4
3
4
5

3
4
5

5
4
5

0 0
0 0
1
0
0

0
1
0

or

0 0
0 0
1
0
0

0
0
1

or

0 0
0 0
0
1
0

0
0
1

)(+)
combined coding coefficient vectors of

recovered blocks of source 2

1 2 4
2 1 6
3
4
5

4
5
3

5
3
4

1
0
0
0
0

,

0
1
0
0
0

,

0
0
1
0
0

,

0
0
0
1
0

,

0
0
0
0
1

)(+)
combined coding coefficient vectors of

recovered blocks of Source 1 and Source 2

Selecting any two of five recovered blocks
/(+) = 3, 12(+) = 2, 13(+) = 2
4 of 6 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 2
All 3 possibilities are decodable

/(+) = 3, 12(+) = 2, 13(+) = 3
9 of 10 possibilities are decodable

52(+) = 2, 53(+) = 3, 62(+) = 1, 63(+) = 1

52(+) = 2, 53(+) = 3, 62(+) = 0, 63(+) = 2

52(+) = 2, 53(+) = 3, 62(+) + 63(+) = 2

(c)

Figure 5. Example from point of view of the combined coding coefficient matrix. (a) γ
(i)
1 = 1, γ

(i)
2 =

1, θ
(i)
1 = 2, θ

(i)
2 = 2; (b) γ

(i)
1 = 0, γ

(i)
2 = 2, θ

(i)
1 = 2, θ

(i)
2 = 2; (c) γ

(i)
1 + γ

(i)
2 = 2, θ

(i)
1 = 2, θ

(i)
2 = 3.

The decodability of chunk i is given with different possibilities of recovered blocks.

For the general case, by combining the two cases above, the effective probability that each chunk
is decodable when OCC/CF is applied, denoted by pdeff, can be approximately obtained by:

pdeff = pd ·
K

∏
k=1

pk. (11)

On the other hand, for the case that K > L > 1, the values of M and d(i)k for k ∈ {1, 2, · · · , K}
should be selected appropriately such that any chunk i can be decoded by itself, i.e., r(i) = D(i).

Sensors 2018, 18, 3225 13 of 32

For example, if taking d(i)1 = d(i)2 = · · · = d(i)K = dmax for all i, then dmax should be chosen as a multiple

of L, and M ≥ K · dmax

L
to ensure that there is at most L ·M codeword combinations to recover K · dmax

original blocks. For the case that 1 < K ≤ L, M can be taken by M ≥ dmax for any value of d(i)k > 0, ∀k.

4.7. Channel Efficiency

In this paper, channel efficiency is defined as the ratio of the total number of decoded blocks
from all sources to the total transmission time (the total number of time slots for OCC/CF or for the
transmission schemes without the need for feedback from the relays) taken from the sources to the
relays. η and ηeff denote the channel efficiencies corresponding to pd and pdeff, respectively.

For a K-source L-relay network, the ideal value of channel efficiency, which is obtained with
lossless transmission and without linear dependence between codeword combinations, is min{K, L}.
Thus, for L = 1, the channel efficiency would be like in the case of single flow transmission via an
orthogonal channel. Hence, applying an orthogonal channel might be a better option. This paper only
considers the case that L > 1.

On the other hand, ρ̄ denotes ∑Dmax
r=1 r · ρ (r), and η̄ denotes

ρ̄

M
. η̄ is called channel capacity in this

paper, i.e., the upper bound of ηeff. Many OCC designs in single-flow transmission try to obtain ηeff
close to η̄. In this paper, the (design) overhead is defined as the gap between ηeff and η̄.

5. Design with an Overlapped Chunked Code

5.1. Encoding

This paper applies an OCC in a contiguously overlapping fashion, which is similar to the works
of [14,15], but not in a rounded-end fashion for the design of OCC/CF in a multi-source multi-relay
network where CF based on NLC is employed. The applied overlapping fashion is shown in Figure 6.

⋯

"# blocks

$#%
(%)$#()

(%) ⋯ *#
(%)$#(()+,)-%)

(%) ⋯

$#%
(.)$#,)

(.)$#(()-%)
(.)$#/)

(.) ⋯ ⋯ *#
(.)

$#%
(0)$#,)

(0)$#(()-%)
(0)$#/)

(0) ⋯ ⋯ *#
(0)

$#%
(1)$#(,)-%)

(1)$#(()-%)
(1)$#/)

(1) ⋯ ⋯ *#
(1)

$#%
(1-%)$#,)

(1-%)$#(()-%)
(1-%)$#/)

(1-%) ⋯ ⋯ *#
(1-%)

⋯

⋯

⋯

⋯

$#(,)-%)
(0)

$#,)
(1)

$#(,)-%)
(1-%)

$#(,)-%)
(.)

Figure 6. Applied overlapping fashion of overlapped chunked codes (OCC) for source k. The blocks in
grey for chunk i are the blocks taken from the previous chunk, i.e., chunk i− 1.

In this fashion, for source k and each chunk, there are µk > 0 innovative blocks, i.e., linearly
independent blocks if comparing to the blocks of the other chunks, and there are γk overlapped blocks
between two contiguous chunks. Hence, there are dk = µk + γk blocks for all chunks except the first
chunk where there are only µk blocks, i.e., d(1)k = µk, since it is not the rounded-end fashion. µ and γ

are defined as ∑K
k=1 µk and ∑K

k=1 γk, respectively. There are min{M, d(i)k } linearly independent coded

blocks among M coded blocks for chunk i and source k, where
[
χ
(i)
k1 , χ

(i)
k2 , · · · , χ

(i)
kM

]
∈ Fd(i)k ×M

q should
be pseudorandomly generated to achieve this goal.

Sensors 2018, 18, 3225 14 of 32

5.2. Decoding

The feature of OCC is that a decoded chunk can help the other undecodable chunks in decoding
by using back-substitution (b.s). The recovered blocks of the decoded chunk are substituted into the
undecodable chunks that consist of the same blocks, i.e., the overlapped blocks. Thus, the number of
linearly independent codeword combinations of the back-substituted chunks might be increased, and
it depends on the value of q and the pairs (dk, γk) for all k [28]. With the OCC employed in this paper,
for chunk i, left back substitution (l.b.s) and right back-substitution (r.b.s) denote b.s by the decoded
neighboring chunk on the left, i.e., chunk i− 1, and on the right, i.e., chunk i + 1, respectively.

In addition to b.s, this paper considers the other decoding opportunity, called combination of
chunks (co.cs) for the applied OCC. co.cs combines the contiguous undecodable chunks into the
form of chain of chunks (ch.cs) with length φ ≥ 1, where φ is the number of the combined chunks.
The decoding process can start without the need for at least an already decoded neighboring chunk as
with b.s. The form of combined coding coefficient matrix of co.cs, Cc, is shown in Figure 7.

!(#$%&')

!(#$')

!(#)

⋯

*

+

0

0

⋯

⋯

Figure 7. The form of combined coding coefficient matrix of the chain of chunks with length φ.

A ch.cs is decodable if the rank of Cc, rank (Cc), is equal to the total number of original blocks
inside that ch.cs, which is denoted by rch. A ch.cs is considered as a directly undecodable ch.cs without
waiting to receive a new chunk if rank (Cc) is lower than a threshold value denoted by rth. rco and
rth are determined as described in Algorithm 1 by using the feature of the applied OCC. Chunk i
can participate in the co.cs process if r(i)p ≤ r(i) ≤ D(i) − 1, where r(i)p is determined as described in
Algorithm 2. In Algorithms 1 and 2, l.b.s.s(i) and r.b.s.s(i) refer to the state of l.b.s and r.b.s, respectively,
for considered chunk i. l.b.s.s(i) and r.b.s.s(i) declare whether undecodable chunk i has not been
back-substituted by its left neighboring decoded chunk, i.e., chunk i− 1, and by its right neighboring
decoded chunk, i.e., chunk i + 1, respectively. r(t)p = 0 means that chunk t cannot participate in co.cs,
and its decodability depends on r(t). The process of co.cs is described in Algorithm 3, where d.s(ch.cs)
refers to the decodability state of the currently obtained ch.cs.

The decoding process can be done as described in Algorithm 4, where d.s(t) and d.s(t− φ + 1 : t)
declare whether chunk t and ch.cs, combining from chunk t back to t− φ + 1, respectively, are decoded
or not. The decoding process for a ch.cs with length φ ≥ 2 can be done by using the inactivation
decoding method [23] in order to reduce the decoding complexity. However, Gaussian elimination is
applied for the decoding process in this paper.

The chunks that are considered as directly undecodable chunks without waiting for the next
received chunks can become decodable by the aid of feedback from the destination back to the sources.
Otherwise, they can be discarded in order to reduce the storage overhead if they do not affect the
recovery of all blocks, i.e., the original message. The latter option can be achievable by applying
precoding before OCC at each source. With precoding, the original blocks can be recovered when a
fraction of all coded blocks is decoded [12].

Sensors 2018, 18, 3225 15 of 32

Algorithm 1 Determining rth and rch of a co.cs starting from chunk t with length φ.

1: if t− φ + 1 = 1 then

2: rch = φ · µ
3: if r.b.s.s(t) = true then

4: rth = φ · µ
5: else

6: rth = φ · µ− γ
7: end if
8: else

9: rch = φ · µ + γ
10: if l.b.s.s(t− φ + 1) = true and r.b.s.s(t) = true then

11: rth = φ · µ + γ
12: else if l.b.s.s(t− φ + 1) = true and r.b.s.s(t) = false then

13: rth = φ · µ
14: else if l.b.s.s(t− φ + 1) = false and r.b.s.s(t) = true then

15: rth = φ · µ
16: else if l.b.s.s(t− φ + 1) = false and r.b.s.s(t) = false then

17: rth = φ · µ− γ
18: end if
19: end if

Algorithm 2 Determining r(t)p for chunk t.

1: if t = 1 then

2: if r.b.s.s(t) = true then

3: r(t)p = 0
4: else

5: r(t)p = µ− γ + 1
6: end if
7: else

8: if l.b.s.s(t) = true and r.b.s.s(t) = true then

9: r(t)p = 0
10: else if l.b.s.s(t) = true and r.b.s.s(t) = false then

11: r(t)p = µ + 1
12: else if l.b.s.s(t) = false and r.b.s.s(t) = true then

13: r(t)p = µ + 1
14: else if l.b.s.s(t) = false and r.b.s.s(t) = false then

15: r(t)p = µ− γ + 2
16: end if
17: end if

Sensors 2018, 18, 3225 16 of 32

Algorithm 3 Combination of chunks.

1: Starting from chunk i

Taking t = i, d.s(ch.cs) = false, φ = 1, Cc = C(t)

2: if rank (Cc) = rch then

3: Update d.s(ch.cs) = true
4: return d.s(ch.cs),φ
5: else

6: if t = 1 or rank (Cc) < r(t)p or l.b.s.s (t) = true then

7: return d.s(ch.cs),φ
8: end if
9: end if

10: while t− 1 > 0 and r(t−1)
p ≤ r(t−1) ≤ D− 1 and r.b.s.s (t− 1) = false do

11: Update φ = φ + 1, Cc =
[
Cc, C(t−1)

]
12: if rank (Cc) = rch then

13: Update d.s(ch.cs) = true
14: return d.s(ch.cs),φ
15: else

16: Update t = t− 1
17: end if
18: end while

Algorithm 4 Decoding process.

1: Obtaining the codeword combinations of chunk i
2: Take t = i
3: if r(t) = D and d.s(t) = false then

4: Conduct decoding and update d.s(t) = true, t = t− 1
5: Go to 3
6: else

7: if t− 1 > 0 and d.s(t− 1) = true and l.b.s.s(t) = false then

8: Conduct l.b.s and update l.b.s.s(t) = true
9: end if

10: if d.s(t + 1) = true and r.b.s.s(t) = false then

11: Conduct r.b.s and update r.b.s.s(t) = true
12: end if
13: if r(t) = D and d.s(t) = false then

14: Conduct decoding and

update d.s(t) = true, t = t− 1
15: Go to 3
16: else

17: if l.b.s.s(t) = false and t− 1 > 0

and d.s(t− 1) = false then

18: Conduct co.cs to obtain ch.cs with length φ
19: if d.s(ch.cs) = true then

20: Conduct decoding and

update d.s(t− φ + 1 : t) = true, t = t− φ
21: Go to 3
22: end if
23: end if
24: end if
25: end if
26: Wait to receive the codeword combinations of chunk i + 1

Sensors 2018, 18, 3225 17 of 32

5.3. Design with Applied Overlapped Chunked Code

The design of the applied OCC for multi-source multi-relay, i.e., the design of OCC/CF, is to
determine an allocation [(µ1, γ1) , (µ2, γ2) , · · · , (µK, γK)] with the desired pdeff or with the desired
effective channel efficiency ηeff. For convenience, this paper takes M as the maximum chunk size,
i.e., M ≥ max{dk, 1 ≤ k ≤ K} and M can provide min{θk, 1 ≤ k ≤ K} > 0. If Nk is the total
number of blocks for source k, the number of chunks that contain the blocks of all sources is equal to

min
{⌊

Nk
µk

⌋
, 1 ≤ k ≤ K

}
.

The finite number of chunks for the applied OCC might cause high overhead in single-flow
transmission if compared with the other codes such as in the works of [16–18,30], which have a rateless
feature. However, the design of the applied OCC in a multi-source multi-relay network might be simpler
if compared with the other designs that determine the probability distribution of chunk size for all
sources, for example. By taking the design of BATs codes [17] as an example, dk is selected according to
a determined degree distribution Ψk = {ψ0, ψ1, · · · , ψM} for each chunk. Determining Ψk for all k must
consider the outputs of pk, pd and pdeff, while Ψk for all k needs to satisfy Ψ1 ∗Ψ2 ∗ · · · ∗ΨK = Ψ [31],
where Ψ is the degree distribution of D = ∑K

k=1 dk and sign ∗ refers to the discrete-time convolution
operation. It becomes more complicated to determine Ψk for all k when K is large.

For the design of OCC/CF, dk is fixed for all chunks except for the first chunk. Thus, there are

1 + 2 + · · ·+ M =
M (M + 1)

2
candidates of (µk, γk) for source k and

[
M (M + 1)

2

]K
candidates of

[(µ1, γ1) , (µ2, γ2) , · · · , (µK, γK)] for all sources. It would be less if fixing dk = M and varying only γk
for all k, as in the previous work of this paper [1], where there are only M candidates for each source
and MK candidates for all sources. However, the decoding complexity and the storage overhead at
the destination might be high. For this work, the chunk size for each source is not large and bounded
by M; however, it can be large, as in the work of [14]. A larger chunk size with a large number of
overlapped blocks can improve the decodability of all chunks, but it can cause high computational
complexity, especially decoding complexity and storage overhead at the destination. An undecodable
chunk needs to wait for several new received chunks to start decoding, i.e., φ is large. For example,
if taking µ = 14, γ = 18, ρ̄ = 15 and M < D, where D = µ + γ = 32, then there are no chunks that can
be decoded by themselves, i.e., r = D without using b.s or co.cs. The decoding process can only start
by co.cs, where φ at least satisfies:

φ · ρ̄ ≥ φ · µ + γ, (12)

hence, φ ≥ 18.
With a large chunk size, the decoding process rarely starts with back-substitution, i.e., the ch.cs

with length φ = 1. The decoding process only start with co.cs with large φ. In this work, the length φ

is bounded for the purpose of low decoding complexity by providing more opportunities to conduct
b.s and to reduce latency, as an undecodable chunk needs to wait to become decodable.

6. Estimation of Decodability

6.1. Overview

In order to select an appropriate allocation [(µ1, γ1) , (µ2, γ2) , · · · , (µK, γK)] for the desired
purpose, the estimation of pdeff (also ηeff) is done for each possible allocation. The estimations of
pk and pd are conducted separately for each possible allocation. Then, pdeff is determined by (11),
and ηeff is determined by:

ηeff = µ · pdeff. (13)

In the previous work of this paper [1], the estimation was done by conducting a simulation to
obtain the performance in pd and pk of all allocations. Alternatively, in this paper, the estimation
is done by conducting table lookup and the accumulative sum of the probabilities that ch.cs with

Sensors 2018, 18, 3225 18 of 32

the maximum length φmax are decodable for all possible combinations of
[
ri−φ+1, ri−φ+2, · · · , ri]

and
[
θ

i−φ+1
k , θ

i−φ+2
k , · · · , θi

k

]
to determine pd and pk, respectively, using ρ (r) and λ (θk), respectively,

for φ ∈ {1, 2, · · · , φmax} and i > 1. For convenience, only the estimation of pd is described, and
the estimation of pk for all k can be done similarly.

At the start, it is assumed that an OCC with the fashion as in Figure 6 is applied from a sender to
a receiver in single-flow transmission, and ρ (r) with r ∈ {1, 2, · · · , Dmax} is the obtained empirical
rank distribution. The chunk size D is selected from the range value of r, then the maximum number
of linearly independent codeword combinations (coded blocks) received per chunk becomes D. ρ (r) is
updated to ρ′ (r′) where r′ ∈ {1, 2, · · · , D}. This paper estimates ρ′ (r′) from ρ (r) by:

ρ′
(
r′
)
=

{
ρ (r) , if r′ ∈ {1, 2, · · · , D− 1}.
∑Dmax

r=D ρ (r) , if r′ = D.
(14)

For the estimation and for convenience, another four back-substitution states for a chunk are
defined as below:

(i) not back-substituted state (n.b.s.s): equivalent to the event that l.b.s.s and r.b.s.s for a chunk are
all false;

(ii) half back-substituted state (h.b.s.s): equivalent to the event that one of l.b.s.s and r.b.s.s is true;
(iii) full back-substituted state (f.b.s.s): equivalent to the event that l.b.s.s and r.b.s.s are all true;
(iv) quasi-half back-substituted state (q.b.s.s): equivalent to n.b.s.s in the b.s process and equivalent to

h.b.s.s in the co.cs process.

n.b.s.s(r′), for example, refers to a chunk that has r′ linearly independent coded blocks, and its
state is n.b.s.s. $n (r′), $h (r′), $q (r′) and $ f (r′) denote the probabilities that a chunk has r′ linearly
independent coded blocks and has n.b.s.s, h.b.s.s, f.b.s.s and q.b.s.s, respectively. They satisfy the
condition below.

D

∑
r′=1

[
$n
(
r′
)
+ $h

(
r′
)
+ $q

(
r′
)
+ $ f

(
r′
)]

= 1. (15)

Initially, $n (r′) = ρ′ (r′) and $h (r′) = $q (r′) = $n (r′) = 0 for r′ ∈ {1, 2, · · · , D} are given.
The estimation here is to update $n (r′), $h (r′), $q (r′) and $ f (r′) according to the decoding process
for all values of r′. If ρd denotes the probability distribution of the number of linearly independent
coded blocks in a chunk after conducting the updating process, then:

ρd
(
r′
)
= $n

(
r′
)
+ $h

(
r′
)
+ $q

(
r′
)
+ $ f

(
r′
)

, for r′ ∈ {1, 2, · · · , D}. (16)

In the updating process, the chunk with n.b.s.s, h.b.s.s and q.b.s.s is active, i.e., $n (r′), $h (r′)
and $q (r′) are used to conduct the updating process, and the chunk with f.b.s.s is inactive, i.e., $ f (r′)
cannot be used to conduct the updating process and is only used in determining ρd. The updating
process is to try transforming n.b.s.s(r′) for all r′ to the chunks with other states, i.e., to make $n (r′)
tend to zero for all r′. At the end of the updating process, pd is obtained by taking pd = ρd (D).

The updating process is divided into two parts: b.s and co.cs, which are for φ = 1 and for
2 ≤ φ ≤ φmax, respectively. This paper assumes that the estimation of decodability is done at the
destination. The destination informs about the desired allocation to the sources via feedback.

6.2. Combination of Chunks

A ch.cs with Cc as in Figure 7 with length φ, where 2 ≤ φ ≤ φmax, is considered. The rank array
of Cc is

[
r′(i−φ+1), r′(i−φ+2), · · · , r′(i)

]
, where r′(t) is the rank of C(t) for t ∈ {i− φ + 1, i− φ + 2, · · · , i}.

A combination of
[
r′(i−φ+1), r′(i−φ+2), · · · , r′(i)

]
for a ch.cs (simply combination for convenience) with

length φ is considered as a possible combination to be taken into account in the estimation if it satisfies:

Sensors 2018, 18, 3225 19 of 32

i

∑
t=i−φ+1

r′(t) ≥ φµ + γ, (17)

and it does not contain any possible combination with length φ′ inside, where φ′ ∈ {1, 2, · · · , φ− 1}.
The ch.cs corresponding to a possible combination is decodable if rank (Cc) = φ · µ + γ. ps denotes
the probability that a combination can make the correspondent ch.cs decodable and qs = 1− ps.
All possible combinations and their ps are obtained by conducting a computation in MATLAB in this
work and known by the destination where table lookup is done while doing the estimation.

Based on three different locations of a chunk in a ch.cs, the other three probabilities are defined
as below.

(i) $b (r′): the probability that a chunk that has r′ linearly independent coded blocks can play the role
of the beginning chunk, i.e., t = i. The beginning chunk can be with n.b.s.s or h.b.s.s or q.b.s.s.

(ii) $i (r′): the probability that a chunk that has r′ linearly independent coded blocks can play the
role of the intermediate chunk, i.e., t ∈ {i− φ + 2, i− φ + 3, · · · , i− 1}. The intermediate chunk
only can be with n.b.s.s. Hence, $i (r′) = $n (r′).

(iii) $e (r′): the probability that a chunk that has r′ linearly independent coded blocks can play the role
of the ending chunk, i.e., t = i− φ + 1. The ending chunk can be with n.b.s.s, or h.b.s.s, or q.b.s.s.
The beginning chunk and the ending chunk have a similar property because the combinations
are reversible. Thus, only the beginning chunk is studied, and $e (r′) = $n (r′) + $h (r′) + $q (r′)
is taken.

Chunk t is decodable, i.e., ch.cs that contains chunk t and t ∈ {i − φ + 1, · · · , i} is decodable,
by probability pc, which is:

pc = ps$b(r′(i))$e(r′(i−φ+1))
i−1

∏
t=i−φ+2

$i(r′(t)). (18)

When the beginning chunk t = i is focused on, it must have r′(t) ≥ µ + 1, as in the case that one of
l.b.s.s (t) and r.b.s.s (t) is true in Algorithm 2. For example, by taking D = 18 and γ = 4, a combination
with rank array [16, 14, 14, 17] is a possible combination where r′(t) = 16 and ps ≈ 0.9663. However,
the combination with rank array [16, 15, 14, 17] is not a possible combination because it contains a
possible combination with rank array [15, 14, 17].

When the intermediate chunk t ∈ {i − φ + 2, · · · , i − 1} is focused on, it must have r′(t) ≥
µ− γ + 2, as in the case that l.b.s.s (t) and r.b.s.s (t) are all false in Algorithm 2. However, for r′(t) > µ,
the possible combinations that have the same rank arrays as those of the possible combination when
focusing on the beginning chunk with the same value of r′(t) are not included. In this estimation,
the possible combinations that are both available while focusing on the beginning chunk and the
intermediate chunk and have the same elements of the rank array, and the same focused chunk with
n.b.s.s is applied once in the updating process with co.cs. This is because there is no constraint on the
order of chunks in a ch.cs for Relation (18). For example, by taking D = 18 and γ = 4, two combinations
with rank array [16, 13, 15, 16] focusing on the chunk with r′(t) = 13 and with rank array [16, 15, 16]
focusing on the chunk with r′(t) = 15 are used because combinations with rank arrays [13, 16, 15, 16]
focusing on the chunk with r′(t) = 13 and with rank array [15, 16, 16] focusing on the chunk with
r′(t) = 15 are not possible combinations. However, the combination with rank array [16, 13, 15, 16]
focusing on the chunk with r′(t) = 15 is not a possible combination because the combination with rank
array [15, 16, 13, 16] focusing on the chunk with r′(t) = 15 is a possible combination.

The purpose of introducing q.b.s.s is described by the following example. By taking D = 18 and
γ = 3, a combination with rank array [17, 16, 14, 17] has ps ≈ 0.9473. However, it is not a possible
combination since the combination with rank array [17, 16] is a possible combination with ps ≈ 0.8369.
Then, no matter how the rest of the decoding process (with b.s) is done, the combination with rank
array [17, 16, 14, 17] is decodable with ps less than 0.8369, which is lower than the real value. Hence,

Sensors 2018, 18, 3225 20 of 32

in order to fix this problem, q.b.s.s is introduced by assuming that the beginning chunk with n.b.s.s of an
undecodable possible combination (with a probability of qc = qs$b(r′(i))$e(r′(i−φ+1))∏i−1

t=i−φ+2 $i(r′(t)))

becomes a chunk with r′(i) = D− 1, but no longer with n.b.s.s, and with a state like h.b.s.s during
the updating process with co.cs and with a state like n.b.s.s during the updating process with b.s.
After introducing q.b.s.s, the ch.cs with the rank array [17, 16, 14, 17] is decodable with a probability
around 0.9498, which is close to the real value.

The relationship (transition) between four states of a chunk for the updating process with co.cs is
shown in Table 2, where pt refers to the transfer probability.

Table 2. Transition table between four chunk states for the updating process with the combination
of chunks (co.cs). h.b.s.s, half back-substituted state; f.b.s.s, full back-substituted state; n.b.s.s, not
back-substituted state; q.b.s.s, quasi-half back-substituted state.

Condition for Focused Chunk t with r′(t) From To $b(r′(i)) pt

t = i; r′(t) ≥ µ + 1 h.b.s.s(r′(t)) f.b.s.s(D) $h(r′(t)) pc
t = i; r′(i) ≥ µ + 1 h.b.s.s(r′(t)) h.b.s.s(r′(t)) $h(r′(t)) qc

i− φ + 2 ≤ t ≤ i− 1; r′(t) ≥ µ− γ + 2 n.b.s.s(r′(t)) f.b.s.s(D) $e(r′(i)) pc
i− φ + 2 ≤ t ≤ i− 1; r′(t) ≥ µ− γ + 2 n.b.s.s(r′(t)) n.b.s.s(r′(t)) $e(r′(i)) qc

t = i; r′(t) ≥ µ + 1 n.b.s.s(r′(t)) h.b.s.s(D) $n(r′(t)) pc
t = i; r′(t) ≥ µ + 1 n.b.s.s(r′(t)) q.b.s.s(D− 1) $n(r′(t)) qc
t = i; r′(t) = D− 1 q.b.s.s(r′(t)) h.b.s.s(D) $q(r′(t)) pc
t = i; r′(t) ≥ µ + 1 q.b.s.s(r′(t)) q.b.s.s(r′(t)) $q(r′(t)) qc

The updating process with co.cs is done by applying the relationship in Table 2 and by following
the concept of same increment same decrement, i.e., the decrement of the probability of a state (n.b.s.s
or h.b.s.s or q.b.s.s) at a value of r′ is the increment of probability of another state at the same value
of r′ or at the others. For example, by taking D = 18, γ = 3, q = 7, $n (r′) = {0.1, 0.2, 0.4, 0.3} and
$h (r′) = $q (r′) = $ f (r′) = {0, 0, 0, 0} for r′ ∈ {15, 16, 17, 18} and by considering a chunk with n.b.s.s
and r′ = 15 in a possible combination with rank array [16, 15, 17], then ps ≈ 0.8166 and pc = 0.0065 are
obtained. Then, $n(15) decreases by pc, and $ f (18) increases by pc. The updating process with co.cs
can be done repeatedly for a number of iterations. $n (r′), $h (r′), $q (r′) and $ f (r′) for all values of r′

are updated after an iteration of the updating process with co.cs and are used for the next iteration.

6.3. Back-Substitution

The work in [28] provides the probability that γ′ recovered (overlapped) blocks successfully help
undecodable chunk t that has already had r′(t) linearly independent coded blocks turn into a decodable
chunk, where r′(t) + γ′ ≥ D and γ′ ∈ {γ, 2 · γ}. In this estimation, the increment of the number of
linearly independent coded blocks in an undecodable chunk after conducting b.s by using γ′ recovered
blocks is also considered. In addition, the probability distribution of the increment is used.

In order to obtain these data, a computation in MATLAB is conducted to obtain the rank
probability distribution of matrix C(t) ∈ FD×r′(t)

q with γ′ rows eliminated, i.e., a (D− γ′)× r′(t) matrix;

hence, the obtained rank r(t)m has range of values
{

0, 1, · · · , r′(t)max

}
, where r′(t)max = min{D− γ′, r′(t)}.

The probability distribution of r(t)m is denoted by ρm

(
r(t)m

)
. Since the initial rank of C(t) is r′(t),

then the probability distribution of the rank of the (D− γ′)× r′(t) matrix, denoted by ρ′m

(
r′(t)m

)
where

r′(t)m ∈ {r′(t)min, · · · , r′(t)max} and r′(t)min = max{0, r′(t) − γ′}, is approximately obtained by:

ρ′m

(
r′(t)m

)
=
{

ρm

(
r′(t)min

)
, · · · , ρm

(
r′(t)max

)}
·

∑r′(t)max

r(t)m =0
ρm

(
r(t)m

)
∑r′(t)max

r(t)m =r′(t)min

ρm

(
r(t)m

) . (19)

Sensors 2018, 18, 3225 21 of 32

The rank increment from the aid of γ′ overlapped blocks to undecodable chunk t is denoted by
r(t)i ; hence, r(t)i = r′(t)m + γ′ − r′(t), where r(t)i ∈ {0, 1, · · · , γ′}. If ρi

(
r(t)i

)
is the probability distribution

of r(t)i , then ρi

(
r(t)i

)
= ρ′m

(
r′(t)m

)
. pbs = $n (D) + $h (D) is taken as the fraction (probability) of the

decoded chunks that can be used for b.s, and qbs = 1− pbs. For the case that only half b.s (l.b.s or r.b.s)
is executable, then γ′ = γ. If full b.s is executable, then γ′ = 2 · γ. The transition table between four
chunk states for the updating process with b.s is shown in Table 3. The focused chunk t has C(t) with
rank r′(t).

Table 3. Transition table between four chunk states for the updating process with b.s.

Half or Full b.s or N/A From To pt

Half n.b.s.s(r′(t)) h.b.s.s(r′(t) + r(t)i) 2 · pbs · qbs · ρi

(
r(t)i

)
Full n.b.s.s(r′(t)) f.b.s.s(r′(t) + r(t)i) p2

bs · ρi

(
r(t)i

)
N/A n.b.s.s(r′(t)) n.b.s.s(r′(t)) q2

bs
Half h.b.s.s(r′(t)) f.b.s.s(r′(t) + r(t)i) pbs · ρi

(
r(t)i

)
N/A h.b.s.s(r′(t)) h.b.s.s(r′(t)) qbs

Half q.b.s.s(r′(t)) h.b.s.s(r′(t) + r(t)i) 2 · pbs · qbs · ρi

(
r(t)i

)
Full q.b.s.s(r′(t)) f.b.s.s(r′(t) + r(t)i) p2

bs · ρi

(
r(t)i

)
N/A q.b.s.s(r′(t)) q.b.s.s(r′(t)) q2

bs

The updating process with b.s is done by applying the relationship of four chunk states shown in
Table 3 and by following the concept of the same increment same decrement as in the updating process
with co.cs. The updating process with b.s can be done repeatedly as with co.cs. After the end of each
iteration of the updating process with b.s, pbs is added to $ f (D), and it is updated according to the
updated value of $h (D) because $n (D) becomes zero after the first iteration of the updating process
with b.s.

6.4. Decoding Complexity

From the work in [17], to encode a block by applying RLNC from dk input blocks required
O (T · dk) finite field operation, where T is the number of symbols per block. By applying Gaussian
elimination for the decoding process, decoding a chunk with size dk requires O

(
d2

k + T · dk
)

finite
field operations per block on average. Since decoding complexity is more significant than encoding
complexity, thus only decoding complexity is discussed in this paper.

With the applied decoding scheme, the main key to look at the decoding complexity is the
mean length of ch.cs, φ̄. With OCC/CF, it is hard to estimate φ̄ since a successful b.s or co.cs does not
depend on the selection of [D, γ] alone, but actually on the selection of [(µ1, γ1) , (µ2, γ2) , · · · , (µK, γK)].
However, this paper employs the OCC designed using ρ (r), i.e., the selection of [D, γ], to estimate φ̄

since pd ≥ pdeff and the obtained value of φ̄ might rely on the way of conducting the estimation.
$φ (φ) denotes the probability (faction) that a ch.cs with length φ is successfully decoded. $φ (φ)

for 2 ≤ φ ≥ φmax can be estimated or collected along with the process of updating probabilities with
co.cs, i.e., the increase in $h (D) and in $ f (D) for a considered φ is the increase in $φ (φ). In addition,

$φ (1) can be obtained by pd −∑
φmax
φ=2 $φ (φ). Hence, φ̄ can be obtained by:

φ̄ =
∑

φmax
φ=1 φ · $φ (φ)

pd
. (20)

Therefore, while employing OCC/CF, for each successfully decoding, it would need
O
(
φ̄2 · D2 + T · φ̄ · D

)
finite field operations per block. It would be lower since Cc is an approximately

sparse matrix, as shown in Figure 7.

Sensors 2018, 18, 3225 22 of 32

6.5. Obtaining the Estimated Performance

The process of updating probabilities with co.cs and b.s above can be done repeatedly and also
alternately. Since there are µ innovative blocks per chunk, then chunk t with r′(t) > µ can help the
undecodable chunks to decode. This paper considers that applying the updating process with b.s first
might make the value of $′n(r′(t)) where r′(t) is close to D tend to zero early and then might make the
other $′n(r′(t)) hardly tend to zero via the updating process. Therefore, this paper applies the updating
process with co.cs first.

By taking the overlapping fashion of the applied OCC as the pseudo-reference, the updating
process with co.cs is applied for one iteration, then the updating process with b.s is applied for φmax

iterations. If N is the total number of original blocks, then there are approximately Nch =

⌈
N

φmax

⌉
chains of chunks with length φmax. It is assumed that one time of the updating process is the updating
process with co.cs for one iteration and then with b.s for φmax iterations. Then, Nch times of the
updating process are needed such that the effect of the first ch.cs reaches the last ch.cs, and thus,
2 · Nch − 1 times of the updating process are needed such that this effect returns back to the first chunk.
In this work, one round of the updating process is 2 · Nch − 1 times the updating process. In order to
obtain the ultimate ρd (r′), the updating process is done for a number of rounds until the increment of
obtained pd is lower than an assigned εt, then the updating process terminates, and the ultimate pd
is obtained. The channel efficient η is obtained by η = µ · pd. The computational complexity for the
estimation depends on εt. It is higher when εt is smaller, but the accuracy might be higher.

For example, by taking K = L = 2, M = 10, φmax = 5, SNR1,1 = SNR2,2 = SNR1,2 = 35 dB,
SNR2,1 = 15 dB, E8/7E8 as NLC and by taking only the case that µ − γ > 0, the empirical rank
distribution ρ (r), the estimated pd and the correspondent η are shown in Figure 8. The simulation
result obtained with the same condition and by using the empirical rank distribution in Figure 8a is
also shown in Figure 8b,c for comparison.

From Figure 8b, the estimation causes high deviation from the simulation result for the allocations
(µ, γ) that provide low pd, e.g., lower than 0.9, and it causes low deviation for the allocations (µ, γ)

that provide high pd. The error might be caused by the inaccuracy of the updated rank distribution ρ′

or by the imperfectness of the process of updating probability with limited length of ch.cs. However,
because the performance with high pd is preferred for this paper, thus the estimation applied in this
paper is acceptable.

On the other hand, from Figure 8c, the maximum η from the estimation, ηmax-est, is obtained
by taking allocation (14, 5). However, the maximum η from the simulation, ηmax-sim, is obtained by
taking allocation (14, 6). Both allocations have the same µ, but different output pd. From the work
of [14,15], without limiting the length of ch.cs, larger γ with the same µ can provide higher pd. Due to
the estimation deviation, the allocation to provide ηmax is not correctly given. However, during the
application, the allocation providing ηmax-est can be switched to the other allocation with larger γ,
but with the same µ to find out which allocation is more appropriate.

From Figure 8d, the estimated φ̄ is much larger than φ̄ from the simulation, since the process of
updating probabilities with co.cs is executed first, which is different from the real fact that b.s should
be conducted as soon as possible according to the decoding scheme described in Algorithm 4. Thus,
$φ (φ) is abnormally high for φ ≥ 2, especially, when γ is large. However, the obtained results of φ̄

with the same µ = D− γ, but with different set values (D, γ) from both estimation and simulation
show that larger γ results in higher φ̄, hence higher decoding complexity. In addition, φ̄ from the
estimation somehow can serve as φ̄ obtained in the worst case.

Sensors 2018, 18, 3225 23 of 32

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

(a)

0

0.2

10

0.4

9

0.6

0.8

8

1

7 896 105 11124 13143 15162 171 18190 20

(b)

0
10

0.5

9

1

8

1.5

7 896 105 11124 13143 15162 171 18190 20

!"#$%&'" !"#$%(&)

(c)

1
20 10

1.5

19 918 8

2

17 716

2.5

615 14 5

3

13 412 311 210 19 8 0

(d)

Figure 8. Comparison between the estimated pd and η (est) and the result from the simulation (sim)
that were obtained from an empirical rank distribution ρ (r). (a) Empirical rank distribution ρ (r);
(b) decodability; (c) channel efficiency; (d) mean length of ch.cs.

Sensors 2018, 18, 3225 24 of 32

7. Performance Analysis

7.1. Examples of Allocations

This paper assumes that the fairness between sources is achieved if η1 = η2 = · · · = ηK where ηk
is the channel efficiency for source k. ηk is defined as the ratio of the number of decoded blocks from
source k to the number of time slots taken from the sources to the relays. If individually decoding
is not considered, ηk for all k only depends on pdeff. In this case, the fairness is achieved by taking
µ1 = µ2 = · · · = µK.

By taking the data in Figure 8, Table 4 lists some allocations and their performances in pdeff and
ηeff from estimation and simulation. In addition, φ̄ is the average value of φ, and it is counted when a
ch.cs with length φ ≥ 1 is decoded. φ̄ represents the computational complexity of the decoding process.

Table 4. Some examples of allocations.

Allocations Estimation Simulation

No. µ1 µ2 γ1 γ2 p1 p2 pd pdeff ηeff φ̄ pdeff ηeff φ̄

1 7 7 2 3 0.9982 0.9722 0.9206 0.8935 1.2509 2.1671 0.9107 1.2750 1.4702
2 8 6 2 3 0.9868 0.9935 0.9206 0.9026 1.2636 2.1671 0.9295 1.3013 1.4264
3 8 6 2 4 0.9868 0.9951 0.9152 0.8986 1.2580 2.3136 0.9341 1.3077 1.4820
4 6 8 3 2 0.9988 0.8309 0.9206 0.7641 1.0687 2.1671 0.6674 0.9344 1.6135
5 7 6 3 4 0.9975 0.9951 0.9756 0.9684 1.2589 2.6592 0.9991 1.2988 1.1812
6 7 6 2 4 0.9982 0.9951 0.9779 0.9714 1.2628 2.3758 0.9986 1.2982 1.1767
7 7 6 1 4 0.9989 0.9951 0.9710 0.9710 1.2623 2.0224 0.9938 1.2919 1.1679
8 7 6 0 4 0.9981 0.9951 0.9674 0.9710 1.2577 1.6220 0.9807 1.2749 1.1549
9 7 6 1 2 0.9989 0.9947 0.9697 0.9635 1.2525 1.2880 0.9833 1.2783 1.0815

From Table 4, Allocation 1 can provide the fairness between sources, but it cannot provide the
highest channel efficiency, while Allocations 2 and 3 can provide the highest channel efficiency by
estimation and simulation, respectively. The interchanged Allocation 3, i.e., Allocation 4, shows the
affect of an unsuitable selection of (µ2, γ2), which has low pdeff. Allocations 1–4 do not provide high
pdeff. On the other hand, Allocation 5 can provide high pdeff, but not the highest channel efficiency.
However, the decoding complexity is lower since φ̄ is smaller. If the difference between the provided
channel efficiency and the highest channel efficiency is small, then this allocation can be applied
instead if lower decoding complexity is required. Allocations 5–9 have the same µ, but different γ,
which varies from 7–3. They show the outcome of different values of γ to pdeff and φ̄. From the result
in Table 4, larger γ provides higher pdeff, but higher decoding complexity.

On the other hand, the highest channel efficiency can be obtained by the precoding process at
each source before employing OCC. However, this might cause additional decoding complexity and
latency caused from re-ordering blocks after the decoding process. This paper assumes that there is
no precoding overhead, i.e., the number of required received coded blocks is equal to the number of
original blocks when the maximum channel efficiency is considered.

7.2. Impact of the Participation Factor of Each Source

From now on, this paper uses the term OCC as the applied OCC, which uses the allocation
providing the highest channel efficiency. In addition, OCC′ refers to the applied OCC that uses the
allocation providing the highest channel efficiency with condition pd ≥ pthr or pk ≥ pthr. OCC/CF
and OCC′/CF refer to the transmission schemes employing OCC and OCC′, respectively, before NLC
in a multi-source multi-relay network. The decodability condition for OCC′/CF is pdeff ≥ pthr.

ηmax denotes the maximum channel efficiency that can be provided by the applied OCC designed
using ρ (r). If individually decoding is not considered, from (11), the upper bound of ηeff is ηmax.

As mentioned above, η̄ =
ρ̄

M
is the channel capacity or the upper bound of the channel efficiency for

Sensors 2018, 18, 3225 25 of 32

the transmission scheme employing OCC/CF from the sources to the destination. By taking K = L = 2,
M = 10, φmax = 5, E8/7E8 as NLC, pthr = 0.97, SNR1,1 = SNR2,2 = 35 dB, SNR1,2 ∈ {5, 20, 35} dB,
SNR2,1 ∈ {0, 5, 10, 15, 20, 25, 30, 35} dB. The performance of OCC/CF and OCC′/CF in decodability
and channel efficiency from estimation (with postfix “-est”) and simulation (with postfix “-sim”) is
shown in Figure 9.

From Figure 9, the estimated channel efficiencies of OCC/CF and OCC′/CF are around 97.95%
and 98.34%, respectively, of those of the channel efficiency obtained from simulation on average.
In addition, the gap between the channel efficiency of OCC and η̄ represents the design overhead
of applied OCC. From the simulation result, ηmax is around 87.71% of η̄ on average. The design
overhead of OCC/CF should be the aggregate of the design overhead using ρ (r) and λk (θk) for all k.
The channel efficiency of OCC/CF and OCC′/CF is close to ηmax when SNR1,2 or SNR2,1 is close to (as
high as) SNR1,1 or SNR2,2. This is because, in this case, the participation factor of each source is dense
around θk = dk. When λk (dk) is very dense, most of the allocations (µk, γk) can provide pk close to
one. Hence, the design of OCC/CF or OCC′/CF can only depend on ρ (r).

In the case that SNR1,2 and SNR2,1 are low, the received combined coded blocks are almost plain

coded blocks, i.e., β
(i)
lm are almost in the form of unit vectors for all l and m. The design overheads of

OCC/CF and OCC′/CF in this case should be the aggregate of the design overhead of OCCs using
λk (θk) for all k. Since the participation factor of each source is not dense around θk = dk, the design
overheads of OCC and OCC′ might be high, and higher than those of the prior case.

In order to make λk (dk) denser, in addition to forcing to obtain β
(i)
lm without zero elements at each

relay, improving the diversity of the received codeword combinations by increasing the number of
participating relays or equipping more antennas at relays as in work of [8,9] might be a solution.

0 5 10 15 20 25 30 35
0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30 35
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

05101520253035
0.88

0.9

0.92

0.94

0.96

0.98

1
(a)

Figure 9. Cont.

Sensors 2018, 18, 3225 26 of 32

0
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30 35
0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30 35
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

05101520253035
0.88

0.9

0.92

0.94

0.96

0.98

1
(b)

0
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30 35
0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30 35
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

05101520253035
0.88

0.9

0.92

0.94

0.96

0.98

1
(c)

Figure 9. Decodability and channel efficiency of OCC/compute-and-forward (CF) and OCC′/CF from
estimation and simulation. (a) SNR1,2 = 5 dB; (b) SNR1,2 = 20 dB; (c) SNR1,2 = 35 dB.

7.3. Reference Schemes

Because the original work in [7] did not consider the retransmission, a feedback-based
transmission scheme is used as the reference scheme instead to evaluate the performance of OCC/CF
and OCC′/CF, and it is called CF with protocol overhead (CF/PO) in this paper. For each round of
CF/PO, each source applies NLC without OCC and needs feedback from the destination after sending
a block to know which blocks have been decoded and which blocks need to be retransmitted. Feedback
is forwarded by relays via an orthogonal channel. There is no decoding delay constraint, i.e., a source
can transmit a new original block although the previous blocks of the other sources have not been
decoded [6].

The protocol overhead (the transmission time of feedback and the loss of feedback) are taken into
account. The feedback reception success rate is denoted by p f , and the ratio of the transmission time
of feedback to a slot time is denoted by τf . p f is obtained by conducting a simulation where NLC is
applied on a link from a source to a relay with the highest SNR via an orthogonal channel. Because
it is hard to track the performance of CF/PO with varying p f , only the performance with different
values of τf is considered.

Sensors 2018, 18, 3225 27 of 32

In addition to the channel efficiency, the transmission efficiency εt is also considered to evaluate
the performances of OCC/CF and OCC′/CF with a scheme called RLNC with orthogonal channel
(RLNC/OC) where RLNC is applied before NLC at each source for the transmissions from the sources
to the relays via an orthogonal channel. For each source, original blocks are grouped into disjoint
chunks with M blocks per chunk. RLNC is applied within each chunk, and a feedback (ACK) is needed
when a transmitted chunk is decodable. The protocol overhead is also considered, and it is assumed
that feedback cannot be received instantaneously by the source to stop transmitting [32]. In this paper,
εt is defined as the ratio of the total number of decoded blocks to the total number of transmissions
taken between the sources and the relays, while the transmission of feedback is also taken into account.
In this paper, τf is assumed as the ratio of the length of feedback data to the length of payload data per
block. The performance in transmission efficiency reflects the energy consumption of each scheme.

On the other hand, a transmission scheme employing LT code [20,30] at each source before NLC,
called fountain code with CF (FC/CF), is also used as a reference scheme. The considered parameters
of LT code are cfc and δfc. In the case of single flow transmission with Nk original blocks, the receiver
can recover all blocks with probability 1− δfc if receiving Nk + 2 · loge (Sfc/δfc) · Sfc coded blocks,
where Sfc ≡ cfc · loge (Nk/δfc) ·

√
Nk.

In the CF/PO and FC/CF schemes, the decoding process is done for each source block
transmission. The destination tries to decode if there are K linearly independent codeword
combinations. If undecodable, the destination stores the undecodable blocks (after decoding using (2))
and waits for the next received codeword combinations.

Since feedback is not needed in OCC/CF, OCC′/CF and FC/FC, their transmission efficiency is
1/K times their channel efficiency. If Ndec, Nfb and Nts denote the total number of decoded blocks, the
total number of feedback and the total number of time slots taken excluding the transmission time of
feedback, respectively, then the channel efficiencies and the transmission efficiencies of CF/PO and
RLNC/OC can be written as below.

ηeff_CF/PO =
Ndec

Nts + τf · Nfb
. (21)

εt_CF/PO =
Ndec

K · Nts + τf · Nfb
. (22)

ηeff_RLNC/OC =
Ndec
Nts

. (23)

εt_RLNC/OC =
Ndec

Nts + τf · Nfb
. (24)

8. Numerical Results and Discussion

This papers considers two scenarios to observe the performance of the transmission schemes
employing OCC/CF and OCC′/CF by comparing with the reference schemes. The first scenario
investigates the performance in a two-source two-relay network with an asymmetric channel state
at relays, i.e., average SNRs of all links from all sources to a relay might be different, as used in
Section 7.2. The second scenario considers a varying number of relays with a symmetric channel state,
i.e., average SNRs of all links from all sources to a relay are the same, and the number of sources is
fixed to two. The numerical results are obtained by conducting simulations taking E8/7E8 as NLC,
M = 10, Nk = 1000 for all k, cfc = 0.01, δfc = 0.01, τf = 0.05 for RLNC/OC and τf ∈ {0, 0.05} for
CF/OF. The simulation frequency is 100 times. Each simulation terminates when there is at least source
k having the rest of innovative blocks less than µk for OCC/CF, OCC′/CF and RLNC/OC and when
all original blocks of at least one source are recovered for CF/PO and FC/CF.

The performances of OCC/CF and OCC′/CF in the first scenario are the same as in Figure 9.
The second scenario takes SNR1,1 = SNR2,2 = SNR1,2 = SNR2,1 ∈ {30, 35, 40} dB with correspondent

Sensors 2018, 18, 3225 28 of 32

p f ∈ {0.8266, 0.9021, 0.9449}. The performances in channel efficiency and transmission efficiency of all
schemes in Scenario 1 and 2 are shown in Figures 10 and 11, respectively.

0 5 10 15 20 25 30 35
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a)

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30 35
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(b)

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30 35
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(c)

Figure 10. Channel efficiency and transmission efficiency for Scenario 1. (a) SNR1,2 = 5 dB;
(b) SNR1,2 = 20 dB; (c) SNR1,2 = 35 dB.

Sensors 2018, 18, 3225 29 of 32

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

30 35 40
0.6

0.8

1

1.2

1.4

1.6

1.8

2

30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a)

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

30 35 40
0.6

0.8

1

1.2

1.4

1.6

1.8

2

30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(b)

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

30 35 40
0.6

0.8

1

1.2

1.4

1.6

1.8

2

30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

05101520253035
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(c)

Figure 11. Channel efficiency and transmission efficiency for Scenario 2. (a) Two-source two-relay
network; (b) two-source three-relay network; (c) two-source four-relay network.

From Figure 10, OCC/CF and OCC′/CF increased channel efficiency by 72.98% and 63.28%,
respectively, on average if comparing with RLNC/OC. For τf = 0.05, OCC/CF had a 4.71% increment
of channel efficiency on average if comparing with CF/PO. However, OCC/CF and OCC′/CF provided
higher channel efficiency than CF/PO only when SNR1,2 or SNR2,1 was similarly high as SNR1,1 or
SNR2,2, i.e., when the participation factor of source k was dense around θk = dk for all k. OCC/CF and
OCC′/CF provided the increment of channel efficiency up to 16.41% and 13.41% if comparing with

Sensors 2018, 18, 3225 30 of 32

CF/PO for τf = 0.05. On the other hand, by comparing with FC/CF, OCC/CF had higher channel
efficiency than FC/CF in almost all cases. The increment was around 9.36% on average. For OCC′/CF,
because of the higher design overhead, it sometimes could not provide higher channel efficiency than
FC/CF. There was only a 2.91% increment of channel efficiency on average if comparing with FC/CF.
The issue of employing fountain code in this scenario was that the number of coded blocks to ensure
the desired decodability was larger than the expected number, because some coded blocks from a
source could not be extracted from the codeword combinations forwarded from the relays during each
source block transmission.

On the other hand, the transmission efficiency of RLNC/OC was higher than the other schemes
in all cases except CF/PO for τf = 0. Thus, OCC/CF and OCC′/CF had less of a chance to perform
better than CF/PO when τf was small. The transmission efficiency of OCC/CF and OCC′/CF was
86.85% and 81.98% on average, respectively, of the transmission efficiency of RLNC/OC. It seems the
performance of the proposed schemes was a trade-off between the increment of channel efficiency
and the decrement of transmission efficiency if comparing with an orthogonal channel transmission
scheme, e.g., RLNC/OC for this scenario. In order to improve the transmission efficiency of the
proposed schemes, increasing the diversity of codeword combinations at relays, i.e., increasing the
number of participating relays, was considered and discussed in Scenario 2.

From Figure 11, the channel efficiencies of OCC/CF and OCC′/CF increased when SNRk,l
increased, since the channel capacity ρ̄ also increased with SNRk,l . OCC/CF and OCC′/CF performed
similarly at high SNRk,l , and they had a chance to perform better than CF/PO for τf = 0 in the case
of four relays at SNRk,l = 40 dB since the loss of feedback also impacted the performance of CF/PO.
If comparing with CF/PO, OCC/CF and OCC′/CF increased channel efficiency up to 3.93% and
4.17%, respectively, for τf = 0, and up to 16.18% and 14.59%, respectively, for τf = 0.05. If comparing
with RLNC/OC, OCC/CF and OCC′/CF increased channel efficiency up to 140.32% and 140.88%,
respectively. OCC′/CF sometimes performed slightly better than OCC/CF, because of the estimation
deviation. In addition, the channel efficiency of OCC/CF and OCC′/CF increased faster than that
of FC/CF when SNRk,l increased or the number of relays increased. This is because the overhead of
fountain code was the same if the parameters cfc and δfc were fixed. In addition, it might have been
because of the condition of stopping the simulation, i.e., all original blocks of a source were recovered,
and those of the other source had not been all recovered, the channel efficiency of FC/CF did not
increase when SNRk,l increases or the number of relays increased, as shown in Figure 11c.

For the performance in transmission efficiency in Figure 11, OCC/CF and OCC′/CF had higher
transmission efficiency than RLNC/OC when the number of relays was higher than the number of
sources. However, employing more relays might have increased the complexity of the network such as
how to select which relays to join, how to achieve time synchronization at all relays, etc.

On the other hand, the performance of OCC/CF and OCC′/CF could be improved, especially
at low SNR1,2 and low SNR2,1 in the first scenario by applying decoding individually, but this might
have increased the complexity of the decoding process if K were large.

9. Conclusions

This paper proposed a design of OCC that is applied before NLC in multi-source multi-relay
networks, called OCC/CF. A decodability condition was provided for the design. This paper took an
OCC with a contiguously overlapping fashion, but not a rounded-end fashion, to design OCC/CF.
The decoding scheme and the estimation of designed OCC/CF are provided. The estimation is done for
each allocation, i.e., the number of innovative blocks per chunk and the number of blocks taken from the
previous chunk, to search for which allocation can provide the desired performance such as the highest
channel efficiency, or the preferred decodability, or the acceptable decoding complexity. The estimation
deviation is low when the decodability is sufficiently high. Since there are a limited number of chunks
for the designed OCC/CF, the design overhead is high if comparing with channel capacity. From the
numerical results, the advantage of OCC/CF over a feedback-based transmission scheme depends

Sensors 2018, 18, 3225 31 of 32

on the level of protocol overhead, i.e., the transmission time and the size of feedback, the feedback
loss rate. The performance of OCC/CF, especially transmission efficiency when comparing with
an orthogonal channel transmission, can be improved by increasing the number of relays. Future
work is to consider decoding individually and the cooperation between feedback and OCC/CF for
higher performance.

Author Contributions: R.N. proposed and worked on the research theme and wrote the paper. B.M.K. provided
the source code of nested lattice codes and insightful guidance. Y.L., and Y.T. provided insightful guidance.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ngeth, R.; Lim, Y.; Kurkoski, B.M.; Tan, Y. A Design of Overlapped Chunked Code over Compute-and-
Forward in Multi-Source Multi-Relay Networks. In Proceedings of the 2018 IEEE Global Communications
Conference: Wireless Communications, Abu Dhabi, UAE, 9–13 December 2018.

2. Liew, S.C.; Zhang, S.; Lu, L. Physical-layer network coding: Tutorial, survey, and beyond. Phys. Commun.
2013, 6, 4–42. [CrossRef]

3. Katti, S.; Rahul, H.; Hu, W.; Katabi, D.; Médard, M.; Crowcroft, J. XORs in the air: Practical wireless network
coding. IEEE/ACM Trans. Netw. 2008, 16, 497–510. [CrossRef]

4. Chachulski, S.; Jennings, M.; Katti, S.; Katabi, D. Trading Structure for Randomness in Wireless Opportunistic
Routing; ACM: New York, NY, USA, 2007; Volume 37.

5. Lun, D.S.; Médard, M.; Koetter, R.; Effros, M. On coding for reliable communication over packet networks.
Phys. Commun. 2008, 1, 3–20. [CrossRef]

6. He, J.; Liew, S.C. ARQ for physical-layer network coding. IEEE Trans. Mob. Comput. 2016, 15, 1614–1631.
[CrossRef]

7. Nazer, B.; Gastpar, M. Compute-and-forward: Harnessing interference through structured codes. IEEE Trans.
Inf. Theory 2011, 57, 6463–6486. [CrossRef]

8. Wei, L.; Chen, W. Compute-and-forward network coding design over multi-source multi-relay channels.
IEEE Trans. Wirel. Commun. 2012, 11, 3348–3357. [CrossRef]

9. Hejazi, M.; Azimi-Abarghouyi, S.M.; Makki, B.; Nasiri-Kenari, M.; Svensson, T. Robust Successive
Compute-and-Forward Over Multiuser Multirelay Networks. IEEE Trans. Veh. Technol. 2016, 65, 8112–8129.
[CrossRef]

10. Chen, Z.; Fan, P.; Letaief, K.B. Compute-and-forward: Optimization over multisource–multirelay networks.
IEEE Trans. Veh. Technol. 2015, 64, 1806–1818. [CrossRef]

11. Chou, P.A.; Wu, Y.; Jain, K. Practical network coding. In Proceedings of the Annual Allerton Conference
on Communication Control and Computing, Monticello, IL, USA, 1–3 October 2003; University of Illinois:
Champaign, IL, USA, 2003; Volume 41, pp. 40–49.

12. Maymounkov, P.; Harvey, N.J.; Lun, D.S. Methods for efficient network coding. In Proceedings of the
44th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA,
27–29 September 2006; pp. 482–491.

13. Silva, D.; Zeng, W.; Kschischang, F.R. Sparse network coding with overlapping classes. In Proceedings of
the 2009 Workshop on Network Coding, Theory, and Applications, Lausanne, Switzerland, 15–16 June 2009;
pp. 74–79.

14. Heidarzadeh, A.; Banihashemi, A.H. Overlapped chunked network coding. In Proceedings of the 2010 IEEE
Information Theory Workshop on Information Theory (ITW 2010, Cairo), Cairo, Egypt, 6–8 January 2010;
pp. 1–5.

15. Heidarzadeh, A.; Banihashemi, A.H. Analysis of overlapped chunked codes with small chunks over line
networks. In Proceedings of the 2011 IEEE International Symposium on Information Theory Proceedings,
St. Petersburg, Russia, 31 July–5 August 2011; pp. 801–805.

16. Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the generation size and overlap on throughput and complexity in
randomized linear network coding. IEEE Trans. Inf. Theory 2011, 57, 1111–1123. [CrossRef]

17. Yang, S.; Yeung, R.W. Batched sparse codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]

http://dx.doi.org/10.1016/j.phycom.2012.05.002
http://dx.doi.org/10.1109/TNET.2008.923722
http://dx.doi.org/10.1016/j.phycom.2008.01.006
http://dx.doi.org/10.1109/TMC.2015.2473849
http://dx.doi.org/10.1109/TIT.2011.2165816
http://dx.doi.org/10.1109/TWC.2012.070912.111948
http://dx.doi.org/10.1109/TVT.2015.2506981
http://dx.doi.org/10.1109/TVT.2014.2337880
http://dx.doi.org/10.1109/TIT.2010.2095111
http://dx.doi.org/10.1109/TIT.2014.2334315

Sensors 2018, 18, 3225 32 of 32

18. Tang, B.; Yang, S. An LDPC Approach for Chunked Network Codes. IEEE/ACM Trans. Netw. 2018,
26, 605–617. [CrossRef]

19. Byers, J.W.; Luby, M.; Mitzenmacher, M.; Rege, A. A digital fountain approach to reliable distribution of
bulk data. ACM SIGCOMM Comput. Commun. Rev. 1998, 28, 56–67. [CrossRef]

20. Luby, M. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer
Science, Vancouver, BC, Canada, 16–19 November 2002; pp. 271–280.

21. Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [CrossRef]
22. Maymounkov, P. Online Codes; Technical Report; New York University: New York, NY, USA, 2002.
23. Shokrollahi, M.A.; Lassen, S.; Karp, R. Systems and Processes for Decoding Chain Reaction Codes through

Inactivation. U.S. Patent 6,856,263, 2005.
24. Lázaro, F.; Liva, G.; Bauch, G. Inactivation Decoding of LT and Raptor Codes: Analysis and Code Design.

IEEE Trans. Commun. 2017, 65, 4114–4127. [CrossRef]
25. Fincke, U.; Pohst, M. Improved methods for calculating vectors of short length in a lattice, including a

complexity analysis. Math. Comput. 1985, 44, 463–471. [CrossRef]
26. Hasan, M.N.; Kurkoski, B.M. Practical compute-and-forward approaches for the multiple access relay

channel. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

27. Hejazi, M.; Nasiri-Kenari, M. Simplified compute-and-forward and its performance analysis. IET Commun.
2013, 7, 2054–2063. [CrossRef]

28. Tang, B.; Yang, S. An improved design of overlapped chunked codes. In Proceedings of the 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.

29. Ngeth, R.; Kurkoski, B.M.; Lim, Y.; Tan, Y. Random linear network coding over compute-and-forward in
multi-source multi-relay networks. In Proceedings of 2017 13th International Wireless Communications and
Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 805–810.

30. MacKay, D.J. Fountain codes. IEE Proc. Commun. 2005, 152, 1062–1068. [CrossRef]
31. Hogg, R.V.; McKean, J.; Craig, A.T. Introduction to Mathematical Statistics; Pearson Education: London,

UK, 2005.
32. Apavatjrut, A.; Goursaud, C.; Jaffrès-Runser, K.; Gorce, J.M. Fountain codes and network coding for WSNs.

In Network Coding; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 27–72.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNET.2017.2787726
http://dx.doi.org/10.1145/285243.285258
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1109/TCOMM.2017.2715805
http://dx.doi.org/10.1090/S0025-5718-1985-0777278-8
http://dx.doi.org/10.1049/iet-com.2013.0324
http://dx.doi.org/10.1049/ip-com:20050237
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Notation
	Nested Lattice Codes
	Compute-and-Forward

	System Model
	Scenario
	Channel Model
	Computing Combination Coefficient Vector
	Encoding and Computing
	Empirical Probability Distributions
	Decodability
	Channel Efficiency

	Design with an Overlapped Chunked Code
	Encoding
	Decoding
	Design with Applied Overlapped Chunked Code

	Estimation of Decodability
	Overview
	Combination of Chunks
	Back-Substitution
	Decoding Complexity
	Obtaining the Estimated Performance

	Performance Analysis
	Examples of Allocations
	Impact of the Participation Factor of Each Source
	Reference Schemes

	Numerical Results and Discussion
	Conclusions
	References

