
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
音声の話システムの自然言語生成のための深い学習に

関する研究

Author(s) Tran, Van Khanh

Citation

Issue Date 2018-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/15529

Rights

Description Supervisor:NGUYEN, Minh Le, 情報科学研究科, 博士

Doctoral Dissertation

A Study on Deep Learning for Natural Language Generation
in Spoken Dialogue Systems

TRAN Van Khanh

Supervisor: Associate Professor NGUYEN Le Minh

School of Information Science
Japan Advanced Institute of Science and Technology

September, 2018

To my wife, my daughter, and my family.
Without whom I would never have completed this dissertation.

Abstract

Natural language generation (NLG) plays a critical role in spoken dialogue systems (SDSs) and
aims at converting a meaning representation, i.e., a dialogue act (DA), into natural language
utterances. NLG process in SDSs can typically be split up into two stages: sentence planning
and surface realization. Sentence planning decides the order and structure of sentence repre-
sentation, followed by a surface realization that converts the sentence structure into appropriate
utterances. Conventional methods to NLG rely heavily on extensive hand-crafted rules and
templates that are time-consuming, expensive and do not generalize well. The resulting NLG
systems, thus, tend to generate stiff responses, lacking several factors: adequacy, fluency and
naturalness. Recent advances in data-driven and deep neural networks (DNNs) methods have
facilitated investigation of NLG in the study. DNN methods to NLG for SDS have demonstrated
to generate better responses than conventional methods concerning factors as mentioned above.
Nevertheless, when dealing with the NLG problems, such DNN-based NLG models still suffer
from some severe drawbacks, namely completeness, adaptability and low-resource setting data.
Thus, the primary goal of this dissertation is to propose DNN-based generators to tackle the
problems of the existing DNN-based NLG models.

Firstly, we present gating generators based on a recurrent neural network language model
(RNNLM) to overcome the NLG problems of completeness. The proposed gates are intuitively
similar to those in the Long short-term memory (LSTM) or Gated recurrent unit (GRU) to re-
strain the gradient vanishing and exploding. In our models, the proposed gates are in charge of
sentence planning to decide “How to say it?”, whereas the RNNLM forms a surface realization
to generate surface texts. More specifically, we introduce three additional semantic cells based
on the gating mechanism, into a traditional RNN cell. While a refinement cell is to filter the
sequential inputs before RNN computations, an adjustment cell and an output cell are to select
semantic elements and to gate a feature vector DA during generation, respectively. The pro-
posed models further obtain state-of-the-art results over previous models regarding BLEU and
slot error rate ERR scores.

Secondly, we propose a novel hybrid NLG framework to address the first two NLG prob-
lems, which is an extension of an RNN Encoder-Decoder incorporating with an attention mech-
anism. The idea of attention mechanism is to automatically learn alignments between features
from source and target sentence during decoding. Our hybrid framework consists of three com-
ponents: an encoder, an aligner, and a decoder, from which we propose two novel generators
to leverage gating and attention mechanisms. In the first model, we introduce an additional cell
into aligner cell by utilizing another attention or gating mechanisms to align and control the
semantic elements produced by the encoder with a conventional attention mechanism over the
input elements. In the second model, we develop a refinement adjustment LSTM (RALSTM)
decoder to select, aggregate semantic elements and to form the required utterances. The hybrid
generators not only tackle the NLG problems of completeness, achieving state-of-the-art per-
formances over previous methods, but also deal with adaptability issue by showing an ability to

ii

adapt faster to a new, unseen domain and to control feature vector DA effectively.
Thirdly, we propose a novel approach dealing with the problem of low-resource setting

data in a domain adaptation scenario. The proposed models demonstrate an ability to perform
acceptably well in a new, unseen domain by using only 10% amount of the target domain data.
More precisely, we first present a variational generator by integrating a variational autoencoder
into the hybrid generator. We then propose two critics, namely domain, and text similarity,
in an adversarial training algorithm to train the variational generator via multiple adaptation
steps. The ablation experiments demonstrated that while the variational generator contributes
to learning the underlying semantic of DA-utterance pairs effectively, the critics play a crucial
role in guiding the model to adapt to a new domain in the adversarial training procedure.

Fourthly, we propose another approach dealing with the problem of having low-resource
in-domain training data. The proposed generators, which combines two variational autoen-
coders, can learn more efficiently when the training data is in short supply. In particularly, we
present a combination of a variational generator with a variational CNN-DCNN, resulting in
a generator which can perform acceptably well using only 10% to 30% amount of in-domain
training data. More importantly, the proposed model demonstrates state-of-the-art performance
regarding BLEU and ERR scores when training with all of the in-domain data. The ablation
experiments further showed that while the variational generator makes a positive contribution to
learning the global semantic information of pairs of DA-utterance, the variational CNN-DCNN
play a critical role of encoding useful information into the latent variable.

Finally, all the proposed generators in this study can learn from unaligned data by jointly
training both sentence planning and surface realization to generate natural language utterances.
Experiments further demonstrate that the proposed models achieved significant improvements
over previous generators concerning two evaluation metrics across four primary NLG domains
and variants in a variety of training scenarios. Moreover, the variational-based generators
showed a positive sign in unsupervised and semi-supervised learning, which would be a worth-
while study in the future.

Keywords: natural language generation, spoken dialogue system, domain adaptation, gat-
ing mechanism, attention mechanism, encoder-decoder, low-resource data, RNN, GRU, LSTM,
CNN, Deconvolutional CNN, VAE.

iii

Acknowledgements

I would like to thank my supervisor, Associate Professor Nguyen Le Minh, for his guidance
and motivation. He gave me a lot of valuable and critical comments, advice and discussion,
which foster me pursuing this research topic from the starting point. He always encourages and
challenges me to submit our works to the top natural language processing conferences. During
Ph.D. life, I learned many useful research experiences which benefit my future careers. Without
his guidance and support, I would have never finished this research.

I would also like to thank the tutors in writing lab at JAIST: Terrillon Jean-Christophe, Bill
Holden, Natt Ambassah and John Blake, who gave many useful comments on my manuscripts.
I greatly appreciate useful comments from committee members: Professor Satoshi Tojo, Asso-
ciate Professor Kiyoaki Shirai, Associate Professor Shogo Okada, and Associate Professor Tran
The Truyen.

I must thank my colleagues in Nguyen’s Laboratory for their valuable comments and discus-
sion during the weekly seminar. I owe a debt of gratitude to all the members of the Vietnamese
Football Club (VIJA) as well as the Vietnamese Tennis Club at JAIST, of which I was a member
for almost three years. With the active clubs, I have the chance playing my favorite sports every
week, which help me keep my physical health and recover my energy for pursuing research
topic and surviving on the Ph.D. life.

I appreciate anonymous reviewers from the conferences who gave me valuable and use-
ful comments on my submitted papers, from which I could revise and improve my works. I
am grateful for the funding source that allowed me to pursue this research: The Vietnamese
Government’s Scholarship under the 911 Project ”Training lecturers of Doctor’s Degree for
universities and colleges for the 2010-2020 period”.

Finally, I am deeply thankful to my family for their love, sacrifices, and support. Without
them, this dissertation would never have been written. First and foremost I would like to thank
my Dad, Tran Van Minh, my Mom, Nguyen Thi Luu, my younger sister, Tran Thi Dieu Linh,
and my parents in law for their constant love and support. This last word of acknowledgment
I have saved for my dear wife Du Thi Ha and my lovely daughter Tran Thi Minh Khue, who
always be on my side and encourage me to look forward to a better future.

iv

Table of Contents

Abstract i

Acknowledgements i

Table of Contents 3

List of Figures 4

List of Tables 5

1 Introduction 6
1.1 Motivation for the research . 9

1.1.1 The knowledge gap . 9
1.1.2 The potential benefits . 10

1.2 Contributions . 10
1.3 Thesis Outline . 11

2 Background 14
2.1 NLG Architecture for SDSs . 14
2.2 NLG Approaches . 14

2.2.1 Pipeline and Joint Approaches . 15
2.2.2 Traditional Approaches . 15
2.2.3 Trainable Approaches . 15
2.2.4 Corpus-based Approaches . 16

2.3 NLG Problem Decomposition . 17
2.3.1 Input Meaning Representation and Datasets 17
2.3.2 Delexicalization . 19
2.3.3 Lexicalization . 19
2.3.4 Unaligned Training Data . 19

2.4 Evaluation Metrics . 20
2.4.1 BLEU . 20
2.4.2 Slot Error Rate . 20

2.5 Neural based Approach . 20
2.5.1 Training . 20
2.5.2 Decoding . 21

1

TABLE OF CONTENTS

3 Gating Mechanism based NLG 22
3.1 The Gating-based Neural Language Generation 23

3.1.1 RGRU-Base Model . 23
3.1.2 RGRU-Context Model . 24
3.1.3 Tying Backward RGRU-Context Model 25
3.1.4 Refinement-Adjustment-Output GRU (RAOGRU) Model 25

3.2 Experiments . 28
3.2.1 Experimental Setups . 29
3.2.2 Evaluation Metrics and Baselines . 29

3.3 Results and Analysis . 29
3.3.1 Model Comparison in Individual Domain 30
3.3.2 General Models . 31
3.3.3 Adaptation Models . 31
3.3.4 Model Comparison on Tuning Parameters 31
3.3.5 Model Comparison on Generated Utterances 33

3.4 Conclusion . 34

4 Hybrid based NLG 35
4.1 The Neural Language Generator . 36

4.1.1 Encoder . 37
4.1.2 Aligner . 38
4.1.3 Decoder . 38

4.2 The Encoder-Aggregator-Decoder model . 38
4.2.1 Gated Recurrent Unit . 38
4.2.2 Aggregator . 39
4.2.3 Decoder . 41

4.3 The Refinement-Adjustment-LSTM model . 41
4.3.1 Long Short Term Memory . 42
4.3.2 RALSTM Decoder . 42

4.4 Experiments . 44
4.4.1 Experimental Setups . 44
4.4.2 Evaluation Metrics and Baselines . 45

4.5 Results and Analysis . 45
4.5.1 The Overall Model Comparison . 45
4.5.2 Model Comparison on an Unseen Domain 47
4.5.3 Controlling the Dialogue Act . 47
4.5.4 General Models . 49
4.5.5 Adaptation Models . 49
4.5.6 Model Comparison on Generated Utterances 50

4.6 Conclusion . 51

5 Variational Model for Low-Resource NLG 53
5.1 VNLG - Variational Neural Language Generator 55

5.1.1 Variational Autoencoder . 55
5.1.2 Variational Neural Language Generator 55

Variational Encoder Network . 56
Variational Inference Network . 57

2

TABLE OF CONTENTS

Variational Neural Decoder . 58
5.2 VDANLG - An Adversarial Domain Adaptation VNLG 59

5.2.1 Critics . 59
Text Similarity Critic . 59
Domain Critic . 60

5.2.2 Training Domain Adaptation Model 60
Training Critics . 61
Training Variational Neural Language Generator 61
Adversarial Training . 61

5.3 DualVAE - A Dual Variational Model for Low-Resource Data 62
5.3.1 Variational CNN-DCNN Model . 63
5.3.2 Training Dual Latent Variable Model 63

Training Variational Language Generator 63
Training Variational CNN-DCNN Model 64
Joint Training Dual VAE Model . 64
Joint Cross Training Dual VAE Model 65

5.4 Experiments . 65
5.4.1 Experimental Setups . 65
5.4.2 KL Cost Annealing . 65
5.4.3 Gradient Reversal Layer . 65
5.4.4 Evaluation Metrics and Baselines . 66

5.5 Results and Analysis . 66
5.5.1 Integrating Variational Inference . 66
5.5.2 Adversarial VNLG for Domain Adaptation 67

Ablation Studies . 68
Adaptation versus scr100 Training Scenario 69
Distance of Dataset Pairs . 69
Unsupervised Domain Adaptation . 70
Comparison on Generated Outputs . 70

5.5.3 Dual Variational Model for Low-Resource In-Domain Data 72
Ablation Studies . 73
Model comparison on unseen domain 74
Domain Adaptation . 74
Comparison on Generated Outputs . 76

5.6 Conclusion . 77

6 Conclusions and Future Work 79
6.1 Conclusions, Key Findings, and Suggestions 79
6.2 Limitations . 81
6.3 Future Work . 82

3

List of Figures

1.1 NLG system architecture . 6
1.2 A pipeline architecture of a spoken dialogue system. 7
1.3 Thesis flow . 11

2.1 NLG pipeline in SDSs . 14
2.2 Word clouds for testing set of the four original domains 18

3.1 Refinement GRU-based cell with context . 24
3.2 Refinement adjustment output GRU-based cell 27
3.3 Gating-based generators comparison of the general models on four domains . . 31
3.4 Performance on Laptop domain in adaptation training scenarios 32
3.5 Performance comparison of RGRU-Context and SCLSTM generators 32
3.6 RGRU-Context results with different Beam-size and Top-k best 32
3.7 RAOGRU controls the DA feature value vector dt 33

4.1 RAOGRU failed to control the DA feature vector 35
4.2 Attentional Recurrent Encoder-Decoder neural language generation framework 37
4.3 RNN Encoder-Aggregator-Decoder natural language generator 39
4.4 ARED-based generator with a proposed RALSTM cell 42
4.5 RALSTM cell architecture . 43
4.6 Performance comparison of the models trained on (unseen) Laptop domain. . . 47
4.7 Performance comparison of the models trained on (unseen) TV domain. 47
4.8 RALSTM drives down the DA feature value vector s 48
4.9 A comparison on attention behavior of three EAD-based models in a sentence . 48
4.10 Performance comparison of the general models on four different domains. . . . 49
4.11 Performance on Laptop with varied amount of the adaptation training data . . . 49
4.12 Performance evaluated on Laptop domain for different models 1 50
4.13 Performance evaluated on Laptop domain for different models 2 50

5.1 The Variational NLG architecture . 56
5.2 The Variational NLG architecture for domain adaptation 60
5.3 The Dual Variational NLG model for low-resource setting data 64
5.4 Performance on Laptop domain with varied limited amount 66
5.5 Performance comparison of the models trained on Laptop domain. 74

4

List of Tables

1.1 Examples of Dialogue Act-Utterance pairs for different NLG domains 8

2.1 Datasets Ontology . 17
2.2 Dataset statistics . 18
2.3 Delexicalization examples . 19
2.4 Lexicalization examples . 19
2.5 Slot error rate (ERR) examples . 21

3.1 Gating-based model performance comparison on four NLG datasets 30
3.2 Averaged performance comparison of the proposed gating models 30
3.3 Gating-based models comparison on top generated responses 33

4.1 Encoder-Decoder based model performance comparison on four NLG datasets . 46
4.2 Averaged performance of Encoder-Decoder based models comparison 46
4.3 Laptop generated outputs for some Encoder-Decoder based models 51
4.4 Tv generated outputs for some Encoder-Decoder based models 52

5.1 Results comparison on a variety of low-resource training 53
5.2 Results comparison on scratch training . 67
5.3 Ablation studies’ results comparison on scratch and adaptation training 68
5.4 Results comparison on unsupervised adaptation training 70
5.5 Laptop responses generated by adaptation and scratch training scenarios 1 . . . 71
5.6 Tv responses generated by adaptation and scratch training scenarios 72
5.7 Results comparison on a variety of scratch training 73
5.8 Results comparison on adaptation, scratch and semi-supervised training scenarios 75
5.9 Tv utterances generated for different models in scratch training 76
5.10 Laptop utterances generated for different models in scratch training 77

6.1 Examples of sentence aggregation in NLG domains 80

5

Chapter 1

Introduction

Natural Language Generation (NLG) is the subfield of artificial intelligence and computational
linguistics that is concerned with the construction of computer systems that can produce un-
derstandable texts in English or other human languages from some underlying non-linguistic
representations (Reiter et al., 2000). The objective of NLG systems generally is to produce
coherent natural language texts which satisfy a set of one or more communicative goals which
describe the purpose of the text to be generated. NLG is also an essential component in a va-
riety of text-to-text applications, including machine translation, text summarization, question
answering; and data-to-text applications, including image captioning, weather and financial re-
porting, and spoken dialogue systems. This thesis mainly focuses on tackling NLG problems in
spoken dialogue systems.

Figure 1.1: NLG system architecture.

Conventional NLG architecture consists of three stages (Reiter et al., 2000), namely docu-
ment planning, sentence planning, and surface realization. Three stages are connected into a
pipeline, in which the output of document planning is the input to sentence planning, and the
output of sentence planning is the input to surface realization. While the sentence planning
stage is to decide the “What to say?”, the rest stages are in charge of deciding the “How to say
it?”. Figure 1.1 shows the traditional architecture of NLG systems.

• Document Planning (also called as Content Planning or Content Selection): This stage
contains two concurrent subtasks. While the subtask content determination is to decide
the “What to say?” information which should be communicated to the user, the text plan-
ning involves decision regarding the way this information should be rhetorically struc-
tured, such as the order and structuring.

• Sentence Planning (also called as Microplanning): This stage involves the process of de-
ciding how the information will be divided into sentences or paragraphs, and how to make

6

them more fluent and readable by choosing which words, sentences, syntactic structures,
and so forth will be used.

• Surface Realization: This stage involves the process of producing the individual sentences
in a well-formed manner which should be a grammatical and fluent output.

A Spoken Dialogue System (SDS) is a complicated computer system which can converse
with a human with voice. The spoken dialogue system in a pipeline architecture consists of a
wide range of speech and language technologies, such as automatic speech recognition, natural
language understanding, dialogue management, natural language generation, and text-to-speech
synthesis. The pipeline architecture is shown in Figure 1.2.

Figure 1.2: A pipeline architecture of a spoken dialogue system.

In the SDSs pipeline, the automatic speech recognizer (ASR) takes as input an acoustic
speech signal (1) and decodes it into a string of words (2). The natural language understanding
(NLU) component parses the speech recognition result and produces a semantic representation
of the utterance (3). This representation is then passed to the dialogue manager (DM) whose
task is to control the structure of the dialogue by handling the current dialogue state and making
decisions about the system’s behavior. This component generates a response (4) on a semantic
representation of a communicative act from the system. The natural language generation (NLG)
component takes as input a meaning representation from the dialogue manager and produces a
surface representation of the utterance (5), which is then converted to the audio output (6) to the
user by a text-to-speech synthesis (TTS) component. In the case of text-based SDSs, the speech
recognition and speech synthesis can be left out.

Notwithstanding the architecture simplicity and modules reusability, there are several chal-
lenges in constructing NLG systems for SDSs. First, SDSs are typically developed for various
specific domains (also called task-oriented SDS), e.g., finding a hotel or a restaurant (Wen
et al., 2015b), buying a laptop or a television (Wen et al., 2016a). Such systems often require
large-scale corpora with a well-defined ontology which is necessarily a data structured rep-
resentation that the dialogue system can converse. The process for collecting such large and
specific domain datasets is extremely time-consuming and expensive. Second, NLG systems
in the pipeline architecture easy suffer to a mismatch problem between ”What” and ”How”
components (Meteer, 1991; Inui et al., 1992) since the early decisions may have unexpected
effects downstream. Third, task-oriented SDSs typically use meaning representation (MR), i.e.,

7

dialogue acts (DAs1) (Young et al., 2010) to represent communicative actions of both user and
system. NLG thus plays an essential role in SDSs since its task is to convert a given DA into
natural language utterances. Last, NLG also has responsibility for adequate, fluent, and natural
presentation of information provided by the dialogue system and has a profound impact on a
user’s impression of the system. Table 1.1 shows example pairs of DA-utterance in various
NLG domains.

Table 1.1: Examples of the dialogue act and its corresponding utterance in Hotel, Restaurant,
TV, and Laptop domains.

Hotel DA inform count(type=‘hotel’; count=‘16’; dogs allowed=‘no’; near=‘dont care’)
Utterance There are 16 hotels that dogs are not allowed if you do not care where it is near to
Restaurant DA inform(name=‘Ananda Fuara’; pricerange=‘expensive’; goodformeal=‘lunch’)
Utterance Ananda Fuara is a nice place, it is in the expensive price range and it is good for lunch.
Tv DA inform no match(type=‘television’; hasusbport=‘false’; pricerange=‘cheap’)
Utterance There are no televisions which do not have any usb ports and in the cheap price range.
Laptop DA recommend(name=‘Tecra 89’; type=‘laptop’; platform=‘windows 7’; dimension=‘25.4 inch’)
Utterance Tecra 89 is a nice laptop. It operates on windows 7 and its dimensions are 25.4 inch.

Traditional methods to NLG for SDSs still rely on extensive hand-tuning rules and tem-
plates, requiring expert knowledge of linguistic modeling, including rule-based methods (Duboue
and McKeown, 2003; Danlos et al., 2011; Reiter et al., 2005), grammar-based methods (Reiter
et al., 2000), corpus-based lexicalization (Bangalore and Rambow, 2000; Barzilay and Lee,
2002), template-based models (Busemann and Horacek, 1998; McRoy et al., 2001), or a train-
able sentence planner (Walker et al., 2001; Ratnaparkhi, 2000; Stent et al., 2004). As a re-
sult, such NLG systems tend to generate stiff responses, lacking several factors: completeness,
adaptability, adequacy, and fluency. Recently, taking advantages of advances in data-driven and
deep neural network (DNN) approaches, NLG has received much attention in the study. DNN-
based NLG systems have achieved better-generated results over traditional methods regarding
completeness and naturalness as well as variability and scalability (Wen et al., 2015b, 2016b,
2015a). Deep learning based approaches have also shown promising performance in a wide
range of applications, including natural language processing (Bahdanau et al., 2014; Luong
et al., 2015a; Cho et al., 2014; Li and Jurafsky, 2016), dialogue systems (Vinyals and Le, 2015;
Li et al., 2015), image processing (Xu et al., 2015; Vinyals et al., 2015; You et al., 2016; Yang
et al., 2016), and so forth.

However, the aforementioned DNN-based methods suffer from some severe drawbacks
when dealing with the NLG problems: (i) completeness that to ensure whether the generated
utterances expresses the intended meaning in the dialogue act. Since DNN-based approaches
for NLG are at the early stage, this issue leaves some rooms for improvement in terms of ad-
equacy, fluency, and variability; (ii) scalability/adaptability that to examine whether the model
can scale/adapt to a new, unseen domain since current DNN-based NLG systems also struggle
to generalize well; and (iii) low-resource setting data that to examine whether the model can
perform acceptably well when training on a modest amount of dataset. Low-resource training
data can easily harm the performance of such NLG systems since the DNNs are often seen as
data-hungry models. The primary goal of this thesis, thus, is to propose DNN-based architec-
tures for solving NLG as mentioned above problems in SDSs.

1A dialogue act is a combination of an action type, e.g., request, recommend, or inform, and a list of slot-value
pairs extracted from corresponding utterance, e.g., name=‘Sushino’ and type=‘restaurant’.
A dialogue act example: inform count(type=‘hotel’; count=‘16’).

8

1.1. MOTIVATION FOR THE RESEARCH

To achieve the goal, we pursue five primary objectives: (i) to investigate core DNN models,
including recurrent neural networks (RNNs), convolutional neural networks (CNNs), encoder-
decoder networks, variational autoencoder (VAE), word distributed representation, gating and
attention mechanisms, and so forth, as well as the factors influencing the effectiveness of the
DNN-based NLG models; (ii) to propose a DNN-based generator based on an RNN language
model (RNNLM) and gating mechanism, that obtains better performance over previous NLG
systems; (iii) to propose a DNN-based generator based on an RNN encoder-decoder, gating
and attention mechanisms, which improves upon the existing NLG systems; (iv) to develop a
DNN-based generator that performs acceptably well when training the generator from domain
adaptation scenario on a low-resource of target data; (v) to develop a DNN-based generator that
performs acceptably well when training the generator from scratch scenario on a low-resource
of training data.

In this introductory chapter, we first present in Section 1.1 our motivation for the research.
We then show our contributions in Section 1.2. Finally, we present thesis outline in Section 1.3.

1.1 Motivation for the research
This section discusses the two factors that motivate our research undertaken in this study. First,
there is a need to enhance the current DNN-based NLG systems concerning naturalness, com-
pleteness, fluency, and variability, even though DNN methods have demonstrated impressive
progress in improving the quality of SDSs. Second, there is a dearth of deep learning ap-
proaches for constructing open-domain NLG systems since such NLG systems have only been
evaluated on specific domains. Such NLG systems cannot also scale to scale to a new domain
and have poor performance when there is only a limited amount of training data. These are dis-
cussed in details in the following two Subsections, where Subsection 1.1.1 discusses the former
motivating factor, and Subsection 1.1.2 discusses the latter motivation.

1.1.1 The knowledge gap
Conventional approaches to NLG follow a pipeline which typically breaks down the task into
sentence planning and surface realization. Sentence planning is to map input semantic symbols
onto a linguistic structure, e.g., a tree-like or a template structure. Surface realization is then
to convert the structure into an appropriate sentence. These approaches to NLG rely heavily
on extensive hand-tuning rules and templates that are time-consuming, expensive and do not
generalize well. The emergence of deep learning has recently impacted on the progress and
success of NLG systems. Specifically, language model, which is based on RNNs and cast NLG
as a sequential prediction problem, has illustrated ability to model long-term dependencies and
to better generalize by using distributed vector representations for words.

Unfortunately, RNNs-based models in practice suffer from the vanishing gradient prob-
lem which is later overcome by LSTM and GRU networks by introducing sophisticated gat-
ing mechanism. The similar idea was applied to NLG resulting in a semantically conditioned
LSTM-based generator (Wen et al., 2015b) that can learn a soft alignment between slot-value
pairs and their realizations by bundling their parameters up via delexicalization procedure (see
Section 2.3.2). Specifically, the gating generator can jointly learn semantic alignments and sur-
face realization, in which the traditional LSTM/GRU cell is in charge of surface realization,
while the gating-based cell acts as a sentence planning. Although the RNN-based NLG sys-

9

1.2. CONTRIBUTIONS

tems are easy to train and have better-generated outputs than previous methods, there are still
rooms for improvement regarding adequacy, completeness, and fluency. This thesis addresses
the need to enhance how better gating mechanism is integrated into RNN-based generators (see
Chapter 3).

On the other hand, deep encoder-decoder networks (Vinyals and Le, 2015; Li et al., 2015),
especially RNN encoder-decoder based models with attention mechanism have achieved signif-
icant performance in a variety of NLG related tasks, e.g., neural machine translation (Bahdanau
et al., 2014; Luong et al., 2015a; Cho et al., 2014; Li and Jurafsky, 2016), neural image caption-
ing (Xu et al., 2015; Vinyals et al., 2015; You et al., 2016; Yang et al., 2016), and neural text
summarization (Rush et al., 2015; Nallapati et al., 2016). Attention-based networks (Wen et al.,
2016b; Mei et al., 2015) have also explored to tackle NLG problems with the ability to adapt
faster to a new domain. The separate parameterization of slots and values under an attention
mechanism provided encoder-decoder model (Wen et al., 2016b) signs to better generalize in
the beginning. However, the influence of attention mechanism on NLG systems has remained
unclear. The thesis investigates the need for improving attention-based NLG systems regarding
the quality of generated outputs and ability to highly scale to multi-domains (see Chapter 4).

1.1.2 The potential benefits
Since the current DNN-based NLG systems have been only evaluated on specific domains,
such as the laptop, restaurant or tv domains, constructing useful NLG models provides twofold
benefits in domain adaptation training and low-resource setting training (see Chapter 5).

First, it enables the adaptation generator to achieve good performance on the target domain
by leveraging knowledge from source data. Domain adaptation involves two different types of
datasets, one from a source domain and the other from a target domain. The source domain
typically contains a sufficient amount of annotated data such that a model can be efficiently
built, while the target domain is assumed to have different characteristics from the source and
have much smaller or even no labeled data. Hence, simply applying models trained on the
source domain can lead to a worse performance in the target domain.

Second, it allows the generator to work acceptably well when there is a modest amount of
in-domain data. The prior DNN-based NLG systems have proved to work well when providing
a sufficient in-domain data, whereas a modest training data can harm the model performance.
The latter poses a need of deploying a generator that can perform acceptably well on a low-
resource setting dataset.

1.2 Contributions
Our main contributions of this thesis are summarized as follows:

• Proposing an effective gating-based RNN generator addressing the former knowledge
gap. The proposed model empirically shows improved performance compared to previous
methods;

• Proposing a novel hybrid NLG framework that combines gating and attention mecha-
nisms, in which we introduce two attention- and hybrid-based generators addressing the
latter knowledge gap. The proposed models achieve significant improvements over the
previous methods across four domains;

10

1.3. THESIS OUTLINE

• Proposing a domain adaptation generator which adapts faster to a new, unseen domain
irrespective of scarce target resources, demonstrating the former potential benefit.

• Proposing a low-resource setting generator which performs acceptably well irrespective
of a limited amount of in-domain resources, demonstrating the latter potential benefit.

• Illustrating the effectiveness of proposed generators by training on four different NLG
domains and their variants in various scenarios, such as scratch, domain adaptation, semi-
supervised training with different amount of data.

1.3 Thesis Outline

Figure 1.3: Thesis flow. Color arrows represent transformations going in and out of the gener-
ators in each chapter, while black arrow represents model hierarchy. Punch card with names,
such as LSTM/GRU or VAE, represents core deep learning networks.

Figure 1.3 presents an overview of thesis chapters with an example, starting from the bottom
with an input of Dialogue act-Utterance pair and ending at the top with an expected output after
lexicalizing. While the utterance to be learned is delexicalized by replacing slot-value pair, i.e.,
slot name ‘area’ and slot value ‘Jaist’, with a corresponding abstract token, i.e., SLOT AREA,
the given dialogue act is represented by either using a 1-hot vector (denoted by red dash arrow)
or using a Bidirectional LSTM to separately parameterize its slots and values (denoted by green
dash arrow and green box). The figure clearly shows that the gating mechanism is used in all
proposed models in either a solo with proposed gating models in Chapter 3 or a duet with hybrid
and variational models in Chapter 4 and 5, respectively. It is worth noting here that the decoder
part of all proposed models in this thesis is mainly based on an RNN language model which
is in charge of surface realization. On the other hand, while Chapter 3 presents an RNNLM
generator which is based on gating mechanism and LSTM or GRU cells, Chapter 4 describes
an RNN Encoder-Decoder in a mix of gating and attention mechanisms. Chapter 5 proposes

11

1.3. THESIS OUTLINE

a variational generator which is a combination of the generator in Chapter 4 and a variety of
deep learning models, such as convolutional neural networks (CNNs), deconvolutional CNNs
and variational autoencoders.

Despite the strengths and potential benefits, the early DNN-based NLG architectures (Wen
et al., 2015b, 2016b, 2015a) still have many shortcomings. In this thesis, we draw attention
to three main problems pertaining to the existing DNN-based NLG models, namely complete-
ness, adaptability and low-resource setting data. The thesis is organized as follows. Chapter
2 presents research background knowledge on NLG approaches by decomposing it into stages,
whereas Chapters 3, 4, and 5 one by one address the three problems as mentioned earlier. The
final Chapter 6 discusses main research findings and the future research direction for NLG. The
content of Chapters 3, 4, 5 is briefly described as follows:

Gating Mechanism based NLG
This chapter presents a generator based on an RNNLM utilizing the gating mechanism to deal
with the NLG problem of completeness.

Traditional approaches to NLG rely heavily on extensive hand-tuning templates and rules
requiring linguistic modeling expertise, such as template-based (Busemann and Horacek, 1998;
McRoy et al., 2001), grammar-based (Reiter et al., 2000), corpus-based (Bangalore and Ram-
bow, 2000; Barzilay and Lee, 2002). Recent RNNLM-based approaches (Wen et al., 2015a,b)
have shown promising results tackling the NLG problems of completeness, naturalness, and flu-
ency. The methods cast NLG as a sequential prediction problem. To ensure the that generated
utterances represent the intended meaning in a given DA, previous RNNLM-based models are
further conditioned on a 1-hot DA vector representation. Such models leverage the strength
of gating mechanism to alleviating the vanishing gradient problem in RNN-based models as
well as keeping track of required slot-value pairs during generation. However, the models have
trouble dealing with special slot-value pairs, such as binary slots and slots can take dont care
value. These slots cannot exactly match to words or phrase (see Hotel example in Table 1.1)
in a delexicalized utterance (see Section 2.3.2). Following the line of research that models
NLG problem in a unified architecture where the model can jointly train sentence planning and
surface realization, in Chapter 3 we further investigate the effectiveness of gating mechanism
and propose additional gates to address the completeness problem better. The proposed models
not only demonstrate state-of-the-art performance over previous gating-based methods but also
show signs to scale better to a new domain. This chapter is based on the following papers (Tran
and Nguyen, 2017b; Tran et al., 2017b; Tran and Nguyen, 2018d).

Hybrid based NLG
This chapter proposes a novel generator on an attention RNN encoder-decoder (ARED) utiliz-
ing the gating and attention mechanisms to deal with the NLG problems of completeness and
adaptability.

More recently, RNN Encoder-Decoder networks (Vinyals and Le, 2015; Li et al., 2015),
especially the attentional based models (ARED) have not only been explored to solve the NLG
issues (Wen et al., 2016b; Mei et al., 2015; Dušek and Jurčı́ček, 2016b,a) but have also shown
improved performance on a variety of tasks, e.g., image captioning (Xu et al., 2015; Yang et al.,
2016), text summarization (Rush et al., 2015; Nallapati et al., 2016), neural machine translation
(NMT) (Luong et al., 2015b; Wu et al., 2016). The attention mechanism (Bahdanau et al., 2014)

12

1.3. THESIS OUTLINE

idea is to address sentence length problem in NLP applications, such as NMT, text summariza-
tion, text entailment by selectively focusing on parts of the source sentence or automatically
learn alignments between features from source and target sentence during decoding. We further
observe that while previous gating-based models (Wen et al., 2015a,b) are limited to generalize
to the unseen domain (scalability issue), the current ARED-based generator (Wen et al., 2016b)
has difficulty to prevent undesirable semantic repetitions during generation (completeness is-
sue). Moreover, none of the existing models show significant advantage from out-of-domain
data. To tackle these issues, in Chapter 4 we propose a novel ARED-based generation frame-
work which is a hybrid model of gating and attention mechanisms. From this framework, we
introduce two novel generators which are Encoder-Aggregator-Decoder (Tran et al., 2017a) and
RALSTM (Tran and Nguyen, 2017a). Experiments showed that the hybrid generators not only
achieve state-of-the-art performance compared to previous methods but also have an ability to
adapt faster to a new domain and generate informative utterances. This chapter is based on the
following papers (Tran et al., 2017a; Tran and Nguyen, 2017a, 2018c).

Variational Model for Low-Resource NLG
This chapter introduces novel generators based on hybrid generator integrating with a varia-
tional inference to deal with the NLG problems of completeness and adaptability and specifi-
cally low-resource setting data.

As mentioned, NLG systems for SDSs are typically developed for specific domains, such as
reserving a flight, searching a restaurant, hotel, or buying a laptop, which requires a well-defined
ontology dataset. The processes for collecting such well-defined annotated data are extremely
time-consuming and expensive. Furthermore, the DNN-based NLG systems have obtained very
good performance irrespective of providing adequate labeled datasets in the supervised learn-
ing manner, while low-resource setting data easily results in impaired performance models. In
Chapter 5, we propose two approaches dealing with the problem of low-resource setting data.
First, we propose an adversarial training procedure to train variational generator via multiple
adaptation steps that enable the generator to learn more efficiently when the in-domain data is
in short supply. Second, we propose a combination of two variational autoencoders that en-
ables the variational-based generator to learn more efficiently in low-resource setting data. The
proposed generators demonstrate state-of-the-art performance in both of rich and low-resource
training data. This chapter is based on the following papers (Tran and Nguyen, 2018a,b,e)

Conclusion
In summary, this study has investigated various aspects in which the NLG systems have signifi-
cantly improved performance. In this chapter, we provide main findings and discussions of this
thesis. We believe that many NLG challenges and problems would be worth exploring in the
future.

13

Chapter 2

Background

In this chapter, we present necessary background knowledge of the main topic in this disserta-
tion, including NLG approaches, data processing, evaluation metrics, and so forth.

2.1 NLG Architecture for SDSs
This section briefly describes an NLG architecture for SDSs, which typically consists of three
stages (Reiter et al., 2000), namely document planning, sentence planning, and surface realiza-
tion. While the content determination phase decides “What to say” regarding domain concepts,
the rest phases involve the decision of “How to say it” (see Chapter 1). However, in SDSs, doc-
ument planning is handled by the dialogue manager (DM) which controls the current dialogue
states and decides “What to say?” and “When to say it?” by yielding the meaning representa-
tion (MR). Whereas the NLG component only works with subtasks, i.e., sentence planning and
surface realization, in a two-step pipeline or joint approach to deciding “How to say it?” by
mapping such MR into understandable texts. The MR, i.e., dialogue act (Young et al., 2010),
conveys the content to be expressed in the system’s next dialogue turn. The NLG pipeline in
SDSs is depicted in Figure 2.1.

Figure 2.1: NLG pipeline in SDSs.

2.2 NLG Approaches
The following Subsections present most widely used NLG approaches in a broader view, rang-
ing from traditional methods to recent approaches using neural networks.

14

2.2. NLG APPROACHES

2.2.1 Pipeline and Joint Approaches
While most NLG systems recently endeavor to learn generation from data, the choice between
the pipeline and joint approach is often arbitrary and depends on specific domains and system
architectures. A variety of systems follows the conventional pipeline tending to focus on sub-
tasks, whether sentence planning (Stent et al., 2004; Paiva and Evans, 2005; Dušek and Jurcicek,
2015) or surface realization (Dethlefs et al., 2013) or both (Walker et al., 2001; Rieser et al.,
2010), while others decide to follow a joint approach (Wong and Mooney, 2007; Konstas and
Lapata, 2013). (Walker et al., 2004; Carenini and Moore, 2006; Demberg and Moore, 2006) fol-
lowed pipeline to tailor user generation in the match multimodal dialogue system. (Oliver and
White, 2004) proposed a model to present information in SDS by combining multi-attribute
decision models, strategic document planning, dialogue management, and surface realization
which incorporates prosodic features. Generators performing the joint approach employ var-
ious methods, e.g., factored language models (Mairesse and Young, 2014), inverted parsing
(Wong and Mooney, 2007; Konstas and Lapata, 2013), or a pipeline of discriminative classi-
fiers (Angeli et al., 2010). The pipeline approaches make the subtasks simpler, but feedbacks
and revision in NLG system cannot be handled, whereas joint approaches do not require to
explicitly model and handle intermediate structures (Konstas and Lapata, 2013).

2.2.2 Traditional Approaches
Traditionally, the most widely and common used NLG approaches are the rule-based (Duboue
and McKeown, 2003; Danlos et al., 2011; Reiter et al., 2005; Siddharthan, 2010; Williams and
Reiter, 2005) and grammar-based (Marsi, 2001; Reiter et al., 2000). In the document planning,
(Duboue and McKeown, 2003) proposed three methods, such as exact matching, statistical se-
lection, and rule induction to infer rules from indirect observations from the corpus, whereas in
lexicalization, (Danlos et al., 2011) demonstrated a more practical rules-based approach which
integrated into their EasyText NLG system, and (Siddharthan, 2010; Williams and Reiter, 2005)
encompass the usage of choice rules. (Reiter et al., 2005) presented a model, which relies on
consistent data-to-word rules, to convert a set of time phrases to linguistic equivalents through
a fixed rule. However, these models required a comparison of the defined rules with expert sug-
gested and corpus-derived phrases, whose processes are more resource expensive. It is also true
that grammar-based methods for realization phase are so complex and learning to work with
them takes a lot of time and effort (Reiter et al., 2000) because very large grammars need to be
traversed for generation (Marsi, 2001).

Developing template-based NLG systems (McRoy et al., 2000; Busemann and Horacek,
1998; McRoy et al., 2001) is generally simpler than rule-based and grammar-based ones be-
cause the specification of templates requires less linguistic expertise than grammar rules. The
template-based systems are also easier to adapt to a new domain since the templates are defined
by hand, different templates can be specified for use on different domains. However, because of
their use of handmade templates, they are most suitable for specific domains that are limited in
size and subject to few changes. In addition, developing syntactic templates for a vast domain
is very time-consuming and high maintenance costs.

2.2.3 Trainable Approaches
Trainable-based generation systems that have a trainable component tend to be easier to adapt to
new domains and applications, such as trainable surface realization in NITROGEN (Langkilde

15

2.2. NLG APPROACHES

and Knight, 1998) and HALOGEN (Langkilde, 2000) systems, or trainable sentence planning
(Walker et al., 2001; Belz, 2005; Walker et al., 2007; Ratnaparkhi, 2000; Stent et al., 2004). A
trainable sentence planning proposed in (Walker et al., 2007) to adapt to many features of the
dialogue domain and dialogue context, and to tailor to individual preferences of users. SPoT
generator (Walker et al., 2001) proposed a trainable sentence planner via multiple steps with
ranking rules. SPaRKy (Stent et al., 2004) used a tree-based sentence planning generator and
then applied a trainable sentence planning ranker. (Belz, 2005) proposed a corpus-driven gen-
erator which reduces the need for manual corpus analysis and consultation with experts. This
reduction makes it easier to build portable system components by combining the use of a base
generator with a separate, automatically adaptable decision-making component. However, these
trainable-based approaches still require a handmade generator to make decisions.

2.2.4 Corpus-based Approaches
Recently, NLG systems attempt to learn generation from data (Oh and Rudnicky, 2000; Barzilay
and Lee, 2002; Mairesse and Young, 2014; Wen et al., 2015a). While (Oh and Rudnicky, 2000)
trained n-gram language models for each DA to generate sentences and then selected the best
ones using a rule-based re-ranker, (Barzilay and Lee, 2002) trained a corpus-based lexicaliza-
tion on multi-parallel corpora which consisted of multiple verbalizations for related semantics.
(Kondadadi et al., 2013) used an SVM re-ranker to further improve the performance of sys-
tems which extract a bank of templates from a text corpus. (Rambow et al., 2001) showed how
to overcome the high cost of hand-crafting knowledge-based generation systems by employ-
ing statistical techniques. (Belz et al., 2010) developed a shared task in statistical realization
based on common inputs and labeled corpora of paired inputs and outputs to reuse realization
frameworks. The BAGEL system (Mairesse and Young, 2014), according to factored language
models, treated the language generation task as a search for the most likely sequence of se-
mantic concepts and realization phrases, resulting in a large variation found in human language
using data-driven methods. The HALogen system (Langkilde-Geary, 2002) based on a sta-
tistical model, specifically an n-gram language model, that achieves both broad coverage and
high-quality output as measured against an unseen section of the Penn Treebank. Corpus-based
methods make the systems easier to build and extend to other domains. Moreover, learning
from data enables the systems to imitate human responses more naturally, eliminates the needs
of handcrafted rules and templates.

Recurrent Neural Networks (RNNs) based approaches have recently shown promising per-
formance in tackling the NLG problems. For non-goal driven dialogue systems, (Vinyals and
Le, 2015) proposed a sequence to sequence based conversational model that predicts the next
sentence given the preceding ones. Subsequently, (Li et al., 2016a) presented a persona-based
model to capture the characteristics of the speaker in a conversation. There have also been
growing research interest in training neural conversation systems from large-scale of human-
to-human datasets (Li et al., 2015; Serban et al., 2016; Chan et al., 2016; Li et al., 2016b).
For task-oriented dialogue systems, RNN-based models have been applied for NLG as a joint
training model (Wen et al., 2015a,b; Tran and Nguyen, 2017b) and an end-to-end training net-
work (Wen et al., 2017a,b). (Wen et al., 2015a) combined a forward RNN generator, a CNN
re-ranker, and a backward RNN re-ranker to generate utterances. (Wen et al., 2015b) proposed
a semantically conditioned Long Short-term Memory generator (SCLSTM) which introduced
a control sigmoid gate to the traditional LSTM cell to jointly learn the gating mechanism and
language model. (Wen et al., 2016a) introduced an out-of-domain model which was trained

16

2.3. NLG PROBLEM DECOMPOSITION

on counterfeited data by using semantically similar slots from the target domain instead of the
slots belonging to the out-of-domain dataset. However, these methods require a sufficiently
large dataset in order to achieve these results.

More recently, RNN Encoder-Decoder networks (Vinyals and Le, 2015; Li et al., 2015)
and especially attentional RNN Encoder-Decoder (ARED)-based models have been explored
to solve the NLG problems (Wen et al., 2016b; Mei et al., 2015; Dušek and Jurčı́ček, 2016b,a;
Tran et al., 2017a; Tran and Nguyen, 2017a). (Wen et al., 2016b) proposed an attentive encoder-
decoder based generator which computed the attention mechanism over the slot-value pairs.
(Mei et al., 2015) proposed an ARED-based model by using two attention layers to train content
selection and surface realization jointly.

Moving from a limited domain NLG to an open domain NLG raises some problems because
of exponentially increasing semantic input elements. Therefore, it is important to build an open
domain NLG that can leverage as much of abilities of knowledge from existing domains. There
have been several works trying to solve this problem, such as (Mrkšić et al., 2015) utilizing
the RNN-based model for multi-domain dialogue state tracking, (Williams, 2013; Gašić et al.,
2015) adapting of SDS components to new domains. (Wen et al., 2016a) using a procedure to
train multi-domain via multiple adaptation steps, in which a model was trained on counterfeited
data by using semantically similar slots from the new domain instead of the slots belonging to
the out-of-domain dataset, then fine tune the new domain on the out-of-domain trained model.
While the RNN-based generators can prevent the undesirable semantic repetitions, the ARED-
based generators show signs of better adapting to a new domain.

2.3 NLG Problem Decomposition
This section provides a background for most of experiments in this thesis, including some task
definitions, pre- and post-processing, datasets, evaluation metrics, training, and decoding phase.

2.3.1 Input Meaning Representation and Datasets
As mentioned, NLG task in SDSs is to convert a meaning representation, yielded by the dialogue
manager, into natural language sentences. The meaning representation conveys information of
“What to say?” which is represented as a dialogue act (Young et al., 2010). Dialogue act is a
combination of an act type and a list of slot-value pairs. The dataset ontology is shown in Table
2.1.

Table 2.1: Datasets Ontology

Laptop Television
Act Type inform?, inform only match?, goodbye?, select?, inform no match?, inform count?, request?,

request more?, recommend?, confirm?, inform all, inform no info, compare, suggest
Requestable
Slots

name?, type?, price?, warranty, dimension, bat-
tery, design, utility, weight, platform, memory,
drive, processor

name?, type?, price?, power consumption, res-
olution, accessories, color, audio, screen size,
family

Informable
Slots

price range?, drive range, weight range, fam-
ily, battery rating, is for business

price range?, screen size range, eco rating,
hdmi port, has usb port

? = overlap with Restaurant and Hotel domains, italic = slots can take don’t care value, bold = binary slots.

In this study, we used four different original NLG domains: finding a restaurant, finding a
hotel, buying a laptop, and buying a television. All these datasets were released by (Wen et al.,

17

2.3. NLG PROBLEM DECOMPOSITION

Table 2.2: Dataset statistics.

Hotel Restaurant TV Laptop
train 3,223 3,114 4,221 7,944

10% train 322 311 422 794
30% train 966 933 1266 2382
validation 1,075 1,039 1,407 2,649

10% validation 107 103 140 264
30% validation 321 309 420 792

test 1,075 1,039 1,407 2,649
distinct DAs 164 248 7,035 13,242

act types 8 8 14 14
slots 12 12 15 19

(a) Laptop domain. (b) TV domain.

(c) Restaurant domain. (d) Hotel domain.

Figure 2.2: Word clouds for testing set of the four original domains, in which font size indicates
the frequency of words.

2016a). The Restaurant and Hotel were collected in (Wen et al., 2015b), while the Laptop and
TV datasets released by (Wen et al., 2016a). The both latter datasets have a much larger input
space but only one training example for each DA, which makes the system must learn partial
realization of concepts and be able to recombine and apply them to unseen DAs. This also
implies that the NLG tasks for the Laptop and TV domains become much harder.

The Counterfeit datasets (Wen et al., 2016a) were released by synthesizing Target domain
data from Source domain data in order to share realizations between similar slot-value pairs.
Whereas the Union datasets were also created by pulling individual datasets together. For
example, an [L+T] union dataset were built by merging Laptop and Tv domain data together.

The dataset statistics is shown in Table 2.2. We also demonstrate the differences of word-
level distribution using word clouds in Figure 2.2.

18

2.3. NLG PROBLEM DECOMPOSITION

2.3.2 Delexicalization
The number of possible values for a DA slot is theoretically unlimited. This leads the generators
to a sparsity problem since there are some slot values which occur only once or even never occur
in the training dataset. Delexicalization, which is a pre-process of replacing some slot values
with special tokens, brings benefits on reducing data sparsity and improving generalization to
unseen slot values since the models only work with delexicalized tokens. Note that the binary
slots and slots that take dont care cannot be delexicalized since their values cannot exactly
match in the training corpus. Table 2.3 shows some examples of the delexicalization step.

Table 2.3: Delexicalization examples.

Hotel DA inform only match(name = ‘Red Victorian’ ; accepts credit cards = ‘yes’ ;
near = ‘Haight’ ; has internet = ‘dont care’)

Reference The Red Victorian in the Haight area are the only hotel that accepts credit cards and if the
internet connection does not matter.

Delexicalized
Utterance

The SLOT NAME in the SLOT AREA area are the only hotel that accepts credit cards and
if the internet connection does not matter.

Laptop DA recommend(name=‘Satellite Dinlas 18’; type=‘laptop’; processor=‘Intel Celeron’;
is for business computing=‘true’; batteryrating=‘standard’)

Reference The Satellite Dinlas 18 is a great laptop for business with a standard battery and an Intel
Celeron processor

Delexicalized
Utterance

The SLOT NAME is a great SLOT TYPE for business with a SLOT BATTERYRATING bat-
tery and an SLOT PROCESSOR processor

2.3.3 Lexicalization
Lexicalization procedure in the sentence planning stage is to decide what particular words
should be used to express the content. For example, the actual adjectives, adverbs, nouns
and verbs to occur in the text are selected from a lexicon. In this study, lexicalization is a
post-process of replacing delexicalized tokens with their values to form the final utterances, in
which with different slot values we obtain different outputs. Table 2.4 shows examples of the
lexicalization process.

Table 2.4: Lexicalization examples.

Hotel DA inform(name=‘Connections SF’; pricerange=‘pricey’)
Delexicalized Utterance SLOT NAME is a nice place it is in the SLOT PRICERANGE price range.
Lexicalized Utterance Connections SF is a nice place it is in the pricey price range.
Hotel DA inform(name=‘Laurel Inn’; pricerange=‘moderate’)
Delexicalized Utterance SLOT NAME is a nice place it is in the SLOT PRICERANGE price range.
Lexicalized Utterance Laurel Inn is a nice place it is in the moderate price range.

2.3.4 Unaligned Training Data
All four original NLG datasets and their variants used in this study contain unaligned training
pairs of a dialogue act and corresponding utterance. Our proposed generators in Chapters 3, 4,
5 can jointly train both sentence planning and surface realization to convert a MR into natural
language utterances. Thus, there is no longer need to explicitly separate training data alignment

19

2.4. EVALUATION METRICS

(Mairesse et al., 2010; Konstas and Lapata, 2013) which requires domain specific constraints
and explicit feature engineering. Examples in Tables 1.1, 2.3 and 2.4 show that correspondences
between a DA and words or phrases in its output utterance are not always matched.

2.4 Evaluation Metrics

2.4.1 BLEU
The Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) is often used for com-
paring a candidate generation of text to one or more reference generations, which is the most
frequently used metric for evaluating a generated sentence to a reference sentence. Specifically,
the task is to compare n-grams of the candidate responses with the n-grams of the human-
labeled reference and count the number of matches which are position-independent. The more
the matches, the better the candidate response is. This thesis used the cumulative 4-gram BLEU
score (also called BLEU-4) for the objective evaluation.

2.4.2 Slot Error Rate
The slot error rate ERR (Wen et al., 2015b), which is the number of generated slots that is either
redundant or missing, and is computed by:

ERR = (sm + sr)/N (2.1)

where sm and sr are the number of missing and redundant slots in a generated utterance, respec-
tively. N is the total number of slots in given dialogue acts, such as N = 12 for Hotel domain
(see Table 2.2). In some cases when we train adaptation models across domains, we simply
set N = 42 is the total number of distinct slots in all four domains. In the decoding phase, for
each DA we over-generated 20 candidate sentences and selected the top k = 5 realizations after
re-ranking. The slot error rates were computed by averaging slot errors over each of the top
k = 5 realizations in the entire corpus. Note that, the slot error rate cannot deal with dont care
and none values in a given dialogue act. Table 2.5 demonstrates how to compute the ERR score
with some examples. In this thesis, we adopted code from an NLG toolkit1to compute the two
metrics BLEU and slot error rate ERR.

2.5 Neural based Approach

2.5.1 Training
This section describes the training procedure for proposed models in Chapters 3 and 4, in which
the objective function was the negative log-likelihood and computed by:

L(.) = −
T∑
t=1

y>t log pt (2.2)

where yt is the ground truth token distribution, pt is the predicted token distribution, T is length
of the corresponding utterance.

1https://github.com/shawnwun/RNNLG

20

2.5. NEURAL BASED APPROACH

Table 2.5: Slot error rate (ERR) examples. Errors are marked in colors, such as [missing] and
redundant information. [OK] denotes successful generation.

Hotel DA inform only match(name = ‘Red Victorian’ ; accepts credit cards = ‘yes’ ;
near = ‘Haight’ ; has internet = ‘yes’)

Reference The Red Victorian in the Haight area are the only hotel that accepts credit cards and has
internet.

Output A Red Victorian is the only hotel that allows credit cards near Haight and allows internet.
[OK]

Output B Red Victorian is the only hotel that allows credit cards and allows credit cards near Haight
and allows internet.

Output C Red Victorian is the only hotel that nears Haight and allows internet. [allows credit cards]
Output D Red Victorian is the only hotel that allows credit cards and allows credit cards and has

internet. [near Haight]
Number of total slots in the Hotel domain N = 12 (see Table 2.2)

Output A ERR = (0 + 0)/12 = 0.0
Output B ERR = (0 + 1)/12 = 0.083
Output C ERR = (1 + 0)/12 = 0.083
Output D ERR = (1 + 1)/12 = 0.167

Following the work of (Wen et al., 2015b), all proposed models were trained with a ratio of
training, validation, and testing as 3:1:1. The models were initialized with a pre-trained Glove
word embedding vectors (Pennington et al., 2014) and optimized by using stochastic gradient
descent and back-propagation through time (Werbos, 1990). Early stopping mechanism was
implemented to prevent over-fitting by using a validation set as suggested in (Mikolov, 2010).
The proposed generators were trained by treating each sentence as a mini-batch with l2 regu-
larization added to the objective function for every 5 training examples. We performed 5 runs
with different random initialization of the network, and the training is terminated by using early
stopping. We then chose a model that yields the highest BLEU score on the validation set as
reported in Chapter 3, 4. Since the trained models can differ depending on the initialization, we
also report the results which were averaged over 5 randomly initialized networks.

2.5.2 Decoding
The decoding we implemented here is similar to those in work of (Wen et al., 2015b), which
consists of two phases: (i) over-generation, and (ii) re-ranking. In the first phase, the generator,
conditioned on either representations of a given DA (Chapters 3 and 4), or both representations
of a given DA and a latent variable z of variational-based generators (Chapter 5), uses a beam
search with beam size is set to be 10 to generate a set of 20 candidate responses. The objective
cost of the generator, in the re-ranking phase, is calculated to form the re-ranking score R as
follows:

R = L(.) + λERR (2.3)

where L(.) is cost of generator in the training phase, λ is a trade-off constant and is set to be
large number to severely penalize nonsensical outputs. The slot error rate ERR (Wen et al.,
2015b) is computed as in Eq. 2.1. We set λ to 100 to severely discourage the reranker from
selecting utterances which contain either redundant or missing slots.

In the next chapter, we deploy our proposed gating-based generators which obtain state-of-
the-art performances over previous gating-based models.

21

Chapter 3

Gating Mechanism based NLG

This chapter further investigates the gating mechanism in RNN-based models for constructing
effective gating-based generators, tackling NLG issues of adequacy, completeness, and adapt-
ability.

As previously mentioned, RNN-based approaches have recently improved performance in
solving SDS language generation problems. Moreover, sequence to sequence models (Vinyals
and Le, 2015; Li et al., 2015) and especially attention-based models (Bahdanau et al., 2014;
Wen et al., 2016b; Mei et al., 2015) have been explored to solve the NLG problems. For task-
oriented SDSs, RNN-based models have been applied for NLG in a joint training manner (Wen
et al., 2015a,b) and an end-to-end training network (Wen et al., 2017b).

Despite the advantages and potential benefits, previous generators still suffer from some
fundamental issues. The first issue of completeness and adequacy is that previous methods have
lacked the ability to handle slots which cannot be directly delexicalized, such as binary slots
(i.e., yes and no) and slots that take don’t care value (Wen et al., 2015a), as well as to prevent
the undesirable semantic repetitions (Wen et al., 2016b). The second issue of adaptability is
that previous models have not generalized well to a new, unseen domain (Wen et al., 2015a,b).
The third issue is that previous RNN-based generators often produce the next token based on
information from the forward context, whereas the sentence may depend on backward context.
As a result, such generators tend to generate nonsensical utterances.

To deal with the first issue that whether the generated utterance represents intended meaning
of the given DA, previous RNN-based models were further conditioned on a 1-hot feature vector
DA by introducing additional gates (Wen et al., 2015a,b). The gating mechanism has brought
considerable benefits to not only mitigate the vanishing gradient problem in RNN-based models
but also work as a sentence planner in the generator to keep track of the slot-value pairs during
generation. However, there are still rooms for improvement with respect to all three issues.

Our objectives in this chapter are to investigate the gating mechanism to RNN-based gener-
ators. Our main contributions are summarized as follows:

• We present an effective way to construct gating-based RNN models, resulting in an end-
to-end generator that empirically shows improved performance compared with previous
gating-based approaches.

• We extensively conduct experiments to evaluate the models training from scratch on each
in-domain dataset.

• We empirically assess the model ability to learn from multi-domain datasets by pooling

22

3.1. THE GATING-BASED NEURAL LANGUAGE GENERATION

all existing training datasets, and then adapt to a new, unseen domain by feeding a limited
amount of in-domain data.

The rest of this chapter is organized as follows. Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4 one by
one present our gating-based generators addressing problems as mentioned earlier. We publish
our work in (Tran and Nguyen, 2017b; Tran et al., 2017b) and (Tran and Nguyen, 2018d).
Section 3.2 describes experimental setups while resulting analysis is presented in Section 3.3,
in which the proposed methods significantly outperformed the previous gating- and attention-
based methods regarding the BLEU and ERR scores. Experimental results also showed that the
proposed generators could adapt faster to new domains by leveraging out-of-domain data. We
give a summary and discussion in Section 3.4.

3.1 The Gating-based Neural Language Generation
The gating-based neural language generator proposed in this chapter is based on an RNN lan-
guage model (Mikolov, 2010), which consists of three layers: an input layer, a hidden layer,
and an output layer. The network takes input at each time step t as a 1-hot encoding wt of a
token1 wt which is conditioned on a recurrent hidden layer ht. The output layer yt represents
the probability distribution of the next token given previous token wt and hidden ht. We can
sample from this conditional distribution to obtain the next token in a generated string, and
feed it as a next input to the generator. This process finishes when a stop sign is generated
(Karpathy and Fei-Fei, 2015), or some constraints are reached (Zhang and Lapata, 2014). The
network can produce a sequence of tokens which can be lexicalized2 to form the required ut-
terance. Moreover, to ensure that the generated utterance represents the intended meaning of
the given DA, the generator is further conditioned on a vector d, a 1-hot vector representa-
tion of DA. The following sections increasingly present in detail our methods by introducing
five models: (i) a semantic Refinement GRU (RGRU) generator with two its variants, (ii) a
Refinement-Adjustment-Output GRU (RAOGRU) generator with its ablation variant.

3.1.1 RGRU-Base Model
Inspired by work of (Wang et al., 2016) with an intuition: Gating before computation, we
introduce a semantic gate before the RNN computation to refine the input tokens. With this
intuition, instead of feeding an input token wt to the RNN model at each time step t, the input
token is filtered by a semantic gate which is computed as follows:

rt = σ(Wrdd)

xt = rt � wt

(3.1)

where Wrd is a trainable matrix to project the given DA representation into the word embedding
space, xt is new input. Here Wrd plays a role in sentence planning since it can directly capture
which DA features are useful during the generation to encode the input information. The �
element-wise multiplication plays a part in word-level matching which not only learns the vec-
tors similarity, but also preserves information about the two vectors. rt is called a refinement

1Input texts are delexicalized in which slot values are replaced by its corresponding slot tokens.
2The process in which slot token is replaced by its value.

23

3.1. THE GATING-BASED NEURAL LANGUAGE GENERATION

gate since the input tokens are refined by the DA information. As a result, we can represent the
whole input sentence based on these refined inputs using RNN model.

In this study, we use GRU, which was recently proposed in (Bahdanau et al., 2014), as a
building computational block for RNN, which is formulated as follows:

ft = σ(Wfxxt + Wfhht−1)
zt = σ(Wzxxt + Wzhht−1)
h̃t = tanh(Whxxt + ft �Whhht−1)
ht = zt � ht−1 + (1− zt)� h̃t

(3.2)

where Wfx,Wfh,Wzx,Wzh,Whx,Whh are weight matrices; ft, zt are reset and update gate,
respectively, and � denotes for element-wise product. The semantic Refinement GRU (RGRU-
Base) architecture is shown in Figure 3.1.

The output distribution of each token is defined by applying a softmax function g as follows:

P (wt+1 | wt, wt−1, ...w0, z) = g(Whoht) (3.3)

where Who is learned linear projection matrix. At training time, we use the ground truth token
for the previous time step in place of the predicted output. At test time, we implement a simple
beam search to over-generate several candidate responses.

3.1.2 RGRU-Context Model

Figure 3.1: RGRU-Context cell. The red dashed box is a traditional GRU cell in charge of
surface realization, while the black dotted box forms sentence planning based on a sigmoid
control gate rt and a 1-hot dialogue act d. The contextual information ht−1 is imported into the
refinement gate rt via black dashed line and box. The RGRU-Base is achieved by omitting this
link.

The RGRU-Base model uses only the DA information to gate the input sequence token by
token. As a result, this gating mechanism may not capture the relationship between multiple

24

3.1. THE GATING-BASED NEURAL LANGUAGE GENERATION

words. In order to import context information into the gating mechanism, Equation 3.1 is mod-
ified as follows:

rt = σ(Wrdd + Wrhht−1)
xt = rt � wt

(3.4)

where Wrd and Wrh are weight matrices. Wrh acts like a key phrase detector that learns to
capture the pattern of generation tokens or the relationship between multiple tokens. In other
words, the new input xt consists of information of the original input token wt, the dialogue act d,
and the hidden context ht−1. rt is called the refinement gate because the input tokens are refined
by gating information from both the dialogue act d and the preceding hidden state ht−1. By
taking advantage of gating mechanism from the LSTM model (Hochreiter and Schmidhuber,
1997) in which the gating mechanism is employed to solve the gradient vanishing and exploding
problem, we propose to apply the dialog act representation d deeper into the GRU cell. Firstly,
the GRU reset and update gates are computed under the influence of the dialogue act d and the
refined input xt, and modified as follows:

ft = σ(Wfxxt + Wfhht−1 + Wfdd)

zt = σ(Wzxxt + Wzhht−1 + Wzdd)
(3.5)

where Wfd and Wzd act as background detectors that learn to control the style of the generating
sentence. Secondly, the candidate activation h̃t is also modified to depend on the refinement
gate:

h̃t = tanh(Whxxt + ft �Whhht−1) + tanh(Whrrt) (3.6)

The reset and update gates thus learn not only the long-term dependency but also the gating in-
formation from the dialogue act and the previous hidden state. We call the resulting architecture
semantic Refinement GRU with context (RGRU-Context) which is shown in Figure 3.1.

3.1.3 Tying Backward RGRU-Context Model
Due to some sentences may depend on both the past and the future during generation, we train
another backward RGRU-Context to utilize the flexibility of the refinement gate rt, in which we
tie its weight matrices such Wrd and Wrh (Equation 3.4) or both. We found that by tying matrix
Wrd for both forward and backward RNNs, the proposed generator seems to produce correct
and grammatical utterances than those having the only forward RNN. This model called Tying
Backward RGRU-Context (TB-RGRU).

3.1.4 Refinement-Adjustment-Output GRU (RAOGRU) Model
Although the RGRU-based generators (Tran and Nguyen, 2017b) applying the gating mecha-
nism before general RNN computations show signs of better performance on some NLG do-
mains, it is not clear how the model can prevent undesirable semantic repetitions as the SCLSTM
model (Wen et al., 2015b) does. Moreover, the RGRU-based models treat all input tokens the
same at each computational step since the DA vector representation keeps unchanged. This
makes them difficult to keep track which slot token has been generated and which one should
be remained for next time steps, leading to a high slot error rate ERR.

Despite the improvement over some RNN-based models, the gating-based generators have
not been well studied. In this section, we further investigate the gating mechanism-based models
in which we propose additional cells into the traditional GRU cell to gate the DA representation.

25

3.1. THE GATING-BASED NEURAL LANGUAGE GENERATION

The proposed model consists of three additional cells: a Refinement cell to filter the input
tokens (similar to RGRU-Context model), an Adjustment cell to control the 1-hot DA vector
representation, and an Output cell to compute the information which can be outputted together
with the GRU output. The resulting architecture called Refinement-Adjustment-Output GRU
generator (RAOGRU) demonstrated in Figure 3.2.

Refinement Cell

Inspired by the refinement gate of RGRU-Context model, we introduce an additional gate, added
before the RNN computation, to filter the input sequence token by token. The refinement gate in
Equation 3.4, with the setup to take advantages of capturing the relationship between multiple
words, is modified as follows:

rt = σ(Wrddt−1 + Wrhht−1)
xt = rt � wt

(3.7)

where Wrd and Wrh are weight matrices,� is an element-wise product. The� operator plays an
important role in word-level matching in which it both learns the vector similarity and reserves
information about the two vectors. The new input xt contains a combination information of
the original input wt, the dialogue act dt−1, and the context ht−1. Note that while the dialogue
act d of RGRU-Context model stays unchanged during sentence processing (Tran and Nguyen,
2017b), it is adjustable step by step in this proposed architecture.

GRU Cell

Taking advantages of gating mechanism in LSTM model (Hochreiter and Schmidhuber, 1997)
to deal with the gradient exploding problem in RNN, we further apply the refinement gate rt
deeper into the GRU activation units. The two GRU gates, which are an update gate zt to
balance between previous activation ht−1 and the candidate activation h̃t, and a reset gate ft to
forget the previous state, are then modified as follows:

ft = σ(Wfxxt + Wfhht−1 + Wfrrt)
zt = σ(Wzxxt + Wzhht−1 + Wzrrt)

(3.8)

where W[..] are weight matrices, σ is the sigmoid function, and ft, zt are reset and update gates,
respectively. The candidate activation h̃t and the activation h̄t are computed as follows:

h̃t = tanh(Whxxt + ft �Whhht−1 + Whrrt)
h̄t = zt � ht−1 + (1− zt)� h̃t

(3.9)

where Whx, Whh, and Whr are weight matrices. Note that while the GRU cell in the previous
work (Tran and Nguyen, 2017b) only depended on the constant dialogue act representation
vector d, the GRU gates and candidate activation in this architecture are modified to depend on
the refinement gate rt. This allows the information flow controlled by the two gating units pass
long distance in a sentence.

26

3.1. THE GATING-BASED NEURAL LANGUAGE GENERATION

Figure 3.2: RAOGRU cell proposed in this chapter, which consists of four components: a
Refinement Cell, a traditional GRU cell, an Adjustment cell, and an Output cell. At each time
step, the Refinement cell calculates new input tokens based on a combination of previous DA
representation and previous hidden state, the GRU cell mainly in charge of surface realization,
and the Adjustment cell and the Output cell compute how much information of the DA vector
should be retained for future time steps and those can be contributed to the output.

Adjustment cell

The Refinement gate (Tran and Nguyen, 2017b) showed its ability to filter the input sequences
to new inputs which convey useful information before putting into the RNN computation. How-
ever, the model treats all input tokens with the same DA vector representation which remains
unchanged at every time steps t = 1, 2, .., T , where T is length of the input sequence. As a
result, the models are difficult to keep track which slot tokens have been generated and which
ones should remain for future time steps, leading to a high score of slot error rate ERR. To
tackle this problem, inspired by work of (Tran and Nguyen, 2017a) in which an Adjustment cell
is introduced on top of the LSTM to gate feature vector dt, we stack an additional cell on the
upper part of the traditional GRU cell.

The additional cell, at time step t, calculates how the output h̄t of the traditional GRU affect
the control vector dt as follows:

at = σ(Waxxt + Wahh̄t)
dt = dt−1 � at

(3.10)

where Wax and Wah are weight matrices, dt is a control vector starting with d0 which is an
1-hot vector representation of given Dialogue Act. Here Wax and Wah function as keyword
and key-phrase detector which learn to keep track certain patterns of generated tokens associate
with certain slots. at called an Adjustment gate as its task is to mange what information have
been generated by the DA representation and what information should be preserved for next
time steps. We propose two models as follows:

27

3.2. EXPERIMENTS

RAGRU model

In the first setup, we consider how much of information preserved in the control vector dt can
be contributed to the model output, in which an additional output is computed by applying the
candidate activation h̃t on the remaining information in dt as follows:

ca = Woddt
h̄a = h̃t � tanh(ca)

(3.11)

where Wod is a weight matrix which projects the control vector dt into the output space, and h̄a
is output of the Adjustment cell. The result architecture called Refinement-Adjustment GRU
(RAGRU) model shown in Figure 3.2.

RAOGRU model

Despite achieving better results, we observed that it might not be sufficient to directly com-
pute the Adjustment output as in Equation (3.11) since the GRU candidate inner activation h̃t
may not straightforwardly affect the outer activation h̄a. Inspired by work of (Hochreiter and
Schmidhuber, 1997) in effectively using the gating mechanisms to deal with the exploring or
vanishing gradient problems, we propose an additional Output gate which acts as the LSTM
output gate as follows:

ot = σ(Woxxt + Wohht−1 + Worrt) (3.12)

where Wox, Woh, and Wor are weight matrices, respectively. Equation (3.11) is then modified
to compute the Adjustment output as follows:

ca = Woddt
h̄a = ot � tanh(ca)

(3.13)

where Wod is a weight matrix, ot is the proposed Output gate which decides how much of the
nonlinear transformation of the control vector dt contributes to the output. The result architec-
ture called Refinement-Adjustment-Output GRU (RAOGRU) model is depicted in Figure 3.2.

The final output of the network is a combination of both outputs of the traditional GRU cell
and the Adjustment cell, which are computed as follows:

ht = h̄t + h̄a (3.14)

Finally, the output distribution is computed by applying a softmax function g, from which
we can sample to obtain the next token:

P (wt+1 | wt, ...w0,DA) = g(Whoht)
wt+1 ∼ P (wt+1 | wt, wt−1, ...w0,dt)

(3.15)

where Who is a weight matrix.

3.2 Experiments
We conducted extensive experiments to assess the effectiveness of the proposed models on a
variety of datasets and model architectures in order to compare their performance with prior
methods.

28

3.3. RESULTS AND ANALYSIS

3.2.1 Experimental Setups
The generators were implemented using the TensorFlow library (Abadi et al., 2016) and trained
with a ratio 3:1:1 of training, validation and testing data. The training and decoding proce-
dures are described in Sections 2.5.1 and 2.5.2, respectively. The hidden layer size and beam
width were set to be 80 and 10, respectively, and the generators were trained with a 70% of
keep dropout rate. To further understand the effectiveness of the proposed methods we: (i)
performed an incremental construction of the proposed models to demonstrate the contribution
of each proposed cells (Tables 3.1, 3.2), (ii) trained general models by pooling data from all
domains together and tested them in each individual domain (Figure 3.3, and (iii) further con-
ducted experiments to compare the RGRU-Context with the SCLSTM in a variety of setups on
proportion of training corpus, beam size, and top-k best selecting results.

Moving from a limited domain NLG to an open domain NLG raises some problems because
of exponentially increasing semantic input elements. Therefore, it is important to build an
open domain NLG that can leverage as much of abilities of functioning from existing domains.
There have been several work trying to solve this problem, such as (Mrkšić et al., 2015) utilizing
RNN-based model for multi-domain dialogue state tracking (Williams, 2013; Gašić et al., 2015)
adapting of SDS components to new domains. (Wen et al., 2016a) using a procedure to train
multi-domain via multiple adaptation steps, in which a model was trained on counterfeited data
by using semantically similar slots from the new domain instead of the slots belonging to the
out-of-domain dataset, then fine tune the new domain on the out-of-domain trained model. To
examine the model scalability we trained adaptation models on pooling data from Restaurant
and Hotel domains, then fine tuned the models on the Laptop domain with varied amount of
adaptation data (Figure 3.4),

3.2.2 Evaluation Metrics and Baselines
The generator performances were evaluated using two metrics, BLEU and slot error rate ERR,
by adopting code from an NLG toolkit3. We compared the proposed models against strong
baselines which have been recently published as NLG benchmarks.

• Gating-based models, including: HLSTM (Wen et al., 2015a) which uses a heuristic
gate to ensure that all of the attribute-value information was accurately captured when
generating, SCLSTM (Wen et al., 2015b) which learns the gating signal and language
model jointly.

• Attention-based model Enc-Dec (Wen et al., 2016b) which applies the attention mecha-
nism to an RNN encoder-decoder by separate computation of slots and values.

3.3 Results and Analysis
We conducted extensive experiments on the proposed models and compared results against
previous methods. Overall, the proposed models consistently achieve better performance in
comparison with previous gating- and attention-based regarding both evaluation metrics across
all domains.

3https://github.com/shawnwun/RNNLG

29

3.3. RESULTS AND ANALYSIS

Table 3.1: Performance comparison on four datasets in terms of the BLEU and the slot error rate
ERR(%) scores. The results were produced by training each network on 5 random initializations
and selected model yielded the highest validation BLEU score. The best and second best models
highlighted in bold and italic face, respectively.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
HLSTM 0.7466 0.74% 0.8504 2.67% 0.5134 1.10% 0.5250 2.50%
Enc-Dec 0.7398 2.78% 0.8549 4.69% 0.5108 4.04% 0.5182 3.18%
SCLSTM 0.7525 0.38% 0.8482 3.07% 0.5116 0.79% 0.5265 2.31%

RGRU-Base 0.7549 0.56% 0.8640 1.21% 0.5190 1.56% 0.5305 1.62%
RGRU-Context 0.7634 0.49% 0.8776 0.98% 0.5191 1.19% 0.5311 1.33%

TB-RGRU 0.7637 0.47% 0.8642 1.56% 0.5208 0.93% 0.5312 1.01%
RAGRU 0.7734 0.53% 0.8895 0.46% 0.5216 0.85% 0.5347 0.63%

RAOGRU 0.7762 0.38% 0.8907 0.17% 0.5227 0.47% 0.5387 0.60%

Table 3.2: Performance comparison of the proposed models on four datasets in terms of the
BLEU and the error rate ERR(%) scores. The results were averaged over 5 random initialization
networks. The best and second best models highlighted in bold and italic face, respectively.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
HLSTM 0.7436 0.85% 0.8488 2.79% 0.5130 1.15% 0.5240 2.65%
Enc-Dec 0.7358 2.98% 0.8537 4.78% 0.5101 4.24% 0.5142 3.38%
SCLSTM 0.7543 0.57% 0.8469 3.12% 0.5109 0.89% 0.5235 2.41%

RGRU-Base 0.7526 1.33% 0.8622 1.12% 0.5165 1.79% 0.5311 1.56%
RGRU-Context 0.7614 0.99% 0.8677 1.75% 0.5182 1.41% 0.5312 1.37%

TB-RGRU 0.7608 0.88% 0.8584 1.63% 0.5188 1.35% 0.5316 1.27%
RAGRU 0.7729 0.64% 0.8887 0.60% 0.5206 0.92% 0.5341 0.82%

RAOGRU 0.7730 0.49% 0.8903 0.41% 0.5228 0.60% 0.5368 0.72%

3.3.1 Model Comparison in Individual Domain
The incremental construction studies (Tables 3.1, 3.2) demonstrate the contribution of different
model components in which the models were assessed as a base model (RGRU-Context), with
Adjustment cell (RAGRU), and with Output cell (RAOGRU). A comparison between the gating-
based models clearly shows that the Adjustment cell contributes to reducing the slot error rate
ERR score since it can effectively prevent the undesirable slot repetitions by gating the DA
vector, while the additional Output cell provides an improved performance on both evaluation
metrics across all domains since it can separate the information outputs from the traditional
GRU cell and the Adjustment cell.

Moreover, Table 3.2 further demonstrates the stable strength of the proposed models since
the proposed models not only outperform the gating-based models (RGRU-Base, RGRU-Context,
TB-RGRU) and but also show significant improved results over the attention-based model (End-
Dec) by a large margin. A comparison of the two proposed generators (RGRU-Context and TB-
RGRU) is also shown in Table 3.2. Without the backward RNN reranker, the RGRU-Context
generator seems to have worse performance with a higher score of slot error rate ERR. How-
ever, using the backward RGRU reranker can improve the results in both evaluation metrics.
This reranker provides benefit to the generator to produce higher-quality utterances.

30

3.3. RESULTS AND ANALYSIS

These demonstrate the importance of the proposed components: the Refinement cell in
filtering input information, the Adjustment cell in controlling the feature vector (see Examples
in Figure 3.7), and the Output cell in calculating the additional output.

3.3.2 General Models

Figure 3.3: Gating-based generators comparison of the general models on four different do-
mains.

Figure 3.3 shows a comparison performance of general models as described in Section 3.2.1.
The results are consistent with those in Table 3.1, 3.2, in which the RAOGRU again has better
performance than the gating-based models (HLSTM, SCLSTM,RGRU-Base, and TB-RGRU)
across all domains in terms of the BLEU and the ERR scores. In comparison between attention-
based models (Figure 3.3), while the Enc-Dec has difficulty in reducing the ERR score, the
models RAOGRU has best results regarding the BLEU score and effectively drive down the slot
error rate ERR score since it can control the feature vector DA to prevent the undesirable slot
repetitions.

These indicate the relevant contribution of the proposed components which are the Re-
finement, Adjustment and Output cells to the original architecture. The Refinement gate can
effectively select the beneficial input information before putting them into the traditional GRU
cell, while the Adjustment and Output cells with gating DA vector can effectively control the
information flow during generation.

3.3.3 Adaptation Models
Figure 3.4 shows domain scalability of the three models in which the models were first trained
by pooling out-of-domain Restaurant and Hotel datasets together. The models were then fine-
tuned the parameters with different proportion of in-domain training data (Laptop domain).
The proposed model RAOGRU again outperforms both previous models (Enc-Dec, SCLSTM)
in both cases where the sufficient in-domain data is used (as in Figure 3.4-left) and the limited
in-domain data is fed (Figure 3.4-right). The Figure 3.4-right also indicates that the RAOGRU
model can adapt to a new, unseen domain faster than the previous models.

3.3.4 Model Comparison on Tuning Parameters
Figure 3.5 shows a comparison of two generators trained with different proportion of data eval-
uated on two metrics. As can be seen in Figure 3.5a, the SCLSTM model achieves better results
than RGRU-Context model on both of BLEU and ERR scores since a small amount of training

31

3.3. RESULTS AND ANALYSIS

Figure 3.4: Performance on Laptop domain with varied amount of the adaptation training data
when adapting models trained on Restaurant+Hotel.

10% 30% 50% 70% 90%100%
Percentage of training data

0

0.2

0.4

0.6

0.8

1.0

BL
EU BLEU SCLSTM

BLEU RGRU-Context

0

5

10

15

20

25

ER
R(
%
)

ERR SCLSTM
ERR RGRU-Context

(a) Curves on the Restaurant dataset

10% 30% 50% 70% 90%100%
Percentage of training data

0.44

0.46

0.48

0.50

0.52

0.54

BL
EU BLEU SCLSTM

BLEU RGRU-Context

0

5

10

15

20

25

ER
R(
%
)

ERR SCLSTM
ERR RGRU-Context

(b) Curves on the TV dataset

Figure 3.5: Comparison of two generators RGRU-Context and SCLSTM which are trained with
different proportion of training data.

10 50 100 200 500 1000
Beam size

0

0.2

0.4

0.6

0.8

BL
EU

BLEU-Res

BLEU-Tv

0

9

18

27

36

ER
R(
%
)

ERR-Res

ERR-Tv

(a) Curves on variation of Beam size

1/100 5/100 10/100 20/100
TopK/Beam-size

0

0.2

0.4

0.6

0.8

BL
EU

BLEU-Res

BLEU-Tv

0

4

8

12

16

ER
R(
%
)
ERR-Res

ERR-Tv

(b) Curves on variation of Top-k/Beam-size

Figure 3.6: RGRU-Context generator was trained with different Beam size (a) and Top-k best
results (b) and evaluated on Restaurant and TV datasets.

data was provided. However, the RGRU-Context obtains the higher BLEU score and slightly
higher ERR score as more training data was fed. On the other hand, in a more diverse dataset
TV, the RGRU-Context model consistently outperforms the SCLSTM on both evaluation met-
rics no matter how much training data is (Figure 3.5b). The reason is mainly due to the ability
of refinement gate which feeds to the GRU model a new input xt conveying useful information
filtered from the original input and the gating mechanism; this gate also keeps the pattern of
the generated utterance during generation. As a result, a better realization of unseen slot-value
pairs is obtained.

32

3.3. RESULTS AND ANALYSIS

Figure 3.6a shows an effect of beam size on the RGRU-Context model evaluated on Restau-
rant and TV datasets. As can be seen, the models perform worse in terms of degrading the
BLEU score and upgrading the slot error rate ERR score when the beam size increases. The
model seems to perform best with beam size less than 100. Figure 3.6b presents an effect of
top-k best results in which we fixed the beam size at 100 and top-k best results varied as k
= 1, 5, 10 and 20. In each case, the BLEU and the error rate ERR scores were computed on
Restaurant and TV datasets. The results are consistent with Figure 3.6a in which the BLEU and
ERR scores get worse as more top-k best utterances were chosen.

<\s> the

SLO
T_N

AME is a nice

SLO
T_TY

PE that is for
bus

ines
s

com
puti

ng and a

SLO
T_BA

TTE
RYR

ATIN
G

batt
eryrati

ng . it
com

es in a

SLO
T_D

ESIG
N

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur

es

BATTERYRATING=value DESIGN=value BUSINESSCOMP=value NAME=value TYPE=value

Figure 3.7: Example showing how RAOGRU control the DA feature value vector dt. The model
generally shows its ability to detect words and phases describing a corresponding slot-value pair

3.3.5 Model Comparison on Generated Utterances

Table 3.3: Comparison of top responses generated for different models. Errors are marked in
color ([missing], misplaced information). [OK] denotes successful generation.

Model Generated Responses from Laptop Domain
Input DA ?compare(name=‘satellite tartarus 56’; platform=‘windows 8’; dimension=‘15.3 inch’; name=‘satellite

achelous 45’; platform=‘windows 8.1’; dimension=‘15.5 inch’)
Reference the satellite tartarus 56 has a 15.3 inch dimension and uses windows 8, whereas satellite achelous 45 has a

15.5 inch dimension and a windows 8.1 platform. which one do you prefer
HLSTM the satellite tartarus 56 is 15.3 inch -s and operates on windows 8 and the satellite achelous 45 has a 15.5

inch display. which one do you want [windows 8.1]
Enc-Dec the satellite tartarus 56 is 15.3 inch. the satellite achelous 45 operates on windows 8 and has a 15.5 inch

screen . which one do you prefer [windows 8.1]
SCLSTM the satellite tartarus 56 operates on windows 8 and has a 15.3 inch display and is 15.5 inch -s. which one

do you prefer [satellite achelous 45, windows 8.1]
RGRU-
Context

the satellite tartarus 56 has a 15.3 inch dimension. the satellite achelous 45 is 15.5 inch -s . which one do
you want [windows 8, windows 8.1]

TB-RGRU the satellite tartarus 56 is 15.3 inch -s and runs on windows 8. the satellite achelous 45 is 15.5 inch -s.
which one do you prefer [windows 8.1]

RAGRU the satellite tartarus 56 has a 15.3 inch screen, the satellite achelous 45 is 15.5 inch and runs windows 8 .
which one do you prefer [windows 8.1]

RAOGRU the satellite tartarus 56 has a 15.3 inch dimension and operates on windows 8. the satellite achelous 45
operates on windows 8.1 and is 15.5 inch -s. which one do you prefer [OK]

A comparison of top generated responses for given DA between different models is shown
in Table 3.3. While the previous models still produce some errors (missing and misplaced in-
formation), the proposed model (RAOGRU) can generate appropriate sentences. Figure 3.7 also

33

3.4. CONCLUSION

demonstrate how the feature vector DA is controlled during generation, in which the RAOGRU
model can generally drive down the DA feature.

3.4 Conclusion
This chapter have presented gating-based neural language generators for SDSs, in which three
additional cells (Refinement, Adjustment, and Output cells) are introduced to select, control
the semantic elements, and generate the required sentence. We assessed the proposed models
on four different NLG domains and compared those against previous generators. The proposed
models empirically show consistent improvement over the previous gating-based model on both
BLEU and ERR evaluation metrics. The gating-based generators mostly address NLG problems
of adequacy, completeness and adaptability, in which the models showed ability to handle spe-
cial slots, such as binary slots, slots that take dont care value, as well as to effectively avoid
slots repetition by controlling the feature vector DA. The proposed gating-based models also
showed signs of adaptability to quickly scale to a new, unseen domain no matter how much the
training in-domain data was fed. In the next chapter 4, we continue to improve the gating-based
models by integrating the models into a unified sequence to sequence model (Vinyals and Le,
2015) with an effective attention mechanism (Bahdanau et al., 2014).

34

Chapter 4

Hybrid based NLG

In this chapter, we present a hybrid NLG framework that leverages the strength of both gating
and attention mechanisms into an RNN Encoder-Decoder (ARED) to tackle the NLG problems
of the adequacy, completeness, and adaptability.

As mentioned, current SDSs typically rely on a well-defined ontology for specific domains,
such as finding hotel, restaurant, or buying a laptop, television, and so forth, which requires
an extremely expensive and time-consuming process for the data collecting. Our gating-based
generators proposed in Chapter 3 and an ENCDEC Wen et al. (2016b) model showed a sign in
domain scalability when a limited amount of data is available. However, the goal of building an
open domain SDS which can talk about any topic is still a difficult task. Therefore, it is crucial
to building an open domain dialogue system that can make as much use of existing abilities of
knowledge from other domains or learn from multi-domain datasets.

On the other hand, despite the advantages of gating-based mechanism in tackling the NLG
problems, previous RNN-based models still have some drawbacks. First, none of these mod-
els significantly outperform the others in solving NLG problems which have remained un-
solved. While the HLSTM (Wen et al., 2015a) cannot handle cases, such as the binary slots
and don’t care slots, in which these slots cannot be directly delexicalized, the ENCDEC model
has difficulty to prevent undesirable semantic repetitions during generation. Second, although
the SCLSTM, RAOGRU model can generally drive down the feature vector DA (see Figure
3.7), leading to a low score of slot error rate ERR, none of the existing models show significant
advantage from out-of-domain data. Furthermore, while the SCLSTM model is limited to gen-
eralize to the unseen domains, there are still some generation cases which consist of consecutive
slots the RAOGRU cannot fully control the feature vector DA (see Figure 4.1).

<\s>

SLO
T_N

AME is a

SLO
T_TY

PE with an

SLO
T_B

ATT
ERY

RAT
ING

SLO
T_B

ATT
ERY

batt
ery life and a

SLO
T_D

RIV
ERA

NGE driv
e

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
es

BATTERY=value BATTERYRATING=value DRIVERANGE=value NAME=value TYPE=value

Figure 4.1: RAOGRU may not fully control the feature value vector DA in some generation
cases that consist of consecutive slots, e.g., SLOT BATTERYRATING and SLOT BATTERY.

35

4.1. THE NEURAL LANGUAGE GENERATOR

To deal with the above issues, we first present a novel ARED-based generation framework in
Section 4.1, which mainly consists of three components: an Encoder, an Aligner, and a Decoder.
We then propose a first novel model, Encoder-Aggregator-Decoder in Section 4.2, an extension
of the ARED generation framework. The Aggregator component has two subcomponents: (i)
an Aligner which computes the attention over the input sequence, and (ii) a Refiner which are
another attention or gating mechanisms to further control and select the semantic elements. This
model is based on our work in (Tran et al., 2017a). Lastly, we propose a second novel architec-
ture in Section 4.3, in which a Refinement Adjustment LSTM-based component (RALSTM) is
introduced at the decoder side to select, aggregate, and control the semantic information. The
second methods yield state-of-the-art results across four NLG domains in terms of the BLEU
and slot error rate ERR scores. We publish this work in (Tran and Nguyen, 2017a, 2018c).
The results also showed that both proposed generators could quickly adapt to new domains by
leveraging the out-of-domain data.

To sum up, we make four key contributions in this chapter:

• Firstly, we present a new general neural language generation framework from which we
propose two novel models, Encoder-Aggregator-Decoder and RALSTM generators.

• Secondly, we present a semantic component called Aggregator which is easily integrated
into existing ARED-based architecture with several different choices of attention and
gating mechanisms, resulting in an end-to-end generator that empirically improved per-
formance over the previous approaches.

• Thirdly, we present an LSTM-based component called RALSTM cell applied on the de-
coder side of an ARED architecture, resulting in an end-to-end generator that empirically
shows significantly improved performances compared with the previous methods.

• Finally, we extensively conducted the experiments to evaluate the models training on var-
ied scenarios, in which we: (i) trained the generators from scratch on each in-domain
dataset, including new, unseen domains, (ii) trained general models by pooling all avail-
able datasets together then tested them in each domain, (iii) trained adapting models by
incremental pooling out-of-domain datasets together, then fine-tuned the trained model
by using a limited amount of in-domain data.

4.1 The Neural Language Generator
The neural language generation framework in this study is based on a neural net language gen-
erator (Wen et al., 2016b), which consists of three main components: an Encoder to incorporate
the target meaning representation as the model inputs, an Aligner to align and control the se-
mantic elements, and a Decoder to generate output utterances. The ARED NLG framework is
depicted in Figure 4.2. The Encoder first encodes the meaning representation into input seman-
tic elements which are then aggregated and selected by utilizing an attention-based mechanism
by the Aligner. The RNN Decoder at each time step takes as input a 1-hot encoding of a token1

wt and an attentive DA representation dt. The output of RNN decoder represents the probability
distribution of the next token given the previous token, the dialogue act representation, and the
current hidden state. At generation time, we can sample from this conditional distribution to

1Input texts are delexicalized where slot values are replaced by its corresponding slot tokens.

36

4.1. THE NEURAL LANGUAGE GENERATOR

Figure 4.2: Unfold presentation of the ARED neural language generation framework. While the
Encoder part is subject to various designs with a BiRNN, the Aligner is an attention mechanism,
and the Decoder is typically an RNN network.

obtain the next token in a generated sentence, and feed it as the next input to the RNN Decoder.
This process finishes when an end sign is generated (Karpathy and Fei-Fei, 2015), or some con-
straints are reached (Zhang and Lapata, 2014). The model can produce a sequence of tokens
which can finally be lexicalized2 to form the required utterance.

4.1.1 Encoder
The slots and values are separated parameters used on the encoder side. This embeds the source
information into a vector representation zi which is a concatenation of embedding vector repre-
sentation of each slot-value pair and is computed by:

zi = ui ⊕ vi (4.1)

where ui, vi are the i-th slot and value embedding vectors, respectively, and ⊕ is vector con-
catenation. The i index runs over the L given slot-value pairs. In this work, we use a 1-layer,
Bidirectional RNN (Bi-RNN) to encode the sequence of slot-value pairs3 embedding. The
Bi-RNN consists of forward and backward RNNs which read the sequence of slot-value pairs
from left-to-right and right-to-left to produce forward and backward sequence of hidden states
(−→e1 , ..,−→eL), and (←−e1 , ..,←−eL), respectively. We then obtain the sequence of encoded hidden states
E = (e1, e2, .., eL) where ei is a sum of the forward hidden state −→ei and the backward one←−ei as
follows:

ei = −→ei +←−ei (4.2)
2The process in which slot token is replaced by its value.
3We treated the set of slot-value pairs as a sequence and use the order specified by slot’s name (e.g., slot address

comes first, food follows address). We have tried treating slot-value pairs as a set with natural order as in the given
DAs. However, this yielded even worse results.

37

4.2. THE ENCODER-AGGREGATOR-DECODER MODEL

4.1.2 Aligner
The Aligner utilizes an attention mechanism to calculate the DA representation as follows:

βt,i =
exp et,i∑
j exp et,j

(4.3)

where
et,i = a(ei,ht−1) (4.4)

and βt,i is the weight of i-th slot-value pair calculated by the attention mechanism. The align-
ment model a is computed by:

a(ei,ht−1) = v>a tanh(Waei + Uaht−1) (4.5)

where va,Wa,Ua are the weight matrices to learn. Finally, the Aligner calculates dialogue act
embedding dt as follows:

dt = a⊕
∑

i
βt,iei (4.6)

where a is vector embedding of the action type.

4.1.3 Decoder
The decoder of the general neural language generator is typically an RNN. While the RNN
decoder takes as input at each time step a 1-hot encoding of a token and the attentive input
vector, the output of RNN decoder represents the probability distribution of the next token
given the previous token, the dialogue act representation, and the current hidden state.

4.2 The Encoder-Aggregator-Decoder model
In this section, we present our first proposed model, Encoder-Aggregator-Decoder, an exten-
sion of the ARED architecture, in which the proposed Aggregator has two main components:
(i) an Aligner which computes the attention over the input sequence (as described in section
4.1.2), and (ii) a Refiner which are another attention or gating mechanisms to further select and
aggregate the semantic elements. The model architecture is shown in Figure 4.3. To sum up,
we make two key contributions in this model:

• We present a semantic component called Aggregator which can be easily integrated into
existing (attentive) RNN Encoder-Decoder architecture, resulting in an end-to-end gener-
ator that empirically improved performance in comparison with the previous approaches.

• We present several different choices of attention and gating mechanisms which can be
effectively applied to the proposed semantic Aggregator.

4.2.1 Gated Recurrent Unit
The encoder and decoder of the proposed model utilize a Gated Recurrent Unit (GRU) network
proposed by (Bahdanau et al., 2014), which maps an input sequence W = [w1,w2, ..,wT] to a

38

4.2. THE ENCODER-AGGREGATOR-DECODER MODEL

Figure 4.3: The RNN Encoder-Aggregator-Decoder for NLG proposed in this chapter. The
output side is an RNN network while the input side is a DA embedding with aggregation mech-
anism. The Aggregator consists of two parts: an Aligner and a Refiner. The lower part Aligner
is an attention over the DA representation calculated by a BiGRU network. Note that the action
type embedding a is not included in the attention mechanism since its task is controlling the
style of the sentence. The higher part Refiner computes the new input token xt based on the
original input token wt and the dialogue act attention dt. There are several choices for Refiner,
i.e., gating mechanism or attention mechanism.

sequence of states H = [h1,h2, ..,hT] as follows:

ri = σ(Wrwwi + Wrhhi−1)
ui = σ(Wuwwi + Wuhhi−1)
h̃i = tanh(Whwwi + ri �Whhhi−1)
hi = ui � hi−1 + (1− ui)� h̃i

(4.7)

where� denotes the element-wise multiplication, ri and ui are called the reset and update gates
respectively, and h̃i is the candidate activation.

4.2.2 Aggregator
The Aggregator consists of two components: an Aligner and a Refiner. The Aligner computes
the dialogue act representation (as described in section 4.1.2) while the choices for Refiner can
be varied. The Refiner calculates the new input xt based on the original input token wt and the
DA representation. There are several choices to formulate the Refiner such as gating mechanism
or attention mechanism. For each input token wt, the selected mechanism module computes the
new input xt based on the dialog act representation dt and the input token embedding wt, and is
formulated by:

xt = fR(dt,wt) (4.8)

39

4.2. THE ENCODER-AGGREGATOR-DECODER MODEL

where fR is a refinement function, in which each input token is refined (or filtered) by the
dialogue act attention information before putting into the RNN decoder. By this way, we can
represent the whole sentence based on this refined input using RNN model.

Attention Mechanism: Inspired by work of (Cui et al., 2016), in which an attention-over-
attention was introduced in solving reading comprehension tasks, we place another attention
applied for Refiner over the attentive Aligner, resulting in a model Attentional Refiner over
Attention (ARoA).

• ARoA with Vector (ARoA-V): We use a simple attention where each input token repre-
sentation is weighted according to dialogue act attention as follows:

βt = σ(V>radt)
fR(dt,wt) = βt ∗ wt

(4.9)

where Vra is a refinement attention vector which is used to determine the dialogue act
attention strength, and σ is sigmoid function to normalize the weight βt between 0 and 1.

• ARoA with Matrix (ARoA-M): ARoA-V uses only a vector Vra to weight the DA atten-
tion. It may be better to use a matrix to control the attention information. The Equation
4.9 is modified as follows:

Vra = Wawwt

βt = σ(V>radt)
fR(dt,wt) = βt ∗ wt

(4.10)

where Waw is a refinement attention matrix.

• ARoA with Context (ARoA-C): The attention in ARoA-V and ARoA-M may not capture
the relationship between multiple tokens. In order to add context information into the at-
tention process, we modify the attention weights in Equation 4.10 with additional history
information ht−1:

Vra = Wawwt + Wahht−1
βt = σ(V>radt)

fR(dt,wt,ht−1) = βt ∗ wt

(4.11)

where Waw,Wah are parameters to learn, Vra is the refinement attention vector same as
above, which contains both DA attention and context information.

Gating Mechanism: We present two gating-based models by simply using element-wise
operators (multiplication or addition) to gate the information between the two vectors dt and wt

as follows:

• Multiplication (GR-MUL): The element-wise multiplication plays a part in word-level
matching which learns not only the vector similarity, but also preserve information about
the two vectors:

fR(dt,wt) = Wgddt � wt (4.12)

• Addition (GR-ADD):
fR(dt,wt) = Wgddt + wt (4.13)

40

4.3. THE REFINEMENT-ADJUSTMENT-LSTM MODEL

4.2.3 Decoder
The decoder uses a conventional GRU model as described in Section 4.2.1. In this work, we
propose to apply the DA representation and the refined inputs deeper into the GRU cell. Firstly,
the GRU reset and update gates can be further influenced on the DA attentive information dt.
The calculation for the reset and update gates are modified as follows:

rt = σ(Wrxxt + Wrhht−1 + Wrddt)
ut = σ(Wuxxt + Wuhht−1 + Wuddt)

(4.14)

where Wrd and Wud act like background detectors that learn to control the style of the gen-
erating sentence. Secondly, the candidate activation h̃t is also modified to depend on the DA
representation as follows:

h̃t = tanh(Whxxt + rt �Whhht−1 + Whddt) + tanh(Wdcdt) (4.15)

The hidden state is then computed by:

ht = ut � ht−1 + (1− ut)� h̃t (4.16)

Finally, the output distribution is computed by applying a softmax function g, and the distribu-
tion is sampled to obtain the next token,

P (wt+1 | wt, wt−1, ...w0, z) = g(Whoht)
wt+1 ∼ P (wt+1 | wt, wt−1, ...w0, z)

(4.17)

4.3 The Refinement-Adjustment-LSTM model
In this section, we present our second proposed model, Refinement-Adjustment-LSTM (RAL-
STM), an extension of the ARED framework, which consists of three main components: (i) an
Encoder that incorporates the target meaning representation (MR) as the model inputs, (ii) an
Aligner that aligns and controls the semantic elements, and (iii) an RNN Decoder that generates
output sentences. The RALSTM generator architecture is shown in Figure 4.4. The Encoder
first encodes the MR into input semantic elements which are then aggregated and selected by
utilizing an attention-based mechanism by the Aligner. The input to the RNN Decoder at each
time step is a 1-hot encoding of a token wt and an attentive DA representation dt. At each time
step t, RNN Decoder also computes how much the feature value vector st−1 retained for the
next computational steps, and adds this information to the RNN output which represents the
probability distribution of the next token wt+1.

To sum up, we make three key contributions in this proposed model:

• We present an LSTM-based cell called RALSTM applied on the decoder side of an ARED
model, resulting in an end-to-end generator that empirically shows significantly improved
performances in comparison with the previous approaches.

• We extensively conduct the experiments to evaluate the models training from scratch on
each in-domain dataset.

• We empirically assess the models’ ability to: learn from multi-domain datasets by pooling
all available training datasets; and adapt to a new, unseen domain by feeding a limited
amount of in-domain data.

In the following sections, we present in detail each components of the proposed RALSTM
generator.

41

4.3. THE REFINEMENT-ADJUSTMENT-LSTM MODEL

Figure 4.4: Unrolled presentation of the ARED-based neural language generator. The Encoder
part is a BiLSTM, the Aligner is an attention mechanism over the encoded inputs, and the
Decoder is the proposed RALSTM model conditioned on a 1-hot representation vector s. The
fading color of the vector s indicates retaining information for future computational time steps.

4.3.1 Long Short Term Memory
The encoder and decoder of the RALSTM model utilize a Long Short Term Memory (LSTM)
network proposed by (Hochreiter and Schmidhuber, 1997) in which the input gate ii, forget gate
ft and output gate ot are introduced to control information flow and computed as follows:

it
ft
ot
ĉt

 =

σ
σ
σ

tanh

W
(

xt
ht−1

)
(4.18)

where W is model parameters. The memory cell value ct is computed as follows:

ct = ft � ct−1 + it � ĉt
ht = ot � tanh(ct)

(4.19)

where ht is the output.

4.3.2 RALSTM Decoder
The proposed RALSTM cell, which is demonstrated in Figure 4.5, applied for Decoder side
consists of three components: a Refinement cell, a traditional LSTM cell, and an Adjustment
cell:

Firstly, instead of feeding the original input token wt into the RNN cell, the input is recom-
puted by using a semantic gate as follows:

rt = σ(Wrddt + Wrhht−1)
xt = rt � wt

(4.20)

42

4.3. THE REFINEMENT-ADJUSTMENT-LSTM MODEL

Figure 4.5: The RALSTM cell proposed in this work, which consists of three components:
a Refinement cell, a traditional LSTM cell, and an Adjustment cell. At time step t, while
the Refinement cell computes new input token xt based on the original input token and the
attentional DA representation dt, the Adjustment cell calculates how much information of the
slot-value pairs can be generated by the LSTM cell.

where Wrd and Wrh are weight matrices. Element-wise multiplication � plays a part in word-
level matching which not only learns the vector similarity but also preserves information about
the two vectors. Wrh acts like a key phrase detector that learns to capture the pattern of gen-
eration tokens or the relationship between multiple tokens. In other words, the new input xt
consists of information of the original input token wt, the DA representation dt, and the hidden
context ht−1. rt is called a Refinement gate because the input tokens are refined by a combina-
tion gating information of the attentive DA representation dt and the previous hidden state ht−1.
By this way, we can represent the whole sentence based on the refined inputs.

Secondly, the traditional LSTM network proposed by (Hochreiter and Schmidhuber, 1997)
in which the input gate ii, forget gate ft and output gates ot are introduced to control information
flow and computed as follows:

it
ft
ot
ĉt

 =

σ
σ
σ

tanh

W4n,4n

 xt
dt

ht−1

 (4.21)

where n is hidden layer size, W4n,4n is model parameters. The cell memory value ct is modified
to depend on the DA representation as:

ct = ft � ct−1 + it � ĉt + tanh(Wcrrt)
h̃t = ot � tanh(ct)

(4.22)

43

4.4. EXPERIMENTS

where h̃t is the output.
Thirdly, inspired by work of (Wen et al., 2015b) in which the generator was further condi-

tioned on a 1-hot representation vector s of given dialogue act, and work of (Lu et al., 2016)
that proposed a visual sentinel gate to make a decision on whether the model should attend to
the image or the sentinel gate, an additional gating cell is introduced on top of the traditional
LSTM to gate another controlling vector s. Figure 4.8 shows how RALSTM controls the DA
vector s. First, starting from the 1-hot vector of the DA s0, at each time step t the proposed cell
computes how much the LSTM output h̃t affects the DA vector, which is computed as follows:

at = σ(Waxxt + Wahh̃t)
st = st−1 � at

(4.23)

where Wax, Wah are weight matrices to be learned. at is called an Adjustment gate since its
task is to control what information of the given DA have been generated and what information
should be retained for future time steps. Second, we consider how much the information pre-
served in the DA st can be contributed to the output, in which an additional output is computed
by applying the output gate ot on the remaining information in st as follows:

ca = Wosst
h̃a = ot � tanh(ca)

(4.24)

where Wos is a weight matrix to project the DA presentation into the output space, h̃a is the Ad-
justment cell output. Final RALSTM output is a combination of both outputs of the traditional
LSTM cell and the Adjustment cell, and computed as follows:

ht = h̃t + h̃a (4.25)

Finally, the output distribution is computed by applying a softmax function g, and the dis-
tribution can be sampled to obtain the next token,

P (wt+1 | wt, ...w0,DA) = g(Whoht)
wt+1 ∼ P (wt+1 | wt, wt−1, ...w0,DA)

(4.26)

where DA = (s, z).

4.4 Experiments
We extensively conducted a set of experiments to assess the effectiveness of the proposed mod-
els by using several metrics, datasets, and model architectures, in order to compare to prior
methods.

4.4.1 Experimental Setups
The generators were implemented using the TensorFlow library (Abadi et al., 2016). The train-
ing and decoding procedures are described in Sections 2.5.1 and 2.5.2, respectively. The hidden
layer size was set to be 80, and the generators were trained with a 70% of keep dropout rate.
In order to better understand the effectiveness of our proposed methods, we: (i) performed an
ablation experiments to demonstrate the contribution of each proposed components (Tables 4.1,

44

4.5. RESULTS AND ANALYSIS

4.2), (ii) trained the models on the unseen Laptop, TV domains with varied proportion of train-
ing data, starting from 10% to 100% (Figure 4.6, 4.7), (iii) trained general models by merging
all the data from four domains together and tested them in each individual domain (Figure 4.10),
(iv) trained adaptation models on the union dataset of Restaurant and Hotel domains, then fine
tuned the model on Laptop domain with varied amount of adaptation data (Figure 4.11), and
(v) trained the generators on the unseen Laptop domain from scratch (Scratch), trained adapta-
tion models by pooling out-of-domain Restaurant and Hotel (Adapt-RH), and pooling all three
datasets Restaurant, Hotel and TV together (Figure 4.12, 4.13).

4.4.2 Evaluation Metrics and Baselines
The generator performance was assessed on the two evaluation metrics: the BLEU and the slot
error rate ERR by adopting code from an open source benchmark toolkit for Natural Language
Generation4. We compared the proposed models against three strong baselines which have been
recently published as state-of-the-art NLG benchmarks4.

• HLSTM proposed by (Wen et al., 2015a) which used a heuristic gate to ensure that all of
the slot-value information was accurately captured when generating.

• SCLSTM proposed by (Wen et al., 2015b) which can jointly learn the gating signal and
language model.

• RAOGRU proposed by (Tran and Nguyen, 2018d) which introduced a variety of gates to
select, control the semantic elements, and generate the required sentence.

• ENCDEC proposed by (Wen et al., 2016b) which applied the attention-based encoder-
decoder architecture.

4.5 Results and Analysis
We conducted extensive experiments on our proposed models and compared against the previ-
ous methods. Overall, the proposed models consistently achieve the better performance regard-
ing both evaluation metrics (BLEU and ERR) across all domains in all test cases.

4.5.1 The Overall Model Comparison
Table 4.1 shows a comparison between the ARED-based models (denoted by]) in which the
proposed models (in Row 2, 3) not only have better performance with higher the BLEU score
but also significantly reduce the slot error rate ERR score by a large margin about 2% to 4% in
every dataset.

The ARoA-M model shows the best performance among the EAD variants (in Table 4.1-
Row 2) over all the four domains, while it is an interesting observation that the GR-ADD model
with a simple addition operator for Refiner obtains the second best performance. These above
prove the importance of the proposed component Refiner in aggregating and selecting the se-
mantic elements.

4https://github.com/shawnwun/RNNLG

45

4.5. RESULTS AND ANALYSIS

Table 4.1: Performance comparison on four datasets in terms of the BLEU and the error rate
ERR(%) scores. The results were produced by training each network on 5 random initialization
and selected model with the highest validation BLEU score.] denotes the Attention-based
Encoder-Decoder model. The best and second best models highlighted in bold and italic face,
respectively.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
ENCDEC] 0.7398 2.78% 0.8549 4.69% 0.5108 4.04% 0.5182 3.18%
HLSTM 0.7466 0.74% 0.8504 2.67% 0.5134 1.10% 0.5250 2.50%

SCLSTM 0.7525 0.38% 0.8482 3.07% 0.5116 0.79% 0.5265 2.31%
RAOGRU 0.7762 0.38% 0.8907 0.17% 0.5227 0.47% 0.5387 0.60%
GR-ADD] 0.7742 0.59% 0.8848 1.54% 0.5221 0.54% 0.5348 0.77%
GR-MUL] 0.7697 0.47% 0.8854 1.47% 0.5200 1.15% 0.5349 0.65%
ARoA-V] 0.7667 0.32% 0.8814 0.97% 0.5195 0.56% 0.5369 0.81%
ARoA-M] 0.7755 0.30% 0.8920 1.13% 0.5223 0.50% 0.5394 0.60%
ARoA-C] 0.7745 0.45% 0.8878 1.31% 0.5201 0.88% 0.5351 0.63%

w/o A] 0.7651 0.99% 0.8940 1.82% 0.5219 1.64% 0.5296 2.40%
w/o R] 0.7748 0.22% 0.8944 0.48% 0.5235 0.57% 0.5350 0.72%

RALSTM] 0.7789 0.16% 0.8981 0.43% 0.5252 0.42% 0.5406 0.63%
Row 1: Baselines, Row 2: EAD variants, and Row 3: RALSTM variants

Table 4.2: Performance comparison of the proposed models on four datasets in terms of the
BLEU and the error rate ERR(%) scores. The results were averaged over 5 randomly initialized
networks. The best and second best models highlighted in bold and italic face, respectively.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
ENCDEC\ 0.7358 2.98% 0.8537 4.78% 0.5101 4.24% 0.5142 3.38%
HLSTM 0.7436 0.85% 0.8488 2.79% 0.5130 1.15% 0.5240 2.65%

SCLSTM 0.7543 0.57% 0.8469 3.12% 0.5109 0.89% 0.5235 2.41%
RAOGRU 0.7730 0.49% 0.8903 0.41% 0.5228 0.60% 0.5368 0.72%
GR-ADD\ 0.7685 0.63% 0.8838 1.67% 0.5194 0.66% 0.5344 0.75%
GR-MUL§ 0.7669 0.61% 0.8836 1.40% 0.5184 1.01% 0.5328 0.73%
ARoA-V\ 0.7673 0.62% 0.8817 1.27% 0.5185 0.73% 0.5336 0.68%
ARoA-M\ 0.7712 0.50% 0.8851 1.14% 0.5201 0.62% 0.5350 0.62%
ARoA-C\ 0.7690 0.70% 0.8835 1.44% 0.5181 0.78% 0.5307 0.64%

w/o A 0.7619 2.26% 0.8913 1.85% 0.5180 1.81% 0.5270 2.10%
w/o R 0.7733 0.23% 0.8901 0.59% 0.5208 0.60% 0.5321 0.50%

RALSTM 0.7779 0.20% 0.8965 0.58% 0.5231 0.50% 0.5373 0.49%
Row 1: Baselines, Row 2: EAD variants, Row 3: RALSTM variants

The ablation studies (Tables 4.1-Row 3, 4.2-Row 3) demonstrate the contribution of dif-
ferent model components in which the RALSTM models were assessed without Adjustment
cell (w/o A), or without Refinement cell (w/o R). It clearly sees that the Adjustment cell con-
tributes to reducing the slot error rate ERR score since it can effectively prevent the undesirable
slot-value pair repetitions by gating the DA vector s. Moreover, a comparison between the
models with gating the DA vector also indicates that the proposed models (w/o R, RALSTM)
show significant improvements on both the evaluation metrics across the four domains com-

46

4.5. RESULTS AND ANALYSIS

pared to the SCLSTM model. The RALSTM cell without the Refinement part is similar as the
SCLSTM cell. However, it obtained the results much better than the SCLSTM baselines. This
stipulates the necessary of the LSTM encoder and the Aligner in effectively partial learning the
correlated order between slot-value representation in the DAs, especially for the unseen domain
where there is only one training example for each DA. Table 4.2 further demonstrates the stable
strength of our proposed models since the results’ pattern stays unchanged compared to those
in Table 4.1.

4.5.2 Model Comparison on an Unseen Domain
Figure 4.6, 4.7 show a comparison of five models (ENCDEC, SCLSTM, GR-ADD, ARoA-M,
and RALSTM) which were trained from scratch on unseen Laptop (Figure 4.6) and TV (Figure
4.7) domains in a varied proportion of training data, start at 10% to 100%. It clearly shows that
the BLEU increases while the slot error rate ERR decreases as more training data was fed. While
the RALSTM outperforms the previous models in all cases, the ENCDEC has a much greater
ERR score comparing to another models. Furthermore, our three proposed models produced
much better the BLEU score in comparison with the two baselines, since their trend lines are
always above the baselines with a large gap. All these prove the importance of the proposed
components: the Refinement cell in aggregating and selecting the attentive information, and the
Adjustment cell in controlling the feature vector (see examples in Figure 4.8).

Figure 4.6: Performance comparison of the models trained on (unseen) Laptop domain.

Figure 4.7: Performance comparison of the models trained on (unseen) TV domain.

4.5.3 Controlling the Dialogue Act
One of the key features of the proposed models to substantial decreasing the slot error rate ERR
score is their ability to efficiently control the Dialogue Act vector during generation. While
the RALSTM model can control the DA started with a 1-hot vector representation via a gating

47

4.5. RESULTS AND ANALYSIS

mechanism (Equation 4.20), the EAD-based models can attend to the DA semantic elements
by utilizing an attention mechanism (Equations 4.9,4.10,4.11). On the one hand, Figure 4.8
shows an ability of the RALSTM model to effectively drive down the DA feature value vector
s step-by-step, in which the model shows its ability to detect words and phrases describing a
corresponding slot-value pair. On the other hand, Figure 4.9 illustrates a different attention
behavior of ARoA-based models in the sentence, in which while all three ARoA-based models
could capture the slot tokens and their surrounding words, the ARoA-C model with context
shows its ability in attending the consecutive words.

<\s> the

SLO
T_N

AME is a
grea

t

SLO
T_TY

PE for
bus

ines
s with a

SLO
T_BA

TTE
RYR

ATIN
G
batt

ery and an

SLO
T_PR

OCE
SSO

R
proc

esso
r

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
es

BATTERYRATING=value BUSINESS=true NAME=value PROCESSOR=value TYPE=value

(a) An example from the Laptop domain.

<\s>

SLO
T_N

AME is a

SLO
T_TY

PE that has

SLO
T_H

DMIPOR
T
hdm

i
port -s ,

SLO
T_AU

DIO aud
io ,

colo
r is

SLO
T_CO

LOR
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur

es

AUDIO=value COLOR=value HDMIPORT=value NAME=value TYPE=value

(b) An example from the TV domain.

Figure 4.8: Examples showing how RALSTM drives down the DA feature value vector s step-
by-step, in which the model generally shows its ability to detect words and phases describing a
corresponding slot-value pair.

Figure 4.9: A comparison on attention behavior of three EAD-based models in a sentence
on a given DA with sequence of slots [Name 1, ScreenSizeRange 1, Resolution 1, Name 2,
ScreenSizeRange 2, Resolution 2].

48

4.5. RESULTS AND ANALYSIS

4.5.4 General Models
Figure 4.10 shows a comparison performance of general models as described in Section 4.4.1.
The results are consistent with the Figure 4.6, in which the proposed models (RALSTM, GR-
ADD, and ARoA-M) have better performance than the ENCDEC and SCLSTM models on
all domains in terms of the BLEU and the ERR scores, while the ENCDEC has difficulty in
reducing the slot error rate. This indicates the relevant contribution of the proposed compo-
nent Refinement and Adjustment cells to the original ARED architecture, in which the Re-
finement/Refiner with attention mechanism can efficiently select and aggregate the information
before putting them into the traditional LSTM/GRU cell, while the Adjustment with gating DA
vector can effectively control the information flow during generation.

Figure 4.10: Performance comparison of the general models on four different domains.

4.5.5 Adaptation Models
In this experiments, we examine the ability of the generators in domain adaptation. Firstly, we
trained the five generators with out-of-domain data by pooling the Restaurant and Hotel datasets
together. We then varied the amount of in-domain training Laptop dataset and fine-tuned the
model parameters. The results are presented in Fig. 4.11. The proposed models (GR-ADD,
ARoR-M, and RALSTM) again outperform the baselines (SCLSTM, ENCDEC) irrespective of
the size of the in-domain training data, especially the RALSTM model outperforms the other
models in both cases where the sufficient in-domain data is used (as in Figure 4.11-left), and the
limited in-domain data is available (Figure 4.11-right). These signal that the proposed models
can adapt to a new, unseen domain faster than the previous ones.

Figure 4.11: Performance on Laptop domain with varied amount of the adaptation training data
when adapting models trained on union of Restaurant+Hotel datasets.

Secondly, we tested whether the proposed generators (ARoA-M and RALSTM) can lever-
age out-of-domain data on scenario of domain scalability. We trained the generator on the

49

4.5. RESULTS AND ANALYSIS

unseen Laptop domain from scratch (Scratch), or trained adaptation models by pooling out-
of-domain Restaurant and Hotel (Adapt-RH), or pooling all three datasets Restaurant, Hotel
and TV together (Adapt-RHT) (Figures 4.12, 4.13). Both ARoA-M and RALSTM show its
ability to leverage the existing resources since the adaptation models have better performance
than the model trained from scratch. Figure 4.12 illustrates that when only a limited amount
of in-domain data was available (<8%), the Adapt-RH pretrained with out-of-domain datasets
achieve better results than the Scratch model trained with only in-domain data. Especially,
adding more the TV dataset, which is similar to Laptop domain, to train adaptation model
can benefit the adaptation model since the Adapt-RHT can learn faster than the Adapt-RH (Fig.
4.12-right). Figure 4.13 also demontrates the same trend with those in Figure 4.12 for ARoA-M
model. Exceptionally, it is a bit surprising that when increasing the data of in-domain (<30%),
the Scratch outperformed the two others. However, when a sufficient proportion of in-domain
is used, (>30%), the Adapt-RHT consistently outperformed the Scratch model.

Figure 4.12: Performance evaluated on Laptop domain. Comparing RASLTM model trained
from scratch (Scratch) with adaptation model trained on Restaurant+Hotel (Adapt-RH) and
Restaurant+Hotel+Tv (Adapt-RHT) datasets.

Figure 4.13: Performance evaluated on Laptop domain. Comparing ARoA-M model trained
from scratch (Scratch) with adaptation model trained on Restaurant+Hotel (Adapt-RH) and
Restaurant+Hotel+Tv (Adapt-RHT) datasets.

All these demonstrate the effectiveness in applying another attention over attentive input
elements in the EAD-based models, and also the effectiveness in putting an Adjustment cell
over the LSTM cell to control the DA vector. This additional components bring benefits to
the ARED-based models of not only faster generalizing to a new domain but also effectively
leveraging the out-of-domain data in order to extend to an open domain when only a very limited
amount of in-domain data is available.

4.5.6 Model Comparison on Generated Utterances
A comparison of top responses generated for some input DAs between different models are
shown in Tables 4.3, 4.4. While the previous models (HLSTM, ENCDEC, SCLSTM) still

50

4.6. CONCLUSION

produce some errors (missing and misplaced information), the proposed models (RALSTM and
the models All2* trained by pooling all datasets together) can generate appropriate sentences.

The one-layer attention-based models (ENCDEC, GR-MUL) likely tend to create misplaced
slot-value for the comparing dialogue act style. However, by stacking another attention layer
over the existing one (RAoA-M, ARoA-C) or controlling the 1-hot dialogue act representation
vector (RALSTM, All2*) the proposed models seem to correct the slot-value generation order
(Table 4.3). The second attention layer and the adjustment cell provided assistance in attending
to the slot-value pair in place and preventing the missing information during generation. Table
4.4 further confirms that by combining the gating and attention mechanisms, and controlling the
DA vector the proposed models can also generate more complete and concise responses than
the previous methods.

Table 4.3: Comparison of top responses generated for some input dialogue acts between dif-
ferent models. Errors are marked in colors ([missing], misplaced information). [OK] denotes
successful generation. All2Laptop is general model.

Model Generated Responses from Laptop Domain
Input DA ?compare(name=”satellite notus 19”, pricerange=”budget”, drive=”500 gb”, name=”portege thanatos 98”,

pricerange=”expensive”, drive=”128 gb”)
Reference the satellite notus 19 has a 500 gb drive and is in the budget price range . on the other hand the portege

thanatos 98 has a 128 gb drive and is in the expensive price range . which would you prefer
HLSTM the satellite notus 19 is a budget priced laptop with a 500 gb drive and a 128 gb drive . which one do you

prefer [portege thanatos 98][expensive]
ENCDEC the satellite notus 19 is in the budget price range . the portege thanatos 98 has a 500 gb drive and is in the

expensive price range . which one do you prefer [128 gb]
SCLSTM the satellite notus 19 is in the budget price range and has a 500 gb drive and the portege thanatos 98 has a

128 gb drive . which one do you prefer [expensive]
GR-ADD the satellite notus 19 is in the budget price range with a 500 gb drive , the portege thanatos 98 has a 128 gb

drive and is in the expensive price range . which one do you prefer [OK]
GR-MUL the satellite notus 19 has a 500 gb drive and is in the budget price range with a 128 gb drive and is in the

expensive price range . which one do you prefer [portege thanatos 98]
ARoA-V the satellite notus 19 is in the budget price range and has a 500 gb drive and is in the expensive price range

. the portege thanatos 98 has a 128 gb drive
ARoA-M the satellite notus 19 is in the budget price range and has a 500 gb drive , the portege thanatos 98 has a 128

gb drive and is in the expensive price range. which one do you prefer [OK]
ARoA-C the satellite notus 19 has a 500 gb drive and is in the budget price range , the portege thanatos 98 has a 128

gb drive and is in the expensive price range . which one do you prefer [OK]
RALSTM the satellite notus 19 is in the budget price range with a 500 gb drive , while the portege thanatos 98 is in

the expensive price range and has a 128 gb drive . which one do you prefer [OK]
All2Laptop the satellite notus 19 is a budget price range with a 500 gb drive and the portege thanatos 98 has a 128 gb

drive and is in the expensive price range . which one do you prefer [OK]

4.6 Conclusion
This chapter 4 has presented a unified hybrid neural language generation framework which is
an extension of ARED architecture, from which we introduce two novel generators to tackle
the NLG problems of adequacy, completeness and adaptability. In the first proposed model,
named Encoder-Aggregator-Decoder, a Refiner cell is introduced to align and control the se-
mantic elements produced by an attention mechanism over the input elements. We also present
several different choices of gating and attention mechanism which can be effectively applied
to the Refiner. In the second model, a RALSTM component is introduced to select and ag-
gregate semantic elements produced by the encoder and to generate the required utterances.

51

4.6. CONCLUSION

Table 4.4: Comparison of top responses generated for some input dialogue acts between differ-
ent models. Errors are marked in color such as [missing] information. [OK] denotes successful
generation. All2Tv is a general model.

Model Generated Responses from TV Domain
Input DA inform count(count=”73”, type=”television”, hasusbport=”dontcare”, hdmiport=”2”, screensiz-

erange=”dontcare”)
Reference there are 73 televisions if you do not care about whether it has usb port or not, with 2 hdmi ports and if you

do not care about the screen size
HLSTM there are 73 televisions with 2 hdmi ports and if you do not care about the number of usb ports [screensiz-

erange]
ENCDEC there are 73 televisions with 2 hdmi ports if you do not care about usb ports [screensizerange]
SCLSTM there are 73 televisions with 2 hdmi ports if you do not care about the screen size and if you do not care

about the number of usb ports [OK]
GR-ADD there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]
GR-MUL there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]
ARoA-V there are 73 televisions with 2 hdmi ports , if you do not care about screen size or usb ports [OK]
ARoA-M there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]
ARoA-C there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]
RALSTM there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]
All2Tv there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports [OK]

Both proposed generators can jointly train both sentence planning and surface realization to
produce natural language sentences. We assessed the proposed models on four NLG domains
(hotel, restaurant, tv, and laptop) and compared to strong previous generators. The proposed
models empirically show consistent improvement over the previous methods in both the BLEU
and ERR evaluation metrics in terms of adequacy and completeness. The experimental results
also showed that the proposed models have an ability to adapt to a new, unseen domain with a
limited amount of in-domain data and show advantage from out-of-domain data. Nevertheless,
the hybrid-based models are not explicitly designed for work in the case of low-resource setting
which can easily cause the performance degradation. In the next chapter, we discuss an effec-
tive way to construct NLG systems that can work acceptably well with only a modest amount
of data.

52

Chapter 5

Variational Model for Low-Resource NLG

In this chapter, we present approaches dealing with the problem of low-resource setting data.
Despite the fact that previous models have shown to work well when providing a sufficient in-
domain data, low-resource data can easily harm the generators’ performance (see Table 5.1).
Furthermore, prior NLG systems often require a well-defined ontology dataset which is highly
expensive and time-consuming to collect. Thus, there is a need to develop NLG systems that
can work acceptably well on a small training dataset.

Table 5.1: Results evaluated on four domains by training models from scratch with 100% and
10% amount of in-domain data, respectively. The models work well when providing a suffi-
cient in-domain data (sec. scr100), while low-resource setting data really harms the models
performance (sec. scr10).

Model
Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

sc
r1

00

HLSTM 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTM 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
ENCDEC 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%
RALSTM 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%

sc
r1

0

HLSTM 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 0.4813 7.37%
SCLSTM 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
ENCDEC 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%
RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%

The chapter demonstrates two potential solutions for above-mentioned problems, which are
domain adaptation and model designing for low-resource training data.

Firstly, domain adaptation training which aims at learning from sufficient source domain
a model that can perform acceptably well on a different target domain with a limited labeled
data. Domain adaptation generally involves two different types of datasets, one from a source
domain and the other from a target domain. The source domain typically contains a sufficient
amount of annotated data such that a model can be efficiently built (see Table 5.1, sec. scr100),
while the target domain is assumed to have different characteristics from the source. Hence,
simply applying the model trained on the source domain may hurt the performance in the target
domain. Furthermore, there is often little or no labeled data in the target domain, which are
insufficient to construct a reliable model (see Table 5.1, sec. scr10). Hence, we mainly aim
at achieving good performance on the target domain by leveraging the source data or adapting

53

model trained on the source domain. We publish this work in (Tran and Nguyen, 2018a).
Secondly, model designing for low-resource setting has not been studied well in the NLG

literature. The generation models have achieved great performances irrespective of providing
sufficient labeled datasets (Wen et al., 2015b,a; Tran et al., 2017a; Tran and Nguyen, 2017a).
For low-resource scenario, one can further think about transfer learning which transfers learned
representations across domains to improve training on new unseen domains (Dethlefs, 2017),
multi-task learning which can be used to transfer dialogue knowledge across different users by
sharing training dialogues (Mo et al., 2017), transfer knowledge on multi-lingual data (Mathur
et al., 2018) or conversational skills learning via separating out domain-independent dimensions
(Keizer and Rieser, 2018), and unsupervised learning (Huang et al., 2018). However, we present
in this chapter an explicit way to build a generator that can work acceptably well in case of
having a modest amount of training data. This model is based on our work in (Tran and Nguyen,
2018b,e).

In summary, this chapter presents two approaches dealing with the problem of low-resource
setting data. We first propose an adversarial training procedure to train multi-domain, varia-
tional generator via multiple adaptation steps, which enable the generator to learn more effi-
ciently when in-domain data is in short supply. We then propose a combination of two VAEs,
which enables the variational-based generator to learn more efficiently in low-resource setting
data. In this chapter, we make the following contributions:

• We propose a variational-based NLG framework which benefits the generator to quickly
adapt to new, unseen domain irrespective of scarce target resources.

• For domain adaptation, we propose two critics in an adversarial training procedure to
guide the generator to generate outputs that resemble the sentences drawn from the target
domain. The two critics are integrated into a unifying variational domain adaptation
architecture that performs acceptably well in a new, unseen domain by using a limited
amount of target data.

• For low-resource model designing, we propose a dual variational model that benefits the
generator to not only achieve state-of-the-art over the previous methods when there is a
sufficient training data but also perform acceptably well irrespective of scarce in-domain
resources;

• We investigate the effectiveness of the proposed architecture in various scenarios, includ-
ing domain adaptation training, scratch training, and unsupervised training with different
amount of training dataset.

This chapter is organized as follows. Section 5.1 describes in detail a Variational Neu-
ral Language Generator framework. Section 5.2 presents an Adversarial Variational NLG
(VDANLG) for domain adaptation, whereas Section 5.3 presents a dual variational model for
low-resource setting in-domain data. The experiments are described in Section 5.4, whereas
Section 5.5 shows results and analyses. We present our summary and discussion in Section 5.6.

54

5.1. VNLG - VARIATIONAL NEURAL LANGUAGE GENERATOR

5.1 VNLG - Variational Neural Language Generator

5.1.1 Variational Autoencoder
Variational autoencoder (VAE) (Kingma and Welling, 2013) is a generative model which is
mainly based on a standard autoencoder. It introduces a latent variable z designed to capture
the variations in the observed variables x and the joint distribution is formulated as follows:

p(x, z) = pθ(x|z)p(z) (5.1)

where θ is the generative model parameters, p(z) is the prior distribution of the latent variable
z, i.e., Gaussian distribution, p(x|z) is the conditional distribution and typically parameterizes
via a non-liner deep neural network. However, the posterior inference p(z|x) is intractable and
VAE adopts two techniques in order to address this problem: variational neural inference and
reparameterization.

Variational neural inference utilizes a neural network to approximate the posterior distribu-
tion of latent variable z and formulated as follows:

qφ(z|x) = N (µ(x), σ2(x)) (5.2)

where mean µ(x) and variance σ2(x) are both highly function of x parameterized by neural
networks.

Reparameterization instead of using the standard sampling method, it reparameterizes z as
a function of µ and σ with a standard Gaussian noise variable ε and computed as follows:

z = µ+ σ � ε (5.3)

VAE employs an objective function which encourages the model to keep the posterior dis-
tribution of z close to its prior distribution, which enables the use of the lower bound. The
objective function is formed as follows:

LV AE(θ, φ, x) = −KL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] ≤ log p(x) (5.4)

where KL(Q||P) is the Kullback-Leibler divergence between Q and P. Maximizing the objec-
tive function is equivalent to maximize the reconstruction likelihood of observable variable x
and minimizing the KL divergence between the approximated posterior and the prior distribu-
tion of latent variable z.

5.1.2 Variational Neural Language Generator
Drawing inspiration from VAE model (Kingma and Welling, 2013) with assumption that there
exists a continuous latent variable z from a underlying semantic space of Dialogue Act (DA)
and utterance pairs (d,u), we explicitly model the space together with variable d to guide the
generation process, i.e. p(u|z,d). Thus, the original conditional probability is reformulated as
follows:

p(u|d) =

∫
z

p(u, z|d)dz =

∫
z

p(u|z, d)p(z|d)dz (5.5)

This latent variable enables us to model the underlying semantic space as a global signal for
generation, in which the lower bound of the variational generator can be formulated as follows:

LVAE(θ, φ,d,u) = −KL(qφ(z|d,u)||pθ(z|d)) + Eqφ(z|d,u)[log pθ(u|z,d)] (5.6)

55

5.1. VNLG - VARIATIONAL NEURAL LANGUAGE GENERATOR

Figure 5.1: The Variational NLG architecture. The model consists of three main components:
(i) Variational Encoder Network, (ii) Variational Inference Network, and (iii) Variational De-
coder Network.

where pθ(z|d) is the prior model, qφ(z|d,u) is the posterior approximator, and pθ(u|z,d) is the
decoder with the guidance from global signal z.

The variational architecture for natural language generation is demonstrated in Figure 5.1,
in which a variational inference is integrated into an encoder-decoder based natural language
generator (see Section 4.1).

Variational Encoder Network

The variational encoder network consists of two networks: (i) a 1-layer, Bidirectional LSTM
(BiLSTM) encoding the sequence of slot-value pairs {svi}TDAi=1 in a given Dialogue Act; and
(ii) a shared RNN/CNN Encoder encoding the given input utterance u. The input sequence u
of length TU (padded where necessary) represented as U ∈ Rd×TU by concatenating its word
embedding Ut ∈ E[ut], where E ∈ Rd×|V|, d, |V| are embedding and vocabulary sizes, respec-
tively. All columns of E are normalized to have unit l2-norm. The encoder, thus, produces both
the DA representation and the utterance representation vectors which flow into the inference
and decoder networks, and the posterior approximator, respectively.

BiLSTM Dialogue Act Encoder

The BiLSTM consists of forward and backward LSTMs which process the sequence from
left-to-right and right-to-left, yielding both forward and backward sequence of hidden states
(
−→
h1, ..,

−→
h TDA), and (

←−
h1, ..,

←−
h TDA), respectively. We finally take the mean-pooling over the BiL-

STM hidden vectors to obtain the Dialogue Act representation: hD = 1
TDA

∑TDA
i hi, where

hi =
−→
hi +

←−
hi .

56

5.1. VNLG - VARIATIONAL NEURAL LANGUAGE GENERATOR

CNN Utterance Encoder

We use CNN utterance encoder for constructing a low-resource setting generator which is de-
scribed in Section 5.3. The CNN consists of L-1 convolutional layers and a L-th fully-connected
layer, which aims at encoding an input utterance u into a fixed length representation vector hU.
Layer l ∈ {1, .., L} comprises learnable kl filters. For j-th filter in layer l = [1, .., L− 1], a con-
volutional operation with stride length s(l) applies filter W(j,l)

v ∈ Rd×h, where h is convolutional
filter size. This produces latent feature map, v(j,l) = ReLU(U∗W(j,l)

c + b(j,l)) ∈ R(T (l)−h)/s(l)+1,
where b(j,l) ∈ R(T (l)−h)/s(l)+1 is bias, and ∗ is the convolutional operator. We finally concatenate
the results from kl filters, results in feature map V(l) = [v(1,l), ..., v(kl,l)] ∈ Rkl×[(T (l)−h)/s(l)+1].
For each layers l = [1, .., L − 1], the length along the spatial dimension is reduced to T (l+1) =⌊
(T (l) − h)/s(l) + 1

⌋
, where T (l), s(l) are the spatial length and the stride length, respectively,

and b.c is the floor function. The feature map V(L−1), at the final layer L, is fed into a fully-
connected layer to yield the latent representation hU which encapsulates the sentence sub-
structure via the whole sentence portrayed by filters {W (j,l)

v }. We utilize the implementation
trick as in (Radford et al., 2015), in which we use a convolutional layer with the filter size equals
to T (L−1).

In this work, for example, the CNN encoder consists of L = 3 layers, which for a sentence
of length TU = 73, embedding size d = 100, stride length s = {2, 2, 2}, number of filters
k = {300, 600, 100} with filter sizes h = {5, 5, 16}, results in feature maps V of sizes {35 ×
300, 16×600, 1×100}, in which the last feature map corresponds to latent representation vector
hU.

RNN Utterance Encoder

For constructing a domain-adaptation generator, we utilize RNN Utterance Encoder whose ar-
chitecture is same as BiLSTM DA encoder in Subsection 5.1.2. The final representation the
corresponding utterance {ui}TUi=1 is obtained by taking the mean-pooling over the BiLSTM hid-
den vectors hU = 1

TU

∑TU
i h′i where h′i =

−→
h′i +

←−
h′i

Variational Inference Network

In this section, we describe how to model both the prior pθ(z|d) and the posterior qφ(z|d,u) by
utilizing neural networks.

Neural Posterior Approximator

Modeling the true posterior p(z|d,u) is usually intractable. Traditional approach fails to capture
the true posterior distribution of z due to its oversimplified assumption when using the mean-
field approaches. Following the work of (Kingma and Welling, 2013), in this work we employ
neural network to approximate the posterior distribution of z to simplify the posterior inference.
We assume the approximation has the following form:

qφ(z|d,u) = N (z;µ1(f(hD,hU)), σ2
1(f(hD,hU))I) (5.7)

where mean µ1 and standard variance σ1 are outputs of the neural network based on the repre-
sentations of hD and hU . The function f is a non-linear transformation that project both DA
and utterance representations into the latent space:

h′z = f(hD,hU) = g(Wz[hD; hU] + bz) (5.8)

57

5.1. VNLG - VARIATIONAL NEURAL LANGUAGE GENERATOR

where Wz ∈ Rdz×(dhD+dhU) and bz ∈ Rdz are matrix and bias parameters respectively, dz is the
dimensionality of the latent space, g(.) is an elements-wise activation function which we set to
be Relu in our experiments. In this latent space, we obtain the diagonal Gaussian distribution
parameter µ1 and log σ2

1 through linear regression:

µ1 = Wµ1h′z + bµ1 , log σ2
1 = Wσ1h′z + bσ1 (5.9)

where µ1, log σ2
1 are both dz dimension vectors.

Neural Prior Model

We model the prior as follows:

pθ(z|d) = N (z;µ′1(d), σ′1(d)2I) (5.10)

where µ′1 and σ′1 of the prior are neural models based on DA representation only, which are the
same as those of the posterior qφ(z|d,u) in Eq. 5.7 and Eq. 5.9, except for the absence of hU .
To acquire a representation of the latent variable z, we utilize the same technique as proposed
in VAE (Kingma and Welling, 2013) and re-parameterize it as follows:

hz = µ1 + σ1 � ε, ε ∼ N (0, I) (5.11)

In addition, we set hz to be the mean of the prior pθ(z|d), i.e., µ′1, during decoding due to the
absence of the utterance u. Intuitively, by parameterizing the hidden distribution this way, we
can back-propagate the gradient to the parameters of the encoder and train the whole network
with stochastic gradient descent. Note that the parameters for the prior and the posterior are
independent of each other.

In order to integrate the latent variable hz into the decoder, we use a non-linear transforma-
tion to project it onto the output space for generation:

he = g(Wehz + be) (5.12)

where he ∈ Rde . It is important to notice that due to the sample noise ε, the representation of
he is not fixed for the same input DA and model parameters. This benefits the model to learn to
quickly adapt to a new domain (see Table 5.3 and Figure 5.4).

Variational Neural Decoder

Given a DA d and the latent variable z, the decoder calculates the probability over the generation
u as a joint probability of ordered conditionals:

p(u|z,d) =

TU∏
j=1

p(ut|u<t, z, d) (5.13)

where p(ut|u<t, z, d) = g′(RNN(ut,ht−1,dt) In this study, we borrow the dt calculation and
the computational RNN cell from work (Tran and Nguyen, 2017a) where RNN(.)=RALSTM(.)
with a slightly modification in order to integrate the representation of latent variable, i.e, he,

58

5.2. VDANLG - AN ADVERSARIAL DOMAIN ADAPTATION VNLG

into the RALSTM cell, which is denoted by the bold dashed orange arrow in Figure 5.1-(iii).
We modify the cell calculation as follows:

it
ft
ot
ĉt

 =

σ
σ
σ

tanh

W4dh,4dh

he
dt

ht−1
ut

 (5.14)

where ii, ft, ot are input, forget and output gates respectively, dh is hidden layer size, W4dh,4dh

is model parameter.
The resulting Variational Inference RALSTM (VI-RALSTM) model with CNN utterance

encoder (VIC-RALSTM) or with RNN utterance encoder (VIR-RALSTM) are demonstrated in
Figure 5.1-(i), (ii), (iii), in which the latent variable affects the hidden representation through
the gates. This allows the model can indirectly take advantage of the underlying semantic in-
formation from the latent variable z. Furthermore, when the model learns to adapt to a new
domain with unseen dialogue act, the semantic representation he can help to guide the genera-
tion process (see Section 5.5.2 for details).

5.2 VDANLG - An Adversarial Domain Adaptation VNLG
In this Section, inspired by work of Chen et al. (2017) we propose two novel critics which guide
the VNLG-based model to adapt quickly to a new domain, we then propose a novel adversarial
training procedure for domain adaptation. Note that we use VIR-RALSTM (see Subsection
5.1.2) in this setting, resulting in a Variational Domain Adaptation NLG (VDANLG) model is
illustrated in Figure 5.2.

5.2.1 Critics
This Section introduces a text-similarity critic and a domain critic to guarantee, as much as
possible, that the generated sentences resemble the sentences drawn from the target domain.

Text Similarity Critic

In order to examine the relevance between sentence pair in two domains and to encourage the
model generating sentences in the style which is highly similar to those in the target domain,
we propose a Text Similarity Critic (SC) to classify (u(1),u(2)) as 1-similar or 0-unsimilar text
style. The SC model consists of two parts: a shared BiLSTM hY with the Variational Neural
Encoder to represent the u(1) sentence, and a second BiLSTM to encode the u(2) sentence.
The SC model takes input as a pair (u(1),u(2)) of ([target], source), ([target], generated), and
([generated], source). Note that we give priority to encoding the u(1) sentence in [.] using the
shared BiLSTM, which guides the model to learn the sentence style from the target domain, and
also contributes the target domain information into the global latent variables. We further utilize
Siamese recurrent architectures (Neculoiu et al., 2016) for learning sentence similarity, in which
the architecture allows the model to learn useful representations with limited supervision.

59

5.2. VDANLG - AN ADVERSARIAL DOMAIN ADAPTATION VNLG

Figure 5.2: The Variational Domain Adaptation NLG (VDANLG) architecture. The model
consists of two main components: the VIR-RALSTM to generate the sentence, which comprises
: (i) Variational Encoder Network, (ii) Variational Infererence Network, and (iii) Variational
Decoder Network; and two Critics with an adversarial training procedure to guide the model in
domain adaptation, which is composed of a Domain critic and a Text Similarity critic.

Domain Critic

In order to learn a model that can generalize well from a source domain to a new target domain,
and more specifically, in consideration of the shifts between domains we introduce a Domain
Critic (DC) to classify sentence as source, target or generated domain, respectively. Drawing
inspiration from work of (Ganin et al., 2016), we model DC with a gradient reversal layer and
two standard feed-forward layers. It is important to notice that our DC model shares parameters
with the Variational Neural Encoder and the Variational Neural Inferer. The DC model takes
input as a pair of given DA and corresponding utterance to produce a concatenation of both its
representation and its latent variable in the output space, which is then passed through a feed-
forward layer and a 3-labels classifier. In addition, the gradient reversal layer, which multiplies
the gradient by a certain negative value during back-propagation training, ensures that the fea-
ture distributions over the two domains are made similar, as indistinguishable as possible for
the domain critic, hence resulting in the domain-invariant features.

5.2.2 Training Domain Adaptation Model
Given a training instance represented by a pair of DA and sentence (d(i),u(i)) from the rich
source domain S and the limited target domain T , the task aims at finding a set of parameters
ΘT that can perform acceptably well on the target domain.

60

5.2. VDANLG - AN ADVERSARIAL DOMAIN ADAPTATION VNLG

Training Critics

We provide as following the training objective of SC and DC. For SC, the goal is to classify a
sentence pair into 1-similar or 0-unsimilar textual style. This procedure can be formulated as a
supervised classification training objective function:

Ls(ψ) = −
N∑
n=1

logCs(l
n
s |un(1),un(2), ψ),

lns =

{
1− similar if (un(1),u

n
(2)) ∈ Psim,

0− unsimilar if (un(1),u
n
(2)) ∈ Punsim,

UG = {u|u ∼ G(.|dT , .)},Psim = {unT ,unUG},Punsim = ({unT ,unS}, {unUG ,u
n
S})

(5.15)

where N is number of sentences, ψ is the model parameters of SC, UG denotes sentences gen-
erated from the current generator G given target domain dialogue act dT . The scalar probability
Cs(1|unT ,unUG) indicates how a generated sentence unUG is relevant to a target sentence unT .

The DC critic aims at classifying a pair of DA-utterance into source, target, or generated
domain. This can also be formulated as a supervised classification training objective as follows:

Ld(ϕ) = −
N∑
n=1

logCd(l
n
d |dn,un, ϕ), lnd =

source if (dn,un) ∈ (DS ,US),
target if (dn,un) ∈ (DT ,UT),
generated if (dn,un) ∈ (DT ,UG),

(5.16)

where ϕ is the model parameters of DC, and (DS,US) and (DT ,UT) are the DA-utterance pairs
from source and target domain, respectively; UG denotes sentences generated from the cur-
rent generator G given target domain dialogue act dT . Note also that the scalar probability
Cd(target|dn,un) indicates how likely the DA-utterance pair (dn,un) is from the target do-
main.

Training Variational Neural Language Generator

We utilize the Monte Carlo method to approximate the expectation over the posterior in Eq. 5.6,
i.e. Eqφ(z|d,u)[.] ' 1

M

∑M
m=1 log pθ(u|d,h(m)

z) where M is the number of samples. In this study,
the joint training objective for a training instance (d,u) is formulated as follows:

L(θ, φ,d,u) ' −KL(qφ(z|d,u)||pθ(z|d)) +
1

M

M∑
m=1

Tu∑
t=1

log pθ(ut|u<t,d,h(m)
z) (5.17)

where h(m)
z = µ + σ � ε(m), and ε(m) ∼ N (0, I). The first term is the KL divergence between

two Gaussian distribution, and the second term is the approximation expectation. We simply
set M = 1 which degenerates the second term to the objective of conventional generator. Since
the objective function in Eq. 5.17 is differentiable, we can jointly optimize the parameter θ and
variational parameter φ using standard gradient ascent techniques.

Adversarial Training

Our domain adaptation architecture is demonstrated in Figure 5.1, in which both generator G
and critics Cs, and Cd jointly train by pursuing competing goals as follows. Given a dialogue

61

5.3. DUALVAE - A DUAL VARIATIONAL MODEL FOR LOW-RESOURCE DATA

act dT in the target domain, the generator generates K sentences u’s. It would prefer a “good”
generated sentence u if the values of Cd(target|dT ,u) and Cs(1|uT ,u) are large. In contrast,
the critics would prefer large values of Cd(generated|dT ,u) and Cs(1|u,uS), which imply the
small values of Cd(target|dT ,u) and Cs(1|uT ,u). We propose a domain-adversarial training
procedure in order to iteratively updating the generator and critics as described in Algorithm
1. While the parameters of generator is optimized to minimize its loss in the training set, the
parameters of the critics are optimized to minimize the error of text similarity, and to maximize
the loss of domain classifier.

Algorithm 1: Adversarial Training Procedure
Require: generator G, domain critic Cd, text similarity critic Cs, generated sentence UG = ∅;
Input: DA-utterance pairs of source (DS ,US), target (DT ,UT);

1 Pretrain G on (DS ,US) using VIR-RALSTM (see Subsection 5.1.2);
2 while Θ has not converged do
3 for i = 0, .., NT do
4 Sample (dS ,uS) from source domain;
5 (D1)-Compute gd = OϕLd(ϕ) using Eq. 5.16 for (dS ,uS) and (dT ,uT);
6 (D2)-Adam update of ϕ for Cd using gd;
7 (G1)-Compute gG = {OθL(θ, φ),OφL(θ, φ)} using Eq. 5.17
8 (G2)-Adam update of θ, φ for G using gG
9 (S1)-Compute gs = OψLs(ψ) using Eq. 5.15 for (uT ,uS);

10 (S2)-Adam update of ψ for Cs using gs;
11 UG ← {uk̄}Kk̄=1

, where uk̄ ∼ G(.|d(i)
T , .);

12 Choose top k best sentences of UG ;
13 for j = 1,..,k do
14 (D1), (D2) steps for Cd with (dT ,u

(j)
G);

15 (S1), (S2) steps for Cs with (u(j)
G ,uS) and (uT ,u

(j)
G);

16 end
17 end
18 end

Generally, the current generator G for each training iteration i takes a target dialogue act
d(i)
T as input to over-generate a set UG of K candidate sentences (step 11). We then choose top

k best sentences in the UG set (step 12) after re-ranking to measure how “good” the generated
sentences are by using the critics (steps 14-15). These “good” signals from the critics can
guide the generator step by step to generate the outputs which resemble the sentences drawn
from the target domain. Note that the re-ranking step is important for separating the “correct”
sentences from the current generated outputs UG by penalizing the generated sentences which
have redundant or missing slots. This helps the model to produce the utterances with lower
ERR score (see Table 5.3).

5.3 DualVAE - A Dual Variational Model for Low-Resource
Data

Starting from a Varitional neural language generator with a CNN utterance encoder (VIC-
RALSTM) in Subsection 5.1.2, we present an effective way to construct a dual Variational
model which consists of two VAEs and enables the variational-based generator to learn more
efficiently when the training data is in short supply. The following Subsection 5.3.1 presents
a second VAE model which is a Variationl CNN-DCNN model as shown in the left side of

62

5.3. DUALVAE - A DUAL VARIATIONAL MODEL FOR LOW-RESOURCE DATA

Figure 5.3. Subsection 5.3.2 then proposes a novel training procedure to effectively leverage
knowledge from a small amount of training data.

5.3.1 Variational CNN-DCNN Model
This VAE model (left side in Figure 5.3) consists of two components: a shared CNN Utter-
ance Encoder model with the Variational Language Generator, and a DCNN Utterance Decoder
model. After having the vector representation hU, we apply another linear regression to obtain
the distribution parameter µ2 and log σ2

2 as follows:

µ2 = Wµ2hU + bµ2 , log σ2
2 = Wσ2hU + bσ2 (5.18)

where µ2, log σ2
2 are also both dz dimension vectors. We also obtain a representation of the

latent variable z by re-parameterizing it as follows:

hzu = µ2 + σ2 � ε, ε ∼ N (0, I) (5.19)

In order to integrate the latent variable hzu into the DCNN Decoder, we use a shared non-linear
transformation as in Eq. 5.12 (dashed black line in Figure 5.3):

he = g(Wehzu + be) (5.20)

DCNN Utterance Decoder

To decode the latent representation, he, back to the source text, we use the deconvolutional
network with stride, also known as transposed convolutional layers. As a minoring the convolu-
tional steps, the spatial dimension first is expanded to match those of the (L−1)-th convolutional
layer, then progressively widened as T (l+1) = (T (l)−1)∗s(l)+h for l = 1..L, which corresponds
to the input layer of the CNN utterance encoder. The output of the L-th deconvolutional layer
aims to recontruct the word embedding matrix denoted as Û whose columns are normalized to
have unit l2-norm as well as word embedding matrix E. The probability of ût to be word s is
computed as follows:

p(ût = s) =
exp{τ−1cos(ût,E[s])}∑
s′∈V exp{τ−1cos(ût,E[s′])}

(5.21)

where cos(x, y) is the cosine similarity between two vectors x and y, V is the word vocabulary,
E[s] denotes the column of word embedding E corresponding to word s. Temperature parameter
τ is set to be 0.01 to control the sparsity of the resulting probabilities.

The resulting model named DualVAE by incorporating the Variational NLG (VIC-RALSTM)
with the Variational CNN-DCNN model and depicted in Figure 5.3.

5.3.2 Training Dual Latent Variable Model
Training Variational Language Generator

Similar to Subsection 5.2.2 on training a variational NLG, the joint training objective for a
training instance pair (d,u) is formulated as follows:

LVIC-RALSTM = L(θ, φ,d,u) (5.22)

where L(θ, φ,d,u) is computed as in Eq. 5.17.

63

5.3. DUALVAE - A DUAL VARIATIONAL MODEL FOR LOW-RESOURCE DATA

Figure 5.3: The Dual Variational Model consists of two VAE models: (I) the Variational Natural
Language Generator (VIC-RALSTM) in the dashed red box to generate utterances, which com-
prises: (i) Variational Encoder Network, (ii) Variational Inference Network, and (iii) Variational
Decoder Network; and (II) the Variational CNN-DCNN Model (left side) which is composed
of a CNN Encoder and a Deconvolutional Decoder. The CNN Encoder for utterance encoding
is shared between the two VAEs.

Training Variational CNN-DCNN Model

The objective function of the Varialtional CNN-DCNN model is the standard VAE lower bound
(Kingma and Welling, 2013) to be maximized as follows:

LCNN-DCNN = L(θ′, φ′,u) = −KL(qφ′(z|u)||pθ′(z)) +Eqφ′ (z|u)[log pθ′(u|z)] ≤ log p(u) (5.23)

where θ′ and φ′ denote decoder and encoder parameters, respectively. Intuitively, maximizing
the objective function is equivalent to maximize the reconstruction likelihood of observable
variable u and minimizing the KL divergence between the approximated posterior and the prior
distribution of latent variable z. During training, we also consider a denoising autoencoder
where we slightly modify the input by swapping some arbitrary word pairs.

Joint Training Dual VAE Model

To allow the model explore and balance maximizing the variational lower bound between the
CNN-DCNN model and VIC-RALSTM model, an objective is joint dual training as follows:

LDualVAE = LVIC-RALSTM + αLCNN-DCNN (5.24)

where α controls the relative weight between two variational losses. During training, we anneal
the value of α from 1 to 0, so that the dual latent variable learned can gradually focus less on

64

5.4. EXPERIMENTS

reconstruction objective of the CNN-DCNN model, only retain those features that are useful for
the generation objective.

Joint Cross Training Dual VAE Model

To allow the dual VAE model explore and encode useful information of the dialogue act into
the latent variable, we further take a cross training between two VAEs by simply replacing the
RALSTM Decoder of the VIC-RALSTM with the DCNN Utterance Decoder, and its objective
training as:

LVIC-DCNN = L(θ′, φ,d,u) ' −KL(qφ(z|d,u)||pθ′(z|d)) + Eqφ(z|d,u)[log pθ′(u|z, d)], (5.25)

and a joint cross training objective is employed:

LCrossVAE = LVIC-RALSTM + α(LCNN-DCNN + LVIC-DCNN) (5.26)

5.4 Experiments

5.4.1 Experimental Setups
We followed the configurations for the RALSTM model from work of (Tran and Nguyen,
2017a), in which: the hidden layer size and beam width were set to be 80 and 10, respec-
tively, and the generators were trained with a 70% of keep dropout rate. We performed 5 runs
with different random initialization of the network, and the training process is terminated by
using early stopping. We then selected a model that yields the highest BLEU score (Papineni
et al., 2002) on the validation set. We used Adam optimizer with the learning rate is initially
set to be 0.001, and after 3 epochs for the Union dataset and 5 epochs for the single dataset
the learning rate is decayed every epoch using an exponential rate of 0.95. For the variational
inference, we set the latent variable size to be 16 for VDANLG model and 300 for dual VAEs.

5.4.2 KL Cost Annealing
VAE is hard to train because of the model in most cases converges to a solution with a vanish-
ing small KL term, thus effectively falling back to a conventional language model. Following
(Bowman et al., 2015), we use KL cost annealing strategy to encourage the model to encode
meaningful representations into the z latent vector, in which we gradually annealing the KL
term from 0 to 1. This helps our model to achieve solutions with non-zero KL term.

5.4.3 Gradient Reversal Layer
The gradient reversal layer (Ganin et al., 2016) leaves the input unchanged during forward prop-
agation and reverses the gradient by multiplying it with a negative scalar during the backpropagation-
based training. For configuring the Domain critic (see 5.2.1) in VDANLG model, we set the
domain adaptation parameter λp which gradually increases, starting from 0 to 1, by using the
following schedule for each training step i as follows:

p = float(i)/num steps,

λp =
2

1 + exp(−10 ∗ p)
− 1

(5.27)

65

5.5. RESULTS AND ANALYSIS

where num steps is a constant which is set to be 8600, p is the training progress. This strategy
allows the Domain critic to be less sensitive to noisy signal at the early stages of the training
procedure.

5.4.4 Evaluation Metrics and Baselines
The generator performances were evaluated using the two metrics: the BLEU and the slot error
rate ERR by adopting code from an NLG toolkit1. We compared the proposed models against
strong baselines which have been recently published as NLG benchmarks of the above datasets.

• Gating-based generators, including HLSTM (Wen et al., 2015a) and SCLSTM (Wen et al.,
2015b).

• Attention-based generators, including ENCDEC (Wen et al., 2016b) and RALSTM (Tran
and Nguyen, 2017a).

5.5 Results and Analysis
We performed the models in different scenarios as follows:

• Scratch training: Models trained from scratch using 10% (scr10), 30% (scr30), and 100%
(scr100) amount of in-domain data;

• Domain adaptation training: Models pre-trained from scratch using all source domain
data, then fine-tuned on the target domain using only 10% amount of the target data.

Overall, both proposed models demonstrate an ability to work well in various scenarios of
low-resource setting data. The proposed models further obtained better performance regarding
both the evaluation metrics across all domains in all training scenarios. We start investigating the
effectiveness of variational integrating in Subsection 5.5.1. Subsections 5.5.2 and 5.5.3 present
the results and analyses of domain adaptation models and dual variational models, respectively.

5.5.1 Integrating Variational Inference

Figure 5.4: Performance on Laptop domain with varied limited amount, from 1% to 7%, of the
adaptation training data when adapting models pre-trained on [Restaurant+Hotel] union dataset.

1https://github.com/shawnwun/RNNLG

66

5.5. RESULTS AND ANALYSIS

Table 5.2: Results evaluated on Target domains by training models from scratch scenarios,
scr100 (in sec. 1) and scr10 (in sec. 2).

Model
Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
HLSTM (Wen et al., 2015a) 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%

SCLSTM (Wen et al., 2015b) 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
ENCDEC (Wen et al., 2016b) 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%

RALSTM (Tran and Nguyen, 2017a) 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%
VIR-RALSTM (Ours) 0.8851 0.57% 0.7709 0.36% 0.5356 0.73% 0.5210 0.59%
VIC-RALSTM (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%

RALSTM (Tran and Nguyen, 2017a) 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIR-RALSTM (Ours) 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%
VIC-RALSTM (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%

We compare the original model RALSTM with its modification by integrating with Varia-
tional Inference (VIR-RALSTM and VIC-RALSTM) as demonstrated in Figure 5.4 and Table
5.2. It clearly shows that the model integration not only preserves the power of the original
RALSTM on generation task since its performances are very competitive to those of RALSTM
(Table 5.2, sec. 1), but also provides a compelling evidence on adapting to a new, unseen do-
main when the target domain data is scarce, i.e., from 1% to 7% (Figure 5.4). Table 5.2, sec.
2 further shows the necessity of the integrating in which the Variational RALSTM achieved a
significant improvement over the RALSTM in scr10 scenario where the models trained from
scratch with only a limited amount of training data (10%). These indicate that the proposed
variational method can learn the underlying semantic of the existing DA-utterance pairs, which
are especially useful information for low-resource setting.

Furthermore, the VIR-RALSTM model has slightly better results than the VIC-RALSTM
when providing sufficient training data, i.e., 100%. In contrast, with a limited training data,
i.e, 10%, the latter model demonstrates a significant improvement compared to previous models
in terms of both BLEU and ERR scores by a large margin across all four dataset. In Hotel
domain, for example, the VIC-RALSTM model (79.98 BLEU, 8.67% ERR) has better results
in comparison to the VIR-RALSTM (73.78 BLEU, 15.43% ERR) and RALSTM (68.55 BLEU,
22.53% ERR). The VIC-RALSTM, the model with CNN utterance encoder, shows obvious sign
for constructing a dual latent variable models dealing with the limitation of in-domain data,
which are discussed in Section 5.5.3. The following Section 5.5.2 provides in detail results and
analyses of the VDANLG model in tackling domain adaptation problems.

5.5.2 Adversarial VNLG for Domain Adaptation
We compared the Variational Domain Adaptation NLG (see Section 5.2) against the baselines
in various scenarios: adaptation, scr10, scr100. Overall, the proposed models trained on adap-
tation scenario not only achieve competitive performances compared with previous models
trained on all in-domain dataset, but also significantly outperform models trained on scr10 by
a large margin. The proposed models further show ability to adapt to a new domain using a
limited amount of target domain data.

67

5.5. RESULTS AND ANALYSIS

Table 5.3: Ablation studies’ results evaluated on Target domains by adaptation training pro-
posed models from Source domains using only 10% amount of the Target domain data (sec. 1,
2, 4, 5). The results were averaged over 5 randomly initialized networks.

Source
Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

no
C

ri
tic

s

Hotel - - 0.6814 11.62% 0.4968 12.19% 0.4915 3.26%
Restaurant 0.7983 8.59% - - 0.4805 13.70% 0.4829 9.58%

Tv 0.7925 12.76% 0.6840 8.16% - - 0.4997 4.79%
Laptop 0.7870 15.17% 0.6859 7.55% 0.4953 18.60% - -
[R+H] - - - - 0.5019 7.43% 0.4977 5.96%
[L+T] 0.7935 11.71% 0.6927 6.49% - - - -

+
D

C
+

SC

Hotel - - 0.7131 2.53% 0.5164 3.25% 0.5007 1.68%
Restaurant 0.8217 3.95% - - 0.5043 2.99% 0.4931 2.77%

Tv 0.8251 4.89% 0.6971 4.62% - - 0.5009 2.10%
Laptop 0.8218 2.89% 0.6926 2.87% 0.5243 1.52% - -
[R+H] - - - - 0.5197 2.58% 0.5009 1.61%
[L+T] 0.8252 2.87% 0.7066 3.73% - - - -

sc
r1

0 RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIR-RALSTM 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%

+
D

C
on

ly

Hotel - - 0.6823 4.97% 0.4322 27.65% 0.4389 26.31%
Restaurant 0.8031 6.71% - - 0.4169 34.74% 0.4245 26.71%

Tv 0.7494 14.62% 0.6430 14.89% - - 0.5001 15.40%
Laptop 0.7418 19.38% 0.6763 9.15% 0.5114 10.07% - -
[R+H] - - - - 0.4257 31.02% 0.4331 31.26%
[L+T] 0.7658 8.96% 0.6831 11.45% - - - -

+
SC

on
ly

Hotel - - 0.6976 5.00% 0.4896 9.50% 0.4919 9.20%
Restaurant 0.7960 4.24% - - 0.4874 12.26% 0.4958 5.61%

Tv 0.7779 10.75% 0.7134 5.59% - - 0.4913 13.07%
Laptop 0.7882 8.08% 0.6903 11.56% 0.4963 7.71% - -
[R+H] - - - - 0.4950 8.96% 0.5002 5.56%
[L+T] 0.7588 9.53% 0.6940 10.52% - - - -

sec. 3: Training RALSTM and VIR-RALSTM models from scratch using 10% of Target domain data;

Ablation Studies

The ablation studies (Table 5.3, sec. 1, 2, 4, 5) demonstrate the contribution of two Critics, in
which the models were assessed with either no Critics (sec. 1) or both (sec. 2) or only one
(+ DC only in sec. 4 and + SC only in sec. 5). It clearly sees that, in comparison to models
trained without Critics in Table 5.3 sec. 1, combining both Critics (sec. 2) makes a substantial
contribution to increasing the BLEU score and decreasing the slot error rate ERR by a large
margin in every dataset pairs. A comparison of model adapting from source Laptop domain
between VIR-RALSTM without Critics (Laptop in sec. 1) and VDANLG (Laptop in sec. 2)
evaluated on the target domain Hotel shows that the VDANLG not only has better performance
with much higher the BLEU score, 82.18 in comparison to 78.70, but also significantly reduce
the slot error rate ERR, from 15.17% down to 2.89%. The trend is consistent across all the
other domain pairs. These stipulate the necessity of the Critics and the adversarial domain
adaptation algorithm in effective learning to adapt to a new domain, in which although both
the RALSTM and VIR-RALSTM models perform well when providing sufficient in-domain
training data (Table 5.2), the performances are extremely impaired when training from scratch
with only limited amount of in-domain training data.

68

5.5. RESULTS AND ANALYSIS

Table 5.3 further demonstrates that using DC only (sec. 4) brings a benefit of effectively uti-
lizing similar slot-value pairs seen in the training data to closer domain pairs such as: Hotel→
Restaurant (68.23 BLEU, 4.97 ERR), Restaurant→ Hotel (80.31 BLEU, 6.71 ERR), Laptop
→ Tv (51.14 BLEU, 10.07 ERR), and Tv→ Laptop (50.01 BLEU, 15.40 ERR) pairs. Whereas
it is inefficient for the longer domain pairs since their performances (sec. 4) are worse than those
without Critics, or in some cases even worse than the VIR-RALSTM, such as Restaurant→ Tv
(41.69 BLEU, 34.74 ERR) and the cases where Laptop to be a Target domain. On the other
hand, using SC only (sec. 5) helps the models achieve better results since it is aware of the
sentence style when adapting to the target domain. These further demonstrate that the proposed
variational-based models can learn the underlying semantic of DA-utterance pairs in the source
domain via the representation of the latent variable z, from which when adapting to another
domain, the models can leverage the existing knowledge to guide the generation process.

Adaptation versus scr100 Training Scenario

It is interesting to compare adaptation (Table 5.3, sec. 2) with scr100 training scenario (Table
5.2). The VDANLG model shows its considerable ability to shift to another domain with a
limited of in-domain labels whose results are competitive to or in some cases better than the
previous models trained on full labels of the Target domain. A specific comparison evaluated on
the Tv domain where the VDANLG model trained on the source Laptop (sec. 2) achieved better
performance, at 52.43 BLEU and 1.52 ERR, than HLSTM (52.40, 2.65), SCLSTM (52.35,
2.41), and ENCDEC (51.42, 3.38). The VADNLG models, in many cases, also have lower of
slot error rate ERR results than the ENCDEC model. These indicate the stable strength of the
VDANLG models in adapting to a new domain when the target domain data is scarce.

Distance of Dataset Pairs

To better understand the effectiveness of the methods, we analyze the learning behavior of the
proposed model between different dataset pairs. The datasets’ order of difficulty was, from
easiest to hardest: Hotel↔ Restaurant↔ Tv↔ Laptop. On the one hand, it might be said that
the longer datasets’ distance is, the more difficult of domain adaptation task becomes. This
clearly shows in Table 5.3, sec. 1, at Hotel column where the adaptation ability gets worse
in terms of decreasing the BLEU score and increasing the ERR score alongside the order of
Restaurant→ Tv→ Laptop datasets. On the other hand, the closer the dataset pair is, the faster
model can adapt. It can be expected that the model can better adapt to the target Tv/Laptop
domain from source Laptop/Tv than those from source Restaurant, Hotel, and vice versa, the
model can easier adapt to the target Restaurant/Hotel domain from source Hotel/Restaurant
than those from Laptop, Tv. However, the above-mentioned is not always true that the proposed
method can perform acceptably well from easy source domains (Hotel, Restaurant) to the more
difficult target domains (Tv, Laptop) and vice versa (Table 5.3, sec. 1, 2). The distance of
datasets is also shown via the differences of word-level distribution using word clouds in Figure
2.2.

Table 5.3, sec. 1, 2 further demonstrate that the proposed method is able to leverage the
out of domain knowledge since the adaptation models trained on union source dataset, such as
[R+H] or [L+T], show better performances than those trained on individual source domain data.
A specific example in Table 5.3, sec. 2 shows that the adaptation VDANLG model trained on the
source union dataset of Laptop and Tv ([L+T]) has better performance, at 82.52 BLEU and 2.87
ERR, than those models trained on the individual source dataset, such as Laptop (82.18 BLEU,

69

5.5. RESULTS AND ANALYSIS

2.89 ERR) and Tv (82.51 BLEU, 4.89 ERR). Another example in Table 5.3, sec. 2 also shows
that the adaptation VDANLG model trained on the source union dataset of Restaurant and Hotel
([R+H]) also has better results, at 51.97 BLEU and 2.58 ERR, than those models trained on the
separate source dataset, such as Restaurant(50.43 BLEU, 2.99 ERR), and Hotel(51.64 BLEU,
3.25 ERR). The trend is mostly consistent across all other comparisons in different training
scenarios. All these demonstrate that the proposed model can learn global semantics that can
be efficiently transferred into new domains.

Unsupervised Domain Adaptation

We further examine the effectiveness of the proposed methods by training the VDANLG models
on target Counterfeit datasets (Wen et al., 2016a). The promising results are shown in Table
5.4, despite the fact that the models were instead adaptation trained on the Counterfeit datasets,
or in other words, were indirectly trained on the (Test) domains. However, the proposed models
still showed positive signs in remarkably reducing the slot error rate ERR in the cases of Hotel
and Tv be the (Test) domains. Surprisingly, even the source domains (Hotel/Restaurant) are far
from the (Test) domain Tv, and the Target domain Counterfeit L2T is also very different to the
source domains, the model can still acceptably adapt well since its BLEU scores on (Test) Tv
domain reached to (41.83/42.11) and it also produced a very low scores of slot error rate ERR
(2.38/2.74).

Table 5.4: Results evaluated on (Test) domains by Unsupervised adapting VDANLG from
Source domains using only 10% of the Target domain Counterfeit X2Y where {X, Y} =
R : Restaurant, H : Hotel, T : Tv, L : Laptop.

Source
Target(Test) R2H(Hotel) H2R(Restaurant) L2T(Tv) T2L(Laptop)

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
Hotel - - 0.5931 12.50% 0.4183 2.38% 0.3426 13.02%

Restaurant 0.6224 1.99% - - 0.4211 2.74% 0.3540 13.13%
Tv 0.6153 4.30% 0.5835 14.49% - - 0.3630 7.44%

Laptop 0.6042 5.22% 0.5598 15.61% 0.4268 1.05% - -

Comparison on Generated Outputs

We present top responses generated for different scenarios from Laptop (Table 5.5) and TV
(Table 5.6) domains.

On the one hand, the VIR-RALSTM models (trained from scratch or trained adapting model
from Source domains) produce outputs with a diverse range of error types, including missing,
misplaced, redundant, wrong slots, or even spelling mistake information, leading to a very
high score of the slot error rate ERR. Specifically, the VIR-RALSTM from scratch tends to
make repeated slots and also many of the missing slots in generated outputs since the training
data may inadequate for the model to generally handle unseen dialog acts. Whereas the VIR-
RALSTM models without Critics adapting trained from Source domains (denoted by [in Table
5.5, 5.6) tend to generate the outputs with fewer error types than the model from scratch due
to the VIR-RALSTM[models may capture the overlap slots of both source and target domain
during adaptation training.

On the other hand, under the guidance of the Critics (SC and DC) in an adversarial training
procedure, the VDANLG model (denoted by]) can effectively leverage the existing knowledge

70

5.5. RESULTS AND ANALYSIS

Table 5.5: Comparison of top Laptop responses generated for different scenarios by adapta-
tion training VIR-RALSTM (denoted by [) and VDANLG (denoted by]) models from Source
domains, and by training VIR-RALSTM from scratch. Errors are marked in colors ([missing],
misplaced, redundant, wrong, spelling mistake information). [OK] denotes successful genera-
tion. VDANLG] = VIR-RALSTM[+SC+DC.

Model Generated Responses from Laptop Domain
DA 1 compare(name=‘tecra erebus 20’; memory=‘4 gb’; isforbusinesscomputing=‘true’; name=‘satellite hera-

cles 45’; memory=‘2 gb’; isforbusinesscomputing=‘false’)
Ref 1 compared to tecra erebus 20 which has a 4 gb memory and is for business computing , satellite heracles 45

has a 2 gb memory and is not for business computing . which one do you prefer
VIR-
RALSTM

which would be the tecra erebus 20 is a business computing laptop with 4 gb of memory and is the
SLOT NAME , and is not for business computing . [satellite heracles 45][2 gb]

Hotel[the tecra erebus 20 is used for business computing . the satellite heracles 45 has 4 gb of memory and a
SLOT BATTERY battery life for business computing . which one do you want

Restaurant[the tecra erebus 20 is for business computing . the satellite heracles 45 which has 4 gb of memory and is
not for business computing . which one do you want [2 gb]

Tv[the tecra erebus 20 has 4 gb of memory and is not for business computing . which one do you prefer [is for
business computing][satellite heracles 45][2 gb]

[R+H][the tecra erebus 20 is not for business computing . which one do you want a business computing . which
one do you prefer [4 gb][is for business computing][satellite heracles 45][2 gb]

Hotel] the tecra erebus 20 has a 4 gb memory , that is for business computing . the satellite heracles 45 with 2 gb
of memory and is not for business computing . which one do you want [OK]

Restaurant] the tecra erebus 20 has a 4 gb memory , and is for business computing . the satellite heracles 45 is not for
business computing . which one do you want to know more [2 gb]

Tv] the tecra erebus 20 is a business computing . the satellite heracles 45 has a 4 gb memory and is not for
business computing . which one do you prefer [2 gb]

[R+H]] the tecra erebus 20 is for business computing , has a 2 gb of memory. the satellite heracles 45 has 4 gb of
memory , is not for business computing. which one do you want

DA 2 inform(name=‘portege phosphorus 43’; type=‘laptop’; design=‘black magnesium chassis with brushed
metallic finish , matt black keyboard’; isforbusinesscomputing=‘false’; drive=‘320 gb’)

Ref 2 the portege phosphorus 43 laptop has a 320 gb drive , is not for business computing and has a black
magnesium chassis with brushed metallic finish , matt black keyboard

VIR-
RALSTM

the portege phosphorus 43 is a laptop with a 320 gb drive and has a black magnesium chassis with brushed
metallic finish , matt black keyboard . [is not for business computing]

Hotel[the portege phosphorus 43 is a laptop has a 320 gb drive , is not for business computing . it is not for
business computing , it has a design of black magnesium chassis with brushed metallic finish , matt black
keyboard

Restaurant[the portege phosphorus 43 is a laptop with a 320 gb drive , has a design of black magnesium chassis with
brushed metallic finish , matt black keyboard . [is not for business computing]

Tv[the portege phosphorus 43 is a laptop with a black magnesium chassis with brushed metallic finish , matt
black keyboard . it is not for business computing [320 gb]

[R+H][the portege phosphorus 43 is a laptop with a black magnesium chassis with brushed metallic finish , matt
black keyboard [is not used for business computing] [320 gb]

Hotel] the portege phosphorus 43 laptop has a 320 gb drive , has a black magnesium chassis with brushed metallic
finish , matt black keyboard design and is not for business computing [OK]

Restaurant] the portege phosphorus 43 laptop has a 320 gb drive , it is for business computing , it has a design of black
magnesium chassis with brushed metallic finish , matt black keyboard

Tv] the portege phosphorus 43 laptop has a 320 gb drive and a design of black magnesium chassis with brushed
metallic finish , matt black keyboard . it is not for business computing [OK]

[R+H]] the portege phosphorus 43 laptop has a 320 gb drive , and is not for business computing . it has a black
magnesium chassis with brushed metallic finish , matt black keyboard [OK]

of source domains to better adapt to target domains. The VDANLG models can generate out-
puts in style of target domain with much fewer the error types compared with two above models.
Furthermore, the VDANLG models seem to produce satisfactory utterances with more correct
generated slots. For example, a sample outputted by the [R+H]] in Table 5.5 contains all the

71

5.5. RESULTS AND ANALYSIS

Table 5.6: Comparison of top Tv responses generated for different scenarios by adaptation
training VIR-RALSTM (denoted by [) and VDANLG (denoted by]) models from Source do-
mains, and by training VIR-RALSTM from scratch. Errors are marked in colors ([missing],
misplaced, redundant, wrong, spelling mistake information). [OK] denotes successful genera-
tion. VDANLG] = VIR-RALSTM[+SC+DC.

Model Generated Responses from TV Domain
DA compare(name=‘crios 69’; ecorating=‘a++’; powerconsumption=‘44 watt’; name=‘dinlas 61’; ecorat-

ing=‘a+’; powerconsumption=‘62 watt’)
Ref compared to crios 69 which is in the a++ eco rating and has 44 watt power consumption , dinlas 61 is in

the a+ eco rating and has 62 watt power consumption . which one do you prefer ?
VIR-
RALSTM

the crios 69 is the dinlas 61 is the SLOT NAME is the SLOT NAME is the SLOT NAME is the
SLOT NAME is the SLOT NAME is the SLOT NAME is the SLOT NAME . it has an a++ eco rating
[44 watt][a+][62 watt]

Hotel[the crios 69 has a 44 watt power consumption , whereas the dinlas 61 has 62 watt power consumption ,
whereas the SLOT NAME has SLOT POWERCONSUMPTION power consumption and has an a++ eco
rating [a+]

Restaurant[the crios 69 has a a++ eco rating , 44 watt power consumption , and an a+ eco rating and 62 watt power
consumption [dinlas 61]

Laptop[the crios 69 has SLOT HDMIPORT hdmi port -s , the dinlas 61 has a++ eco rating and 44 watt power
consumption [62 watt][a+]

[R+H][the crios 69 is in the SLOT FAMILY product family with a++ eco rating ? [44 watt][dinlas 61][62 watt][a+]
Hotel] the crios 69 has an a++ eco rating and 44 watt power consumption and a 62 watt power consumption

[dinlas 61][a+]
Restaurant] the crios 69 has 44 watt power consumption of a++ and has an a+ eco rating and 62 watt power consump-

tion [dinlas 61]
Laptop] the crios 69 has an a++ eco rating and 44 watt power consumption , whereas the dinlas 61 has 62 watt

power consumption and a+ eco rating . [OK]
[R+H]] the crios 69 has 44 watt power consumption , and an a++ eco rating and the dinlas 61 has a 62 watt power

consumption . [a+]

required slots with only a misplaced information of two slots 2 gb and 4 gb, while the generated
output produced by Hotel] is a successful generation. Another samples in Table 5.5-Example 2
generated by the Hotel], Tv], [R+H]] models, and a sample generated by the Laptop] in Table
5.6 are all fulfilled responses. An analysis of generated responses in Table 5.5-Exmple 2 illus-
trates that the VDANLG models seem to generate a concise response since the models show a
tendency to form some potential slots into a concise phrase, i.e. “SLOT NAME SLOT TYPE”.
For example, the VDANLG models tend to concisely response as “the portege phosphorus 43
laptop ...” instead of “the portege phosphorus 43 is a laptop ...”.

All these above demonstrate that the VDANLG models have ability to work acceptably well
in the low-resource setting since they produce better results with a much lower score of the slot
error rate ERR.

5.5.3 Dual Variational Model for Low-Resource In-Domain Data
In this section, we again performed the dual variational model in different scenarios of low-
resource setting, i.e, training models from scratch with 10% (scr10), 30% (scr30), and 100%
(scr100) amount of in-domain data, and training domain adaptation models (adaptation). Over-
all, the proposed models obtained better performance regarding both the evaluation metrics
across all domains in all training scenarios.

72

5.5. RESULTS AND ANALYSIS

Ablation Studies

The ablation studies (Table 5.7) demonstrate the contribution of each model components, in
which we incrementally train the baseline RALSTM, the VIC-RALSTM (= RALSTM + Varia-
tional Inference), the DualVAE (= VIC-RALSTM + Variational CNN-DCNN), and the Cross-
VAE (= DualVAE + Cross training) models. Generally, while all models can work well when
there are sufficient training datasets, the performances of the proposed models also increase as
increasing the proposed model components. The trend is consistent across all training cases
no matter how much the training data was provided. Take, for example, the scr100 scenario in
which the CrossVAE model mostly outperformed all the previous baselines with regard to the
BLEU and the slot error rate ERR scores.

Table 5.7: Results evaluated on four domains by training models from scratch with 10%, 30%,
and 100% in-domain data, respectively. The results were averaged over 5 randomly initialized
networks. The bold and italic faces denote the best and second best models in each training
scenario, respectively.

Model
Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

sc
r1

00

HLSTM (Wen et al., 2015a) 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTM (Wen et al., 2015b) 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
ENCDEC (Wen et al., 2016b) 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%

RALSTM (Tran and Nguyen, 2017a) 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%
VIC-RALSTM (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%

DualVAE (Ours) 0.8813 0.33% 0.7695 0.29% 0.5359 0.81% 0.5211 0.91%
CrossVAE (Ours) 0.8926 0.72% 0.7786 0.54% 0.5383 0.48% 0.5240 0.50%

sc
r1

0

HLSTM (Wen et al., 2015a) 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 0.4813 7.37%
SCLSTM (Wen et al., 2015b) 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
ENCDEC (Wen et al., 2016b) 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%

RALSTM (Tran and Nguyen, 2017a) 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%
VIC-RALSTM (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%

DualVAE (Ours) 0.8022 6.61% 0.6926 7.69% 0.5110 3.90% 0.5016 2.44%
CrossVAE (Ours) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

sc
r3

0

HLSTM (Wen et al., 2015a) 0.8104 6.39% 0.7044 2.13% 0.5024 5.82% 0.4859 6.70%
SCLSTM (Wen et al., 2015b) 0.8271 6.23% 0.6825 4.80% 0.4934 7.97% 0.5001 3.52%
ENCDEC (Wen et al., 2016b) 0.7865 9.38% 0.7102 13.47% 0.5014 9.19% 0.4907 10.72%

RALSTM (Tran and Nguyen, 2017a) 0.8334 4.23% 0.7145 2.67% 0.5124 3.53% 0.5106 2.22%
VIC-RALSTM (Ours) 0.8553 2.64% 0.7256 0.96% 0.5265 0.66% 0.5117 2.15%

DualVAE (Ours) 0.8534 1.54% 0.7301 2.32% 0.5288 1.05% 0.5107 0.93%
CrossVAE (Ours) 0.8585 1.37% 0.7479 0.49% 0.5307 0.82% 0.5154 0.81%

On the other hand, the previous methods have extremely impaired performances regarding
low BLEU score and high slot error rate ERR when training the models from scratch with
insufficient in-domain data (scr10). In contrast, by integrating the variational inference, the
VIC-RALSTM model can significantly improve the BLEU score from 68.55 to 79.98, and also
reduce the slot error rate ERR by a large margin, from 22.53 to 8.67, compared to the baseline
RALSTM model. Moreover, the proposed models have much better performance over the previ-
ous models in the scr10 scenario since the CrossVAE, and the DualVAE models obtain the best
and second best results, respectively. The CrossVAE model trained on scr10 scenario, in some
cases, achieved results which close to those of the HLSTM, SCLSTM, and ENCDEC models
trained on all in-domain data (scr100) scenario. Take, for example, the most challenge dataset
Laptop and Tv, in which the DualVAE and CrossVAE obtained competitive results in terms of
the BLEU score, at 50.16 and 50.85 respectively, which close to those of the HLSTM (51.30

73

5.5. RESULTS AND ANALYSIS

BLEU), SCLSTM (51.09 BLEU), and ENCDEC (51.01 BLEU), while the results regardless the
slot error rate ERR scores are also close to those of the previous or even better in some cases,
for example pairs of CrossVAE (2.86 ERR) and ENCDEC (3.38 ERR), or DualVAE (2.44 ERR)
and ENCDEC (4.24 ERR). These indicate that the proposed model can efficiently encode useful
information into the latent variable to better generalize to the unseen dialogue acts.

The scr30 section further confirms the effectiveness of the proposed methods, in which the
CrossVAE and DualVAE still mostly rank the best and second-best models compared with the
baselines. The proposed models also show superior ability in leveraging the existing small
training data to obtain very good performances, which are in many cases even better than those
of the previous methods trained on 100% of in-domain data. Take Tv domain, for example,
in which the CrossVAE in scr30 achieves a good result in terms of BLEU and slot error rate
ERR score, at 53.07 BLEU and 0.82 ERR, that are not only competitive to the RALSTM (53.76
BLEU, 0.65 ERR), but also outperform the previous models in scr100 training scenario, such as
HLSTM (52.40 BLEU, 2.65 ERR), SCLSTM (52.35 BLEU, 2.41 ERR), and ENCDEC (51.42
BLEU, 3.38 ERR).

Model comparison on unseen domain

Figure 5.5: Performance comparison of the models trained on Laptop domain.

In this experiment, we trained four models (ENCDEC, SCLSTM, RALSTM and CrossVAE)
from scratch in the most difficult unseen Laptop domain with an increasingly varied proportion
of training data, start from 10% to 100%. The results are shown in Figure 5.5. It clearly sees that
the BLEU score increases and the slot error ERR decreases as the models are trained on more
data. The CrossVAE model is clearly better than the previous models (ENCDEC, SCLSTM,
RALSTM) in all cases. While the performance of the CrossVAE, RALSTM model starts to
saturate around 30% and 50%, respectively, the ENCDEC model seems to continue getting
better as providing more training data. The figure also confirms that the CrossVAE trained on
30% of data can achieve a better performance compared to those of the previous models trained
on 100% of in-domain data.

Domain Adaptation

We further examine the domain scalability of the proposed methods by training the CrossVAE
and SCLSTM models on adaptation scenarios, in which we first trained the models on out-
of-domain data, and then fine-tuned the model parameters by using a small amount (10%) of
in-domain data. The results are shown in Table 5.8.

74

5.5. RESULTS AND ANALYSIS

Table 5.8: Results evaluated on Target domains: by adaptation training SCLSTM model from
100% (denoted as [) of Source data, and the CrossVAE model from 30% (denoted as]), 100%
(denoted as ξ) of Source data. The scenario used only 10% amount of the Target domain data.
The last two row show results by training the CrossVAE model on the scr10 and semi-supervised
learning, respectively.

Source
Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
Hotel[- - 0.6243 11.20% 0.4325 29.12% 0.4603 22.52%

Restaurant[0.7329 29.97% - - 0.4520 24.34% 0.4619 21.40%
Tv[0.7030 25.63% 0.6117 12.78% - - 0.4794 11.80%

Laptop[0.6764 39.21% 0.5940 28.93% 0.4750 14.17% - -
Hotel] - - 0.7138 2.91% 0.5012 5.83% 0.4949 1.97%

Restaurant] 0.7984 4.04% - - 0.5120 3.26% 0.4947 1.87%
Tv] 0.7614 5.82% 0.6900 5.93% - - 0.4937 1.91%

Laptop] 0.7804 5.87% 0.6565 6.97% 0.5037 3.66% - -
Hotelξ - - 0.6926 3.56% 0.4866 11.99% 0.5017 3.56%

Restaurantξ 0.7802 3.20% - - 0.4953 3.10% 0.4902 4.05%
Tvξ 0.7603 8.69% 0.6830 5.73% - - 0.5055 2.86%

Laptopξ 0.7807 8.20% 0.6749 5.84% 0.4988 5.53% - -
CrossVAE (scr10) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

CrossVAE (semi-U50-L10) 0.8144 6.12% 0.6946 3.94% 0.5158 2.95% 0.5086 1.31%

Both SCLSMT and CrossVAE models can take advantage of “close” dataset pairs, i.e.,
Restaurant ↔ Hotel, and Tv ↔ Laptop, to achieve better performances compared to those of
the “different” dataset pairs, i.e. Latop↔ Restaurant. The SCLSTM (denoted by [) is limited to
scale to a new domain in terms of having very low BLEU and high ERR scores. This adaptation
scenario along with the scr10 and scr30 demonstrate that the SCLSTM can not work when
having a low-resource setting of in-domain training data.

On the other hand, the CrossVAE model again show ability in leveraging the out-of-domain
data to better adapt to a new domain. Especially in the case where Laptop, which is a most
difficult unseen domain, is the target domain the CrossVAE model can obtain good results
irrespective of low slot error rate ERR, around 1.90%, and high BLEU score, around 50.00
points. Surprisingly, the CrossVAE model trained on scr10 scenario in some cases achieves
better performance compared to those in adaptation scenario first trained with 30% out-of-
domain data (denoted by]) which is also better than the adaptation model trained on 100%
out-of-domain data (denoted by ξ).

Preliminary experiments on semi-supervised training are also conducted, in which we trained
the CrossVAE model with the same 10% in-domain labeled data as in the other scenarios and
50% in-domain unlabeled data by keeping only the utterances u in a given input pair of dia-
logue act-utterance (d, u) (denoted by semi-U50-L10). The results showed CrossVAE’s ability
in leveraging the unlabeled data to achieve better results compared to those in scratch and adap-
tation scenarios. All these stipulate that the proposed models can perform acceptably well in
both cases from scratch and domain adaptation where the in-domain training data is in short
supply.

75

5.5. RESULTS AND ANALYSIS

Comparison on Generated Outputs

We present top responses generated for different scenarios from TV (Table 5.9) and Laptop
(Table 5.10) domains, which further demonstrate the effectiveness of the proposed methods.

Table 5.9: Comparison of top Tv responses generated for different models in different sce-
narios. Errors are marked in colors ([missing], misplaced, redundant, wrong, spelling mistake
information). [OK] denotes successful generation. Model-X where X is amount of training
data, i.e. 10%, 30%, or 100%.

Model Generated Responses from TV Domain
DA 1 compare(name=‘typhon 45’; hdmiport=‘2’; family=‘l2’; name=‘hades 48’; hdmiport=‘4’; family=‘l7’)
Reference 1 Compared to typhon 45 which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port

-s and is in the L7 product family. Which one do you prefer ?
ENCDEC-10 the typhon 45 is in the l2 product family and has 2 hdmi port -s and is in the l7 product family with 4 hdmi

port -s , the hades 48 is in the SLOT FAMILY product family with a SLOT AUDIO
HLSTM-10 the typhon 45 is a great eco rating , the hades 48 is in the l2 family with 2 hdmi port -s [l7 family] [4 hdmi

port -s]
SCLSTM-10 the typhon 45 is the hades 48 with 2 hdmi port in the l2 family , the SLOT NAME has 4 hdmi port -s and

SLOT HDMIPORT hdmi port [l7 family]
VIC-RALSTM-10 the typhon 45 has 2 hdmi port -s and the hades 48 is in the l2 family and has 4 hdmi port -s [l7 family]
DualVAE-10 the typhon 45 has 2 hdmi port -s and is in the l2 family while the hades 48 has 4 hdmi port -s and is in the

l7 family [OK]
CrossVAE-10 the typhon 45 is in the l2 family with 2 hdmi port -s while the hades 48 has 4 hdmi port -s and is in the l7

family [OK]
ENCDEC-30 the typhon 45 has 2 hdmi port -s , the hades 48 has 4 hdmi port -s , the SLOT NAME has SLOT HDMIPORT

hdmi port [l2 family] [l7 family]
HLSTM-30 the typhon 45 is in the l2 product family with 2 hdmi port -s , whereas the hades 48 has 4 hdmi port [l7

family]
SCLSTM-30 the typhon 45 has 2 hdmi port -s , the hades 48 is in the l2 product family . [l7 family] [4 hdmi port -s]
VIC-RALSTM-30 the typhon 45 has 2 hdmi port -s , the hades 48 is in the l2 product family and has 4 hdmi port -s in l7 family
DualVAE-30 which do you prefer , the typhon 45 in the l2 product family with 2 hdmi port -s . the hades 48 is in the l7

family with 4 hdmi port -s . [OK]
CrossVAE-30 the typhon 45 has 2 hdmi port -s and in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7

family . which item do you prefer [OK]
CrossVAE-100 the typhon 45 has 2 hdmi port -s and is in the l2 product family . the hades 48 has 4 hdmi port -s and is in

the l7 family [OK]
DA 2 recommend(name=‘proteus 73’; type=‘television’; price=‘1500 dollars’; audio=‘nicam stereo’; hdmi-

port=‘2’)
Reference 2 proteus 73 is a nice television. its price is 1500 dollars, its audio is nicam stereo, and it has 2 hdmi port -s.
ENCDEC-10 the proteus 73 is a great television with a nicam stereo and 2 hdmi port -s [1500 dollars]
HLSTM-10 the proteus 73 is a television with 2 hdmi port -s and comes with a nicam stereo and costs 1500 dollars

[OK]
SCLSTM-10 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s [1500 dollars]
VIC-RALSTM-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
DualVAE-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
CrossVAE-10 the proteus 73 television has 2 hdmi port -s and a nicam stereo and costs 1500 dollars [OK]
ENCDEC-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio for 1500 dollars [OK]
HLSTM-30 the proteus 73 television has a nicam stereo and 2 hdmi port -s and is priced at 1500 dollars [OK]
SCLSTM-30 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s . it is priced at 1500 dollars [OK]
VIC-RALSTM-30 the proteus 73 television has 2 hdmi port -s , nicam stereo audio , and costs 1500 dollars [OK]
DualVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-100 the proteus 73 television has 2 hdmi port -s , nicam stereo audio , and costs 1500 dollars [OK]

On the one hand, previous models trained on scr10, scr30 scenarios produce a diverse range
of the outputs’ error types, including missing, misplaced, redundant, wrong slots, or spelling
mistake information, resulting in a very high score of the slot error rate ERR. The ENCDEC,
HLSTM and SCLSTM models, for example, in Table 5.9 tend to generate outputs with redun-
dant slots (i.e. SLOT HDMIPORT , SLOT NAME, SLOT FAMILY), missing slots (i.e. [l7 fam-

76

5.6. CONCLUSION

ily], [4 hdmi port -s]), or even in some cases produce some irrelevant slots (i.e. SLOT AUDIO,
eco rating), resulting in inadequate utterances.

On the other hand, the proposed models can effectively leverage the knowledge from only
few of the existing training instances to better generalize to the unseen dialogue acts, leading
to satisfactory responses. For example in Table 5.9-Example 1, the proposed methods can
generate adequate number of the required slots, resulting in fulfilled utterances (DualVAE-
10, CrossVAE-10, DualVAE-30, CrossVAE-30), or acceptable outputs with much fewer error
information, i.e. mis-ordered slots in the generated utterances (VIC-RALSTM-30).

For a much easier dialogue act in Table 5.9-Example 2, previous models still produce some
error outputs, whereas the proposed methods seem to form some specific slots into phrase in
concise outputs. For example, instead of generating “the proteus 73 is a television” phrase, the
proposed models tend to concisely produce “the proteus 73 television”.

The trend is mostly consistent for Laptop example in Table 5.10.

Table 5.10: Comparison of top Laptop responses generated for different models in different
scenarios. Errors are marked in colors ([missing], misplaced, redundant, wrong, spelling mis-
take information). [OK] denotes successful generation. Model-X where X is amount of training
data, i.e. 10%, 30%, or 100%.

Model Generated Responses from Laptop Domain
DA compare(name=‘satellite pallas 21’; battery=‘4 hour’; drive=‘500 gb’; name=‘satellite dinlas 18’; bat-

tery=‘3.5 hour’; drive=‘1 tb’)
Reference compared to satellite pallas 21 which can last 4 hour and has a 500 gb drive , satellite dinlas 18 can last

3.5 hour and has a 1 tb drive . which one do you prefer
ENCDEC-10 the satellite pallas 21 has a 500 gb drive , the satellite dinlas 18 has a 4 hour battery life and a 3.5 hour

battery life and a SLOT BATTERY battery life and a 1 tb drive
HLSTM-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive . which one do you prefer [satellite pallas

18] [3.5 hour battery] [1 tb drive]
SCLSTM-10 the satellite pallas 21 has a 4 hour battery , and has a 3.5 hour battery life and a 500 gb drive and a 1 tb

drive [satellite dinlas 18]
VIC-RALSTM-10 the satellite pallas 21 has a 500 gb drive and a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour

battery life and a SLOT BATTERY battery life [1 tb drive]
DualVAE-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive and the satellite dinlas 18 with a 3.5 hour

battery life and is good for business computing . which one do you prefer [1 tb drive]
CrossVAE-10 the satellite pallas 21 with 500 gb and a 1 tb drive . the satellite dinlas 18 with a 4 hour battery and a

SLOT DRIVE drive . which one do you prefer [3.5 hour battery]
ENCDEC-30 the satellite pallas 21 has a 500 gb drive with a 1 tb drive and is the satellite dinlas 18 with a SLOT DRIVE

drive for 4 hour -s . which one do you prefer [3.5 hour battery]
HLSTM-30 the satellite pallas 21 is a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour

battery life . which one do you prefer [1 tb drive]
SCLSTM-30 the satellite pallas 21 has a 500 gb drive . the satellite dinlas 18 has a 4 hour battery life . the SLOT NAME

has a 3.5 hour battery life . which one do you prefer [1 tb drive]
VIC-RALSTM-30 which one do you prefer the satellite pallas 21 with a 4 hour battery life , the satellite dinlas 18 has a 500

gb drive and a 3.5 hour battery life and a 1 tb drive . which one do you prefer
DualVAE-30 satellite pallas 21 has a 500 gb drive and a 4 hour battery life while the satellite dinlas 18 with a 3.5 hour

battery life and a 1 tb drive . [OK]
CrossVAE-30 the satellite pallas 21 has a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 1 tb drive

and a 3.5 hour battery life . which one do you prefer [OK]
CrossVAE-100 the satellite pallas 21 has a 500 gb drive with a 4 hour battery life , while the satellite dinlas 18 has a 1 tb

drive and a 3.5 hour battery life . which one do you prefer [OK]

5.6 Conclusion
We have presented in this chapter a Variational-based NLG (VNLG) framework tackling the
NLG issues of having a low-resource setting data. Based on this framework, we first pro-

77

5.6. CONCLUSION

pose a novel adversarial VNLG which consists of two critics, domain and text similarity, in
an adversarial training procedure, solving the first domain adaptation issue. To deal with the
second issue of having limited in-domain data, we propose a dual variational model which is a
combination of a variational-based generator and a variational CNN-DCNN. We conducted the
experiments of both proposed models in various training scenarios, such as domain adaptation
and training models from scratch, with varied proportion of training data, across four different
domains and its variants. The experimental results show that, while the former generator has
an ability to perform acceptably well in a new, unseen domain using a limited amount of target
domain data, the latter model shows an ability to work well when the training in-domain data is
scarce. The proposed models further show a positive sign in unsupervised domain adaptation as
well as in semi-supervised training manners, which would be a worthwhile study in the future.
In the next chapter, we further discuss our main findings in the dissertation as well as directions
for future research.

78

Chapter 6

Conclusions and Future Work

This dissertation has presented a study on applying deep learning techniques for NLG in SDSs.
In this chapter, we first give a brief overview of the proposed generators and experimental
results. We then summarize the conclusions and key findings, limitations, and point out some
directions and outlooks for future studies.

6.1 Conclusions, Key Findings, and Suggestions
The central goal of this dissertation was to deploy DNN-based architectures for NLG in SDSs,
addressing essential issues of adequacy, completeness, adaptability and low-resource setting
data. Our proposed models in this dissertation mostly address the NLG problems stated in
Chapter 1. Moreover, we extensively investigated the effectiveness of the proposed generators in
Chapters 3, 4, 5 by training on four different NLG domains and its variants in various scenarios,
including scratch, domain adaptation, semi-supervised training with different amount of dataset.
It is also worth noting here that all of the proposed generators can learn from unaligned data
by jointly training both sentence planning and surface realization to generate natural language
utterances. Finally, in addition to the provision of some directions for future research, the
dissertation has made following significant contributions to the literature on NLGs for SDSs,
since research in such field is still at the early stage of applying deep learning methods, and the
related literature is still limited.

Chapter 3 proposed an effective approach to leverage gating mechanism, solving the NLG
problem in SDSs in terms of adequacy, completeness and a sign of adaptability. We introduced
three additional semantic cells into a traditional RNN model to filter the sequential inputs before
RNN computations, as well as to select semantic elements and gate a feature vector during
generation. The gating generators have not only achieved better performance across all the
NLG domains in comparison with the previous gating- and attention-based methods but also
obtained highly competitive results compared to a hybrid generator.

In this chapter, the proposed gates are mostly consistent with previous researches (Wen et al.,
2015b, 2016a) regarding the ability to effectively control the feature vector DA to drive down
the slot error rate. However, there are still some generation cases which consist of consecutive
slots (see Figure 4.1) the feature vector DA cannot be adequately controlled. This phenomenon
raises a similar problem of the sentence aggregation, a subtask of the NLG sentence planning, in
which the task of sentence aggregation is to combine two or more messages into one sentence.
Table 6.1 shows an example of solving sentence aggregation that can generate concise and

79

6.1. CONCLUSIONS, KEY FINDINGS, AND SUGGESTIONS

better outputs. It is thus important to investigate when the generator should consider sentence
aggregation.

Table 6.1: Examples of sentence aggregation in 123 NLG domains

Restaurant DA inform(name=‘Ananda Fuara’; pricerange=‘expensive’; goodformeal=‘lunch’)
Output Ananda Fuara is a nice place, it is in the expensive price range and it is good for lunch.
Aggre. Output Ananda Fuara is a good for lunch place and in the expensive price range.
Laptop DA recommend(name=‘Tecra 89’; type=‘laptop’; platform=‘windows 7’; dimension=‘25.4 inch’)
Output Tecra 89 is a nice laptop. It operates on windows 7 and its dimensions are 25.4 inch.
Aggre. Output Tecra 89 is a nice windows 7 laptop with dimensions of 25.4 inch.

Chapter 4 proposed a novel hybrid NLG framework, which is a combination of gating and
attention mechanisms, tackling the NLG problems of adaptability, and adequacy and complete-
ness. While for the former issue, the proposed models have shown abilities to control the DA
vector and quickly scale to a new, unseen domain, the proposed generators for the latter issue
have achieved state-of-the-art performances across four NLG domains. The attentional RNN
encoder-decoder generation framework mainly consists of three components: an Encoder, an
Aligner, and a Decoder, from which two novel generators were proposed. While in the first
model, an additional component was introduced by utilizing an idea of attention over attention,
a novel decoder was introduced in the second model to select and aggregate semantic elements
effectively and to form the required utterances.

In this chapter, one of the key highlights is the introduction of an LSTM-based cell named
RALSTM at the decoder side of an encoder-decoder network. It would be worth study to
apply the proposed RALSTM cell to other tasks that can be modeled based on the encoder-
decoder architecture, i.e., image captioning, reading comprehension, and machine translation.
Two follow-up generators (in Chapter 5) on applying the RALSTM model to address NLG prob-
lems of low-resource setting data have achieved state-of-the-art performances over the previous
methods on all training scenarios.

Another key highlight for proposed gating-, attention- and hybrid-based generators in Chap-
ters 3, 4 is that our approaches mainly attack to constrain on an RNN language model as well
as decoder component of an encoder-decoder network. While this remains a largely unexplored
encoder part in the NLG systems which would be worth investigating in more detail, these con-
ditional language models also have strong potential for straightforward applications in other
research areas. Lastly, we found that the proposed model can produce sentences in a correct or-
der than existing generators even though the models are not explicitly designed for the ordering
problem. The previous RNN-based generators may have lack of consideration about the order of
slot-value pairs during generation. For example, given a DA with pattern: Compare(name=A,
property1=a1, property2=a2, name=B, property1=b1, property2=b2). The pattern for correct
utterances can be: [A-a1-a2, B-b1-b2], [A-a2-a1, B-b2-b1], [B-b1-b2, A-a1-a2], [B-b1-b2, A-
a2-a1]. Therefore, a generated utterance: ”The A has a1 and b1 properties, while the B has
a2 and b2 properties” is an incorrect utterance, in which b1 and a2 properties were generated
in wrong order. As a result, this occasionally leads to inappropriate sentences. There is thus a
need to enhance the ordering problems for NLG as well as other tasks.

Chapter 5 presented two novel variational-based approaches tackling the NLG problems
of having a low-resource setting data. We first proposed a variational approach for an NLG do-
main adaptation problem, which benefits the generator to adapt faster to a new, unseen domain
irrespective of scarce target resources. This model was a combination of a variational genera-
tor and two Critics, namely domain and text similarity, in an adversarial training algorithm in

80

6.2. LIMITATIONS

which two critics showed an important role of guiding the model to adapt to a new domain. We
then proposed variational neural-based generation model to tackle the NLG problem of having a
low-resource setting in-domain training dataset. This model was a combination of a variational
RNN-RNN generator with a variational CNN-DCNN, in which the proposed models showed an
ability to perform acceptably well when the training data is scarce. Moreover, while the vari-
ational generator contributes to learning effectively the underlying semantic of DA-utterance
pairs, the variational CNN-DCNN showed an important role of encoding useful information
into the latent variable.

In this chapter, the proposed variational-based generators show strong performance to tackle
the low-resource setting problems, which still leave a large space to further explore regarding
some key findings. First, the generators show a good sign to perform the NLG task on the
unsupervised as well as semi-supervised learning. Second, there are potential combinations
based on the proposed model terms, such as adversarial training, VAE, autoencoder, encoder-
decoder, CNN, DCNN, and so forth. The last potential is that one can think of scenarios to train
a multi-domain generator which can simultaneously work well on all existing domains.

In summary, it is also interesting to see in what extent the NLG problems of completeness,
adaptability, and low-resource setting are addressed by the generators prosed in previous chap-
ters. For the first issue, all of the proposed generators can effectively solve in case of having
sufficient training data in terms of BLEU and slot error rate ERR scores, and in particular, the
variational-based model which is the current state-of-the-art method. For the adaptability issue,
while both gating- and hybrid-based models show a sign of adapting faster to a new domain,
the variational-based models again demonstrate a strong ability to work acceptably well when
there is a modest amount of training data. For the final issue of low-resource setting data, while
both gating- and hybrid-based generators have impaired performances, the variational-based
models can deal with this problem effectively.

6.2 Limitations
Despite the benefits and strengths in solving important NLG issues. There are still some limi-
tations in our work:

• Dataset bias: Our proposed models only trained on four original NLG datasets and their
variants (see Chapter 2). Despite the fact that these datasets are abundant and diverse
enough, it would be better to further assess the effectiveness of the proposed models in
a broader range of the other datasets, such as (Lebret et al., 2016; Novikova and Rieser,
2016; Novikova et al., 2017). These datasets introduce additional NLG challenges, such
as open vocabulary, complex syntactic structures, and diverse discourse phenomena.

• Lack of evaluation metrics: In this dissertation, we only used two evaluation metrics
BLEU and slot error rate ERR to examine the proposed models. It would also be better
to use more evaluation metrics which bring us a diverse combinatorial assessment of the
proposed models, such as NIST (Doddington, 2002), METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, 2004) and CIDER (Vedantam et al., 2015).

• Lack of human evaluation: Since there is not always correlation of evaluation between
human and automatic metrics, human evaluation provides a more accurate estimation of
the systems. However, this process is often expensive and time-consuming.

81

6.3. FUTURE WORK

6.3 Future Work
Based on aforementioned key findings, conclusions, suggestions as well as the limitations, we
discuss various lines of research arising from this work which should be pursued.

• Improvement over current models: There are large rooms to enhance the current gener-
ators by further investigating into unexplored aspects, such as the encoder component,
unsupervised and semi-supervised learning, transfer learning.

• End-to-end trainable dialogue systems: Our proposed models can be easier integrated as
an NLG module into an end-to-end task-oriented dialogue systems (Wen et al., 2017b)
rather than a non-task-oriented. The latter system often requires a large dataset and views
dialogue as a sequence-to-sequence learning (Vinyals and Le, 2015; Zhang et al., 2016;
Serban et al., 2016) where the system is trained from a raw source to a raw target se-
quence. The non-task-oriented is also difficult to evaluate. However, task-oriented di-
alogue system allows SDS components connect to decide “What to say?” and “How to
say it?” in each dialogue terns. Thus, one can leverage the existing models, such as NLG
generators, to quickly construct an end-to-end goal-oriented dialogue system.

• Adaptive NLG in SDSs: In our NLG systems, depending on the specific domain, for each
meaning representation there may have more than one corresponding response which can
be output to the user. Take hotel domain, for example, the dialogue act inform(name=‘X’;
area=‘Y’) might be uttered as “The X hotel is in the area of Y” or “The X is a nice hotel, it
is in the Y area”. In the adaptive dialogue system, depending on each context NLG should
choose the appropriate utterance to output. In the other word, good NLG systems must
flexibility adapt their output to the the context. Furthermore, in the case of domain adapta-
tion, the same dialogue act inform(name=‘X’;area=‘Y’) in other domain, e.g., restaurant,
the response might also be “The X restaurant is in the Y area” or “The X restaurant is a
nice place which is in the Y area”. Thus, good NLG systems must again appropriately
adapt the utterances to the changing of context within one domain or even the changing
between multi-domain. One can think to train the interactive task-oriented NLG systems
by providing additional context to the current training data which is no longer pairs of
(dialogue, utterance) but instead triples of (context, dialogue act, utterance).

• Personalized SDSs: Another worthwhile direction for future studies of NLG is to build
personalized task-oriented dialogue systems, in which the dialogue systems show an abil-
ity to adapt to individual users (Li et al., 2016a; Mo et al., 2017; Mairesse and Walker,
2005). This is an important task, which so far has been mostly untouched (Serban et al.,
2015). Personalized dialogue systems allow the target user easier to communicate with
the agent and make the dialogue more friendly and efficient. For example, a user (Bob)
asks the Coffee machine “I want a cup of coffee?”, while the non-personalized SDS may
response “Hi there. We have here Espresso, Latte, and Capuccino. What would you
want?”, the personalized SDS response more friendly instead “Hi Bob, still hot Espresso
with more sugar?”.

To conclude, we have presented our study on deep learning for NLG in SDSs to tackle
some problems of completeness, adaptability, and low-resource setting data. We hope that this
dissertation will provide readers useful techniques and inspiration for future research in building
much more effective and advanced NLG systems.

82

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. arXiv preprint arXiv:1603.04467.

Angeli, G., Liang, P., and Klein, D. (2010). A simple domain-independent probabilistic ap-
proach to generation. In Proceedings of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 502–512. Association for Computational Linguistics.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments. In Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine translation and/or summarization, pages 65–
72.

Bangalore, S. and Rambow, O. (2000). Corpus-based lexical choice in natural language gener-
ation. In Proceedings of the 38th Annual Meeting on Association for Computational Linguis-
tics, pages 464–471. Association for Computational Linguistics.

Barzilay, R. and Lee, L. (2002). Bootstrapping lexical choice via multiple-sequence align-
ment. In Proceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 164–171. Association for Computational Linguistics.

Belz, A. (2005). Corpus-driven generation of weather forecasts. In Proc. of the 3rd Corpus
Linguistics Conference. Citeseer.

Belz, A., White, M., Van Genabith, J., Hogan, D., and Stent, A. (2010). Finding common
ground: Towards a surface realisation shared task. In Proceedings of the 6th International
Natural Language Generation Conference, pages 268–272. Association for Computational
Linguistics.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Józefowicz, R., and Bengio, S. (2015).
Generating sentences from a continuous space. CoRR, abs/1511.06349.

Busemann, S. and Horacek, H. (1998). A flexible shallow approach to text generation. arXiv
preprint cs/9812018.

Carenini, G. and Moore, J. D. (2006). Generating and evaluating evaluative arguments. Artificial
Intelligence, 170(11):925–952.

83

BIBLIOGRAPHY

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2016). Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on, pages 4960–4964. IEEE.

Chen, T.-H., Liao, Y.-H., Chuang, C.-Y., Hsu, W. T., Fu, J., and Sun, M. (2017). Show, adapt
and tell: Adversarial training of cross-domain image captioner. In ICCV.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., and Hu, G. (2016). Attention-over-attention neural
networks for reading comprehension. arXiv preprint arXiv:1607.04423.

Danlos, L., Meunier, F., and Combet, V. (2011). Easytext: an operational nlg system. In
Proceedings of the 13th European Workshop on Natural Language Generation, pages 139–
144. Association for Computational Linguistics.

Demberg, V. and Moore, J. D. (2006). Information presentation in spoken dialogue systems. In
11th Conference of the European Chapter of the Association for Computational Linguistics.

Dethlefs, N. (2017). Domain transfer for deep natural language generation from abstract mean-
ing representations. IEEE Computational Intelligence Magazine, 12(3):18–28.

Dethlefs, N., Hastie, H., Cuayáhuitl, H., and Lemon, O. (2013). Conditional random fields for
responsive surface realisation using global features. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 1254–1263.

Doddington, G. (2002). Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In Proceedings of the second international conference on Human
Language Technology Research, pages 138–145. Morgan Kaufmann Publishers Inc.

Duboue, P. A. and McKeown, K. R. (2003). Statistical acquisition of content selection rules for
natural language generation. In Proceedings of the 2003 conference on Empirical methods in
natural language processing, pages 121–128. Association for Computational Linguistics.

Dušek, O. and Jurcicek, F. (2015). Training a natural language generator from unaligned data.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 451–461.

Dušek, O. and Jurčı́ček, F. (2016a). A context-aware natural language generator for dialogue
systems. arXiv preprint arXiv:1608.07076.

Dušek, O. and Jurčı́ček, F. (2016b). Sequence-to-sequence generation for spoken dialogue via
deep syntax trees and strings. arXiv preprint arXiv:1606.05491.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand,
M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of
Machine Learning Research, 17(59):1–35.

84

BIBLIOGRAPHY

Gašić, M., Kim, D., Tsiakoulis, P., and Young, S. (2015). Distributed dialogue policies for
multi-domain statistical dialogue management. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 5371–5375. IEEE.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation.

Huang, Q., Deng, L., Wu, D., Liu, C., and He, X. (2018). Attentive tensor product learning for
language generation and grammar parsing. arXiv preprint arXiv:1802.07089.

Inui, K., Tokunaga, T., and Tanaka, H. (1992). Text revision: A model and its implementation.
In Aspects of automated natural language generation, pages 215–230. Springer.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference CVPR, pages 3128–3137.

Keizer, S. and Rieser, V. (2018). Towards learning transferable conversational skills using
multi-dimensional dialogue modelling. arXiv preprint arXiv:1804.00146.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kondadadi, R., Howald, B., and Schilder, F. (2013). A statistical nlg framework for aggregated
planning and realization. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1406–1415.

Konstas, I. and Lapata, M. (2013). A global model for concept-to-text generation. J. Artif.
Intell. Res.(JAIR), 48:305–346.

Langkilde, I. (2000). Forest-based statistical sentence generation. In Proceedings of the 1st
North American chapter of the Association for Computational Linguistics conference, pages
170–177. Association for Computational Linguistics.

Langkilde, I. and Knight, K. (1998). Generation that exploits corpus-based statistical knowl-
edge. In Proceedings of the 36th Annual Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Computational Linguistics-Volume 1, pages
704–710. Association for Computational Linguistics.

Langkilde-Geary, I. (2002). An empirical verification of coverage and correctness for a general-
purpose sentence generator. In Proceedings of the international natural language generation
conference, pages 17–24.

Lebret, R., Grangier, D., and Auli, M. (2016). Neural text generation from structured data with
application to the biography domain. arXiv preprint arXiv:1603.07771.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2015). A diversity-promoting objective
function for neural conversation models. arXiv preprint arXiv:1510.03055.

Li, J., Galley, M., Brockett, C., Spithourakis, G. P., Gao, J., and Dolan, B. (2016a). A persona-
based neural conversation model. arXiv preprint arXiv:1603.06155.

Li, J. and Jurafsky, D. (2016). Mutual information and diverse decoding improve neural ma-
chine translation. arXiv preprint arXiv:1601.00372.

85

BIBLIOGRAPHY

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Jurafsky, D. (2016b). Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text Summariza-
tion Branches Out.

Lu, J., Xiong, C., Parikh, D., and Socher, R. (2016). Knowing when to look: Adaptive attention
via a visual sentinel for image captioning. arXiv preprint arXiv:1612.01887.

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2015a). Multi-task sequence
to sequence learning. arXiv preprint arXiv:1511.06114.

Luong, M.-T., Pham, H., and Manning, C. D. (2015b). Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Mairesse, F., Gašić, M., Jurčı́ček, F., Keizer, S., Thomson, B., Yu, K., and Young, S. (2010).
Phrase-based statistical language generation using graphical models and active learning. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
ACL ’10, pages 1552–1561, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

Mairesse, F. and Walker, M. (2005). Learning to personalize spoken generation for dialogue
systems. In Ninth European Conference on Speech Communication and Technology.

Mairesse, F. and Young, S. (2014). Stochastic language generation in dialogue using factored
language models. Computational Linguistics.

Marsi, E. C. (2001). Intonation in spoken language generation. PhD thesis, Radboud University
Nijmegen.

Mathur, P., Ueffing, N., and Leusch, G. (2018). Multi-lingual neural title generation for e-
commerce browse pages. arXiv preprint arXiv:1804.01041.

McRoy, S. W., Channarukul, S., and Ali, S. S. (2000). Yag: A template-based generator for
real-time systems. In Proceedings of the first international conference on Natural language
generation-Volume 14, pages 264–267. Association for Computational Linguistics.

McRoy, S. W., Channarukul, S., and Ali, S. S. (2001). Creating natural language ouput for
real-time applications. intelligence, 12(2):21–34.

Mei, H., Bansal, M., and Walter, M. R. (2015). What to talk about and how? selective generation
using lstms with coarse-to-fine alignment. arXiv preprint arXiv:1509.00838.

Meteer, M. W. (1991). Bridging the generation gap between text planning and linguistic real-
ization. Computational Intelligence, 7(4):296–304.

Mikolov, T. (2010). Recurrent neural network based language model. In INTERSPEECH.

Mo, K., Zhang, Y., Yang, Q., and Fung, P. (2017). Fine grained knowledge transfer for person-
alized task-oriented dialogue systems. arXiv preprint arXiv:1711.04079.

86

BIBLIOGRAPHY

Mrkšić, N., Séaghdha, D. O., Thomson, B., Gašić, M., Su, P.-H., Vandyke, D., Wen, T.-H., and
Young, S. (2015). Multi-domain dialog state tracking using recurrent neural networks. arXiv
preprint arXiv:1506.07190.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. (2016). Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023.

Neculoiu, P., Versteegh, M., Rotaru, M., and Amsterdam, T. B. (2016). Learning text similarity
with siamese recurrent networks. ACL 2016, page 148.

Novikova, J., Dušek, O., and Rieser, V. (2017). The E2E dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Saarbrücken, Germany. arXiv:1706.09254.

Novikova, J. and Rieser, V. (2016). The analogue challenge: Non aligned language generation.
In Proceedings of the 9th International Natural Language Generation conference, pages 168–
170.

Oh, A. H. and Rudnicky, A. I. (2000). Stochastic language generation for spoken dialogue
systems. In Proceedings of the 2000 ANLP/NAACL Workshop on Conversational systems-
Volume 3, pages 27–32. Association for Computational Linguistics.

Oliver, J. M. M. E. F. and White, L. M. (2004). Generating tailored, comparative descriptions
in spoken dialogue. AAAI.

Paiva, D. S. and Evans, R. (2005). Empirically-based control of natural language generation.
In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 58–65.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the 40th ACL, pages 311–318. Association
for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pages 1532–43.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Rambow, O., Bangalore, S., and Walker, M. (2001). Natural language generation in dialog
systems. In Proceedings of the first international conference on Human language technology
research, pages 1–4. Association for Computational Linguistics.

Ratnaparkhi, A. (2000). Trainable methods for surface natural language generation. In Pro-
ceedings of the 1st NAACL, pages 194–201. Association for Computational Linguistics.

Reiter, E., Dale, R., and Feng, Z. (2000). Building natural language generation systems, vol-
ume 33. MIT Press.

Reiter, E., Sripada, S., Hunter, J., Yu, J., and Davy, I. (2005). Choosing words in computer-
generated weather forecasts. Artificial Intelligence, 167(1-2):137–169.

87

BIBLIOGRAPHY

Rieser, V., Lemon, O., and Liu, X. (2010). Optimising information presentation for spoken
dialogue systems. In Proceedings of the 48th ACL, pages 1009–1018. Association for Com-
putational Linguistics.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685.

Serban, I. V., Lowe, R., Henderson, P., Charlin, L., and Pineau, J. (2015). A survey of available
corpora for building data-driven dialogue systems. arXiv preprint arXiv:1512.05742.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., and Pineau, J. (2016). Building end-
to-end dialogue systems using generative hierarchical neural network models. In AAAI, vol-
ume 16, pages 3776–3784.

Siddharthan, A. (2010). Complex lexico-syntactic reformulation of sentences using typed de-
pendency representations. In Proceedings of the 6th International Natural Language Gener-
ation Conference, pages 125–133. Association for Computational Linguistics.

Stent, A., Prasad, R., and Walker, M. (2004). Trainable sentence planning for complex infor-
mation presentation in spoken dialog systems. In Proceedings of the 42nd ACL, page 79.
Association for Computational Linguistics.

Tran, V. K. and Nguyen, L. M. (2017a). Natural language generation for spoken dialogue
system using rnn encoder-decoder networks. In Proceedings of the 21st Conference on Com-
putational Natural Language Learning, CoNLL 2017, pages 442–451, Vancouver, Canada.
Association for Computational Linguistics.

Tran, V. K. and Nguyen, L. M. (2017b). Semantic refinement gru-based neural language genera-
tion for spoken dialogue systems. In 15th International Conference of the Pacific Association
for Computational Linguistics, PACLING 2017, Yangon, Myanmar.

Tran, V. K. and Nguyen, L. M. (2018a). Adversarial domain adaptation for variational natural
language generation in dialogue systems. In COLING., pages 1205–1217, Santa Fe, New
Mexico, USA.

Tran, V. K. and Nguyen, L. M. (2018b). Dual latent variable model for low-resource natural
language generation in dialogue systems. In ConLL. Accepted, Brussels, Belgium.

Tran, V. K. and Nguyen, L. M. (2018c). Encoder-decoder recurrent neural networks for natural
language genration in dialouge systems. Transactions on Asian and Low-Resource Language
Information Processing (TALLIP). Submitted.

Tran, V. K. and Nguyen, L. M. (2018d). Gating mechanism based natural language generation
for spoken dialogue systems. Neurocomputing. Submitted.

Tran, V. K. and Nguyen, L. M. (2018e). Variational model for low-resource natural language
generation in spoken dialogue systems. Journal of Computer Speech and Language. Submit-
ted.

88

BIBLIOGRAPHY

Tran, V. K., Nguyen, L. M., and Tojo, S. (2017a). Neural-based natural language generation in
dialogue using rnn encoder-decoder with semantic aggregation. In Proceedings of the 18th
Annual Meeting on Discourse and Dialogue, SIGDIAL 2017, pages 231–240, Saarbrücken,
Germany. Association for Computational Linguistics.

Tran, V. K., Nguyen, V. T., Shirai, K., and Nguyen, L. M. (2017b). Towards domain adapta-
tion for neural network language generation in dialogue. In 4th NAFOSTED Conference on
Information and Computer Science, NICS 2017, pages 19–24.

Vedantam, R., Lawrence Zitnick, C., and Parikh, D. (2015). Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4566–4575.

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint
arXiv:1506.05869.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image
caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3156–3164.

Walker, M. A., Rambow, O., and Rogati, M. (2001). Spot: A trainable sentence planner. In
Proceedings of the second meeting of the North American Chapter of the Association for
Computational Linguistics on Language technologies, pages 1–8. Association for Computa-
tional Linguistics.

Walker, M. A., Stent, A., Mairesse, F., and Prasad, R. (2007). Individual and domain adaptation
in sentence planning for dialogue. Journal of Artificial Intelligence Research, 30:413–456.

Walker, M. A., Whittaker, S. J., Stent, A., Maloor, P., Moore, J., Johnston, M., and Vasireddy,
G. (2004). Generation and evaluation of user tailored responses in multimodal dialogue.
Cognitive Science, 28(5):811–840.

Wang, B., Liu, K., and Zhao, J. (2016). Inner attention based recurrent neural networks for
answer selection. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics.

Wen, T.-H., Gašić, M., Kim, D., Mrkšić, N., Su, P.-H., Vandyke, D., and Young, S. (2015a).
Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Con-
volutional Sentence Reranking. In Proceedings SIGDIAL. Association for Computational
Linguistics.

Wen, T.-H., Gasic, M., Mrksic, N., Rojas-Barahona, L. M., Su, P.-H., Vandyke, D., and Young,
S. (2016a). Multi-domain neural network language generation for spoken dialogue systems.
arXiv preprint arXiv:1603.01232.

Wen, T.-H., Gašic, M., Mrkšic, N., Rojas-Barahona, L. M., Su, P.-H., Vandyke, D., and Young,
S. (2016b). Toward multi-domain language generation using recurrent neural networks. NIPS
Workshop on ML for SLU and Interaction.

Wen, T.-H., Gašić, M., Mrkšić, N., Su, P.-H., Vandyke, D., and Young, S. (2015b). Seman-
tically conditioned lstm-based natural language generation for spoken dialogue systems. In
Proceedings of EMNLP. Association for Computational Linguistics.

89

BIBLIOGRAPHY

Wen, T.-H., Miao, Y., Blunsom, P., and Young, S. (2017a). Latent intention dialogue models.
arXiv preprint arXiv:1705.10229.

Wen, T.-H., Vandyke, D., Mrkšić, N., Gasic, M., Rojas Barahona, L. M., Su, P.-H., Ultes, S.,
and Young, S. (2017b). A network-based end-to-end trainable task-oriented dialogue system.
In EACL, pages 438–449, Valencia, Spain. Association for Computational Linguistics.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560.

Williams, J. (2013). Multi-domain learning and generalization in dialog state tracking. In
Proceedings of SIGDIAL, volume 62. Citeseer.

Williams, S. and Reiter, E. (2005). Generating readable texts for readers with low basic skills. In
Proceedings of the Tenth European Workshop on Natural Language Generation (ENLG-05).

Wong, Y. W. and Mooney, R. (2007). Generation by inverting a semantic parser that uses
statistical machine translation. In Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Computational Linguistics; Proceedings
of the Main Conference, pages 172–179.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and Bengio,
Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In
ICML, volume 14, pages 77–81.

Yang, Z., Yuan, Y., Wu, Y., Cohen, W. W., and Salakhutdinov, R. R. (2016). Review networks
for caption generation. In Advances in Neural Information Processing Systems, pages 2361–
2369.

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning with semantic atten-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4651–4659.

Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., and Yu, K. (2010).
The hidden information state model: A practical framework for pomdp-based spoken dia-
logue management. Computer Speech & Language, 24(2):150–174.

Zhang, B., Xiong, D., Su, J., Duan, H., and Zhang, M. (2016). Variational Neural Machine
Translation. ArXiv e-prints.

Zhang, X. and Lapata, M. (2014). Chinese poetry generation with recurrent neural networks.
In EMNLP, pages 670–680.

90

Publications

Journals

[1] Van-Khanh Tran, Le-Minh Nguyen, Gating Mechanism based Natural Language Gen-
eration for Spoken Dialogue Systems, submitted to Journal of Neurocomputing, May
2018.

[2] Van-Khanh Tran, Le-Minh Nguyen, Encoder-Decoder Recurrent Neural Networks for
Natural Language Genration in Dialouge Systems, submitted to journal Transactions
on Asian and Low-Resource Language Information Processing (TALLIP), August 2018.

[3] Van-Khanh Tran, Le-Minh Nguyen, Variational Model for Low-Resource Natural Lan-
guage Generation in Spoken Dialogue Systems, submitted to Journal of Computer
Speech and Language, August 2018.

International Conferences

[4] Van-Khanh Tran, Le-Minh Nguyen, Adversarial Domain Adaptation for Variational
Natural Language Generation in Dialogue Systems, Accepted at The 27th Interna-
tional Conference on Computational Linguistics (COLING), pp. 1205-1217, August
2018. Santa Fe, New-Mexico, USA.

[5] Van-Khanh Tran, Le-Minh Nguyen, Dual Latent Variable Model for Low-Resource
Natural Language Generation in Dialogue Systems, Accepted at The 22nd Confer-
ence on Computational Natural Language Learning (CoNLL), November 2018. Brussels,
Belgium.

[6] Van-Khanh Tran, Le-Minh Nguyen, Natural Language Generation for Spoken Dia-
logue System using RNN Encoder-Decoder Network, Proceedings of the 21st Confer-
ence on Computational Natural Language Learning (CoNLL), pp. 442-451, August 2017.
Vancouver, Canada.

[7] Van-Khanh Tran, Le-Minh Nguyen, Tojo Satoshi, Neural-based Natural Language Gen-
eration in Dialogue using RNN Encoder-Decoder with Semantic Aggregation, Pro-
ceedings of the 18th Annual Meeting on Discourse and Dialogue (SIGDIAL), pp. 231-
240, August 2017. Saarbrücken, Germany.

[8] Van-Khanh Tran, Le-Minh Nguyen, Semantic Refinement GRU-based Neural Lan-
guage Generation for Spoken Dialogue Systems, The 15th International Conference of
the Pacific Association for Computational Linguistics (PACLING), pp. 63–75, August
2017. Yangon, Myanmar.

91

[9] Van-Khanh Tran, Van-Tao Nguyen, Le-Minh Nguyen, Enhanced Semantic Refinement
Gate for RNN-based Neural Language Generator, The 9th International Conference
on Knowledge and Systems Engineering (KSE), pp. 172-178, October 2017. Hue, Viet-
nam.

[10] Van-Khanh Tran, Van-Tao Nguyen, Kiyoaki Shirai, Le-Minh Nguyen, Towards Domain
Adaptation for Neural Network Language Generation in Dialogue, The 4th NAFOS-
TED Conference on Information and Computer Science (NICS), pp. 19-24, August 2017.
Hanoi, Vietnam.

International Workshops

[11] S. Danilo Carvalho, Duc-Vu Tran, Van-Khanh Tran, Le-Minh Nguyen, Improving Legal
Information Retrieval by Distributional Composition with Term Order Probabili-
ties, Competition on Legal Information Extraction/Entailment (COLIEE), March 2017.

[12] S. Danilo Carvalho, Duc-Vu Tran, Van-Khanh Tran, Dac-Viet Lai, Le-Minh Nguyen,
Lexical to Discourse-Level Corpus Modeling for Legal Question Answering, Com-
petition on Legal Information Extraction/Entailment (COLIEE), February 2016.

Awards

• Best Student Paper Award at The 9th International Conference on Knowledge and Sys-
tems Engineering (KSE), October 2017. Hue, Vietnam.

92

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation for the research
	The knowledge gap
	The potential benefits

	Contributions
	Thesis Outline

	Background
	NLG Architecture for SDSs
	NLG Approaches
	Pipeline and Joint Approaches
	Traditional Approaches
	Trainable Approaches
	Corpus-based Approaches

	NLG Problem Decomposition
	Input Meaning Representation and Datasets
	Delexicalization
	Lexicalization
	Unaligned Training Data

	Evaluation Metrics
	BLEU
	Slot Error Rate

	Neural based Approach
	Training
	Decoding

	Gating Mechanism based NLG
	The Gating-based Neural Language Generation
	RGRU-Base Model
	RGRU-Context Model
	Tying Backward RGRU-Context Model
	Refinement-Adjustment-Output GRU (RAOGRU) Model

	Experiments
	Experimental Setups
	Evaluation Metrics and Baselines

	Results and Analysis
	Model Comparison in Individual Domain
	General Models
	Adaptation Models
	Model Comparison on Tuning Parameters
	Model Comparison on Generated Utterances

	Conclusion

	Hybrid based NLG
	The Neural Language Generator
	Encoder
	Aligner
	Decoder

	The Encoder-Aggregator-Decoder model
	Gated Recurrent Unit
	Aggregator
	Decoder

	The Refinement-Adjustment-LSTM model
	Long Short Term Memory
	RALSTM Decoder

	Experiments
	Experimental Setups
	Evaluation Metrics and Baselines

	Results and Analysis
	The Overall Model Comparison
	Model Comparison on an Unseen Domain
	Controlling the Dialogue Act
	General Models
	Adaptation Models
	Model Comparison on Generated Utterances

	Conclusion

	Variational Model for Low-Resource NLG
	VNLG - Variational Neural Language Generator
	Variational Autoencoder
	Variational Neural Language Generator
	Variational Encoder Network
	Variational Inference Network
	Variational Neural Decoder

	VDANLG - An Adversarial Domain Adaptation VNLG
	Critics
	Text Similarity Critic
	Domain Critic

	Training Domain Adaptation Model
	Training Critics
	Training Variational Neural Language Generator
	Adversarial Training

	DualVAE - A Dual Variational Model for Low-Resource Data
	Variational CNN-DCNN Model
	Training Dual Latent Variable Model
	Training Variational Language Generator
	Training Variational CNN-DCNN Model
	Joint Training Dual VAE Model
	Joint Cross Training Dual VAE Model

	Experiments
	Experimental Setups
	KL Cost Annealing
	Gradient Reversal Layer
	Evaluation Metrics and Baselines

	Results and Analysis
	Integrating Variational Inference
	Adversarial VNLG for Domain Adaptation
	Ablation Studies
	Adaptation versus scr100 Training Scenario
	Distance of Dataset Pairs
	Unsupervised Domain Adaptation
	Comparison on Generated Outputs

	Dual Variational Model for Low-Resource In-Domain Data
	Ablation Studies
	Model comparison on unseen domain
	Domain Adaptation
	Comparison on Generated Outputs

	Conclusion

	Conclusions and Future Work
	Conclusions, Key Findings, and Suggestions
	Limitations
	Future Work

