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Abstract—In this paper, we address the singing voice separa-
tion problem and propose a novel unsupervised approach based
on robust principal component analysis (RPCA) exploiting rank-
1 constraint (CRPCA). RPCA is a recently proposed singing
voice separation algorithm that can separate singing voice from
the monaural recordings. Although RPCA has been successfully
applied to singing voice separation task, it ignores the different
characteristic values of singular value decomposition and compu-
tational complexity to minimize the nuclear norm for separating
singing voice. Since rank-1 constraint in the background music,
as the background music has a large variation in richness
than singing voice among different songs. Furthermore, rank-1
constraint can utilize a prior target rank to separate singing voice
and background music from the mixture music signal. Accord-
ingly, the proposed CRPCA method utilizes rank-1 constraint
minimization of singular values in RPCA instead of minimizing
the whole nuclear norm, which can not only describe the different
values of singular value decomposition, but also the computation
complexity is reduced. The experiment evaluation results reveal
that CRPCA can achieve better separation performance than the
previous methods, especially with regard to use time frequency
masking on ccMixter and DSD100 datasets. In addition, the
running time on CRPCA is shorter than others under the same
conditions.

I. INTRODUCTION

Singing voice separation has aroused considerable attention
and interest in recent years. It attempts to separate singing
voice and background music parts of a music recording, which
is a significant technology for chord recognition [1], music
information retrieval (MIR) [2], and karaoke applications
[3]. However, the current separation results of many popular
methods are still far behind human hearing capability. The
existing problems of singing voice separation are faced with
serious challenges [4].

Many previous approaches have been proposed with the
goal of overcoming the difficulty in separation task. Although
the approaches based on deep neural network (DNN) [5]-
[9] have recently proved to be powerful tools for singing
voice separation task, they need a large number of training
samples to be available in advanced. Unsupervised approach
therefore still remains attractive for singing voice separation
particularly where only a limited amount of singing voice data
is available or without using any additional information. Rafii
et al. [10] proposed a repeating accompaniment idea about

background music and used repeating pattern extraction tech-
nique (REPET) approach for separating the repeating music
part from the non-repeating singing voice in a mixture signal.
The main method is to identify the periodically repeating
parts in the audio data, then compare them to a repeating
segment model, and finally extract the repeating patterns with
time frequency masking. Huang et al. [11] proposed a robust
principal component analysis (RPCA) algorithm for singing
voice separation, which decomposed an input matrix part into
a low-rank matrix part and a sparse matrix part. Inspired by
a low-rank and sparse model, Yang [12] proposed a novel
low-rank and sparse matrices for incorporating harmonicity
priors and a back-end drum removal procedure. Also, he [13]
presented a multiple low-rank representation to decompose a
magnitude spectrogram (matrix) into two low-rank matrices.
Yukara et al. [14] presented mutually-dependent singing voice
separation and vocal fundamental frequency (F0) estimation.
Yu et al. [15] proposed low-rank and sparse matrices repre-
sentation with pre-learned dictionaries under the Alternating
Direction Method of Multipliers framework model.

As mentioned above, RPCA can be used as an efficient
strategy to separate singing voice in a mixture music signal,
which decomposes the given amplitude spectrogram (matrix)
of a mixture music signal into the sum of a sparse matrix
(singing voice) and a low-rank matrix (music accompaniment).
Owning to the part of background music can reproduce the
same signal in the same song, the magnitude spectrogram
therefore can be considered as a part of low-rank matrix.
Singing voice, on the other hand, varies significantly and
has a sparse distribution since its harmonic structure part in
the spectrogram domain, resulting in a spectrogram with a
sparse matrix part. Although RPCA has been successfully
applied to singing voice separation, it ignores the different
characteristic values of singular value decomposition (SVD)
and computational complexity to minimize the nuclear norm
for separating singing voice. Thus the separation performance
decreases due to drums may lie in the sparse subspace instead
of being low-rank. In our previous work, we proposed a
weighted robust principal component analysis (WRPCA) [16],
[17], which chose the different weighted values to describe
the low-rank matrix for singing voice separation. However,
it suffers from high computational cost, as it requires an
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SVD at each iteration. Hence the running time of WRPCA
is slower than RPCA. Recently a partial sum minimization
of singular values instead of minimizing the nuclear norm in
RPCA [18] was published, which used the minimized rank
way to solve the different values of SVD in image processing,
especially for background subtraction under the condition of
rank-1 constraint.

To solve the above-mentioned problems, the partial sum
minimization of SVD and computation complexity are sig-
nificant for separating singing voice from the mixture music
signal. In this paper, we combine the idea in [18] and pro-
pose a novel extension of RPCA exploiting rank-1 constraint
(CRPCA), which utilizes the rank-1 constraint minimization
singular values in RPCA instead of minimizing the nuclear
norm for singing voice separation. Owning to rank-1 constraint
in the background music, which is very similar to background
subtraction, as the background music has a large variation in
richness than singing voice among different songs. In addition,
rank-1 constraint can utilize a prior target rank to separate
background music and singing voice from the mixture music
signal, which leads to a reduction in computation complexity.
Therefore, the proposed CRPCA can not only describe the
different values of SVD under the rank-1 constraint informa-
tion, but also the computation complexity is reduced. Finally,
we apply time frequency masking to further improve the
separation results.

The remainder of this paper is organized as follows: In
Section II, we review the conventional RPCA, WRPCA and
WRPCA for singing voice separation. In Section III, we
explain the proposed CRPCA and its application to singing
voice separation. Experiments are conducted in Section IV
and we finally draw conclusions in Section V.

II. CONVENTIONAL METHODS

In this section, we briefly explain the overview of RPCA
and WRPCA methods. We also introduce WRPCA for singing
voice separation.

A. Overview of RPCA

Candés et al. [19] proposed a convex model RPCA, which
decomposed an input matrix M ∈ Rm×n into the sum of a
low-rank matrix L ∈ Rm×n and a sparse matrix S ∈ Rm×n.
The model can be defined as follows:

minimize |L|∗ + λ|S|1,
subject to M = L+ S.

(1)

where | · |1 is the L1-norm, which is the sum of absolute
values of matrix entries. | · |∗ denotes the nuclear norm (sum
of singular values), and λ > 0 is a positive constant parameter
between the parts of sparsity matrix S and low-rank matrix L.
Moreover, this convex model can be solved by accelerated
proximal gradient (APG) or augmented Lagrange multipliers
(ALM) [20]. In this study, we used an inexact version of ALM
(iALM) as a baseline for comparison.

B. Overview of WRPCA

In our previous work, we presented an extension of RPCA
called WRPCA [16], [17], which can decompose into the
different scale values between low-rank and sparse matrices.
WRPCA is an extension of RPCA, which is inspired from
Huang et al. [11]. We define the model as follows:

minimize |L|w,∗ + λ|S|1,
subject to M = L+ S.

(2)

where |L|w,∗ is weighted value of low-rank matrix, S is the
value of sparse matrix. M ∈ Rm×n is the value of an input
matrix, which consists of two values of S ∈ Rm×n and L ∈
Rm×n, and λ > 0 is a positive constant parameter. We set λ =
1/
√
max(m,n) as suggested in [19]. And we used an efficient

iALM [20] method to solve this convex program model. The
corresponding J is the Lagrange multiplier and µ is a positive
scaler value. We define the augmented Lagrangian function as
follows:

J(M,L, S, µ) = |L|w,∗ + λ|S|1 + 〈J,M − L− S〉
+
µ

2
|M − L− S|2F . (3)

C. WRPCA for singing voice separation

In previous studies [16], [17], WRPCA was used to separate
singing voice from mixture music signal. On account of the
part of background music can reproduce the same signal in
the same song, although it has different values, the magnitude
spectrogram can still be considered as a part of low-rank
matrix. Singing voice signal, on the other hand, varies signifi-
cantly and has a sparse distribution since its harmonic structure
part in the spectrogram domain, resulting in a spectrogram
with a sparse matrix part. So we can use WRPCA method
to decompose an input matrix structure part into a low-rank
matrix part and a sparse matrix part. The separated results
outperform RPCA in the different audio data. However, it
suffers from high computational cost during computing an
SVD at each iteration, which leads to the running time to
be slow.

III. PROPOSED METHOD

In this section, we explain the proposed CRPCA, CRPCA
with time frequency masking and describe a block diagram of
singing voice separation system.

A. Motivations

Although RPCA has been successfully applied to singing
voice separation task, it ignores the different characteristic
values of SVD and the computational complexity to minimize
the nuclear norm. To overcome these two problems, we adopt
a partial sum minimization of singular value based on rank-1
constraint called CRPCA. The aim is to fully utilize a prior
rank-1 constraint to minimize the partial sum of singular val-
ues in RPCA. Since rank-1 constraint in the background music,
as the background music has a large variation in richness than
singing voice among different songs. Rank-1 constraint can
utilize a prior target rank to separate background music and
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Algorithm 1 CRPCA for singing voice separation

Input: Mixture signal M ∈ Rm×n.
1: Initialize: ρ > 1, µ0 > 0, k = 0, L0 = S0 = 0.
2: While not convergence,
3: do :

4:
∣∣∣ Lk+1 = P1,µ−1

k
(M − Sk + µ−1

k Jk).

5:
∣∣∣ Sk+1 = Qλµ−1

k
(M − Lk+1 + µ−1

k Jk).

6:
∣∣∣ Jk+1 = Jk + µk(M − Lk+1 − Sk+1).

7:
∣∣ µk+1 = ρ ∗ µk.

8:
∣∣ k = k + 1.

9: end while.
Output: Lm×n, Sm×n.

singing voice from the mixture music signal. As the result,
the separation performance can be improved. Moreover, the
computation complexity is also reduced due to minimize the
partial sum of singular value instead of minimizing the whole
nuclear norm. Finally, in order to obtain better separation
performance, we apply time frequency masking to further
improve the separation results.

B. Principle of CRPCA

CRPCA is a novel extension of RPCA, which exploiting
rank-1 constraint for singing voice separation. We define the
model as follows:

minimize
min(m,n)∑
i=2

δi(L) + λ|S|1,

subject to M = L+ S.

(4)

where L is the value of low-rank matrix, S is the value of
sparse matrix. M ∈ Rm×n is the value of an input matrix,
which consists of L ∈ Rm×n and S ∈ Rm×n, and λ > 0 is a
positive constant parameter between the sparse matrix S and
the low-rank matrix L. And δi(L) is the i-th singular value
of L. We used λ = 1/

√
max(m,n) as suggested in [19]. We

also used an efficient iALM [20] method to solve this convex
model in this work. The augmented Lagrangian function can
be defined as follows:

J(M,L, S, µ) = min

min(m,n)∑
i=2

δi(L) + λ|S|1

+〈J,M − L− S〉+ µ

2
|M − L− S|2F . (5)

where J is the Lagrange multiplier and µ is a positive scaler.
The process of separating singing voice from the mixture
music signal can be seen in Algorithm 1 CRPCA for singing
voice separation. The value of M is a mixture music signal
from the observed audio data. After separated by using CRP-
CA, we can get a low-rank matrix L (music accompaniment)
and a sparse matrix S (singing voice).

Fig. 1. Block diagram of singing voice separation system.

From the augmented Lagrangian function, we solve the
following two sub-problems about L and S:

Lk+1 = min
L

min(m,n)∑
i=2

δi(L) + 〈Jk,M − L− Sk〉

+
µk
2
|M − L− Sk|2F . (6)

Sk+1 = min
S

λ|S|1 + 〈Jk,M − Lk − S〉

+
µk
2
|M − Lk − S|2F . (7)

C. Update rules based on rank-1 constraint

As suggested by Oh et al. [18], the update rules of L and
S are equivalent to solve the above two sub-problems as the
following two equations (8) and (9):

Lk+1 = P1,µ−1
k
(M − Sk + µ−1

k Jk) (8)

Sk+1 = Qλµ−1
k
(M − Lk+1 + µ−1

k Jk) (9)

P1,µ−1
k

(·) can be defined as follows:

P1,µ−1
k
(Y ) = UY (DY1 +Qµ−1

k
(DY2))V

T
Y (10)

where Y = Y1+Y2 (Y ∈ Rm×n), DY1
= diag(δ1, 0, ..., 0),

Qµ−1
k
(DY2

) = sign(DY2
) ·max(|DY2

| − µ−1
k , 0) is the soft-

thresholding operator [21], DY2
= diag(0, δ2, ..., δmin(m,n)),

δ1 and δ2 are the first and second singular values.

D. CRPCA for singing voice separation

In order to improve the separation performance, after sepa-
rated by using CRPCA, we apply ideal binary time frequency
masking (IBM) estimation to further improve the separation
results. We define Mibm as follows:

Mibm =

{
1 Sij ≥ Lij
0 Sij < Lij

(11)

where Sij and Lij are the values of sparse and low-rank
matrices.

A block diagram of our proposed singing voice separation
system can be seen in Fig. 1. For each mixture audio in
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Fig. 2. Comparison of singing voice separation results on ccMixter dataset
among RPCA, WRPCA, CRPCA and CRPCA with IBM on SDR, SIR, and
NSDR, respectively.

the test dataset, we apply a short-time Fourier transform
(STFT) and inverse STFT (ISTFT) based on being separated
by using CRPCA. Furthermore, we utilize IBM method to
further improve the separation results. And finally, we can
obtain low-rank matrix L (music accompaniment) and sparse
matrix S (singing voice), respectively.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed CRPCA and
CRPCA with IBM by using two different datasets: ccMixter
[22] and DSD100 [4], and compare with RPCA and WRPCA.

A. Experimental datasets

In our experiments, to evaluate the performance of the
proposed CRPCA method, we used two different datasets to
compare with RPCA, WRPCA, CRPCA and CRPCA with
IBM methods. The first one was the ccMixter dataset, which
contains 50 full songs with durations ranging from 1’17” to
7’36”. Each audio data contains three parts: music accompa-
niment, singing voice, and a mixture of them, respectively.

The other one was DSD100 dataset. It contains 100 full
stereo songs of different styles with durations ranging from
2’21” to 7’15” as also used in the 2016 Signal Separation
Evaluation Campaign (SiSEC) [4], which is divided into 50 de-
velopment and 50 test songs. We considered the sum of drums,
bass and other as music accompaniment part. The target was
to separate singing voice from the music accompaniment in
the mixture music signal.

In this work, we evaluated the proposed CRPCA and
CRPCA with IBM methods mainly concentrate on monaural
source separation task. It was even more difficult than mul-
tichannel source separation due to only one single channel
was available. The two-channel stereo mixture datasets we
used were downmixed into a single channel and obtained an
average value of each channel. We dealt with the whole audio
data instead of part length on two datasets.

Fig. 3. Comparison of singing voice separation results on DSD100 dataset
among RPCA, WRPCA, CRPCA and CRPCA with IBM on SDR, SIR, and
NSDR, respectively.

B. Experiment conditions

All data were sampled at 44.1 kHz. The input feature
we used was calculated using STFT and ISTFT. A window
size of 1024 samples and a hop size of 256 samples. All
the experiments were run by using MATLAB R2015a, on a
PC win10, X64-based processor, RAM32GB with i7-6700K
CPU@4.00 GHz.

To evaluate the effectiveness of CRPCA and CRPCA with
IBM, in the experiments, we compared with RPCA and
WRPCA, assessed its quality of separation performance in
terms of Source-to-Distortion Ratio (SDR) and Source-to-
Interference Ratio (SIR) using BSS Eval Toolbox available at
[23] and the normalized SDR (NSDR). The NSDR is defined
as follows:

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v). (12)

where v is the original clean signal part, v̂ is the separated
voice, and x is the original mixture structure. The NSDR
can be used to estimate the overall improvement of separation
performance.

The SDR stands for the quality of the separated target sound
signal. The SIR represents the degree of separation between
the target. The obtained higher values of SDR, SIR and NSDR
indicate that the method has better separation performance in
source separation task. All evaluation metrics are calculated
in dB.

C. Experimental results

To confirm CRPCA and CRPCA with IBM methods, we
first evaluated the proposed method on ccMixter dataset. Fig.
2 shows the comparison of singing voice separation results
on RPCA, WRPCA, CRPCA and CRPCA with IBM (CR-
PCA IBM). The experiment results are obtained with SDR,
SIR and NSDR, we can clearly see that CRPCA obtains
better separation results than RPCA and WRPCA, especially
for using IBM estimation on ccMixter. With regard to SIR,
CRPCA with IBM has a significant improved result among

 
This is the author's version of a work. Copyright (C) 2018 EURASIP. Feng Li and Masato Akagi, 2018 26th European Signal Processing Conference 
(EUSIPCO), 2018, pp.1934-1938. DOI:10.23919/EUSIPCO.2018.8553584. First published in the Proceedings of the 26th European Signal Processing 
Conference (EUSIPCO-2018) in 2018, published by EURASIP.



TABLE I
RUNNING TIME (HH:MM:SS)

Dataset RPCA WRPCA CRPCA

ccMixter 02:04:40 03:03:31 00:52:10
DSD100 04:34:30 06:49:28 01:54:17

them. The degree of separation result values of SIR, RPCA
and CRPCA with IBM, are -2.64dB and 5.33dB, respectively.

We also evaluated CRPCA and CRPCA with IBM methods
on DSD100 dataset. Fig. 3 shows the comparison results
with RPCA, WRPCA, CRPCA and CRPCA with IBM. The
experiment results clearly reveal that CRPCA with IBM also
obtains better separation performance on DSD100. These two
result figures indicate that rank-1 constraint minimization
can improve the separation performance than minimizing the
nuclear norm in RPCA, even exceed the previous proposed
WRPCA method. In addition, after using IBM estimation
by CRPCA, we can further improved the separation results,
especially with regard to SIR values among them. RPCA and
CRPCA with IBM, are -3.58dB and 3.39dB, respectively.

Table I shows the running time of each method on two
datasets under the same conditions, according to the experi-
ment results, we can see that the running time of CRPCA is
much shorter than that of RPCA and WRPCA. On the contrary,
WRPCA has the worst results in all of them.

As the above results shown, although WRPCA can get better
separation results, the running time is longer than RPCA on
two datasets. Owning to CRPCA can utilize a prior target
rank to separate singing voice from the mixture music signal,
no matter separation performance or running time, the rank-
1 constraint minimization singular values in RPCA is better
than minimization the nuclear norm for separating singing
voice. Furthermore, we applied IBM method to improve the
separation performance. In terms of running time, CRPCA is
preferable under the same conditions on two datasets.

V. CONCLUSIONS

In this paper, we proposed a novel unsupervised approach
that extends RPCA exploiting rank-1 constraint for singing
voice separation task. The experiment evaluation results on
ccMixter and DSD100 datasets indicated that CRPCA out-
performs the conventional RPCA and WRPCA, especially for
using time frequency masking. In addition, with regard to the
running time, CRPCA is shorter than others under the same
conditions while WRPCA is the worst among them. For future
work, since F0 estimation and melody extraction are very
crucial for separating singing voice from the mixture music
signal, we therefore will unify them to improve the separation
results.
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