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Abstract

Videos are main sources of information and entertainment. They are presented

in sequence of visual and audio information. For entertainment purposes,

entertaining videos (e.g. sport videos) are made by video makers in order to

entertain viewers whose cannot watch at the stadium because of their limitations.

In order to access the video in a short time, several researchers begin to make an

automatic system that can index attractive moments in the entertaining videos

based on the human perspective. By the ideas of uncertainty in game information

and motions in computer vision, a new research in the study area of information

science is established. The contributions of this research are discussed in the two

chapters of this thesis:

Chapter 3 presents a new algorithm of computer vision model to make computers

understand the camera motions in each video frame automatically. To understand

the camera motions, a 2D motion vector histogram is used instead of 1D motion

vector histograms as described in existing works. The properties and behavior

of the 2D motion vector histogram are analyzed in order to recognize the camera

motions. Compare with 1D motion vector histograms, it shows that the 2D motion

vector histograms can recognize more types of the camera motions.

Chapter 4 presents a mathematical model to show how the attractive moments

can be retrieved by the camera motions. Based on the idea of changing in game

information, the attractive moments are potentially occurred when the game

information is changed. Since video makers notice the attractive moments, they

operate the cameras in order to guide the viewers for attentions. From all camera

motions, zooming camera motions potentially retrieve several attractive moments

in soccer games. For example, score attempting, foul, player claim to the referee’s

judgment, etc. Finally, we generate a shortening video application based on this

idea.

Keywords: Attractive images, Camera motions, Computer vision, Image

processing, Video analysis.
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Chapter 1

Introduction

Videos are media sources that have plentiful information in the form of picture

and sound. There are several purposes of usage. For example, education,

entertainment, commerce, personal, etc. In the world, all videos are created by

video makers in order to entertain viewers. The viewers can feel free to choose

and to watch them based on their behaviours. After the viewers had watched the

videos, they can feedback to the video makers “how do they feel about the videos?”.

Some videos may entertain the viewers while some videos may not entertain the

viewers. From the first sight, several videos look very similar to each other but a

few differences in contents may make the videos more entertaining.

Nowadays, there is a massive number of videos from several video makers. All

video makers have to compete with other video makers to make videos which

attract the viewers. For sport games, the video makers have to create a full video

by recording all moments in order to prevent the missing important content. The

full video is also used in TV live broadcasting. Some viewers are entertained by

the full video but some viewers are not because of their behaviours. Thus, the

video makers improve their videos in order to satisfy the viewers by editing the

full video for a shorter video that summarizes only the attractive moments. In the

past, an automatic system to find attractive moments in videos (e.g. sport videos)

was developed [4]. This automatic system assists both video makers and viewers to

find the attractive moments in videos automatically. For video makers, they can do

video editing easier or spend a few time. For viewers, they are guided to access the

attractive moments directly instead of watching the entire video. This automatic

system follows the human perspective from simple questions such as “when do the

1



Chapter 1 Introduction 2

viewers feel exciting?” and “when do the viewers feel entertaining?”. In details, it

describes that motions in pictures have an effect to describe the videos [5, 6]. This

system can be improved in order to perform a better solution to find the attractive

moments.

To discuss the entertainment in several study areas, uncertainty has been widely

used as a factor in the attractiveness following human perspective [7]. The

uncertainty considers both unpredictable and hardly predictable moments to be

attractive moments. In sport games, uncertainty in game outcome becomes

an important element of all kinds of uncertainty which directly describe “how

entertaining and attractive this match is?” [8, 9]. Basically, statistical data in

the sport videos and recorded data is used to calculate the uncertainty in game

outcome and used to measure the attractiveness. The viewers are not attracted by

the entertaining games or videos which the outcome is easy to predict predictable

[10]. Game scores are used to calculate the winning, losing, and draw probabilities

[11–13]. These probabilities have the relationship to the uncertainty in game

outcome. If a game has high winning or losing probabilities, it can refer to less

entertaining because the viewers can predict the game outcome before the game is

ended. In contrast, if a game has low winning and losing probabilities, it can refer

to high entertaining because the viewers cannot predict the game outcome until

the end. More examples, the number of score attempting and the number of game

scores are used to measure the speed of game progress information in order to find

the game progress patterns corresponding to each entertaining game [14, 15].

Generally, the uncertainty in game outcome expects that the viewers feel entertain

because changing in game scores makes the viewers cannot predict the game result.

Unfortunately, the attractive moments except changing in game score are not

involved in the uncertainty in game outcome. We are curious to know that how

to involve them as the attractive moments. Guironnet et al. mentioned that “we

think that camera motion carries important information on video content” [3].

Therefore, this research is dedicated to develop a new approach which combines

the concepts of uncertainty and motions in picture.
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1.1 Background

In the past, there are several studies in order to understand the viewer’s actual

feeling when they are watching the videos. Basically, the viewers will be asked

several questions directly, for example, “is this video enjoyable?”, “when do

you feel exciting?”, “how attractive in video is?”, etc. By these questions,

the researchers can understand what kind of attractive moments can attract or

entertain the viewers. It also helps the video makers to make more attractive

videos and more videos. In this section, we discuss the background of this research

direction. It divided in two directions: 1) attractive moments in pictures and 2)

attractive moments in uncertainty.

1.1.1 Attractive Moment Identification in Pictures

In a past decade, a human emotional space “arousal-valence” were presented in

the psychophysiology study area [16, 17], which arousal describes the strength

of emotion while valence describes positive and negative emotions. This space

was offered for psychologists to present a structure of human affective experience.

The arousal-valence emotional space in Figure 1.1 roughly describes a set of

human emotions in the arousal-valence space including of enjoy (high arousal

and high valence), distress (high arousal and low valence), bored (low arousal

and low valence), and relax (low arousal and high valence). The paradigm of the

Figure 1.1: A set of human emotions in the arousal-valence space

arousal-valence spaces was synthesized in order to extract human emotions from

videos [18–20]. The arousal-valence spaces are generated by motions features in
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the videos. From psychophysiological studies, they had shown that motions in

video frames have a significant impact on individual affective responses [5, 6]. In

details, the arousal in the arousal-valence spaces is directly related to the motions

in picture. For example, high motion activity expects for strong emotion while low

motion activity expects for weak emotion. In video content analysis, the arousal

is used for an application such as highlight video extraction [4] and video ranking

[21]. Their applications mainly expect that high motion activity has the attractive

moments in the videos.

The viewers can be attracted by the visual features in spatial and temporal

domains. In spatial domain, human eyes are strongly attracted to the still image

by contrast in color (e.g. red-green and blue-yellow) [22, 23] and special image

texture such as human face [24, 25], while the human eyes are attracted to the

image sequences by the contrast in motion and moving objects in temporal domain

[26]. Shih et al. used these concepts in order to rate the attention score in each

video frame [27, 28]. From this idea, the attention score in each video frame can

be used for applications, such as video summarization [29] and video keyframes

selection [30].

Comparing between the spatial and temporal domains, the temporal domain is

more interested than the spatial domain. The viewers can acquire attractiveness

passively from the camera motions in videos which are made by video makers.

The video makers often guide the viewers by operating cameras. For example, the

video makers operate the cameras to follow a soccer player who is dribbling the

ball in soccer game. Them, the viewers are attracted by this moment that what

will happen in the future. From this viewpoint, a guide of viewer attention was

presented by using the camera motions as attractive magnifiers [31]. The camera

motions affect toward viewer’s attention since the human eyes focus on an area

of video frame partially. A study on the effect of panning, tilting, and zooming

camera motions was presented [32]. In this study, viewers’ eyes are tracked to

monitor how much effort do the viewers pay attention while they are watching

videos in several situations. From this study, the zooming camera motions make

the viewer pay attention more than the panning and tilting camera motions.
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1.1.2 Video Contents Analysis for Attractive Moments

Identification

In other study areas, the attractive moments in sport videos are examined by

analyzing contents in videos. For example, game scores in sport videos are used

to calculate three probabilities of game outcomes: 1) probability that Team A

will win, 2) probability that Team A will lose, and 3) probability that the game

is drawn [11–13]. By using these probabilities, the attractive moments can be

predicted when the value in the probabilities is changed. There are three game

progress patterns which are described in [14, 15]. They are called

• Balanced game: Both of the teams have no goal through the game.

• Seesaw game: One team leads, then the other team leads, and this happen

repeatedly alternate. However, it is necessary that the difference in game

score between the two teams should be small.

• One-sided game: The game score of one team is always greater than that of

the other team. However, it is further divided into complete one-sided and

incomplete one-sided games. If the difference in game score is very high, it

is the complete one-sided game. Otherwise, it is the incomplete one-sided

game.

1.2 Problem Statements

As mentioned at above, the uncertainty in game outcome expects that the viewers

feel entertain with attractive moments in games when the game result is changed.

It is a natural sense in the human perspective that the viewers can enjoy and

attract to the videos because of unpredictable results. However, there are other

attractive moments which are not involved by the uncertainty in game outcome.

These non-involved attractive moments can be found by the motions in picture.

The attractive moments, which the pictures contain high motion activity, are

expected to entertain the viewers based on the synthesized human emotional space

[4]. There is another way to use the motions in picture to find the attractive

moments. A camera motion is one of the motions in picture which the global

motions (i.e. motions in background image) are translated into more meaningful
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factors. The camera motion can be involved to find the attractive moments in

the videos. As described in [32], a study on the effect of camera motions shows

that the zooming camera motions make the viewers pay more attention when

they are watching the videos. In sport games, it is curious that why the video

makers operate zooming camera motions rather than moving the camera to follow

a player. It may consider that the zooming camera motions are related to the

attractive moments due to an uncertainty situation. Thus, the camera motions are

investigated in order to find the attractive moments following problem statement

and research questions.

Problem statement: When making an automatic system to retrieve the

attractive moments in the videos, it is needed to find features that have a

relationship of the attractive moments. In the past, high motion activity in

picture is used to find the attractive moments. However, it may not cover all

attractive moments base on the human perspective. Thus, we investigate more

about the motions in picture in order to improve the performance. There are

hints from [3, 32] which mention that the camera motions have a relationship

to the attractive moments. In human eyes, the camera motions can be realized

easily but it is difficult for computers. Moreover, the human can understand the

attractive moments while the computers cannot understand. Therefore, we give

two research questions for this study.

Research question 1: How to design a model that can extract the camera

motions from the video?

Research question 2: How can the attractive moments be retrieved by the

camera motions?

1.3 Structure of the Thesis

In Chapter 2, related works of this study are reviewed and explained in details. In

Chapter 3, steps of camera motion extraction are introduced. We use several video

categories which have different behaviour in contents. In results, both single and

multiple camera motions are extracted from the video. In Chapter 4, an automatic

retrieval of attractive moments in sport videos is presented. We use soccer video

for this study. Chapter 5 we give the final conclusions and future works of this

dissertation that come from all related experiments.



Chapter 2

Literature Review

2.1 Introduction

In order to find attractive moments in the entertaining videos, there are two

questions: First, “How to design a model that can extract the camera motions

from the video?”. Second, “How the attractive moments can be retrieved by the

camera motions?”.

For the first question, there are two types of models that are used for extracting

the camera motions. First, parametric models compute projective transformation

parameters between two consecutive video frames [33–38]. The parameters refer to

horizontal and vertical velocities of image pixels from one video frame to its next

video frame. In MPEG video domain works [39–41], the motion vectors (MVs) in

predicted frames (P-frames) and interpolated bi-directional frames (B-frames) are

accessed directly to retrieve the projective transformation parameters which can

reduce computational times.

Second, non-parametric models are more flexible than the parametric model

because they use textures or edges [42] instead of parameter values of image pixel

to estimate the camera motions. Template matching in optical flow simply find

the camera motions by dividing the video frames into sub-images equally [43], or

by observing four sub-image regions at the corners [44, 45]. The dominant MVs in

each sub-image lead to the camera motion pattern. From the past until now, 1D

MV histograms are popular and useful tools in non-parametric models to extract

the camera motions from the videos [1, 2, 46–51].

7
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For the second question, Guironnet et al. mentioned that “We think that camera

motion carries important information on video content. For example, a zooming

camera motion makes spectator attention to focus on a particular event” [3].

There is a study on the camera motion effects [32]. The viewer’s eyes are tracked

to monitor how much effort do viewers pay attention while they are watching

the videos. From the study, the zooming camera motions make the viewer pay

attention more than the panning and tilting camera motion.

In this chapter, we review existing works that are related to this research.

2.2 Camera Motions Extraction Using 1D

Motion Vector Histograms

2.2.1 Prerequisite

In order to extract the camera motions, it is essential to retrieve motion features

from the videos. Basically, MVs can be extracted or can be accessed to the videos

directly since the videos are represented in visual distribution, such as color, shape,

texture, etc. The block-based motion estimation is a simple and fast approach for

estimating the MVs.

To estimate the MV in the video frame at current time t, the previous video frame

at time t− 1 is used as the reference frame in order to investigate how the image

pixels move from video frame t − 1 to video frame t. Figure 2.1 summarizes the

process of the block-based motion estimation. First, both current video frame t

and its previous video frame t − 1 are divided into blocks without overlapping

equally. Then, the block-based motion estimation starts to find the MV in each

block position. At the n-th block position of video frame t, the search area is

set on the previous video frame t − 1 where the center of the search area is at

the same block in video frame t. Finally, a search window, which has size the

same as the block, is used to scan inside the search area in the raster-scan order.

Then, the image in the search window and the image in the n-th block position

are compared. If they have the best matching, the MV is estimated. Otherwise,

look for the next location. From the explanation above, it spends long times

if it is performed by full search algorithm. Thus, we give an example of fast
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Figure 2.1: Process of block-based motion estimation

block-based motion estimation. Adaptive rood pattern search (ARPS) is the fast

block-based motion estimation [52]. The ARPS has overall performance better

than three steps search [53], four steps search [54], simple and efficient search

[55], diamond search [56], and cross diamond search [57–59] because ARPS uses

neighboring blocks as a clue to find the best match block instead of finding entire

video frame. Using neighboring blocks makes the MV estimation faster because

it can skip unnecessary searching points. From raster-scan order, there are four

available neighboring blocks as shown in Figure 2.2. Note that the block with

the ◦ symbol represents the estimating block while the gray color blocks represent

the neighboring blocks. To estimate accurate MVs, the four neighboring blocks

Figure 2.2: Four positions of reliable neighboring blocks

are used as support regions. There are four types of support regions following in

Figure 2.3. Note that the block with the ◦ symbol represents the estimating block,

the gray blocks represent the selected neighboring blocks for the support region,

and the white blocks represent non-selected neighboring blocks for the support

region. The support region type A uses all neighboring blocks for the support

region (Figure 2.3(a)). It spends the longest time processing comparing with the

other types. The neighboring block at the left, upper, and upper-right positions

are used for the support region type B (Figure 2.3(b)). This support region type
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is used in motion estimation of video coding standard H.263 [60]. The support

region type C is simpler than both type A and type B (Figure 2.3(c)). It includes

the only two neighboring blocks in horizontal and vertical positions. Finally, the

support region type D processes the fastest in motion estimation comparing with

the other types (Figure 2.3(d)). It uses the previous block of the raster-scan order

(i.e. the left neighboring block) as the support region. The ARPS uses the support

type D for the fast block based motion estimation. The ARPS has two steps of

(a) Type A (b) Type B (c) Type C (d) Type D

Figure 2.3: Four types of support regions

motion estimation. Figure 2.4 briefly explains the procedure of the ARPS. First,

the ARPS tries to locate the starting point of searching inside the searching area

following below.

• The center position of the searching area.

• The two pixels left off-center position.

• The two pixels right off-center position.

• The two pixels upper off-center position.

• The two pixels below off-center position.

• The same position as the estimated MV in the support region.

Note that the default range of off-center position is set by two pixels for estimating

the first MV. When the ARPS estimates the next MV the range of off-center

position is adjusted by refer to the longest displacement MV in horizontal and

vertical directions. In this step, the ARPS can skip the unnecessary searching

points. Since the sixth position can be one of the five first position, there are at

least five positions for the ARPS to find the starting point of searching. Then,

the ARPS computes the sum of absolute differences (SAD) in all starting points

of searching. The searching point with the lowest SAD values is set for the new

center position of searching.
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Second, the ARPS refines the searching by repeating the first step with new four

off-center positions. The new off-center positions are located at one pixel of left,

right, upper, and lower off-center positions. Then the ARPS computes all SAD

values and compares to each other. If the lowest SAD value is located at the

center of the searching, the MV is found. Otherwise, the ARPS sets the new

center position of searching at the lowest SAD value and repeat this step.

Figure 2.4: Procedure of the adaptive rood pattern search

2.2.2 Camera Motion Histogram Descriptor (CAMHID)

The camera motion histogram descriptor (CAMHID), a histogram based approach

for video shot characterization, is accomplished by Hasan et al. [1]. Figure 2.5

shows the framework of CAMHID. There are four steps of the procedure. First,

the MVs are estimated from the video. Second, The estimated MVs are filtered for

the MVs of interest. They directly refer to the MVs in the background image. To

find the MVs of interest, two directional gradients of MV displacement, horizontal

and vertical directions, are computed following Eqs. 2.1 and 2.2.

Ou(x,y) = {Ou1
(x,y),Ou

2
(x,y), . . . ,Ou

n
(x,y)} where Oui(x,y) = ui+1

(x,y) − u
i
(x,y) (2.1)

Ov(x,y) = {Ov1
(x,y),Ov

2
(x,y), . . . ,Ov

n
(x,y)} where Ovi(x,y) = vi+1

(x,y) − v
i
(x,y) (2.2)

where Ou(x,y) and Ov(x,y) are the sets of horizontal and vertical gradients of MV

displacement in each block position (x, y), respectively. Both Oui(x,y) and Ovi(x,y)

are the horizontal and vertical gradients of MV displacement in i-th video frame

of each block position (x, y), respectively.



Chapter 2 Literature Review 12

Figure 2.5: Framework of the camera motion histogram descriptor

To identify the MV of interest, a statistics-based traditional measure of distance

is used. The consistency of the MV of each block position is investigated. If the

MV in the block position (x, y) has the low values of Oui(x,y) and Ovi(x,y), then the

motion is declared as the MV of interest (i.e. MVs in the background image).

Otherwise, it is not an MV of interest (i.e. MVs in the foreground image).

Third, the CAMHID computes the average magnitude of the interested MVs for

n consecutive video frames in order to handle the unnoticeable small motions. By

the average magnitude, the CAMHID can recognize no motion accurately. For

the directions, the CAMHID divides the angular range into 12 ranges equally

(Figure 2.6). Fourth, the CAMHID divides the MV field on the video frame into

Figure 2.6: Angular ranges for motion vectors estimation in CAMHID [1]

3×3 sub-field equally. In each sub-field, the CAMHID finds the dominant MV by
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using two histograms of MV magnitude and MV orientation. Figure 2.7 shows

four dominant MV templates of the camera motions. For each template, each

sub-field contain the dominant MV which represents the camera motion pattern.

For stationary camera motion (Figure 2.7(a)), all sub-fields contain zero dominant

MVs. Panning camera motions have the horizontal dominant MVs (Figure 2.7(b))

while tilting camera motions have the vertical dominant MVs (Figure 2.7(c)).

Finally, zooming camera motions have diagonal dominant MV at the corners of

sub-fields, horizontal dominant MVs at the left and right sub-fields and vertical

dominant MVs at the upper and lower sub-fields (Figure 2.7(d)). The CAMHID

considers the camera motion in video frames by choosing the best matching to the

templates.

(a) Stationary (b) Panning left and right (c) Tilting up and down (d) Zoom-in and out

Figure 2.7: Four templates of camera motion patterns

2.2.3 Learning Based Camera Motion Characterization

Scheme

Okade et al. recognized the camera motions by using two 1D MV histograms

[2]. After MV estimation, the magnitude and orientation of MVs are calculated

following in Eqs. (2.3) and (2.4).

m =
√
u2 + v2 (2.3)

θ = arctan(
v

u
) (2.4)

where m is the MV magnitude, θ is the MV orientation, u is the displacement of

the horizontal MV, and v is the displacement of the vertical MV.

After computing both MV magnitude m and MV orientation θ, they are

distributed by using 1D MV histograms. In MV magnitude histogram, it has

zero motion and non-zero motion. This histogram mainly uses for indicating

stationary and non-stationary camera motions. In MV orientation histogram,
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it has eight angular ranges which are described in Figure 2.8. From Figure 2.8,

the instructions at below describe each camera motion property following Okade’s

method [2].

• Stationary: The dominant MV orientation is located in the 1st range and

the dominant MV magnitude is located at zero motion.

• Panning left: The dominant MV orientation is located in the 4th and 5th

angular ranges.

• Panning right: The dominant MV orientation is located in the 1st and 8th

angular ranges.

• Tilting up: The dominant MV orientation is located in the 2nd and 3rd

angular ranges.

• Tilting down: The dominant MV orientation is located in the 6th and 7th

angular ranges.

• Zooming: All MV orientations are spread on all angular ranges.

Figure 2.8: Angular ranges for motion vectors estimation in Okade’s method [2]

Then they designed the three levels of procedure in order to classify the camera

motions following Figure 2.9. At the first level, the coefficient of variation in

Eq. (2.5) is computed. This coefficient of variation is used for estimating zooming

camera motions.

cv =
σ

µ
(2.5)
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Figure 2.9: Three levels of Okade’s procedure [2]

where cv is the coefficient of variation between the orientation ranges, and σ and

µ are the standard deviations and the average of all orientation range counts

respectively.

If cv has a low value, the MV orientation are separate evenly in all orientation

ranges as the zooming camera motion property. Otherwise, the MV orientations

are accumulated in one of the eight ranges which need to be investigated at the

next level.

At the second level, the remaining camera motions can be classified by using the

dominant in the 1D MV orientation histogram. From Figure 2.9, it is obviously

to classify panning left, tilting up, and tilting down camera motions. Because of

their design, the stationary and panning right camera motions are considered in

the final level.

In the third level, the 1D MV magnitude histogram is included to distinguish

between the stationary and panning right camera motions. If the dominant

MV magnitude is located at the zero motion, it is stationary camera motion.

Otherwise, it is panning right camera motion.

Table 2.1 summarizes the characteristics of all camera motions based on the

three-level classification.
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Table 2.1: Characteristics of all camera motions in Okade’s method [2]

Camera motions cv value
The location of dominant MVs

MV orientation MV magnitude
Station high 1st angular range zero motion
Panning left high 4th and 5th angular ranges non-zero motion
Panning right high 1st and 8th angular ranges non-zero motion
Tilting up high 2nd and 3rd angular ranges non-zero motion
Tilting down high 6th and 7th angular ranges non-zero motion
Zooming low all angular ranges non-zero motion

2.3 Attractive Moment Identification Using

Motions in Picture

According to the usage of motions to identify the attractive moments in pictures,

there are several existing works from several study areas. In this section, we show

how the motions can be used for retrieving the attractive moments in pictures and

videos.

2.3.1 Affective Impact of Motions in Picture

In the past decade year, several efforts to extract and to estimate the human moods

from videos are proposed. Motion features in the videos are useful to indicate how

viewers feel when they are watching videos. The motion features can be accessed

easily and can be used in the psychophysiological study area. The motions in

picture were used to study an affective impact of viewers. Note that the affective

impact is represented by human emotional space “arousal-valence” [5, 6].

Detenber et al. designed an experiment to explore the relationship between picture

with motion and its emotional responses [5]. They were expected that the motions

are leading the viewer’s excitement. In their experiments, they asked subjective

people of average 20 years old to watch still images and moving images. Then, they

directly rated the emotional response via heart rate and skin conductance in two

relationships: 1) motion and arousal (i.e. strength of emotion), and 2) motion and

valence (i.e. a sign of emotion). This experiment was also extended by including

the facial electromyography at Corrugator supercilii muscle (i.e. the muscle near

the eyes) and Zygomaticus major muscle (i.e. the muscle near cheek) [6]. The

purpose of this experiment is to confirm the significant effect of motions in picture



Chapter 2 Literature Review 17

on the arousal and to investigate the relationship between motion in pictures and

the valance. Based on their experimental results, they concluded that:

• The motion directly affects to the arousal level.

• The motion does not affect to the valance level.

• It was suggested that motion may capture and sustain attention as well as

influence certain aspects of emotional responses.

From their conclusions, they lend us to know that the motion can determine

the strengthness of emotion. For example, high motion activity in the picture

strengthen the emotional impact.

2.3.2 A Paradigm in Human Emotional Space Using Video

Components

Hanjalic had started a new direction in video content analysis by synthesizing a

human emotional space “arousal-valance” using motion and sound features [18].

This work was inspired by the study area of psychophysiology [16, 17]. The arousal

model indicates the intensity or level of emotion while the valence model indicates

positive and negative emotions. Hanjalic used both motion and sound features to

synthesize the arousal model and used only sound feature to synthesize the valence

model. Since we had known from the previous section “The motion directly affects

to the arousal level”, thus we focus on how Hanjalic synthesizes the arousal model.

In the arousal model, Hanjalic considers the function Gi(k) that can change the

arousal value over time k by each i-th feature component. The function Gi(k)

can be interpreted as one component of the arousal model which is described in

Eq. 2.6

A(k) = G1(k) +G2(k) + · · ·+Gi(k) (2.6)

where A(k) is the arousal value at time k and Gi(k) is an i-th feature component

at time k.

Since Hanjalic used motion and sound as the feature components of the arousal

model, i in Eq. 2.6 is equal to 2. The first component, motion features are

computed in form of activity in MV magnitude of each video frame. Hanjalic
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expected that the image with high motion activity has high excitement. Eq. 2.7

describes the motion activity in mathematical expression. Note that this

component has value in a range between 0% and 100%.

m(k) =
100

max(mag)
× (

B∑
i=1

magi(k))% (2.7)

where m(k) is the motion activity at time k, max(mag) is the longest MV

magnitude, magi(k) is the i-th MV magnitude in at time k.

The second component, loudness of sound is included in the arousal model.

Hanjalic also expected that loud sound has high excitement. Eq. 2.8 describes

the sound energy in the mathematical expression. Note that this component also

has value in the range between 0% and 100%.

s(k) = 100× e(k)(1− 1

W

∑
e(k))% (2.8)

where s(k) is the sound component at time k, e(k) is the normalized sound energy

in scale between 0 and 1, and W is the constant parameter.

From Eq. 2.6, the feature component Gi(k) were defined as the weight of feature

components.

G1(k) = w1m(k) (2.9)

G2(k) = w2s(k) (2.10)

where G1(k) is the weight of motion component and G2(k) is the weight of sound

component.

Therefore, Eq. 2.6 is rewritten in Eq. 2.11.

A(k) = w1m(k) + w2s(k) (2.11)

where A(k) is the arousal at time k, m(k) is the motion activity at time k with

weight parameter w1, and s(k) is the sound component at time k with weight

parameter w2. Note that the summation of the two weights w1 and w2 must equal

to 1.

Hanjalic uses his arousal model in order to find the most attractive moments in

videos [4]. In his conclusion, using the motion and sound features for finding the

attractive moments in videos is appropriate. However, the performance of the
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approach needs to be increased with better features inside the video. By human

perspective, some attractive moments can occur when less motion and less sound

energy. Thus, they may lack meaning. Note that all Hanjalic’s ideas of this

direction are summarized in [61].

2.3.3 Video Summarization of Attractive Moments Using

Camera Motions

In order to make viewers access videos easily, video indexing technique using visual

features such as motions have been developed. From these techniques, it provides

new applications such as video summarization and video browsing.

The video summarization is a method that shortens the original video. It composes

of important video frame’s contents which are called keyframes. The keyframes

selection aims for representing the important contents inside videos. Since the

method in the previous section expects that the attractive moments are in high

motions and loud sound, it may lack some cases in human perspective. To retrieve

the attractive moments in videos, camera motions can be included. A study on

the effect of panning, tilting, and zooming camera motions was presented [32]. In

this study, the viewer’s eyes are tracked to monitor how much effort do viewer

pay attention while the viewer is watching a video in several situations. From the

study, the zooming camera motions make the viewer pay attention more than the

panning and tilting camera motions. Guironnet et al. mentioned that “We think

that camera motion carries important information on video content. For example,

a zooming camera motion makes spectator attention to focus on a particular event”

[3]. Then, they introduced a rule based method to make a video summarization

by using the camera motions.

First, they split the video into several video shots which each shot contains only

one camera motion. Then, heuristic rules are defined (Figure 2.10):

• If two consecutive video shots are represented in stationary and

non-stationary (i.e. panning, tilting, and zooming) camera motions, the

two video frame at the beginning and the end of the non-station video shots

are selected as keyframes (Figures 2.10(a) and 2.10(b)).
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• If two consecutive video shots are represented in non-stationary camera

motions, a video frame at the beginning of each video shot is selected as

keyframes (Figure 2.10(c)).

(a) Video shots from stationary to non-stationary

(b) Video shots from non-stationary to stationary

(c) Video shots from non-stationary A to non-stationary B

Figure 2.10: Keyframes selection in Guironnet’s heuristic rules [3]

This heuristic rules process two consecutive video shot at an iteration. Figure 2.11

shows an example of keyframes selection using these heuristic rules. The video

contains three sequences of video shots: 1st) stationary, 2nd) panning, 3rd)

stationary. By applying these heuristic rules, the video frames at the beginning

and at the end of the second video shot are selected as keyframes. Finally, the

two selected keyframes are used as video frame indexes in order to create a short

version video that has attractive moment. From Figure 2.11, the original video is

shortened to the second video shot as the attractive video.
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Figure 2.11: Example of keyframes selection using Guironnet’s heuristic rules
[3]

2.4 Thrill in Attractiveness of Games

In this section, we discuss “what is the attractive moments in other study areas?”.

Three masters model was designed to study an inner meaning of games which

focuses on games solving to know its true properties, feeling senses, and uncertainty

[62]. The three masters model reveals that the attractiveness of game relates to a

harmony in fairness, judges, and thrill. The three masters model corresponds to

the three important characteristics: competitiveness (i.e. the master of winning),

entertainment (i.e. the master of playing), and communication (i.e. the master

of understanding). This model relates to the game theory [63], game refinement

theory [64, 65], game information dynamic [66], etc. From the three masters

model, the master of playing is the closest to this research because the master of

playing mainly focuses on the game progress while the master of understanding

and the master of winning mainly focus on an algorithm to solve the game and

player’s skills respectively. From the three masters model, the game’s uncertainty

elaborates on the entertainment which is described by subsections below.
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2.4.1 Entertainment and Uncertainty

Uncertainty is the key-factor to measure the interesting rate of a game because

people are not attracted by the game itself but the unpredictable or the uncertainty

in the game [10]. The relationship between entertainment and uncertainty had

been discussed and analyzed in psychology. In each game-playing, there are three

kinds of uncertainty which can be characterized by

• Uncertainty in winning strategy: it strictly concerns about a strategy for

playing a game. It relates to the difficulty of the best strategy in order to

win the game.

• Uncertainty in information: people are attracted by the games because of

unpredictable game results. The predictions which are made by the viewers

are more neutral than the predictions which are made by players, since the

viewers are not involved in the game directly and there are no psychological

affects in judgment.

• Uncertainty in game theoretical value: it represents the game outcome of

simulated games. For example, it assumes that all players have the same

skill level. This uncertainty directly relates to game’s rules.

These three kinds of uncertainty are similar to the three masters model [62]. From

the human perspective, the uncertainty in information is important to measure

the attractiveness in games because it was shown by a report that changing in

information has an impact on entertainment during game-playing [67]. In the

report, non-attractive games usually are predicted easily because all actions in the

games never change the game result. In contrast, fascinating games are attractive

when an action in the games changes the game result. Therefore, people are

attracted by these games because they are hard to predict the game results until

the final action.

2.4.2 Changing in Information and Uncertainty

There are several games and entertaining videos around the world. Some of them

are less attractive and some of them are highly attractive. By observing roughly,
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they are similar to each other. Because of some different parts of the games, it

may make them become attractive games.

In the past decade, entertaining game properties are examined by Majek and Iida

[8]. They developed a framework “the uncertainty in game outcome” to exam two

players zero-sum games that are enjoyable. The uncertainty in game outcome is

based on the concepts of information theory. There are several reasons that can

describe “why people are attracted by the games”. One of them is the winning

trend: if the games are hard to predict “which team will win?” until the games

are end, they have a good balance of winning tread and can be considered as the

attractive games. From the uncertainty in game outcome framework, it considers

the popular games (e.g. chess and soccer) as testbeds. They are played by novice

players whose have similar skill levels. It is important that if the games are not

attracted by the novice players, the games are not surviving until the present day.

For chess, the uncertainty in game outcome can be analyzed by the distance of

pieces’ positions from the current position to the end position. For soccer, it is

difficult to analyze the distance of the game position because of large data size.

Therefore, the uncertainty in game outcome is analyzed by using the statistical

data during the game-playing.

2.4.3 Changing in Game Outcome and Entertainment

From the uncertainty in game outcome framework, a mathematical model

of game refinement was presented [65, 68]. This model explores a game

progress information to measure the entertainment. The realistic game progress

information is created as a non-linear function to represent that the game

information is unpredictable. The second derivative of the game progress

information is derived to find the acceleration in the sense of information dynamic.

This acceleration is similar to the acceleration in the second Newton’s law [69]. The

acceleration on the game progress information, which is called “game refinement

value”, relates to emotional impacts in human minds. The game refinement value

is mainly measured by using the statistical game data. For example, a number of

score attempting and a number of game score in soccer games. By these statistical

data, the uncertainty in outcome can be measured. If the game refinement value

is low (i.e. slow in game progress information speed), the game outcome is hardly

changed and the games become less interesting because of predictable result.
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In contrast, if the game refinement value is high (i.e. fast in game progress

information speed), the game outcome is easily changed and is hard to predict

the game result. This mathematical model is also similar to the probabilistic in

excitement which is presented by Vecer [12].

2.5 Conclusions

In this chapter, we review related works start from how to extract the camera

motions from the videos, and how to use them for retrieving the attractive

moments. In step of extracting the camera motions, both CAMHID and Okade’s

method used MV magnitude and MV orientation histograms to analyze the camera

motions in each video frame. CAMHID spends a long time for filtering the MVs

in background before identify the camera motions. It may not necessary to use

template matching to identify stationary, panning, and tilting camera motions

because they are not complex as same as zooming camera motions. Okade’s

method is a fast camera motion estimation method. It can identify each camera

motion via its coefficient of variation. However, it cannot distinguish especially

zoom-in and zoom-out camera motions. For this part, we see another way to

extract the camera motions from the videos which is described in Chapter 3.

In the past, there is an evidence about the relationship between motions in

picture and human emotional impacts. It shows that the motions in picture

have an effect in strength of human emotional impact. By inspiration of the

study in psychophysiology, Hanjalic had synthesized the human emotional space

“arousal-valence” and used it for finding the most attractive moments in videos.

However, it may lack some cases in human perspective. Thus, the performance

needs to be increased with better features inside the videos. A sentence which is

mentioned by Guironnet et al. “We think that camera motion carries important

information on video content”. Then, they introduced a simple rule based method

to find the attractive moments in video and to summarize as a short video version.

Their rules especially select video frames with non-stationary camera motions as

keyframes that represent the attractive moments. From the study on the effect of

several camera motions, zooming camera motions make the viewers pay attention

more than the other camera motions. Thus, the idea of using camera motions to

find the attractive moments is investigated.



Chapter 3

Camera Motions Extraction

Using 2D Motion Vector

Histogram

This chapter is an updated and abridged version of the following publication.

• P. Prasertsakul, T. Kondo, and H. Iida. Video shot classification using

2D motion histogram. In 2017 14th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), pages 202-205, June 2017.

• P. Prasertsakul, T. Kondo, H. Iida, and T. Phatrapornnant. Camera

operation estimation from video shot using 2D motion vector histogram.

The Visual Computer (Submitted April 2018).

3.1 Introduction

The camera motions have an important role in several applications. For example,

retrieving a particular video shot, editing an entire video sequence, and encoding

a sequence depending on the significance of each scene. In this chapter, we explain

how to extract camera motions from videos. The target camera motions which

are extracted by our proposed method comprise of stationary (S), panning left

(PL), panning right (PR), tilting up (TU), tilting down (TD), diagonal panning

25
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(D), object tracking (T), zoom-in (ZI), zoom-out (ZO), scene change (SC), and

combination of zooming (e.g. ZI+PL, ZI+PR, ZO+PL, ZO+PR, etc.) camera

motions.

In the past, several researchers used parametric models to classify camera motions

in videos [33–38]. Computing projective transformation parameters in consecutive

video frames is a traditional approach. In MPEG video domain works [39–41], MVs

in predicted frames (P-frames) and interpolated bi-directional frames (B-frames)

are used to classify the camera motions by analyzing projective transformation

parameters between two video frames.

For non-parametric models, image features can be used to detect camera motions,

such as edge features [42]. In work [43], sequential video frames are divided into

sub-images, equally. The dominant MVs in each sub-image lead to the camera

motion patterns. In works [44, 45] present template matching in optical flow to

classify the camera motions.

1D MV histograms are non-parametric models that are useful tools to classify

the camera motions from the videos [1, 2, 46–51]. Shot characterization using

difference in 1D MV histogram of consequent video frames are presented in

[49, 50]. However, they use the 1D MV histogram in order to find only SC camera

motions. In the MPEG video domain, three 1D MV histograms, including of image

intensities, horizontal MVs, and vertical MVs, are extracted from intra-frame

(I-frame) in order to find SC camera motions, while 1D MV histograms of

MV orientations in predicted frame (P-frame) and bi-directional predicted frame

(B-frame) are used to find PL, PR, TU, TD, ZI, and ZO camera motions [46]. Two

1D MV histograms of Cartesian coordinates (i.e. horizontal MVs histogram and

vertical MVs histogram) are used to detect panning (i.e. PL and PR), tilting (i.e.

TU and TD), and zooming (i.e. ZI and ZO) camera motions [47]. From MV fields,

the MVs in Cartesian coordinates are converted into polar coordinates because a

1D MV histogram of polar coordinates can classify more directional movement of

camera [1, 2, 48, 51]. However, it is difficult for the 1D MV histogram to classify

complex camera motions, such as T and a combination of two camera motions (e.g.

ZI+PL camera motions) since there is no link between the two 1D MV histograms.

An existing work [70] presents a 2D histogram based approach that utilizes both

MV magnitudes and MV orientations synchronously, to detect a sequence of

fighting or violent scenes. However, this approach mainly classifies S camera
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motion. Therefore, it means that this approach cannot work well when the camera

is moving.

3.2 Methodology

Figure 3.1 shows the framework of the proposed method. Before the classification

start, the MVs are extracted from the videos using adaptive rood pattern

search (ARPS) [52]. The ARPS is a powerful and fast block-based motion

estimation approach as mentioned in the previous chapter. Recently, there is an

implementation of the ARPS in [71]. It shows that the ARPS can process a video

with resolution 1920×1080 pixels up to 30 frames per second. It means that the

ARPS has fast computational times for estimating MVs in a large scale of images.

For experiments, the proposed method is conducted by using MATLAB [72]. Note

that there is a MATLAB source code of the ARPS technique on the website [73].

The proposed method comprises of 4 steps A, B, C, and D as shown in Figure 3.1.

In Step A., a 2D MV histogram is generated directly in the polar coordinates

system. The 2D MV histogram is utilized to classify the most dominant single

camera motion in Step B. Unclassified camera motions in Step B are then further

analyzed to obtain multiple camera motions in Step C. Finally, Step D. focuses

on the analysis of ZI and ZO camera motions using MV field that is estimated by

the ARPS.

3.2.1 2D Motion Vector Histogram Generation

The 2D MV histogram is generated directly in the polar coordinates. The MV

magnitudes are stored as the radius of the polar coordinates while the MV

orientations are stored as the orientation of the polar coordinates. In the ARPS,

the default block sizes is set to 16×16 pixels. If the input videos have the

resolutions at least HD720 (1280×720 pixels), the block size is changed to 40×40

pixels. However, the default block size cannot be used to some resolutions (e.g.

640×360 pixels in widescreen VGA). To solve this problem, the block size is slightly

adjusted automatically until the block size is suitable for the video resolutions.

Since the ARPS searches MVs from the center of the search area to the border of it,

the search area size can be set freely. Therefore, there is no effect in computational

time if we set the search area size for an extremely large. Finally, the size of the
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Figure 3.1: Framework of the proposed method

2D MV histogram is set by a square shape which contains the maximum size of

horizontal and vertical MVs, max(|u|, |v|). Note that each cell in the 2D histogram

contains MV information (m, θ) in Eqs. (3.1)-(3.2).

m =
√
u2 + v2 (3.1)

θ = arctan
v

u
(3.2)

where m denotes the MV magnitude, θ is the MV orientation, u and v are

displacements of horizontal and vertical MVs respectively.

Figure 3.2 shows a cropped 2D MV histogram of size 7×7 array cells containing

MV magnitudes m and MV orientations θ information. The center of the 2D MV

histogram represents the no motion MV, where m is zero and θ is any value. The

extracted MVs are accumulated at the array cell where it has the closest values m

and θ. Finally, the 2D MV histogram is normalized in a range between 0 and 1.

In the normalized 2D MV histogram, we made iterative experiments to filter the
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2D MV histogram bins or the reliable MVs from all MVs. Finally, we accept the

histogram peaks higher than or equal to the threshold value 0.14. The thresholded

2D MV histogram is visualized in black and white colors. The white cells indicate

histogram bins that are higher than or equal to the threshold level, while the black

cells correspond to the histogram bins that are lower than the threshold level.

Figure 3.2: 2D motion vector histogram in polar coordinates (m, θ)

3.2.2 Most Dominant Single Camera Motion Classification

The proposed method divides the degree orientation into eight ranges equally in

order to define the eight directional camera movements (Figure 3.3).

From the divided degree orientation, if the the dominant MV magnitude is zero

(m = 0), the scene is considered as S. If m > 0, we decide the dominant direction

of MVs. Four directional camera movements, PL, PR, TU, and TD, are defined

as follows:

• PL: The dominant MVs are in degree orientation ranges from 0.0◦ to 22.5◦

and from 337.5◦ to 360.0◦.
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Figure 3.3: Angular ranges for estimating the directional camera movements

• PR: The dominant MVs are in degree orientation range from 157.5◦ to 202.5◦.

• TU: The dominant MVs are in degree orientation range from 247.5◦ to 292.5◦.

• TD: The dominant MVs are in degree orientation range from 67.5◦ to 112.5◦.

The remaining four ranges can be a combination of panning and tilting as described

in more details in the next section.

3.2.3 Multiple Camera Motion Estimation

Both panning and tilting camera motions can occur simultaneously in practical

videos. We consider the combination of panning and tilting camera motions as

D. There are 4 more directions after the horizontal and vertical directions are

discussed earlier (Figure 3.3). They are described below:

• D (PL+TU): The dominant MVs are in degree orientation range from 292.5◦

to 337.5◦.

• D (PR+TU): The dominant MVs are in degree orientation range from 202.5◦

to 247.5◦.

• D (PL+TD): The dominant MVs are in degree orientation range from 22.5◦

to 67.5◦.

• D (PR+TD): The dominant MVs are in degree orientation range from 112.5◦

to 157.5◦.
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A challenge for detecting multiple camera motion patterns had been mentioned

in the previous work [2]. By using the 2D MV histogram, these patterns can

be estimated. Figure 3.4 illustrates multiple camera motions between zooming

and panning camera motions, and between zooming and tilting camera motions.

For both ZI and ZO, the centroids of converging and diverging MV fields are

at the center of the MV field. The centroids of converging and diverging MV

fields are shifted away from the center when there is an integrating camera motion

(i.e. panning and tilting camera motions). For ZI, the centroid of diverging MV

field is shifted-off from the center to the same direction of the integrating camera

motion, while the centroid of converging MV field are shifted-off from the center

to the opposite direction of the integrating camera motion for ZO. To estimate the

(a) ZI with PL (b) ZI with PR (c) ZI with TU (d) ZI with TD

(e) ZI with D (PL+TU) (f) ZI with D (PR+TU) (g) ZI with D (PL+TD) (h) ZI with D (PR+TD)

(i) ZO with PL (j) ZO with PR (k) ZO with TU (l) ZO with TD

(m) ZO with D (PL+TU) (n) ZO with D (PR+TU) (o) ZO with D (PL+TD) (p) ZO with D (PR+TD)

Figure 3.4: Simulation of multiple camera motions

multiple camera motions of zooming, the largest white region, which represents the

zooming camera motion, is selected. Then its center of gravity (COG) is localized

by Eqs. (3.3) to (3.6) which are described in Gonzalezs textbook [74].

M00 =
∑
x

∑
y

C(x, y) (3.3)

M10 =
∑
x

∑
y

x · C(x, y) (3.4)
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M01 =
∑
x

∑
y

y · C(x, y) (3.5)

xc =
M10

M00

, yc =
M01

M00

(3.6)

where C(x, y) is a value of the cells on coordinates (x, y) and (xc, yc) is the

coordinates of the center of gravity. For the cell values, the white cells value

is C(x, y) = 1 while the black cells value is C(x, y) = 0.

• ZI/ZO: The COG is at the center of the 2D MV histogram.

• ZI/ZO with PL: The COG is at the right of the 2D MV histogram.

• ZI/ZO with PR: The COG is at the left of the 2D MV histogram.

• ZI/ZO with TU: The COG is at the lower half of the 2D MV histogram.

• ZI/ZO with TD: The COG is at the upper half of the 2D MV histogram.

• ZI/ZO with D (PL+TU): The COG is at the lower right of the 2D MV

histogram.

• ZI/ZO with D (PR+TU): The COG is at the lower left of the 2D MV

histogram.

• ZI/ZO with D (PL+TD): The COG is at the upper right of the 2D MV

histogram.

• ZI/ZO with D (PR+TD): The COG is at the upper left of the 2D MV

histogram.

These multiple camera motions can be affected by speeds. Figure 3.5 illustrates

the combination of ZO with PL camera motions. It is considered as regular ZO

camera motion, if the PL camera motion is not existing (Figure 3.5(a)). The

centroid of the converging MV field is shifted away from the center of MV field

depending on the speed of PL. If it shifts for a short distance, it is ZO with slow

PL camera motion (Figure 3.5(b)). If it shifts for a long distance, it is ZO with fast

PL camera motion (Figure 3.5(c)). If the speed of PL camera motion is extremely

fast, it is considered as PL rather than ZO camera motion (Figure 3.5(d)).
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(a) Zoom-out without
panning left

(b) Zoom-out with slow
panning left

(c) Zoom-out with fast
panning left

(d) Zoom-out with
extremely fast panning left

Figure 3.5: Simulations of zoom-out with the difference in panning left speed

3.2.4 Camera motion classification

To classify the camera motions, we separate the property of the 2D MV histogram

into two cases:

• Case I: There is one white cell in the 2D MV histogram.

• Case II: There are at least two white cells in the 2D MV histogram.

Case I is the simplest case to classify S, PL, PR, TU, TD, and D camera motions

because there is only one white cell in the 2D MV histogram. Referring to the

previous sections, we label the 2D MV histogram in Figure 3.2 with the camera

motions as shown in Figure 3.6. The array cell at the center of the 2D MV

histogram represents S, while the other array cells at the off-center of the 2D MV

histogram represent PL, PR, TU, TD, and D. The camera motions in Case I can

be clasified by following the position of the array cell in white color.

Case II is more complex than the Case I because the 2D MV histogram contains

several patterns of white cells. To classify the camera motions in Case II, we group

all connected white cells as a white region. Then, we look at the scenarios below.

• If there is one white region of array cells with at least shape size 3×3 array

cells, we classify as ZI and ZO camera motions. Note that the shape size

3×3 array cells represent the slowest zooming speed which has one pixel of

motion in all orientations.

• If there is one white region with shape size smaller than 3×3 array cells,

we consider as S, PL, PR, TU, TD, and D camera motions depending its

dominant MVs.
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Figure 3.6: 2D motion vector histogram with camera motion labels

• If there are two white regions and the larger white region has the size smaller

than 3×3 array cells, we classify as T camera motion. We can explain

that one white cell represents background motion while another white cell

represents foreground motion.

• If there are two white regions and the larger white region has size at least

3×3 array cells, we classify as ZI and ZO camera motion.

• If there are more than two white regions, we consider as ZI, ZO, and SC

camera motions. First, we calculate the average MV magnitude to separate

the white cells into two groups: 1) the white cells with MV magnitude less

than or equal to the average MV magnitude and 2) the white cells with MV

magnitudes greater than the average MV magnitude. Finally, we compare

the number of white cells from these two groups. If the first group has white

cells more than or equal to the second group, it is considered as a ZI and

ZO camera motions. Otherwise, it is SC camera motion.

The classification at above is summarized by the decision tree, as shown in

Figure 3.7.
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From Figures 3.8 to 3.11 give an explanation of all camera motions in the 2D

MV histogram via MV field simulations. Figures 3.8 and 3.9 show the simulation

of panning and tilting camera motions at different speed. By using the 2D MV

histogram, the operational speed can be known directly. If there is no operation

in camera, the white cell is always at the center of the 2D MV histogram as

S camera motion (Figures 3.8(e) and 3.9(e)). For panning and tilting camera

motions, their white cells are located close to the center of the 2D MV histogram

for slow operation (Figures 3.8(a), 3.8(b), 3.8(c), 3.8(d), 3.8(f), 3.8(g), 3.8(h), and

3.8(i)), while their white cell are located away from the center of the 2D MV

histogram for fast operation (Figures 3.9(a), 3.9(b), 3.9(c), 3.9(d), 3.9(f), 3.9(g),

3.9(h), and 3.9(i)). Figure 3.10 shows the simulation of zooming camera motions

(a) Diagonal panning (PL+TU) (b) Tilting up (c) Diagonal panning (PR+TU)

(d) Panning left (e) Stationary (f) Panning right

(g) Diagonal panning (PL+TD) (h) Tilting down (i) Diagonal panning (PR+TD)

Figure 3.8: Simulation of slow camera motions

at different speed. From no operation in camera (i.e. S camera motion), the white

cell is stretched linearly by the operational speed of the zooming camera motions.

The MV magnitudes from the center to the border of the MV field slightly increase

for slow operation (Figures 3.10(a) and 3.10(d)), while they constantly increase

for fast operation (Figures 3.10(b) and 3.10(e)). Therefore, the 2D MV histogram

contains a white square with different sizes depending on the zooming speed.

However, when the camera operates zooming extremely fast, it makes the white

cells spread away from each other (Figures 3.10(c) and 3.10(f)). Figure 3.11 shows

the simulation of two special camera motion patterns. When the camera tries to
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(a) Diagonal panning (PL+TU) (b) Tilting up (c) Diagonal panning (PR+TU)

(d) Panning left (e) Stationary (f) Panning right

(g) Diagonal panning (PL+TD) (h) Tilting down (i) Diagonal panning (PR+TD)

Figure 3.9: Simulation of fast camera motions

(a) Slow zoom-in (b) Fast zoom-in (c) Extremely fast zoom-in

(d) Slow zoom-out (e) Fast zoom-out (f) Extremely fast zoom-out

Figure 3.10: Simulation of zooming camera motions

follow an object, the MVs at the center of the MVs field usually have less motion

than the other MVs (Figure 3.11(a)). Thus, there are at least two white regions

on the 2D MV histogram which the one region represents the object and another

one represent the background. SC is the special camera motion which is about

changing a viewpoint from a camera to the other camera. In MV estimation, it

estimates random MVs since it selects the most approximate matching from two

different video frames (Figure 3.11(b)).
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(a) Object tracking (b) Scene change

Figure 3.11: Simulation of two special camera motions

3.2.5 Zoom-in and Zoom-out Classification

It is a limitation for the 2D MV histogram to recognize both ZI and ZO camera

motions because these two camera motions produce a similar pattern in the 2D

MV histogram. In order to solve their limitations, we use the MV field which

is estimated by the ARPS in the first step. The MV field is divided into four

quadrants and compared with 9 templates of zooming camera motions, as shown

in Figure 3.12.

To distinguish between ZI and ZO camera motions, we select one pair of the

templates by referring to the center of gravity (xc, yc). Because of Step B. and Step

C., the proposed method already recognized converging and diverging MV fields

as zooming operations. Then, we simply distinguish between ZI and ZO camera

motions by investigating the number of signs of MV components, horizontal MV

u and vertical MV v. Table 3.1 shows the criteria for distinguishing between ZI

and ZO camera motions for each MV field quadrant position. If the MV field

quadrant position contains MVs of more than a half of the total MVs, the camera

motion (i.e. ZI or ZO) is voted to the MV field quadrant. Note that ZI and ZO

with D operations have the same sign of MV components. We involve zero-MV

components which represent the centroids of converging and diverging MV fields.

Finally, both voting scores are compared to each other following the instructions

below.

• If the ZI score is greater than the ZO score, it is a ZI camera motion.

• If the ZO score is greater than the ZI score, it is a ZO camera motion.

• If both of them have the same score, it is considered SC in order to treat

misclassifications from the previous steps.
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(a) Regular zooming (b) Zooming with PL (c) Zooming with PR

(d) Zooming with TU (e) Zooming with TD (f) Zooming with D (PR+TU)

(g) Zooming with D (PL+TU) (h) Zooming with D (PR+TD) (i) Zooming with D (PL+TD)

Figure 3.12: Divided zoom-in (left) and zoom-out (right) templates
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3.3 Results and Discussion

In this section, four examples of camera motion estimation, which are done by the

proposed method, are discussed.

3.3.1 A Real Video in Scene Change Camera Motion

Figure 3.13 shows an example of SC camera motion where Figure 3.13(a)

and 3.13(b) exhibit a sudden changing in a video sequence. Figure 3.13(b)

indicates an irregular MV field of the image, compared with the previous

frame in Figure 3.13(a), because the two time-sequential frames show different

views. Figure 3.13(c) demonstrates a corresponding 2D MV histogram before

thresholding. After thresholding, we have a 2D binary histogram, as shown in

Figure 3.13(d). This is Case II with more than two white regions in Figure 3.7.

The × symbol and circle in Figure 3.13(d) correspond to the centroid of the 2D

MV histogram and the average MV magnitude, respectively. The white cells in

Figure 3.13(d) are then separated outside of the red circle in Figure 3.13(e) and

inside of the circle in Figure 3.13(f). Since the number of cells within the circle

(i.e. 15 cells) is less than that outside of the circle (i.e. 36 cells), the proposed

method considers the camera motion as an SC camera motion.

(a) Reference frame (b) Current frame with MV field (c) 2D MV histogram

(d) Thresholded 2D MV
histogram

(e) White cells that
contain a magnitude

longer than the average
magnitude

(f) White cells that
contain a magnitude less

than or equal to the
average magnitude

Figure 3.13: An example of scene change camera motion estimation by the
proposed method
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3.3.2 A Plain Background in Zooming Video

Figure 3.14 shows an example of a ZI camera motion. Since the camera slowly

extends the focal length to perform ZI from Figure 3.14(a) to 3.14(b), the MV

field shows diverging MVs on the image in Figure 3.14(b). The 2D MV histogram

of the MV field shows a square shape of histogram bins (Figure 3.14(c)). After

thresholding, Figure 3.14(d) shows that we have a rectangular white region that

has the size larger than 3×3 array cells. This is Case II, especially the left path in

Figure 3.7. Since the MV field shows the diverging MV, the proposed method

considers as ZI camera motion. The proposed method then notices that the

centroid of the detected rectangle (• symbol) does not coincide with the centroid

of the 2D MV histogram (× symbol). The displacement between two symbols is

(xc, yc) = (1, 0), which means that the integrating camera motion is PL camera

motion. Thus, the proposed method detects the combination of ZI and PL camera

motions.

(a) Reference frame (b) Current frame with MV field

(c) 2D MV histogram (d) Thresholded 2D MV
histogram

Figure 3.14: An example of zoom-in camera motion estimation by the proposed
method

3.3.3 A Complex Background in Zooming Video

Figure 3.15 demonstrates an example of ZO camera motion. The video frame in

Figure 3.15(a) is transformed to Figure 3.15(b) by ZO with TD camera motions.

The converging MV field in Figure 3.15(b) presents its corresponding 2D MV
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histogram in Figure 3.15(c). It does not have an arrangement of histogram peaks

as well as Figure 3.14(c) because of complexness in picture. After thresholding, we

obtain a thresholded 2D MV histogram with an unwell white rectangle as shown

in Figure 3.15(d). The thresholded 2D MV histogram shows that it is the right

path of Case II in Figure 3.7. Subsequently, the white cells outside and inside of

the circle (i.e. the average MV magnitude) are separately plotted in Figure 3.15(e)

and 3.15(f), respectively. Since the number of white cells in Figure 3.15(e) is less

than the number of white cells in Figure 3.15(f), the proposed method decides that

is zooming camera motion. From the MV field analysis, it considers that is ZO

camera motion. In addition, it is found that the × symbol is slightly displaced,

higher than the • symbol of the centroid. the proposed method considers that the

camera motion is a combination of ZO and TD camera motions.

(a) Reference frame (b) Current frame with MV field

(c) 2D MV histogram (d) Thresholded 2D MV
histogram

(e) White cells that
contain a magnitude

longer than the average
magnitude

(f) white cells that
contain a magnitude less

than or equal to the
average magnitude

Figure 3.15: An example of zoom-out camera motion estimation by the proposed
method
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3.3.4 A Sequence of Object Tracking Camera Motion

Figure 3.16 shows an example of T camera motion. Figure 3.16(a) and 3.16(b)

indicate that a helicopter is tracked in the upper left direction. Two bright spots

in the 2D MV histogram in Figure 3.16(c) correspond to MVs in the background

and foreground. After thresholding, there are two white regions, which correspond

to the middle path of Case II in Figure 3.7. One region is located at the center of

the 2D MV histogram, while the other region is located off-center of the 2D MV

histogram. The white region at the center represents the foreground that is the

helicopter being tracked. On the other hand, the off-center white region represents

uniform MVs in the background. Since those two white regions are smaller than

3×3 array cells, the proposed method considers that the camera motion is T.

(a) Reference frame (b) Current frame with MV field

(c) 2D MV histogram (d) Thresholded 2D MV
histogram

Figure 3.16: An example of object tracking camera motion estimation by the
proposed method

3.4 Evaluations and Comparisons

For evaluation, the proposed method is run on the MATLAB with an Intel Core

i7-4750HQ Processor at 2 GHz. We use various video sequences from websites

[75–78]. Table 3.2 shows a list of video sequences and their sources that are

used for evaluating the proposed method. There are 25 video sequences from

several categories (e.g. sport, video games, movie, and general videos). To make
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ground truths, we manually annotate the camera motions at the middle of the two

consecutive video frames.

Table 3.2: Video sequences and their source for evaluations

Sources Video sequences

[75]

big buck bunny, coastguard, DOTA2,
elephants dream, EuroTruckSimulator2,
park joy, parkrun, shields, soccer, station2,
STARCRAFT, stockholm, tennis,
tractor, vidyo1, vidyo3, vidyo4, and washdc

[76] Helicoppter Flight

[77]
Bosphorus, Jockey, ReadySetGo,
ShakeNDry, and YachtRide

[78] stefan and desert

3.4.1 Evaluation on Camera Motion Extraction

We create 2,000 frames of testing videos for each camera motion using the videos

in Table 3.2. They are stationary, panning, tilting, diagonal panning, tracking,

and scene change video sequences. Therefore, there are totally 14,000 frames.

From experiments, we found that the proposed method never classify actual

panning, tilting, diagonal panning, and zooming camera motions as non-actual

panning, tilting, diagonal panning, and zooming camera motions. For example,

PL as PR, TU as TD, ZI as ZO, and D (PL+TU) as D (PR+TU). Thus, we

build the confusion matrix as shown in Table 3.3 which The rows of the confusion

matrix correspond to the ground truth while the columns of the confusion matrix

correspond to the estimation results. From the confusion matrix, we compute

accuracy (ACC), sensitivity (SEN), precision (PRE), specificity (SPE), and F1

score (F1), which are defined as:

ACC =
TP + TN

TP + TN + FP + FN
(3.7)

SEN =
TP

TP + FN
(3.8)

PRE =
TP

TP + FP
(3.9)

SPE =
TN

TN + FP
(3.10)
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F1 =
2TP

2TP + FP + FN
(3.11)

where TP, that is, true positive, means the number of correct classifications of

the true camera motions, TN, true negative, indicates the number of correct

classifications of the non-true camera motions, FP, false positive, denotes the

number of incorrect classifications of the true camera motions, and finally FN,

false negative, means the number of incorrect classifications of the non-true camera

motions.

Table 3.3: Classification results of all camera motions by the proposed methods

Ground
truth

Proposed method
S PL&PR TU&TD D ZI&ZO T SC

S 1995 3 2 0 0 0 0
PL&PR 59 1848 0 79 10 3 1
TU&TD 60 0 1881 15 29 15 0
D 4 74 26 1732 144 2 18
ZI&ZO 24 170 53 198 1414 13 128
T 0 215 2 69 25 1687 2
SC 0 2 2 6 0 8 1982
ACC 98.9 95.6 98.5 95.5 94.3 97.5 98.8
SEN 99.8 92.4 94.1 86.6 70.7 84.4 99.1
PRE 93.1 79.9 95.7 82.5 87.2 97.6 93.0
SPE 98.8 96.1 99.3 96.9 98.3 99.7 98.8
F1 96.3 85.7 94.9 84.5 78.1 90.5 96.0

From Table 3.3, the proposed method has ACC and SPE performance scores more

than 94.3% for all camera motions. It means “In overall, all camera motions can

be classified by the proposed method correctly”. The proposed method has the

PRE score in PL&PR lower than the PRE score in TU&TD because of T camera

motions. Since most of tracking video sequences are performed by PL and PR

camera motions, the misclassification of T camera motions are PL and PR camera

motions. The proposed method also has low PRE scores for diagonal (82.5%) and

zooming (87.2%) camera motions. Since both D and zooming (i.e. ZI and ZO)

with D camera motions are similar to each other, they usually are misunderstood

easily. In F1 score, the proposed method has the score 78.1% for zooming camera

motions. Following the confusion matrix, the proposed method misunderstands

the zooming camera motions as panning, tilting, diagonal panning, and scene

change camera motions. All the misclassifications are caused by the involvement

of zooming operations such as ZI+PL and ZI+D.
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We evaluate the performance in zooming camera motion by generating the

confusion matrix of all zooming camera motions (Table 3.4). They are regular

zooming camera motions and the combination of zooming camera motions. We

also merge all zooming with panning, tilting, and diagonal panning into Z+PL/PR,

Z+TU/TD, and Z+D respectively because there is no misclassification between

the two of them in the experiments. As mentioned in Figure 3.5, if the speed

of integrating camera motions (i.e. panning, tilting, and diagonal) are extremely

fast, the proposed method considers it as the integrating camera motions instead

of zooming. Moreover, the zooming camera motions are wrongly classified as SC.

There is a sequence from video “tractor” that is ZI with PL and T camera motions.

Since the proposed method cannot recognize the zooming pattern in Step D, this

sequence is considered as SC.

Table 3.4: Classification results of all zooming camera motions by the proposed
method

Ground
truth

Proposed method
Z Z+PL/PR Z+TU/TD Z+D Other

Z 438 10 12 3 37
Z+PL/PR 12 167 6 17 298
Z+TU/TD 11 4 394 38 53
Z+D 4 29 22 247 198
ACC 95.6 81.2 92.7 84.5 -
SEN 87.6 33.4 78.8 49.4 -
PRE 94.2 79.5 90.8 81.0 -
SPE 98.2 97.1 97.3 96.1 -
F1 90.8 47.0 84.4 61.4 -

3.4.2 Comparisons of Camera Motion Extraction in

Several Methods

We compare the performances with parametric based approach [41, 79, 80] and

non-parametric based approaches [1, 2, 47, 81]. Tables 3.5 and 3.6 show lists of all

camera motions that can be detected by each method. There are two categories

of the camera motions: 1) single camera motions and 2) multiple camera motions.

For the single camera motions, S, PL, PR, TU, TD, ZI, ZO, T, and SC camera

motions are in Table 3.5. For the multiple camera motions, D, all ZI and ZO

camera motions with PL, PR, TU, TD, and D camera motions are in Table 3.6.

Note that we group both ZI and ZO camera motions as the same category, which
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is named “zooming (Z)” camera motion because all methods never consider ZI as

ZO camera motion, and never consider ZO as ZI camera motion.

Table 3.5: Lists of single camera motions that can be detected by each method

Methods
Single camera motion

S PL PR TU TD ZI ZO T SC
Abdollahian [79] 2 2

Weng [41] 2 2

Narayanan [80]
Duan [47] 1

Hasan [1]
Okade [2] 2 2

Derue [81]
Proposed method

Table 3.6: Lists of multiple camera motions that can be detected by each method

Methods
Multiple camera motions

D Z+PL Z+PR Z+TU Z+TD Z+D
Abdollahian [79]
Weng [41]
Narayanan [80]
Duan [47]
Hasan [1]
Okade [2]
Derue [81]
Proposed method

From the features tables, most of all methods can classify S, PL, PR, TU, TD,

ZI, and ZO camera motionss. The method [79] is an exceptional case because

it uses horizontal and vertical motion parameters to detect such blur and shaky

video frames instead of panning and tilting camera motions. Since the standard

deviation in MV orientation is used by the methods [2, 41, 79], ZI and ZO camera

motions can be detected but ZI and ZO cannot be distinguished. Only the

proposed method and Hasan’s method can detect T and SC camera motions.

Although Duan’s method can detect SC camera motions, they are considered as

errors in motion estimation rather than the camera motions. Both Hasan’s method

[1] and Derue’s method [81] have the similar approach the MV field is divided into

3×3 sub-region equally. Since the proposed method uses 2D MV histogram instead

1[47] considers as errors in MV field rather than the camera motions.
2[2, 41, 79] consider both ZI and ZO as the same class, zooming camera motion.



Chapter 3 Camera Motions Extraction Using 2D Motion Vector Histogram 49

of 1D MV histogram, the combination of two camera motions (e.g. D, PL+PR,

ZI+PL) can be detected.

For comparisons, we re-implement three recent existing methods [1, 2, 81] by

following their instructions since they did not provide MATLAB source code files.

They also use the MV magnitude and MV orientation histograms to classify the

camera motions as same as the proposed method. Therefore, we use the same

test videos in the previous section. However, we exclude the SC video sequences

because there is no exact instruction to describe the SC camera motion in the

existing methods.

Table 3.7 shows the comparative performance of F1 score in six camera motions.

From the table, all methods succeed to estimate the S camera motions from the

test videos. The proposed method has F1 scores in PL&PR and TU&TD higher

than the existing methods because they cannot detect D camera motions. Since

all existing methods cannot detect the combination of zooming with panning and

zooming with tilting, all existing methods have low F1 score in ZI&ZO. However,

the existing method [2] has the F1 score in ZI&ZO higher than the existing

methods [1, 81] because some combination of zooming camera motions are detected

as zooming camera motion correctly by using standard derivation. For T camera

motions, the proposed method performs the classification better than the existing

method [1].

Table 3.7: Comparison in F1 scores by using stationary, panning, tilting,
zooming, diagonal, and tracking video sequences

Methods
F1 scores for each class

S PL&PR TU&TD ZI&ZO D T
Hasan [1] 95.4 61.1 65.9 34.2 0.0 83.1
Okade [2] 97.4 56.9 62.7 59.9 0.0 0.0
Derue [81] 95.8 52.0 61.6 33.2 0.0 0.0
Proposed 96.3 85.8 94.9 78.1 84.6 90.7

3.4.3 Computational Evaluation

Figure 3.17 shows the computational time of the video sequence “Table tennis”

(Figure 3.13(a)). This video has a resolution of 352×240 pixels. There are totally

330 MVs using ARPS block of size 16×16 pixels. The video contains a series of

camera motions: S camera motion from frame numbers 1 to 25, ZO camera motion
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from frame numbers 26 to 88, SC camera motion at frame number 89, S camera

motion from frame numbers 90 to 147, and SC camera motion at frame number

148. By following the steps of the proposed method, the ARPS motion estimation

uses times from 0.05 to 0.15 seconds to obtain one MV field (Figure 3.17(a)). From

the MV field, the proposed method consumes 0.005 seconds in order to detect the

S and SC camera motions, while it consumes 0.010 seconds in order to detect the

ZO camera motion (Figure 3.17(b)). It takes longer 0.005 seconds compared with

S, SC camera motions for distinguishing between ZI and ZO camera motions from

four sub-regions of the MV field. In summary, the whole system uses between 0.05

and 0.10 seconds per frame to identify the camera motions (Figure 3.17(c)).

Figure 3.18 shows the computational time of the high definition video sequence,

1920×1080 pixels, namely “Station2” (Figure 3.15(a)). There are totally 1,296

MVs using ARPS block of size 40×40 pixels. The video sequences are ZO+TD

camera motion from frame numbers 1 to 243, TD camera motion from frame

numbers 244 to 267, and S camera motion from frame numbers 268 to 312. By

increasing the video resolution, the ARPS motion estimation uses a longer time

from 0.05-0.15 seconds to 0.4-0.8 seconds to obtain an MV field (Figure 3.18(a)).

The proposed method identifies the camera motions with between 0.04 and 0.08

seconds per frame (Figure 3.18(b)). Totally, the whole system uses within 0.9

seconds per frame, in order to describe the camera motion (Figure 3.18(c)).

3.5 Conclusions

In this chapter, we propose an original technique for classifying several camera

motions in several videos. First of all, we obtain series of MV fields by applying the

existing block based motion estimation, which is called “ARPS”, to an input video.

Then, we generate the 2D MV histogram in the polar coordinates system that each

histogram peak refers to MV magnitude m and MV orientation θ simultaneously.

By analyzing the 2D MV histogram, we can detect a variety of camera motions that

include S, PL, PR, TU, TD, ZI, ZO, T, and SC camera motions. Moreover, the

proposed method can also detect a combination of these various camera motions,

such as ZI+PL camera motions and PL+TU camera motions. We also utilize

MV fields to separate between diverging MV fields (i.e. ZI camera motion) and

converging MV fields (i.e. ZO camera motion). In this manner, the proposed

method uses both MV field and 2D MV histogram to recognize all mentioned
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(a) ARPS process time

(b) Proposed method process time

(c) Total process time

Figure 3.17: The computational time in video “Table tennis”

camera motions. Finally, our experiments show that the proposed method is

computationally efficient. The proposed method requires only 1/10 of the time

necessary for the MV estimation by ARPS. The proposed method can achieve a

processing time of 5-10 millisecond per frame for a low-resolution video sequence

(e.g. 352×240 pixels), and 40-80 millisecond for a high-resolution video sequence

(e.g. 1920×1080 pixels). In the evaluation, we found that 3 camera motions

combination cannot be recognized by the proposed method. As a future work, we
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(a) ARPS process time

(b) Proposed method process time

(c) Total process time

Figure 3.18: The computational time in video “Station2”

are interested in classifying more than two camera motions.



Chapter 4

Automatic Retrieval of Attractive

Moments in Sport Videos

4.1 Introduction

We are interested in searching for attractive scenes in sports videos. From several

studies, the motion is one of the visual features that respond to an amount of

human attention in videos [82]. The attractiveness in videos is simply measured

by using MV magnitudes as motion activity. It is similar to existing works [18,

20, 83] that the motion activity is used for synthesizing human emotional space

“arousal-valence” in order to find highlight videos.

In work [29], a framework of human attention model is presented to extract the

attractive scenes using visual and audio features. Keyframes are extracted from

entire sport videos using visual and contextual features, presented by Shih et al.

[30]. Shih includes a game score in order to improve the determination of attractive

moment, when the game score is changed. However, we realize that the attractive

moment should happen when the game score is going to be changed rather than

after the game score is changed. Therefore, we are motivated to propose a new

video analysis method, which is more human perception.

In the direction of game theory, there are several models that examine the

attractiveness in game progress [64, 65, 67, 68]. In past decade, Iida et al. had

presented a logistic model that examines the attractiveness in discontinuous games

such as Chess and Go [64, 67]. They concerned on the game information by

53
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using game positions in a search tree. Recently, a mathematical model of game

progress, which is inspired by the logistic model, was presented by Sutiono et al.

[65, 68] based on the concept of uncertainty in game outcome. Sutiono’s model

not only examines the attractiveness in the discontinuous games but also examine

the attractiveness in continuous games such as soccer, basketball, and volleyball.

They construct a realistic game progress information in non-linear function that

consists of two statistical information: 1) the number of score attempting or time to

achieve the score, and 2) the number of scores. Then, they apply the mathematical

operation “second derivative” to the game progress information to measure its

acceleration or speed. The acceleration of the game progress information is similar

to the acceleration in the second Newton’s law [69]. They call the acceleration of

the game progress information “game refinement value”. This value relates to

emotional impacts in human minds. Sutiono et al. also mentioned that

• The game progress information in linear functions is less attractiveness in

game because the game outcome can be predicted easily.

• The game progress information in non-linear functions is more attractiveness

in game because it is difficult to predict the game outcome.

It can be described by the mathematical operation “second derivative”. The

game progress information in linear function always has the acceleration equal

to zero, while the game progress information in non-linear function always has

the acceleration greater than zero. It means that slow speed in game progress

information (i.e. low game refinement value) means the game information is hardly

changed and its game outcome can be predicted easily. In contrast, high speed

in game progress information (i.e. high game refinement value) means the game

information is changed easily and its game outcome cannot be predicted easily.

Therefore, They construct the realistic game progress information in non-linear

function.

A mathematical model using probabilistic to find the attractiveness in soccer

games was presented by Vecer [12]. This model is similar to [65, 68] that use

statistical information. However, Vecer’s model uses only game scores and time.

Then, the winning, losing, and draw probabilities are computed. To find the

attractive moments, changing in each probabilistic value is computed. If the

probabilistic value is largely changed, it expects to be the attractive moments.
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In contrast, it expects to be non-attractive moments if the probabilistic value has

no changing or less changing.

In this chapter, we extend idea in Chapter 3 to find the attractive moments from

the entire videos automatically using the camera motions. A model of the response

of attractiveness was designed by using the camera motions in order to estimate

the response curve of attractiveness. From the curve, the attractive moments can

be extracted from the input video.

4.2 Methodology

Figure 4.1 presents the extended framework of the proposed method in Chapter 3.

The proposed method consists of three main parts. First, we prepare the input

data that are generated by the estimated camera motions in Chapter 3. We use the

mathematical operation “convolution” [84] to compute response of attractiveness.

Second, the response of attractiveness is used to select keyframes, which represent

potentially attractive moments, from the video. Third, we select keyframes from

the response curve and use them to generate a short video as an application.

Figure 4.1: Extended framework of the proposed method

Refer to three kinds of uncertainty [10] and the three masters model [62], the

master of playing and the uncertainty in information focus on the game progress.
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They investigate the game progress to find the attractive moments, which the

game information is uncertainty (i.e. unpredictable). By using the statistical

information, the attractive moments are expected by changing in information (e.g.

game scores and game results) during gameplay.

In video domains, information in sport games is recorded in the videos by the

video makers whose have expert skills, especially in large official games. Changing

in video information is more complex than changing in the statistical game

information. Each video information contains several states or moments of game

information. If we mention the uncertainty in information, the attractive moments

in the video are expected by unusual moments during gameplay. The unusual

moments are represented in a situation that cannot be occurred or be predicted

easily. For examples, 1) viewers predict that a soccer player has an opportunity to

make a score but they cannot predict that the referee comes to break the game due

to a foul, and 2) no one cannot predict that stealing the ball from opponent players

becomes a foul. Thus, we give the definition of the attractive moments in sport

videos “The unusual behavioral moments that make a changing in game states

and it is hard to predict their occurrence times”. The camera motions, which are

performed by the video makers, can guide the attractive moments potentially.

4.2.1 Response of Attractiveness Model

To generate the response of attractiveness, we use the mathematical operation

“convolution” [84]. Convolution is the mathematical operation which uses two

input functions to create the third function as the output. The convolution

mathematical expression is expressed in Eq. (4.1).
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(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ (4.1)

where f ∗ g denotes the convolution result between functions f and g.

For the two input functions, the first function F (n) is the estimated camera motion

in Chapter 3. We simply create the binary function which has values between 0

and 1. Note that F (n) = 1 represents the n-th video frame that has the interested

camera motion, while F (n) = 0 represents the n-th video frame that has the

non-interested camera motions. As mentioned in the previous chapter, “Guironnet

think that camera motion carries important information on video content” and

“zooming camera motions make the viewers pay attention more than the other

camera motions”. We hypothesize that zooming camera motions have the most

potential to retrieve the attractive moments from the video compare with the other

camera motions. Thus, we describe the first function F (n) by Eq. (4.2).

F (n) =

1 if C(n− 1, n) is zoom-in or zoom-out camera motion

0 otherwise
(4.2)

where F (n) is the first function value of the camera motion at n-th video frame

and C(n− 1, n) is the camera motion estimation result from Chapter 3, which is

estimated by using current frame n and its reference video frame n−1 as described

in [85].

For the second function, we use the mean filter functions. Two famous adjustable

mean filter functions “Kaiser filter” [86] and “Gaussian filter” [87] are included for

this experiments. Eqs. (4.3) and (4.4) show the mathematical expression of both

Kaiser filter and Gaussian filter respectively.

K(n) =


I0

(
β

√
1−(n−(N/2)

N/2 )
2

)
I0(β)

if 0 ≤ n ≤ N

0 otherwise

(4.3)

where K(n) is a value in the Kaiser filter, I0 is the zero-th order modified Bassel

function of the first kind, N is the length of the filter, and β is the shape parameter.
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G(n) =

e
− 1

2(α n
(N−1)/2)

2

if 0 ≤ n ≤ N

0 otherwise
(4.4)

where G(n) is a value in the Gaussian filter, N is the length of the filter, and α is

the shape parameter.

From the mathematical expression, the two mean filters are illustrated in Figure 4.2

as an example. We use the convolution because the input data may have

Figure 4.2: Mean filters with length N = 150 and shape parameter α = β = 5

fluctuating values which are caused by video compression and video noises. When

we generate the input function from the estimated camera motions, there are

isolate ‘1’ value in among of ‘0’ values and isolate ‘0’ value in among of ‘1’ values. In

mathematical idea, doing the convolution with the mean filters is the good choice

to tackle these errors. Figure 4.3 shows a visual explanation of the convolution

operation. We can simply explain that the convolution operation is computed by

finding the overlapping area between the two input functions (i.e. camera motions

and mean filter). When computing the convolution at video frame t, it finds the

overlapping area the first function values from video frames t−(N/2) to t+(N/2).

However, there is a problem in computing the convolution. Refer to our framework

Figure 4.3: Visual explanation of the convolution operation
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in Figure 4.1, we already know the camera motion until video frame t. Therefore,

we cannot find the overlapping area from video frames t+ 1 to t+ (N/2). In order

to solve the problem, we decide to cut the mean filter into a half to consider the

overlapping area between video frames t+ 1 to t+ (N/2) equal to zero. Eqs. (4.5)

and (4.6) show the modified of the Kaiser filter and Gaussian filter respectively.

K ′(n) =


I0

(
β

√
1−(n−(N/2)

N/2 )
2

)
I0(β)

if 0 ≤ n ≤ N/2

0 otherwise

(4.5)

where K(n) is a value in the Kaiser filter, I0 is the zero-th order modified Bassel

function of the first kind, N is the length of the filter, and β is the shape parameter.

G′(n) =

e
− 1

2(α n
(N−1)/2)

2

if 0 ≤ n ≤ N/2

0 otherwise
(4.6)

where G(n) is a value in the Gaussian filter, N is the length of the filter, and α is

the shape parameter.

After we compute the convolution between the function value of the camera

motions and the mean filter, we get the third function which is the smoothen

version of the first function.

F̃ (n) = F (n) ∗M(N, β) (4.7)

where F̃ (n) is the convolution result between the video signal F (n) and the mean

filter M(N, β) (i.e. Kaiser filter K ′(n) and Gaussian filter G′(n)) with length N

and parameter shape β.

Next, we normalize the convolution result following Eq. (4.8) in order to scale the

value range from 0 to 1 as same as the original input data. We call the normalized

convolution result “response of attractiveness”. In each video frame, the response

value is related to the attractive moments via the zooming camera motions.

F ′(n) =
F̃ (n)

max(F̃ (n))
(4.8)

where F ′(n) is the normalized convolution result, and F̃ (n) is the convolution

result.
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4.2.2 Keyframes Selection and Shortening Video

Generation

To extract keyframes from the response curve of attractiveness, we find the local

maxima points in the third function (i.e. the response of attractiveness). Since

our experiments are done by using MATLAB, we find the local maxima points by

using MATLAB command “findpeaks” [88]. Each local maxima point contains the

video frame index that is used to retrieve the video frame (i.e. keyframe), which

has the potentially attractive moment.

From keyframes, we generate a short video version of the original video. First,

we check the video frame index of keyframes and its next keyframe. If they have

the close distance, we group them together to represent as a video clip. After we

group all keyframes, we check the length of video clip. If they have the length

shorter than two seconds, we exclude this video clip from the short video because

it is difficult to watch in the real situation.

4.3 Results and Discussion

We use video sources of soccer matches from the Internet [89]. They are from

UEFA Champion League 2015, UEFA Champion League 2016, and FIFA World

Cup 2014. We use only video frames that are parts of the in playing game.

4.3.1 Response Curves of Attractiveness Over Video

Frames

Figure 4.4 shows two response curves which are generated by using a video match

in the first half of UEFA Champion League 2015. The two curves are: 1) the

response curve that is generated by Kaiser filter and 2) the response curve that is

generated by Gaussian filter. In the graph, x-axis represents the n-th minutes of

video while the y-axis represents the response values which is Eq. (4.8). In this

test video, the match starts before the 1st minute of the video and ends at before

46th minute of the video. We also show timestamps of in-game moments including

of score attempting, goal, foul, card, corner kicks, and free kick. Note that these
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moments are recorded by the official website [90]. In this video, there are 11 score

attempting, 1 goal, 16 fouls, 2 cards, 6 corner kicks, and 1 free kick moments.

From Figure 4.4, we see that there are response of attractiveness not only at the

timestamps but also out of the timestamps. It means that not only the moments

at the timestamps, which are recorded by the official league, are potentially

attractive but also there are some moments that are attractive. Comparing all

timestamps of in-game moments, all score attempting moments have the response

of attractiveness. The goal moment also has the response of attractiveness because

it is one of the score attempting moments. There are 4 out of 16 fouls that do

not have the response of attractiveness because of how serious in foul effect. For

example, the first foul at the 1st minute is made by a player who tries to steal the

ball from the opponent player, while the second foul at the 6th minute is made by

a player accidentally slides to the opponent player’s leg. All 2 card moments at

10th and 41st minutes have the response of attractiveness since they are serious in

foul effect. For corner kick, 2 out of 6 moments at 29th and 35th minutes do not

have the response of attractiveness because players have no opportunity to make a

score from the corner kicks. Since players have a chance to make score attempting

from the corner kick at the 16th minute, the response value of attractiveness is

high. Comparing the two response curves, both curves have similar peak shape in

the response of attractiveness. Refer to Figure 4.2, we use the mean filters with

the same length and the same shape parameter. We have a smooth shape of mean

filter (i.e. Kaiser filter) and a sharp shape of mean filter (i.e. Gaussian filter). In

results, the response curves that are generated by Gaussian filter are steeper than

the response curves that are generated by Kaiser filter.
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4.3.2 Keyframes Selection and Local Maxima Points

In this section, we discuss the two response curves in Figure 4.4. From the two

curves, we found that both curves have the same indexes of local maxima points

and the same total number of local maxima points. From the video test, we show

three examples of attractive moments including of score attempting, foul, and a

player claim to the referee’s judgment moments as shown in Figures 4.5 to 4.7.

The video sequence from frame number 35,350 to 37,050 is a sequence of score

attempting (Figure 4.5). In this sequence, the curves have 10 local maxima points

(Figure 4.5(a)). From the curves, 10 keyframes are extracted from the video

(Figure 4.5(b)). From each keyframe to the next keyframe, they are proceeded by

zooming camera motions. At frame number 35,433, the zoom-out camera motion

is used until the goal mouth is appeared at the frame number 35,514. Then the

zoom-in camera motion is used to track the score attempting start from frame

number until this moment is ending. Figure 4.6 shows a foul video sequence from

frame number 65,000 to 65,200. There are six local maxima points in the response

curve (Figure 4.6(a)). The keyframes in Figure 4.6(b) show that the foul moment

starts at frame number 65,045. The camera utilizes slightly zooming with panning

at the same time in order to follow the two players until one of the players fell

down because of sliding as shown in frame number 65,106. From frame number

65,116, the camera operates zoom quickly in order to focus on the player who did

the sliding. Figure 4.7 shows an argument between the player and referee from

frame number 66,000 to 66,300. From Figure 4.7(a), there are six local maxima

points in the response curve. Thus, the proposed method extracts six keyframes

from the video as shown on Figure 4.7(b). At this moment, a player walks toward

the referee because the player does not satisfy with the referee’s judgment. The

camera slightly operates zooming to the player starting from frame number 66,062

until the player can discuss with the referee at frame number 66,213.

4.3.3 Application in Video Shortening

We use keyframes in order to shorten the original video as an application. As

mentioned in the previous section, the keyframes are used as video frame index

in order to generate a video clip. If the two keyframes are close to each other,
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(a) Response of attractiveness progress over video frames

(b) Corresponding keyframes

Figure 4.5: An example of score attempting moment by the proposed method

we group them in order to represent as a video clip. The first keyframe and the

lastest keyframe are set as the starting frame and ending frames of the video clip.

We use three full matches, totally six videos, from UEFA Champion League and

FIFA World Cup. Each video contains the length of 45 minutes or a half game.

After we observe the videos, we said that the toughness of the game is sorted by:

1st) UEFA Champion League 2016, 2nd) UEFA Champion League 2015, and 3rd)

FIFA World Cup 2014. After we shorten these videos, Table 4.1 shows comparisons

between the original video and shorten video in soccer videos. From all short

videos, we got different video length depending on the toughness of the game.

As we expect that UEFA Champion League 2015 have the longest shorten video

length because it has the highest toughness of game. In the other word, there are

several attractive moments if the matches have tough games.
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(a) Response of attractiveness progress over video frames

(b) Corresponding keyframes

Figure 4.6: An example of foul moment by the proposed method

(a) Response of attractiveness progress over video frames

(b) Corresponding keyframes

Figure 4.7: An example of the player claim to the referee’s judgment moment
by the proposed method
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Table 4.1: Comparisons between original and shorten videos in soccer matches

League titles n-th half
Original

(mins:sec)
Shorten

(mins:sec)

UEFA 2015
1st half 45:51 11:52
2nd half 52:51 12:41

UEFA 2016
1st half 46:27 15:04
2nd half 48:47 17:04

FIFA World cup
2014

1st half 47:10 6:50
2nd half 48:03 8:04

Total 289:09 71:35

4.4 Comparisons and Evaluations

4.4.1 Comparisons of Shorten Videos in Several Camera

Motions

We show that why zooming camera motions are suitable to retrieve the attractive

moments. First, we modify the first function in Eq. (4.2) for generating two

additional shorten videos. First, the shorten video that contains stationary camera

motions. Second, the shorten video that contains both panning and tilting camera

motions. We use the video of the first half of the UEFA Champion League 2015 for

this comparison. For each shorten video, the shorten video in stationary camera

motions contains the length of 9 and a half minutes, the shorten video in panning

and tilting camera motions contain contains the length of 27 minutes, and the

shorten video in zooming camera motions contains the length of 11 minutes and

52 seconds. Figures 4.8 to 4.10 show thumbnail previews of three shorten videos of

which are generated by Thumbnail me 3.0 [91]. In the thumbnail previews, there

are 52 video frames which are selected in the same among of time.

In Figure 4.8, several far distances of viewpoints are in this video. Normally,

the video makers did not move the cameras for capturing overall information. In

some situations, the video makers hold the cameras after operating panning or

zooming camera motions to broadcast results of each action. For example, goal

keeper’s face expression at time 0:50, a player is injured by sliding at time 1:00,

score attempting at time 2:30, showing audiences’ face expression at time 5:50,

and players discuss with the referee at time 7:30.
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The shorten video of panning and tilting camera motions (Figure 4.9) mainly

shows about ball passing and ball dribbling because they are common behaviors

in soccer that players have to bring the ball to the opponent’s goal mouth for

making a score. Thus, this video has the longest length compared with the other

shorten videos. The score attempting moments (e.g. at times 5:02, 8:00, 15:30,

and 23:32) are retrieved easily by using panning and tilting camera motions since

all players have an opportunity to make a score after passing and dribbling the

ball to the goal mouth.

Figure 4.10 shows several soccer moments in both far and close distances of

viewpoints. Several kinds of soccer moments are retrieved by zooming camera

motions. For example, ball is out of the field (e.g. at time 0:13), score attempting

(e.g. at times 0:52, 1:44, 3:02, 10:11), fouls (e.g. at times 3:54, 7:09, and 9:06),

and players discuss with the referee at time 8:53.

Table 4.2 summarizes both original and shorten videos in the UEFA Champion

League 2015. In the original video, there are 214 video shots including of 24 score

attempting, 4 goal, 12 corner kick, 32 foul, 3 card, 5 free kick, 6 player switching,

and 128 nothing moments. In overall, the shortened video, which is made by

panning and tilting camera motions, has the longest length compared with the

other shorten videos (i.e. stationary and zooming camera motions).

In score attempting, the shorten videos of panning and tilting, and zooming camera

motions can retrieve these moments more than the shortened video of stationary

camera motions. Since the shortened video of stationary camera motion mainly

shows results of each action as mentioned at above, several score attempting

moments are not included in this shorten video.

Zooming camera motion has more potential to retrieve the goal moments than the

other camera motions because video makers have to confirm that “is it a success

in score attempting?”. while the stationary camera motion may wait for results

of the score attempting after operating zooming and panning camera motions.

Therefore, the zooming camera motions have more opportunity to find the goal

moments.
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Figure 4.8: Thumbnail previews of shorten video which is generated by
stationary camera motions
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Figure 4.9: Thumbnail previews of shorten video which is generated by panning
and tilting camera motions
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Figure 4.10: Thumbnail previews of shorten video which is generated by
zooming camera motions
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From corner kick moments, all players have opportunities to make a score. They

can make a score from the corner or make passing the ball to the players whose

are close to the goal mouth in order to make a score. In shorten videos, corner

kick moments are included by the zooming camera motion as well as the score

attempting moments. Several corner kick moments are not available in stationary

and panning camera motion because the camera is already in the good position

for capturing the score attempting moments. The video makers may not move the

camera for waiting the score attempting moments. Thus, zooming camera motions

can retrieve the corner kick moments as well as score attempting moments.

Foul and card moments are included in the shorten video depending on how serious

of foul effects as mentioned at the previous section. The video makers operate

several camera operations in order to show how serious in fouls. Therefore, all

shorten videos have the number of fouls video shots. Moreover, there is no card

moment in the panning and tilting camera motion since the camera is at the good

position to capture the referee.

The free kick is different from the corner kick that player is allowed to kick off

the ball at foul positions, which can be occurred anywhere. Only shorten video

of stationary camera motion has one free kick but there is no such opportunity to

make a score. At this moment, it is different from the other moments that any

situation can happen after the free kick. If players have an opportunity to make

a score from the free kicks, the free kicks may be included in the shortened video.

Player switchings are available in the two shortened videos which made by panning

and tilting, and zooming camera motions. Since the video makers operate zooming

camera motion to the panel, they can confirm that which player is switched by

whom. Panning and tilting camera motions also use to follow the player who is

going to be switched. Therefore, these two kinds of camera motions are good to

retrieve player switching moments.

Finally, the remaining 128 video shots that have no moments such score

attempting, goal, corner, etc. They usually contain ball passing and ball dribbling.

With these video shots, we can decide that which camera motion has the potential

to retrieve the attractive moments in soccer videos. From the Table 4.2, we decide

that zooming camera motion has potential to retrieve the attractive moments

because the shorten videos in stationary, and panning and tilting camera motions

contain nothing moments more than a half of the video length.
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Table 4.2: Comparison between the original video and three shortened videos
which are made by each camera motion

Moments
Number of moments
in the original video

Number of moments in shorten videos
which are generated by

Stationary
Panning &

tilting
Zooming

Score attempting 24 7 20 18
Goal 4 2 2 3
Corner kick 12 3 1 7
Foul 32 10 8 8
Card 3 1 0 1
Free kick 5 1 0 0
Player switching 6 3 5 6
Nothing 128 86 125 49
Total 214 113 161 92

4.4.2 Comparisons of Attractive Moments Retrieval in

Several Methods

Table 4.3 shows a comparison in the retrieval of attractive moments between

the proposed method and existing methods. There are two kinds of models: 1)

statistical models (i.e. models in works [12, 68]) and 2) video analysis models (i.e.

models in works [4, 92, 93] and the proposed method).

Table 4.3: Comparison in retrieval of attractive moments

Methods Input Pre processing
Attractive moments
retrieval approaches

[12, 68]
Statistical
game information

No Mathematical approach

[4]
Sport videos
by professional
video makers

Motion and
sound
measurement

Mathematical approach

[92]
Home videos
by non-professional
video makers

Parametic
camera motion
estimation

Counting the
number of video frames

[93]
Home videos
by non-professional
video makers

Parametic
camera motion
esitmation

Rule based

Proposed
method

Sport videos
by professional
video makers

Non-parametic
camera motion
estimation

Mathematical approach
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In the two mathematical models [12, 68], they have the similar idea with the

proposed but we use the camera motion instead of the game score. The model

in [68] uses the number of game scores and the number of score attempting while

the model in [12] uses the number of game scores and time to find the attractive

moments. Both models retrieve the attractive moments in sport games or sport

videos where the game score is changed because they expect that changing in game

score also changes the game outcome. The speed of the game progress information

[68] represents the attractiveness in game while changing in probabilistic values

[12] represents the attractiveness in game. The proposed method not only expects

the changing in game score to be the attractive moments but also expects the other

situations to be the attractive moments (e.g. score attempting) via the camera

motions. Since the videos are recorded by professional video makers, they know

that what kind of camera motion should be operated for each situation.

Figure 4.11 shows a timeline in soccer moments when a game score is successfully

made. The sequence of this moment usually proceeds with dribbling the ball

to the goal mouth, kicking the ball to make a score, the ball is in the goal

mouth, and updating the game score. In the two mathematical models, the

attractive moment can be recognized after the 4th time period. The proposed

method recognizes the attractive moments at between the 1st and 2nd periods,

and between the 2nd and 3rd periods. Since the video makers realize the score

attempting moment, they operate the camera motions near the 2nd period. In

the real situation, the moments at between the 1st and 2nd periods, and between

the 2nd and 3rd periods are more potentially attractive than the moment after

the 4th period because the result at the 3rd period is difficult to predict. Assume

Figure 4.11: Timeline in soccer moments when a game score is successfully made

that if the score is unsuccessfully made (i.e. the 3rd and 4th periods are not in

the timeline), the model in [12] misses this moment because the game score is

not changed. The model in [68] may notice this moment because of the number



Chapter 4 Automatic Retrieval of Attractive Moments in Sport Videos 74

of score attempting but it may not considers as the attractive moments because

the speed of game progress information is decreased. The proposed method still

recognizes the attractive moments near the 2nd period as mentioned above.

Hanjalic’s method [4] is a video analysis to find the attractive moments in sport

videos using motion and sound. We use the same soccer video “UEFA Champion

League 2015” for comparison. To retrieve the attractive moments, the local

maxima points in each response are localized. Figure 4.12 shows the responses

of attractiveness progress in the first half of the UEFA Champion League 2015

for each feature. They consist of zooming camera motion (i.e. the proposed

method), motion, sound, and the combination of motion and sound. From Figure,

most of the response in the motion has peaks at the middle of two peaks of the

response in the zooming camera motion. In other words, there are high responses of

attractiveness in the motion when the camera operates panning and tilting camera

motions. Note that there are no responses of attractiveness in the motion when it

is stationary camera motion. Figure 4.13 shows the attractive moments that are

extracted from the response of attractiveness in the motion. It has the attractive

moments as same as the attractive moments in the panning and tilting camera

motions. However, the attractive moments in the motion mostly contain close-up

viewpoints. Although the motion feature can extract the attractive moments in

close-up viewpoints, it consists of nothing moments as same as the attractive

moments in the panning and tilting camera motions. For sound feature, high

sound energy in the human perspective is more attractive. However, it is difficult

to find the attractive moments using sound feature because the input video mainly

contain the similar energy levels of sound from audiences and there is no sound

from commentators. The response of attractiveness in sound has curves similar

to the straight line. Therefore, the attractive moments cannot be found by using

sound. For the combination of motion and sound, both responses of attractiveness

in motion and sound are combined. However, it has the responses as same as the

motion because of the sound. Therefore, the attractive moments can be extracted

from the motion only.
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Figure 4.13: Attractive moments which are extracted by the response of
attractiveness in the motion

In the other video analysis models [92, 93], they put efforts to find the attractive

moments in home videos, which are made by non-professional video makers, using

zooming camera motions as same as the proposed method. Both existing methods

retrieve the attractive moments in video frames while the proposed method retrieve

the attractive moments in both video frames and a shortened video. The model in

[92] finds the video frame of attractive moments which has patterns of one second

of zoom-in then followed by two seconds of stationary camera motions, while the

model in [93] finds the video frame of attractive moments after operating zooming

camera operations with two conditions. First, a video frame after zoom-in camera

motion must be considered as the attractive moments. Second, a video frame after

zoom-out camera motion with appropriate operational speed is considered as the

attractive moments. For comparison, the proposed method considers both zoom-in

and zoom-out camera motions as same as the model in [93] while the model in

[92] considers only zoom-in camera motions. Moreover, during zooming camera

motions are considered as the attractive moments by the proposed method which

is different from the two existing models that during zooming camera motion are

not considered as the attractive moments. Because of difference in output, the two

existing models select the video frames of the attractive moments after the camera

motions which have more clarity in images while the proposed method retrieves
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the shorten videos of the attractive moments during the camera motions which

contain their story.

4.4.3 Subjective Evaluation

In this subjective evaluation, six volunteer subjects are invited to evaluate the

effectiveness of the proposed method. This evaluation aims to evaluate the

attractiveness of the test videos for the future study. We let the subjects watch

the test videos that all subjects never see the test video before. We use the shorten

videos from UEFA Champion League 2015 as the test videos for this evaluation.

They are the 1st half and 2nd half of the game, totally 22 minutes of video length.

Therefore, this evaluation takes time at least 22 minutes for each volunteer subject.

In steps of the evaluation, first, the subjects watch each video shot in the test

videos as shown in Figure 4.14. Then, they are asked by the questions “Is the n-th

Figure 4.14: A video shot in the test videos with n-th video shot at upper left

video shot attractive or exciting to them or not?” Finally, the subjects will select

video shots inside the test videos that they feel attracting or exciting.

From the evaluation, in the 1st half, the subjects had selected averagely 25 video

shots that they feel attractive and exciting. Most of them are in the score

attempting, goal, and corner kick moments. Note that the subjects feel attractive

to the corner kick moments when there is a score attempting. In the 2nd half,

the subjects had selected averagely 24 video shots that can attract their mind.

It is also similar to the 1st half that most of the selected video shots are in the

moments of score attempting.
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4.5 Conclusions

In this chapter, an extension of work in Chapter 3 is presented as an automatic

retrieval of attractive moments in sport video using camera motions. At first,

we define the attractive moments “The unusual behavioral moments that make

a changing in game states and it is hard to predict their occurrence times”.

We design the mathematical model that the operator “convolution” is used for

analyzing the response of attractiveness via the camera motion. In the comparison

of the three camera motions, zooming camera motion is suitable to retrieve the

attractive moments. Not only changing in game score (i.e. goal) is included in

the attractive moments but the other situations (e.g. score attempting, foul, and

claiming to the referee’s judgment) are also included in the attractive moments.

Selected keyframes, which have the same story or close to each other, are used

for making a shorten video as an application. We had compared the proposed

method with the existing works. From the comparison, our proposed method can

recognize the attractive moments more realistic because of cues in camera motions

that are given by the video makers. We also apply subjective evaluation to the

proposed method in order to evaluate the attractiveness in generated shorten video

for future study. From evaluation results, even the proposed method generates the

shorten video consisting of several kinds of the attractive moments, the subjects

are mainly attracted by the score attempting, goal, and corner kick with score

attempting moments. In future work, we will improve the proposed method to be

able to filter the shortened video and make the better shorten video.



Chapter 5

Conclusions and Future Works

In this chapter, we give the conclusions in this dissertation and answers the

research questions.

5.1 Summary

• Chapter 2: Literature review

In this chapter, we discuss the two research questions that are given in the

Chapter 1. The first question discusses how to extract the camera motions in

the videos. The second question discusses how the attractive moments can be

retrieved by the camera motion. In the way of extracting the camera motions,

non-parametric models (i.e. 1D MV histograms) are popular techniques

to extract the camera motions in the videos. In general, the video frame

is divided into several sub-images equally. Then, the dominant histogram

peak of each sub-image can lead to stationary, panning, tilting, and zooming

camera motion patterns. However, we found that only zooming camera

motion need to analyze by using sub-images because stationary, panning, and

tilting camera motions can be fast classified by the dominant MV histogram

of the entire image.

The human emotional space “arousal-valence” in psychophysiological study

area shows that the motions in picture have a relationship with the affective

impact of viewers. It shows that the arousal is affected by the motions in

picture directly. Then, a paradigm of the arousal-valence space in the videos

is presented by using motion and sound features. By this emotional space,

79
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the attractive moments are retrieved when the video contains the moments

with high motion activity and high sound energy. However, some attractive

moments are not involved because of lack of meaning.

To improve the performance of the retrieval of attractive moments, we

found that camera motion carries important information on video contents.

Especially, zooming camera motions make the viewers pay more attention

when they are watching videos. Since video makers realize an attractiveness

in unusual behavior moments, they operate zooming camera motions in order

to emphasize the information clearly. There is an existing model that find

the attractive moments using the camera motions. Basically, the start frame

non-stationary camera motions

In other study areas, uncertainty in information is the key-factor to measure

the attractiveness in the games. People or the viewers are attracted by the

games because of unpredictable in game results. Because of an action in the

games, the game states are changed. It is similar to the situation that the

video makers operate the camera motion because they realize the attractive

moments. Thus, we hypothesized that the zooming camera motion has the

relationship with the attractive moment.

• Chapter 3: Extracting camera motion using 2D MV histogram

We present an original method to extract the camera motions from the

videos using 2D MV histogram. The 2D MV histogram contains both

MV magnitude and MV orientation information. The proposed method can

extract both single camera motion and combination of two camera motions

from the videos. For the single camera motion, they are stationary, panning,

tilting diagonal panning, zooming, object tracking, and scene change camera

motions. Combination of two camera motions (e.g. zooming with panning,

and zooming with tilting camera motions) can be classified by the proposed

method. Comparing with the existing methods, the proposed method can

extract more types of the camera motions with better performance.

• Chapter 4: Detecting attractive moments in soccer video using

camera motions

The idea in Chapter 3 is extended for an automatic retrieval of attractive

moments in sport videos. We use soccer video for experiments. We design the

mathematical model to find the response of the attractiveness via the camera

motion. Convolution is the operator that can compute the response of the
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attractiveness. From the responding curve, we can retrieve keyframes of the

attractive moments in soccer video. Comparing with the existing methods,

they mainly focus that changing in game score has the attractiveness.

In reality, the other moments (e.g. score attempting, foul, etc) can be

considered as the attractive moments as the proposed method had done.

We also compare the performance of the proposed method by using three

kinds of the camera motion. It shows that zooming camera is suitable to

retrieve the attractive moments in soccer video as the given hypothesis.

5.2 Answer to the Research Questions

• Research question 1: How to design a model that can extract the

camera motions from the video?

From Chapter 3, we develop an original technique to extract the camera

motions from the video using 2D MV histogram instead of 1D MV histogram.

Because of 2D MV histogram, complex patterns in single camera motion (e.g.

object tracking and scene change camera motions) and a combination of two

camera motions (i.e. zooming with panning and zooming with tilting camera

motions) can be recognized. Although zoom-in and zoom-out camera motion

have the same 2D MV histogram, we can solve this limitation by using

the MV fields that are used as the input of the proposed method. Thus,

the proposed method classifies the converging MV field as zoom-out camera

motion and classifies the diverging MV field as zoom-in camera motion.

• Research question 2: How can the attractive moments be retrieved

by the camera motions?

From Chapter 4, we extend the method in Chapter 3 to retrieve the attractive

moments in soccer video automatically. We decide to use stationary,

panning, tilting, and zooming camera motions in order to investigate the

relationship between the camera motions and the attractive moments in

soccer videos. The outcome of this study is presented by: 1) keyframes of

attractive moments in several situations and 2) a shorten video that contains

only the attractive moments.
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5.3 Future Works

• Extracting Camera Motions Using 2D MV Histogram

As shown in the experiments, we found the limitation of the proposed method

that combination of three camera motions (e.g. zooming with panning and

object tracking camera motion) is not successfully classified by the proposed

method. Therefore, this is the first future work of this study in order to

classify the combination of three camera motions. We also consider the usage

of the 2D MV histogram. Currently, we use a fixed threshold value that

comes from iterative experiments. We might improve the proposed method

in two ways: 1) using the 2D MV histogram without thresholding and 2) to

make the proposed method adjust the threshold value automatically.

• Detecting attractive moments in soccer video using camera

motions

We had generated the shorten soccer video that contains the unusual

behavior moments (i.e. the attractive moments). It consists of score

attempting, goal, corner kick, foul, etc. After we evaluate the shorten video

by subjective evaluation, we found that most subjects are attracted by the

score attempting moments. For the shortening video application, we will

improve the performance in order to make a better video based on the human

perspective. Form the experiments, we have already known that zooming

camera motions have the potential to find the attractive moments in the

soccer video. It is very curious that between zoom-in and zoom-out camera

motion which camera motion is more related to the attractive moments.
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