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Abstract

Software applications play an important role in our lives. The failure of the applications may harm people
or equipment. Therefore, the correctness of the software is important. In fact, an application may consist
of multiple processes, which are developed based on programming languages and operating systems (OSs).
Under the mechanisms provided by these languages and environments, the processes can run simultaneously
to increase the scalability. The applications are called concurrent systems. In fact, these systems are error-
prone; for example, deadlock, livelock, or violations of constraints may occur in them. Because the processes
of a concurrent system can be executed in different orders, their behaviors are difficult to verify.

As an exhaustive and automatic technique, model checking explores every execution of a system and
automatically find possible errors. In comparison with other techniques, such as testing and simulation,
model checking is more suitable to verify the concurrent systems. To model checking a system, we need to
specify its behaviors (usually in a modeling language); then travel all the states of the system (called the
state space) represented by its model using a search algorithm to check the corresponding property.

With the increasing of the complexness of a concurrent system, there is a need to schedule the execution of
the processes. There are several scheduling strategies applied by real systems. For instance, in OSEK OS for
automotive devices, an application can have multiple tasks executed under the priority and mixed preemption
strategy. In model checking, the behaviors of a scheduler associate with the algorithm that explores the
state space. However, verifying a concurrent system with considering all possible executions (interleaving
behaviors) is an over-approximation approach and can produce spurious counterexamples because the errors
may occur outside the executions indicated by the scheduler. Therefore, to accurately verify the systems,
we need to take the scheduler into account in the verification.

Current methods in model checking to deal with sequential/concurrent systems are difficult to apply
to verify with scheduling policies because these methods consider a different kind of behaviors and can
cause spurious counterexamples. To deal with the scheduling policies, existing approaches try to limit the
executions of the systems by encoding both of the processes and the scheduler into a model using a modeling
language (e.g. Promela). In this case, the scheduling policy needs to be specified from scratch. This approach
is hard to model interesting schedulers, error-prone, and time-consuming. This means that an approach to
easily and flexibly describe the scheduling policies is needed.

In reality, the OSs use different policies to control the executions of the processes. For example, Linux
OS can support several policies for its tasks based on their priorities (e.g. round-robin and first-in-first-out).
However, the existing approaches cannot deal with the variation of the schedulers because the policy is
fixed in the model of a system. That means to ensure the accuracy of the concurrent systems, a study on
facilitating the variation of schedulers in model checking is necessary and important.

To overcome the problems above, in this research, we propose a method to analyze and verify concurrent
systems executed under different scheduling policies using model checking techniques. Our method contains
three main parts: 1) a language for modeling the processes, 2) a domain-specific language (DSL) to describe
the scheduling policies, and 3) an algorithm to search all of the states of the system.

The originality of this research is proposing a DSL to specify the scheduling policies used in model
checking techniques. In this approach, our language aims to provide a high-level support for specifying
different policies easily. All the information necessary to analyze the system are automatically generated.
From the specification of the scheduling policy in the DSL, a search algorithm is realized to explore the state
space. Following this approach, we implemented a tool named SSpinJa, which is extended from SpinJa, a
model checker implemented in Java. Our experiments indicate that the method is practical; it is easy to
describe different scheduling policies and accurately verify the behaviors of the systems. In addition, in this
research, we apply model-based testing techniques to generate the tests to check the correspondence between
the policy in our DSL and the real scheduler in an OS; it helps us to increase the confidence of the policy in
the DSL and accurately verify the systems.

The impact of this research is that we can easily apply model checking techniques to verify the concurrent
systems with the different scheduling policies. The state space to be searched is now limited because the
scheduler is taken into account in the verification. Therefore, we can verify systems more accurately. In
addition, with our method, we can reuse the specifications of the processes and the scheduling policy. It
helps to decrease the time necessary for designing and developing a concurrent system.

Key words: concurrent systems, model checking, scheduler, domain-specific language, model-based
testing
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Chapter 1

Introduction

1.1 Motivation

Software applications play an important role in our lives. The applications are used in
many areas, such as medicine and aviation. Because any failure of the application may
harm people or equipment, the correctness of the applications is very important. There
is a critical problem named Concurrent Program Verification [23]. In fact, a program can
consist of multiple processes, which are developed based on programming languages and
OSs, such as Java, C#, Windows and Real-time OSs - RTOs. Under the mechanisms
provided by these languages and environments, the processes can run simultaneously
to increase the scalability. These programs (applications) are called concurrent systems
[68]. In fact, these systems are error-prone; for instance, deadlock, livelock, or violations
of constraints may occur in them. However, because these processes can run in the
different ways, their behaviors are difficult to verify.

In our social life, many systems and devices require the correctness related to time.
For instance, in an automotive system with the controllers for braking, when the brake
is applied, the controller analyzes the situation of the system (car speed, environment
condition, etc.) and activates the brakes within fractions of a second. That means these
behaviors related to time and the time effects to the system. Usually, the systems must
guarantee time constraints, such as no deadline violation occurs. These systems are
called real-time systems [18]. Actually, with this kind of systems, the timing properties
are needed to consider carefully.

In general, there are two ways to guarantee the safety and the reliability of a system.
The first one aims to minimize the possible errors in the implementation stage using
testing techniques [49] to increase the confidence of the accuracy of a system. The other
focuses on verifying whether the system satisfies the requirements using analysis and
formal approaches [16].

Testing techniques are usually applied to validating the implementation. The ver-
ification carries out pre-designed test cases following limited execution orders. Since
testing considers only a subset of executions of a system, it cannot be complete. In
addition, testing only shows the existing of the errors but cannot guard the error-free.
With concurrent systems, unexpected errors are difficult to realize by testing because
these errors are hard to reproduce. In addition, testing is only performed during or after
implementing the system; therefore, the errors cannot be found before programming.

With the formal approaches, we can verify whether the corresponding properties
hold with a system. As an exhaustive and automatic technique, model checking [9] will
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explore every execution to check whether a system can meet a given specification (which
is represented in temporal logic). Actually, model checking plays an important role to
ensure the accuracy of the systems. The key idea is to use algorithms for checking all
reachable states of a system systematically. If an error is found, it shows the correspond
counterexample.

To model checking a system, we need to specify the behaviors of the processes of the
system, usually using a modeling language, such as Promela1 [40]. The system is then
presented as a finite state graph. A model checking tool uses an algorithm to construct
the state space by traveling all reachable states from the starting state. With each
possible behavior, which is represented by a statement, it constructs the next state and
checks whether this state already exists or not. All the reachable states are constructed
as the same way until no more states to consider. Usually, the two algorithms: depth-
first search (DFS) and breadth-first search (BFS) are used to perform this task. The
data structure used by DFS to store the search steps is a stack while BFS uses a queue
instead. The differences between these two algorithms are the number of states needed
to be stored in the stack/queue at each step and their visited order. However, the main
purpose of these algorithms is to explore all states of a system. With these states,
the corresponding property (e.g. safety property) is checked to indicate whether the
requirement is satisfied or not. There is another algorithm named nested-depth first
search [47], which uses two searches, to handle the accepting cycles in a graph for
checking liveness properties.

In order to find the existing errors faster or to find short counterexamples, directed
model checking techniques [35] were studied to decrease the number of states based on
abstractions [4, 51] or calculating the distance [34, 33, 87] to the possible error states for
fast finding them. These techniques focus on the algorithms to travel the state space.
The well-known algorithm A∗ [45] is used for the exploring. The process has the best-
evaluated value (lowest/highest) is chosen for the execution. This means guiding the
exploration with a particular purpose. Nonetheless, all of the states still need to visit
in the worst case.

Using a general-purpose language (GPL) is an ordinary way to implement or model
a system (such as, using Java [7] for the implementation or using UML [12] for the
modeling). For the verification, although some tools provide the graphical editor to
easily model and specify the system, such as TIMES [3] and UPPAAL [52]. Nevertheless,
using a modeling language still is a common way to describe the behaviors of a system.
In fact, these GPLs can be applied to broad systems. However, the languages lack
specialized features for any appropriate domain, such as communication protocols or
scheduling policies. That means these features need to be encoded in the existing
languages from scratch. This task is usually error-prone and time-consuming.

Actually, in some situations, there is a need to increase the characteristics of a
language to handle a specific problem, such as scheduling domain or database manipu-
lation. That fact motivates designing a special type of language (called domain-specific
language (DSL) [38]). A DSL is limited expressive and focuses on a special domain with
the main aim to create a normally small language to solve the problems in a special
domain (e.g. Unix shell scripts [60]). In fact, a DSL is always simplified and productive.
Since a DSL is usually small and easy to understand, it can help writing the code faster,

1Promela is used by a model checker named Spin [46] to verify the consistency of a distributed system.
There are other languages, such as SMV [20], which is used by a symbolic model checking tool named
NuSMV based on representing sets of states as logical formulas [57].
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modifying it easier, and reducing bugs.
With the increasing of the complexness of a concurrent system, there is a need to

schedule the execution of the processes. In fact, there are several scheduling policies
used by the real OSs, such as Linux uses the priority strategy to select a process to
run. It means that the processes are executed under the scheduling policies. In fact,
there are methods to verify sequential software systems or concurrent systems, such as
[21, 26, 88]. Nonetheless, the methods are difficult to adopt to deal with schedulers
directly because the behaviors they consider are different from that of the systems with
scheduling policies. Actually, if we consider all possible executions, the verification can
produce spurious counterexamples because the errors may occur outside the executions
indicated by the scheduler. We consider a system with two processes (t1 and t2)
depicted in Figure 1.1 as the motivating example. With the condition a + b < 5,
process t1 increases the shared variable a repeatedly, while process t2 increases the
variable b2. At the initial state, these two processes are run and the variables a and b

are set to 2 for a and 0 for b.

int a, b; 
  
proctype t1() { 
 do 
  :: d_step{ (a+b)<5 -> a++} 
  :: d_step{ else -> break} 
 od; 
 assert (a >= b) 
} 
  
proctype t2() { 
 do 
  :: d_step{ (a+b)<5 -> b++} 
  :: d_step{ else -> break} 
 od; 
 assert (a >= b) 
} 
  
init { 
 a = 2; b = 0; 
 run t1(); 
 run t2(); 
} 

 

Figure 1.1: Motivating example

Figure 1.2 depicts the state space corresponding to this system. We can easily see
that an error happens (violation of an assertion) if these two processes are executed in
an interleaving manner. However, no error occurs if the system uses round-robin policy
with the time slice being equal to 1 (one statement is executed at one time unit) as
indicated in Figure 1.3. With this example, we can see that for the accurate verification,
the scheduling strategies need to be taken into account.

Actually, real systems use many kinds of schedulers with different strategies. These
policies are different from the ‘textbook ’ ones. For example, in OSEK OS [62], the
tasks in an application are executed using their priority with mixed preemption; Linux
OS supports different policies for its real-time and non-real-time processes. In fact, to
perform scheduling strategies in model checking, the existing approaches use a modeling

2A d_step statement is executed as if it is one single statement.
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Figure 1.3: State space following the scheduling policy

language (e.g., Promela) to encode the scheduler and the processes into the model of
a system [5, 56]. In this case, the scheduling strategy is fixed in the model. Actually,
different policies cannot be handled with one model in the verification. If we want to
adopt another policy, we must prepare another model. This task is both prone to errors
and time-consuming. That means finding another way to easily and flexibly describe
the scheduling strategies is necessary.

There are existing tools like UPPAAL and TIMES, which provide both of a graphical
user interface and a language for modeling the system. However, UPPAAL only deals
with real-time systems and it lacks the flexibility to describe the behaviors of the system.
It is because the processes and the scheduler are encoded into the same model and we
must define the information of a process using public variables. This tool also has a
challenging in dealing with the variation of scheduling policies using timed automata.
With TIMES, we can specify various attributes for processes (e.g. periodic and priority).
However, this tool only supports limited policies, such as rate-monotonic and deadline-
monotonic. Actually, TIMES cannot be extended to handle other policies.

There are some existing languages for describing the scheduling policies, such as
Bossa [10] and Catapults [71]. However, these languages cannot be applied or reused
for the verification because of their characteristics based on the target systems and the
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techniques behind. Firstly, these languages deal with particular systems and rely on
their techniques. Therefore, only limited policies are supported. This fact does not
match with our purpose, which aims to support a variety of policies. Secondly, the
techniques they used are for implementing the schedulers in a real system. In our case,
the purpose is to verify the correctness of a system using model checking. The main
point is that we need to consider all the possible behaviors based on the corresponding
scheduling policy. However, these languages aim to handle the implementation; with this
purpose, considering only one execution is enough. Another language is introduced in
the work UML profile for MARTE [55] to model real-time system with timing properties
for analyzing the time constraints. In fact, this language does not fit to our purpose
because it can not handle the behaviors of the scheduler and the processes. However,
we realize from these languages that using a DSL is an easy and flexible way to describe
the scheduling strategies because it is a small language and aims at a special domain; it
is also simple and productive. That motivates us to propose a DSL for the scheduling
to model checking the systems.

In reality, the scheduler limits the executions of a system. In model checking, that
fact relates to the search algorithm. To accurately verify systems, we need to consider
the behaviors of the scheduler to explore the state space. However, the existing algo-
rithms applied in model checking (e.g. DFS and BFS) do not consider the behaviors of
the scheduler. That means another algorithm to deal with the scheduling strategies is
needed.

In this research, we aim to verify concurrent systems run on OSs. The scheduler
of the OS controls the execution of the processes. For the verification, we propose a
language to describe the scheduling strategies. Actually, the correspondence between
the scheduling policy in the DSL and the real scheduler in an OS affects the verification
results. Thus, there is a need to check that the behaviors indicated by the policy are the
same as the real one. In addition, the specification of a policy for a real system does not
exist or is not clear to describe the behaviors of the scheduler. For instance, the spec-
ification of Linux real-time FIFO policy indicates that functions sched_setscheduler

or sched_setparam increases the priority of a runnable SCHED_FIFO thread and may
preempt the currently running thread with the same priority. That means there are two
options for the implementation: preempt or not preempt the current thread. However,
which option is implemented on each version of Linux is not described in the specifi-
cation. In addition, the behaviors of the scheduler in a real OS can be observed only
in executing the system. Therefore, we apply testing techniques to check the corre-
spondence between the scheduling strategy (in the DSL) and the behaviors of the real
scheduler of an OS.

There are approaches for conformance testing the systems to indicate whether the
implementation follows the specification or the design of a system, such as [17], which
assumes that the design is correct before checking the implementation; if the test fails,
it means that the implementation does not follow the design. In our case, the purpose
is different because we want to check that the behaviors indicated by the policy (in the
DSL) are the same as the real behaviors of the scheduler of an OS (an implementation).
However, we can expect the accuracy of the strategy and then use it to test the behaviors
of the real scheduler. Our method for testing is as follows. We prepare the tests following
the policy in the DSL. We then execute the tests to check whether the behaviors of the
scheduler in a real system follows this policy or not. If the tests passed, we are confident
about the specification. However, if any test fails, the test now may not correspond
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to the execution because there is a case that the implementation only deals with an
option of the specification (as explained before with Linux FIFO policy). Therefore, we
cannot conclude anything. To prepare the tests, we apply model-based testing (MBT)
techniques [6] to automatically and exhaustively generate the tests following the policy.

1.2 Research Problems and Objective

In this research, we aim at verifying concurrent applications (systems) which run on OSs
using model checking techniques. We address the following problems: a) the scheduler
of the OS controls the executions of the system, b) there is a variation of the strategies
used by the OS, and c) existing approaches are difficult to handle this variation. The
objective of this research is proposing a method to facilitate the variation of
schedulers in model checking .

To achieve this objective, our method needs to a) easily deal with different policies
with small effort, b) flexibly change the scheduling strategies, and c) accurately verify
the behaviors of the systems. Our ideas to deal with these problems are as follows. The
details of our approach are described in Section 1.4.

• Firstly, to flexibly change the policy, we separate the scheduler from the behaviors
of the processes. This approach is different from the existing ones [5, 56, 89],
which encode the scheduler and the processes into the same model. With this
approach, the behaviors of the processes and the policy can be reused.

• Secondly, to specify the behaviors of the processes, we use Promela as the based
modeling language with introducing several API functions for supporting the com-
munication between the processes and the scheduler in the system.

• Thirdly, to deal with various strategies, we propose a DSL to describe the policies
with the attributes of the processes to handle the scheduling tasks. The DSL
aims to provide high-level language to specify various policies easily. By focusing
on a domain, using a DSL to specify the policies is easier than using an existing
modeling language (e.g. Promela [40], which is used by Spin tool or CSP# [79],
which is used by PAT model checker [54]).

• Fourthly, to verify systems following the scheduling, we introduce an algorithm
to explore the state space. This algorithm is different from the existing one (e.g.
DFS, BFS). We now deal with the behaviors of the scheduler in the verification.
In our approach, all of the information necessary for the analysis and verifica-
tion is generated automatically from the policy in the DSL. With the new search
algorithm, we can verify systems accurately.

• Lastly, to increase the confidence of the policy in the DSL, we apply testing
techniques to check the policy with its implementation in a real OS. Our approach
is checking the correspondence of the policy with the behaviors of the scheduler
in a real OS. That fact is different from the ordinary conformance testing, which
aims to test the compliance of an implementation following the requirements of
a specification [85]. It is easy to see that the more confidence in the policy, the
more accurately verifying the system.
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1.3 Research Contributions

Following the method proposed, we implemented a tool named SSpinJa, which is ex-
tended from SpinJa [29], an implementation of the core of Spin in Java. We conducted
several experiments. The evaluation results demonstrate that our approach is practical;
the tool can verify systems with scheduling policies easily, flexibly, and accurately.

Our method has the following advantages: a) the language for the strategies is
simple, b) the behaviors of the system can be extended and captured easily for the
analysis, c) the description of the strategies can be reused completely, d) the tool can
verify and analyze the systems accurately, and e) our approach is practical.

We have the following contributions for this research.

C1: Proposing a DSL to describe scheduling policies used in model checking tech-
niques;

C2: Proposing a model checking algorithm to verify systems under the scheduling
policies;

C3: Proposing a method to generate the tests to check the correspondence be-
tween the scheduling policy in the DSL with the behaviors of the scheduler
in a real OS;

C4: Implementing a tool for verifying systems under the scheduling policies.

• Contribution C1 concerns a language for scheduling strategies. The originality of
our research is proposing a DSL to describe the strategies used in model checking
techniques for verifying the systems. This DSL is different from the existing ones,
such as Bossa [10] and Catapults [71], which aim to implement the schedulers in
a real system. In our approach, the language aims to provide a high-level support
to specify various scheduling policies easily. For the verification, the processes
that can be executed are considered using ordering methods; the behaviors of the
scheduler and the processes with the scheduling tasks are indicated by handling
the scheduling events (see Section 1.4 for more details).

• Contribution C2 concerns the exploration of the state space. The scheduling policy
is now taken into account in the search. We extend DFS algorithm by considering
the behaviors of the scheduler. The reason is that the memory usage for recording
the search steps used by DFS is usually less than other algorithms (e.g. BFS). To
do this, we adopt the compilation approach to automatically generate all of the
information necessary from the policy specified in the DSL beforehand to analyze
the behaviors of the system. The information generated from the policy is used
by the search algorithm. The behaviors of the scheduler are now considered in the
verification.

• Contribution C3 concerns to the accuracy of the policy. We aim to verify systems
executed under the strategies. Actually, the correspondence between the policy
in the DSL and the real behaviors of the scheduler affects the verification results.
That means the accuracy of the strategy is also important. In our approach, we
adopt testing techniques to check the policy in the DSL to enhance the certainty
of the policy. To do that, we apply MBT techniques to automatically prepare the
tests for testing the scheduling policy.
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• Contribution C4 concerns the applicability of our method. With our DSL, we
can easily describe the policy to verify the system. That is necessary because
real systems usually use schedulers to handle their executions. This approach
is distinct from the existing ones that use a modeling language to specify the
systems. Moreover, the method can help the developers to accurately verify the
systems with different scheduling policies. With these advantages, we can reduce
the time necessary for developing a concurrent system.

1.4 The Approach

To address the problems above, we propose a method for analyzing and verifying con-
current systems executed under different scheduling policies using model checking tech-
niques. The approach is depicted in Figure 1.4.

Property
Scheduling information

Search algorithm (3)Model checker

Generating

Processes’ behaviors

Specifying
scheduling policy

Specifying 
Processes’ behaviors

Scheduling Policy
Scheduling Policy

Scheduling policy

Domain-specific language (2)Modeling language (1)

Scheduling policiesOS

Processes Application

Acceptance 
checking (4)

Figure 1.4: Research approach

1.4.1 Specifying the Behaviors of the Processes

To flexibly change the policy, we separate the scheduler from the behaviors of the pro-
cesses. In our approach, the behaviors of the processes are described in a modeling
language (1), which is based on Promela to describe the behaviors of concurrent pro-
cesses. To deal with the strategy, we introduce API functions to handle the scheduling
tasks with these processes. These functions are as follows.

1. executing a process with its attributes (such as deadline),

2. accessing the scheduler information3, and

3to implement the algorithms like slack stealing [53].
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3. performing the user-defined functions defined in interface part (*) (as depicted in
Figure 1.5) to handle the actions of the processes with scheduling tasks.

1.4.2 Specifying Scheduling Policy

To facilitate various policies, we propose a DSL (2) to provide a language to describe
different policies. The main role of the scheduler is to select a process for the execution,
to manage the processes using their attributes (e.g. priority), change their execution
statuses (e.g. blocks a process), and to manage the time.

In the DSL, we separate the attributes of the processes and the behaviors of the
scheduler for flexibly changing them (as depicted in Figure 1.5). The attributes of the
processes are defined in process attribute (a), and the behaviors of the scheduler are
defined in scheduler description (b).

Domain-Specific Language

Process attributes 
definition (a)

Scheduler description (b)

def process priority {
attribute{ 

var byte priority;
}  

proctype P() {
this.priority = 5; 

}    
proctype Q() {

this.priority = 3;
}   

}  

init { 
[{P(), Q()}]

}

scheduler priority() {                                    
data {

collection ready using priorityOrder ;
}                                           
event handler{                   

select_process (process target_process) { 
get process from ready to run;

}                                                                   
new_process (process target_process) {

move target_process to ready ;
}  

}  
interface {   

function terminate () {
remove running_process ;

} 
}     

} 
comparator {

variable { int x; }
comparetype priorityOrder(process p_n, p_o) {

x = p_n.priority - p_o.priority;
if (x>0) return greater;
else if (x==0) return equal;

else return less;
}     

}

Interface 
(*)

Figure 1.5: A scheduling strategy

Actually, to store the information of processes, the scheduler uses data structures
(e.g. ready queue), which represent the execution statuses of the processes (such as
ready or blocked). Following the order of the processes (e.g. their order in the queue),
a process is selected to run. To represent that fact, in the DSL, we use collections for
storing the processes. At a time, there may be many candidates for the execution (e.g.
the processes with the same priority). In order to deal with that fact, we partially order
[31] these processes in the collections for the selection. This order either is defined by
a function, uses the LIFO/FIFO strategies, or combines these ordering methods. The
ways for selecting/adding a process from/into a collection will follow this ordering. We
also support the collection without any ordering method (that means these processes in
this collection have the same order). An example for ordering the processes following
their attributes is depicted in Figure 1.6. With this example, process P has the same
priority as process Q does; therefore, when process P arrives at the system, it will have
the same order as process Q in the queue. These two processes are also considered when
the scheduler selects a process to run.
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Figure 1.6: Ordering processes

We perform the scheduling tasks based on handling events (called scheduling events),
which are specified in scheduler description (b). In this research, we indicate two types
of scheduling events: system scheduling events and process scheduling events.

• The system scheduling events (with fixed names) are handled automatically by the
scheduler. These events are new_process, select_process, and clock to specify
the behaviors of the scheduler corresponding to three cases: 1) a new process
arrives at the system, 2) the scheduler selects a process to run, and 3) a timer
event occurs4, respectively. Each event is handled by an event handler.

• The process scheduling events are raised by the process (e.g. terminates itself).
These events are defined by users and can be declared in the interface part (*)
(called interface functions) as indicated in Figure 1.5.

Figure 1.6 depicts an example for handling the events. When process P arrives at the
system (new_process), it is put to the ready queue. The scheduler selects a process to
run (select_process) from this queue (both of process P and process Q are considered).
Several statements are introduced to perform the scheduling events. These statements
are to select a process, change their statuses and attributes.

In this work, we consider individual behaviors of processes. Therefore, we use the
discrete time to hand the time with behaviors of the system by considering an action of
a process as taking one time unit. That means performing an action will consume 1 tick.
To capture the time, we introduce the variables with clock type. Corresponding to each
action of the processes, each clock variable is increased by 1 and the system will raise
a timer event (clock). This event is handled by the scheduler. We use timed-Kripke
structure [36] to model the system. The periodic behaviors are also considered using a
loop. A loop is indicated when a visited state is reached. That determines a period.
For instance, Figure 1.7 shows a system with a periodic process; this process needs 2
time units to perform its tasks in period 4. We now only consider the duration of 4
time units because the state of the system at time 4 is similar to that at time 0.

We prepare the information necessary to explore the states beforehand. The schedul-
ing information is generated from the scheduling strategy in the DSL (as depicted in
Figure 1.4). This scheduling information contains the functions for performing the
scheduling tasks (i.e. handling the scheduling events) and the information to indicate

4We consider an action as taking one time unit and raising a timer event.
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the system state. A search algorithm (3) is realized (Figure 1.4) from the scheduling
strategy to explore the state space following the policy in the DSL.

1.4.3 Verifying the Behaviors of a System

The behaviors of a system are determined by the behaviors of the scheduler and the
behaviors of the processes. To model checking a system with the scheduler, we need
to explore the state space. To do this, we generate all necessary information from
the scheduling policy (in the DSL) to realize the search algorithm. The state space is
determined according to the policy.

With the state space, we can verify whether the system can satisfy an invariant or
a linear temporal logic (LTL) property, which is a kind of qualitative properties. In
fact, linear temporal logic (LTL) or computation tree logic (CTL) are used for verify-
ing reachability, liveness, and safety properties without any quantitative measurement.
However, these properties cannot specify a time-bounded information. Actually, the be-
haviors of a real-time system are always related and bounded to time; when we consider
the executions based on the management of the scheduler, the quantitative properties
are also important. An example for the property is that “the process needs to finish
its task within 3 time units”. This kind of property is proposed by Emerson [36] and
represented as a real-time computation tree logic (RTCTL) formula to indicate a quan-
titative property of the time elapsed during the computation. For instance, the formula
AF≤3(p) means that property p holds within 3 time units.

We note that the search algorithm now limits the state space following the schedul-
ing strategy. Using the graph indicated by the state space, we can apply the algorithm
introduced in [24] to check the property represented as a CTL formula. To handle the
quantitative property, we adopt the algorithm proposed by Emerson et al. [36] to check
the properties expressed in the form of RTCLT formula. For the implementation, we fol-
low the method proposed in [18], which is based on [24], to label the graph realized from
the search space. To do that, some elements are introduced in the DSL for capturing
the behaviors of the system for the analysis. We then apply the existing algorithms (as
mentioned above) to labeling the graph (indicated by the search algorithm) following a
property defined in a form of a CTL/RTCTL formula.
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1.4.4 Testing Scheduling Policies

We aim to verify concurrent systems executed under scheduling policies. The scheduler
of an OS now controls the executions of the processes. To do that, we propose a DSL
to describe the strategy. The correspondence between the scheduling policy in the DSL
and the behaviors of the real scheduler affects the verification results. In fact, the
description of the strategy for a real system does not exist or is not clear to describe the
behaviors of the scheduler. The remaining problem now is ensuring that the scheduling
strategy described in the DSL conforms with the implementation of a real scheduler.
Actually, we can observe the behaviors of the scheduler only in executing the system.
Because of this fact, we adopt testing techniques to check the correspondence between
the specification in the DSL and an implementation of the scheduler in a real OS.
Our method is checking whether the scheduling policy in the DSL is accepted by the
behaviors of the real scheduler.

For preparing the tests, we still have a problem that there are multiple possible
executions of a concurrent system. That lead to the fact that manually making the tests
is time-consuming and prone to errors. To deal with this fact, we apply MBT techniques
to overcome this problem. With MBT, we can automatically and exhaustively generate
the tests for checking the policy with the behaviors of a real scheduler. We describe
the overview of our approach for testing the scheduling policy below. The method is
introduced in more details in Chapter 5.

Model

Generate Test cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Tests cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Scheduling Policy

Prepare

Real OS

Check acceptance

Figure 1.8: Testing approach

• Firstly, to apply the MBT techniques, we prepare the model of the system with the
corresponding environment needed for performing the scheduling policy. Actually,
the environment indicates a set of processes with their attributes. Note that we
can only handle limited cases for testing a real system.

• Secondly, using the model, we can indicate the state space by searching. We then
generate the tests (test cases and test programs) by mapping the behaviors of the
system with the code generated.

• Lastly, we perform the tests to validate the scheduling policy with the behaviors
of the scheduler in a real OS.

1.5 Thesis Structure

Following the approach introduced above, this thesis structured as follows.

• Chapter 1 (this chapter) devotes our motivation, the objective of the research, the
overview of the approach, and the contributions.
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• Chapter 2 presents the background of concurrent systems, model checking tech-
niques, the properties to be verified, scheduling policies, and MBT techniques.

• Chapter 3 introduces the DSL for the scheduling policies with the design and the
semantics of the language.

• Chapter 4 focuses on verifying the behaviors of the system. This chapter intro-
duces the algorithm to explore the state space following the scheduling strategy
and the method for analyzing the systems qualitatively and quantitatively by
adopting the labeling algorithms indicated in [36, 18, 24].

• Chapter 5 presents our approach to check the description of the policy in the DSL
with the real scheduler in an OS.

• Chapter 6 introduces the implementation of our approach.

• Chapter 7 shows the experiments for verifying system with the scheduler, analysis
the behaviors of the system, and testing the scheduling strategies.

• In Chapter 8, we discuss the results of verifying the behaviors of the system under
the scheduling strategies with our approach.

• Chapter 9 shows the related work.

• Lastly, Chapter 10 concludes our research and shows some future directions.
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Chapter 2

Background

This chapter describes the background of this research. First, we consider the charac-
teristics of a concurrent system and model checking techniques. Then, we introduce the
properties, which need to be verified to ensure the correctness of the systems. Next,
we introduce Promela language and the related model checking tools. The scheduling
domain, the DSL, and MBT techniques are considered at the end of this chapter.

2.1 Concurrent Systems

A concurrent system has multiple computations where each of them can be performed
without delay to wait for the others to complete [77]. That means in a concurrent
system, the computations can perform concurrently with the time overlapping instead
of sequentially (in which one completed before the next starts). The implementation of
each computation can be taken with an OS process or using a set of threads in the same
process [81]. We now use “process” to imply both of “process” and “thread”. Actually,
these processes can run in an interleaving manner on a processor with a single core using
the time-slices. At a time, only one process can run. If the execution does not complete
in the time allowed, this process is paused to make another one run. The execution of
these processes is control by a scheduler.

The main difference between a concurrent system and a parallel system is that the
executions of the processes in a parallel system occur at the same time (such as, on a
multi-processor computer [77]), to increase the speed of the computation. That means
the parallel execution cannot be performed on a single processor. In contrast, a concur-
rent system contains multiple processes that can share the time (lifetimes overlapping).
Figure 2.1 depicts the executions of a system with two processes, which are executed at
the same time (parallelly) (a) and alternately (concurrently) (b).

In this type of systems, the processes can communicate using shared memory or
message passing methods [77]. To use the communication with the shared memory,

time

a) Parallel execution

Q time

b) Concurrent execution (time-sharing)

P QP Q P

Figure 2.1: Parallel and concurrent executions
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the implementation usually requires some kinds of control (such as mutexes) and the
processes are allowed to update the contents of the memory. With message passing,
the processes can exchange the information (i.e. messages) with asynchronous or syn-
chronous “rendezvous” style.

The main advantage of concurrent execution is to increase the number of tasks to
be finished in a period of time. However, because a concurrent system can have many
different executions, it is difficult to be verified.

2.2 Real-Time Systems

A real-time system relies on not only the results of the execution but also the time
when its computation is performed [78]. This kind of systems usually follow the time
constraints, such as the system must complete its tasks within the limited amount of
time. With this characteristic, each task/process of a real-time system has several
attributes, such as initial offset (the time offset for releasing the task), best case execu-
tion time (BCET), worst-case execution time (WCET), the time between task releases
(PE RIOD) with minimum time between task release (MIN PE RIOD) and maximum
time between task releases (M AX PE RIOD), deadline (DE ADLINE), and priority
(PRIORITY). These attributes satisfy the following constraints BCET ≤ WCET ≤
DE ADLINE ≤ MIN PE RIOD ≤ M AX PE RIOD.

One of the essential objectives for the real-time systems is dealing with schedulabil-
ity problem [18], which is described with the purpose that all processes will meet the
deadlines. One of the methods to handle this problem is analysis. This technique is to
determine the conditions on the design to indicate the feasibility. With this problem,
the existing approaches use constraints solving [42], deal with fixed scheduling [41], or
base on worst-case assumption [82]. Actually, each technique has its own limitations,
for instance, with the worst-case assumption, the behaviors of the scheduler will not be
taken into account in the analysis.

For non-real-time systems, the OS aims to provide an interface for the communi-
cation between the programs and the hardware while attempting to maximize average
throughput, to minimize the waiting time, and/or to ensure the fairness to share the
system resources. However, meeting the deadlines of tasks/processes is not a purpose
since these systems do not consider the deadlines to make the scheduling decisions.

2.3 Model Checking

Testing [49] and simulation [70] are the two techniques for finding errors existing in a
system.

• With testing, a set of inputs are used to check the corresponding outputs or the
behaviors of a system respect to the specification. With real-time systems, both of
input/output values and the time at which they are produced must be considered.

• With simulation, we execute possible actions on the model of a system (or a
physical entity) to validate the system.

These two techniques are only good for finding existing errors. However, they usually
cannot ensure that a system can satisfy the corresponding requirements. To address
this problem, formal verification is applied.
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Model checking [9] is a method to exhaustively and automatically verify the finite-
state concurrent systems. The techniques use algorithms for searching all states of the
system using its model to check whether the desired behaviors of the system can meet
a given specification. For the specifications of a system, temporal logic [69] is used.
The model of the system is traversed using the appropriate algorithms to check the
properties. That means the models of a system are followed by algorithms to explore
the states systematically. This is a technique to verify finite-state systems automatically.

Model Checker
model

specification

�

���

witness path

��

counterexample

s2

s4

s1

s3

Figure 2.2: Model checking

We start with the basic definition for a concurrent system. Let AP be a set of atomic
propositions, e.g. propositions variables and constants.

Definition 2.1 A Kripke structure M is a tuple M = (S, I,T, L), where

• S = {s1, s2, ..., sn} is a finite set of states;

• I ⊆ S is the set of initial states;

• T ⊆ S × S is the transition relation, where ∀s ∈ S, ∃s′ ∈ S such that 〈s, s′〉 ∈ T ;

• L : S → 2AP is a labeling function, where for a state s ∈ S, the set L(s) is made of
the atomic propositions that hold in s.

We will refer to state set S of Kripke structure M with a dot notation M .S. Similarly,
the initial state of M is referred as M .I, etc. Figure 2.3 represents a Kripke structure
M = (S, I,T, L), where

• S = {s1, s2, s3, s4};

• I = {s1};

• T = {(s1, s2), (s2, s3), (s2, s4), (s3, s4), (s4, s3)};

• L = {(s1, {p}), (s2, {p}), (s3, {q}), (s4, {q, r})}.

Timed-Kripke structures [36] improve the Kripke structures by labeling the transi-
tions between the states with integer values. We have (s, a, s′) ∈ T if there is a transition
from state s to state s′ taking a time unit. A timed-Kripke structure M = (S, I,T, L)
defined as a Kripke structure except that T ⊆ S ×N× S. An example of a timed-Kripke
structure is depicted in Figure 2.4, where
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Figure 2.3: A Kripke structure

• S = {s1, s2, s3, s4};

• I = {s1};

• T = {(s1, 1, s2), (s2, 2, s3), (s2, 2, s4), (s3, 3, s4), (s4, 4, s3)};

• L = {(s1, {p}), (s2, {p}), (s3, {q}), (s4, {q, r})}.

2
2

1
s2

s4

s1

s3

p

q
4

3

q, r

p

Figure 2.4: A timed-Kripke structure

Definition 2.2 A path π of a Kripke structure M is an infinite sequence s0, s1, ... of
states, where ∀i, 〈si, si+1〉 ∈ T , πi = si, si+1, ... is the subpath of π starting from state si,
and π(i) denotes the i-th state si of path π. The state π(0) ∈ I (of a path π) is called
an initial state.

In Figure 2.3, M may produce a path π = s1, s2, s3, s4, s3, ...
A model checker will explore all states s (of M) that are reachable from the initial

states to determine whether the given property p holds or not. If the given property p
holds in the state transition graph M, the trace in the graph M can be considered as
a witness. If the given property p does not hold, the corresponding counterexample is
shown.

Model checking has several advantages [23], such as the checking process is automatic
and the counterexamples are valuable for finding the errors of the system. However, this
technique can lead to the state explosion problem. It is because the number of states can
be huge. In addition, because model checking uses the model for the verification, rather
than the real one, this technique does not guarantee the accuracy of a real system.
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2.4 Exploring the State Space

There are some algorithms to construct the state space (graph) with a given model of a
system. Among them, depth-first search (DFS) and breadth-first search (BFS) are the
common ones used by the model checkers for the exploration. The idea is that starting
at the initial state and for each possible execution (next statement), we perform this
statement and construct a new state. A directed edge between the current state and
the new one is created. We repeat this step until there are no states to be considered.

Depth-First Search Algorithm (DFS). It is an algorithm to travel the graph
data structure. The algorithm starts at the initial node of the graph then explores
along the current branch as far as possible before trying another one. The algorithm
is depicted in Algorithm 1 to visit every state in the set M .S, which can be reachable
from the initial state s0 ∈ M .I.

Algorithm 1 Depth-first search algorithm

1: Input: s0 . initial state
2: Output: SS . state space
3: procedure START()
4: Stack: ST = {}
5: State space: SS = {}
6: Push(ST , s0)
7: Add state(SS, s0)
8: SEARCH()
9: end procedure

10: procedure SEARCH()
11: s = Top(ST )
12: for 〈s, s′〉 ∈ M .T do
13: if Contains(SS, s′) == f alse then
14: Push(ST , s′)
15: Add state(SS, s′)
16: SEARCH()
17: end if
18: end for
19: Pop(ST )
20: end procedure

We use two data structures: a state space SS and a stack ST . To update the con-
tents of the state space (a set of states), we use the following functions: Add state(SS, s)
to add state s, and Contains(SS, s) to check whether element s exists in the state space.
A stack is an ordered set of states with the corresponding operations: Push (to add a
state), Top (to return the top element) and Pop (to remove an element) to record the
searching. The search is performed starting from function START (line 3) to visit every
reachable state from the starting state s0. An example is represented in Figure 2.5;
with the starting node a, the algorithm will visit the states in the following sequence:
a, b, d, c, e, f .

Breadth-First Search Algorithm (BFS). This algorithm starts at the initial
node of a graph to explore all nodes at the same level before trying the neighbors in
the next level. The main difference between BFS and DFS is that BFS uses a queue
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Figure 2.5: Depth-first search

to record the search steps instead of a stack. Two operations for the queue: EnQueue
(to add a state) and DeQueue (to remove a state) are used for performing the search.
The algorithm is shown in Algorithm 2. Figure 2.6 shows an example of this algorithm;
starting at node a, the algorithm will visit the states in this sequence: a, b, c, d, e, f .

Algorithm 2 Breath-first search algorithm

1: Input: s0 . initial state
2: Output: SS . state space
3: procedure START()
4: Queue: Q = {}
5: State space: SS = {}
6: EnQueue(Q, s0)
7: Add state(SS, s0)
8: SEARCH()
9: end procedure

10: procedure SEARCH()
11: s = DeQueue(Q)
12: for 〈s, s′〉 ∈ A.T do
13: if Contains(SS, s′) == f alse then
14: EnQueue(Q, s′)
15: Add state(SS, s′)
16: end if
17: end for
18: SEARCH()
19: end procedure

2.5 Qualitative and Quantitative Properties

There are different ways to specify properties for verifying the behaviors of a system.
In this research, we consider two types of properties:

1. qualitative properties, which are specified in temporal logic (LTL and CTL), and

2. quantitative properties, which are in discrete-time logic (RTCTL).
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Figure 2.6: Breadth-first search

The formulae in LTL refers to time and can encode the future of paths. A well-
formed formula, φ, is defined as follow:

φ ::= > ;top, or true
| ⊥ ;bottom, or false
| p ;p ranges over AP
| ¬φ ;negation
| φ ∧ φ ;conjunction
| φ ∨ φ ;disjunction
| φ→ φ ;implies
| Xφ ;next time
| Eφ ;eventually
| Gφ ;always
| φUφ ;until

Let π be a path in Kripke structure M, φ be an LTL formula. The LTL formula φ
is held by the path π iff M, π |= φ, where

M, π |= > M, π 6 |= ⊥

M, π |= p iff p ∈ L(π(0))
M, π |= ¬φ iff M, π 6 |= φ

M, π |= φ1 ∧ φ2 iff M, π |= φ1 and M, π |= φ2

M, π |= φ1 ∨ φ2 iff M, π |= φ1 or M, π |= φ2

M, π |= φ1 → φ2 iff M, π 6 |= φ1 or M, π |= φ2

M, π |= Gφ iff for all paths πi for all i ≥ 0, M, πi |= φ

M, π |= Fφ iff for all paths πi for some i ≥ 0, M, πi |= φ

M, π |= Xφ iff M, π1 |= φ

M, π |= φ1Uφ2 iff exists i ≥ 0 such that M, πi |= φ2 and for all j < i, M, π j |= φ1

A CTL formula consists of a set of atomic propositions with operators NOT, AND, AX,
EX, AF, EF, AG, EG, AU, and EU. The formula, φ, is defined as follows: φ ::= > | ⊥ | p |
¬p | φ ∧ φ | φ ∨ φ | φ→ φ | AXφ | E Xφ | AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ].

The operators NOT and AND are straightforward as their meanings. The remains
operators refer to a path as a sequence of states (A : All, E : Exists, X : Next, F : Finally,
G : Globally, U : Until). The semantics are indicated as follows.
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• s0 |= p iff p ∈ L(s0)

• s0 |= ¬p iff s0 6 |= p

• s0 |= φ1 ∧ φ2 iff s0 |= φ1 and s0 |= φ2

• s0 |= φ1 ∨ φ2 iff s0 |= φ1 or s0 |= φ2

• s0 |= φ1 → φ2 iff s0 6 |= φ1 or s0 |= φ2

• s0 |= AXφ iff for all paths σ = s0, s1, ..., s1 |= φ

• s0 |= EXφ iff for some path σ = s0, s1, ..., s1 |= φ

• s0 |= AGφ iff for all paths σ = s0, s1, ..., ∀i, si |= φ

• s0 |= EGφ iff for some path σ = s0, s1, ..., ∀i, si |= φ

• s0 |= AFφ iff for all paths σ = s0, s1, ..., ∃i, si |= φ

• s0 |= EFφ iff for some path σ = s0, s1, ..., ∃i, si |= φ

• s0 |= A(φ U ψ) iff for all paths σ = s0..., ∃i ≥ 0, such that si |= ψ and ∀ j, 0 ≤ j <
i, s j |= φ

• s0 |= E(φ U ψ) iff for some path σ = s0..., ∃i, i ≥ 0, such that si |= ψ and
∀ j, 0 ≤ j < i, s j |= φ

The minimal set of operators is {EG, EU, EX}. That is because the other modalities can
be declared as abbreviations, such as AFφ abbreviates A(true U φ), EFφ abbreviates
E(true U φ), AGφ abbreviates ¬EF¬φ, EGφ abbreviates ¬AF¬φ, and AXφ abbreviates
¬EX¬φ.

An LTL/CTL formula can specify the order of the behaviors of a system. That means
LTL/CTL can specify the ordering of events/actions. The properties in an LTL/CTL
formula can be used for verifying reachability, liveness and safety properties, but they
cannot specify when these events occur. In particular, real-time systems are always
bounded on the response time. To handle the quantitative measurement, CTL has
been extended. Below we describe an extension proposed by Emerson [36] that consider
the discrete time to handle quantitative assertions called RTCTL. Each action of the
system consumes 1 tick (corresponding to one time unit to be finished). The formula in
this logic represents the bounded time. For instance, the RTCTL formula EF≤3φ states
that property φ eventually holds within the bounded time, namely, 3 time units. The
meaning of the operations is as follows.

• s0 |= AF≤n ψ iff for all paths σ = s0..., ∃i, 0 ≤ i ≤ n, such that si |= ψ

• s0 |= EF≤n ψ iff for some path σ = s0..., ∃i, 0 ≤ i ≤ n, such that si |= ψ

• s0 |= AG≤n ψ iff for all paths σ = s0..., ∀i, 0 ≤ i ≤ n, such that si |= ψ

• s0 |= EG≤n ψ iff for some path σ = s0..., ∀i, 0 ≤ i ≤ n, such that si |= ψ

• s0 |= A(φ U≤n ψ) iff for all paths σ = s0..., ∃i, 0 ≤ i ≤ n, such that si |= ψ and
∀ j, 0 ≤ j < i, s j |= φ
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• s0 |= E(φ U≤n ψ) iff for some path σ = s0..., ∃i, 0 ≤ i ≤ n, such that si |= ψ and
∀ j, 0 ≤ j < i, s j |= φ.

In these formulas, n specifies a time-bound corresponding to the maximum number
of permitted transitions along a path. We note that AF≤n and EF≤n are special cases of
AU≤n and EU≤n. The other operations can be specified using these operations above.

2.6 Model Checking Algorithms

We can use model checking to check the accuracy of the systems relative to their spec-
ifications. A system is presented as a graph (Kripke structure). The specification is
declared in propositional temporal logic. The algorithms will then indicate whether the
structure models the formula or not.

This section explains the algorithm introduced in [24] to check whether formula f0 is
true or not in the finite structure M = (S, R, L), where S is a finite set of states, I ⊆ S×S is
the transition relation, and L : S → 2AP is a labeling function as described in a Kripke
structure. The specification is written as a CTL formula. To deal with quantitative
property, we consider the algorithm proposed by Emerson et al. [36] to check the
properties expressed in the form of RTCLT formula. The algorithms include two steps:
1) building the state graph and 2) labeling the graph following the corresponding formula
to check the property.

In the first step, we construct the state graph with the starting state. We then
execute the possible statement and examine the changing of the system state. This is
the way to construct a new state from an existing state. A directed edge is determined
to connect the current state with the new one. We repeat this step until there is no
more state.

In the second step, we start labeling the state graph. We note that during con-
structing the graph, the labels of the current node are initialized. The summary of the
algorithm is as follows1:

• Firstly, the formula is rewritten in a prefix form, e.g. f = A (φ U ψ) will be
rewritten as f = AU φ ψ. The lengths of each sub-formula are determined (e.g.
the lengths of AU, φ, and ψ are 3, 2, and 1, respectively).

• Secondly, the labeling process will be started from the last sub-formula to the first
sub-formula of the formula f with the starting state s0.

– The first step labels the states with all sub-formulas of f with length 1.
Indeed, the formula of length 1 is an atomic proposition and the state has
already labeled in the creation of the graph.

– The second step labels the states with sub-formula of length 2 based on the
results in step 1.

– The next steps are performed the same way.

Each state of the system will be labeled with a set of sub-formulas with the length
less than or equal to i after completing the ith step. We use label(s) to denote
this set of state s. After completing all the sub-formulas, the algorithm terminates

1The reader can refer to [24] for more information.
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at the step n = length( f ), now the entire formula f is checked. For all states s,
M, s |= f iff f ∈ label(s) for all subformulas f of f0.

The primitives below are used to manipulate formulas and access the labels corre-
sponding to states:

• arg1( f ) and arg2( f ) return the arguments of a temporal operator (e.g. suppose
f = AU f1 f2, we have arg1( f ) = f1 and arg2( f ) = f2).

• label(s, f ) returns a boolean value to indicate whether state s is labeled with
formula f or not.

• add label(s, f ) adds formula f to the set of labels of state s.

Function label graph( f ) (as depicted in Figure 2.7) handles the formula f (i.e.
atomic, or has the form of the operators: NOT, AND, AX, EX, AF, EF, AG, EG, AU, and EU)
to check the satisfaction of this formula. We consider only AU since the other operators
are similar. The algorithm use a DFS for exploring the state graph. A stack ST is used
and function stacked(s) returns whether state s is on the stack. In this algorithm, a
bit array marked[1 : nstates] (nstates is the number of states) indicates the states have
been visited.

procedure label_graph(f)

begin

...

//AU operator

begin

ST := {};

for all s in S do

marked(s) := false;

for all s in S do

if not marked(s) then

au( f, s, b)

end

...

end

Figure 2.7: CTL model checking algorithm

The procedure au( f , s, b) (as depicted in Figure 2.8) performs recursively the search
to check formula f = AU f1 f2 start with state s. The boolean parameter b is used to
indicate the return value of this procedure. That means it will be set to true iff s |= f .
This procedure checks that state s is already marked or not. If it is marked, we return
the result following the label f of s. In the other case, we need to get the results of
checking the sub-formulas of f at state s. We consider the case that f2 is false, this
thing is handled using a DFS with the stack ST for checking the sub-formula f1 of f .

An example for the labeling steps for checking the corresponding formula is de-
picted in Figure 2.9. With this example, we check the property expressed by formula
AU(true)(t == 0) meaning that t == 0 holds at some state in all execution paths of
the system. The first step is to build the state space and initialize the labels with the
atomic propositions. The second step labels the formula AU starting with the state S0.
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procedure au(f, s, b)

begin

if marked(s) then

if labeled(s, f) then

begin

b := true; return

end

else

begin

b := false; return

end

marked(s) := true;

if labeled(s, arg2(f)) then

begin

add_label(s, f);

b := true; return

end

else

if not labeled(s, arg1(f)) then

begin b := false; return end

push(s, ST);

for all s1 in successors(s) do

begin

au(f, s1 , b1);

if not b1 then

begin pop(ST); b = false; return end

end;

pop(ST); add_label(s, f);

b := true; return

end

Figure 2.8: Algorithm for checking formula AU

We use a DFS to travel through the state space (i.e. state graph) to label each state in
the case that its children states have not labeled.

To deal with quantitative property, Emerson et al. [36] proposed an algorithm for
checking properties in the form of RTCLT. Figure 2.10 shows the algorithm for checking
an RTCTL formula with the bound time k. For each sub-formula, the algorithm uses
the corresponding procedure to check the property represented by formula f .

In this algorithm, we can see the procedures AU_check and EU_check indicate an
input as the depth to search on the state space (denoted by min(k, |S|)). For the
recursive function calls, the bound of time k can be handled by setting the limit of the
depth in the DFS (the superscript indicated in the RTCTL formula, such as 3 in AU63,
is used to set the depth. This value indicates the maximum number of steps which can
be taken when labeling the graph).

There is a guideline with examples for the implementation of these algorithms in C
language, the reader can refer to [18] for more detail.
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Figure 2.9: An example for labeling the state graph

2.7 Promela (Process or Protocol Meta Language)

Promela is a language introduced by Holzmann [40] for modeling the behaviors of the
processes in a concurrent distributed system. The specification of a system in Promela
defines the processes, which can be created dynamically, to represent the concurrent
tasks in a distributed system. This language provides primitives for the communication
between the processes using shared variables or message channels with synchronous
or asynchronous (rendezvous or buffered). However, Promela is not a programming
language and it only supports limited data structures (without pointers) and does not
have functions with return values.

An example for modeling a simple producer and consumer2 is depicted in Figure 2.11.
With this example, we use mtype to define symbolic values. A global variable named
turn is declared to indicate the execution turn for the producer and the consumer, which
are defined as two processes named P and C using keyword proctype. With the prefix
active, these processes are automatically instantiated. Each process uses statement
“do ... od” to perform a loop with keyword “::” for each option of the loop. To
indicate the guard of each option, condition (turn == PRO) and (turn == CON) are
used. We note that, if no guard is true the process blocks otherwise we can have non-
determinism choices. Using the keyword “->” and “;” are equivalent to indicate the
sequence of the corresponding statements.

2This example is taken from [46].
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/* Input: A structure M = (S, R, L) and an RTCTL formula f */

/* Output: There is a state s in S such that s satisfies. */

for i := 1 to length(f) do

begin

for subformula p of f of length i do

begin

switch(p)

case atomic: ; /* Nothing to do */;

case (q and r):

for each s in S do

if (q in L(s)) and (r in L(s)) then

add_label(s, (q and r));

case (not q):

for each s in S do

if (q not in L(s)) then add_label(s, (not q));

case (EX q):

for each s in S do

if q in L(t) for some successor t of s then

add_label(s, (EX q));

case A(q U<=k r):

AU_check (q, r, min(k, |S|), A(q U r));

case A(q U r):

AU_check (q, r, |S|, A(q U r));

case E(q U<=k r):

EU_check (q, r, min(k, |S|), E(q U r));

case E(q U r):

EU_check (q, r, |S|, E(q U r));

end;

end;

end;

if f in L(s) for some s in S then return true

else return false;

Figure 2.10: RTCTL model checking algorithm

2.8 Spin Tool

Spin [46] model checker is to verify the consistency of distribute systems. The input of
this tool is a Promela program. The tool is to verify the behaviors of a system using its
model to check the correctness by performing the simulations randomly or iteratively.
Spin tool generates a program (in C language) to verify the system exhaustively. The
verification can be taken to prove the accuracy of a system with finding non-progress cy-
cles. It supports verifying LTL formulas using never-claims. With Spin model checker,
each model of the system specified by the Promela program can be verified under the
assumptions of its environment. When the accuracy of the model of a system is estab-
lished, it can be used for verifying all the corresponding models. However, the optimized
code in C of this tool is difficult to extend. Moreover, it is difficult to reuse the existing
algorithms in Spin for other tools.

With the example in Figure 2.11, the initial value for turn is PRO, the guard
(turn == PRO) is true, thus the producer process will execute the next two state-
ments to prints a string and sets the variable turn to CON. This makes the producer
process blocked and enables the consumer process. These two processes will execute in
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mtype = { PRO, CON }; 
mtype turn = PRO; 
 
active proctype P(){ 
 do 
  :: (turn == PRO) -> printf("Producer\n"); turn = CON 
 od 
} 
 
active proctype C(){ 
 do 
  :: (turn == CON) -> printf("Consumer\n"); turn = PRO 
 od 
} 

  

Figure 2.11: Producer and consumer example

alternating order. With the simulation, Spin produces the following result.

> spin producerconsumer.pml | more

Producer

Consumer

Producer

Consumer

Producer

...

However, if we extend the example with more processes for each type (producer and
consumer) as indicated below:

active [2] proctype P {...}

active [2] proctype C {...}

The alternation is no more guaranteed and Spin may produce the following result
in the simulation:

> spin producerconsumer.pml | more

Producer

Consumer

Consumer

Producer

Producer

Consumer

...

The reason is that both two processes P can perform statement printf("Producer")
when the guard holds before the variable turn is assigned with CON. That fact can be
detected by the Spin tool.

2.9 SpinJa Tool

With the optimized C code for the main goal of the speed, the Spin tool is difficult to
understand and extend. Besides, the algorithms implemented in this tool are also hard
to reuse in other tools.

Following the same approach as Spin, SpinJa [29] is developed in Java using the
object-oriented design principle with the aim to extend easily while being competitive in
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memory usage and runtime time. This tool generates a program (named PanModel.java)
from a Promela model to verify the system.

SpinJa is designed following the framework proposed by Mark Kattenbelt et al.
[50] to flexibly develop an explicit-state model checker. This also helps to increase the
maintainability and reusability of the system. Figure 2.12 show the architecture of
SpinJa.

Promela model Compiler
Promela

Implementation

Library

PanModel.java

uses

uses

SpinJa Tool

uses

Figure 2.12: The architecture of SpinJa

Some techniques are supported and implemented in this tool, such as bitstate hash-
ing, hash compaction modes, and partial order reduction. We can use this tool to verify
the behaviors of a system (e.g. checking the absence of deadlocks, violation of assertions,
or liveness properties, etc.) with Promela models using the (nested) DFS or BFS.

2.10 Scheduling Domain

Scheduling is a method that is used to assign resources (such as processor time, band-
width and memory) to the various processes, data flows, and applications that need
them to complete the works. The main purpose of scheduling is to balance the load,
ensure the equal distribution of resources on a system according to the set of corre-
sponding rules. This means that a system is able to do its jobs, serve the requests,
and guarantee the quality of its services to achieve one or more of many goals such as
maximizing the number of tasks per a unit of time (throughput), decreasing the time
to finish the tasks with the fairness, or ensuring the processes can meet deadlines in
real-time systems. In general, the goals often conflict with each other; therefore, the
scheduling strategy will be implemented to keep a suitable compromise depending on
the needs of the system.

Process execution states. In an OS, which runs on a central processing unit
(CPU), the role of a scheduler is to select a process at a certain time to run. The main
task of a scheduler is changing the execution statuses of the processes (e.g. running,
ready, blocked, and terminated as depicted in Figure 2.13). The algorithm used by the
scheduler is called the scheduling algorithm. Each algorithm represents a policy.

Scheduling events. The main issue related to scheduling is when to make schedul-
ing decisions. In fact, there are a variety of situations in which scheduling is needed.
We consider the occurrence of each situation as a scheduling event. The common events
are as follows.

28



Running Terminated

Ready Blocked
new process

I/O or event waiting
preemption

selecting

exit

I/O or event completion

Figure 2.13: State transitions for a process

• Firstly, when a process arrives at the system, the scheduler must decide whether
to run this process or not.

• Secondly, when the currently running process blocks waiting for the resource,
another process has to be selected.

• Thirdly, when the current process exits, a scheduling decision is made to choose
another process for the execution.

• Fourthly, the scheduler must decide which process to run when an interrupt occurs.

Two types of policies regarding the clock (timer) scheduling event. A non-preemptive
algorithm and a preemptive one. The process in the non-preemptive algorithm can run
until blocking or it releases the CPU. In contrast, with the preemptive scheduling, the
current process can run for an amount of time (time slice). If this process is still running
at the end of the time slice, it is suspended and the scheduler selects another process
(if it is available).

Process attributes. To perform the scheduling tasks, an OS (such as Linux) usu-
ally keep a table (called process table) to store the information of its processes. This
data structure holds the information of each process (e.g. identifier, priority, environ-
ment variables, etc.) called process attributes. The scheduler uses these attributes for
performing the scheduling tasks.

In general, the scheduler manages one or several queues for storing the processes
which have the same state (such as ready or waiting). Whenever an event occurs (e.g. a
process finishes, a new process is released, etc.), the scheduler will search on the queue(s)
to find the next process to run based on the attributes.

Typical scheduling policies. In theory, there are several policies. Some typical
ones are described below.

• First-in, first-out (FIFO): A non-preemptive policy (referred as first-come, first-
severed) with the most straightforward as the name suggests. An example of FIFO
scheduling policy for a system with 4 processes is depicted in Figure 2.14.

• Round-robin (RR): A preemptive policy. Each task/process in the system is given
a time slice to use the resources following FIFO policy. An example of this policy
is shown in Figure 2.15.
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FIFO

5

process

time

1

3

4

A

B

C

D

Process Service time Turnaround time Waiting time

A 5 5 0

B 1 6 5

C 3 9 6

D 4 13 9

Average 8.25 5

Figure 2.14: FIFO scheduling policy

RR

process

time

1A

B

C

D

Process Service time Turnaround time Waiting time

A 5 13 8

B 1 2 1

C 3 9 6

D 4 12 8

Average 9 5.75

1

1

1

1

1

1

1

1

1

1

1

1

Figure 2.15: RR scheduling policy

• Shortest job first (SJF): A non-preemptive policy. The process which needs the
least amount of time is selected to run. An example of SJF scheduling policy is
depicted in Figure 2.16.

• Priority: A non-preemptive policy. Processes are assigned priorities for controlling
their executions (depending on their priorities). However, with this policy, the
more important process always preempts the least important one. Therefore, it
can cause the starvation. An example of priority policy is shown in Figure 2.17.

Scheduling policies in OSs. There is a variation of policies implemented in OSs.

• Windows NT OS uses a multilevel feedback queue strategy with different priority
levels. Depending on the execution (running time or waiting time), a process can
dynamically increase or decrease its priority. The RR policy is used for the high
priority processes while the FIFO policy is applied for the low priority ones.

• In Linux, the policies are based on the priorities of the processes. For real-time
processes, the FIFO and RR scheduling policies are applied. Linux uses two types
of queue named active and expired. For selecting a process, the scheduler gets the
highest priority process by going through the queue of all ready processes (active
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SJF

5

process

time

1

3

4

A

B

C

D

Process Service time Turnaround time Waiting time

A 5 13 8

B 1 1 0

C 3 4 1

D 4 8 4

Average 6.5 3.25

Figure 2.16: SJF scheduling policy

Priority

5

process

time

1

3

4

A
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C

D

Process Priority Service time Turnaround time Waiting time

A 4 5 13 8

B 3 1 8 7

C 2 3 7 4

D 1 4 4 0

Average 8 4.75

Figure 2.17: Priority policy

processes). After its running time, the current process will be put into the expired
queue. These two queues are swapped when the active one is empty.

• OSEK/VDX is a standard for the architecture of the units in vehicles. For the
scheduling, non-preemptive and full-preemptive policies with static priority assign-
ment are adopted to control the processes. Particularly, the scheduler manages a
queue to determine the running process.

2.11 Domain-Specific Language (DSL)

The purpose. In some situations, there is a necessity to increase the characteristics of
a language to deal with a specific problem. A DSL is always designed for a appropriate
domain [59] (e.g. SQL [27] for database manipulation). Figure 2.11 shows an example
of a query command in SQL. Some DSLs with their domains are given in Table 2.1.

The main aim of a DSL is to create a normally small language to hand the problems
in a special domain and is not for the others issues outside of it. That is different from a
general-purpose language (GPL) (such as, C++), which are usually for multiple domains
and lacks special features for an appropriate domain. Table 2.2 gives a comparison
between GPLs and DSLs.
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SELECT name

FROM Guest

INNER JOIN Booking ON Booking.guestID = Guest.guestID

GROUP BY city;

Figure 2.18: SQL sample code

Table 2.1: DSL examples

DSL Domain

SQL [27] Database

HTML [43] Web layout

VHDL [19] Hardware design

Bossa [10] Scheduling

Catapults [71] Scheduling

Types of DSLs. Considering the language syntax and the implementation, there
are two types of DSLs [38] as follows.

• An internal DSL is a language embedded into a host GPL using its syntax. The
existing languages, e.g. Java or Ruby, are used to describe and implement the
DSL. An example for internal DSL code with traditional implementation (the
APIs implemented in the existing language) is shown below.

include Coffee;

CoffeeCup ord = new Latte(VENTI , MILK);

CoffeeCup cup = ord.set();

• An external DSL is represented separately with the language it is working with.
This language may have its own syntax, or inspire the syntax of another one (such
as XML). The main difference between a GPL and an external DSL is that when
the source of the DSL is compiled, it is generally not necessary to output an
executable program; it can be in the form of an intermediate representation. An
example for external DSL approach with its own syntax is shown below.

include Coffee

ord = latte venti , no milk

ask order.set

Advantages and disadvantages of DSLs. DSL aims to improve the level of
abstraction for the syntax and the semantics of the language. The main purpose is to
make the corresponding solutions closer to the problems. Based on this fact, DSLs are
popular for the main reasons as follows.

• Creating a DSL allows to solve and focus on a particular domain can help to
express the problems clearly in comparison with using an existing GPL.

• A DSL makes it easy to understand the problem and the solution without using
complicated codes. Therefore, it can improve the productivity and also make it
easier to communicate with domain experts by expressing the ideas with solutions
in a common text.

32



Table 2.2: GPLs and DSLs
GPLs DSLs

Community size large small

Size of domain large small

Size of language large small

Designed by committee experts

Completed always often not

Changing impossible feasible

• Using a DSL can narrow down the parts of programming, and make them easier
to understand, easier to learn with their limited scope. Thus, it helps writing
the code faster, modifying it easier, and reducing bugs. The languages allow
non-programmers to focus on the important parts of their business.

However, DSLs have some disadvantages based on their characteristics. First, it is
difficult to balance between the structure of the language for a particular domain and for
the general-purpose one. Second, it is also hard to maintain the scope of the language.

DSLs development. The work-flow for developing a DSL is depicted in Figure
2.19. It contains several steps including domain analysis, designing the language, im-
plementation, and code generation.

Domain Analysis

Language Design

Implementation

Code Generation

optional

Figure 2.19: DSL work-flow

To design a DSL, because the language is usually abstract and expressive, the domain
needs to be aware and the notations of the language should express the semantics of the
domain implicitly. It helps the users can use the language statements to describe their
purposes, such as making a relation between the syntax and the objects of the domain.

The code generation step is optional based on the purpose of the DSL. For instance,
with an external DSL, the script can be converted to an intermediate representation
(e.g, program data), or the script in an internal DSL embedded to the host language
can run directly and it is not necessary to make any generation.

Code generation. This is optional to develop a DSL. This step starts with the DSL
script and parses it. At this step, a syntax tree is determined. The tree is used to present
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the semantic model, which indicates the meaning of the script in the corresponding
domain. The semantic model is then used to map to the suitable target code (generating
the code). Actually, we can directly parse the script into the target code. However,
using the semantic model allows separating the two steps: parsing and generation. This
separation makes these two steps can be updated easily (when necessary). Figure 2.20
shows the processing of a DSL from the script to the code generated.

DSL script

Semantic model

Target code

Syntax Tree

Figure 2.20: Processing of a DSL

There are two main styles for generating the code: transformer-based and template-
based [38] as follows.

• In the transformer-based case, we map the semantic model with the corresponding
codes in the target one. With this approach, we need to build a program with the
semantic model as its input, then export the code in the target environment as
its output (as indicated in Figure 2.21). This approach is likely generating each
line of code one by one from the DSL script.

• For the template-based generation, we must start with designing the sample output
code (a template). After that, the semantic model is used to put the corresponding
code into this template. That means we structure the code to be generated by
inserting the necessary code realized from the DSL script. With this approach, a
special component called template processor is needed to put the corresponding
code into the template (as depicted in Figure 2.22).

2.12 Xtext Framework

Xtext [13] is a framework to develop programming languages and DSLs with the sup-
ports for defining the language grammar and providing a full infrastructure including a
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Semantic model

Target code
Transform program

Figure 2.21: Transformer-based generation approach

Semantic model

Target code

Template processor

DSL script

Figure 2.22: Template-based generation approach

parser, a linker, a compiler, and an environment for editing. In addition, Xtext supports
the model of abstract syntax tree (AST) corresponding to the DSL script and an IDE
environment based on Eclipse tool. The languages and the environment are highly con-
figurable with easily replacing the components. Xtext can facilitate the development of
DSLs and support mapping the DSL concepts to the artifacts needed to be generated.

The language grammar is written in Xtext using the EBNF syntax. This framework
will generate an ANTLR parser. During the parsing, the AST is generated to construct
the corresponding language model. The grammar definition language of Xtext is not
just for the parser. Besides, many IDE features provided by Xtext adapt to the language
automatically, such as code completion, syntax coloring, or validation, etc.
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Language Definition Generate

Parser

Compiler

Linker

Type checker

Editor

Xtext

Figure 2.23: The support of Xtext framework

2.13 Model-Based Testing (MBT)

Testing techniques. Testing is used to validate software systems and greatly supports
to check the quality of software systems. Nonetheless, with the pre-designed tests (test
cases, test programs) following limited execution orders, using this technique is difficult
to find unexpected errors. As a fact that there can be multiple executions for a concur-
rent system, making the tests manually is time-consuming and prone to errors. That
means it is hard to apply a manual approach to test different and complex variants of
software systems. That motivates a systematic approach towards software testing.

OK

Testing

error 

Figure 2.24: Testing technique

Model-based testing. MBT [6] is a technique aims at systematic the generation,
execution, and evaluating the results for the design and performing the tests. MBT
technique is usually considered as black-box testing [11]. In particular, the behaviors of
a system are described by a corresponding model. Using this model, the test suites are
derived. The process of MBT is depicted in Figure 2.25.

A model used in MBT is usually abstract and represent the behaviors of the system
partially. The tests (test cases, test programs, or test data) get from that model have
the same abstraction level as the model. In general, these tests are realized in a test
suite cannot execute directly against a system under test (SUT) because of the different
abstraction. A test suite can be obtained from the abstract tests by mapping to the
concrete ones that are suitable to be executed. Nonetheless, in some cases, the models
can have enough information to prepare the test suites directly. In other cases, to make
a test suite, the relation between the components and the specific statements in the
software is needed. This mapping is used for the test generation.
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ModelRequirements

Build the model

Generate tests

Test suite
System Under Test (SUT)

Execute tests

Figure 2.25: MBT process

Test generation using MBT. Some languages for modeling systems, such as
UML, SysML, Z, Event-B, or Alloy are used for generating the tests [61] using several
techniques [72]. The effectiveness of MBT is derived from the automation it offers based
on the desire behaviors represented by the model. We can derive the test mechanically
if the model can be read by the machine. In fact, the model is converted to a transition
graph to indicate the states of the SUT. The graph is then searched for finding the
corresponding paths [58] to realize the tests (as indicated in Figure 2.26). However,
because the number of the states is usually huge, the number of paths can be large. To
generate the appropriate tests, we need a suitable criteria [1].

Test cases
{ab, ac}

Search for 
executions

Explore 
test tree

state transition graph

s1

s2

s3
a

b

c

d

s1

s2 s3

a

b

c

d

s1 s2

test tree

Test programs
...
public void P() {...}
public void Q() {...}
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Map to 
the code

Figure 2.26: Test generation approach

The tests can be generated using model checking techniques [39]. In fact, for verifying
a system, a model and a property are used as an input of the model checker. Then,
using an exhaustive search, the model checker discovers the corresponding witnesses or
counterexamples. A path is called a witness when the property holds. If the property
is violated [14], this path is called a counterexample. Each path is used as a test case
for generating the tests.
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There are methods and tools, such as SAL [44] and STG [22] used for the test
generation. SAL uses a specification with Boolean trap variables representing the goals
to generate the tests. The idea behind that is to construct input sequences that lead
the SUT exhibit the expected behaviors (test goals). These goals are derived from the
requirements or the input domain. STG use symbolic generation techniques [73] to
handle state space explosion problem. This technique uses the specification of a SUT,
and compute a program to detect the non-conformance behaviors.

2.14 Summary and Discussion

This section discusses our approach with the relation to the background to achieve the
objective indicated in Chapter 1.

• Firstly, we aim to deal with systems executed under scheduling strategies. As
indicated at the beginning of this chapter, a concurrent can have multiple processes
executed in different ways. Therefore, it is hard to verify this kind of systems.
Because model checking can exhaustively and automatically find possible errors
by exploring every running order of the system, we can apply this technique to
verify the concurrent systems.

• Secondly, to deal with the scheduling policy, we introduce a DSL to describe the
behaviors of the scheduler used in model checking techniques.

– a DSL focuses on a specific domain, therefore, it is easy to use in comparison
with using a GPL or an existing modeling language, and

– the existing languages in the scheduling domain (e.g. Bossa [10] and Cata-
pults [71]) cannot be applied or reused because of their target systems and
the techniques behind (i.e. for the schedulers implementation).

Here, we design our language with its own syntax as an external DSL to handle
the scheduling tasks. These tasks correspond to the behaviors of the scheduler,
especially, for selecting a process to run (see Chapter 3 for more details). To apply
model checking techniques, we consider the processes can be selected to run by
partially ordering these processes in the system.

• Thirdly, to describe the processes of a system, we use Promela as the base modeling
language. It is because this language can specify the concurrent behaviors of
a set processes in a system. In reality, a process can perform the scheduling
tasks (e.g. terminates itself). Thus, we provide a mechanism for defining the
interaction between the processes and the scheduler. This is done through the
interface specified in the DSL.

• Fourthly, to explore the system states, we propose a search algorithm with con-
sidering the behaviors of the scheduler. That is the difference from the existing
algorithm (e.g. DFS and BFS). To do this, all the information necessary for the
policy are prepared beforehand. The algorithm is introduced in Chapter 4.

• Fifthly, the scheduler in a system manages the time. Because we consider indi-
vidual behaviors, we use the discrete time as an action taking one time unit to
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deal with the time related to the behaviors of the system. This approach allows
to handle the quantitative property by adopting Emerson approach [36] and using
the existing algorithms [18, 24] to check the properties expressed in the form of
a CTL/RTCTL formula. This is done by labeling the graph constructed by the
search algorithm following the scheduling strategy (see Chapter 4).

• Sixthly, to increase the confidence of the scheduling strategy specified in the DSL,
we adopt testing techniques to check the correspondence between the policy in the
DSL and the implementation of the scheduler in a real system. It is different from
the conformance testing approach to check whether the implementation conforms
to the design or the corresponding specification. To deal with the testing, we
apply MBT techniques to generate the tests automatically and exhaustively. Our
method is described in Chapter 5.

• Lastly, for the implementation of the DSL, we use Xtext; this framework supports
defining the language and a full infrastructure to implement a DSL. In this re-
search, we adopt the approach as used by Spin and SpinJa tools to prepare the
necessary information beforehand. We extend SpinJa model checker for the based
tool in our approach. That is because this tool follows the object-oriented design
principle and it is easy to extend. The details of the implementation are presented
in Chapter 6.
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Chapter 3

Domain-Specific Language for
Scheduling Policies

As we can see, real systems use schedulers to control the executions of the processes.
Therefore, in order to accurately verifying the behaviors of the system, we need to take
the schedulers into account in the verification. In fact, there is a variation of policies
used by the OSs (e.g. Linux uses both of FIFO and RR for real-time policies). Using
existing modeling languages, such as Promela, is difficult to handle various types of
strategies because the scheduling policy is fixed in the model of a system and it is
hard to model interesting policies. In this research, we proposed a DSL to specify the
scheduling policies and deal with the variation of schedulers. This chapter gives the
design of the language with its grammar and the semantics.

3.1 Overview of the Language Design

In this work, to flexibly change the policy, we separated the scheduler from the processes.
This approach is different from that of combining the processes and scheduler into the
same model. It helps us to reuse the scheduling policies and the behaviors of the
processes. That means we can use the scheduling policy to verify multiple systems, and
with a description of the behaviors of the processes, we can adopt different policies.
That fact can increase the reusability of the specification.

To facilitate the scheduling strategies, we propose a DSL for specifying the scheduling
tasks. The top-level structure of our DSL is depicted in Figure 3.1. Actually, the
scheduler uses the attributes of the processes in the systems to perform its behaviors.
In order to flexibly change the configuration of the system (i.e. the set of processes and
their attributes), we also separate the attributes of the processes (<ProcDSL>) and the
behaviors of the scheduler (<SchDSL>).

The configuration of a system with the set of processes and their initial attributes
are determined in the definition of the attributes of the processes. That can be done by
defining a) the attributes of the processes (<ProcAttr>), b) the process types (i.e. the
processes with the same behaviors) with the initial values for the attributes (<Process>),
and c) the initialization of the processes (<ProcInit>). We note that the configuration
part (<ProcConf>) is for defining the periodic and sporadic processes.

The scheduler handles the scheduling events to perform the scheduling tasks. In our
DSL, the system scheduling events are defined in the event handlers (<HandlerDef>)
of the scheduler description (<SchDSL>). To allow the communication between the
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<Model> ::= <ProcDSL> | <SchDSL>

<ProcDSL> ::= ‘def’ ‘process’ ‘{’ [<ProcAttr>] <Process>* ‘}’
[<ProcConf >] [<ProcInit>]

<ProcAttr> ::= ‘attribute’ ‘{’ <PAttr>* ‘}’
<Process> ::= ‘proctype’ <ID> ‘(’[<PramList>]‘)’ ‘{’ <AttAss>* ‘}’
<ProcConf > ::= ‘config’ ‘{’ <PConf >* ‘}’
…

<SchDSL> ::= <SchDef > [<OrdDef >]
<SchDef > ::= ‘scheduler’ <ID> ‘(’ [<ParamList>] ‘)’ [‘refines’ <ID>] ‘{’ 

[<VarDef >] [<DatDef >] [<HandlerDef >] [<InterDef >] 
‘}’

…

<Stm> ::= <SetTime> | <SetCol> | <Change> | <Move> | <Remove> | <Get> 
| <New> | <If > | <Loop> | <Block> | <Assert> | <Print> | <Return>

process attributes

scheduler behaviors

statements

Figure 3.1: The structure of the DSL

processes and the scheduler, such as a process can increase its priority, we provide an
interface to define the scheduling tasks performed by the process. That is defined in the
interface functions part (<InterDef>).

The main task of a scheduler is changing the running statuses of the processes in a
system. To represent these statuses, we use collections, which are defined in the data
part (<DatDef>). We can define the order of the processes by declaring a function in
the ordering part (<OrdDef>).

In this chapter, we use a system with the priority policy as an introductory example,
which is depicted in Figure 3.2. Our DSL contains two types of the specification: the
attributes of the processes and the behaviors of the scheduler as described before. With
this example, the behaviors of the processes, the attributes of the processes, and the
behaviors of the scheduler are specified in a) process program, b) process attribute, and
c) scheduler description, respectively.

3.2 Language for the Behaviors of the Processes

The processes in the system are specified in the process program using the modeling
language, which is based on Promela to specify the concurrent processes in the system.
To deal with the communication between the processes and the scheduler for performing
the scheduling tasks, we introduce several API functions as follows.

• Function sch_exec is to execute a process with its attributes (e.g. statement
sch_exec(P()) is for executing process P without initial values for its attributes).

• Function sch_get is to access the information managed by the scheduler (e.g.
statement sch_get(v, P, priority) is to assign the value of priority of process
P to variable v).

• Functions sch_api and sch_api_self are to execute the interface functions (e.g.
statement sch_api_self(terminate) calls interface function terminate, which
is defined in the scheduler description, to terminate the currently running process).
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int a, b; 
 
proctype P() { 
next:  
 if  
  :: (a+b) < 100000 -> a++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi; 
} 
 
proctype Q() {  
next: 
 if  
  :: (a+b) < 100000 -> b++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi;   
} 
 
init {  
 sch_exec(P());  
 sch_exec(Q());  
} 

scheduler Priority () {                         
 data {  
  collection ready using priorityOrder; 
 }       
              
  event handler {         
   select_process (process p) { 
    get process from ready to run;  
  }                              
 
  new_process (process target) {  
    move target to ready;         
    if (!running_process.isNull()) {      
    if (target.priority > running_process.priority) { 
     move running_process to ready;    
    }           
   }        
  }               
 }      
 
 interface {  
  function terminate(process target) { 
   remove target;  
  } 
 }  
}      
 
comparator { 
 variable { int x; } 
 comparetype priorityOrder(process p_n, p_o) {    
  x = p_n.priority - p_o.priority;  
  if (x>0) return greater; 
  else if (x==0) return equal; 
       else return less;      
 }      
}   
 

a) Process program 

def process Priority { 
 attribute{  
  var byte priority; 
 }               
 proctype P() {  
  this.priority = 5;  
 }     
 proctype Q() { 
  this.priority = 3; 
 }        
}   
init {  
 [{P(), Q()}] 
} 

b) Process attribute c) Scheduler description 
 

Figure 3.2: An introductory example

Figure 3.2.a indicates a system with two processes (P and Q) with shared variables
a and b. If the condition a + b < 100000 is satisfied, process P increases variable a,
while process Q increases variable b. Statement sch_api_self calls function terminate

(Figure 3.2.c) to terminate the currently running process. Statements sch_exec used in
init part determine that both of these two processes are executed at the initial time.

3.3 Language for Scheduling Policies

Our DSL provide two types of specifications for the policy: one for the attributes of the
processes and the other for the behaviors of the scheduler as <ProcDSL> and <SchDSL>

of the grammar1.

〈Model〉 ::= 〈ProcDSL〉 | 〈SchDSL〉

3.3.1 Attributes of the Processes

The attributes of the processes are used to carry out the scheduling tasks (especially
for selecting a process to run). The attributes of the processes (<ProcDSL>) includes:

1. the definition of the attributes (<ProcAttr>) (e.g. in the attribute part shown
in Figure 3.2.b, only attribute priority is defined),

2. the values for the attributes of each process at initial time (<Process>),

1See the Appendix A for the detailed language grammar.
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3. the declaration of the periodic/sporadic processes (<ProcConf>).

• each periodic process (<PeriodicP>) is determined using a period, and

• a sporadic process (<SporadicP>) is defined using the duration that the
process becomes ready and a number indicating the maximum instances of
the process.

An example to define these processes is depicted in Figure 3.3. With this example,
four processes with the same period (20) are defined. However, these processes
have different priority, deadline and initial offset. We handle the execution
of these processes by generating the corresponding variables and manage them
using the clock event (see Section 3.3.2 for more details), and

def process experiment1{                                                                 
 attribute {                                                                              
  clock c ;                             
  var byte priority ;              
  var byte deadline ;           
 }  
 proctype P(byte priority = 0; byte deadline = 10){    
  this.priority = priority;    
  this.deadline = deadline;                 
 }     
}             
      
config { 
 periodic process P(2,16) offset = 6 period = 20 ; 
 periodic process P(3,11) offset = 9 period = 20 ;  
 periodic process P(2,8) offset = 11 period = 20 ; 
 periodic process P(5,20) offset = 10 period = 20 ; 
} 

 

Figure 3.3: Defining periodic processes

4. the execution of the processes at the starting time (<ProcInit>) (defined in the
init part of the process attribute).

The grammar for the attributes of the processes is depicted in Figure 3.4.
In the introductory example, the value for the attribute (priority) of each pro-

cess is determined by a template (proctype). With this example, the priority of P is
greater than that of Q. The execution order of these processes is indicated in init part
using a partially ordered set ([{P(), Q()}]). Note that the init part in the process
program determines the existence of the processes using sch_exec statement(s) as de-
picted in Figure 3.2.a. But their execution order is defined in the init part of the
process attribute. This order affects the selection of the scheduler. With this example,
only process P can be selected (because this process has higher priority) although both
of these two processes are run at the initial time.

3.3.2 Scheduling Policy

The behaviors of the scheduler defining as <SchDSL> of the grammar2 (as depicted in
Figure 3.5) are specified in the scheduler description, which consists of the definition of

2The <Verify> part is for the analysis of behaviors of the system (see Chapter 4 for more details).
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〈ProcDSL〉 ::= ‘def’ ‘process’ ‘{’ [〈ProcAttr〉] 〈Process〉* ‘}’ [〈ProcConf 〉] [〈ProcInit〉]

〈ProcAttr〉 ::= ‘attribute’ ‘{’ 〈PAttr〉* ‘}’

〈PAttr〉 ::= [‘var’|‘val’] 〈Type〉〈ID〉 (‘,’〈ID〉)* [‘=’〈Value〉]‘;’

〈Type〉 ::= ‘int’ | ‘byte’ | ‘clock’

〈Process〉 ::= ‘proctype’ 〈ID〉 ‘(’[〈PramList〉]‘)’ ‘{’ 〈AttAss〉* ‘}’

〈PramList〉 ::= 〈PramAss〉 (‘;’ 〈PramAss〉)*

〈PramAss〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉 )* ‘=’ 〈Value〉

〈AttAss〉 ::= [‘this’ ‘.’] 〈ID〉 ‘=’ ( 〈Value〉 | 〈ID〉 ) ‘;’

〈ProcConf 〉 ::= ‘config’ ‘{’ 〈PConf 〉* ‘}’

〈PConf 〉 ::= 〈SporadicP〉 | 〈PeriodicP〉

〈SporadicP〉 ::= ‘sporadic’ ‘process’ 〈Proc〉 ‘in’ ‘(’ 〈INT 〉 ‘,’ 〈INT 〉 ‘)’ [‘limited’ 〈INT 〉] ‘;’

〈PeriodicP〉 ::= ‘periodic’ ‘process’ 〈Proc〉 ‘offset’ ‘=’ 〈INT 〉 ‘period’ ‘=’ 〈INT 〉 [‘limited’
〈INT 〉] ‘;’

〈Proc〉 ::= 〈ID〉 ‘(’ [〈Value〉 (‘,’ 〈Value〉)*] ‘)’

〈ProcInit〉 ::= ‘init’ ‘{’ ‘[’ 〈PSet〉 (‘,’ 〈PSet〉)* ‘]’ ‘}’‘;’

〈PSet〉 ::= ‘{’ 〈Proc〉 (‘,’ 〈Proc〉)* ‘}’

Figure 3.4: The grammar for the attributes of the processes

the scheduler (<SchDef>) and the definition of the methods for ordering the processes
(<OrdDef>).

The scheduler definition (<SchDef>) contains3:

1. the variables used by the scheduler (<VarDef>),

2. the data used by the scheduler (<DatDef>) containing the definition of the collec-
tions (<ColDef>) to store the processes,

3. the handlers for the events4 (<HandlerDef>), and

4. the interface functions (<InterDef>).

In the introductory example, there is no variable (as depicted in Figure 3.2.c). Only a
collection ready is used to store the processes following the ordering defined by function
priorityOrder. Here, we provide a mechanism to order the processes in a collection
by defining the comparison functions (<CompDef>), which are used to compare each two
processes in a collection. The return value (‘greater’, ‘less’ or ‘equal’) of the
function (using statement <Return>) indicates that the process will be placed in front
of (‘greater’), behind (‘less’) the other, or will have the same order (‘equal’) as
the other (as depicted in Figure 3.6). Using this function, the processes in the collection
are ordered.

To perform the scheduling policies, we handle the scheduling events.

• Three fixed system scheduling events : new_process, select_process, and clock

as indicated before with the corresponding handlers, which are specified as <EventDef>,
are defined in <HandlerDef>.

3The <Generate> part is for the test generation (see Chapter 5 for more details).
4The events pre_take, post_take and action are used for the test generation (see Chapter 5).

44



〈SchDSL〉 ::= 〈SchDef 〉 [〈OrdDef 〉] [〈Verify〉]

〈SchDef 〉 ::= ‘scheduler’ 〈ID〉 ‘(’ [〈ParamList〉] ‘)’ [‘refines’ 〈ID〉] ‘{’ [〈Generate〉] [〈VarDef 〉]
[〈DatDef 〉] [〈HandlerDef 〉] [〈InterDef 〉] ‘}’

〈VarDef 〉 ::= ‘variable’ ‘{’ 〈VDec〉* ‘}’

〈VDec〉 ::= [〈IfDef 〉] (〈VBlockDef 〉 | 〈VOneDef 〉)

〈IfDef 〉 ::= ‘#’ ‘ifdef’ ‘(’ 〈Expr〉 ‘)’

〈VBlockDef 〉 ::= ‘{’ 〈VOneDef 〉* ‘}’

〈VOneDef 〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉)* [‘=’ 〈Value〉] ‘;’

〈DatDef 〉 ::= ‘data’ ‘{’ 〈DDef 〉* ‘}’

〈DDef 〉 ::= [〈IfDef 〉] ‘data’ (〈DBlockDef 〉 | 〈DOneDef 〉)

〈DBlockDef 〉 ::= ‘{’ 〈DOneDef 〉* ‘}’

〈DOneDef 〉 ::= 〈VOneDef 〉 | 〈ColDef 〉

〈ColDef 〉 ::= [‘refines’] ‘collection’ 〈ID〉 [‘using’ 〈ID〉 (‘,’ 〈ID〉)*] [‘with’ 〈OrdType〉] ‘;’

〈OrdType〉 ::= ‘lifo’ | ‘fifo’

〈HandlerDef 〉 ::= ‘event’ ‘handler’ ‘{’ 〈EventDef 〉* ‘}’

〈EventDef 〉 ::= 〈Event〉 ‘(’ [〈ID〉] ‘)’ ‘{’ 〈IfDefStm〉* ‘}’

〈IfDefStm〉 ::= [〈IfDef 〉] 〈Stm〉

〈Event〉 ::= ‘select_process’ | ‘new_process’ | ‘clock’ | ‘pre_take’ | ‘post_take’ | ‘action’

〈InterDef 〉 ::= ‘interface’ ‘{’ 〈InterFunc〉* ‘}’

〈InterFunc〉 ::= ‘function’ 〈ID〉 ‘(’ [〈IParamList〉] ‘)’ ‘{’ 〈Stm〉* ‘}’

〈IParamList〉 ::= 〈IParamDec〉 (‘,’ 〈IParamDec〉)*

〈IParamDec〉 ::= 〈Type〉 〈ID〉

〈OrdDef 〉 ::= ‘comparator’ ‘{’ [〈CVarDef 〉] 〈CompDef 〉* ‘}’

〈CVarDef 〉 ::= ‘variable’ ‘{’ 〈VOneDef 〉* ‘}’

〈CompDef 〉 ::= ‘comparetype’ 〈ID〉 ‘(’ ‘process’ 〈ID〉 ‘,’ 〈ID〉 ‘)’ ‘{’ 〈Stm〉* ‘}’

Figure 3.5: The grammar for scheduling policies

comparator { 
 variable { int x; } 
 comparetype priorityOrder(process p_n, p_o) {    
  x = p_n.priority - p_o.priority;  
  if (x>0) return greater; 
  else if (x==0) return equal; 
       else return less;      
 }      
}   

 

Figure 3.6: Defining comparison function

• The events raised from the process (process scheduling events) using interface
functions (<InterFunc>) can be declared in the interface part (<InterDef>).

In Figure 3.7, the scheduler handles two system scheduling events and provides a
process scheduling events with function named terminate.

Several statements (defined as <Stm> of the grammar) are introduced to describe
the behaviors of the scheduler (as depicted in Figure 3.8).

The functionalities of these statements are as follows.
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...  
event handler {         
   select_process (process p) { 
    get process from ready to run;  
  }                              
 
  new_process (process target) {  
    move target to ready;         
    if (!running_process.isNull()) {      
    if (target.priority > running_process.priority) { 
     move running_process to ready;    
    }           
   }        
  }               
 }      
 
 interface {  
  function terminate(process target) { 
   remove target;  
  } 
 }  
... 
 

 

Figure 3.7: Handling scheduling events

〈Stm〉 ::= 〈SetTime〉 | 〈SetCol〉 | 〈Change〉 | 〈Move〉 | 〈Remove〉 | 〈Get〉 | 〈New〉 | 〈If 〉 | 〈Loop〉
| 〈Block〉 | 〈Assert〉 | 〈Print〉 | 〈Return〉 | 〈Gen〉 |〈GenLn〉

〈SetTime〉 ::= ‘time_slice’ ‘=’ 〈Expr〉 ‘;’

〈SetCol〉 ::= ‘return_set’ ‘=’ 〈ID〉 ‘;’

〈Change〉 ::= 〈ChgUnOp〉 | 〈ChgExpr〉

〈ChgUnOp〉 ::= 〈QualName〉 (‘++’ | ‘--’) ‘;’

〈ChgExpr〉 ::= 〈QualName〉 ‘=’ 〈Expr〉 ‘;’

〈QualName〉 ::= 〈ID〉 [‘.’〈ID〉]

〈Move〉 ::= ‘move’ 〈ID〉 to 〈ID〉 ‘;’

〈Remove〉 ::= ‘remove’ 〈ID〉 ‘;’

〈Get〉 ::= ‘get’ ‘process’ ‘from’ 〈ID〉 ‘to’ ‘run’ ‘;’

〈New〉 ::= ‘new’ 〈Proc〉 [‘,’ 〈INT 〉] ‘;’

〈If 〉 ::= ‘if’ ‘(’ 〈Expr〉 ‘)’ 〈Stm〉 [ ‘else’ 〈Stm〉 ]

〈Loop〉 ::= ‘for’ ‘each’ ‘process’ 〈ID〉 ‘in’ 〈ID〉 〈Stm〉

〈Block〉 ::= ‘{’ 〈Stm〉* ‘}’

〈Assert〉 ::= ‘assert’ 〈Expr〉 ‘;’

〈Print〉 ::= ‘print’ 〈Expr〉 ‘;’

〈Return〉 ::= ‘return’ 〈OrderType〉 ‘;’

〈OrderType〉 ::= ‘greater’ | ‘less’ | ‘equal’

〈Gen〉 ::= ‘gen’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

〈GenLn〉 ::= ‘genln’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

Figure 3.8: The grammar for statements

• The values of the variables and the attributes of the processes can be changed
using the following statements:

– <SetTime> to indicate the time slice for the current process,

– <SetCol> to determine the collection that contains the process after its exe-
cution time (i.e. time slice) and

– <Change> to change a variable or an attribute of a process.

For instance, statement “running_process.priority = 1;” sets the priority of
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the currently running process to 1.

• We can update the running status of a process using statements <Move>, <Remove>,
and <Get> by changing the collection containing this process. As depicted in Fig-
ures 3.7, statement “move running_process to ready;” is to move the current
process to the ready collection (the current process is preempted).

• Statement <New> is for executing a process, such as “new P();” is for executing
an instance of process P.

• The language also supports branch statement (<If>) and loop over a collection
statement (<Loop>).

For instance, statement “if(target.priority>running_process.priority){..}”
(as depicted in Figures 3.2) checks priority of process target with the current one
(running_process) to preempt the current process.

• Statements <Assert> and <Print> are used for tracking the behaviors of the
system. For instance, statement “print "x = " + Sys(x) ;” print the value of
variable x defined in the process program.

In Figure 3.7, when process target arrives, if it has higher priority is than the
currently running process, the running_process is preempted using <Move> statement
to put to ready collection. This makes the scheduler select another process. To do
this, the scheduler gets a process from this collection. This behavior is specified in
the select_process event handler using statement <Get>. The processes selected is
determined by the ordering method used by the collection. Function terminate in the
interface part is to terminate a process using statement <Remove>.

3.4 Language Semantics

We now give formal definitions for a system with the scheduler. Let PID be a set of
process identifiers, X be a set of variables and V be a set of values. We use ⊥ to denote
the non-determined value.

Definition 3.1 (Process state): A process state is a tuple 〈σg, σl〉, where σg :
X → V and σl : PID → (X → V).

• σg is the mapping from the set of the global variables to the set of values and

• σl is the mapping from the set of process identifiers to the mappings from the
local variables of a process to the set of values.

Here, the variables are defined in the process program. For instance, in Figure 3.2.a,
a and b are the global variables; there is no local variable. At the initial time, we have
a process state 〈{(a, 0), (b, 0)}, {}〉. We use Sproc to represent the set of process states.

Let Lproc = normal ∪ {get} ∪ scheduling be a set of labels represent the behaviors
of the processes, where:

• normal is a set of normal actions described in Promela. These actions are to
change the process state (e.g. in Figure 3.2.a, a++ represents a normal action).
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• get is an action to access the information of the scheduler. This action correspond
to function sch_get (e.g. statement sch_get(v, P, priority) is to assign the
value of priority of process P to variable v).

• scheduling = {api, exec} is a set of scheduling actions performed by the currently
running process using the API functions.

– The api action corresponds to the sch_api, and sch_api_self functions
called by the current process (e.g. in the example, sch_api_self(terminate)
represents an api scheduling action).

– The exec action is to execute a process by calling function sch_exec (e.g. in
the example, statement sch_exec(P()) represent an exec action).

These actions are handled by the event handlers and the interface functions speci-
fied in the scheduler description. In the example, function sch_api_self(terminate)

is handled by the interface function terminate.

Definition 3.2 (Process): A process is a tuple 〈Sp, Lp,Tp, s0〉, where Sp ⊆ Sproc
is a set of process states, Lp ⊆ Lproc is a set of labels, Tp ⊆ Sp × Lp × Sp is a set of
transitions, and s0 ∈ Sp is the initial state.

In this definition, Lp represents the set of actions of the processes (e.g., a++ is an
action of the processes). These actions change the states of the processes to represent
the transition relation Tp ⊆ Sp × Lp × Sp.

We use Σproc = [S1, ..., Si, ..., Sm] to denote a sequence of process states in a system,
where Si ∈ Sproc is a state of ith process and m is the number of the processes in the
system. This sequence is used to determined the state of the system.

Definition 3.3 (Process collection): A process collection is a tuple 〈Pid, �,∼〉,
where Pid ⊆ PID, � and ∼ are binary relations defined as follow:

• �⊆ PID × PID is an irreflexive, antisymmetric, transitive binary relation and

• ∼⊆ PID × PID is an reflexive, symmetric, transitive binary relation.

For instance, C = 〈Pid, �,∼〉 where Pid = {P1, P2, P3}, �= {(P1, P3), (P2, P3)}, and
∼= {(P1, P2)} determines a collection with 3 processes: process P1 and process P2 have
the same order, and they are placed in front of process P3.

We use the collections to denote the running statuses of the processes (such as
ready, blocked). In the example, we define only one collection named ready, which
uses the ordering method defined by function priorityOrder in the comparator part of
the scheduler description. This function compares two processes using their priority

values. The return value of this function determines the order of these two processes
(see Section 3.3.2 for more details). Based on that fact, the processes in this collection
are ordered. In this definition, the binary relations (� and ∼) are globally given. We
use COL to denote a set of collections.

Definition 3.4 (Scheduler state): A scheduler state is a tuple 〈σsch, (C1, ...,Ck), Pr〉,
where

• σsch : Xs ∪Xc ∪ {run, tslice, rcol} → V ∪ {⊥} is a mapping from the set of normal
variables (Xs ⊂ X), the set of clock variables (Xc ⊂ X) used by the scheduling
strategy, and the set of variables {run, tslice, rcol} ⊆ X to the set of values, where
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– run indicates the current process,

– tslice is the time slice to run of the current process, and

– rcol is the collection that stores the process after finishing its execution time.

• Ci ∈ COL, i ∈ N is a collection;

• Pr ⊆ PID ∪ {⊥} is a set of process identifiers represent the set of processes that
can be run.

The set of variables (Xs and Xc) used in the scheduling strategy is defined in the
scheduler description. The variables: run, tslice, and rcol are pre-defined. In some
states, these variable is non-determined (⊥). For instance, run = ⊥ means that there
is no running process. In this situation, the scheduler will select a process to run by
performing a select action (see the description of the behaviors of the scheduler below).

The set of collections {Ci}, i = 1..k (with the number of collections being fixed)
are also defined in the scheduler description. Pr is pre-defined to represent the set of
processes which can be run (determined by the scheduler). This set of processes is used
for indicating the possible states leading from the current state (by performing a process
action) in the search of the state space (see Chapter 4 for more details).

In the example (as depicted in Figure 3.2.c), only one collection (ready) is defined;
there is no variable. The time slice (with the collection containing the process after its
execution time) is not defined (i.e. using statement <SetTime> and <SetCol>). One of
the scheduler state of this system is 〈{run, tslice, rcol}, (ready), Pr〉, where a) run = P,
b) tslice = ⊥, c) rcol = ⊥, d) ready = 〈Pid, �,∼〉 with Pid = {P,Q}, �= {(P,Q)}, and
∼= {}, and e) Pr = {P}.

Definition 3.5 (System state): A system state is a tuple Σ = 〈Σproc, Σsch〉, where
Σproc = [S1, ..., Si, ..., Sm] is the sequence of the process states and Σsch = 〈σsch, (C1, ...,Ck), Pr〉

is a scheduler state.
The system state is derived from the set of processes and the scheduler. Therefore,

to represent a system state we use the states of the processes (a sequence of process
states) and the state of the scheduler. For the convenience of writing, we use both
〈Σproc, Σsch〉 and 〈[S1, ..., Sm], Σsch〉 to denote the system state. We indicate Ssys as the
set of system states.

Let Lsch = {select, clock, new, inter} be a set of labels representing the behaviors
(actions) of the scheduler, where:

• select, clock and new are the actions corresponding to the events select_process,
clock and new_process defined in the scheduler description, respectively, and

• inter is an action corresponding to the event raised by an interface function called
by the current process.

Definition 3.6 (System): A system is a tuple 〈Σs, Ls,Ts, Σ0〉, where Σs ⊆ Ssys is a
set of system states, Ls ⊆ (Lproc ∪ Lsch) is a set of labels, Ts ⊆ Σs × Ls × Σs is a set of
transitions, and Σ0 ∈ Σs is the initial state.

Note that Ls represents the set of behaviors/actions of the system including a) the
behaviors of the processes (Lproc) and b) the behaviors of the scheduler (Lsch). For in-
stance, sch_api_self(terminate) is an action of a process, the behavior of the sched-
uler indicated by the interface function terminate called by the function sch_api_self
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is an action of the scheduler. In this definition, Ts represents the transition relation be-
tween the system states. That relation is defined by both of the statements in Promela
for the behaviors of the processes and the statements in the DSL for the behaviors of
the scheduler.

We define the following functions to indicate the collection and to select processes
to run.

• Function getCol : PID → COL to determine the collection containing the pro-
cess. In the example, at the initial time, function getCol(P) returns ready.

• Function max : COL → 2PID is to select processes from a collection to run. We
have max(〈Pid, �,∼〉) = P, where P is the smallest set satisfying for any y ∈ Pid
there exists x ∈ P such that x % y with %=� ∪ ∼.

For example, suppose that a system has a collection named ready contains 3
processes: P1, P2, and P3 with their priorities being set to 2, 2, and 1, respec-
tively (the greater value means the higher priority). If this collection use pri-
ority ordering method, we have ready = 〈Pid, �,∼〉 with Pid = {P1, P2, P3},
�= {(P1, P3), (P2, P3)}, and ∼= {(P1, P2)}. Function max(ready) returns {P1, P2}.
That means the set of processes selected is {P1, P2}.

The semantics of the primitive functions defined by the statements in the DSL is
described by the transition relations between the system states as follows.

• Change the value of a variable

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
v=〈exp〉
−−−−−−→ 〈Σp, 〈σs[nexpo/v], (C1, ...,Ck), Pr〉〉, where v is a

variable used by the scheduler, σs[nexpo/v] means replacing the value of v by the
value of nexpo obtained by evaluating expression exp.

This function corresponds to the statements <Change>, <SetTime> and <SetCol>

of the DSL to change the values of the variables used in the strategy.

〈SetTime〉 ::= ‘time_slice’ ‘=’ 〈Expr〉 ‘;’
〈SetCol〉 ::= ‘return_set’ ‘=’ 〈ID〉 ‘;’

〈Change〉 ::= 〈ChgUnOp〉 | 〈ChgExpr〉

〈ChgUnOp〉 ::= 〈QualName〉 (‘++’ | ‘--’) ‘;’
〈ChgExpr〉 ::= 〈QualName〉 ‘=’ 〈Expr〉 ‘;’

For instance, statement “time_slice = 1;” will change the state of the system
as follows.

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
time slice = 1
−−−−−−−−−−−−→ 〈Σp, 〈σs[1/tslice], (C1, ...,Ck), Pr〉〉

• Remove a process

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
rem(p)
−−−−−→ 〈Σ′p, 〈σs, (C′1, ...,C

′
k), P

′
r〉〉 with Σp = [S1, ..., Si, ..., Sm],

Si is the state of process p, where Σ′p = [S1, ..., Si−1, Si+1, ..., Sm] and C′i = 〈Pi−{p}, �i
,∼i〉 with Ci = 〈Pi, �i,∼i〉, i ∈ N and P′r = Pr − {p} (P − {p} means removing p
from P).

The function is defined by the statement <Remove> of the grammar to remove a
process from the system.
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〈Remove〉 ::= ‘remove’ 〈ID〉 ‘;’

For instance, suppose that a collection C1 = 〈Pid, �,∼〉 with Pid = {P,Q}, �= {},
and ∼= {(P,Q)}. Statement “remove P;” will procedure the following result.

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
remove P;
−−−−−−−−→ 〈Σ′p, 〈σs, (C′1, ...,Ck), Pr〉〉 with

Σp = [S1, ..., Si, ..., Sm], where Σ′p = [S1, ..., Si−1, Si+1, ..., Sm], Si is the state of process
P, and C′1 = 〈{Q}, �,∼〉.

• Move a process to a collection

– If p is a new process5 then

〈Σp, 〈σs, (C1, ...,Ci, ...,Ck), Pr〉〉
mov(p,Ci)
−−−−−−−→ 〈Σp, 〈σs, (C1, ...,C′i , ...,Ck), Pr〉〉, where

C′i = 〈Pi ∪ {p}, �i,∼i〉 with Ci = 〈Pi, �i,∼i〉, i ∈ N.

– If p is the current process then

〈Σp, 〈σs, (C1, ...,Ci, ...,Ck), Pr〉〉
mov(p,Ci)
−−−−−−−→ 〈σs[⊥ /run], (C1, ...,C′i , ...,Ck), Pr〉〉, where

C′i = 〈Pi ∪ {p}, �i,∼i〉 with Ci = 〈Pi, �i,∼i〉, i ∈ N.

– If p belongs to collection Ci then

〈Σp, 〈σs, (C1, ...,Ci, ...,Cj, ...,Ck), Pr〉〉
mov(p,Cj )

−−−−−−−→ 〈Σp, 〈σs, (C1, ...,C′i , ...,C
′
j, ...,Ck), Pr〉〉,

where getCol(p) = Ci, with Ci = 〈Pi, �i,∼i〉, i ∈ N, C′i = 〈Pi − {p}, �i,∼i〉, and
C′j = 〈Pj ∪ {p}, � j,∼ j〉 with Cj = 〈Pj, � j,∼ j〉, j ∈ N.

The function is defined by the statement <Move> of the grammar to change the
execution status of the corresponding process.

〈Move〉 ::= ‘move’ 〈ID〉 to 〈ID〉 ‘;’

For instance, suppose that we have a collection ready: C1 = 〈Pid1, �1,∼1〉 with
Pid1 = {P,Q}, �1= {}, and ∼1= {(P,Q)}; a collection blocked: C2 = 〈Pid2, �2,∼2〉
with Pid2 = {}, �2= {P,Q}, and ∼2= {}.

Statement “move P to block;” will procedure the following result.

〈Σp, 〈σs, (C1,C2, ...,Ck), Pr〉〉
move P to block;
−−−−−−−−−−−−−−→ 〈Σp, 〈σs, (C′1,C

′
2, ...,Ck), Pr〉〉, where

C′1 = 〈{Q}, �1,∼1〉, and C′2 = 〈{P}, �2,∼2〉.

• Select processes from a collection to run

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
select(Ci)
−−−−−−−→ 〈Σp, 〈σs, (C1, ...,Ck), P′r〉〉, where Ci = 〈Pi, �i,∼i〉,

i ∈ N, and P′r = max(〈Pi, �i,∼i〉).

The function is defined by the statement <Get> of the grammar.

〈Get〉 ::= ‘get’ ‘process’ ‘from’ 〈ID〉 ‘to’ ‘run’ ‘;’

For instance, suppose that a collection ready: C1 = 〈Pid1, �1,∼1〉 with Pid1 =
{P,Q}, �1= {}, and ∼1= {(P,Q)}. Statement “get process from ready to run;”
will procedure the following result.

5a new process does not belong to any collection
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〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
get process from ready to run;
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈Σp, 〈σs, (C1, ...,Ck), P′r〉〉, where

P′r = {P,Q}.

The statement <Move>, <Remove> and <Get> are used to update the running status
of a process by changing the collection contains this process.

To define the semantics of non-primitive functions for the branch statement (<If>)
and loop over a collection statement (<Loop>) of the DSL, we consider a group of
statements as a single statement (called a block statement) and use the transitive closure
for representing the transition relation.

• Branch statement. A branch statement is represented as i f (bexp, st1, st2), where
bexp is a boolean expression, st1 and st2 are block statements. If nbexpo = true

then Σ
i f (bexp,st1,st2)
−−−−−−−−−−−→ Σ1, where Σ(

st1
−−→)+Σ1 else Σ

i f (bexp,st1,st2)
−−−−−−−−−−−→ Σ2, where Σ(

st2
−−→)+Σ2.

The relation (
s
−→)+ indicate the closure of

s
−→ (i.e., the rule

s
−→ is applied once or

more times depend on the set of statements in the block statement s until it can
not proceed any more).

For instance, suppose that a collection ready: C1 = 〈Pid1, �1,∼1〉 with Pid1 = {Q},
�1= {(P,Q)}, and ∼1= {}. This collection uses priority ordering method. The
current process is P. The following statement

if (P.priority > Q.priority)

move P to ready;

will procedure the following result.

〈Σp, 〈σs, (C1, ...,Ck), Pr〉〉
if (P.priority > Q.priority) ...;
−−−−−−−−−−−−−−−−−−−−−−−−→

〈Σp, 〈σs[⊥/run], (C′1, ...,Ck), Pr〉〉, where C′1 = 〈{(P,Q)}, �1,∼1〉.

• Loop over a collection. A loop statement can be represented as f or(p, [p1, ..., pk], st),
where p is the loop variable, [p1, ..., pk] is a sequence of process identifiers repre-
sents a total order of the process in a collection6, and st is a statement7. We have

Σ
f or(p,[p1,...,pk ],st)
−−−−−−−−−−−−−−→ Σk , where Σ(

p=p1;st
−−−−−−→)+Σ1, ..., Σk−1(

p=pk ;st
−−−−−−→)+Σk with “p = pi”

meaning assigning pi for p and “p = pi; st” representing a sequence of statements.

For instance, suppose that a collection ready: C1 = 〈Pid1, �1,∼1〉 with Pid1 =
{P,Q}, �1= {(P,Q)}, and ∼1= {} and collection blocked: C2 = 〈Pid2, �2,∼2〉 with
Pid2 = {}, �2= {}, and ∼2= {(P,Q)}.

Statement “for each process p in ready move p to block;” will procedure
the following result.

〈Σp, 〈σs, (C1,C2), Pr〉〉
for each process p in ready ...;
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈Σp, 〈σs, (C′1,C

′
2), Pr〉〉, where

C′1 = 〈{}, �1,∼1〉 and C′2 = 〈{(P,Q)}, �2,∼2〉.

The behaviors of the scheduler are defined in the scheduler description. These be-

6in our approach, we use the identifiers of the processes to define the order
7a statement can be a block statement (a sequence of statements)
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haviors are handled by the scheduler using the events corresponding to these actions:
new, select, clock, and api as explained before. Each event is specified using the DSL
statements defined by the primitive functions above. The semantic of these behaviors
of the scheduler is as follows.

• New event. 〈[S1, ..., Sm, Sm+1], Σs〉(
new
−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′
s〉

This event is defined in new_process event handler, which is performed when a
process arrives. It happens when the current process executes another process
or the system initialize its processes at the starting time (i.e. using sch_exec

statements).

For instance, suppose that the system has a collection named ready: C1 =

〈Pid1, �1,∼1〉 with Pid1 = {}, �1= {}, ∼1= {}. The event new_process is de-
fined as follow.

new_process (process target) {

move target to ready ;

}

If the current process executes statement sch_exec("P") to execute the process
P. The state of the system is changed as follows.

〈[S1, ..., Sm, Sm+1], Σs〉(
new
−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′
s〉 with Σs = 〈σs, (C1), Pr〉, where

Sm+1 is the state of process P, and Σ′s = 〈σs, (C′1), Pr〉 with C′1 = 〈Pid′1, �1,∼1〉 and
Pid′1 = {P}.

• Select event. 〈Σp, Σs〉(
select
−−−−→)+〈Σp, Σ

′
s〉

This event is defined in select_process event handler, which is performed when
the scheduler selects a process to run.

For instance, suppose that a collection ready: C1 = 〈Pid1, �1,∼1〉 with Pid1 =
{P,Q}, �1= {P,Q}, and ∼1= {}. The event new_process is handed as follows.

select_process (process target) {

get process from ready to run;

}

If there is no current process, the scheduler will perform the select action to
select a process to run. The state of the system is changed as follows.

〈Σp, Σs〉(
select
−−−−→)+〈Σp, Σ

′
s〉 with Σs = 〈σs, (C1), Pr〉, where Σ′s = 〈σs, (C1), P′r〉, where

P′r = {P}.

• Inter event. 〈Σp, Σs〉(
api
−−→)+〈Σ′p, Σ

′
s〉

This event is defined by the interface functions, which is performed by the current
process (executes an API to call an interface function). Note that the process
state can be changed (e.g. the current process terminates itself) and a clock event
happens after this action (see the description of a sequence-action below).

For instance, if process P is currently running and terminates itself by execut-
ing statement sch_api_self(terminate). Function terminate is defined in the
scheduler description (as shown below). The state of the system is changed as
follows.

53



function terminate(process target) {

remove target;

}

〈Σp, 〈σs, (C1), Pr〉〉(
inter
−−−→)+〈Σ′p, 〈σs[⊥/run], (C1), P′r〉〉 with Σp = [S1, ..., Si, ..., Sm],

where Σ′p = [S1, ..., Si−1, Si+1, ..., Sm] with Si is the state of the current process, and
P′r = Pr − {P}.

• Clock event. 〈Σp, Σs〉(
clock
−−−−→)+〈Σp, Σ

′
s〉

This event is defined in clock event handler which is performed after each action
of the current process. It is used for handling the timer event. Beside changing
the scheduler state using the statements defined in the clock event handler, each
clock variable used in the scheduling strategy is increased by 1 when this event is
handled: σ′(c) = σ(c)+1, where c ∈ Xc is a clock variable defined in the scheduler
description. Note that the clock event still occurs when the current process has
no enabled action.

For instance, if we do not define any clock variable, no execution time is indicated
(i.e. using statement <SetTime>), and the timer event in the scheduler description
(i.e. clock event handler) is not define, the clock event will do nothing and the
state of the system is not changed as follows.

〈Σp, Σs〉(
clock
−−−−→)+〈Σp, Σs〉

At the initial state Σ0, the scheduler selects a process to run by performing the
select action. Following an action performed by the current process, a sequence-action
happens as follows.

• Let a ∈ normal∪{get} be an action8 of process Pi and 〈Si, a, S′i 〉 ∈ Tpi be a transition
of this process, two corresponding actions happen in the following sequence:

1. 〈[S1, ..., Si, ..., Sm], Σsch〉
a
−→ 〈[S1, ..., S′i, ..., Sm], Σsch〉

2. 〈[S1, ..., S′i, ..., Sm], Σsch〉(
clock
−−−−→)+〈[S1, ..., S′i, ..., Sm], Σ

′
sch〉.

For instance, suppose a system has only process P that is currently running; this
process uses a variable named a; the scheduler does not handle the clock event.
This process performs statement “a = 1;” to change its state from S1 to S′1. The
state of the system is changed as follows.

1. 〈[S1], 〈σs, (C1, ...,Ck), Pr〉〉
a = 1;
−−−−−→ 〈[S′1], 〈σs, (C1, ...,Ck), Pr〉〉

2. 〈[S′1], 〈σs, (C1, ...,Ck), Pr〉〉(
clock
−−−−→)+〈[S′1], 〈σs, (C1, ...,Ck), Pr〉〉

• If the current process performs an exec action, three actions happen in the follow-
ing sequence:

8Here, get is considered as an action to change the value of a variable.
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1. 〈[S1, ..., Sm], Σsch〉
exec
−−−→ 〈[S1, ..., Sm, Sm+1], Σsch〉

2. 〈[S1, ..., Sm, Sm+1], Σsch〉(
new
−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′
sch〉

3. 〈[S1, ..., Sm, Sm+1], Σ
′
sch〉(

clock
−−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′′
sch〉.

For instance, suppose that the system has a collection named ready: C1 =

〈Pid1, �1,∼1〉 with Pid1 = {}, �1= {(P,Q)}, ∼1= {}. The scheduler does not
handle the clock event and the event new_process is defined as follows.

new_process (process target) {

move target to ready ;

}

If the current process executes statement sch_exec("P") to execute the process
P (an exec action). The state of the system is changed as follows.

1. 〈[S1, ..., Sm], Σsch〉
exec
−−−→ 〈[S1, ..., Sm, Sm+1], Σsch〉, where Sm+1 is the state of the

new process P,

2. 〈[S1, ..., Sm, Sm+1], Σs〉(
new
−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′
s〉 with Σs = 〈σs, (C1), Pr〉, where

Σ′s = 〈σs, (C′1), Pr〉 with C′1 = 〈Pid′1, �1,∼1〉 and Pid′1 = {P},

3. 〈[S1, ..., Sm, Sm+1], Σ
′
sch〉(

clock
−−−−→)+〈[S1, ..., Sm, Sm+1], Σ

′
sch〉.

• If the current process performs an api action that raises an inter action taken by
the scheduler, two actions happen in the following sequence:

1. 〈Σproc, Σsch〉
inter
−−−→ 〈Σ′proc, Σ

′
sch〉

2. 〈Σ′proc, Σ
′
sch〉(

clock
−−−−→)+〈Σ′proc, Σ

′′
sch〉.

For instance, if the current process executes statement sch_api_self(terminate)
(an api action) to call api function terminate defined in the scheduler description
as indicated below to terminate itself (an inter action) and the scheduler does not
handle the clock event. The state of the system is changed as follows.

function terminate(process target) {

remove target;

}

1. 〈Σp, 〈σs, (C1), Pr〉〉(
inter
−−−→)+〈Σ′p, 〈σs[⊥/run], (C1), P′r〉〉 with Σp = [S1, ..., Si, ..., Sm],

where Σ′p = [S1, ..., Si−1, Si+1, ..., Sm] with Si is the state of the current process.

2. 〈Σ′proc, Σ
′
sch〉(

clock
−−−−→)+〈Σ′proc, Σ

′
sch〉.

We note that if there is no currently running process after the occurrence of these
sequence-actions above, the scheduler will perform the select action to select a process
to run.

In the example (as indicated in Figure 3.2), when a process executes the statement
sch_api_self(terminate) to terminate itself (an api action), the scheduler will handle
this task by performing the function terminate (an inter action). Because the scheduler
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does not use any clock variable9 and the handler for the clock event is not defined;
therefore, nothing happens for the clock action. After that, because the running process
is not determined, the scheduler will select another process to run (a select action).

3.5 Summary

We have introduced the DSL for the scheduling strategy. Each specification contains
the following two parts: one for the attributes of the processes and the other for the
behaviors of the scheduler. The attributes of the processes are used for performing the
scheduling tasks, which are handled by the corresponding events. Some fixed events
are introduced. Moreover, we also support defining the events raised from the current
process to carry out the scheduling tasks. The process selected to run defined by the
ordering method used by the collection, which stores the processes in the system. The
behaviors of the scheduler are defined using the statements in the DSL.

With this language, we provide a method to specify the scheduling strategies. Ac-
tually, the DSL can facilitate the scheduling strategy by changing the definition of the
behaviors of the scheduler using the corresponding statements. In this chapter, we in-
troduced the formal definitions to indicate the system with the scheduling policy. We
also introduced the language semantics represented by the transition relation between
the system states. In the next chapter, we will consider the algorithm based on the
scheduling strategies to search the states for verifying the behaviors of the system.

9Each clock variable is automatically increased by 1 after the occurrence of a process action.
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Chapter 4

Verifying and Analyzing Systems
under Scheduling Policies

This chapter introduces an algorithm to explore the state space under the scheduling
policy described in the DSL to verify the behaviors of the system. We then present
an approach to generating the information from the scheduling strategy to perform the
scheduling tasks. For analyzing the behaviors of the system, we adopt the algorithm
proposed by Clarke, Emerson, and Sistla [24] to check properties expressed as a CTL
formula and an algorithm introduced in [36] by Emerson et al. to handle RTCTL
formula (see Chapter 2). In order to check the properties in a form of a CTL/RTCTL
formula, we provide a support for taking the time into account with handling clock

event in the scheduling policy.

4.1 Search Algorithm with Scheduling Policies

We use a system with two processes t1 and t2 as shown in Figure 4.1 to demonstrate
the case that takes the scheduling into account to search the system states. With this
example, the system uses the priority strategy and the priority of t1 is greater than
that of t2. Figure 4.2 shows the policy and the attributes of the processes in the DSL.

At the initial state, because process t1 has higher priority than process t2, process
t1 is selected to run. The executions of these processes now are limited by the scheduler
(as depicted in Figure 4.3): only an execution is determined (process t1 is first selected).
Note that in the case that the priority of process t1 is less than that of t2, process t2

is selected to run; thus, we have another execution.
Because the scheduling strategy affects to the running order of a system, the execu-

tions determined by the policy are different from that defined by the existing algorithms
(e.g. DFS or BFS) to search the states. Therefore, to perform the scheduling policy,
we need another algorithm to explore the state space. In this research, we propose an
algorithm for constructing the state graph. The search algorithm is shown in Algorithm
3. It is extended from the DFS with the two main differences as follows.

• Firstly, the scheduler determines a process that can be selected from a set of
candidate processes.

• Secondly, both the behaviors of the scheduler and the behaviors of the processes
are taken into account in the exploration.
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int a, b; 
  
proctype t1() { 
 do 
  :: d_step{ (a+b)<5 -> a++} 
  :: d_step{ else -> sch_api_self(terminate) } 
 od; 
} 
  
proctype t2() { 
 do 
  :: d_step{ (a+b)<5 -> b++} 
  :: d_step{ else -> sch_api_self(terminate) } 
 od; 
} 
  
init { 
 a = 2; b = 0; 
 run t1(); 
 run t2(); 
} 

 

Figure 4.1: A process program

def process Priority { 
 attribute{  
  var byte priority; 
 }               
 proctype t1() {  
  this.priority = 5;  
 }     
 proctype t2() { 
  this.priority = 3; 
 }        
}   
init {  
 [{t1(), t2()}] 
} 

scheduler Priority () {                         
 data {  
  collection ready using priorityOrder; 
 }                  
  event handler {         
   select_process (process p) { 
    get process from ready to run;  
  }                              
 
  new_process (process target) {  
    move target to ready;         
    if (!running_process.isNull()) {      
    if (target.priority > running_process.priority) { 
     move running_process to ready;    
    }           
   }        
  }               
 }   
 interface {  
  function terminate(process target) { 
   remove target;  
  } 
 }  
}   
comparator { 
 variable { int x; } 
 comparetype priorityOrder(process p_n, p_o) {    
  x = p_n.priority - p_o.priority;  
  if (x>0) return greater; 
  else if (x==0) return equal; 
       else return less;      
 }   
}   

a) Process attribute b) Scheduler description 
 

Figure 4.2: Priority policy
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t2: b++
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(5, 0)

t1: a++
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t2: b++
t1: a++
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t2: b++

t1: a++

t2: b++

Process t1 is selected for 
the execution

Priority scheduling policy

t1.priority > t2.priority

Figure 4.3: Exploring the states with scheduling policy

As we see in the previous chapter, the system state includes the scheduler state and
the sequence states of the processes. In this algorithm, we also use a state space SP
and a stack ST . To update the contents of the state space, we use following functions:
Add state(SP, Σ) to add state Σ as an element, and Contains(SP, Σ) to check whether
element Σ has been visited or not. The stack is for storing the search steps with the
corresponding operations Push, Top, and Pop.

This algorithm performs the search starting from function START (line 5) to visit the
states of the system starting at state Σ0. The scheduler state is initialized by function
SCH_INIT (line 6). Function SCH_SELECT (line 15) corresponding to event select process
is to get the processes for the execution. This action is handled by the select_process

event handler. Because the processes in the collection are ordered, a set of processes
can be returned. If no process can be run, it returns an empty set (line 16). All of the
actions1 which can be performed are considered (line 25, 26). The state of the system
is updated using function SCH_TAKE following an action a of the process (line 27): Σa =

SCH_TAKE(a, Σ). This function represents the following behaviors:

• the behavior of the process defined by the transition 〈Si, a, S′i 〉 ∈ Tp, where Si and
S′i are the states of the process and a ∈ normal ∪ {get} is an action of the process;

• the behavior of the process and the behavior of the scheduler corresponding to
a scheduling action a ∈ {api, exec} of the process (i.e. handling the scheduling
events).

Function SCH_CLOCK (line 17, 28) is used to perform the behaviors related to time
(defined by the clock event handler and the configuration of the processes).

To construct the state graph, the algorithm starts with the initial state of the system.
Line 9 assigns the starting node of the graph. Function NODE (line 9, 18, 29) creates a
new node (if it does not exist) corresponding to a system state. Following each search
step, the edge between the current node and the new node is created. This is done by
function EDGE (line 18, 29).

The functions SCH_SELECT, SCH_TAKE and SCH_CLOCK used in this algorithm to de-
termine the transition relation 〈Σ, a, Σ′〉 ∈ Ts of the system. We do not show in this

1Each process can have many actions which can be performed non-deterministically.
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Algorithm 3 Construct the state graph following the scheduling strategy

1: Stack: ST = ∅
2: State space: SP = ∅
3: Start node: StartNode = null
4:

5: procedure Start
6: Σ0 = SCH INIT() . initializes system state
7: Push(ST , Σ0) . pushes system state to stack
8: Add state(SP, Σ0) . adds a state to the state space
9: StartNode = NODE(Σ0)

10: Search
11: end procedure
12:

13: procedure Search
14: Σ = Top(ST )
15: P = SCH SELECT(Σ)
16: if (P == ∅) then
17: Σt = SCH CLOCK(Σ)
18: EDGE(NODE(Σ), NODE(Σt))
19: if (Contains(SP, Σt) == f alse) then
20: Push(ST , Σt)

21: Add state(SP, Σt)

22: Search
23: end if
24: else
25: for (p ∈ P) do
26: for (a ∈ p.Lp) do . a is an action of p
27: Σa = SCH TAKE(a, Σ)
28: Σa

t = SCH CLOCK (Σa)

29: EDGE(NODE(Σ, NODE(Σa
t ))

30: if (Contains(SP, Σa
t ) == f alse) then

31: Push(ST , Σa
t )

32: Add state(SP, Σa
t )

33: Search
34: end if
35: end for
36: end for
37: end if
38: Pop(ST )
39: end procedure

algorithm the way to handle the errors. However, because the stack ST records the
searching steps, if an error occurs (e.g. violating an invariance) when the system takes
an action (i.e. using the function SCH_TAKE), we can display the counterexample by
exporting the trail from this stack. In addition, with the algorithm proposed, we can
perform the two searches as in the nested-depth first search to check the liveness prop-
erties under the scheduling policy.
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Following this algorithm, the exploration of the state space in the example (Figure
4.1) with the priority policy shown in Figure 4.2 is depicted in Figure 4.4. The execution
steps are as follows.

(2, 0)

(3, 0)

t1: a++

(4, 0)

(2, 1)

t2: b++

(3, 1)

t1: a++

t2: b++

t1: a++

(2, 2)

t2: b++

��

(5, 0)

t1: a++

(4, 1)

t2: b++
t1: a++

(3, 2) (2, 3)

t2: b++

t1: a++

t2: b++

SCH_TAKE: t1 terminates
SCH_SELECT: t2 is selected
SCH_TAKE: t2 terminates

Priority scheduling policy

t1.priority > t2.priority

SCH_TAKE:
t1 performs: a++

SCH_SELECT:
t1 is selected

��

��

��

Figure 4.4: An example for exploring the state space

1. At the initial state, the values of the variables are initialized: (a, b) = (2, 0),
and we have two processes in the system (i.e. t1 and t2).

2. The function SCH_SELECT is performed to select a process to run. As a result, a
set of processes are returned. In fact, it contains only process t1. That is because
process t1 has higher priority than that of t2.

3. Now, the action a++ of t1 is performed to increase value of variable a. This is
done by function SCH_TAKE.

4. Because we use the priority scheduling policy, the execution time is not consid-
ered. Therefore, the function SCH_CLOCK does nothing and a new node is created
(corresponding to the state with (a, b) = (3, 0)).

5. Actually, process t1 continues executing the statement a++ while the condition
(a+b) < 5 satisfies. This fact will change the states of the system following this
sequence: S0, S1, S2, S3.

6. At the state S3, process t1 terminates. Now the scheduler perform the select

action (SCH_SELECT), only process t2 is selected to run. However, this process
also terminates because the condition (a + b) < 5 does not satisfy. Now, the
exploration is finished.
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4.2 Generating Scheduling Information

In this research, the information necessary for performing the policy is generated from
the specification of the scheduling strategy in the DSL. We note that the behaviors of the
scheduler are realized from the scheduling strategy (i.e. scheduling event(s) defined in
event handler(s) and interface function(s)). For instance, the selection of the scheduler
is defined by select_process event handler; the scheduling event corresponds to the
fact that current process terminates itself is defined by interface function terminate

(as indicated in Figure 4.5).

... 
  event handler {         
   select_process (process p) { 
    get process from ready to run;  
  }                              
 
  new_process (process target) {  
    move target to ready;         
    if (!running_process.isNull()) {      
    if (target.priority > running_process.priority) { 
     move running_process to ready;    
    }           
   }        
  }               
 }   
 interface {  
  function terminate(process target) { 
   remove target;  
  } 
 }  
}   
... 
 

 

Figure 4.5: Scheduling events

The generation is depicted in Figure 4.6.

• The variables (1) are converted from the scheduler data.

• The template(s) (proctype) for the process(es) and the attributes of the processes
are used to generate process information (2).

• The collections in scheduler data is used to generate process collections (3), which
use the ordering methods declared in the scheduler description.

• The process initialization (i.e. init part of the process attributes) defines the
initial function in (4).

• Other functions in (4) are also realized from the interface functions.

• The events are used to generate event handlers (5).

Using this information and the functions above, we can perform the search algorithm
following the scheduling strategy.
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Figure 4.6: Scheduling information generation approach

4.3 Analyzing Systems with Scheduling Policies

We introduce an approach to analyze system under scheduling policy based on labeling
the graph realized from the state space. We use a CTL/RTCTL formula to represent the
qualitative/quantitative property. This approach is different from the current algorithms
that construct the state space and evaluates the property on-the-fly.

In fact, with the algorithm to search the system states above we can verify the
system qualitatively. However, it is still insufficient to capture the time related to the
behaviors of the system. To deal with the time, we use timed-Kripke structure [36] for
modeling the system with considering that an action consumes one tick.

• To represent the time, we use the clock variables to capture the time. In our
research, we also consider the period of tasks and support the definitions of pe-
riodic behaviors in the DSL. An example for the definition is depicted in Figure
4.7. With this example, four periodic processes with the same period (20) are
defined. However, these processes have different values for initial offset, priority,
and deadline.

• Taking an action of a process will consume 1 tick and raise a timer event. This
event is handled by the scheduler using the clock event handler. Figure 4.8 shows
a simple example to check the deadline by handling the clock event.

For the analysis, we provide some language elements to support the definition of the
property and observing the behaviors of the processes. The property is defined in the
verify part of the scheduler description following the grammar shown in Figure 4.9.

The behaviors of the system can be observed using checkpoint statement. Corre-
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def process experiment1{                                                                 
 attribute {                                                                              
  clock c ;                             
  var byte priority ;              
  var byte deadline ;           
 }  
 proctype P(byte priority = 0; byte deadline = 10){    
  this.priority = priority;    
  this.deadline = deadline;                 
 }     
}             
      
config { 
 periodic process P(2,16) offset = 6 period = 20 ; 
 periodic process P(3,11) offset = 9 period = 20 ;  
 periodic process P(2,8) offset = 11 period = 20 ; 
 periodic process P(5,20) offset = 10 period = 20 ; 
} 

 

Figure 4.7: Dealing with time

scheduler FP(){     
 data {        
  collection ready using priorityOrder;       
 }                                                
  event handler {                 
   select_process (process p ) {       
    get process from ready to run;             
   }   
   clock (){ 
    if (!running_process.isNull()) { 
     assert running_process.c <= running_process.deadline ; 
    }  
   }                
   new_process (process target) { 
    move target to ready;  
    if (!running_process.isNull()) {      
    if (target.priority > running_process.priority) { 
     move running_process to ready;            
    }               
   }                       
  }               
 }                
}   

 

Figure 4.8: Handling the timer event

sponding to the execution of this statement, the state of the system is labeled with the
corresponding value for the variable determined by this statement (this variable is auto-
matically generated, see the explanation below). An example for using the language to
define the analysis is depicted in Figure 4.10. With this example, the property indicates
that for every execution, the value of a always greater than or equal to that of b within
2 time units (AG<=2 (Sys(a) >= Sys(b))); we use two checkpoint statements with
the label exec_t1 for checking the execution of process t1, and end_t2 for checking the
termination of process t2.

To analyze the behaviors of the system under scheduling policies, now the first step
(constructing the state space) is changed to realize the state graph. In the second step,
we also adopt the existing algorithms to label the state graph (as mentioned before).
These steps are depicted in Figure 4.11.
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〈Verify〉 ::= ‘verify’ ‘{’ [〈CTL AT 〉] 〈CTL〉 ‘}’

〈CTL AT 〉 ::= ‘@’ 〈Expr〉 ‘:’

〈CTL〉 ::= ‘(’ 〈Expr〉 ‘)’ | ‘not’ 〈CTL〉 | ‘or’ 〈CTL〉 〈CTL〉 | ‘implies’ 〈CTL〉 〈CTL〉 | ‘AX’
〈CTL〉 | ‘AF’ 〈CTL〉 | ‘AG’ 〈CTL〉 | ‘EX’ 〈CTL〉 | ‘EF’ 〈CTL〉 | ‘EG’ 〈CTL〉 | ‘AU’ 〈CTL〉
〈CTL〉 | ‘EU’ 〈CTL〉 〈CTL〉

Figure 4.9: The grammar for the property

scheduler Priority () {                                

 data {  

  collection ready using priorityOrder; 

 }                    

  event handler {             

   select_process (process p) {           

    get process from ready to run;   

    if (p.hasName("t1")) checkpoint exec_t1 ;   

   }                              

   new_process (process target) {    

    move target to ready;          

    ...                          

  }               

 }       

 interface {  

  function terminate(process target) { 

   if (target.hasName("t2")) checkpoint end_t2; 

   remove target; 

  }   

 }   

}   

comparator { 

... 

}       

verify { 

  AG <=2 (Sys(a) >= Sys(b)) 

}   

 

Figure 4.10: Language elements for the analysis

In addition, corresponding to each checkpoint statement, each node of the graph is
labeled with the numbers representing the values for the earliest time and the latest
time (min, max ) for the events perform the statement. These values are updated when
the state is visited. If a loop is detected from the DFS stack, all events with the
corresponding checkpoint statements will occur infinitely.

4.4 Summary

We have introduced an algorithm to construct the state graph based on the behaviors
of the scheduler to model checking a system and verify its behaviors quantitative and
qualitatively. With this algorithm, the behaviors of the scheduler are taken into account
to search the system states. However, until now we expect that the scheduling strategy
is specified correctly in the DSL. In the next chapter, we will validate the specification
of the strategy in the DSL based on testing the policy with the implementation of the
scheduler in a real OS to increase the confidence of specification of the scheduling policy.
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Step 1: building the state space
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Step 2: Applying the existing algorithms to label the state graph
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Figure 4.11: Labeling the state graph under the scheduling
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Chapter 5

Testing Scheduling Policies

We aim to ensure the accuracy of a concurrent system executed under scheduling poli-
cies. To do that, we propose a DSL to describe the scheduling strategies. However,
before doing any verification, we make an assumption that the strategy specified in the
DSL is correct. Actually, the correspondence between the scheduling policy in the DSL
and the real scheduler in the OS affects the verification results. The remaining problem
now is ensuring that the specification of the scheduling strategy described in our DSL
conforms with the real one in the OS. This chapter introduces an approach to address
this problem using MBT techniques.

5.1 The Approach

As mentioned in Chapter 1, it is difficult to find the specification of the implementation
of a scheduling policy in a real system. We mean that corresponding to an implementa-
tion, there is no specification or the specification is not clear to describe the behaviors
of the scheduler. For instance, the specification of real-time FIFO scheduling policy of
Linux OS indicates that if a call to the functions sched_setscheduler/sched_setparam
to increase the priority of the running or runnable SCHED_FIFO thread, it may preempt
the current thread with the same priority1. Therefore, the are two options for the im-
plementation: the corresponding process preempts the current process or this running
process isn’t preempted. In fact, there are multiple versions of Linux OS and which
option is implemented on each version of Linux is not described in the specification.
In addition, the behaviors of the scheduler in a real OS can be observed only in exe-
cuting the system. Therefore, we apply testing techniques to check the correspondence
between the policy in the DSL and the implementation in a real system. That helps us
to increase the confidence of the specification of the policy.

Our approach for the testing is to check that the behaviors indicated by the policy
are the same as the real ones. The idea is to check the executions following the policy
are accepted by the real scheduler. Figure 5.1 depicts an example of a system with
3 processes (P, Q and R) using priority scheduling policy. With this example, process
P has the highest priority and process R has the lowest priority. The only action of
these processes is terminating itself. We know that when the currently running process
terminates itself, the scheduler will select the highest priority process to run. This fact
is necessary to check. With this example, firstly, process P is selected to run because

1http://man7.org/linux/man-pages/man7/sched.7.html (accessed: April-2018)
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it has the highest priority; this process terminates; then process Q is run; at the end,
process R is selected and also terminates. We now have only one execution for this
system. This execution is considered as a test case. We then check that the execution
is accepted by the real scheduler.

P: run
Q: ready
R: ready

Q: run
R: ready

R: run

P.terminate

Q.terminate

R.terminate

Scheduling PoliciesOS
Accepted?

An execution ~ a test case

Real 
scheduler

Priority scheduling policy
A system with 3 processes
• P.priority > Q.priority > R.priority
• process only terminates itself

Figure 5.1: An example for testing

Corresponding to this execution, we can observe the running status of these processes
in the real OS. This fact can be tested by checking the execution order of the processes.
With the example in Figure 5.1, the code can be defined as follows.

int exec_order = 0 ;

void P(){

assert (exec_order == 0);

exec_order ++ ;

}

void Q(){

assert (exec_order == 1);

exec_order ++ ;

}

void R(){

assert (exec_order == 2);

exec_order ++ ;

}

The problem now is that with a concurrent system, there are multiple executions
of the processes. It leads to the fact that manually making the tests is error-prone
and time-consuming. That means a systematic approach is necessary. To address this
problem, we apply MBT techniques. The main reason is that MBT can automatically
and exhaustively generate the tests for validating the systems.

Our approach for testing the scheduling strategy is depicted in Figure 5.2. It includes
three main steps. First, we prepare the model of the system following the scheduling
policy for the testing. Second, we apply MBT to generate the tests. Third, we conduct
the testing to check the acceptance of the tests generated in the second step by the real
scheduler.

• In the first step, a model is used to represent the behaviors of the system. With
a scheduling policy, the system contains a set of processes and a scheduler, which
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Generate Test cases
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public void P() {...}
public void Q() {...}
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Scheduling Policy

Prepare

Real OS

Check acceptance

Figure 5.2: Testing approach

determines a configuration. We call the processes and their attributes as an envi-
ronment. Actually, the environment is necessary for testing because the processes
are used to perform the scheduling tasks.

In fact, manually preparing an appropriate environment is also time-consuming
and easy to make errors. It is because there are several cases for the number
of the processes and various values for their attributes. For instance, we may
have multiple environments for the priority policy with the different number of
processes and the values for their priorities (as indicated in Figure 5.3). Therefore,
we adopt an automated approach to prepare the necessary environments. To do
that, we introduce a language for the environments and generate environments
automatically from the corresponding specification.

Priority policy

P(3) P(3), Q(2), R(1)P(3), Q(2)

Environment 1 Environment 2 Environment 3 Process with priority

…

Figure 5.3: Multiple environments with a scheduling policy

• In the second step, we explore the model of the system (indicated by the set
of processes and the scheduler) to determine the executions of the processes to
generate the tests. From each execution, a test case is realized. The test is now
constructed by mapping the behaviors of the system in the test case to the code
generated. The approach is depicted in Figure 5.4.

• In the last step, we perform the tests to check whether these executions are ac-
cepted by the real scheduler in an OS.

5.2 Preparing Environments

In our work, the scheduling strategy is specified in the DSL. To indicate the model of the
system, we need to prepare the set of processes with the corresponding configuration (i.e.
process attributes) called an environment. The problem now is that how to prepare an
appropriate environment for testing the scheduling strategy. To address this problem,
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Figure 5.4: Generating the tests approach

we need to answer the following questions: a) How many processes are used? b) How
to assign the attributes for the processes? and c) How to present the scheduling tasks
(i.e. the behaviors of the scheduler)?

Actually, the number of processes with their attributes can be determined based
on the purpose of the tests. For instance, to check the selection of the scheduler with
priority policy we can use two processes with different values for the priorities of these
processes. In fact, the values for the attributes can be limited, e.g. we can use different
priorities in the range [0..1] for the set of processes. Moreover, we can determine the
behaviors needed for the testing, e.g. the processes perform scheduling tasks: terminate,
execute, etc.

Base on that fact, we propose a DSL for defining the environments. Here, our
approach follows the class diagram as in the object-oriented design principle. That
means we provide a method to define the attributes and the behaviors (i.e. the methods)
of the processes (called process class). From the definition of the process class, we
generate the process program, which specifies the behaviors of the processes, and the
initial values for the attributes of the processes. The approach is depicted in Figure 5.5.

Process Class

Processes AttributesProcess Program

Defining Process Class

Generating Environment

Modeling Language

Domain-Specific Language

Domain-Specific Language

Scheduling Policy

Environment

Figure 5.5: Preparing the environment approach
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The grammar of the language for defining the process class is depicted in Figure
5.6. An example for the processes with the attributes and the methods in the DSL is
depicted in Figure 5.7.

〈ProcClass〉 ::= ‘process’ 〈ID〉 [‘refines’ 〈ID〉] ‘{’ [〈DefAttr〉] 〈DefBehavior〉 ‘}’ ‘configuration’
‘{’ [〈ProcessConfig〉] 〈ProcessInit〉 ‘}’

〈DefAttr〉 ::= ‘attribute’ ‘{’ (〈AttDef 〉)* [〈Constraints〉] ‘}’

〈AttDef 〉 ::= 〈ID〉 ‘:’ ‘type’ ‘=’ 〈Type〉 [‘,’ ‘value’ ‘=’ 〈ListDef 〉] ‘,’ ‘default’ ‘=’ 〈Value〉 ‘;’

〈ListDef 〉 ::= ‘[’ 〈List〉 (‘,’ 〈List〉) * ‘]’

〈List〉 ::= 〈Range〉 | 〈BOOL〉 | 〈ID〉

〈Range〉 ::= 〈INT 〉 ‘..’ 〈INT 〉

〈Value〉 ::= 〈BOOL〉 | 〈INT 〉

〈DefBehavior〉 ::= 〈ProcType〉 | 〈ProcBehav〉

〈ProcType〉 ::= (〈ProcessType〉)*

〈ProcessType〉 ::= ‘proctype’ 〈ID〉 ‘{’ [〈Constraints〉] (〈ProcBehav〉)* ‘}’

〈ProcBehav〉 ::= ‘behavior’ ‘{’ (〈PBehav〉)* ‘}’

〈PBehav〉 ::= 〈Constructor〉 | 〈Method〉

〈Constructor〉 ::= ‘constructor’ ‘:’ 〈ID〉 ‘(’ [〈PramList〉]‘)’ ‘;’

〈Method〉 ::= ‘method’ ‘:’ 〈ID〉 ( (‘(’ ‘)’ ‘;’) | (‘(’ 〈PramList〉 ‘)’ ‘{’ (〈AssignPara〉)*
[〈Constraints〉] ‘}’ ) )

〈AssignPara〉 ::= 〈ID〉 ‘:’ ‘value’ ‘=’ 〈ListDef 〉 ‘;’

〈Constraints〉 ::= ‘constraint’ ‘{’ (〈Constr〉) * ‘}’

〈Constr〉 ::= 〈Or〉 ‘;’

Figure 5.6: The grammar for the process class

• Each attribute of the processes is defined by the list of values or a range with
a lower and an upper bound. We can indicate the constraints for assigning the
values to each attribute. Each constraint is specified using a boolean expression.

In the example shown in Figure 5.7, we define the attributes for Linux processes
including the priority (priority), nice value (nice), the type of each process to
indicate whether it is a real-time process or not (sch_type), the preempt attribute
of a process indicates whether this process can be preempted or not by a new
process which arrives to the system. For the purpose of testing, the upper bound
and lower bound for the values can be limited, with this example, we set the range
of the priority values to [0..2].

// static priority; 0: normal , 1..99 real time

priority: type = byte , value = [0..2] , default = 0;

// dynamic priority for SCHED_OTHER -20..19

nice: type = int , value = [0..2] , default = 0;

// SCHED_OTHER , SCHED_FIFO , SCHED_RR

schtype: type = byte , value = [0,1,2], default = 0 ;

preempt: type = byte , value = [0,1], default = 1 ;

In addition, the values assigned to the attributes can follow the corresponding
constraints. For instance, with a normal process, the priority must be set to 0; this
fact is indicated by the constraint “(sch_type == 0) => (priority == 0)”.

(schtype == 0) => (priority == 0) ; // normal process

(schtype > 0) => (nice == 0) ; //real -time process

(priority == 0) => (schtype == 0) ; // normal process
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process linux {             
 attribute {                                     
  priority: type = byte, value = [0..2], default = 0; //static priority; 0: normal, 1..99 real time  
  nice: type = int, value = [0..2], default = 0; //dynamic priority for SCHED_OTHER -20..19 
  schtype: type = byte, value = [0,1,2], default = 0 ; //SCHED_OTHER, SCHED_FIFO, SCHED_RR         
  preempt: type = byte, value = [0,1], default = 1 ; 
     
  constraint {   
   (schtype == 0) => (priority == 0) ;  //normal process  
   (schtype > 0) => (nice == 0) ; 
   (priority == 0) => (schtype == 0) ;  
  }           
 }     
 
 behavior { 
  constructor : P(byte priority = 0; byte nice = 0; byte schtype = 0) ;   
  method : terminate () ;  
  method : runP(byte priority; byte nice; byte schtype){    
   nice: value = [0..1];  
   priority: value = [0..2] ; 
   schtype: value = [0..2];  
    
   constraint {   
    (schtype == 0) => (priority == 0) ;  //normal process  
    (schtype > 0) => (nice == 0) ; 
    (priority == 0) => (schtype == 0) ;  
   }   
  }      
 }        
}             
   
configuration {              
 init {                     
  [{P(?,?,?), P(?,?,?)}] 
 }            
} 

 

Figure 5.7: An example for defining process class

• There are two types of methods can be declared to describe the behaviors of the
processes in the process class. One is the constructor, which is used to determine
the initial values for the attributes of the processes; the other is for expressing the
behaviors of the processes. Here, we aim to check the scheduling strategy; there-
fore, the behaviors corresponding to the scheduling tasks are considered. We use
the scheduling event(s) raised from the processes (process scheduling events) to
specify these behaviors. To do that, we define interface functions in the scheduler
description. Then, we define the methods in process class to call these functions
to carry out the scheduling tasks (such as terminating the current process or exe-
cuting a process, etc.). Each method can have parameters, which are also assigned
following the constraints determined by the corresponding boolean expressions.

With this example, three methods are defined for the Linux processes, the con-
structor for initializing the processes (method named P) and two methods cor-
responding to the behaviors of the processes: terminates itself (terminate) and
executes another process (runP). These methods are with the values of the at-
tributes for the constructor (all the values are set to 0) and the constraints for the
parameters of the method runP. We note that these methods are to testing the
scheduling tasks based on these behaviors of the processes defined above.

constructor : P(byte priority =0; byte nice =0; byte schtype =0) ;

method : terminate () ;
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method : runP(byte priority; byte nice; byte schtype ){

nice: value = [0..1];

priority: value = [0..2] ;

schtype: value = [0..2];

constraint {

(schtype == 0) => (priority == 0);// normal process

(schtype > 0) => (nice == 0);//real -time process

(priority == 0) => (schtype == 0);// normal process

}

}

• The system’s configuration is defined with a set of processes, which is indicated
in the configuration part. In the example, for testing the selection, we use only
two processes to define the configurations at the initial time.

configuration {

init {

[{P(?,?,?), P(?,?,?)}]

}

}

We adopt a simple approach for generating the corresponding process program and
the process attributes from the process class by assigning the values for the attributes
and for the parameters of the methods with checking the satisfaction of the constraints.
The process program and a process attributes2 generated from the process class in the
example above are shown in Figure 5.8 and Figure 5.9.

proctype P () { 
 do 
  :: sch_api_self(terminate) ; 
  :: sch_api_self(runP, 0,0,0) ; 
  :: sch_api_self(runP, 0,1,0) ; 
  :: sch_api_self(runP, 1,0,1) ; 
  :: sch_api_self(runP, 1,0,2) ; 
  :: sch_api_self(runP, 2,0,1) ; 
  :: sch_api_self(runP, 2,0,2) ; 
  :: skip ; 
 od 
} 
   
init { 
 run P() ; 
 run P() ; 
} 

 

Figure 5.8: The process program generated from the process class

5.3 Test Generation for Scheduling Policies

We now have the environments generated from the definition of the process class. Ac-
tually, each environment is used to realize the model of the system, which determines

2We may have a set of process attributes generated from a process class definition.
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def process linux_0  {    
 attribute { 
  var byte priority = 0 ;   
  var int nice = 0 ;   
  var byte schtype = 0 ;   
  var byte preempt = 1 ;   
 } 
  
 proctype P (byte priority=0; byte nice=0; byte schtype=0) { 
  this.priority = priority ; 
  this.nice = nice ; 
  this.schtype = schtype ; 
 } 
} 
   
init { 
 [{P(0,0,0),P(0,0,0)}] 
} 

 

Figure 5.9: A description of the attributes of the processes

the behaviors of the system following the scheduling strategy. We then use this model
to generate the tests (test cases and test programs) for testing the scheduling policy
implemented in an OS.

Our idea for the test generation is based on searching the state space using the model
of the system. From the state space, we can indicate the executions of the processes.
Each execution represents a test case. To make the tests, we map the behaviors of
the system with the code generated. Each test is constructed by combining the code
generated following the behaviors of the system. The approach for our test generation
is depicted in Figure 5.10. Our ideas are as follows.

• Firstly, we aim to define the codes generated corresponding the behaviors of the
system for specifying the test generation. Based on the roles of a scheduler, we
support to specify that the scheduler captures the behaviors of the processes in our
DSL. This allows us to generate the tests following the behaviors of the scheduler.

• Secondly, we extend our DSL to specify the test generation (called test specifica-
tion). The description of the test is used to generate 1) a generate structure and
2) a generate function. These two artifacts are used to generate the tests following
the search on the state space.

– The generate structure determines the structure of the tests, and

– The generate function is for constructing the tests in the search.

• Third, with the scheduling information generated from the strategy in the DSL, we
can search the system states. We note that the codes (for the tests) are determined
in the search.

– Each test can be realized (on-the-fly) from the trail that 1) leads to the
violation of a property (expressed by an assertion statement in the process
program) at a state of the system (an error happens) or 2) contains a state
that has been visited.
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Figure 5.10: Test generation approach

– We can also generate the tests following a property (e.g. an execution of the
system in which process P runs). To find the trails that satisfy a property
(witnesses), we use a CTL/RTCTL formula to express the property and adopt
the existing algorithms to label the state graph and find out the corresponding
trails for generating the tests. To do this, we build an analyzer to determine
the trails that satisfy the input property. From the corresponding trails, we
can generate the tests.

5.3.1 Specifying Test Generation

We use FIFO scheduling policy to demonstrate the test generation as depicted in Figure
5.11. This example contains three files for describing the behaviors of the processes,
the attributes of the processes and the behaviors of the scheduler with the description
of test generation, which are specified in process program (a), process attribute (b) and
scheduler description with test specification (c), respectively.

The description of a test generation contains the definitions of a) the configuration
and b) the component of the tests. The grammar for the test generation is depicted in
Figure 5.12.

The configuration specifies the option of the search for the test generation (see
Section 5.3.3 for more details). The filename with its extension and the directory for
putting the results of the generation can also be indicated in the configuration part. We
support two types of the test, i.e. test case and test program.

• In general, each test case contains multiple steps, which indicate the values of the
variables, the behavior of the system, and the expected values for these variables.

• A test program is a program for testing the components of a system (such as the
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int cnt ; 
proctype P () { 
 do 
  :: d_step{  

sch_api_self(terminate);  
cnt-- 

}; 
  :: d_step{  

sch_api_self(runP);  
    if 
     :: cnt <= 2 -> cnt++ ; 
     :: else skip ; 
    fi ; 
   }; 
  :: skip; 
 od 
}   
init {  

sch_exec(P());  
sch_exec(P());  
cnt = 2 ;  

} 

scheduler linux() {                                                        
 generate {  
  configuration {   
   option = { Searching };  
   directory = "TestGen";  
   file name = "Testcase" ; 
   file extension = "txt" ; 
   test case = (header + "\n") + (behaviors) ; 
  }     
  component {      
   header {          
    genln 'Test case following the search' ; 
   }    
  }  
  system { 
   behavior = ('Step '+ getStep()+'/'+getTotalStep() + '\\n' + pre_take) + 
    ('Process'+<PID>+<InstanceID> + ' action: ' + action +  
    ', then cnt = ' + Sys(cnt) + '\\n') +  
    (post_take + '\\n') ; 
  } 
 } 
  
 data {  
  collection ready with fifo ; 
 }                                            
 event handler{                    
  select_process (process target_process) {  
   get process from ready to run;    
  }                                                                    
  new_process (process target_process) { 
   move target_process to ready ; 
  }              
  pre_take (){ 
   genln 'Current process count = ' + Sys(cnt) ; 
  } 
  post_take (){ 
   genln 'Expected process count = ' + Sys(cnt) ; 
  }   
 }     
 interface {    
  function terminate () { 
   remove running_process ; 
  } 
  function runP() { 
   new P(), 3; 
  }  
 }      
}      

a) Process program 

def process linux_0  {        
 proctype P () {}                               
}                                                                                                 
        
init {                      
 [{P(),P()}]       
} 

b) Process attribute c) Scheduler description with test specification 
 

Figure 5.11: An example for the test generation

scheduler of an OS). The program usually has a structure (e.g. the header for the
declaration, the main function for performing the program and the functions that
express the behaviors of the processes).

We support defining the structure of a test with its component(s). Some special
components including init, processes, behaviors and error are pre-defined.

• The init component is used for initializing the generation. We can use it to
prepare the declaration of the test programs.

• The processes component corresponds to the set of processes.

• The behaviors component indicates the set of actions of a process.

• The error component points out the corresponding error (violation of a property
indicating by an assertion in the test program) happening during the execution.
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〈Generate〉 ::= ‘generate’ ‘{’ 〈GenConfig〉 〈GenComp〉‘}’

〈GenConfig〉 ::= ‘configuration’ ‘{’ [〈GenOption〉 ‘;’] [〈Dir〉 ‘;’] [〈FName〉 ‘;’] [〈FExt〉 ‘;’] ‘test’
(‘program’ | ‘case’ | ‘data’) ‘=’ 〈TestPart〉 ‘}’

〈GenOption〉 ::= ‘option’ ‘=’ ‘{’ 〈GenOpt〉 (‘,’ 〈GenOpt〉)* ‘}’

〈GenOpt〉 ::= ‘Searching’ | ‘Error’ | ‘Property’ | ‘All’

〈Dir〉 ::= ‘directory’ ‘=’ 〈STRING〉 ‘;’

〈FName〉 ::= ‘file’ ‘name’ ‘=’ 〈STRING〉 ‘;’

〈FExt〉 ::= ‘file’ ‘extension’ ‘=’ 〈STRING〉 ‘;’

〈TestPart〉 ::= 〈GenPart〉 (‘+’ 〈GenPart〉)*

〈GenPart〉 ::= ‘(’ [〈STRING〉 ‘+’] (〈ID〉 | ‘init’ | ‘processes’ | ‘behaviors’ | ‘error’) [‘+’
〈STRING〉] ‘)’

〈GenComp〉 ::= ‘component’ ‘{’ (〈Comp〉)* [〈InitGen〉] [〈ProcGen〉] ‘}’;

〈Comp〉 ::= 〈ID〉 ‘{’ (〈Gen〉 |〈GenLn〉)* ‘}’

〈InitGen〉 ::= ‘init’ ‘{’ 〈Template〉 ‘}’

〈ProcGen〉 ::= ‘process’ ‘{’ 〈Template〉 ‘}’

〈Template〉 ::= [〈SetTemplate〉] 〈Behavior〉

〈SetTemplate〉 ::= ‘template’ ‘=’ 〈Expr〉 ‘;’

〈Behavior〉 ::= ‘behavior’ ‘=’ 〈EventTemp〉 (‘+’ 〈EventTemp〉)* ‘;’

〈EventTemp〉 ::= ‘(’ [〈Expr〉 ‘+’] 〈Event〉 [‘+’ 〈Expr〉] ‘)’

Figure 5.12: The grammar for the test generation

To support the test generation, firstly, we introduce two more events: pre_take and
post_take. These events are for dealing with the pre-processing and post-processing of
each behavior (action) of a process. For instance, we can display the current value of a
variable before taking an action (pre_take) and the expected value of this variable after
taking this action (post_take) in a test case. Secondly, in order to generate the tests,
we introduce statements gen and genln for generating the code following the behaviors
of the scheduler.

〈Gen〉 ::= ‘gen’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

〈GenLn〉 ::= ‘genln’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

In the example (as shown in Figure 5.11), we specify the test cases generation.
Each test case contains two parts (header and behaviors). The structure of the tests
and the template of each component are defined. We use the string operator to produce
each component. The code generated is specified in the events pre_take and post_take

using the genln statements. The value of the variable cnt defined in the process program
can be get using the function Sys(). The codes generated indicate the current value of
the cnt variable before taking an action of the current process and the expected value
of this variable after taking this action.

pre_take (){

genln ’Current process count = ’ + Sys(cnt) ;

}

post_take (){

genln ’Expected process count = ’ + Sys(cnt) ;

}
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We use the string operations to concatenate the codes and the components (in text
string) with functions getStep() and getTotalStep() (the index of the step and the
number of steps in a test case). This is defined in the behavior part as indicated below.

system {

behavior =(’Step ’+getStep ()+’/’+getTotalStep ()+’\\n’+pre_take) +

(’Process ’+<PID >+<InstanceID > + ’ action: ’ + action +

’, then cnt = ’ + Sys(cnt) + ’\\n’) +

(post_take + ’\\n’) ;

}

5.3.2 Formal Definitions

We give some formal definitions for generating the tests from the test generation and
the model of the system.

Definition 5.1 (Generation function): genCode : Ts → String is a function from
the set of transitions of the system Ts to the set of strings.

This function is determined by the test generation specification and the gen, genln
statements used for defining the code generated. We note that the structure and the
template of the components of the tests are also determined by this function. In the
example indicated in Figure 5.11, the structure of the test defined in the configuration
part, the template of the behaviors of the system, and the statements genln(s) used in
the events pre_take and post_take are to construct function genCode above.

Definition 5.2 (Set of Input/Output): Set of input/output IO ⊆ D(x0)×D(x1)×
... × D(xn), where xi ∈ X, i ∈ N is a variable used by the system and D(xi) is the domain
of xi.
IO is the set of values for the variables used by the system. We define function

getIO : Ssys → IO to get the values of the variables at a state of the system. These
values represent the information of the system, and the function getIO is used to get
this information at a specific state. In the example, only a variable name cnt is used for
storing the number of processes. This variable has integer as its domain. The function
getIO is to get the value of this variable at a specific state. It is presented by function
Sys in the description of the test generation.

Definition 5.3 (Transition Input/Output): The input/output corresponding to
a transition t = 〈Σ, a, Σ′〉 ∈ Ts is a pair 〈it, ot〉 where it = getIO(Σ) and ot = getIO(Σ′).

The input and output corresponding to a transition represent the information of
a system before taking an action and after taking this action. This information is
extracted from the corresponding states of the system using the function getIO. For
instance, t0 = 〈Σ0, a, Σ1〉 ∈ Ts is a transition from the initial state Σ0 to state Σ1 by
performing action d_step{sch_api_self(terminate);cnt--}. We have it0ncnto = 2
and ot0ncnto = 1 (corresponding to the values of variable cnt).

Definition 5.4 (Generation step): A generation step following a transition t =
〈Σ, a, Σ′〉 ∈ Ts is a tuple 〈〈it, ot〉, c〉, where 〈it, ot〉 is the transition input/output of t and
c = genCode(〈Σ, a, Σ′〉) is the code generated following to this transition.

A generation step indicates the code generated following a transition. The informa-
tion used for the generation is determined by the input and output of the transition. For
instance, the generation step corresponding to the transition 〈Σ0, a, Σ1〉 above is 〈〈2, 1〉,
“...Current process count = 2...”〉. We use GT to denote the set of generation steps.
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Definition 5.5 (Trail): A trail [〈Σ0, a0, Σ1〉, 〈Σ1, a1, Σ2〉, .., 〈Σn−1, an−1, Σn〉] is a se-
quence of transitions, where 〈Σi, ai, Σi+1〉 ∈ Ts, i ∈ N and Σ0 is the initial state of the
system.

For generating the tests, we indicate a sequence of transitions (called a trail). A
trail represents a sequence of behaviors of the system and is determined by an execution
order of the system. For example, with the system indicated in Figure 5.11, we have
the following trail:

[<2, d_step{sch_api_self(terminate ); cnt --}, 1>,

<1, d_step{sch_api_self(terminate ); cnt --}, 0>]

Definition 5.6 (Test sequence): A test sequence [st0, .., stn] derived from a trail
[〈Σ0, a0, Σ1〉, 〈Σ1, a1, Σ2〉, .., 〈Σn−1, an−1, Σn〉], n ∈ N, where st j = 〈〈itj, otj 〉, genCode(t j)〉 ∈

GT , j ≤ n is a generation step corresponding to transition t j = 〈Σ j, a j, Σ j+1〉.
For instance, the test sequence derived from the trail above is:

[<2, "Current process count = 2

Expected process count = 1", 1>,

<1, "Current process count = 1

Expected process count = 0", 0>]

Let TS be the set of test sequences. We define function genTest : TS → String to
combine the codes generated from the generation steps in a test sequence.

Definition 5.7 (Test): A test (test case, test program) derived from a test sequence
is a string test = genTest(ts), where ts ∈ TS.

5.3.3 Generating the Tests

This section introduces the method to generate the tests following the search on the
state space and following the executions of the system that satisfy a corresponding
property.

Test generation following the search. We introduce an algorithm to generate
the tests following the search using the scheduling strategy and the test specification. To
deal with the scheduling strategy, the behaviors of the scheduler are also considered. The
algorithm is shown in Algorithm 4, which is an extension of the algorithm introduced
in Chapter 4. Our idea for the generation is that the codes generated corresponding
to the behaviors of the system are recorded in the search and are used to generate the
tests.

To generate the tests, the data structures corresponding to a test sequence (TS) and
the result of the test generation (TG) are used (TS is an ordered set of generation steps
and TG is an unordered set of strings representing the result of the test generation).
We introduce the following functions.

• Function Add step (line 17, 30) is used to add a generation step to the test
sequence.

• Function Remove last step (line 42) is for removing the last generation step from
the test sequence.

• Function Add test (line 23, 36) is used to add a test derived from the test sequence
(TS) to the set of tests (TG). This function is called when the search reaches to
a visited state.
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Algorithm 4 Test generation algorithm following the search with scheduling policy

1: Input: Σ0 . initial state
2: Output: TG . test generation
3: procedure Start
4: Stack: ST = ∅
5: State space: SP = ∅
6: Test sequence: TS = ∅
7: Test generation: TG = ∅
8: Push(ST , Σ0)
9: Add state(SP, Σ0)

10: Search
11: end procedure
12: procedure Search
13: Σ = Top(ST )
14: P = SCH SELECT(Σ)
15: if P == ∅ then
16: Σt = SCH CLOCK(Σ)
17: Add step(TS, 〈〈getIO(Σ), getIO(Σt)〉, genCode(〈Σ, clock, Σt〉)〉)

18: if Contains(SP, Σt) == f alse then
19: Push(ST , Σt)

20: Add state(SP, Σt)

21: Search
22: else
23: Add test(TG, genTest(TS))
24: end if
25: else
26: for p ∈ P do
27: for a ∈ p.Lp do
28: Σa =SCH TAKE(a, Σ)
29: Σt

a =SCH CLOCK(Σa)
30: Add step(TS, 〈〈getIO(Σ), getIO(Σt

a)〉, genCode(〈Σ, a, Σt
a〉)〉)

31: if Contains(SP, Σt
a) == f alse then

32: Push(ST , Σt
a)

33: Add state(SP, Σt
a)

34: Search
35: else
36: Add test(TG, genTest(TS))
37: end if
38: end for
39: end for
40: end if
41: Pop(ST )
42: Remove last step(TS)
43: end procedure
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We note that, if the error is determined at the current state, e.g. taking an action
that leads to the violation of a property, we can generate a test from the current test
sequence. That fact is not shown in this algorithm.

An example for generating test cases with FIFO scheduling policy is depicted in
Figure 5.13. With this example, the behaviors of the processes are specified in process
program (a); the specification for the test generation is shown in test generation de-
scription (b); a system execution is shown in execution order (c); the code generated
corresponding to this execution by mapping the behaviors of the system is shown in
code generated (d).

 

[P1], P2 
cnt = 2 

[P2] 
cnt = 1 

[ ]  
cnt = 0 

c) An execution order 

pre_take: Current process count = 1 
action: d_step{ sch_api_self(terminate); cnt--} 
post_take: Expected process count = 0 

pre_take: Current process count = 2 
action: d_step{ sch_api_self(terminate); cnt--} 
post_take: Expected process count = 1 

 

scheduler linux() {                                                        
 generate {  
  configuration {   
   option = { Searching };  
   directory = "TestGen";  
   file name = "Testcase" ; 
   file extension = "txt" ; 
   test case = (header + "\n") + (behaviors) ; 
  }     
  component {      
   header { genln 'Test case following the search' ; }    
  }  
  system { 
   behavior = ('Step '+ getStep()+'/'+getTotalStep() + '\\n' + pre_take) + 
    ('Process'+<PID>+<InstanceID> + ' action: ' + action +  
    ', then cnt = ' + Sys(cnt) + '\\n') + (post_take + '\\n') ; 
  } 
 } 
  
 data {  collection ready with fifo ; }                                           
 event handler{                    
  select_process (process target_process) {  
   get process from ready to run;    
  }                                                                    
  new_process (process target_process) { 
   move target_process to ready ; 
  }              
  pre_take (){  genln 'Current process count = ' + Sys(cnt) ;  } 
  post_take (){  genln 'Expected process count = ' + Sys(cnt) ; }   
 }     
 interface {    
  function terminate () { remove running_process ;  } 
  function runP() { new P(), 3;  }  
 }      
}      b) Test generation description 

Test case following the search 
 
Step 1/2 
Current process count = 2 
Process01 action: sch_api ( terminate, running_process); cnt--, then cnt = 1 
Expected process count = 1 
 
Step 2/2 
Current process count = 3 
Process01 action: skip, then cnt = 3 
Expected process count = 3 d) Code generated 

int cnt ; 
proctype P () { 
 do 
  :: d_step{  

sch_api_self(terminate);  
cnt-- 

}; 
  :: d_step{  

sch_api_self(runP);  
    if 
     :: cnt <= 2 -> cnt++ ; 
     :: else skip ; 
    fi ; 
   }; 
  :: skip; 
 od 
}   
init {  
sch_exec(P());  
sch_exec(P());  
cnt = 2 ;  

} a) Process program 

Figure 5.13: An example for generating a test case

With this example, at the initial time, the system has two process P1 and P2, and
process P1 runs first. The execution order of the processes is indicated below.

P1.d_step{sch_api_self(terminate ); cnt --}

P2.d_step{sch_api_self(terminate ); cnt --}

The corresponding code generated following this execution is as follows. This code
produces a test case following the execution above.
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Test case following the search

Step 1/2

Current process count = 2

Process01 action: sch_api(terminate ,running_process );cnt --,then cnt=1

Expected process count = 1

Step 2/2

Current process count = 1

Process01 action: skip , then cnt = 0

Expected process count = 0

Test generation following a property. To generate a test following a property,
we do the two steps:

1. Finding the executions (trails) that satisfy the input formula, and

2. Generating the test corresponding to each trail found in the first step.

The property is specified as a CTL/RTCTL formula (an example is shown in Figure
5.14). To find the trails, we label the state graph (see Chapter 4 for more details) to
indicate whether the corresponding formula is satisfied or not. If the CTL/RTCTL
formula is satisfied, we explore the state graph again to find the trails that satisfy this
formula. We can easily see that each trail corresponds to a test sequence and the test
generated is now determined using this test sequence (that means we adopt the function
genTest for this test sequence to generate the tests).

scheduler linux() {                                                           
 generate {  

configuration {   
   option = { Property };  
   … 
  } 
  … 
 }    
 data {  

collection ready with fifo; 
}                                             

 event handler{                    
  …                
 }     
 interface {  

… 
}             

}   
 
verify { 
 AF (Sys(cnt) == 0) 
} 

 

Figure 5.14: The specification of a property

5.4 Summary

We have introduced a method to test the scheduling strategy specified in the DSL
with the implementation of a scheduler in a real OS. The purpose is to check the
correspondence between the policy and the behaviors of a real scheduler. In this work,
we apply MBT techniques to generate the tests. The summary of this approach for
testing the scheduling strategy is depicted in Figure 5.15. Our method is as follows.
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Figure 5.15: Summary of the testing approach

• First, we prepare the environments needed for performing the scheduling strat-
egy. This is done by defining the process class in our DSL and generating the
environments from this definition.

• Second, we define the mapping between the behaviors of the system and the code
generated in the DSL. We propose an algorithm to handle the test generation.
With this algorithm, we can generate the tests by searching the state space.

• Third, we perform the tests to check the scheduling strategy implemented in a
real system.

We give a case study to test the FIFO real-time scheduling policy of Linux OS.
The readers can refer to Chapter 7 for the detail of the description of the tests in the
DSL with the approach to testing the scheduling strategy specified in the DSL and the
implementation of the scheduler in a real OS.

In the next chapter, we will introduce our implementation for the approach. Our
tool contains three main parts: a converter for translating the specification in the DSL
into the executable code, a model checker, and an analyzer to verify and analyze the
behaviors of the system to export the results.
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Chapter 6

Implementation

In this chapter, we introduce the implementation of our method. We used the SpinJa
model checker as the back-end for our framework. The language for scheduling was
implemented in Xtext framework. We also introduce the approach to generate the
information for the scheduling tasks. With this information, our tool can perform the
search and explore the system states.

6.1 SSpinJa Tool

We designed a framework and implemented a tool named SSpinJa1 for verifying and
analyzing systems with the scheduling strategies. Our design is depicted in Figure 6.1.
In our work, we extended SpinJa for our tool and used Promela as the base language for
the processes. The DSL is implemented in Xtext framework as an external DSL with
its own syntax (see Chapter 3).

In our implementation, we adopt the compilation approach to prepare all necessary
information beforehand. To realize the new API functions, we updated both of the
parser and the compiler of SpinJa tool. The input of our tool is the process program,
which is then compiled into a model in Java. This model links to the libraries of SSpinJa
for the verification.

To generate the information necessary from the scheduling strategy, we built a con-
verter under Xtext framework. The information includes:

1. scheduler model, which contains scheduling information for performing the schedul-
ing tasks,

2. test information for the test generation to test the scheduling strategy, and

3. analyzing information, which is used for analyzing the behaviors of the system.

We also implemented an algorithm, which uses the scheduling information generated
from the policy in the DSL, and an analyzer in our tool.

6.2 Generating Information

The scheduling strategy specified in the DSL is used for generating necessary informa-
tion for scheduling tasks and the test generation is converted from the test specification

1SSpinJa stands for ‘Scheduling SpinJa’.
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Figure 6.1: The architecture of the framework

including a) the processes implementation, b) the collections implementation with order-
ing methods, c) the scheduler implementation, and d) test information. This approach
is depicted in Figure 6.2.

Process’s attributes

Process templates

Process initialization

Scheduler Information

Process information (2)

Process collections (3)
Event handlers (5)

Scheduler Function

Variables (1)
Functions (4)

Ordering methods

Events

Scheduler data

Interface functions

Process attribute Scheduler description

Test component

Test configuration

Test specification

Generate code (7)

Generate functions (8)

Generate template (6)

Test Information

Generating

Figure 6.2: Generating the scheduling information

• The generation for scheduler information and scheduler function for the scheduling
policy have been explained in Section 4.2 of Chapter 4.

• The test component and the test configuration in the test specification define a)
the template (6) of the tests, b) the structure of the code (7) to be generated and
c) the corresponding functions (8) for capturing the behaviors of the system to
generate the code for each component of the tests.

An example of the generation is demonstrated in Section 6.3.
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6.3 Verifying and Analyzing Systems with SSpinJa

The input of our tool includes 3 files (process program (*.pml), process attribute (*.proc)
and scheduling policy(*.sch)). The corresponding property can be specified in the process
program and/or in the scheduling policy. To perform the verification and analysis with
SSpinJa tool, we do these steps.

• First, we convert the description of the scheduling strategy (including the pro-
cess attributes and the scheduler description) into the information necessary for
performing the scheduling tasks using the following command.

java -jar schedulerDSL.jar -proc pri.proc -sch pri.sch

where schedulerDSL.jar is the SSpinJa library file, with this example, pri.proc
and pri.sch is the priority policy in the DSL (as introduced in Figure 3.2 of
Chapter 3). As a result, the following files are generated.

1 schedulerinfo.dat

CTLFormula.java

3 ProcessCollection.java

ProcessCollection_priorityOrder.java

5 ProcessCollectionBase.java

ProcessSet.java

7 RunningSet.java

SchedulerObject.java

9 SchedulerObject_Priority.java

SchedulerProcess.java

11 SchedulerProcess_Priority.java

SchedulerProcessBase.java

13 SchedulerState.java

SortedProcessCollectionBase.java

15 StaticProperty.java

StaticProperty_Priority.java

These java files implement the following things:

– the processes of the system (files: SchedulerProcess, SchedulerProcess Priority,
SchedulerProcessBase, StaticProperty and StaticProperty Priority) to spec-
ify the information of the processes (e.g. the attributes of the processes),

– the process collections (files: ProcessCollection, ProcessCollection priorityOrder,
ProcessCollectionBase, ProcessSet, RunningSet, and SortedProcessCollection-
Base) to define the collections with the ordering methods used by these col-
lections,

– the scheduler (files: SchedulerObject and SchedulerObject Priority) to im-
plement the behaviors of the scheduler (i.e. handling the scheduling tasks),

– the analyzing information (files: CTLFormula and SchedulerState) for the
analysis behaviors of the system ; these files express the property to be
checked and the information of the system state.
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The behaviors of the scheduler (i.e. handling the scheduling events) are imple-
mented in SchedulerObject file. An example for generating the code of this Java
file from the scheduling strategy is shown in Appendix B. The main functionalities
of the scheduler are defined and represented by the following the data structures
and a set of methods defined in the SchedulerObject as follows.

– The variables (e.g. clock variables) and data structures (e.g. process collec-
tions);

– The methods to handle the scheduling tasks (e.g. the events select_process,
new_process, preTake, postTake, etc.);

– Interface methods (e.g. sch_api, sch_get) for the interaction between the
processes and the scheduler;

– The methods for handling the time managed by the scheduler (e.g. inc_time,
dec_time, time_out, etc.);

– Encoding methods (e.g. encode, decode) for storing the states of the sched-
uler;

– Analysis methods (e.g. schedulerCheck, stateCheck, etc.) for analysis the
behaviors of the system ;

– Other utilities methods (e.g. getInstance, isTime, etc.) used by the sched-
uler.

We note that these methods (functions) are used by the search algorithm to search
the system states. The states of the system to be visited are determined by this
algorithm based on the scheduling strategy specified in the DSL.

• Second, the process program (*.pml) in Promela is compiled into the process model
in Java using the following command. The result of this step is the model of the
processes in Java (SchedulerPanModel.java).

java -cp sspinja.jar sspinja.Compile example.pml

where sspinja.jar is the library file and example.pml is a process program in
Promela.

• Third, we compile the process model in Java into Java bytecode. This step auto-
matically compiles and links the SchedulerPanModel.java with the files gener-
ated from the scheduling strategy description in step 1.

javac -cp sspinja.jar sspinja/SchedulerPanModel.java

• Fourth, we perform this command to do the verification and the analysis

java -cp sspinja.jar;. sspinja.SchedulerPanModel

Our tool will indicate the verification result, which contains the information: the
error (if exist, with the counterexample), number of states, memory usage, and the time
for verifying as shown in Figure 6.3. For verifying the corresponding property, our tool
will indicate the satisfaction and the witness (as depicted in Figure 6.4).
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... 
assertion violated (balance >= 0) 
0.(proc 0 trans 59): run VerificationCase2_0() 
1.(proc 1 trans 55): printf("config3");; balance = 10; amount = 15; run login_deposit_0(); 
run login_withdraw_0(); run logout_0(); run deposit_0(); run withdraw_0() 
2.(proc 3 trans 62): (status == 0); status = 2 
3.(proc 3 trans 62): (status == 0); status = 2 
4.(proc 3 trans 62): (status == 0); status = 2 
5.(proc 3 trans 62): (status == 0); status = 2 
6.(proc 3 trans 62): (status == 0); status = 2 
7.(proc 3 trans 62): (status == 0); status = 2 
8.(proc 3 trans 62): (status == 0); status = 2 
9.(proc 3 trans 62): (status == 0); status = 2 
10.(proc 3 trans 62): (status == 0); status = 2 
11.(proc 6 trans 65): (status == 2); _bwithdraw0_0 = false; if; balance = (balance - 
amount); status = 0; if 
------------------------------------------------ 
 
State-vector 49 byte, depth reached 11, errors: 21 
      89 states, stored 
      68 states, matched 
     157 transitions (= stored+matched) 
       0 atomic steps 
8.00584 memory usage (Mbyte) 
 
sspinja: elapsed time 22.00 miliseconds 
sspinja: rate     4045 states/second 
8.75444 real memory usage (Mbyte) 

 

Figure 6.3: Result of the verification (counterexamples)

6.4 Summary

We have introduced the implementation of our method in the tool named SSpinJa. We
extended SpinJa in our approach. SpinJa is written in Java and follows the object-
oriented design principle; thus, it is easy to extend. In addition, we adopted the com-
pilation approach to preparing the information necessary beforehand. In fact, the DSL
in our framework was implemented in Xtext framework to prepare the information for
performing the scheduling tasks (handling the scheduling events) and for the verification
(analyzing the behaviors of the system ). We also implemented a new algorithm in the
tool using this information to search the system states. With the states visited, we can
verify the behaviors of the system with the scheduling strategies. The evaluation of our
method is considered in the next chapter.
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... 
+ Check system (start state: 705970) with: AG<=2 (balance >= 5): Satisfied 
------------------------------------------------ 
AG<=2 (balance >= 5)   
0. (proc 0 trans 43): run VerificationCase0_0() 
1. (proc 1 trans 41): printf("config1");; balance = 10; amount = 5; run login_deposit_0(); 
run login_withdraw_0(); run logout_0(); run deposit_0(); run withdraw_0() 
2. (proc 3 trans 46): (status == 0); status = 2 
3. (proc 6 trans 49): (status == 2); _bwithdraw0_0 = false; if; balance = (balance - 
amount); status = 0; if 
------------------------------------------------ 
------------------------------------------------ 
AG<=2 (balance >= 5)   
0. (proc 0 trans 43): run VerificationCase0_0() 
1. (proc 1 trans 41): printf("config1");; balance = 10; amount = 5; run login_deposit_0(); 
run login_withdraw_0(); run logout_0(); run deposit_0(); run withdraw_0() 
2. (proc 3 trans 46): (status == 0); status = 2 
3. (proc 4 trans 47): (status != 0); status = 0 
------------------------------------------------ 
------------------------------------------------ 
AG<=2 (balance >= 5)   
0. (proc 0 trans 43): run VerificationCase0_0() 
1. (proc 1 trans 41): printf("config1");; balance = 10; amount = 5; run login_deposit_0(); 
run login_withdraw_0(); run logout_0(); run deposit_0(); run withdraw_0() 
2. (proc 2 trans 45): (status == 0); status = 1 
3. (proc 5 trans 48): (status == 1); balance = (balance + amount); status = 0 
------------------------------------------------ 
------------------------------------------------ 
AG<=2 (balance >= 5)   
0. (proc 0 trans 43): run VerificationCase0_0() 
1. (proc 1 trans 41): printf("config1");; balance = 10; amount = 5; run login_deposit_0(); 
run login_withdraw_0(); run logout_0(); run deposit_0(); run withdraw_0() 
2. (proc 2 trans 45): (status == 0); status = 1 
3. (proc 4 trans 47): (status != 0); status = 0 
------------------------------------------------ 
 
State-vector 49 byte, depth reached 11, errors: 5 
      39 states, stored 
      30 states, matched 
      69 transitions (= stored+matched) 
       0 atomic steps 
8.00270 memory usage (Mbyte) 
 
sspinja: elapsed time 54.00 miliseconds 
sspinja: rate      722 states/second 
8.74844 real memory usage (Mbyte) 

 

Figure 6.4: Result of the analysis (witnesses)
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Chapter 7

Case Studies

To evaluate the method, we conducted experiments on systems ranging from simple
to the real ones (e.g. the dining philosopher problem, benchmark for explicit model
checker [66], OSEK/VDX OS [62], and Linux OS with real-time scheduling policies). In
this chapter, we introduce the case studies and presents the experiment results1. Our
experiments were carried out on 3.4 GHz CPU Intel Core i7 with 32G RAM.

7.1 Verifying Systems with Scheduling Policies

7.1.1 Dining Philosopher Problem

We considered the dining philosopher problem with round-robin (RR) and priority (FP)
policies. Each philosopher was modeled as a process in the modeling language and each
behavior was represented as an atomic action. The numbers of philosophers considered
were 2, 4, 8, 16, and 32. With the FP policy, we assigned different priorities to the
processes. For the execution of each process with RR policy, we set the time slice to 3
indicating that each philosopher can take 3 actions in his turn. Only four philosophers
are considered to check the absence of starvation. The results of the experiments are
listed in Table 7.1.

Table 7.1: Deadlock and starvation verification results
Scheduling policy Deadlock Starvation

Without scheduler Yes -

RR, time slice = 3 No No

FP No Yes

Without using any scheduling policy, deadlocks occurred; therefore, we did not con-
sider the starvation. In addition, within 60 seconds, the search was incomplete with the
number of philosophers being equal to 16 or 32. With FP policy, the starvation occurred
although the deadlock was resolved. With RR policy, both deadlock and starvation were
absent. The detailed results are shown in Table 7.2 with the number of philosophers
(N), the number of states (S), time (T) in seconds, and memory usage (M) in MB. In
this table, T.O. means timeout (incomplete within 60 seconds); this happened without
using the scheduling strategy.

1The results were first introduced in [83, 84]
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Table 7.2: Dining philosopher problem verification results

N
Without using scheduling policy RR FP

S T M S T M S T M

2 9 0.01 8.64 11 0.01 17.0369 4 0.01 17.0327

4 115 0.03 8.66 17 0.02 17.0343 4 0.01 17.0339

8 12319 18.79 9.58 33 0.03 17.0403 4 0.01 17.0368

16 - T.O. - 65 0.05 17.0588 4 0.01 17.0478

32 - T.O. - 129 0.1 17.1211 4 0.01 17.0515

7.1.2 Synchronization in OSEK/VDX OS

We considered a problem for scheduling resources in synchronization mechanisms. The
problem indicates that a lower-priority process can delay the execution of the higher
one in a system using priority scheduling policy. For instance, let a system with three
tasks/processes T1, T2 and T3 (as depicted in Figure 7.1.a) with preemptive policy.
Semaphore S is occupied by process T3, which has the lowest priority and is currently
running. Process T1 preempts this process and then requests the semaphore. However,
because S is already used by T3, T1 is denied and then enters the waiting state. Now
T2 is executed. We can see that the highest priority process T1 can only run until the
others have been terminated and the semaphore S released. Actually, T2 delays process
T1 although it does not use S.

Task T1

Task T2

Task T3

suspended

suspended

access to semaphore S

access to S deniedready

release semaphore S

suspended

ready

waiting

ready

ready

running

running

suspended

suspended suspended

ready

ready

ready

Ceiling 
priority running

request resource request resource

release resource release resource

suspended

running

running

running

running

running

running

suspended

running

running

priority

priority

a)

b)

Task T1

Task T2

Task T3

Figure 7.1: Synchronization mechanism problem

To overcome this problem, OSEK OS applies the Priority Ceiling Protocol; the
method is as follows. The priority of a process will be raised to the value of the priority
of the resource when it occupies this resource. The priority of the process will be reset
after it releases the resource (as depicted in Figure 7.1.b). We note that all processes
access the resource have lower priority than this value.
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We demonstrated the mechanism by describing the OSEK scheduler in our DSL.
The process now has two attributes (PRIORITY and CEILING PRIORITY ) corre-
sponding to the static priority and the dynamic priority. When the process accesses to a
resource, its dynamic priority is changed. We define two interface functions correspond
to the service APIs GetResource and ReleaseResouce. These functions are to change the
priority following that of the resource. To execute and terminate a process, we defined
two other functions ActivateTask and TerminateTask for the two service APIs. The
system in the example above was modeled with three processes (from t1 to t3) (as
depicted in Figure 7.2). We set the value true for the attribute AUTOSTART of t3 to
make it execute at the starting time; t1 and t2 will be in the suspended state.

int x = 0 ; 
proctype t1() {   
 sch_api_self(ActivateTask, t2) ; 
 sch_api_self(GetResource, 1); //resource S 
 sch_api_self(ReleaseResource, 1) ; 
 assert (x == 0) ; 
 x = 1 ; 
 sch_api_self(TerminateTask) ; 
} 
 
proctype t2() {  
 assert (x == 1) ; 
 x = 2 ; 
 sch_api_self(TerminateTask) ; 
} 
 
proctype t3() { 
 sch_api_self(GetResource, 1); 
 sch_api_self(ActivateTask, t1) ; 
 sch_api_self(ReleaseResource, 1) ; 
 assert (x == 2) ; 
 x = 3 ; 
 sch_api_self(TerminateTask) ; 
} 
 
init { 
 sch_exec( t1()) ; 
 sch_exec( t2()) ; 
 sch_exec( t3()) ; 
} 

 

Figure 7.2: Modeling the example for synchronization problem

We verified the execution order of the processes by conducting the experiments with
and without using the protocol. The results are indicated in Table 7.3. The violation of
assertion corresponding to the assert statement (x==1) in process t2 was found. This
indicates that t1 cannot terminates before t2 ends.

Table 7.3: Priority ceiling protocol verification result

State Time (s) Memory (MB.) Error

Not using protocol 5 0.01 17.0751 Yes

Using protocol 16 0.01 17.0688 No
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7.1.3 Linux Scheduling Policies

The scheduling strategies in Linux are based on the priorities of the processes. Linux
supports three types of strategies for a non-real-time process; the priority now is assigned
with 0. These policies are SCHED_OTHER (for time-sharing executions), SCHED_BATCH

(for batch executions), and SCHED_IDLE (for background processes). With the real-
time policies, the priority of a process is assigned from 1 to 99; Linux uses SCHED_FIFO
and SCHED_RR policies for managing the executions. The difference between these two
policies is that with the processes that have the same priority, SCHED_RR uses the round-
robin with a certain time slice for the processes; with SCHED_FIFO, each process can run
until it releases the processor.

We applied our method to verifying systems on Linux OS. We used a system with two
process (P and Q) described in Chapter 3 (as shown in Figure 7.3) for the experiments.
For the verification, we applied several scenarios using the strategies with different
priorities values. We considered the properties expected and checked them with the
strategies. In these experiments, process P was run before process Q did. We also
conducted the experiments with the related policies (RR and FIFO) and compared the
experiment results.

int a, b; 
 
proctype P() { 
next: 
 if  
  :: (a+b) < 100000 -> a ++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi; 
} 
proctype Q() {  
next: 
 if  
  :: (a+b) < 100000 -> b ++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi;   
} 
 
init {  
 sch_exec(P());  
 sch_exec(Q());  
} 

 

Figure 7.3: A system with two processes

We also implemented the programs corresponding to these systems in Linux. The
results of running these programs were matched with the results of the verification.
Table 7.4 indicates these results with the number of states (S), time (T) in seconds,
and memory usage (M) in MB. Each scenario indicates the strategy and the relation of
the priorities of the processes; for instance, “OTHER, P.pri > Q.pri” means we used
SCHED_OTHER policy and the priority of P was higher than Q. Table 7.5 depicts the results
of the verification with the related strategies (RR: round-robin, FIFO: first-in-first-out).
The execution results for the program in Linux system are shown in Table 7.6.

In every case, with the scheduling strategies that are described, the expected prop-
erties hold. These results also match with the results of the execution of the programs
in Linux. However, in some cases, the policies related to the Linux policies show that
the properties did not hold.
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Table 7.4: Linux tasks verification results
No. Scenario Property Result S T M

1 OTHER, P.pri == Q.pri (a > 0) ∧ (b > 0) holds 240627 0.41 52.15

2 FIFO, P.pri > Q.pri (a > 0) ∧ (b == 0) holds 300008 0.42 57.40

3 FIFO, P.pri < Q.pri (a > 0) ∧ (b > 0) holds 200108 0.29 48.31

4 FIFO, P.pri == Q.pri (a > 0) ∧ (b == 0) holds 300008 0.46 57.42

5 RR, P.pri > Q.pri (a > 0) ∧ (b == 0) holds 300008 0.49 57.40

6 RR, P.pri < Q.pri (a > 0) ∧ (b > 0) holds 240617 0.46 52.15

Table 7.5: Linux tasks verification with related policies results
No. Scenario Policy Property Result S T M

1 OTHER, P.pri == Q.pri RR (a > 0) ∧ (b > 0) holds 240616 0.4 50.34

2 FIFO, P.pri > Q.pri FIFO (a > 0) ∧ (b == 0) holds 300008 0.42 52.85

3 FIFO, P.pri < Q.pri FIFO (a > 0) ∧ (b > 0) not hold 300003 0.33 53.15

4 FIFO, P.pri == Q.pri FIFO (a > 0) ∧ (b == 0) holds 300008 0.42 52.85

5 RR, P.pri > Q.pri RR (a > 0) ∧ (b == 0) not hold 240603 0.35 51.64

6 RR, P.pri < Q.pri RR (a > 0) ∧ (b > 0) holds 240616 0.4 50.34

7.2 Analyzing the Behaviors of the System

We analyzed the behaviors of real-time systems quantitatively and qualitatively with
considering the schedulability problem using different policies and different configura-
tions of a system.

7.2.1 Different Scheduling Policies

For real-time systems, each task/process has several attributes, such as best-case ex-
ecution time (BCET), worst-case execution time (WCET), the time between task re-
leases (PERIOD), deadline (DEADLINE), and priority (PRIORITY). The schedulabil-
ity problem is specified as all processes in the system will not violate their deadlines.

In the first experiment, we considered a system with four different processes. Table
7.7 shows the configurations of these processes. Here, the BCET was equal to WCET.
We used three scheduling policies for the evaluation: fixed-priority (FP), first-in-first-
out (FIFO) and earliest-deadline-first (EDF). The deadline violation for this system
was analyzed.

We also conducted the experiments with the framework introduced in [28]. This
framework2 uses UPPAAL and follows the model-based approach for the schedulability
analysis. This framework aims at analyzing the resource sharing problem with real-time
behaviors and a scheduling policy for each resource. In this experiment, the scheduler
was considered as a system resource. The attributes of the processes were set up as
indicated above. We compared the results using this framework with that resulted
using our approach. Table 7.8 shows the evaluation results with time (T) in seconds
and memory usage (M) in MB. In this table, “satisfied” means there is no deadline;
“unsatisfied” means the deadline violation occurs; “may not be satisfied” means we do
not know whether the deadline violation happens or not.

2The framework is taken from http://www.uppaal.org/
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Table 7.6: Execution results in Linux
No. Scenario Property Result Linux execution result

1 OTHER, P.pri == Q.pri (a > 0) ∧ (b > 0) holds (a, b) = (99976, 25)

2 FIFO, P.pri > Q.pri (a > 0) ∧ (b == 0) holds (a, b) = (100000, 0)

3 FIFO, P.pri < Q.pri (a > 0) ∧ (b > 0) holds (a, b) = (42837, 57164)

4 FIFO, P.pri == Q.pri (a > 0) ∧ (b == 0) holds (a, b) = (100000, 0)

5 RR, P.pri > Q.pri (a > 0) ∧ (b == 0) holds (a, b) = (100000, 0)

6 RR, P.pri < Q.pri (a > 0) ∧ (b > 0) holds (a, b) = (54020, 45981)

Table 7.7: The configuration of the processes

Process PERIOD Initial OFFSET TIME PRIORITY DEADLINE

t1 20 6 5 2 16

t2 20 9 5 3 11

t3 20 11 5 2 8

t4 20 10 5 5 20

In the next experiment, different numbers of the processes, which had the same con-
figuration, were used to analyze the performance. The configuration of the processes is
(PERIOD, BCET, WECT, DEADLINE, PRIORITY) = (20, 5, 5, 20, 1). The numbers
of processes considered in this experiment were 2, 3, 4, and 5. Table 7.9 shows the
analysis results with the average time (Ta) in seconds and the average memory usage
(Ma) in MB. Here, “satisfied” means that there is no deadline violation with all of the
scheduling strategies; “may not be satisfied” means that we cannot know the deadline
violation with all of the scheduling strategies; “NA.” means “not available” (that oc-
curs when the system reaches the maximum number of processes and our tool cannot
determine the result).

7.2.2 Different Configurations

We considered the system containing two processes (t1 and t2) with priority scheduling
policy (as depicted in Figure 7.4). For this experiment, three configurations based on
the priorities of these two processes were used. We indicated the analysis properties that
were AG(a > b) and AG≤3(a > b) meaning that the value of variable a is always greater
than that of b, and the value of variable a is always greater than that of b within 3 time
units. Statements checkpoint with label exec_t1 in the select process event handler
and checkpoint with label end_t2 in the interface function named terminate were set
(as shown in Figure 7.4.c) to realize the executions of these statements (exec_t1 is
for checking the execution of process t1 and end_t2 is for checking the termination of
process t2).

Table 7.10 shows the analysis results for these properties. Property AG≤3(a > b)

always holds, while property AG(a > b) only holds if the priority of t1 is greater than
that of t2. The analysis results corresponding to the checkpoint statements exec_t1

and end_t2 (min, max ) are different according to each configuration.
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Table 7.8: Analysis results with four processes

Policy Expected
Scheduling framework in UPPAAL SSpinJa

T M Result T M Result

FP unsatisfied 0.002 41.46 may not be satisfied 0.06 19.692 unsatisfied

FIFO unsatisfied 0.002 41.176 may not be satisfied 0.02 19.675 unsatisfied

EDF satisfied 0.01 41.8 satisfied 0.03 19.709 satisfied

Table 7.9: Analysis results with different number of processes

N Expected
Scheduling framework in UPPAAL SSpinJa

Ta Ma Result Ta Ma Result

2 satisfied 0.004 40.94 satisfied 0.02 19.6891 satisfied

3 satisfied 0.015 40.98 may not be satisfied 0.03 19.6906 satisfied

4 satisfied 0.141 41.29 may not be satisfied 0.063 19.6984 satisfied

5 unsatisfied 1.064 43.54 may not be satisfied 0.203 25.2627 NA.

Table 7.10: Analysis results with priority policy

Configuration T M AG(a > b) AG≤3(a > b)
exec t1 end t2

min max min max

t1.priority > t2.priority 0.02 19.6704 satisfied satisfied 0 0 10 10

t1.priority == t2.priority 0.02 19.6704 unsatisfied satisfied 0 8 8 10

t1.priority < t2.priority 0.02 19.6764 unsatisfied satisfied 8 8 8 8

7.3 Testing Scheduling Policies

In this experiment, we checked the correspondence between the policy specified in the
DSL with the implementation of the real scheduler using the test generation approach
based on the specifications the scheduling strategy in our DSL. Real-time FIFO schedul-
ing policy on Linux OS was used in this experiment.

7.3.1 Preparing the Environments

We aimed at verifying the scheduling strategy in Linux OS. To prepare the behaviors
of the processes and the configuration of the system for testing, we define the process
class in our DSL3 as depicted in Figure 7.5.

For checking the selection of the scheduler, the scheduling tasks are performed by the
behaviors of the processes using the following methods a) terminate for terminating
the current process and b) runP for executing another process. The result for generating
the environment from the definition of the process class is represented in Table 7.11.

3see Chapter 5 for the details of the test generation
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int a, b; 
 
proctype t1() { 
next:  
 if  
  :: (a+b) < 5 -> a++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi; 
} 
 
proctype t2() {  
next: 
 if  
  :: (a+b) < 5 -> b++; goto next; 
  :: else -> sch_api_self(terminate) 
 fi;   
} 
 
init {  
 sch_exec(P());  
 sch_exec(Q());  
} 

scheduler Priority () { 
 data { 
  collection ready using priorityOrder; 
 } 
  
 event handler { 
  select_process (process p) { 
   get process from ready to run; 
   if (p.hasName("t1")) checkpoint exec_t1 ; 
  } 
   
  new_process (process target) { 
   move target to ready; 
   if (!running_process.isNull()) { 
    if (target.priority > running_process.priority) { 
     move running_process to ready; 
    } 
   } 
  } 
 } 
  
 interface { 
  function terminate(process target) { 
   if (target.hasName("t2")) checkpoint end_t2; 
   remove target; 
  } 
 } 
} 
 
comparator { 
 variable { 
  int x; 
 } 
 comparetype priorityOrder(process p_n, p_o) { 
  x = p_n.priority - p_o.priority; 
  if (x>0) return greater; 
  else if (x==0) return equal; 
   else return less; 
 } 
} 
 
verify {  
 AG<=3 (Sys(a) > Sys(b)) 
} 

a) Process program 

def process Priority { 
 attribute{  
  var byte priority; 
 }               
 proctype t1() {  
  this.priority = 5;  
 }     
 proctype t2() { 
  this.priority = 3; 
 }        
}   
init {  
 [{t1(), t2()}] 
} 

b) Process attribute c) Scheduler description 
 

Figure 7.4: A system with priority policy

7.3.2 Test Cases Generation

The specification of Linux scheduling strategies indicates that the process with higher
priority will preempt the current process. Therefore, we only used the processes with
the same priority to check the selection of the scheduler. With the real-time policies,
the nice attribute of the processes is ignored. Thus, we used only one configuration for
the testing. The processes with this configuration have the same priority.

In this experiment, we generated test cases corresponding to the behaviors of the
processes defined in the process program with FIFO scheduling policy. The description
of the policy with the test generation in the DSL is depicted in Figure 7.6.

The test generation was indicated following the search to cover all the states of
the system. With this experiment, 14 test cases were generated. One of these tests is
depicted in Figure 7.7. The results for the generation are listed in Table 7.12.
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process linux {             
 attribute {                                     
  priority: type = byte, value = [0..2], default = 0; //static priority; 0: normal, 1..99 real time  
  nice: type = int, value = [0..2], default = 0; //dynamic priority for SCHED_OTHER -20..19 
  schtype: type = byte, value = [0,1,2], default = 0 ; //SCHED_OTHER, SCHED_FIFO, SCHED_RR         
  preempt: type = byte, value = [0,1], default = 1 ; 
     
  constraint {   
   (schtype == 0) => (priority == 0) ;  //normal process  
   (schtype > 0) => (nice == 0) ; 
   (priority == 0) => (schtype == 0) ;  
  }           
 }     
 
 behavior { 
  constructor : P(byte priority = 0; byte nice = 0; byte schtype = 0) ;   
  method : terminate () ;  
  method : runP(byte priority; byte nice; byte schtype){    
   nice: value = [0..1];  
   priority: value = [0..2] ; 
   schtype: value = [0..2];  
    
   constraint {   
    (schtype == 0) => (priority == 0) ;  //normal process  
    (schtype > 0) => (nice == 0) ; 
    (priority == 0) => (schtype == 0) ;  
   }   
  }      
 }        
}             
   
configuration {              
 init {                     
  [{P(?,?,?), P(?,?,?)}] 
 }            
} 

 

Figure 7.5: Defining the process class

Table 7.11: Generating environment result

No. configurations Time (s)

49 0.207

Table 7.12: Test case generation result

No. test cases States Memory (MB.) Time (s)

14 16 21.119 0.03

7.3.3 Test Programs Generation

In the next experiment, we generated test programs following the scheduling specify in
the DSL to check the correspondence between the description of the policy with the
implementation in a real system. Linux Ubuntu version 12.04.5 with real-time FIFO
policy was used in this experiment.

In this experiment, the selection of the scheduler for the execution was tested. Basing
on the specification of Linux scheduling policy, there is a case that when a process
arrives, it may preempt the current process if they have the same priority. That means
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int cnt ; 
proctype P () { 
 do 
  :: d_step{  

sch_api_self(terminate);  
cnt-- 

}; 
  :: d_step{  

sch_api_self(runP);  
    if 
     :: cnt <= 2 -> cnt++ ; 
     :: else skip ; 
    fi ; 
   }; 
  :: skip; 
 od 
}   
init {  

sch_exec(P());  
sch_exec(P());  
cnt = 2 ;  

} 

scheduler linux() {                                                        
 generate {  
  configuration {   
   option = { Searching };  
   directory = "TestGen";  
   file name = "Testcase" ; 
   file extension = "txt" ; 
   test case = (header + "\n") + (behaviors) ; 
  }     
  component {      
   header {          
    genln 'Test case following the search' ; 
   }    
  }  
  system { 
   behavior = ('Step '+ getStep()+'/'+getTotalStep() + '\\n' + pre_take) + 
    ('Process'+<PID>+<InstanceID> + ' action: ' + action +  
    ', then cnt = ' + Sys(cnt) + '\\n') +  
    (post_take + '\\n') ; 
  } 
 } 
  
 data {  
  collection ready with fifo ; 
 }                                            
 event handler{                    
  select_process (process target_process) {  
   get process from ready to run;    
  }                                                                    
  new_process (process target_process) { 
   move target_process to ready ; 
  }              
  pre_take (){ 
   genln 'Current process count = ' + Sys(cnt) ; 
  } 
  post_take (){ 
   genln 'Expected process count = ' + Sys(cnt) ; 
  }   
 }     
 interface {    
  function terminate () { 
   remove running_process ; 
  } 
  function runP() { 
   new P(), 3; 
  }  
 }      
}      

a) Process program 

def process linux_0  {        
 proctype P () {}                               
}                                                                                                 
        
init {                      
 [{P(),P()}]       
} 

b) Process attribute c) Scheduler description with test generation specification 
 

Figure 7.6: The specification of a test case generation

we can not determine which process will be executed next. In this experiment, only the
case that the processes had the same priority was considered. Therefore, in testing, we
created the processes with the same priority and checked which process was selected to
run. For the design of the test programs, we used a variable named pointpassed to
count the actions of the processes. After performing an action, we increased the value
of pointpassed to indicate that an action is performed (the testing also passes 1 more
step). A test program is passed (in testing) if all the actions are performed and the
corresponding steps are passed.

To generate the test programs, we indicated the scheduling tasks in the process
program (e.g. terminates itself or executes another process). The specification of the
strategy and the test generation for this experiment is depicted in Figure 7.8. In com-
parison with the previous experiment (the test cases generation), the attributes of the
processes, and the behaviors of the scheduler are kept. The specification for the test
generation was changed. Firstly, the configuration part was updated to support the
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Test case following the search 
Step 1/2 
Current process count = 2 
Process01 action: sch_api ( terminate, running_process); cnt--, then cnt = 1 
Expected process count = 1 
Step 2/2 
Current process count = 3 
Process01 action: skip, then cnt = 3 
Expected process count = 3 

 

Figure 7.7: A test case

Table 7.13: Test program generation result

No. test programs States Memory (MB.) Time (s)

29 16 21.2529 0.05

test generation. The pre_take and post_take events were updated to specify the code
generated for checking the value of pointpassed variable. The structure of the pro-
grams was defined. The template of init component and the template of the processes
were determined in the test specification. Two other components (header and declare)
were added to construct the program structure. We note that the declare component
is updated following the behaviors of the scheduler using the genln statement in the
handler for the new_process event. In this experiment, 29 programs were generated.
One of the programs is depicted in Figure 7.9. The detail result for the generation is
represented in Table 7.13.

For executing the test programs, there is no specification indicating which process
will be selected to run if a process with the same priority as the current one arrives
at the system (the current process may be preempted). In this situation, we make
the assumption that for an implementation of Linux OS, the scheduler can select any
process among these processes to run. In fact, with our approach, a test only represents
an execution of the system. Thus, it cannot handle all the possible executions of these
process. To validate the implementation of the scheduling strategy, our method is
based on executing a test program multiple times and checking the execution orders
of its processes. With this experiment, we examined the value of pointpassed. The
step indicated by the value of this variable was compared with the execution order of
the processes. If the results are matched, the test is passed, otherwise, we execute the
test program again with the limited times to run. Based on this idea, with the test
programs generated, we wrote a test script to execute the tests and handle the results
of the execution. The bound of times to try for each program was set to 1000000. In
this experiment, all the tests were passed after 1388702 times to try in total 2371.407
seconds. The detail results are shown in Table 7.14.

In the next experiment, we only dealt with a limited number of behaviors of the
processes. The number of behaviors considered was 2. Therefore, in the verify part of
the specification, we specified a dummy property AF AF (true) to indicate that we need
to check all the execution orders containing only 2 steps. We performed the generation
again and 13 programs were generated (the result is represented in Table 7.15). For
executing the test programs, we also set the number of times to try to 1000000. With
this experiment, all the tests were passed after 20780 times to try in total 36.423 seconds.
The detail result is represented in Table 7.16.
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scheduler linux() {                                                            
 generate {  
  configuration {  
   option = { Searching };  
   directory = "TestGen";  
   file name = "Program" ;  
   file extension = "c" ; 
   test program = (header + "\n")+(declare + "\n")+(init  + "\n")+(processes); 
  }   
  component {      
   header {           
    genln '/* header */' ;   
    genln '#define _GNU_SOURCE' ;  
    …         
    genln 'int pointpassed;';   
    … 
   }   
   declare { 
    genln '/* declaration */' ; 
   } 
   init { 
    template = 'void init_thread() {\\n' + <behaviors> + '}';     
    behavior = (select_process) ; 
   }       
  }  
  process { 
   template = 'void *process_'+<PID>+<InstanceID>+'() {\\n'+<behaviors>+'}\\n';
     
   behavior = (pre_take)+(select_process)+("//action: "+action)+ 

(new_process)+(post_take+'\\n'); 
  } 
 }                                  
  
 data {  

  collection ready with fifo; 
 }                                              

 event handler{                    
  select_process (process target_process) { 
    get process from ready to run ;   

 }                                                                    
  new_process (process target_process) {  

    genln  declare, 'void* process_' + target_process.getPID() + 
target_process.getInstanceID()+'() ;'; 

    … 
    move target_process to ready ;            
  }    
  pre_take(){ 
   if (!running_process.isNull()) { 
    genln '\t if (pointpassed == ' + getStep() + ' - 1) {' ; 

   … 
    genln '\t }' ;  
   } else { 
    genln '\t\t exit(0) ;' ; 
   }    
  }      
 }     
 interface {  

  function terminate () { 
     remove running_process ; 
   } 
   function runP() {          
     new P(), 3; 
   } 
  }             

} 

  

Figure 7.8: The specification of a test program generation
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/* header */ 
#define _GNU_SOURCE 
#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <sched.h> 
#include <stdbool.h> 
#include <assert.h> 
 
int pointpassed; 
pthread_attr_t attr ; 
struct sched_param parm ; 
 
void init_thread(); 
void create_thread(pthread_t thread, void* process){ 
  pthread_attr_init(&attr); 
  pthread_attr_setschedpolicy(&attr, SCHED_FIFO); 
  parm.sched_priority = sched_get_priority_min(SCHED_FIFO); 
  pthread_attr_setschedparam(&attr, &parm); 
  pthread_create(&thread, &attr, process , NULL); 
  pthread_detach(thread) ; 
} 
 
int main(int argc, char *argv[]) { 
  int num_CPUs = 0; 
  cpu_set_t mask; 
  CPU_ZERO(&mask); 
  CPU_SET(num_CPUs, &mask); 
  if (sched_setaffinity(0, sizeof(mask), &mask) == -1) { 

printf("Could not set CPU Affinity");  
} 

  init_thread(); 
  pthread_exit(0); 
} 
 
/* declaration */ 
void* process_01() ; 
pthread_t thread_01; 
void* process_11() ; 
pthread_t thread_11; 
 
void init_thread() { 
  create_thread(thread_01, (void*) process_01 ); 
  create_thread(thread_11, (void*) process_11 ); 
} 
void *process_01() { 
  if (pointpassed == 1 - 1) { 
   pointpassed = 1; 
   if (pointpassed == 3 - 1) exit(1) ; 
  } else { 
   exit(0) ; 
  } 

if (pointpassed == 2 - 1) { 
   pointpassed = 2; 
   if (pointpassed == 3 - 1) exit(1) ; 
  } else { 
   exit(0) ; 
  } 
} 
void *process_11() {   
} 

  

Figure 7.9: A test program
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Table 7.14: Test program execution results

Test program Passed No. steps Times to try Testing time (s)

Program 0.c Yes 4 674 1.147

Program 1.c Yes 2 1 0.004

Program 2.c Yes 4 81 0.214

Program 3.c Yes 2 1 0.004

Program 4.c Yes 4 89 0.215

Program 5.c Yes 7 813 2.429

Program 6.c Yes 7 264453 451.564

Program 7.c Yes 4 52284 89.027

Program 8.c Yes 8 159024 272.397

Program 9.c Yes 2 12140 20.730

Program 10.c Yes 4 595 1.138

Program 11.c Yes 3 15904 27.686

Program 12.c Yes 6 52659 92.072

Program 13.c Yes 6 6023 10.440

Program 14.c Yes 8 52506 88.996

Program 15.c Yes 8 400181 681.109

Program 16.c Yes 4 676 1.149

Program 17.c Yes 8 107358 182.041

Program 18.c Yes 5 18433 31.164

Program 19.c Yes 8 635 1.118

Program 20.c Yes 3 629 1.084

Program 21.c Yes 3 14044 23.764

Program 22.c Yes 4 25 0.074

Program 23.c Yes 8 209274 355.802

Program 24.c Yes 4 11002 18.633

Program 25.c Yes 7 923 1.695

Program 26.c Yes 7 8135 15.364

Program 27.c Yes 6 1 0.008

Program 28.c Yes 6 139 0.339

Table 7.15: Test program generation result with 2 steps

No. test programs States Memory (MB.) Time (s)

13 16 21.1623 0.03

7.4 Summary

We have introduced the case studies to evaluate our method. In fact, the behaviors of
the system now are limited by the scheduling strategies in comparison without using
the scheduler. This fact makes the verification more accurate because we can remove
the spurious counter-examples that appear outside of the execution indicated by the

103



Table 7.16: Test program execution results with 2 steps

Test program Passed Times to try Testing time (s)

Program 0.c Yes 1 0.004

Program 1.c Yes 1 0.005

Program 2.c Yes 1 0.009

Program 3.c Yes 1 0.004

Program 4.c Yes 1 0.004

Program 5.c Yes 2817 4.999

Program 6.c Yes 1 0.004

Program 7.c Yes 1 0.004

Program 8.c Yes 1 0.006

Program 9.c Yes 8724 15.249

Program 10.c Yes 1 0.004

Program 11.c Yes 9229 16.126

Program 12.c Yes 1 0.004

scheduler. Moreover, beside the qualitative analysis, following the notation of time (as
proposed in [36]) we can analyze the behaviors of the system quantitatively. In addition,
with the approach to generating the tests, our method can be used to test the scheduling
strategy specified in the DSL with the implementation of the scheduler in an OS. In the
next chapter, we discuss the experimental results in more details with the advantages
and disadvantages of our framework to show the flexibility and the accuracy of our tool
for verifying systems with scheduling policies.
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Chapter 8

Discussion

Based on the results of the experiments shown in the previous chapter, we discuss the
advantage and the disadvantage of our method. The main issues for evaluating our
results are as follows. Some remaining problems are also discussed at the end of this
chapter.

• Accuracy and reliability: The verification results are matched with the expected
results or with the results produced by a real system.

• Simplicity: It is easy to use the language to describe the policy in comparison
with implementing the scheduling from scratch.

• Flexibility: It is flexible to change the behaviors of the scheduler in the description
of the policy.

• Reusability: The specifications in the DSL can be reused.

• Scalability and practicality: Our method scale well in comparison with other tools
and it is possible to apply our method to a real system.

8.1 Accuracy and Reliability

Verifying systems using different strategies and without scheduling lead to different re-
sults because they perform different behaviors. That means for the accurate verification,
the policies need to be considered. The experiments show that our tool can realize the
behaviors of the system following the scheduling policies.

As indicated in Section 7.1.1, the dining philosopher problem caused the deadlock
when the scheduler was not used (with SpinJa tool) while they were absent with RR
policy (with our tool, SSpinJa). If the priorities of the philosophers are different, the
opportunities to eat for the philosophers are different. In this situation, no deadlock oc-
curs; however, starvation happens because the low-priority philosophers have no chance
to eat. The results above are as expected.

In Section 7.1.3, with the strategies used by Linux OS, the system can be accurately
verified if the specification of the policies conforms to the real one (the scheduling policies
used by an OS). We can see that some properties do not hold with the related policies
(i.e. RR and FIFO). Therefore, to verify a real system accurately, we need to specify
the behaviors of the scheduler conforming to the real one. This experiment indicates
that we can accurately verify the behaviors of Linux processes.
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The experiment in Section 7.2.1 shows that our method is more accurate than that
of the scheduling framework in UPPAAL. Actually, we can determine that deadline
violation occurs when the system uses either FP or FIFO policy; however, it does not
occur with EDF strategy. In the first experiment in this section for the schedulability
analysis of a real-time system shows that our tool can realize the deadline violation
with either FP or FIFO policy. That result is different from that of the framework
using UPPAAL model checker. In fact, this framework uses an over-approximation
approach to analyze the schedulability problem. Therefore, the analysis results can be
“may not be satisfied”. That means the framework cannot determine the satisfaction.
With the second experiment, although we can easily realize that the deadline violation
does not occur with the number of the processes being less than 5, the analysis results of
this framework were also “may not be satisfied”. Moreover, this framework only focuses
on the time constraints. Thus, considering both the behaviors of the processes and
the behaviors of the scheduler is challenging. As indicated in Section 7.2.2, although
using the same strategy (priority policy), when the configuration was changed, the
analysis results for the behaviors of the system were also changed. Therefore, both the
scheduling strategies and the attributes of the processes need to be considered to verify
the behaviors of the system.

In addition, before making any verification, we take an assumption that the pol-
icy specified in the DSL must be correct. Actually, by applying our method, we can
check the correspondence between the specification of the policy with the strategy im-
plemented in a real OS as indicated in Section 7.3. It helps us to increase the confidence
of the policy in the DSL.

8.2 Simplicity, Flexibility, and Reusability

The synchronization mechanism described in Section 7.1.2 relates to the scheduling
strategies. The relation is not easy to describe using the language for the process
because the whole system with the relations needs to be encoded. With our approach,
because we provide a mechanism to define an interface for the communication between
the processes and the scheduler, the relations are easy to specify.

For the analysis of the system, using discrete time with defining the checkpoint

statements to label the state graph can easily handle the behaviors of the system quan-
titatively. The behaviors of the system (the processes with the scheduler) can be cap-
tured using the checkpoint statements. With this approach, labeling the graph helps to
realize the occurrence of the scheduling events. Therefore, the property represented by
a CTL/RTCTL formula can be verified simply. We note that the original tool (SpinJa)
can use the statement merging technique to reduce the number of states. However, with
the assumption that each transition taking one time unit, to determine the satisfaction
of a quantitative property, we can not use this technique in our approach with our tool
(SSpinJa).

Our framework can handle different configurations by only changing the values of
the attributes of the processes. Besides, with the collection for storing the processes and
specifying the event, we provide a flexible way to describe the behaviors of the scheduler.
The experiments indicate that our framework can easily deal with the variation of the
schedulers. With the ordering approach for selecting a process to run, we can easily
specify the common scheduling policies. In fact, the description code for specifying
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the policy (with the verify part) used in the experiments is really small in comparison
with the number lines of code generated (as indicated in Table 8.1). For instance, with
a GPL, if we want to deal with FIFO policy, we need to implement the queue data
structure with the corresponding operations; of course, the implementation needs a lot
of work, time-consuming and error-prone.

Table 8.1: The number lines of the code generated from the scheduling policy

Scheduling policy
No. Lines No. Lines

Specification Code

First-in-first-out (FIFO) 13 1668
Priority 30 1787
Earliest deadline first (EDF) 30 1775
Round-robin (RR) 15 1475
OSEK/VDX Priority Ceiling Protocol 68 2061
Linux (SCHED OTHER, SCHED FIFO, SCHED RR) 55 1868

In our approach, we separate the specification of the policy and the processes. Con-
sidering the strategy as an input of the verification, with the same behaviors of the
processes we can apply different policies, and with a strategy, we can apply different
process models. This means that the processes and the scheduling policy can be reused
completely.

In addition, for the approach to generating the tests, the specification of the policy
and the test specification in the DSL is also reusable and flexible to handle the variation
of the behaviors of the scheduler.

• The number lines of code for the policy and for the test generation used in the ex-
periments is really small in comparison with the results generated (as indicated in
Table 8.2). In another word, using the DSL is an effective way for the specification.

Table 8.2: The number lines of the code generated for the testing
Experiment Number of lines of the specification Test generation results

Test cases
- Process program: 18 lines

- No. tests: 14 test cases

generation
- Process attributes: 6 lines

- No. lines codes: 317 lines
- Scheduling and test generation: 48 lines

Test programs
- Process program: 18 lines

- No. tests: 29 test programs

generation
- Process attributes: 6 lines

- No. lines codes: 3058 lines
- Scheduling and test generation: 100 lines

Test programs - Process program: 18 lines
- No. tests: 13 test programs

generation with - Process attributes: 6 lines
- No. lines codes: 936 lines

limited behaviors - Scheduling and test generation: 105 lines

• With the specification of the test generation in the DSL, all the tests were gen-
erated automatically. The process program models the behaviors of the processes
and we use the search to explore the system states, therefore, all the states are
covered and represented in the tests. The execution orders of the system affect the
code generated. For instance, which process selected among the processes with
the same priority will lead to the different code generated in comparison with the
others.
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• In the implementation, all of the duplicate results in the test generation will
be removed. Therefore, although using the same process program and the same
policy, the number of test cases (in the experiment shown in Section 7.3.2) and the
number of test programs (in the experiment shown in Section 7.3.3) are different.

• Our method also supports finding the trails that satisfy a property by labeling
the system graph; thus, it is easy to generate the tests following a corresponding
property. In the experiment shown in Section 7.3.3, we limited the behaviors
of the processes (only 2 actions were performed) using the property indicated in
the verify part of the scheduler description. Therefore, the number of the test
programs generated were also limited.

8.3 Performance

As indicated in Section 7.1.1, although the number of states visited by SSpinJa was
smaller than that visited by SpinJa when the search was completed, our tool needed
more memory because we consider the behaviors of the scheduler during the verification,
therefore, our tool needs more memory to store the information of the scheduler. In
this experiment, the number of states and the verification time for different scheduling
policies are also different. For instance, with the dining philosopher problem using the
FP strategy, only the highest priority process can be selected; therefore, the number of
states is unchanged. That is different from the RR strategy (as depicted in Figure 8.1.a).
It also makes the running times for the scheduling policies different (Figure 8.1.b).
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Figure 8.1: Dining philosopher problem results

In the experiment for schedulability analysis (Section 7.2), the running time of the
scheduling framework using UPPAAL showed a significant increase in comparison with
SSpinJa, and SSpinJa used less memory than this framework (as depicted in Figure
8.2). It means that our tool has better performance than the scheduling framework in
UPPAAL does. In addition, the framework using UPPAAL model checker only focuses
on the time constraints. Therefore, considering both the behaviors of the processes and
the behaviors of the scheduler is also challenging.
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8.4 Practicality

For verifying the system with the scheduling strategies and testing the scheduler imple-
mented in a real system, the experiments also showed that our approach is practical.

• Firstly, we can accurately verify the program executed in Linux OS based on the
specification of the policy used by the system (as shown in Section 7.1.3).

• Secondly, we can generate the test programs for testing the policy in our DSL
with the scheduler implementation of Linux OS (as described in Section 7.3.3).
This is done easily with the support of the DSL for determining the structure of
and the template of the programs.

• Thirdly, with the automated test generation for testing scheduling policies, we can
increase the confidence of the specification of the policy in the DSL. It helps us to
easily handle the quality assurance of the system with the scheduling strategies.

8.5 Remaining Problems

8.5.1 Improving the Performance

The experiments show that with the policy, our tool can limit the number of system
states to be visited. However, in some cases, the memory usage of our tool is greater
than that used by the original tool (SpinJa) without using the scheduler (as described
in Section 7.1.1). That fact is because we store the scheduling information during the
verification. How to optimize the memory usage is a problem needed to be solved in
the future for this research.

In addition, for the analysis system with the scheduling strategies, our tool can
raise a problem when the state space is not explored completely, it can return a “non-
determined” result (as indicated in Section 7.2.1). This is because the number of pro-
cesses is now limited in the current implementation of the tool.
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8.5.2 Testing Non-deterministic Behaviors

Following the specification, there are some options for the implementation of the be-
haviors of the scheduler in an OS. We call that fact as non-deterministic behaviors.
Actually, the approach for testing the non-deterministic behaviors by executing a test
program many times to check the satisfaction is an ineffective approach because it only
shows the satisfaction indicated by the program and can not prove the dissatisfaction.
In the case of testing the policy, the average times to try and the average time for
executing the programs corresponding to the number of the steps in the experiments
shown in Section 7.3.3 are varied (as shown in Figure 8.3). The problem is now how to
determine the bound of times for the execution. To handle this problem, the design of
the tests needs to be considered.
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Figure 8.3: Experimental results for testing the scheduling policy

One idea to deal with this problem is that we need to find another method to generate
the tests which can cover the non-deterministic behaviors following the specification
of the scheduling policy of an OS. Another approach to handle the non-deterministic
behaviors of the scheduler is based on checking the behaviors of the real scheduler (of
an OS) are accepted by the description of the policy. The idea for testing includes two
following steps.

• From the model of a system (with the scheduler and the processes), we generate
the test data that represents the execution of the processes in the system. Besides,
we write a test program, which uses this data as its input. Then, executing the
test program with this input. As a result, we can determine the execution orders
of the processes in a real system (called execution result).

• We then check whether this execution result is accepted by the model of this
system (by searching on the graph). That means if there is a path on the graph
corresponding to the execution result, the test is passed. Otherwise, the test fails.

8.5.3 Multi-core Scheduling Policies

Another problem we need to consider is that how to deal with the multi-core scheduling
policies. In fact, a multi-core system can use a scheduling policy to control its processes.

110



The policy determines the executions of the processes for each core. Several problems
need to be recognized to deal with multi-core systems, such as assigning the processes
for cores, shared processes between cores, the time related to behaviors of the system,
specifying the policy, etc.

To solve these problems, firstly we need to specify the scheduling policy of the
multi-core system. Besides, some other issues related to the implementation need to be
considered, such as determining the strategies to balance the load of each core. Secondly,
to verify the system, the algorithm to explore the state space also needs to be changed
to determine the possible executions of the processes in the system.
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Chapter 9

Related Work

This chapter introduces the related work. We category the researches into four main
related issues: a) verifying concurrent systems with considering the algorithm to search
the system states, b) analyzing the schedulability of real-time systems, c) specifying the
scheduling strategies, and d) methods for testing.

9.1 Verifying Concurrent Systems

Clarke et al. [24] proposed an algorithm to verify the behaviors of the system based on
labeling the state graph realized from state space. There are two steps in this approach:
first, building the state graph and second, label the graph following the property. In this
research, we focus on verifying concurrent systems executed under scheduling policies.
We realized that our research can adopt this approach by changing the first step, i.e.
building the state graph. Actually, the search space is now limited by the scheduler.
We dealt with that fact by proposing a DSL for the schedulers and introducing an
algorithm based on the scheduling strategy specified in the DSL to search the system
states. We now can build the state graph using the search algorithm and then adopt
existing algorithms for checking the corresponding property. The main difference is that
the search algorithm will limit the executions of the system. Therefore, the state space
is also limited. After that, the results of the analysis can indicate the satisfaction of the
property following the policy.

There are related works for guiding the search called directed model checking [35].
Several techniques were proposed to reduce the number of state using abstractions [4, 51]
or calculating the distance [34, 33, 87] from the current state to the error states. The
main purpose is to fast find the errors and short counterexamples. To achieve this
objective, the well-known algorithm A∗ [45] is used for performing the search. The
process with the best value for the transition (lowest/highest) is selected to run. Our
work is different because we use the scheduler to select a process, while they choose the
best one to run.

Some works are to verify the behaviors of the system. Liu et al. [54] proposed a tool
named PAT to build multi-domain tools; Pan et al. [64] proposed a method to deal with
CAN network protocol. However, these works do not deal with scheduling strategies.
The work Bogor [32] introduced a framework named for flexibly implementing the model
checking tools flexibly. Our research is different from these works because we propose a
method to flexibly verify different kinds of concurrent behaviors based on the scheduling
policies.
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9.2 Analyzing Real-Time Systems

There are some ways to handle the schedulability problem in scheduling domain. The
main purpose is to indicate whether the design of the processes satisfies the scheduling
conditions. There are some works using constraints solving [42], fixed scheduling [41]
or worst-case assumption [82] to deal with this problem. Moreover, some tools were
introduced, such as TimeWiz from Time Sys Corporation and RapidRMA from TriPa-
cific. These tools are based on rate monotonic analysis, which uses fixed priority for the
process. Actually, there are several differences between these approaches and ours.

• Firstly, our method uses model checking techniques.

• Secondly, we focus on the variation of the scheduler in analyzing the behaviors of
the system by proposing a DSL for the scheduling strategies.

• Thirdly, the worst-case assumption is not used in our approach because the relation
between the scheduling policy and the processes will be missed. Some behaviors
of the processes will never happen. That means analyzing the behaviors of the
system with a worst-case assumption is too pessimistic.

In our work, we consider individual behaviors of processes. Therefore, to handle
the time related to the behaviors of the system, we use discrete time by considering an
action of a process as taking one time unit. We used the timed-Kripke structure [36] to
model the system. This allows us to apply existing algorithms introduced in [18, 24, 36]
to verify the systems qualitatively and quantitatively.

There are researches with tools using timed automata to verify real-time systems.
One of these tools is UPPAAL. With UPPAAL, to deal with the policies, we can build
timed automata for the scheduling policy and the behaviors of the processes. With this
approach, the scheduling framework introduced in [28] follows a model-based approach
for the schedulability analysis. This framework aims at analyzing the resource sharing
problem with real-time behaviors and a scheduling policy. Some fixed policies (i.e. FP,
FIFO, and EDF) are implemented in this framework. However, this framework uses
an over-approximation approach to deal with the schedulability problem. Therefore,
in some situations, the framework cannot determine the satisfaction of the property.
Moreover, one of the limitations of UPPAAL is that this tool does not support to access
the internal information of a process. Therefore, the information of the process must
be defined in public scope. This approach lacks flexibility. Moreover, it is challenging
to deal with the facilitating the scheduling strategies with timed automata.

Another appropriate tool which allows the schedulability analysis is TIMES [3]. This
tool can specify various attributes for tasks/processes, such as periodic, sporadic, and
priority. However, TIMES provides limited scheduling policies and we cannot extend
this tool to deal with other policies.

For real-time systems, the work UML profile for MARTE [55] introduced a DSL to
analyze the time constraints. Nonetheless, the language cannot carry out the behaviors
of processes and the scheduler as our work does.

9.3 Specifying Scheduling Policies

To deal with scheduling strategies, the approaches in model checking like [56, 5], use the
existing modeling languages (e.g. Promela) to encode the scheduler and the processes
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into a model of the system, then use an existing tool (e.g. Spin) for the verification.
With these approaches, there are several limitations. Firstly, the strategy is fixed in
the model and it is difficult to handle another polices. Secondly, the capability of this
approach is limited because much redundant information is stored, and many behaviors
of the scheduler are checked. Thus, the problem of state space explosion can easily occur.
To overcome this problem, Zhang et al. proposed methods to remove the information
of the scheduler from the model of a system [90], [91]. Nevertheless, the disadvantage of
these methods is that the scheduler must be deterministic and fixed in tools. In addition,
because the approach [91] relies on SMT and bounded model checking techniques [15],
it is not efficient for verifying applications which contain many branches and loops.

To easily handle various kinds of schedulers, we propose a DSL for the scheduling
policies. There are some existing languages for describing the scheduling strategies,
such as Bossa [10] and Catapults [71]. In comparison with these languages, we have two
main differences as follows.

• These studies apply to particular systems and rely on their techniques. Therefore,
only limited types of policies are supported. In contrast, our approach does not
apply to any system and can support a variation of policies.

• Their aim is for implementing the scheduler in OSs; ours is to ensure the correct-
ness of a system using model checking techniques. With this purpose, we need
to consider all possible behaviors based on the corresponding specification while
a specific case for the implementation is enough for their works.

9.4 Conformance Testing and Model-Based Testing

Conformance testing techniques aim to verify the system implementation follows its
specification. The research proposed by Chen and Aoki [17] introduces the scheduler to
generate the test cases with Spin model checker for conformance testing OSEK/VDX
OS. In fact, Spin can export the information during the checking phase using C func-
tions. Their work uses this functionality to produce the log corresponding to the invoked
system services and the current state of the system. Using that log, another tool will
generate test cases for the system. However, because this work uses the support of an
existing model checker, the approach has several limitations as follows.

• Firstly, the scheduler is modeled and embedded in the model of the system. Thus,
the checking phase needs to consider many behaviors and store unnecessary infor-
mation of the scheduler.

• Secondly, we need to build another tool to complete the generation.

• Thirdly, it is difficult to handle other scheduling policies for generating the tests.

In our case, the purpose of testing the strategy is different because we want to
check that the description of the policy can specify the behaviors of the scheduler in
an implementation. We can assume that the policy in the DSL is correct and then use
it to test the behaviors of the scheduler in the implementation as in the conformance
testing. However, the results of the testing have different meanings. In conformance
testing, if the test fails that means the implementation does not follow the design (or
the specification). In our case, if the tests passed, we are confident about the scheduling
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policy in the DSL; otherwise, if any test fails, we cannot conclude anything because the
test may be outside of the executions of the system.

To prepare the tests for testing the policy automatically, we apply MBT techniques
[6]. There are some works using MBT for verifying the behaviors of the system. How-
ever, these works are different from ours. Actually, they do not deal with the scheduling
policy [37], are not for testing the policy implemented in a real OS[74], or do not focus
on the test generation for the testing [25].

To handle the test generation, recent researches use designed models taken from
UML diagrams to generate the tests [65, 76, 80, 86]. Our work focuses on generating
the tests automatically with model checking techniques. There are also several works to
handle this problem using verification technologies [2, 67, 75, 30]. With the behaviors
of each process representing in the model of the system, we can find the executions that
lead to the violation of a property (counterexamples) or satisfy the property (witness)
using model checking approach. In addition, there are tools, such as SAL [44] and STG
[22] to deal with the test generation. SAL uses a specification with trap variables to
represent the goals to be tested. STG uses symbolic techniques to overcome the problem
of state space explosion. In fact, our work is based on the idea that uses the search to
explore the system states and generate the tests following the behaviors of the system as
these approaches do. However, these works and tools did not deal with the scheduling
strategies as our work does.

In our research, we propose a DSL for the scheduling strategies and for the test
generation. There are some works introducing the DSL for the test generation. The
work [48] extracts the test cases from use case definitions using a DSL for the operations
of a system. However, it only focuses on automating the system test process and does
not deal with the scheduling policy. Paiva et al. [63] proposed a DSL for automatic
test cases generation from the specification of a system. This work focus on interactive
components and lack of its behaviors. To verify the event-based systems, Cyrille Artho
et al. presented a tool named Modbat [8], which provides a DSL for constructing
the state machine based on the explicit representation of system states. That means
the behaviors of the system are represented as finite state machine explicitly in the
DSL proposed. Our research is different from these works because our DSL is for the
scheduling strategies with the test generation and building the state space on-the-fly
during the verification.
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Chapter 10

Conclusion and Future Directions

In this research, we aim at verifying concurrent applications (systems) which run on
OSs using model checking techniques. We address the following problems.

1. The scheduler controls the executions of the system,

2. There is a variation of the policies uses by the OSs, and

3. Existing approaches are difficult to handle the variation.

The objective of this research is proposing a method to facilitate the variation of
schedulers in model checking. The originality of our method is proposing a DSL for
facilitating the variation of the schedulers. For verifying the system with the scheduling
policy, we generate all of the necessary information automatically from the specification
of the scheduler in the DSL to perform the search on the state space for the verification.
In addition, we can exhaustively and automatically generate the tests to check the
correspondence between the policy and the implementation of the scheduler in a real
OS. This helps us to increase the confidence of the policy specified in the DSL and
accurately verify the behaviors of the system.

Following this method, we implemented SSpinJa tool and conducted the experiments
to show the accuracy, reliability, simplicity, flexibility, and reusability of our approach.
We have the following results for this research.

1. Proposing a DSL for the scheduling strategies;

2. Proposing a model checking algorithm based on the policy to verify the system
under the scheduling policy;

3. Proposing a method to analyze the behaviors of the system under the scheduling
strategies qualitatively and quantitatively;

4. Proposing a method to test the correspondence between the specification of the
policy in the DSL and the implementation of the scheduler in a real OS;

5. Implementing a tool following the method proposed to verify the behaviors of a
system with scheduling strategies and generate the tests to check the scheduling
policy.

The advantages of our approach are as follows.
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1. The language for scheduling policies is simple;

2. The behaviors of the system can be extended and captured easily for the analysis;

3. The scheduling strategies can be reused;

4. The framework can analyze the behaviors of the system accurately;

5. The method is practical.

The limitation of our tool is memory usage. To overcome this problem, in the future,
some optimization techniques, such as partial order reduction will be applied. Moreover,
in this research, we only deal with the scheduling for the uniprocessor that has one core
and at most one process can run. In fact, the concurrency can be taken place on multi-
core processors and the scheduling strategies are also applied. This is one direction for
us to extend our work. In addition, in this research, we use ordering methods to deal
with the selection of the scheduler. Therefore, some policies without using the ordering,
such as lottery policy, can not be handled by our method. To deal with this problem,
we intend to support customizing the behaviors of the scheduler by adding user-defined
libraries to handle the selection. Moreover, we plan to adopt testing techniques with
multiple options for the implementation of the scheduling policies.
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[35] S. Edelkamp, V. Schuppan, D. Bošnački, A. Wijs, A. Fehnker, and H. Aljazzar.
Survey on directed model checking. In International Workshop on Model Checking
and Artificial Intelligence, pages 65–89. Springer, 2008.

[36] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. Real-Time Systems, 4(4):331–352, 1992.

[37] L. Fang, T. Kitamura, T. B. N. Do, and H. Ohsaki. Formal model-based test
for AUTOSAR multicore RTOS. In Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, pages 251–259. IEEE, 2012.

[38] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[39] G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers: a survey.
Software Testing, Verification and Reliability, 19(3):215–261, 2009.

[40] R. Gerth. Concise PROMELA reference, 1997.

[41] H. Gomaa. Designing concurrent, distributed, and real-time applications with
UML. In Proceedings of the 23rd international conference on software engineer-
ing, pages 737–738. IEEE Computer Society, 2001.

[42] R. Gorcitz, E. Kofman, T. Carle, D. Potop-Butucaru, and R. De Simone. On the
scalability of constraint solving for static/off-line real-time scheduling. In Inter-
national Conference on Formal Modeling and Analysis of Timed Systems, pages
108–123. Springer, 2015.

[43] I. S. Graham. The HTML sourcebook. John Wiley & Sons, Inc., 1995.

[44] G. Hamon, L. De Moura, and J. Rushby. Automated test generation with SAL.
CSL Technical Note, page 15, 2005.

120



[45] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[46] G. J. Holzmann. The SPIN model checker: Primer and reference manual, volume
1003. Addison-Wesley Reading, 2004.

[47] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.
The Spin Verification System, 32:23–32, 1996.

[48] K. Im, T. Im, and J. D. McGregor. Automating test case definition using a domain
specific language. In Proceedings of the 46th Annual Southeast Regional Conference
on XX, pages 180–185. ACM, 2008.

[49] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25 years of testing technique
experiments. Empirical Software Engineering, 9(1-2):7–44, 2004.

[50] M. Kattenbelt, T. C. Ruys, and A. Rensink. An object-oriented framework for
explicit-state model checking. In Proceedings of the 3rd European Symposium on
Verification and Validation of Software Systems (VVSS 2007). Eindhoven Univer-
sity of Technology, 2007.

[51] S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI
planning heuristic for directed model checking. In International SPIN Workshop
on Model Checking of Software, pages 35–52. Springer, 2006.

[52] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

[53] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-
aperiodic tasks in fixed-priority preemptive systems. In Real-Time Systems Sym-
posium, 1992, pages 110–123. IEEE, 1992.

[54] Y. Liu, J. Sun, and J. S. Dong. Pat 3: An extensible architecture for building
multi-domain model checkers. In 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pages 190–199. IEEE, 2011.

[55] MARTE, UML. UML profile for MARTE: modeling and analysis of real-time
embedded systems, 2015.

[56] N. Marti, R. Affeldt, and A. Yonezawa. Model-checking of a multi-threaded op-
erating system. In 23rd Workshop of the Japan Society for Software Science and
Technology, University of Tokyo, Tokyo, Japan, 2006.

[57] K. L. McMillan. Symbolic model checking. In Symbolic Model Checking, pages
25–60. Springer, 1993.

[58] P. McMinn. Search-based software test data generation: a survey. Software testing,
Verification and reliability, 14(2):105–156, 2004.

[59] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

121



[60] C. Newham and B. Rosenblatt. Learning the bash shell: Unix shell programming.
O’Reilly Media, Inc., 2005.

[61] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In Inter-
national Conference on the Unified Modeling Language, pages 416–429. Springer,
1999.

[62] OSEK Group and others. OSEK/VDX Operating System Specification, 2005.

[63] A. C. Paiva, J. P. Faria, and R. M. Vidal. Automated specification-based testing
of interactive components with AsmL. In QUATIC, pages 119–126, 2004.

[64] C. Pan, J. Guo, L. Zhu, J. Shi, H. Zhu, and X. Zhou. Modeling and verification of
CAN bus with application layer using UPPAAL. Electronic Notes in Theoretical
Computer Science, 309:31–49, 2014.

[65] P. E. Patel and N. N. Patil. Testcases formation using UML activity diagram. In
Communication Systems and Network Technologies (CSNT), 2013 International
Conference on, pages 884–889. IEEE, 2013.
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Appendix A

Language Grammar

〈Model〉 ::= 〈ProcClass〉 | 〈ProcDSL〉 | 〈SchDSL〉

〈ProcClass〉 ::= ‘process’ 〈ID〉 [‘refines’ 〈ID〉] ‘{’ [〈DefAttr〉] 〈DefBehavior〉 ‘}’
‘configuration’ ‘{’ [〈ProcessConfig〉] 〈ProcessInit〉 ‘}’

〈DefAttr〉 ::= ‘attribute’ ‘{’ (〈AttDef 〉)* [〈Constraints〉] ‘}’

〈AttDef 〉 ::= 〈ID〉 ‘:’ ‘type’ ‘=’ 〈Type〉 [‘,’ ‘value’ ‘=’ 〈ListDef 〉] ‘,’ ‘default’ ‘=’
〈Value〉 ‘;’

〈ListDef 〉 ::= ‘[’ 〈List〉 (‘,’ 〈List〉) * ‘]’

〈List〉 ::= 〈Range〉 | 〈BOOL〉 | 〈ID〉

〈Range〉 ::= 〈INT 〉 ‘..’ 〈INT 〉

〈Value〉 ::= 〈BOOL〉 | 〈INT 〉

〈DefBehavior〉 ::= 〈ProcType〉 | 〈ProcBehav〉

〈ProcType〉 ::= (〈ProcessType〉)*

〈ProcessType〉 ::= ‘proctype’ 〈ID〉 ‘{’ [〈Constraints〉] (〈ProcBehav〉)* ‘}’

〈ProcBehav〉 ::= ‘behavior’ ‘{’ (〈PBehav〉)* ‘}’

〈PBehav〉 ::= 〈Constructor〉 | 〈Method〉

〈Constructor〉 ::= ‘constructor’ ‘:’ 〈ID〉 ‘(’ [〈PramList〉]‘)’ ‘;’

〈Method〉 ::= ‘method’ ‘:’ 〈ID〉 ( (‘(’ ‘)’ ‘;’) | (‘(’ 〈PramList〉 ‘)’ ‘{’ (〈AssignPara〉)*
[〈Constraints〉] ‘}’ ) )

〈AssignPara〉 ::= 〈ID〉 ‘:’ ‘value’ ‘=’ 〈ListDef 〉 ‘;’

〈Constraints〉 ::= ‘constraint’ ‘{’ (〈Constr〉) * ‘}’

〈Constr〉 ::= 〈Or〉 ‘;’

〈ProcDSL〉 ::= ‘def’ ‘process’ ‘{’ [〈ProcAttr〉] 〈Process〉* ‘}’ [〈ProcConf 〉] [〈ProcInit〉]

〈ProcAttr〉 ::= ‘attribute’ ‘{’ 〈PAttr〉* ‘}’

〈PAttr〉 ::= [‘var’|‘val’] 〈Type〉〈ID〉 (‘,’〈ID〉)* [‘=’〈Value〉]‘;’
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〈Type〉 ::= ‘int’ | ‘byte’ | ‘clock’

〈Process〉 ::= ‘proctype’ 〈ID〉 ‘(’[〈PramList〉]‘)’ ‘{’ 〈AttAss〉* ‘}’

〈PramList〉 ::= 〈PramAss〉 (‘;’ 〈PramAss〉)*

〈PramAss〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉 )* ‘=’ 〈Value〉

〈AttAss〉 ::= [‘this’ ‘.’] 〈ID〉 ‘=’ ( 〈Value〉 | 〈ID〉 ) ‘;’

〈ProcConf 〉 ::= ‘config’ ‘{’ 〈PConf 〉* ‘}’

〈PConf 〉 ::= 〈SporadicP〉 | 〈PeriodicP〉

〈SporadicP〉 ::= ‘sporadic’ ‘process’ 〈Proc〉 ‘in’ ‘(’ 〈INT 〉 ‘,’ 〈INT 〉 ‘)’ [‘limited’
〈INT 〉] ‘;’

〈PeriodicP〉 ::= ‘periodic’ ‘process’ 〈Proc〉 ‘offset’ ‘=’ 〈INT 〉 ‘period’ ‘=’ 〈INT 〉
[‘limited’ 〈INT 〉] ‘;’

〈Proc〉 ::= 〈ID〉 ‘(’ [〈Value〉 (‘,’ 〈Value〉)*] ‘)’

〈ProcInit〉 ::= ‘init’ ‘{’ ‘[’ 〈PSet〉 (‘,’ 〈PSet〉)* ‘]’ ‘}’‘;’

〈PSet〉 ::= ‘{’ 〈Proc〉 (‘,’ 〈Proc〉)* ‘}’

〈SchDSL〉 ::= 〈SchDef 〉 [〈OrdDef 〉] [〈Verify〉]

〈SchDef 〉 ::= ‘scheduler’ 〈ID〉 ‘(’ [〈ParamList〉] ‘)’ [‘refines’ 〈ID〉] ‘{’ [〈Generate〉]
[〈VarDef 〉] [〈DatDef 〉] [〈HandlerDef 〉] [〈InterDef 〉] ‘}’

〈Generate〉 ::= ‘generate’ ‘{’ 〈GenConfig〉 〈GenComp〉‘}’

〈GenConfig〉 ::= ‘configuration’ ‘{’ [〈GenOption〉 ‘;’] [〈Dir〉 ‘;’] [〈FName〉 ‘;’] [〈FExt〉
‘;’] ‘test’ (‘program’ | ‘case’ | ‘data’) ‘=’ 〈TestPart〉 ‘}’

〈GenOption〉 ::= ‘option’ ‘=’ ‘{’ 〈GenOpt〉 (‘,’ 〈GenOpt〉)* ‘}’

〈GenOpt〉 ::= ‘Searching’ | ‘Error’ | ‘Property’ | ‘All’

〈Dir〉 ::= ‘directory’ ‘=’ 〈STRING〉 ‘;’

〈FName〉 ::= ‘file’ ‘name’ ‘=’ 〈STRING〉 ‘;’

〈FExt〉 ::= ‘file’ ‘extension’ ‘=’ 〈STRING〉 ‘;’

〈TestPart〉 ::= 〈GenPart〉 (‘+’ 〈GenPart〉)*

〈GenPart〉 ::= ‘(’ [〈STRING〉 ‘+’] (〈ID〉 | ‘init’ | ‘processes’ | ‘behaviors’ | ‘error’)
[‘+’ 〈STRING〉] ‘)’

〈GenComp〉 ::= ‘component’ ‘{’ (〈Comp〉)* [〈InitGen〉] [〈ProcGen〉] ‘}’;

〈Comp〉 ::= 〈ID〉 ‘{’ (〈Gen〉 |〈GenLn〉)* ‘}’

〈InitGen〉 ::= ‘init’ ‘{’ 〈Template〉 ‘}’
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〈ProcGen〉 ::= ‘process’ ‘{’ 〈Template〉 ‘}’

〈Template〉 ::= [〈SetTemplate〉] 〈Behavior〉

〈SetTemplate〉 ::= ‘template’ ‘=’ 〈Expr〉 ‘;’

〈Behavior〉 ::= ‘behavior’ ‘=’ 〈EventTemp〉 (‘+’ 〈EventTemp〉)* ‘;’

〈EventTemp〉 ::= ‘(’ [〈Expr〉 ‘+’] 〈Event〉 [‘+’ 〈Expr〉] ‘)’

〈VarDef 〉 ::= ‘variable’ ‘{’ 〈VDec〉* ‘}’

〈VDec〉 ::= [〈IfDef 〉] (〈VBlockDef 〉 | 〈VOneDef 〉)

〈IfDef 〉 ::= ‘#’ ‘ifdef’ ‘(’ 〈Expr〉 ‘)’

〈VBlockDef 〉 ::= ‘{’ 〈VOneDef 〉* ‘}’

〈VOneDef 〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉)* [‘=’ 〈Value〉] ‘;’

〈DatDef 〉 ::= ‘data’ ‘{’ 〈DDef 〉* ‘}’

〈DDef 〉 ::= [〈IfDef 〉] ‘data’ (〈DBlockDef 〉 | 〈DOneDef 〉)

〈DBlockDef 〉 ::= ‘{’ 〈DOneDef 〉* ‘}’

〈DOneDef 〉 ::= 〈VOneDef 〉 | 〈ColDef 〉

〈ColDef 〉 ::= [‘refines’] ‘collection’ 〈ID〉 [‘using’ 〈ID〉 (‘,’ 〈ID〉)*] [‘with’ 〈OrdType〉]
‘;’

〈OrdType〉 ::= ‘lifo’ | ‘fifo’

〈HandlerDef 〉 ::= ‘event’ ‘handler’ ‘{’ 〈EventDef 〉* ‘}’

〈EventDef 〉 ::= 〈Event〉 ‘(’ [〈ID〉] ‘)’ ‘{’ 〈IfDefStm〉* ‘}’

〈IfDefStm〉 ::= [〈IfDef 〉] 〈Stm〉

〈Event〉 ::= ‘select_process’ | ‘new_process’ | ‘clock’ | ‘pre_take’ | ‘post_take’
| ‘action’

〈InterDef 〉 ::= ‘interface’ ‘{’ 〈InterFunc〉* ‘}’

〈InterFunc〉 ::= ‘function’ 〈ID〉 ‘(’ [〈IParamList〉] ‘)’ ‘{’ 〈Stm〉* ‘}’

〈IParamList〉 ::= 〈IParamDec〉 (‘,’ 〈IParamDec〉)*

〈IParamDec〉 ::= 〈Type〉 〈ID〉

〈OrdDef 〉 ::= ‘comparator’ ‘{’ [〈CVarDef 〉] 〈CompDef 〉* ‘}’

〈CVarDef 〉 ::= ‘variable’ ‘{’ 〈VOneDef 〉* ‘}’

〈CompDef 〉 ::= ‘comparetype’ 〈ID〉 ‘(’ ‘process’ 〈ID〉 ‘,’ 〈ID〉 ‘)’ ‘{’ 〈Stm〉* ‘}’

〈Stm〉 ::= 〈SetTime〉 | 〈SetCol〉 | 〈Change〉 | 〈Move〉 | 〈Remove〉 | 〈Get〉 | 〈New〉
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| 〈If 〉 | 〈Loop〉 | 〈Block〉 | 〈Assert〉 | 〈Print〉 | 〈Return〉 | 〈Gen〉
|〈GenLn〉

〈SetTime〉 ::= ‘time_slice’ ‘=’ 〈Expr〉 ‘;’

〈SetCol〉 ::= ‘return_set’ ‘=’ 〈ID〉 ‘;’

〈Change〉 ::= 〈ChgUnOp〉 | 〈ChgExpr〉

〈ChgUnOp〉 ::= 〈QualName〉 (‘++’ | ‘{{’) ‘;’

〈ChgExpr〉 ::= 〈QualName〉 ‘=’ 〈Expr〉 ‘;’

〈QualName〉 ::= 〈ID〉 [‘.’〈ID〉]

〈Move〉 ::= ‘move’ 〈ID〉 to 〈ID〉 ‘;’

〈Remove〉 ::= ‘remove’ 〈ID〉 ‘;’

〈Get〉 ::= ‘get’ ‘process’ ‘from’ 〈ID〉 ‘to’ ‘run’ ‘;’

〈New〉 ::= ‘new’ 〈Proc〉 [‘,’ 〈INT 〉] ‘;’

〈If 〉 ::= ‘if’ ‘(’ 〈Expr〉 ‘)’ 〈Stm〉 [ ‘else’ 〈Stm〉 ]

〈Loop〉 ::= ‘for’ ‘each’ ‘process’ 〈ID〉 ‘in’ 〈ID〉 〈Stm〉

〈Block〉 ::= ‘{’ 〈Stm〉* ‘}’

〈Assert〉 ::= ‘assert’ 〈Expr〉 ‘;’

〈Print〉 ::= ‘print’ 〈Expr〉 ‘;’

〈Return〉 ::= ‘return’ 〈OrderType〉 ‘;’

〈OrderType〉 ::= ‘greater’ | ‘less’ | ‘equal’

〈Gen〉 ::= ‘gen’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

〈GenLn〉 ::= ‘genln’ [〈ID〉 ‘,’] 〈Expr〉 ‘;’

〈Expr〉 ::= 〈Or〉

〈Or〉 ::= 〈And〉 (‘||’ 〈And〉)*

〈And〉 ::= 〈Equality〉 (‘&&’ 〈Equality〉)*

〈Equality〉 ::= 〈Equality〉 (‘==’ | ‘!=’) 〈Compar〉

〈Compar〉 ::= 〈PlusMinus〉 (‘>=’ | ‘<=’ | ‘>’ | ‘<’) 〈PlusMinus〉

〈PlusMinus〉 ::= 〈MulOrDiv〉 (‘+’ | ‘-’) 〈MulOrDiv〉

〈MulOrDiv〉 ::= 〈MulOrDiv〉 ( ‘*’ | ‘/’ ) 〈Primary〉

〈Primary〉 ::= ‘(’〈Expr〉‘)’ | ‘!’〈Primary〉 | 〈Empty〉 | 〈Null〉 | 〈InCol〉 | 〈Exist〉 |
〈GetID〉 | 〈HasName〉 | 〈Atomic〉
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〈Empty〉 ::= 〈ID〉‘.’ ‘isEmpty’ ‘(’ ‘)’

〈Null〉 ::= 〈ID〉‘.’ ‘isNull’ ‘(’ ‘)’

〈InCol〉 ::= 〈ID〉‘.’ ‘containsProcess’ ‘(’ 〈STRING〉 ‘)’

〈Exist〉 ::= ‘exists’ ‘(’ 〈STRING〉 ‘)’

〈GetID〉 ::= ‘get_pid’ ‘(’ 〈STRING〉 ‘)’

〈HasName〉 ::= 〈ID〉 ‘.’ hasName’ ‘(’ 〈STRING〉 ‘)’

〈Atomic〉 ::= 〈Value〉 | 〈QualName〉 | 〈SysVar〉

〈SysVar〉 ::= ‘Sys’ ‘(’ 〈ID〉 ‘)’

〈Verify〉 ::= ‘verify’ ‘{’ [〈CTL AT 〉] 〈RTCTL〉 ‘}’

〈CTL AT 〉 ::= ‘@’ 〈Expr〉 ‘:’

〈RTCTL〉 ::= ‘(’ 〈Expr〉 ‘)’ | ‘not’ 〈RTCTL〉 | ‘or’ 〈RTCTL〉 〈RTCTL〉 | ‘implies’
〈RTCTL〉 〈RTCTL〉 | ‘AX’ 〈RTCTL〉 | ‘AF’ [〈LTE 〉] 〈RTCTL〉 | ‘AG’
[〈LTE 〉] 〈RTCTL〉 | ‘EX’ 〈RTCTL〉 | ‘EF’ [〈LTE 〉] 〈RTCTL〉 | ‘EG’
[〈LTE 〉] 〈RTCTL〉 | ‘AU’ [〈LTE 〉] 〈RTCTL〉 〈RTCTL〉 | ‘EU’ [〈LTE 〉]
〈RTCTL〉 〈RTCTL〉

〈LTE 〉 ::= ‘<=’ 〈INT 〉

• We note that some terms, such as <ID>, <STRING>, <INT>, <BOOL>, are not shown
in the grammar.

• The ‘val’ (‘var’) keyword for defining an attribute of the process indicates that
the value of this attribute is unchangeable (changeable). Only the values assigning
to the changeable attributes are stored in the system state.

• The <IfDef> statement is used for initializing the scheduler based on the condition
<Expr>. This statement allows us to deal with parameterizing the scheduling
policy.

• We also support reusing the specification by introducing ‘refines’ keyword.
If scheduler B ‘refines’ scheduler A, all of the data structures and the event
handlers of A are inherited by B; however, B can redefine them, add more data
structures and handle its new events. It is similar to the inheritance in object-
oriented programming. With a collection, ‘refines’ means redefining its ordering
method.
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Appendix B

Code Generated for Scheduling Policy

1. The description of Round-Robin scheduling policy in the DSL

def process roundrobin { 
 proctype P()  {}         
}                                                 
                         
init { 
 [{P()}, {P()}]   
} 

a) Process attribute 

scheduler roundrobin() {                                           
 data {             
  collection ready with fifo ;     
 }                                                                         
 event handler{                   
  select_process (process target_process) {   
   get process from ready to run ; 
   time_slice = 3 ;   
   return_set = ready ; 
   }                                               
  new_process (process target_process) {          
   move target_process to ready ;  
  }                                
 }               
} 

b) Scheduler description 
 

2. Java code (scheduler object) generated from the description of the
scheduling policy

1 package sspinja ;

3 import java.io.PrintWriter;

import java.util.ArrayList;

5 import java.util.HashMap;

import java.util.Iterator;

7 import spinja.util.DataReader;

import spinja.util.DataWriter;

9 import spinja.util.StringUtil;

import spinja.util.Util;

11 import spinja.util.Log;

import spinja.exceptions .*;

13 import spinja.promela.model.PromelaProcess;

import sspinja.scheduler.search.SchedulerSearchAlgorithm;

15 import spinja.util.ByteArrayStorage;

17 import sspinja.scheduler.promela.model.SchedulerPromelaModel;

import sspinja.SchedulerPanModel;
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19 import sspinja.Generate;

// Automatic generation

21 public class SchedulerObject_roundrobin {

public static ArrayList <StaticProperty > staticPropertyList =

23 new ArrayList <StaticProperty >() ;

public static ArrayList <String > processList = new ArrayList <String >() ;

25 public static boolean [] processInScheduler = new boolean [128];

public static byte pcount = 0 ;

27 public static ArrayList <Byte > pcnt = new ArrayList <Byte >();

public String _action = "";

29 public static ArrayList <String > initprocesslist = new ArrayList <String >();

public static SchedulerPromelaModel panmodel ;

31 public int _schselopt ;

public int _schnumopt ;

33 public int [][] _opt;

35 private static int newP = -1, endP = -1;

public static int getnewP (){

37 int result = newP;

newP = -1;

39 return result;

}

41 public static int getendP (){

int result = endP;

43 endP = -1;

return result;

45 }

47 public int switchCore(int lastcore) throws ValidationException {return -1;}

public int selCore(int lastcore) throws ValidationException {return -1;}

49

public static void setPcnt(ArrayList <Byte > pcount) {

51 pcnt.clear ();

pcnt.addAll(pcount) ;

53 }

public static ArrayList <Byte > getPcnt () {

55 return pcnt ;

}

57 public void setSchedulerSelOption(int sel){

_schselopt = sel;

59 }

61 public int nextSchedulerOption(int lastschopt) {

if (lastschopt == -1) {

63 lastschopt = 0 ;

}

65 if (lastschopt < _schnumopt - 1) {

_schselopt = lastschopt + 1 ;

67 } else {

_schselopt = 0 ;

69 return -1; //no more scheduler option

}

71 return _schselopt;

}

73

public int firstSchedulerOption () {

75 _schselopt = 0 ;

return 0;
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77 }

79 public boolean hasGenTemplate = false ;

81 public void setAction(String act) {

_action = act ;

83 }

public String getAction () {

85 return _action ;

}

87 public int getRefID(String pName) {

int i = 0 ;

89 for (StaticProperty sP : staticPropertyList) {

if (sP.pName.equals(pName ))

91 return i ;

i ++ ;

93 }

return -1 ;

95 }

public static StaticProperty getStaticPropertyObject(int refID) {

97 for (StaticProperty sP : staticPropertyList)

if (sP.refID == refID)

99 return sP ;

return null ;

101 }

103 public ArrayList <SchedulerProcess > findProcessByAlias(String alias) {

ArrayList <SchedulerProcess > result=new ArrayList <SchedulerProcess >();

105

if (alias.trim (). equals("running_process")) {

107 if (running_process != null) {

result.add(running_process );

109 }

} else {

111 int idx = 0 ;

for (String procN : processList) {

113 if (procN.trim (). equals(alias.trim ())) {

SchedulerProcess target_process = findProcessByID(idx) ;

115 if (target_process != null)

result.add(target_process) ;

117 }

idx ++ ;

119 }

for (StaticProperty stP : staticPropertyList) {

121 if (stP.pName.trim (). equals(alias.trim ())) {

int refID = stP.refID ;

123 ArrayList <SchedulerProcess > resultStP =

new ArrayList <SchedulerProcess >();

125 resultStP = findProcessByrefID(refID) ;

if (! resultStP.isEmpty ()) {

127 for (SchedulerProcess p1 : resultStP) {

boolean add = true ;

129 for (SchedulerProcess p2 : result) {

if (p1.processID == p2.processID)

131 add = false;

}

133 if (add) {

result.add(p1) ;
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135 }

}

137 }

}

139 }

}

141 return result ;

}

143 public ArrayList <SchedulerProcess > findProcess(String pName) {

return findProcessByAlias(pName) ;

145 }

public int existsProcess (String pName) {

147 ArrayList <SchedulerProcess > aP = findProcess(pName) ;

return aP.size() ;

149 }

public int existsProcess (int pID) {

151 SchedulerProcess p = findProcessByID(pID) ;

if (p == null) return 0 ;

153 else return 1 ;

}

155 public void updateProcessInSchedulerList () {

for (int i = 0; i < 128; i ++) {

157 if (processInScheduler[i]) {

processInScheduler[i] = (findProcessByID(i) != null);

159 }

}

161 }

163 // --------------- constructor -------------------------------

public SchedulerObject_roundrobin () {

165 // default constructor

_opt = new int [2][3];

167 int index = 0 ;

for (int i = 1; i <= 1 ; i++)

169 for (int j = 1; j <= 1 ; j++)

for (int k = 1; k <= 1 ; k++) {

171 index ++ ;

_opt[index ][0] = i ; //new

173 _opt[index ][1] = j ; // select

_opt[index ][2] = k ; // clock

175 }

_schnumopt = 1;

177 }

179 public boolean InitSchedulerObject(String args) {

_runningSet = new RunningSet () ;

181 running_process = null ;

genStaticProcessProperty () ;

183 // initial the variables

// initial the scheduler variables

185 // initial the collections

// ensure the collections are not null

187 if (ready == null) {

ready = new ProcessCollection_fifo () ;

189 }

return true ;

191 }
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193 public int get_init_process_count () {

int pcnt = 0 ;

195 pcnt += 1 ;

pcnt += 1 ;

197 return pcnt;

}

199

public void init_order () throws ValidationException {

201 // initial the order of processes (using order defined in process DSL)

ArrayList <SchedulerProcess > procList=new ArrayList <SchedulerProcess >();

203 {

int processID = getProcessID("P") ;

205 if (processID >= 0) {

// create new process in model

207 // SchedulerPanModel.p

// create new process information in scheduler

209 SchedulerProcess P = new SchedulerProcess () ;

//P.processID = (byte) processID ;

211 P.processID = processID ;

213 while (pcnt.size() < processID + 1) pcnt.add((byte) 0) ;

pcnt.set(processID , (byte) (pcnt.get(processID) + 1));

215

P.refID = getRefID("P") ;

217 P.P() ;

// processList.set(processID , "P_0") ;

219 processList.set(processID , "P") ;

221 procList.add(P) ;

}// else ignore this initial process

223 }

225 if (! procList.isEmpty ()) {

addProcessList(procList) ;

227 procList.clear () ;

}

229 // ---------------------------------------

231 {

int processID = getProcessID("P") ;

233 if (processID >= 0) {

// create new process in model

235 // SchedulerPanModel.p

// create new process information in scheduler

237 SchedulerProcess P = new SchedulerProcess () ;

//P.processID = (byte) processID ;

239 P.processID = processID ;

241 while (pcnt.size() < processID + 1) pcnt.add((byte) 0) ;

pcnt.set(processID , (byte) (pcnt.get(processID) + 1));

243

P.refID = getRefID("P") ;

245 P.P() ;

// processList.set(processID , "P_0") ;

247 processList.set(processID , "P") ;

249 procList.add(P) ;

}// else ignore this initial process

135



251 }

if (! procList.isEmpty ()) {

253 addProcessList(procList) ;

procList.clear () ;

255 }

// ---------------------------------------

257 }

259 public void init() {

}

261

// ------------------------ event handler -------------------------

263 public int select_process(int lastProcessID) throws ValidationException {

SchedulerProcess target_process ;

265 {// GetProcess statement

SchedulerProcess previous_running = running_process;

267 //1. Select process set

if (lastProcessID < 0) {

269 ArrayList <SchedulerProcess > runSet = ready.getProcessSet ();

if (runSet != null) {

271 _runningSet.dataSet = runSet ; //only get no remove

_putColIndex = (byte) getCollectionIndex("ready") ;

273 } else {

if (_runningSet != null)

275 _runningSet.clear () ;

return - 1;

277 }

}

279 //2 Get first process which has different processID to run

int processID = select_process_to_run(lastProcessID) ;

281 if (processID < 0) {

return -1 ;

283 }

// SchedulerProcess target_process = running_process ;

285 target_process = running_process ;

if (lastProcessID >= 0) {

287 replace_running_process(_putColIndex ,running_process ,previous_running) ;

}

289 // remove it from collection

ready.removeProcess(target_process.processID) ;

291 //3 change properties

//4 set running parameters

293 _time_count = 0 ;

_time_slice = 0 ;

295 }// GetProcess statement

297 {// SetExecTime

_time_slice = 3 ; // runtime = true

299 }

{// SetReturnCol

301 _putColIndex = (byte) getCollectionIndex("ready");// runtime = true

}

303

if (running_process != null)

305 return running_process.processID ;

return -1;

307 }
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309 public SchedulerProcess new_process(String procName) throws ValidationException {

int index = 0 ;

311 for (String pName : SchedulerObject.processList) {

if (pName.equals(procName )) {

313 if (! SchedulerObject.processInScheduler[index])

break ;

315 }

index ++ ;

317 }

if (index >= SchedulerObject.processList.size ()) {

319 SchedulerObject.processList.add(procName) ;

}

321

if (index > 255) {

323 for (int i = 0 ; i < 255 ; i ++) {

if ( SchedulerObject.processList.get(i). equals("")) {

325 index = i ;

SchedulerObject.processList.set(index , procName) ;

327 break ;

}

329 }

}

331

try {

333 new_process(procName , index , null) ;

SchedulerObject.processInScheduler[index] = true ;

335 newP = (byte) index ;

} catch (ValidationException e) {

337 e.printStackTrace ();

}

339

return new_process(procName , -1, null) ;

341 }

343 public SchedulerProcess new_process(String procName , int processID ,

ArrayList <String > para) throws ValidationException {

345 //Util.print("--> new_process (" + procName + ")") ;

SchedulerProcess new_process_target_process = new SchedulerProcess ();

347 if (processID >= 0) {

// target_process.processID = (byte) processID ;

349 new_process_target_process.processID = processID ;

while (pcnt.size() < processID + 1) pcnt.add((byte) 0) ;

351 pcnt.set(processID , (byte) (pcnt.get(processID) + 1));

} else {

353 return null ;

}

355 new_process_target_process.initProcess(procName , para) ;

config_new_process(new_process_target_process) ;

357 return new_process_target_process ;

}

359

public void config_new_process (SchedulerProcess target_process)

361 throws ValidationException {

{// MoveProcess target_process

363 if (target_process != null) {

remove_process(target_process.processID) ;

365 ready.put(target_process) ;
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367 if (running_process != null) {

if (running_process.processID == target_process.processID ){

369 running_process = null;

}

371 }

}

373 }

}

375

public void addProcessList(ArrayList <SchedulerProcess > procList)

377 throws ValidationException { // called by init_order

ArrayList <SchedulerProcess > AL_ready=new ArrayList <SchedulerProcess >();

379 for (SchedulerProcess target_process : procList) {

{// MoveProcess target_process

381 AL_ready.add(target_process) ;

}

383

// initProcessList = false

385 initprocesslist.add(getInstance(target_process )) ;

}

387

if (! AL_ready.isEmpty () )

389 ready.put(AL_ready) ;

}

391 /*

public void clock(GenerateCode _code) throws ValidationException{

393 this._code = _code ;

clock () ;

395 }

*/

397 public void clock() throws ValidationException{

inc_time () ; // increase all clock including _time_count

399 check_running_time_to_put_running_process () ; //to end the time slice

if (_runningSet != null) {

401 _runningSet.clear ();

}

403 if (! hasGenTemplate) {

if (running_process == null) {

405 if (select_process (-1) < 0) {

//Util.print("No running process ");

407 }

}

409 }

}

411 public void preTake () throws ValidationException {}

public void postTake () throws ValidationException {}

413 public int terminate_process(String procName) throws ValidationException {

// default missing handler

415 SchedulerProcess target_process = null ;

Util.print("--> Terminate process: " +procName+" default processing");

417 int id = 0 ;

for (String procN : processList) {

419 if (procN.contains(procName )) {

SchedulerProcess terminate_target_process=findProcessByID(id);

421 target_process = terminate_target_process ;

if (terminate_target_process != null) {

423 return terminate_process(id) ;

}
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425 }

id ++ ;

427 }

Util.print("--> Cannot find process: " + procName) ;

429 return -1 ;

}

431 public int terminate_process(int processID) throws ValidationException {

endP = (byte) processID ;

433 if (running_process != null) {

if (running_process.processID == processID) {

435 SchedulerObject.processInScheduler[processID] = false ;

running_process = null ;

437 return processID;

}

439 }

ready.removeProcess(processID );

441

return processID ;

443 }

445 // --------------- encoding function -------------------------------

public void encode(DataWriter _writer) {

447 // _writer.writeInt(_schselopt );

if (running_process == null)

449 _writer.writeBool(false);

else {

451 _writer.writeBool(true);

running_process.encode(_writer );

453 }

_writer.writeByte(_putColIndex) ; //for running process (selection)

455

//could be duplicated!

457 _writer.writeInt(_time_count );

_writer.writeInt(_time_slice );

459

ready.encode(_writer) ;

461 }

public boolean decode(DataReader _reader) {

463 // _schselopt = _reader.readInt ();

clearProcessInScheduler () ;

465 if (_reader.readBool ()) {

if (running_process == null)

467 running_process = new SchedulerProcess () ;

running_process.decode(_reader) ;

469 processInScheduler[running_process.processID] = true ;

} else {

471 running_process = null ;

}

473 _putColIndex = (byte) _reader.readByte () ; //for running process

//could be duplicated!

475 _time_count = _reader.readInt ();

_time_slice = _reader.readInt ();

477

ready.decode(_reader) ;

479 return true;

}

481 public int getRunningSetSize (){

return _runningSet.getSize ();

139



483 }

public void encodeRunningSet(DataWriter _writer ){

485 _runningSet.encode(_writer );

}

487 public boolean decodeRunningSet(DataReader _reader) {

_runningSet.decode(_reader );

489 return true ;

}

491 protected void clearProcessInScheduler () {

for (int i = 0 ; i < 128; i ++)

493 processInScheduler[i] = false ;

}

495

/* ---------------------- utility function */

497 public String getInstance(SchedulerProcess process) {

return pcnt.get(process.processID) + "";

499 }

public int getRunningInstance () {

501 if (running_process == null)

return -1 ;

503 else

return pcnt.get(running_process.processID );

505 }

public int getRunningID () {

507 if (running_process == null)

return -1 ;

509 else

return running_process.processID ;

511 }

public static void printProcessInScheduler (){

513 for (int i=0 ; i< 128 ; i++){

System.out.print(processInScheduler[i] + ", ");

515 }

System.out.println ();

517 }

public void printProcessInstance (){

519 for (int i=0 ; i < pcnt.size() ; i++){

System.out.print(pcnt.get(i) + ", ");

521 }

System.out.println ();

523 }

public int addProcessList(String pName){

525 // return the index of new process name in process list

processList.add(pName) ;

527 return processList.size() - 1 ;

}

529 public int isNull(SchedulerProcess process) {

if (process == null)

531 return 1 ;

else

533 return 0 ;

}

535 public static int getProcessID(String procName ){

int id = 0;

537 for (String pName : processList ){

if (pName.equals(procName) && !processInScheduler[id]){

539 // processInModel[id] = true ;

processInScheduler[id] = true ;
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541 return id ;

}

543 id ++ ;

}

545 if (processList.size() < 128) {

processList.add(procName) ;

547 id = processList.size() - 1 ;

processInScheduler[id] = true;

549 return id ;

}

551 return -1 ;

}

553 public int getCollectionIndex(String collectionName) {

int numCol = 0 ;

555 switch (collectionName) {

case "ready" :

557 return numCol + 0 ;

default :

559 Util.print("Put back collection error") ;

return -1 ;

561 }

}

563 public int getNumberProcessCollection () {

int result = 0 ;

565 //ready : 0

result += 1 ;

567 return result ;

}

569 // return collection contains process -> needs to be considered

public int getProcessCollectionID(int processID) {

571 int numCol = 0 ;

573 if (ready.hasProcess(processID) > 0)

return 0 + numCol ;

575 return -1 ;

}

577 public boolean isTimer () {

// boolean hasClockEventHandler = false ;

579 // boolean hasPeriodicProcess = false ;

// boolean runTime = true ;

581 //has clock data type = false

if (_time_slice != 0)

583 return true ; //(_time_slice > 0)

else

585 return false ;

}

587 public SchedulerProcess findProcessByID(int processID) {

SchedulerProcess proc = null ;

589 if (running_process != null)

if (running_process.processID == processID)

591 return running_process ;

proc = ready.getProcess(processID );

593 if (proc != null) return proc ;

return null ;

595 }

public ArrayList <SchedulerProcess > findProcessByrefID(int refID) {

597 ArrayList <SchedulerProcess > result = new ArrayList <SchedulerProcess >();

if (running_process != null)
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599 if (running_process.refID == refID)

result.add(running_process) ;

601 ArrayList <SchedulerProcess > temp = new ArrayList <SchedulerProcess >();

temp = ready.findProcessByrefID(refID);

603 if (temp != null)

result.addAll(temp);

605 return result ;

}

607 public void remove_process(int processID) {

ready.removeProcess(processID );

609 }

public int isEmpty () {

611 if (ready.isEmpty () > 0)

return 1 ;

613 return 0 ;

}

615 public int hasProcess(String processName) {

if (running_process != null)

617 if (getStaticPropertyObject(running_process.refID). pName.trim()

.equals(processName.trim ()))

619 return 1 ;

621 int result = 0 ;

int processID = 0 ;

623 for (String pName : processList) {

if (pName.trim (). equals(processName.trim ())) {

625 result = ready.hasProcess(processID );

if (result > 0) return result ;

627 }

processID ++ ;

629 }

return result ;

631 }

public String getSchedulerName () {

633 return "roundrobin_roundrobin" ;

}

635 public void print_all (){

Util.print("- SCH OPT: " + _schselopt + "/" + (_schnumopt - 1));

637 Util.print("- Time_count/Time_slice: "+_time_count +"/"+_time_slice) ;

Util.print("- Running process: " ) ;

639 if (running_process == null)

Util.print("Null") ;

641 else {

running_process.print ();

643 }

Util.print("- Running set: " ) ;

645 if (_runningSet == null)

Util.print("Null") ;

647 else {

_runningSet.print () ;

649 }

System.out.println(processList );

651 printProcessInScheduler () ;

System.out.print("- Collection: ready : ");

653 ready.print () ;

}

655 // --------------- running function -------------------------------

public void executeProcess(PromelaProcess proc , int processID ,
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657 ArrayList <String > para) throws ValidationException {

SchedulerProcess p = new SchedulerProcess () ;

659 //p.processID = (byte) processID ;

p.processID = processID ;

661 newP = processID ;

663 // initialize the process

p.initProcess(proc.getName(), para);

665 //Util.print ("New process " + p) ;

processInScheduler[processID] = true ;

667 while (pcnt.size() < processID + 1) pcnt.add((byte) 0) ;

pcnt.set(processID , (byte) (pcnt.get(processID) + 1) ) ;

669 config_new_process(p) ;

}

671 public int select_process_to_run(int lastProcessID) {

if (_runningSet.isEmpty () == 1)

673 return -1 ;

675 SchedulerProcess temp = _runningSet.getFirstProcess(lastProcessID) ;

if (temp != null) {

677 running_process = temp ;

_runningSet.getNextProcess(running_process) ;

679 return running_process.processID ;

}

681 else return - 1;

}

683 public boolean replace_running_process(byte collectionIndex ,

SchedulerProcess running_process , SchedulerProcess previous_running) {

685 byte numCol = 0 ;

if (collectionIndex == (byte) (0 + numCol )) {

687 if (ready != null)

ready.replace(running_process , previous_running) ;

689 return true ;

}

691 return false ;

}

693 public void put_running_process(byte collectionIndex) {

if (running_process != null) {

695 put_process(running_process , collectionIndex) ;

}

697 }

public boolean put_process(SchedulerProcess proc , byte collectionIndex) {

699 byte numCol = 0 ;

if (collectionIndex == (byte) (0 + numCol )) {

701 if (ready != null)

ready.put(proc);

703 return true ;

}

705 return false ;

}

707 // --------------- timed function -------------------------------

public void time_out (){

709 //just only add time

add_time(_time_slice - _time_count) ;

711 _time_count = _time_slice ;

// check_running_time_to_put_running_process () ;

713 }

public void inc_time () {
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715 if (_time_slice != 0) {

if (_time_count == _time_slice)

717 _time_count = 1 ;

else

719 _time_count ++ ;

}

721 add_time (1) ;

}

723 public void dec_time () {

if (_time_slice != 0) {

725 if (_time_count == 0)

_time_count = _time_slice - 1 ;

727 else

_time_count -- ;

729 }

sub_time (1) ;

731 }

public void add_time(int time) {

733 //clock for periodic process

ready.add_time(time) ;

735 if (running_process != null)

running_process.add_time(time) ;

737 }

public void sub_time(int time) {

739 //clock for periodic process

ready.sub_time(time) ;

741 if (running_process != null)

running_process.sub_time(time) ;

743 }

public boolean check_running_time_to_put_running_process (){

745 if (_putColIndex != -1) {

//for putting the running process to the destination collection

747 //need to call select_process_set () to get other process

if (_time_count == _time_slice && _time_slice > 0) {

749 if (running_process != null){

put_running_process(_putColIndex) ;

751 // _runningSet.dataSet.clear ();

running_process = null ;

753 return true ;

}

755 }

}

757 return false ; // process still running

}

759 // ---------------interface function ---------------------

public boolean sch_api(String funcName , String paraList)

761 throws ValidationException {

switch (funcName) {

763 default:

System.out.println("Error calling Scheduler API function");

765 return false ;

}

767 }

public boolean sch_get(String processName , String property) {

769 if (processName.trim (). equals("scheduler")) {

// scheduler data variable

771 switch (property) {

default:
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773 System.out.println("Error getting scheduler property");

}

775 } else {

ArrayList <SchedulerProcess > aProcess = findProcess(processName) ;

777 if (aProcess.size() == 1) {

SchedulerProcess process = aProcess.get(0) ;

779 switch (property) {

default:

781 System.out.println("Error getting process property");

}

783 }

}

785 return false ;

}

787

// ----------------- genStaticProcessProperty -------------------

789 public void genStaticProcessProperty (){

StaticProperty sP ;

791 //0

sP = new StaticProperty () ;

793 sP.refID = 0 ;

sP.pName = "P" ;

795 staticPropertyList.add(sP) ;

}

797

// --------------- data structure ---------------------------

799 public SchedulerProcess running_process ;

801

public int size = 0 ;

803 public byte _putColIndex = -1; //for replacement

public RunningSet _runningSet; // temporary store the running set

805 public int _time_count = 0 ;

public int _time_slice = 0 ;

807 // public int _time = 0 ;

ProcessCollectionBase ready ;

809 // --------------- genUtilitiesFunctions ---------------------------

public boolean [] getProcessCheckList () {

811 boolean result [] = new boolean [128] ;

if (running_process != null)

813 result[running_process.processID] = true ;

for (ArrayList <SchedulerProcess > procList : ready.dataSet)

815 for (SchedulerProcess proc : procList)

result[proc.processID] = true ;

817 return result ;

}

819 public ProcessSet getProcessSet(String psName) {

// scheduler data

821 if (psName == "ready")

return ready ;

823 return null ;

}

825 public int getSize () {

size = 0; //4 ; // schselopt

827 // scheduler variables data

size += 8 ; // _time_count , _time_slice (system)

829 size += 1 ; // running_process != null ?

if (running_process != null)
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831 size += running_process.getSize () ;

size += 1 ; // _putColIndex -> for replacement

833 //no contains refines collections

size += ready.getSize () ;

835 return size ;

}

837 // --------------- verification structure ---------------------------

public boolean schedulerCheck () {return false ; }

839 public void initSchedulerState(SchedulerState schState , int depth) {}

public boolean stateCheck () {return false;}

841 public boolean collectState () { return false ;}

public void printAnalysisResult(PrintWriter out) {

843 if (out != null) out.println("No Analysis result");

System.out.println("No Analysis result") ;

845 }

}
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