JAIST Repository

https://dspace.jaist.ac.jp/

Title

iUy UUg o

goooga
Author(s) Tran, Hoa Nhat
Citation
Issue Date 2018-09
Type Thesis or Dissertation

Text version

ETD

.net/ 10109/ 15530

URL http:/7/7 hdl handl
Rights
Description Supervisor: goooag, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



K

%L o fE
R VA L
AL 5 AFE A

wox M

TRAN, Nhat Hoa

- ()

#5398 &

TR 3049 H 21 A

Study on Facilitating the Variation of Schedulers in Model Checking

I I m o ¥ X

WO W R E R OEE WA AR ESSRREEATOERAYE s
Ees i #iz
T HE i #iz
A EA i eI
CLEGE RINK IR

X ONBEDEE

Software applications play an important role in our lives. The failure of the applications may harm people or
equipment. Therefore, the correctness of the software is important. In fact, an application may consist of
multiple processes, which are developed based on programming languages and operating systems (OSs). Under
the mechanisms provided by these languages and environments, the processes can run simultaneously to
increase the scalability. The applications are called concurrent systems. In fact, these systems are error-prone;
for example, deadlock, livelock, or violations of constraints may occur in them. Because the processes of a

concurrent system can be executed in di erent orders, their behaviors are di cult to verify.

As an exhaustive and automatic technique, model checking explores every execution of a system and
automatically nd possible errors. In comparison with other techniques, such as testing and simulation, model
checking is more suitable to verify the concurrent systems. To model checking a system, we need to specify its
behaviors (usually in a modeling language); then travel all the states of the system (called the state space)

represented by its model using a search algorithm to check the corresponding property.

With the increasing of the complexness of a concurrent system, there is a need to schedule the execution of the
processes. There are several scheduling strategies applied by real systems. For instance, in OSEK OS for
automotive devices, an application can have multiple tasks executed under the priority and mixed preemption
strategy. In model checking, the behaviors of a scheduler associate with the algorithm that explores the state
space. However, verifying a concurrent system with considering all possible executions (interleaving
behaviors) is an over-approximation approach and can produce spurious counterexamples because the errors
may occur outside the executions indicated by the scheduler. Therefore, to accurately verify the systems, we

need to take the scheduler into account in the veri cation.




Current methods in model checking to deal with sequential/concurrent systems are di cult to apply to verify
with scheduling policies because these methods consider a di erent kind of behaviors and can cause spurious
counterexamples. To deal with the scheduling policies, existing approaches try to limit the executions of the
systems by encoding both of the processes and the scheduler into a model using a modeling language (e.g.
Promela). In this case, the scheduling policy needs to be speci ed from scratch. This approach is hard to model
interesting schedulers, error-prone, and time-consuming. This means that an approach to easily and exibly

describe the scheduling policies is needed.

In reality, the OSs use di erent policies to control the executions of the processes. For example, Linux OS can
support several policies for its tasks based on their priorities (e.g. round-robin and rst-in- rst-out). However, the
existing approaches cannot deal with the variation of the schedulers because the policy is xed in the model of a
system. That means to ensure the accuracy of the concurrent systems, a study on facilitating the variation of

schedulers in model checking is necessary and important.

To overcome the problems above, in this research, we propose a method to analyze and verify concurrent
systems executed under di erent scheduling policies using model checking techniques. Our method contains
three main parts: 1) a language for modeling the processes, 2) a domain-speci ¢ language (DSL) to describe the

scheduling policies, and 3) an algorithm to search all of the states of the system.

The originality of this research is proposing a DSL to specify the scheduling policies used in model checking
techniques. In this approach, our language aims to provide a high-level support for specifying di erent policies
easily. All the information necessary to analyze the system are automatically generated. From the speci cation
of the scheduling policy in the DSL, a search algorithm is realized to explore the state space. Following this
approach, we implemented a tool named SSpinJa, which is extended from SpinJa, a model checker
implemented in Java. Our experiments indicate that the method is practical; it is easy to describe di erent
scheduling policies and accurately verify the behaviors of the systems. In addition, in this research, we apply
model-based testing techniques to generate the tests to check the correspondence between the policy in our
DSL and the real scheduler in an OS; it helps us to increase the con dence of the policy in the DSL and

accurately verify the systems.

The impact of this research is that we can easily apply model checking techniques to verify the concurrent
systems with the di erent scheduling policies. The state space to be searched is now limited because the
scheduler is taken into account in the veri cation. Therefore, we can verify systems more accurately. In addition,
with our method, we can reuse the speci cations of the processes and the scheduling policy. It helps to decrease

the time necessary for designing and developing a concurrent system.



Key words: concurrent systems, model checking, scheduler, domain-speci ¢ language, model-based testing

RXEBEORRENOES

ZOMERLTIE, WITY AT L& E LEET AVREICBWT, A7y a—T %0
WO FIEIZOVWTRELTWD. ET/VRETIE, W77 0t ADHERIED OO~
Ao EMBENICHERT D, EBEOWITV AT AT, WT7avA0ETIIAY YV
—JICEVHEER TS, ko T, EBEOWITY AT AITBWT, AL D L IEHRE
DENERRT D700I2IE, ETARELERT LR, A7V 2—TDRLIBENEZEZD
TET/MLETORLERNH L. LNLRERBD, A7y a—J% 50T /WETIE, €7
VOFEIRMBMELL FICKE 720, BT MUICFRPDPND, A7 Y a—TORES R
DXFRITI ) PERIRHEEB N REL 2D, Lo -EEZSI &R IT. S5, EBEOW
fTVAT AT, a2y va—I8H0nonTEY, RA—0KRY »—CTEHAINTH
HAT Y 2a—TFTh, EBORD>ENL, AT TVa—TmIIBRDIGENZV. LoT,

fE e DAY 2—F BT D50k %, MAESRNE D D EIZHERT 2 D1E, &2 FAEL.
T, ARELFHLTIE, A7 Y 2—7 Oi#E5 %\ % Domain Specific Language (DSL)IZ
EVFER L, ZAUTEASWTIREBLZER T 2ETARAETFELZRELTND.

BETFIEL, DAY 2—F %23k % DSL, 4% L 7= DSL il 2 SV THRIE AR R
THETNRAT L TY XA, 3DSL GBIk NEFED AT ¥ a—F DFE#BZH > TNHI L
EHERT DT AN r—AOHBNAERTIE, ICEVBREINTEY, 362, 1~3 Z#FHBL
=Y — I DEELIT-> TS, DSL IZESWE=ET AME A OIS, IS 5 —E
DEMEZFEHRE L TWDHEERD. BENERICBW T, BEDAT Y 2—F 2 ESNTE
TIRELEFRT D, BRESCRHAR Y e EONRTA—HIZL ATV 2—T B E
L CET VR E &2 EMTDEEH 50, A7 Y 2—F% DSLIC X Witk 425 00%, A
RBME—THY, ThARFHLETHY, MAKWTHD. BEREOET AVRET LY
ALZPEEL, DSLICK VR L7m AT Y 2 —F OFEIESWTIRIERIER T AT L2
URLERELTRBY, ETARET VIV XLAAKIZH, —EOHHERSH L. £z

DSL ICE W AFYa—F kT2 LI1cXY, BEFEIFETIE, SRl 2o o Bl
7 AT a—T 8, ShRMIZEDILD Z ERARRICR > TEBY, AOMEbfERETE Tw
5.

Pk, RS, ETAREESZEZBICHT 2700 E FIEZREL TR, i
HEKT 2L ZANKEW. koT, it (F#EY) OFAEal e LTH2ITiER & 5
HOERBDT-.



