
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
マルチプロセッサのためのリラックスメモリモデルに

基づいたSMTソルバによるプログラム検証

Author(s) Maleehuan, Pattaravut

Citation

Issue Date 2018-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/15532

Rights

Description Supervisor:青木　利晃, 情報科学研究科, 博士

Program Verification for Multiprocessors with

Relaxed Memory Models using an SMT Solver

Pattaravut Maleehuan

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Program Verification for Multiprocessors with

Relaxed Memory Models using an SMT Solver

Pattaravut Maleehuan

Supervisor : Toshiaki Aoki

School of Information Science

Japan Advanced Institute of Science and Technology

September, 2018

Abstract

In modern multiprocessors, the consistency of shared memory would be relaxed to increase the
computing power; hence, the value of a memory location could be observed as different values
at the same time on each execution unit. Note that, term memory model is usually used to
determine the semantics of the memory system. In particular, the memory model that relaxes
the consistency of the shared memory is usually called relaxed memory model. Consequently, an
anomalous result of the concurrent programs could occur on relaxed memory models. Therefore,
relaxed memory model is the primary concern to ensure the program correctness.

For ensuring program correctness, the program property is defined as the invariant of the
concurrent programs. Due to the relaxed memory models, this research provides an abstraction,
called operation structures, of the concurrent programs. The targets of this abstraction are (1)
to be sufficient for program verification, and (2) can describe the essence of assembly programs
to be verified. Consequently, the program verification approach should be introduced to prove
the program property on target relaxed memory model. In particular, this research uses SMT-
based program verification approach to ensure the program correctness automatically.

This thesis shows two program verification methods for relaxed memory models. Mainly, the
methods rely on the SMT-based program verification approach. In both methods, the behav-
ior of program execution and the program property are encoded into a verification condition
represented by a first-order formula; the formula is then used to check every execution satisfies
the program property. The primary difference between the proposed methods is the way to
abstract the behavior of program executions into the verification condition.

In both methods, the program executions are abstracted symbolically. In particular, the
computation of program execution is considered in SMT-based program verification. The first
method uses the bounded loop unwinding technique to abstract the symbolic executions. In
the bounded method, the loop iterations are unwound systematically within a bound. For the
second method, the inductive invariant approach is used instead of loop unwinding. However,
the proposed inductive invariant method has seemed to be sound for partial store ordering
(PSO) and stronger memory models. For SMT-based program verification, the abstraction
of program execution and the program property are encoded regarding the relaxed memory
model into a first-order formula. Primarily, the encoded formula is a decidable formula to be
solved by an SMT solver automatically. Consequently, the program correctness can be ensured
automatically.

In the experiment, an experiment tool was developed, and the Z3 solver is adopted to solve
the first-order formula. As a result, the tool can automatically verify the property of the
abstraction of concurrent programs on a relaxed memory model. In particular, the abstraction
of concurrent programs can represent some essential behaviors of assembly programs. Besides,
the bounded method is an under-approximation approach, while the inductive invariant method
is an over-approximation approach.

In summary, concurrent assembly programs can be abstracted for ensuring the correctness by
our methods. For the bounded method, the program correctness on a relaxed memory model

i

can be ensured if there is no loop. Otherwise, the method can at least disprove the program
property on a relaxed memory model. As for inductive invariant method, the correctness of
concurrent program contains loop can be ensured on partial store ordering (PSO).

Keywords: Concurrent Program Verification, SMT-based Program Verification, Multiproces-
sors, Relaxed Memory Model, and Automated Program Verification.

ii

Acknowledgment

This dissertation could not be completed without supports, comments, and suggestions
from many people. Especially, I would like to express my sincere gratitude to my super-
visor, Prof Toshiaki Aoki, who always give the valuable comments and suggestions on my
research topic. Without his help, its quite hard to imagine how this research can reach
this state. In addition to the contents of my research, its almost 5 years that I studied at
JAIST and there are several advisories to help me to enjoy living here.

Besides, I would like to express mine sincerely to Dr. Yuki Chiba, former Assistance
Professor in our lab, who always help me since I came here until the last day he works
at JAIST. Once I was a new student here, my mathematical skill is not good enough for
this research. Fortunately, Chiba-sensei always correct my mistakes in my research and
advise the right way to express the mathematic expression.

In addition, I thank all members and former members of Aoki-lab who help me to refine
my work and discuss with me to improve the contents of the research and the paper that
I wrote. Although my research topic is quite different from them, their help also helps me
to improve the work in a general way, in which non-specialize researchers can understand.

I also would like to give my special thank to my friends and seniors for their help,
suggestions, and encouragements during living in Japan. I also need to give my thanks
to Thais friends, whose usually help and make me have a great time in Japan.

Finally, I would like to thank my family for supporting and encouraging me all the
time. With out their supports, It’s quite hard to go through obstracle of my life.

iii

Contents

Abstract i

Acknowledgment iii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Memory Models of Multiprocessors . 3
1.3 Program Verification . 5
1.4 Objective . 6
1.5 Thesis Outline . 6

2 Preliminaries 7
2.1 Multiprocessors using Shared Memory . 7

2.1.1 Hardware Optimization . 8
2.1.2 Memory Models . 10

2.2 Assembly Program . 15
2.2.1 Assembly Instructions . 15
2.2.2 Granulity of Assembly Instruction 19

2.3 Modeling Framework . 20
2.3.1 Gharachorloo Framework . 21
2.3.2 Herding Cats Framework . 24

2.4 Program Verification . 26
2.4.1 Program Property . 27
2.4.2 Satisfiability Modulo Theories (SMT) 28

2.5 Symbolic Analysis for SMT-based Program Verification 30
2.5.1 Static Single Assignment (SSA) . 31
2.5.2 Control Flow Analysis . 32
2.5.3 Invariant Analysis . 33

3 Bounded Method for SMT-based Program Verification 36
3.1 Motivation . 36
3.2 Abstractions of Assembly Programs . 38

3.2.1 Assumptions on Assembly Programs 40
3.2.2 Operation Structure . 44

iv

3.2.3 Executions of Operation Structures 51
3.2.4 Semantics of Operation Structures 56

3.3 SMT-based Program Verification . 62
3.3.1 Execution Path . 63
3.3.2 Bounded Loop Unwinding . 64
3.3.3 Encoding Scheme . 72

3.4 Conclusions . 82
3.4.1 Achievements . 83
3.4.2 Limitations . 84

4 Inductive Invariant Method for SMT-based Program Verification 85
4.1 Motivation . 85
4.2 Overview of Inductive Invariant Method 86

4.2.1 Issues for Program Verification . 86
4.2.2 Overview of Method for Relaxed Memory Models 88

4.3 Abstractions for Program Execution . 92
4.3.1 Abstractions of Assembly Programs 93
4.3.2 Execution of Operation Structures 94

4.4 Inductive Invariant Method . 99
4.4.1 Derivation of Programs containing Loop 100
4.4.2 Soundness of Inductive Invariant Method 105

4.5 Conclusions . 117
4.5.1 Contrary to Bounded Method . 118
4.5.2 Achievements . 118
4.5.3 Limitations . 119

5 Experiment and Discussion 120
5.1 Case Study . 120
5.2 Experiment . 126
5.3 Discussion . 129

5.3.1 Encoded Formula . 129
5.3.2 Preciseness . 130
5.3.3 Expressiveness of Assertion Language 131
5.3.4 Expressiveness of Operation Structure 132
5.3.5 Scalability . 139

6 Related Work 143
6.1 Relaxed Memory Models . 143
6.2 Program Verification for Relaxed Memory Models 144
6.3 Symbolic Execution Analysis . 146

v

7 Conclusion 148
7.1 Advantages . 149
7.2 Limitations . 149
7.3 Future Directions . 150

Publication 151

Bibliography 152

vi

List of Figures

1-1 Spinlock implementation in Linux Kernel 2
1-2 Message passing . 3

2-1 Overview of an multiprocessor systems . 8
2-2 Example for bypassing read access . 9
2-3 Conceptual model for sequential consistency model (SC) [Gha95] 10
2-4 Conceptual model for total store ordering (TSO)[Gha95] 12
2-5 Store Buffer (SB) . 12
2-6 Conceptual model for partial store ordering (PSO) [Gha95] 13
2-7 Non-FIFO Buffer . 13
2-8 General model for shared-memory [Gha95] 20
2-9 Aggressive conditions for SC [Gha95]. 23
2-10 Aggressive conditions for TSO+[Gha95]. 24
2-11 An abstraction of message passing . 25
2-12 SC constraints for Herding cats framework 25
2-13 SC constraints in cat language . 26
2-14 TSO constraints in cat language . 26
2-15 Transformation of a sequential program for SMT-based program verification 29
2-16 An example of control flow graph . 32
2-17 A program, and CFG obtained using the inductive invariant approach

[DHKR11] . 33
2-18 A data flow of concurrent programs allowed by POWER 34

3-1 Overview of Bounded SMT-based Verification 37
3-2 Representation of an assembly program . 39
3-3 Example of program property . 40
3-4 Examples of corresponding execution structures for instructions 49
3-5 The difference between two statements . 50
3-6 Example of Program Property . 50
3-7 An operation structure for message passing 51
3-8 Example operation structures contain synchronize operations 53
3-9 The semantics of an expression . 56
3-10 The semantics of a Boolean expression . 57
3-11 Execution path π1 = (ψ1

1 · ψ1
2) . 65

3-12 The control flow graph for operation structure Γ2 66

vii

3-13 Eliminating execution condition . 70
3-14 Preparing unique branches . 70
3-15 A prepared CFG for procedure Explore 71
3-16 The SSA form of execution path π1 . 73

4-1 Concurrent Programs . 87
4-2 Infinite Loop Programs with k reads . 88
4-3 k iteration with k reads . 89
4-4 Overview of Inductive Invariant Method 91
4-5 Control flow graph for considering arbitrary assignments to memory locations 92
4-6 Examples of branch behavior . 94
4-7 An operation structure for message passing 95
4-8 Auxiliary functions . 98
4-9 Transform Function E of Operation Structure 99
4-10 PSO specification in cat language . 107

5-1 An operation structure of message passing for inductive invariant method . 121
5-2 Mutex Lock mechanism of TOPPERS Spinlock 122
5-3 Execution Structures for synchronize instructions 122
5-4 Spinlock Implementation for SPARC . 123
5-5 A real PSO bug in an electron microscope software [kno]. This bug caused

a $12 million loss of equipment. 125
5-6 Simplified programs for Known PSO bug 126
5-7 Infinite Program . 131
5-8 Encoding time of Dekker’s algorithm . 140
5-9 Solving time of Message passing on Gharachorloo framework 140
5-10 Solving time of Message passing on Herding Cats 141
5-11 Experiment on the number of processors 141

viii

List of Tables

2.1 Miscellaneous Instructions . 19

5.1 Bounded Gharachorloo Framework . 124
5.2 Bounded Herding Cats . 126
5.3 Inductive Invariant Herding Cats (Runtime) 127
5.4 Inductive Invariant Herding Cats (Violation) 127
5.5 Solving time of 3 execution paths of Dekker under SC 139
5.6 Encoding time of 3 execution paths of Dekker under SC 139
5.7 Experiment on the number of processors 141

ix

List of Definitions

2.1 Definition – Sequential Consistency Model 11

3.1 Definition – Variable . 45
3.2 Definition – Expression . 45
3.3 Definition – Boolean Expression . 45
3.4 Definition – Assignment . 46
3.5 Definition – Operation . 46
3.6 Definition – Label . 47
3.7 Definition – Execution Structure . 47
3.8 Definition – Instruction Execution . 48
3.9 Definition – Property Statement . 49
3.10 Definition – Operation Structure . 50
3.11 Definition – A sequence of operation structure 50
3.12 Definition – Event . 51
3.13 Definition – Location of Memory Events 52
3.14 Definition – Uninterpreted Functions for Memory Events 52
3.15 Definition – Event State . 53
3.16 Definition – Event Adding Operator . 54
3.17 Definition – Unique Event . 54
3.18 Definition – Execution State . 55
3.19 Definition – Execution Units . 55
3.20 Definition – Register State . 55
3.21 Definition – Transition of an execution step 56
3.22 Definition – Evaluation Context of Execution Structure 56
3.23 Definition – Substitutions of Operation Structures 57
3.24 Definition – Generic Substitution . 58
3.25 Definition – Substitution of Execution Units and Register State 58
3.26 Definition – Derivation Sequence . 62
3.27 Definition – Semantics Function of Operation Structures 62
3.28 Definition – Execution Path . 63
3.29 Definition – Unique operation structure . 63
3.30 Definition – Unique branch . 64
3.31 Definition – The set of execution paths . 64
3.32 Definition – Control Flow Graph of Operation Structure 64

x

3.33 Definition – Path . 64
3.34 Definition – Dominate . 65
3.35 Definition – Sub-Operation of Memory Event 74
3.36 Definition – Uninterpreted Functions for Gharachorloo framework 75
3.37 Definition – Return value function for Gharchorloo framework 76
3.38 Definition – Return value predicates for Gharachorloo framework 77
3.39 Definition – Basic sets for Herding Cats framework 79

4.1 Definition – Assertion Expression . 93
4.2 Definition – Control Flow Structure . 93
4.3 Definition – Symbolic Execution State . 95
4.4 Definition – Symbolic Value . 95
4.5 Definition – Variable State . 96
4.6 Definition – Write Variable State . 96
4.7 Definition – Symbolic Expression . 96
4.8 Definition – State Merging Operator . 97
4.9 Definition – Intermediate State . 97
4.10 Definition – Configuration . 97
4.11 Definition – Condition Extraction Function 100
4.12 Definition – Condition Execution Extraction Fucntion 100
4.13 Definition – Counter of Read Events . 101
4.14 Definition – Information of Read Event Counters 101
4.15 Definition – Read Counter Function . 101
4.16 Definition – Inductive Invariant Transform Function 102
4.17 Definition – Loop Abstraction Transformation 102
4.18 Definition – Arbitrary Assignment . 103
4.19 Definition – Assignment Target . 104
4.20 Definition – Arbitrary Write Events . 104
4.21 Definition – Correctness of Symbolic Execution 105
4.22 Definition – Partial Correctness of Operation Structures 105
4.23 Definition – Partial Correctness using Indutive Invariant Method 106
4.24 Definition – Adding Symbolic Execution State 107

xi

Chapter 1

Introduction

1.1 Background and Motivation

Nowadays, multi-core processors, or multiprocessor units, are usually adopted in various
computer systems. Those processors allow us to execute concurrent programs and/or
parallel programs in a system simultaneously to reduce the execution time. In addition
to personal computers, multi-core systems are also adopted in various embedded systems,
such as automotive systems, recently to serve the high-performance for the system. For
parallel programs, each program does not communicate with each other and their tasks can
be completed on their own. On the other hand, concurrent programs are not completely
independent of each other, and they can access the same memory locations to exchange the
program information. In particular, a flaw of concurrent programs executed on embedded
systems is a critical issue to be aware of during the software development since the flaw
might leads the failure of the whole systems and could risk our lives. Consequently, the
correctness of concurrent programs on embedded systems must be ensured.

Besides, multiprocessors using shared memory is also our focus, which executes concur-
rent programs independently. Recently, most of the modern multiprocessors use various
optimization techniques, such as using write buffer. Those techniques intend to reduce
the memory latency of memory accesses to shared memory. Note that the effect of the
techniques usually appears implicitly to programmers. In particular, modern multipro-
cessors aggressively use optimization techniques to improve the performance of program
execution. As a result, the execution order of the program statements would be out-of-
order. In multiprocessors using shared memory, even if the execution order is changed,
memory model or memory consistency model is provided to confirm the consistency of
shared memory among multiprocessors.

In practice, there is no standard to describe the memory model in a formal way; pro-
cessors’ vender also describes the memory model of the multiprocessors in their ways.
This means the behavior of program execution would be different on each memory model.
Consequently, the program correctness on each memory model could not be ensured in
the same way. For example, if the concurrent programs are correct on a memory model,
we cannot conclude the programs are correct on a different memory model. Thus, this

1

1 s ta t i c inline void
arch_spin_lock(

arch_spinlock_t *lock){

2 unsigned long tmp;

3 __asm__ __volatile__(

4 "1: ldstub [%1], %0\n"

5 " brnz , pn %0, 2f\n"

6 " nop\n"

7 " .subsection 2\n"

8 "2: ldub [%1], %0\n"

9 " brnz , pt %0, 2b\n"

10 " nop\n"

11 " ba, a, pt %%xcc , 1b\n"

12 " .previous"

13 : "=&r" (tmp)

14 : "r" (lock)

15 : "memory");

16 }

(a) For SPARC processors

1 s ta t i c inline void arch_spin_lock

(arch_spinlock_t *lock){

2 unsigned long tmp;

3 __asm__ __volatile__(

4 "1: ldrex %0, [%1] \n"

5 " teq %0, #0\n"

6 WFE("ne")

7 " strexeq %0, %2, [%1]\n"

8 " teqeq %0, #0\n"

9 " bne 1b"

10 : "=&r" (tmp)

11 : "r" (&lock ->lock), "r" (1)

12 : "cc");

13 smp_mb ();

14 }

(b) For ARM processors

Figure 1-1: Spinlock implementation in Linux Kernel

research aims to provide a way to ensure the program correctness on various memory
models.

Moreover, this research also considers the program behavior at the hardware-level.
In software development, the concurrent program could be implemented in a high-level
language. For example, Figure 1-1 shows two implementations of Spinlock mechanism1

in Linux kernel; each program contains a fragment of assembly instructions to exploit the
processor functionality. Instead of considering C program mixing with various assembly
syntax, this research considers assembly programs as the target for program verification.
In particular, the program behaviors that affected by memory models are considered.

In software development, there are various techniques to verify the correctness of pro-
grams, such as providing test cases and code reviewing. However, such methods are not
suited for verifying concurrent programs because they are required to highly reliable, and
concurrent behavior must be exhaustively checked. Formal verification is a rigorous ap-
proach that applies to verify the correctness of concurrent programs. Thus, our research
adopts the formal verification techniques to ensure the correctness of concurrent programs.

To summarize, this research would like to use formal verification techniques to ensure
the correctness of concurrent programs. Besides, memory model is the primary concern for
ensuring the program correctness on modern multiprocessors. In particular, this research
considers the behaviors of concurrent programs affected by memory models; however,

1Spinlock mechanism is a mutual exclusion algorithm usually used in kernel system, which is a busy-
wait mechanism

CHAPTER 1. INTRODUCTION 2

1mov r1, #1

2 str r1, [x]

3 str r1, [y]

R1

1 L:

2 ldr r1, [y]

3 cmp r1, #1

4 bne L

5 ldr r2, [x]

6 assert (r2 = 1)

R2

Figure 1-2: Message passing

the considered behaviors are expected to represent the concurrent assembly programs.
Consequently, the correctness of the concurrent programs written in an assembly language
could be ensured on a memory model.

1.2 Memory Models of Multiprocessors

In modern multiprocessor systems using shared memory, there are various mechanisms
that affect the behavior of program executions. Those mechanisms could be used to reduce
the memory latency to share memory. However, the mechanisms appearing in the systems
are too concrete and specific to each processor to be considered in program verification. In
general, the multiprocessors usually specify their memory model, or memory consistency
model, to guarantee the effect of memory accesses to shared memory.

Sequential Consistency Sequential consistency model, denoted as SC, is a standard
memory model in which the effect of memory accesses is always as same as the programs
executed in a sequential way regardless the mechanisms inside the processors. Figure
1-2 shows message passing programs written in ARM assembly language. The program
R1 writes the value 1 to the memory locations [x] and [y] in the order. On the other
hand, program R2 reads memory location [Y] until the read value becomes 1, then, reads
memory location [X] and writes to register r2. The program property requires the value
of register r2 always equals 1 for any program execution. Although multiprocessors allow
the latter write access issued by program R1 is completed before the former write access,
the multiprocessors using sequential consistency model guarantee the effect of executions
is always as same as the behaviors are changed implicitly. This means the program
property is always satisfied by any execution from programs R1 and R2.

Relaxed Memory Models Relaxed Memory Models, or weak memory models, are
memory models usually used by modern multiprocessors. Since sequential consistency
guarantees the effect of the program executions to be as same as the program executed
sequentially, in such model, providing efficient mechanisms to reduce memory latency of
the systems using shared-memory would be difficult. Consequently, most of the modern

CHAPTER 1. INTRODUCTION 3

processors decide to relax the effect of memory accesses to shared memory so as not to
restrict themselves to the sequential way of an execution.

Total Store Ordering (TSO) is the relaxed memory model that allows the effect of a
read access to appear before a non-conflicting write access. For instance, the following
ARM program writes a value to memory location [X] and reads a value from memory
location [Y].

1 str r1, [X]

2 ldr r2, [Y]

In TSO memory model, the read access is allowed to be completed before the prior write
access, in particular, the effect of non-conflicting write accesses2 can occur later than a
read access, which would not affect the computation in a single processor. In a practical
system, the write access can be stored in a write buffer before completing later, while the
read access can be bypassed to read the memory location if there is no conflicting access
to the location. However, in multiprocessor systems, the completion of write accesses
can appear later to other processors’ viewpoint and could cause anomalous effects in the
system.

Partial Store Ordering (PSO) is another relaxed memory model which extends TSO
memory model to allow the effect of non-conflicting writes to appear out-of-order. For
instance, the following ARM program writes a value to memory locations [X] and [Y] in
the program order.

1 str r1, [X]

2 str r1, [Y]

In PSO memory model, the latter write access is allowed to be completed before the prior
write access, if the accesses are not in conflict. In a practical system, the write accesses
can be stored in a write buffer before completing later, and the buffer could be a non-FIFO
buffer, in which the order of issued writes can be out-of-order. By using PSO memory
model, the effect can be observed by other processor and the program property could be
violated.

Let’s consider the programs in Figure 1-2 are executed on TSO and PSO memory
models with the program property r2 = 1 for any execution. For TSO memory models,
the effect of every execution from the programs is as same as the programs executed on
sequential consistency model. On the other hand, PSO memory model allows the write
accesses in program R1 to be completed out-of-order. This means if the latter write access
in R1 is completed the latter read access in R2 can read the value of the initial value of
location [X], which violates the program property r2 = 1. This shows that the effect of
each relaxed memory model is different from each other and could violate the program
property because of the implicit behavior.

Note that total store ordering (TSO) and partial store ordering (PSO) memory models
are conceptual models to illustrate the behavior of a relaxed memory model in a shallow
way. In practice, there are various relaxed memory models provided for each processor
such as x86-TSO, SPARC-PSO, POWER, and ARM. The practical memory models are

2Two memory accesses are considered as conflict if one of them is a write access and access to the
same memory location.

CHAPTER 1. INTRODUCTION 4

usually described in the hardware manual and have no standard description. Besides, to
exploit their hardware functionality, the behaviors of practical memory models are quite
complicated than the conceptual memory models.

1.3 Program Verification

Due to the fact that the effect of concurrent programs executed on relaxed memory models
is not the same as the program executed on sequential consistency models, the program
property could be violated by anomalous executions permitted by relaxed memory models.
This means the property to be verified must consider the effect of program execution on
target memory model.

Although, in program verification, there are various researches to verify concurrent pro-
grams, the verification techniques in most of these cannot be adapted to verify programs
on multiprocessor system directly because they do not take relaxed memory models into
account. There are several works that provide formal ways to verify program property
on specific memory models, such as [Rid10, LV15]. By considering on specific models or
specific architectures, the behavior to be verified could be more concrete for their target.
Instead of considering on specific memory models, our research would like to provide a
verification method for a variety of memory models. In program verification, the effect of
program executions is of interested to verify if the program property is preserved.

To realize the effect of program executions for verification, there are frameworks to
model the program behavior regarding the specification of memory models. In these
frameworks, although there is no standard description of a memory model, they provide
their specification styles to determine a valid behavior regarding their abstraction. Given
instances of memory accesses occurring in the system, those instances are then considered
based on the abstraction of a modeling framework, and the behavior on a memory model
must satisfy the memory model specification provided by the framework. Intuitively, we
can decide which behavior is valid regarding a memory model using a memory model
specification provided by a modeling framework. Note that behavior considered in each
framework can be different from each other, such as Gharachorloo [Gha95] represents the
behavior in term of execution order, while Alglave [AMT14] represents the behavior in
term of the communication of events.

Our program verification adopts the way to abstract the behavior and memory model
specifications to realize the effect of program executions for a variety of memory mod-
els, in which herding cats framework [AMT14] and a framework provided by Adve and
Gharachorloo [Gha95] are considered in our research. In particular, SMT-based program
verification is proposed in this research so as to adopt a memory model specification to
determine the valid effect on a program execution automatically based on axioms on the
instances of memory accesses.

CHAPTER 1. INTRODUCTION 5

1.4 Objective

The objective of this research is to propose a formal program verification method of con-
current programs executed on a multiprocessor system. In particular, the relaxed memory
models are also considered in program verification, in which the concurrent programs is
considered at the hardware-level. Instead of verifying a high-level language, such as C
language, assembly languages are our concern because an assembly instruction is a gran-
ule of a statement in a high-level language to interact with a practical processor. In
addition, due to a variety of assembly languages for various multiprocessor architectures,
an abstraction of assembly instructions is considered for program verification. The ab-
straction would be proposed to focus on the behavior that is necessary for realizing the
effect of the programs executed on a relaxed memory model. This means the assembly
instructions that are not related to the computation are not considered, such as interrupt
instructions. In program verification, we focus on the properties of programs, in which
the safety property on the computations on relaxed memory models is our concern to
ensure the program correctness.

1.5 Thesis Outline

First of all, Chapter 2 explains the technical background of this research, which includes
(1) the behavior of multiprocessors using shared memory, (2) the assembly instructions
considered in this research, (3) frameworks to model the effect of programs executed on
a relaxed memory model, and (4) program verification using SMT solver.

Then, Chapter 3 and Chapter 4 describe the methods proposed in this thesis. For
Chapter 3, bounded loop unwinding method was described to verify assembly programs
using SMT solvers. In particular, the method uses a bound to restrict the number of
loop iterations to be unwound. Due to the restriction of the bounded method, Chapter 4
was described to abstract the loop behavior. In the latter method, the most definitions
and approaches in the bounded method are adopted for program verification, while some
mechanisms are changed to deal with the loop behavior which is a limitation of the
bounded method.

After that, Chapter 5 shows the case studies and experiments on the proposed methods,
then the evaluation of the methods is also shown. Then, Chapter 6 shows the related works
to our research. Chapter 7 concludes the overall of this thesis and discuss the result of
our method.

CHAPTER 1. INTRODUCTION 6

Chapter 2

Preliminaries

2.1 Multiprocessors using Shared Memory

Currently, there are various kinds of processors adopted in computer systems and embed-
ded systems, such as automotive systems. Besides, multi-core processors become more
popular to increase the performance of the systems. Although there are various kinds of
processors, our research focuses on multiprocessor units that appear to execute program
independently, called multiprocessor systems.

This research focuses on the concurrent programs that are executed on a multiprocessor
system using shared memory. According to Figure 2-1, the system consists of 3 processing
units to execute programs simultaneously. If there are concurrent programs, the read and
write accesses are going to pass the caches L1, L2 and the system bus to system memory.
Note that there are various mechanisms to optimize and/or reduce the memory latency
such as write buffer and speculative executions.

An assembly program is assumed to be executed on a processing unit, in which its in-
structions must be performed in the order defined by the program. In users’ point-of-view,
a performed instruction is deemed to be completed before the next instructions are per-
formed. However, in practice, various mechanisms are adopted to improve the execution
performance, such as using write buffer and read-forwarding mechanisms. Consequently,
these mechanisms permit out-of-order executions of memory accesses in a system. Al-
though out-of-order executions can occur, a processor usually provides mechanisms to
correct the result of return values of the read accesses to be the same as the sequential
execution of memory accesses. For concurrent programs, the order of the read accesses
and the write accesses is permitted to be executed out-of-order without the mechanisms of
a processor to control the behavior among processing units. Thus, a cache’s protocol can
be adopted to synchronize the values of a location that can be observed among processors.

In modern multiprocessors, such as ARM and POWER, various complicated mecha-
nisms are used to maximize the performance of their processors. In practice, maintaining
the order of memory accesses along with the optimizing mechanisms is quite difficult.
Thus, most modern processors usually permit out-of-order executions of memory accesses
to occur globally. Accordingly, anomalous return values of the read accesses could be pro-

7

Figure 2-1: Overview of an multiprocessor systems

duced by concurrent programs. However, to correct the results of concurrent programs,
synchronizing instructions are provided regarding a processor to ensure the executions of
some fragments of programs.

The term memory model, or memory consistency model is used to describe the behav-
ior of memory accesses to shared memory in multiprocessor systems. The behavior of
programs occurring in a multiprocessor system can be determined by memory model, no
matter what optimizing mechanisms are adopted in a practical processor. Note that the
memory model of a multiprocessor is usually described in processor architecture’s manual,
which is described informally and differently to each processor’s vendor.

2.1.1 Hardware Optimization

Out-of-order issuing

In the fetching instruction, normally the instructions are fetched in the order decided by a
program counter. Sometimes the next instruction should wait until the necessary registers
are available. Instead of waiting, this technique stores the instruction in a reservation
station or an instruction buffer. The reservation station will issue an instruction that is
required registers are available. That means these behaviors will allow out-of-order issuing
of instructions. In some cases that the programs are executed in multiprocessor systems,
this behavior is known by only its processor. Therefore, the unexpected results may be
produced.

Non-blocking read access

In the execution units, the instruction will be performed as micro-operations and memory
accesses. As for the read accesses, there are some situations that the read access cannot be
performed immediately. The causes maybe read miss in caches or the memory locations
is not available yet. Hence, these mechanisms have been introduced to skip such read
accesses to perform next micro-operation or memory access. However, this read access
will be performed again once the value of the read is needed. This behavior can be realized
using the read buffers.

CHAPTER 2. PRELIMINARIES 8

1 A = 1

2 B = 1

3 a = A

Program A

1 x = B

2 y = A

Program B

Figure 2-2: Example for bypassing read access

Bypassing read access

The write accesses usually are put into write buffers. To issue the read access in the
program order, the read operation usually has to wait until the previous write accesses
already be issued from buffers. In this case, the processor should be stalled itself before
performing the next operations. To reduce the stalls, bypassing read access have been
introduced. The read access can be performed immediately if and only if there are no write
accesses that access to the same address as the read access. Hence, this behavior will cause
that a read access may be executed before write accesses specified as earlier operations. In
the same processor, this behavior will not produce unexpected results. Nevertheless, in the
multi-core systems, the order of some write accesses and read accesses maybe significant
order to be considered. For example, let’s consider Figure 2-2, we define ‘A =1’ and ‘B=1’
as write access, and the remaining are read accesses. Assume that the write access ’A=1’
already executed in the shared-memory and ‘B=1’ is stored in the write buffers. In this
case, the read access ‘a = A’can read the value ‘A = 1’ from shared-memory immediately,
even if the write access ‘B = 1’ is not executed yet. In this case, the result of (x, y) is (0,
1) can be happened in the multi-core systems.

Read Forwarding

This mechanism also reduces the stalls of that processor by immediately issuing the read
access if and only if there is a write access stored in write buffers which access the same
memory locations as the read access. However, such return value should be the value from
the last write access that appeared in the buffer. Although this mechanism can reduce
the stalls in processors, some hardware does not allow this mechanism to be implemented
due to it may provide some unexpected results.

Non FIFO read/write buffers

Generally, buffers usually act like queues which issue an entity in order as First-In-First-
Out(FIFO). In some cases, the earlier read or write accesses cannot be executed yet,
because accessing memory location is not available. Moreover, In the case of out-of-order
issuing, some accesses should be issued in the program order, but buffers might have
previous accesses which should be issued later. Hence, such accesses will be selected to
be issued before the previous accesses in the buffers.

CHAPTER 2. PRELIMINARIES 9

Figure 2-3: Conceptual model for sequential consistency model (SC) [Gha95]

2.1.2 Memory Models

Due to the fact that the behavior of a program execution is a significant issue to verify
the correctness of concurrent programs, this section would like to explain about memory
models, which describes the behaviors of memory accesses among multiprocessors. By
considering on memory models, the program verification could be done in an abstraction
of the system regardless of the mechanisms used in the practical system.

In practice, the term memory model is used either in a programming language such as
C++11 and Java Memory Model (JVM) or at the hardware level, such as SPARC-TSO
and x86-TSO. In this research, we focus on the memory models at the hardware level to
ensure concurrent assembly programs are correct on a memory model. Thus, this section
explains the behavior of memory models at the hardware level.

To explain the behavior of memory models, the conceptual model provided by [Gha95]
is adopted as an abstraction of a multiprocessor system to explain the behavior regarding
a memory model. Figure 2-3 shows a standard representation for sequential consistency
model. There are n processing units, P1, . . . , Pn, sharing a single logical memory M in
the conceptual model, which shows the concept for programmer’s point-of-view. Read
and write accesses are treated as R and W in a conceptual model. Read access R is
considered as complete if the return value is determined. Write access W is considered
as complete once the target location in logical memory M is updated. The program order
in the right-side of the figure shows conditions on the read and write accesses issued by
programs, in which the completing order must follow the program order if there is a line
between them. To determine the return value of a read access, the value must be the last
write to the same location that completed before the read completes.

Note that a conceptual model could not be used to determine the complex behavior of
modern memory models, such as ARM and POWER. Nevertheless, a conceptual model is
used in this section to introduce the simple memory models intuitively. This would help
readers to understand some basic behaviors that could occur, which cause a violation in
concurrent programs.

Sequential Consistency Model

Sequential consistency model, denoted by SC, is a standard memory model that requires
the result of programs must be the same as the program executed in a sequential way even

CHAPTER 2. PRELIMINARIES 10

if an out-of-order execution occurs. According to 2.1 provided by [Lam97], the constraint
is given to implement a system that is a sequential consistency model.

Definition 2.1 (Sequential Consistency Model). the result of any execution is the same
as if operations of all the processors were executed in some sequential order, and the
operations of each processor appear in this sequence in the order specified by its program.

This condition considers the side effects of executions that can occur by the behavior
of program executions, in which no matter how the processor was implemented.

According to Figure 2-3, the completing order of all read and write accesses must follow
the program order, by conditions appearing in the right-side of the figure. However, this
conceptual model does not restrict the way to complete each of read and write accesses
in a system. This means some processors might put a write access into a write buffer,
and then a read access either enforces the conflicting writes to be completed in the order
or read the writing value of the last conflicting write in a write buffer, which is the read-
forwarding mechanism. However, both of implementations could provide the side effects
as same as there are no optimizing mechanisms adopted in a processor.

This is a model which is usually easy for programmers to implement software on top of
the model because the execution is always the same as they implement software. Besides,
there are various verification techniques that can be used to verify this kind of multi-
processors using sequential consistency models, such as Hoare logic. As the side effect
of executions always the same as the programs executed in an interleaving way, thus,
program verification in an interleaving behavior is sufficient to ensure the correctness of
the system.

However, in practice, this model could provide the low performance of a multiprocessor
system. Due to the need for constraints to restrict the executions, the optimizing mecha-
nisms could not be used. Therefore, most of the modern multiprocessors provide a relaxed
memory model, or weak memory model, for its processor, which permits anomalous results
to occur, but they are acceptable in some programs. By permitting anomalous results,
considered as relaxing the execution, the processor can use more optimizing mechanisms
to improve the performance of multiprocessors.

Relaxed Memory Models

Relaxed memory models are memory models permitting the execution orders not to follow
the program order. Although the execution order is permitted to be changed implicitly,
there are some restrictions of a relaxed memory model to control the behaviors as an
acceptable relaxation permitted by the memory model. In general, each memory model
usually provides different constraints for its conceptual system. Primarily, each multi-
processor’s provider usually describes the behavior in an informal way and different from
each other. However, using a conceptual model, readers could intuitively see how the
execution order of programs is changed at an abstract level. Note that relaxed memory
models explained in this section are abstracted models, in which the practical systems
could provide more details for their memory model to facilitate the processors, such as
fence instruction for a pair of write and read accesses.

CHAPTER 2. PRELIMINARIES 11

Figure 2-4: Conceptual model for total store ordering (TSO)[Gha95]

1 [X] := 1

2 v := [Y]

P1

1 [Y] := 1

2 u := [X]

P2

Figure 2-5: Store Buffer (SB)

Total Store Ordering (TSO): Figure 2-4 shows the conceptual model for total store
ordering (TSO), which relaxed the order of reads following a write access to be completed
out-of-order. This conceptual model is deemed to be same as the model for sequential
consistency model. In contrast to the sequential consistency model, this model provides
a write buffer between a processor and the logical memory. These buffers store the issued
write accesses to reduce the memory latency of the system. Besides, read accesses can
read the write value from the last conflicting write access in the buffer if they are issued by
the same processor. This means the conflicting reads can be complete before the former
write accesses in a processor. In addition, there is no line condition for the pair of write
and read accesses in the conceptual model for total store ordering. This means any read
access can be completed before a write accesses is completed among processors.

Figure 2-5 shows concurrent programs that the processors write value 1 to the share-
memory location [X] and [Y] for processing unit P1 and P2, respectively. These write
accesses are supposed to be stored in the write buffers of the processors. Consequently,
each read access of each processor, which is non-conflicting accesses, could read the value
from the shared memory directly, without any update from a write access. Consequently,
the local variables u and v can be 0, which is the initial value of a memory location, in
some executions on total store ordering (TSO). In contrast, if the programs are performed
on sequential consistency model, the variables v and u are not permitted to be 0 at the
same time. Note that total store ordering model adopted in practical processors usually
provides fence operations to prevent the changing order between write and read accesses.

Partial Store Ordering (PSO): Figure 2-6 shows the conceptual model for par-
tial store ordering (PSO), which is an extension of TSO memory model. PSO model is
quite same as TSO model, excepts the conditions between write accesses. The dotted
line appearing in the figure means the conflicting write accesses must be completed in
the program order. The line with annotation F means non-conflicting write accesses are
permitted to be completed out-of-order if there is no fence between them. In an imple-

CHAPTER 2. PRELIMINARIES 12

Figure 2-6: Conceptual model for partial store ordering (PSO) [Gha95]

1 [X] := 1

2 [Y] := 1

P1

1 u := [Y]

2 v := [X]

P2

Figure 2-7: Non-FIFO Buffer

mentation, Non-FIFO write buffers could be used to issue the latter writes that can be
completed faster than the former write to be completed in logical memory M.

Figure 2-7 shows concurrent programs that processor P1 writes value 1 to the location
[X] and [Y] in the order, while processor P2 reads location [Y] and then location [X].
The write accesses are supposed to be stored in a Non-FIFO write buffer, in which the
write accesses can be issued from the buffer in either order. Consequently, the first read
to location [Y] can read the value 1, while the latter read to location [X] got value 0
in which the write access to [X] is not completed yet. In contrast, if the programs are
performed on TSO memory model, the write accesses must be completed following the
program order even if they do not conflict with each other. To prevent the out-of-order
execution in PSO model, a fence must be added between write accesses to prevent such
anomalous behaviors. Obviously, the multiprocessors using PSO model seems to be more
efficient than the multiprocessors using TSO model, while there is a trade-off between
ease of implementation and efficiency of program execution.

POWER and ARM: In modern processors such as ARM and POWER architectures,
they provide memory models weaker than TSO and PSO. Intuitively, the completion
order of the read accesses is allowed to be out-of-order if there is no dependency between
the read accesses. However, as there is no standard description for memory models, it
would be difficult to realize the memory behavior on POWER and ARM architectures.
There are researches such as [AFI+09, ISS12, MHMS+12, AFI+09, SSA+11] to analyze the
behavior of POWER processors. For ARM multiprocessors, the behavior is quite similar
to POWER multiprocessors; thus, the intuitive way to consider the behavior on POWER
and ARM multiprocessors would be similar.

In POWER and ARM multiprocessors, most of the memory accesses are allowed to be
reordered if there is no dependency on them. In POWER multiprocessors, the sequential
consistency of memory accesses can be achieved by using sync instruction. However, if
sync instruction is added between any instruction, there might be time-consuming which

CHAPTER 2. PRELIMINARIES 13

causes the inefficient of program execution.
According to [SSA+11], there are dependencies detected by POWER multiprocessors

to maintain the completing order on the memory accesses that have such dependencies.
There are various kinds of dependencies:

• Address dependency (addr): if the read value of a read access is used as the
memory address of the following read access or write access in the program order.

• Data dependency (data): if the following write access uses the read value of a
read access in the program order.

• Control dependency (ctrl): if the read value of a read access is used as a branch
condition, there is a control dependency from the read access to the following mem-
ory access after a branch.

• Control+isync dependency (crtlisync): if there is a control dependency from
a read access to a read access after a branch and there is isync instruction after
branch and before the second read access in the program order.

For address dependency, the dependency is from a read access to any memory access if
the read value is used as the memory address. For example, the following program shows
the dependency between two instructions such that register r1 is used as the memory
address for the second instruction. Thus, there is an address dependency from the load
instruction to store instruction.

1 li r2, 2

2 lwz r1,0(r2)

3 stw r1,0(r1)

For data dependency, the dependency is from a read access to a write access if the
following write access uses the read value. This dependency also includes the address
dependency; however, the behavior that the value to be stored is also considered. For
example, the following programs used the value of register r3 as the write value of the
write access. Hence, there is a data dependency from the load instruction to the store
instruction.

1 li r1, 1

2 li r2, 2

3 lwz r3, 0(r1)

4 stw r3, 0(r2)

For control dependency, the dependency is from a read access to any memory access if
there the read value of the read access affecting the branch condition and the memory
access appear after the branch instruction. For example, the following program show the
condition of branch instruction bt eq L1 relies on the read value of load instruction lwz

r3, 0(r1). Thus, there is a control dependency from load instruction to store instruction
stw r5, 0(r2) appear after the branch instruction.

CHAPTER 2. PRELIMINARIES 14

1 li r1, 1

2 li r2, 2

3 lwz r3, 0(r1)

4 cmpwi r3, 1

5 bt eq L1

6 stw r5, 0(r2)

For control+isync dependency, the dependency is between two read access which similar
to the control dependency. In this dependency, the isync should appear before the second
read access and after the branch instruction. For example, the following program shows
the control+isync dependency between two load instructions.

1 li r1, 1

2 li r2, 2

3 lwz r3, 0(r1)

4 cmpwi r3, 1

5 bt eq L1

6 isync

7 stw r5, 0(r2)

2.2 Assembly Program

In program verification on systems using relaxed memory models, the behavior of read
accesses and write accesses to shared memory is the concern. In particular, the target
memory models in this research are at the hardware-level, in which assembly programs
are considered to ensure the program correctness on relaxed memory model.

An assembly language is a low-level programing language to interact with specific pro-
cessor architecture. Primarily, a compiler is usually provided for a specific processor to
translate the language for facilitating the processor. In the kernel development, there
could be various assembly languages used for implementing the same functionality in a
kernel, such as Spinlock. Although each assembly language provides different mecha-
nisms to facilitate target processor, there could be similar behaviors that are necessary
for program verification on relaxed memory models.

As there are various assembly languages, Section 2.2.1 shows some assembly instructions
based on ARM instruction set. This would shows the practical behaviors of assembly
program. Then, Section 2.2.2 shows our assumption that an assembly instruction is not
performed atomically in the hardware’s point-of-view. Consequently, the precise behavior
of assembly programs can be considered on relaxed memory models.

2.2.1 Assembly Instructions

In practice, there are various assembly instructions to be used for specific processor archi-
tectures. In this explanation, ARM instruction sets described in ARMv7 manual [ARM07]
are used to show the practical instructions provided for program implementation. First,

CHAPTER 2. PRELIMINARIES 15

the preliminary behavior for assembly instructions is introduced. Then, the explanations
of some practical instructions are shown.

Preliminary behavior of Assembly Instructions

Conditional execution is introduced for the most of ARM instructions. In this re-
search, the instructions that contain the condition to be considered are called predicated
instructions. Intuitively, a condition can be put on an instruction for performing the
instruction. In ARM processors, a condition flag appearing in application status program
register (ASPR) on the executing processor are used to determine the execution of the in-
struction. For example, the following program uses compare instruction cmp r1, #1 and
save the result to the condition flags in the application state program register (ASPR).

1cmp r1, #0x01

2 streq r1, [0x01]

Note that ASPR is used to save the state of the executing program. Then, the store in-
struction streq r1, [0x01] checks the condition flags whether the condition is satisfied
before performing the store instruction in a usual way. Intuitively, the condition denoted
by ’eq’ intents to check the value of register r1 equals 1. Note that, for other processors,
the condition to be checked could be the register directly.

Writing to program counter (PC) is allowed in many data processing ARMv7
instructions. In general, program counter is a register in a processor to determine the
instruction to be performed. To manipulate the value of the counter, branch instructions
are the basic instruction to change the control flows of the program. Besides, ARMv7
allows other instructions, such as load instructions and data-processing instructions, to
change the value of the program counter.

Label in Unified Assembler Language (UAL) syntax can be used in an ARM
assembly program. In actual processing, the information to be used in the program must
be indicated by the memory address. For instance, the program counter is used to indicate
the instruction to be fetched. For the ease of implementation, UAL syntax allows users
to use labels for indicating the program information at the specific program locations.
Then, such labels would be translated to be the address of the program location using the
value relating to the value of program counter. For example, the label would be replaced
by [PC-32] which refers to the address before the current instruction.

Branch Instructions

In practice, there are various branch instructions to be used. The basic branch instruction
(b) is to jump the program execution into the target address, which can be described by
label in UAL syntax. Normally, this basic branch is used for defining the control flow of
a program. The syntax of basic branch instruction in ARMv7 is of the form b〈c〉 〈label〉,
where 〈c〉 is the condition to be checked and 〈label〉 is to indicate the address to be
indicated in the program.

In addition to checking the condition flag, compare and branch instruction (cb) can be

CHAPTER 2. PRELIMINARIES 16

used to check the value of the target register before branch to the target address. The
syntax of compare and branch instruction is of the form cb{n}z 〈Rn〉 〈label〉 where 〈Rn〉
is the target register to be checked and {n} can be specified if we need to check the target
register not equal to zero. Otherwise, the register equals zero is checked as the condition
if there is no {n} in the instruction.

Moreover, ARM assembly language allows users to define subroutines for program im-
plementation. Normally, subroutines would process on the given parameters stored in
some registers and return the result in some registers. For the branch instruction to sub-
routines, branch link instruction (lb) is used to jump to the target label or pc-relative ad-
dress. In addition to the basic branch instruction (b), the current address before changing
is saved in the link register (LR). After the routine is completed, the branch and exchange
instruction (bx) is used to jump to the address specified by the target register. For in-
stance, the following program shows the usage of branch to subroutine.

1 __main:

2 ldr r1, [0x01]

3 mov r0, #0

4 bl AFUNC ; Call subroutine AFUNC

5 str r0, [r3]

6 b STOP

7 AFUNC:

8 add r0, r0, r1

9 subs r1, r1, #1

10 bx LR ; restore the address to PC

11 STOP:

Data-Processing Instructions

This group of instructions is used to manipulate the data in a program. These instructions
provide the ways to compute on registers for each processor, such as arithmetic calculation.
The following contents show some instructions that are provided for ARMv7 processor
architecture.

Standard data-processing instructions provide basic calculations on the registers,
such as adding and subtraction. These would compute the program using the basic
operator for the data stored in the registers. Besides, there are some compare instructions
and test instruction. These instructions provide some decision on the registers and store
the result on the condition flag register, which is stored in application program status
register (APSR).

Multiplication instructions and divide instructions provide more complicated
calculation on the registers. For instance, instruction MUL r2, r1, r0 can be interpreted
as the multiplication of r1 and r0 is stored in register r2.

Parallel addition and subtracting instructions provide the functionality to per-
form addition and subtractions on the values of two registers and write the result to a
target register. These instructions are single instruction multiple data (SIMD) instruc-

CHAPTER 2. PRELIMINARIES 17

tions that provide various actions within an instruction.

Status Register Access Instruction

In program execution, the application program status register (APSR) is used to indicate
the state of programs during program execution, such as the state of condition flag reg-
isters. Besides, there are reservation bits in the register that can be used for a special
purpose such as disable the interruption behavior of the program. To manipulate the
behavior, ones can use MRS and MSR instructions to move the contents between APSR
to or from an ARM core register.

Load/Store Instructions

Load/store instructions provide the functionality to communicate with a memory lo-
cation. There is a variety of instructions to load or store the memory locations, such
as the data type and the number of accesses to be performed. In the implementation,
the data type is the matter in the implementation of an assembly program; thus, the
variety of instructions regarding the data type is provided. Besides, ARMv7 architecture
also provides the load/store multiple instructions to communicate with multiple memory
locations.

Push and pop instructions are provided in ARMv7 multiprocessors to realize the
stack behavior in the system. In particular, stack pointer register (SP) is used to refer the
last register that is put in the stack. Moreover, in ARM multiprocessors, load-exclusive
and store-exclusive instructions provides the functionality to facilitate synchronization
behavior among multiprocessors. The behavior of load-exclusive and store-exclusive is
considered as the behavior of load-link and store-condition in this research.

Load-link is a group of special instructions that are introduced in modern processors,
such as ARM and POWER. This instruction is supposed to be used as a pair with store-
condition instruction. Intuitively, load-link instruction issued a read access to the memory
location and then trigger the processor unit to link the exclusive address, implemented in
modern processors, to the target memory location. The exclusive address in a processor
unit is used to check whether is there other load-link instructions or a write access to that
target address or not.

Store-condition is a group of instructions that is also introduced in modern processors,
such as ARM and POWER. The behavior of this kind of instructions is to check the
exclusive address still be the same as the address of the instruction or not, and there is
no write access that access the target memory location after the load-link instruction,
which is used as a pair. If the condition is satisfied, the store-condition instruction issues
a write access to the memory location and writes 0 to the result register to let users know
that the write access is completed. Otherwise, there is no write access to the system and
the instruction writes 1 to the result register to let users know the write access cannot be
completed. Note that, in practical processors, the mechanism to link the address could
use a cache-line in the processor, which relates more than one memory addresses. This
means if there is a non-conflicting write access on the same cache-line, the store-condition

CHAPTER 2. PRELIMINARIES 18

Instruction Summarize
Clear Exclusive (clrex) Clears the local record of the executing pro-

cessor that an address has had a request for
an exclusive access.

Debug Hint Provides a hint to debug and related systems.
Data Memory Barrier (dmb) Ensures the ordering of observations of mem-

ory accesses
Data Synchronization Barrier (dsb) Ensures the completion of memory accesses
Instruction Synchronization Barrier
(isb)

Flushes the pipeline in the processor

No Operation (nop) does nothing
Send Event (sev) and Wait For Event
(wfe)

wfe instruction permits the executing proces-
sor to enter the low-power state until received
an event.

Swap (swp) Swaps a word between registers and memory
Wait For Interrupt (wfi) wfi permits the executing processor to enter

the low-power the low-power state until one
of a number of asynchronous events occurs.

Table 2.1: Miscellaneous Instructions

might fail. Obviously, the semantics of these instructions depends on the implementation
of a processor.

As the load/store instructions are used to communicate with memory locations, the
memory address is used to indicate the target accessing of the instruction. Normally, the
address is formed from a based register and an offset. The based register can be any ARM
core register, while the offset is of either immediate, register, or scaled register. There are
three different ways to indicate the memory address: offset, pre-indexed, and post-indexed.

Miscellaneous Instructions

In ARM multiprocessors, there are additional instructions such as barrier instructions
and clear exclusive instructions. Table 2.1 shows the summarization of instructions in
this category. Note that this table shows some of the instructions that can occur in actual
implementation.

2.2.2 Granulity of Assembly Instruction

An assembly instruction is deemed to be completed atomically, however, the actual com-
putation might not be complete yet. For instance, the write accesses of a write instruction
are added to write buffers and the next instruction can be fetched instantly even if the
write is not completed. In addition, a single assembly instruction can produce multiple
micro-operations to the hardware, such as multiple writes. Thus, this research considers

CHAPTER 2. PRELIMINARIES 19

Figure 2-8: General model for shared-memory [Gha95]

an operation as a granule of an assembly instruction and not consider the instruction is
completed once the instruction is performed. In particular, the side effects of operations
performed on a relaxed memory model are considered in program verification.

Given an assembly instruction, the corresponding operations must cover the behavior
of the concerned instruction. In particular, the behavior must be sufficient for program
verification on relaxed memory models. For example, read operation would be necessary
to represent the behavior of load instruction. Consequently, each of the corresponding
operations is then performed by a processor in a defined order regarding the behavior of
the instruction.

2.3 Modeling Framework

Due to our research focuses on program verification for various memory models, proposing
a semantics to each memory model is seemed to be not efficient for the program verifica-
tion. In particular, the verifying property that we concern focuses on the return values of
read accesses which could be produced differently on each memory model. Besides, the
way to consider the value relies on the behavior of a memory model, which is described
differently for each processor and there is no standard description.

Fortunately, currently, there are frameworks to model the behavior of memory accesses
occurring on a relaxed memory model, called modeling framework. Most of the frameworks
provide abstractions of the memory accesses and axioms to consider the valid executions or
data flow that permitted on a memory model. Thus, our research would like to adopt these
modeling frameworks for realizing the values of read accesses for our program verification.

CHAPTER 2. PRELIMINARIES 20

2.3.1 Gharachorloo Framework

Abstract Model

Figure 2-8 shows the abstract model proposed by [Gha95] representing a multiprocessor
system using shared memory. The model consists of n processing units P1, . . . , Pn, in
which the operations are performed in each processor would issue memory accesses to the
buffer of a processor. Each processor node also has its own memory, Mi, which belong to
processor Pi where 1 ≤ i ≤ n. Memory Mi is a complete copy of a shared memory in the
system. Each node is connected by the network to distribute the write accesses across the
nodes to update the memory location.

Read and Write Accesses

For memory accesses issued by processor Pi, each access is supposed to consist of granule
operations, called sub-operations. Read access r issued by processor PI consists of a sub-
operation, denoted by r(i), while write access w issued by processor Pi is supposed to
consist of n sub-operations w(1), . . . , w(n), where n is the number of processors.

Once processor Pi issues a write access, the corresponding sub-operations are added
into the buffer of the processor. For a read access, its sub-operation is also stored in the
buffer of the processor. Note that the buffer is a Non-FIFO buffer, which performs a
sub-operation regardless the issued order by the processor. If read sub-operation r(i) is
performed, the return value is come from either memory Mi or the last conflicting write
sub-operation w(i) issued before the read access r. If write access w(j) is performed, it
updates the value of memory location in Mj appearing in the system.

To control the behavior to perform memory accesses, the conditions are given by spec-
ification regarding a memory model. The conditions are provided on the performed in-
structions and the issuing order on them. Then, the behavior is represented in the term
of execution order

xo−→ on sub-operations.

Execution Order

An execution order
xo−→ is a total order on sub-operations performed by the buffers. This

order relies on the program order
po−→ of the issued operations and the conflicting informa-

tion among the accesses. An execution order
xo−→ is considered as a valid execution if the

conditions of a specification regarding the target memory model are satisfied. The condi-
tions of a specification in the framework consists of underlying condition and conditions
for a specific memory model.

Termination of writes Every write access issued by a processor must eventually com-
plete. Intuitively, the write value of a write access must eventually appear to every pro-
cessor. The condition 1 shows the definition of termination condition for write accesses.
This ensures corresponding write sub-operations appear in the execution order

xo−→.

CHAPTER 2. PRELIMINARIES 21

Condition 1 (Termination Condition for write operations). Suppose write access W
issued by Pi, the termination condition requires the n corresponding sub-operations W (1),
. . . , W (n) appear in the execution order

xo−→.

Return value of reads A read access to a memory location is abstracted as a corre-
sponding read sub-operation appeared in the buffer. Once the sub-operation is performed
to execution order, the read value of a memory location is considered from the performed
conflicting write sub-operations in execution order

xo−→. Note that two memory operations
conflict if one of them is a write operation and access to the same memory location.
Condition 2 shows the definition of the return value of read sub-operations.

Condition 2 (Return value for read sub-operations). A read sub-operation R(i) performed
by Pi returns a value that satisfies the following conditions: (1) If there is a conflicting

write access W issued by Pi such that W
po−→ R and R(i)

xo−→ W (i), then R(i) return the last

value of the last such W in
po−→ which issued by the same processor. (2) Otherwise, R(i)

returns the writing value of W ′ (from any processor) such that W ′(i) is the last conflicting
write sub-operation that is ordered before R(i) by

xo−→. (3) If there are no conflicting write
access that satisfy either of above two categories, then R(i) returns the initial value of the
location.

Atomicity of read-modify-write Processor architecture usually provides primitive
instructions to read and write a shared-memory location atomically. The atomic behavior
of a read access and a write access, which access to the same location, is generalized as
read-modify-write, denoted as RMW. Condition 3 is provided to ensure that no conflict-
ing write operation from another processor interrupts the execution of read-modify-write
behavior.

Condition 3 (Atomicity of Read-Modify-Write). If R and W are the read and write
accesses behaves as read-modify-write on Pi, for every conflicting write operation W ′ from
a different processor Pk, either W ′(i)

xo−→ R(i) and W ′(i)
xo−→ W (i) for all i or R(i)

xo−→
W ′(i) and W (i)

xo−→ W ′(i) for all i.

Specification for a memory model To provide a specification for a memory model,
the following notations are often used in a specification: (a) R and W denote any read and
write accesses, respectively, (b) RW denotes either a read access or a write access, (c) X(i)
and Y (i) denote the sub-operations of memory accesses X and Y appearing to processor
Pi, and (d) X(in RMW) means memory access X, either read or write, that behaves

as read-modify-write. Besides, there are other underlying orders
co−→ and

co′−→ stand for
conflicting order and inter-conflicting order, respectively. Conflicting order X

co−→ Y is
defined if X and Y are conflict and there is an execution order such that X

xo−→ Y . For
inter-conflicting order X

co′−→ Y is defined if X
co−→ Y and accesses X and Y are issued by

different processors.
Moreover, a specification might define its own orders, such as significant program order

spo−−→, and operations, such as MEMBAR(WR) for fence instruction in SPARC processors. In

CHAPTER 2. PRELIMINARIES 22

define
spo−−→: X

spo−−→ Y if X and Y are to different locations and X
po−→ Y

define
sco−−→: X

sco−−→ Y if X and Y are the first and last operations on one of:

X
co′−−→ Y

R
co′−−→W

co′−−→ R
Conditions on

xo−→:

(a) the following conditions must be obeyed:
Condition 1: termination condition for writes.
Condition 2: return value for read sub-operations.
Condition 3: atomicity of read-modify-write instructions.

(b) given memory operation X and Y , if X and Y conflict and X,Y are the first and
last operations in one of:

uniprocessor dependence: RW
po−→W

coherence: W
co′−−→W

multiprocessor dependence chain: one of

W
co′−−→ R

po−→ RW
RW

spo−−→ {A sco−−→ B
spo−−→}+RW

W
sco−−→ R

spo−−→ {A sco−−→ B
spo−−→}+R

then X(i)
xo−→ Y (i) for all i.

Figure 2-9: Aggressive conditions for SC [Gha95].

addition, a condition in the form of X(i)
xo−→ Y (j) for all i, j means sub-operation X(i)

must appear before sub-operation Y (i) in execution order
xo−→ for any processor Pi, Pj.

Such conditions are used to determine valid execution orders among memory accesses.
Figures 2-9 and 2-10 show the specifications of sequential consistency model and total

store ordering (TSO), specified for SPARC, provided by [Gha95]. In the specifications,
they commonly require underlying conditions 1, 2, and 3 to realize the underlying behav-
iors of shared-memory multiprocessors, while the condition (b) constrains execution orders
by expressing relations. For instance, given two conflicting write operations w1 and w2

executed in multiprocessor P = P1, P2, if write sub-operation w1(1) appears before w2(1)
in the execution order

xo−→, the coherence condition, W
co−→ W , constrains that w1(2) must

appear before w2(2) in the execution order
xo−→. Note that the relation expressed by curly

brackets, such as
{
A

sco−→ B
spo−−→
}

+, means the relation in the brackets must appear at

least once.
Intuitively, sequential consistency model maintains the results by concurrent programs

to be the same that programs are executed in a sequential way. In the specification,
significant program order

spo−−→ is defined for any memory accesses must maintain their
results, and the side effect of the following accesses would not affect the prior memory
accesses. In contrast to sequential consistency model, the significant program order of
TSO memory model does not preserve the program order W

po−→ R unless there is a fence
MEMBAR(WR) between them. With these conditions, a valid execution can be decided
by considering the existing memory accesses and the program order among them.

CHAPTER 2. PRELIMINARIES 23

define
spo−−→, spo

′
−−→, spo

′′
−−−→:

X
spo′′−−−→ Y if X and Y are the first and last operations in one of: R

po−→ RW , W
po−→W ,

W
po−→ MEMBAR(WR)

po−→ R.

X
spo′−−→ Y if X and Y are the first and last operations in: W (in RMW)

po−→ R

X
spo−−→ Y if X

{
spo′−−→

∣∣∣∣ spo′′−−−→
}

+ Y

define
sco−−→: X

sco−−→ Y if X and Y are the first and last operations on one of:

X
co′−−→ Y ,

R
co′−−→W

co′−−→ R
Conditions on

xo−→:

(a) the following conditions must be obeyed:
Condition 1: termination condition for writes.
Condition 2: return value for read sub-operations.
Condition 3: atomicity of read-modify-write instructions.

(b) given memory operation X and Y , if X and Y conflict and X,Y are the first and
last operations in one of:

uniprocessor dependence: RW
po−→W

coherence: W
co−→W

multiprocessor dependence chain: one of

W
co′−−→ R

po−→ RW
RW

spo−−→ {A sco−−→ B
spo−−→}+RW

W
sco−−→ R

spo−−→ {A sco−−→ B
spo−−→}+R

then X(i)
xo−→ Y (i) for all i.

Figure 2-10: Aggressive conditions for TSO+[Gha95].

2.3.2 Herding Cats Framework

In this framework [AMT14], memory accesses are considered as events. In addition, the
instances of operations which are not memory accesses, such as fence operations, are also
considered as events to capture the existing events in the system. The modeling framework
uses a control flow of concurrent program to represent the issued events occurring in the
system and the program order among them. Nevertheless, a control flow does not realize
the evaluated values of each read event, yet. Then, a data flow is a valuation of the control
flow, in which a data flow represents how the data is transferred to each read event. This
would represent the communication of data between memory events.

Control flow A control flow of concurrent programs is a symbolic representation of the
programs to be performed in the system. A control flow could consist of events, which
can be a representation of memory access, fence instruction, or branch decision. Note
that the return values and/or evaluations on events are represented by symbolic values,
in which a valuation of those symbolic values is considered as a data flow.

CHAPTER 2. PRELIMINARIES 24

(a) A control flow (b) An anomalous result

Figure 2-11: An abstraction of message passing

Atomic: empty(
atom−−→ ∩ fre;coe−−−→)

Sequential Consistency: acyclic(
po−→ ∪ rf−→ ∪ fr−→ ∪ co−→)

Figure 2-12: SC constraints for Herding cats framework

Data flow A data flow of a control flow can be represented by adding a read-from

relation
rf−→ to the control flow. Read-from relation

rf−→ is a relation between write and
read events, in which the value of the write event is transferred to the read event. For
example, Figure 2-11(a) shows a control flow of the message passing programs, in which
po−→ represents the program order among events, and Figure 2-11(b) is a data flow of the
control flow, in which the value v of read event R2 is evaluated to be 0. Note that the
read-from relation that has no source, that means the read is got a value form initial
value, which is usually 0. Note that the data flow is an anomalous result that could not
occur in sequential consistency model.

Constraint specification Given a data flow, such as Figure 2-11, the constraint spec-
ification is used to decide whether it is valid on the memory model or not. Constraints
are usually either acyclic, irreflexive, or empty on a relation, in which the relation can be
constructed from basic relations.

For instance, Figure 2-12 shows the constraint specification for sequential consistency
model. In this specification, there are 2 constraints, which are the atomic constraint and
sequential consistency constraint. The constraints consider the relations, in which the
relations are constructed based on union and intersection on the basic relations, such as
po−→ and

rf−→. In the second constraint, the constructed relation
po−→ ∪ rf−→ ∪ fr−→ ∪ co−→

represents the communication of a data flow that can be constructed, in which constraint

acyclic is provided to prevent a loop communication occur. Note that the relation
fre;coe−−−−→

represents concatenation of two relations:
fre−−→ and

coe−→.

For the basic relations, relation
po−→ and

rf−→ are program order and read-from relations,
which are explained earlier. Relation

co−→ is a coherence relation to define the coherence

order of conflicting write operations. In addition, relation
fr−→ is a from-read relation,

which can be derived from read-from relation
rf−→ and coherence relation

co−→ to represent
the conflicting writes that its value is not taken by the read and following the taken write

CHAPTER 2. PRELIMINARIES 25

empty atom & (fre;coe) as atomic

acyc l i c po | rfe | co | fr as sc

Figure 2-13: SC constraints in cat language

l e t po-loc = po & loc

acyc l i c po-loc | rf | co | fr as scpv

l e t ppo = po \ (W*R)

acyc l i c ppo | rfe | co | fr as tso

Figure 2-14: TSO constraints in cat language

event in the coherence order.
Moreover, the constraint specification of each memory model can be written in cat

language [ACM16], which is provided for Herding Cats framework. In this language,
users can freely define relations and define constraints on existing relations. Figures 2-13
and 2-14 show constraint specifications for sequential consistency model (SC) and total
store ordering (TSO), respectively.

2.4 Program Verification

Formal verification is an approach to ensure whether the property is satisfied with the
system or not. Generally, it is used to proved and/or disproved the given property by
using a formal method. Formal method refers to mathematically rigorous techniques and
tools for the specification, design, and verification of software and hardware systems. The
phrase mathematically rigorous means that the specifications used in formal methods are
well-formed statements in a mathematical logic and the formal verification is rigorously
deduced in that logic (i.e. each step follows from a rule of inference and, hence, can be
checked by a mathematical process).

There are approaches for formal verification. One approach is model checking, in which
we formalize a target system as a mathematical model and explore all reachable states
and transitions of the model. The target property is then used to check against each
reachable state. Most of the research could define the target property in a temporal logic
to determine liveness property of the system. The great advantage of this technique is
the process is done automatically to explore the states of the model. However, it could be
suffered by the state-explosion problem during the exploring process. The state-explosion
problem usually occurs in model checking of a complex system. To deal with the state-
explosion problem, there are various works to reduce the states to be explored or provide
a bound for exploring.

Another one is deductive verification, which constructs the collection of mathematical
proof obligations, the truth of which imply conformance of the system to its specification.
Then, proofs are provided for those proof obligations to verify the correctness. Generally,

CHAPTER 2. PRELIMINARIES 26

we usually use either interactive theorem prover, automatic theorem provers, or satisfiabil-
ity modulo theories (SMT) solvers. The disadvantage of this technique is that it requires
users to understand the system in detail, and how to convey the information for program
verification on the target system.

To ensure the program correctness, the program property must be defined for ensuring
the programs executed on relaxed memory models must always satisfy the given con-
ditions. Thus, Section 2.4.1 shows the motivation to define the property for specific
concurrent programs executed on relaxed memory models. Then, Section 2.4.2 shows the
SMT-based program verification approach that is used in our research.

2.4.1 Program Property

The program property can be categorized as safety property and liveness property. Live-
ness property required ’something good should occur’, while safety property requires
’something bad must not occur’. In this research, safety property is target property to
be ensured as the anomalous result must not occur in any program execution on relaxed
memory models. In particular, the value of memory locations observed by a processor
must be in the scope that we expected. For example, the following assembly program
uses load instructions to read the memory locations [X] and [Y] in the order to register
r1.

1 ldr r1, [X]

2 ldr r1, [Y]

Let the program property requires the read value of memory location [X] must greater
than 10, while the read value of memory location [Y] must less than 10. To ensure the
program execution satisfying the property, the assertion would be injected into the pro-
gram as the following.

1 ldr r1, [X]

2 assert (r1 > 10)

3 ldr r1, [Y]

4 assert (r1 < 10)

Then, the assertion conditions can be used to define the program property to ensure the
program correctness.

In usual concurrent programs, the programs are executed in an interleaving way, and
each statement is expected to be completed immediately. This means the effect of the
completed statement can be observed by any processor immediately. Thus, if an assertion
condition is not satisfied, the program is expected to be terminated immediately. However,
the effect of performed statement on systems using relaxed memory models would not be
seen by any processor immediately. This means it would be difficult to determine the
interleaving step and considering the terminating state. Thus, the assertion conditions
injected in the programs would be used as program invariant to ensure the conditions
must always be satisfied for any program execution no matter which completion order.
In addition, assumption conditions are also expected to be injected in the programs using

CHAPTER 2. PRELIMINARIES 27

assume statements, such as assume(v > 5). For instance, the following programs ensure
that the value v must always equal 1 if the value if u is 1.

1 [X] := 1

2 u := [Y]

3 assume(u = 1)

1 [Y] := 1

2 v := [X]

3 assert (v = 1)

In this research, the assertion conditions and assumption conditions are then used to
define the desired program property for ensuring the program correctness.

2.4.2 Satisfiability Modulo Theories (SMT)

In program verification using satisfiability modulo theories, the verification property of
the program P is supposed to be satisfied by system S, written as S |= P . This means
there is a valuation in a system S that satisfy P , in which the interpretation of system S
must be provided in a formal way.

Basically, the problem in satisfiability modulo theories (SMT) is a decidable problem
[Wik18], in which the problem is usually expressed by a first-order formula regarding the
background theories to deduce the formula, such as the theory of real number and theory
of arrays. For instance, if there is a problem expressed by x2 = y∧ y > 1, the background
theorems help to show there is a valuation(or interpretation) of the variables to satisfy
the problem. However, if there is a contradiction, the background theorems also disprove
the problem, in which there is no valuation found.

[AMP06] shows the way to verify a sequential program using SMT solver, which is more
efficient than using SAT solver. The work considers a sequential program as a sequential
execution, and abstract each statement as an instance to appear in a system, in which
the program is transformed into static single assignment form to realize the data flow of
the program. Then, the program is encoded into a first-order formula to be deduced by
the background theories provided by an SMT solver.

For instance, Figure 2-15(a) shows a sequential program, in which the program property
ensures the value of x is in the range between 1 and 9, expressed by assert(x > 0 ∧ x <
10). In the approach of [AMP06], the program is then transformed into a static single
assignment (SSA) form, shown in Figure 2-15(b), in which the value of variable x is
abstracted by x0, x1, x2, x3, and x4 to capture the state of variable x at each program
point after an assignment to x. Besides, the transformed program is then normalized as
shown in Figure 2-15(c) before the encoding process. Then, the encoding process can
directly be translated as the sets of formulas.

C = {x1 = (x0 > 0 ∧ x0 < 10)?x0 + 1 : x0,

x2 = (x0 > 0 ∧ ¬(x0 < 10))?x0 − 1 : x1,

x3 = (x0 > 0)?((x0 < 10)?x1 : x2)) : x2,

x4 = (x0 > 0)?x3 : x0}
P = {x4 > 0 ∧ x4 < 10}

where set C represents the formulas of program behavior represented in a first-order logic,

CHAPTER 2. PRELIMINARIES 28

1 i f (x > 0){

2 i f (x < 10){

3 x = x + 1;

4 }else{

5 x = x - 1;

6 }

7 }

8 assert (x > 0 ∧ x < 10);

(a) A sequential program

1 i f (x0 > 0){

2 i f (x0 < 10){

3 x1 = x0 + 1;

4 }else{

5 x2 = x0 - 1;

6 }

7 x3 = (x0 < 10)? x1:x2;

8 }

9 x4 = (x0 > 0)? x3:x0;

10 assert (x4 > 0 ∧ x4 < 10);

(b) a static single assignment (SSA)

1 i f (x0 > 0 ∧ x0 < 10) x1 = x0 + 1;

2 i f (x0 > 0 ∧ ¬(x0 < 10)) x2 = x0 - 1;

3 i f (x0 > 0) x3 = (x0 < 10)? x1:x2;

4 i f (>) x4 = (x0 > 0)? x3:x0;

5 i f (>) assert (x4 > 0 ∧ x4 < 10);

(c) a normalized program

Figure 2-15: Transformation of a sequential program for SMT-based program verification

and P represents the formulas of assertion conditions. In particular, the assignment x3 =

(c)?x1;x2 is realized as

x3 =

{
x1 If c
x2 Otherwise

Then, the formulas are used to check satisfaction whether the property formulas P is
satisfied under the program behavior C, written by

C |=T

∧
P

where T is a set of background theories to support the deduction and
∧
P is the con-

junction of formulas in set P . However, to adopt SMT solver, a formula is used to find a
valuation on free variables in the first-order formula such that∧

(C ∪ P)

In the approach of [AMP06], the behavior of a sequential program is deterministic and
there is only one interpretation of program behavior C. On the other hand, concurrent
programs are able to execute statements in an interleaving way. Thus, there might be
various evaluations, in which one of them violate the property formula

∧
P . Thus, the

formula
∧

(C ∪ P) might not be used in some program verification using SMT solver.

CHAPTER 2. PRELIMINARIES 29

2.5 Symbolic Analysis for SMT-based Program Ver-

ification

Given a program, an execution of the program is considered based on the computation of
the variables used in the conditions. Symbolic analysis of program executions is considered
to extract the possible control flows from the programs to be considered in further steps.
In particular, the computed valued of each variable is considered as a symbolic value
which is not interpreted yet. The benefit of symbolic values is the concrete value is not
needed to consider the behavior in the program, in which the scope of variables is used
to consider the reachable behaviors of the program.

For instance, the following program shows the control flows of the program by using if

statement.

1 v = A;

2 i f (v > 5){

3 u = 0;

4 } e l se {
5 u = 1;

6 }

7 v = u + v;

By considering the way to execute programs, there are 2 ways using assumption state-
ments instead of if condition as followings:

1 v = A;

2 assume(v > 5);

3 u = 0;

4 v = u + v;

and

1 v = A;

2 assume(!(v > 5));

3 u = 1;

4 v = u + v;

To realize the symbolic values, static single assignment (SSA) can be the form to model
the data flow in the program. Then, the above programs can be in the following forms to
describe the data flow on the variables using symbolic values.

1 v0= A;

2 assume(v0 > 5);

3 u0 = 0;

4 v1 = u0 + v0;

and

CHAPTER 2. PRELIMINARIES 30

1 v0 = A;

2 assume(!(v0 > 5));

3 u0 = 1;

4 v1 = u0 + v0;

Consequently, the values flown in the program are captured by SSA form. Note that, in
concurrent programs, the data flow on a variable can come from other programs, in which
the interleaving behavior must be considered. Thus, the analyzing of SSA form could be
more complicated for concurrent programs.

For SMT-based program verification, symbolic executions to be considered should cover
all practical executions that can occur in target programs. A direct way is to construct a
control flow graph of each program, and then collect a control flow from each of them to
be considered as a symbolic execution. In the static symbolic analysis, a loop caused in
the control flow graph can provide the infinite number of control flows to be considered.
Typically, the symbolic analysis of a loop behavior can provide a bound to restrict the
number of control flows for program verification.

2.5.1 Static Single Assignment (SSA)

In general, static single assignment is the form of programs that all variables in the pro-
grams must be assigned a value at most once. For example, the following program is in
SSA form.

1 v0 = 5;

2 i f (v0 == 2){

3 v1 = v0 * 2;

4 } e l se {
5 v2 = v0 + 2;

6 }

7 v3 = (v0 == 2)?v1:v2;

Note that assignment “v3 = (v0 = 2)?v1:v2” is the condition assignment that assign the
value v1 to v3 if condition (v1 = 2) is satisfied, otherwise v1 is assigned by v3. For the
condition assignment, the input data are v1 and v2 to be considered for v3, in which the
consideration is done only one time.

The programs in static single assignment form are applicable for program verification
in SMT-based program verification, in which the data flow can be abstracted by the first-
order formula directly. For example, the formula for the above example is (v0 = 5∧ (v0 =
2 =⇒ v1 = v0 ∗ 2) ∧ (¬(v0 = 2) =⇒ v2 = v0 + 2) ∧ (v0 = 2 =⇒ v3 = v1) ∧ (¬(v0 =
2) =⇒ v3 = v2)). Based on the provided formula, SMT solver can ensure the program
property is satisfied or not.

Given a sequential program, the transformation process of the program into an SSA
form is not so complicated. However, for concurrent programs, the interleaving behavior
must be considered to capture the data flow from other programs. The approach to
realizing the SSA form of concurrent programs can be considered by [LMP98]. In contrast,
this the global variables of this research is affected by a relaxed memory model, in which

CHAPTER 2. PRELIMINARIES 31

the concurrent static single assignment approach cannot be used in our research. However,
this research considers only the SSA form of local variables in the programs, in which the
generation mechanism is not complicated as the concurrent SSA.

2.5.2 Control Flow Analysis

Constructing a control flow graph for a program is a direct way to consider all possi-
ble symbolic executions for program verification. A graph usually defined as a tuple
〈N,E, n0〉, where N is the set of nodes, E is the set of directed edges and n0 ∈ N is the
initial node. Basically, each statement in a program is considered as a node appearing in
the control flow graph, in which there are directed edges between each sequential state-
ment. For the control flow statement, such as goto and if, the direction of edges could
not be in the sequence or there is a condition on the directed edges. For instance, the
following program contains a loop and goto statement to exit the loop.

1 v = 0;

2 do{
3 i f (v == 5)

4 goto L

5 v = v + 1;

6 }while(true);
7 L:

8 u = v;

The control flow graph of the above program can be represented by Figure 2-16.

Figure 2-16: An example of control flow graph

To analyze symbolic executions, the control flows from the graph is extracted and re-
place each control statement as an assumption statement, such as assume(v == 5) in the
following execution.

1 v = 0;

2 assume(v == 5)

3 u = v;

CHAPTER 2. PRELIMINARIES 32

(a) Original CFG (b) CFG after loop cutting

Figure 2-17: A program, and CFG obtained using the inductive invariant approach
[DHKR11]

To realize the symbolic execution, the control flow must be in SSA form, such as

1 v0 = 0;

2 assume(v0 == 5)

3 u0 = v0;

By using this approach, the program described by either structured programming style
or unstructured programming style can be considered to extract the corresponding sym-
bolic executions systematically. However, if the control flow graph contains a cycle, the
number of control flows becomes infinite. Thus, for the program verification purpose, the
bound must be given to restrict the state space to verify the program property on the
loop behavior.

2.5.3 Invariant Analysis

Due to the limitation of control flow analysis, the number of loop iterations must be
restricted by a bound to generate the finite number of symbolic executions automatically.
As the loop behavior can be infinite because the condition is not evaluated yet, we would
like to find a way to abstract the behavior of the loop.

The inductive invariant approach is described in [DHKR11], which can be directly
used to verify concurrent programs in multiprocessor systems using sequential consistency
model. The approach is originally proposed to analyze the program execution symboli-
cally for program verification using SAT/SMT solver. Especially, the behavior of loop is
considered in an abstraction regarding a loop invariant.

Figure 2-17 shows the overview of the original approach. First, the control flow graph
in Figure 2-17(a) is considered to point out the cut-points of the graph. According the
graph, B1 is a program fragment before entering a loop, B2 is a loop body, and the loop
condition is i < n. After loop cutting, shown in Figure 2-17(b), an invariant condition φ
is used to assume an arbitrary loop iteration before the loop body. After the loop body
B2 in Figure 2-17(b), there is 2 possible control flows: (1) ensuring the invariant condition

CHAPTER 2. PRELIMINARIES 33

Figure 2-18: A data flow of concurrent programs allowed by POWER

is always preserved for any loop iteration and (2) exiting from an arbitrary loop iteration.
This approach is always correct for the program executed on sequential consistency model
because the effect of every program execution always follows the program order. However,
we suspect the approach could be used for some relaxed memory models.

Figure 2-18 illustrates the data flow in which the non-conflicting writes could affect the
assertion, which is permitted by POWER memory model regarding axiomatic semantics
in [MHMS+12]. Note that this data flow was tested using herd7 tool1 by providing a
litmus test. The arrows in the figure mean the direction of the value of a write event is
flown to a read event. This shows the assertion of P1 is violated due to the value of vx
can be 2 which is affected by the following non-conflicting writes.

However, there might be some relaxed memory models that are applicable to adopt the
inductive invariant approach. The problem of this approach on relaxed memory models
is the read access could be delayed, in which the invariant is not preserved anymore if
the following effect of memory access can change the computation of prior operations.
Therefore, the relaxed memory models that are applicable for this approach should not
allow the effect of following operations can affect the computation of prior operations, in
which total store ordering (TSO) and partial store ordering (PSO) models are applicable.

Total Store Ordering (TSO) is the memory model that relaxes some behaviors of mem-
ory accesses in which the completing order of write accesses, or stores, is always preserved.
Intuitively, TSO allows the write access to be completed after the following read access if
the write access cannot be completed, yet, so as to reduce the memory latency of program
execution. Although there is no standard specification of the model in general, there are
two types of specifications of TSO provided by Gharachorloo and Herding cats frame-
works, shown in Figure 2-4 and Figure 2-10, respectively. According to both specification
for TSO memory model, the order of a write access following by a read access is allowed
to be completed out-of-order regarding the whole system.

Partial Store Ordering (PSO) is an extension of TSO memory model to allow the non-
conflicting write accesses to be completed out-of-order. Figure 2-6 shows the specification
for PSO memory model provided by Gharachorloo framework, in which the non-conflicting
write accesses are allowed to be completed out-of-order, in which the memory latency can
be reduced by delayed the completion of a write access after a following non-conflicting
write access if the access cannot be completed immediately.

1herd7 is available at http://diy.inria.fr

CHAPTER 2. PRELIMINARIES 34

According to the inductive invariant approach, the loop behavior is abstracted by ig-
noring the remaining memory access outside the loop as the sequential consistency model
does not allow the following memory accesses to affect the prior computation. On the
other hand, the proposed operation structure considers the computation on local variables
and the local variables can be affected by a read access. In particular, as our assertion
language is expressed on local variables, the effect of read access must be a concern on
relaxed memory models. However, as the effect of TSO and PSO do not allow the read
access to be completed by any memory access; thus, the computation always depends
on the existing memory accesses in the system. Consequently, the inductive invariant
approach is deemed to be sound for TSO and PSO based on our operation structure.

CHAPTER 2. PRELIMINARIES 35

Chapter 3

Bounded Method for SMT-based
Program Verification

3.1 Motivation

To ensure the correctness of concurrent programs on relaxed memory models, the re-
quirement is expected to be provided on the program variables. In our research, the
requirement is then considered as the safety property to be verified to ensure the unde-
sired values cannot be provided. Besides, as relaxed memory models are considered, the
exact value of a shared-memory location could not be determined globally at that same
time. Thus, the program property is determined by local variables on each processor.

As the target memory models are at the hardware-level, assembly programs which
facilitate the behavior of processors are considered. In particular, as the objective of this
method is to ensure the correctness of programs executed on relaxed memory models,
we would like to provide an abstraction level of assembly programs that can capture the
essential behavior of programs affected by relaxed memory models. Thus, Section 3.2
shows the abstraction of an assembly program, called operation structure. Especially,
this abstraction also defined the program property to be verified by itself.

In traditional program verification of concurrent programs, the effect of every memory
access is always completed in the order following the program order among processors.
Obviously, the effect of computations relies on the prior memory accesses performed in
a system. However, the behavior of programs on a relaxed memory model permits the
completing order so as not to follow the program order, the computations could be affected
by the latter memory accesses if the completion of a memory access is delayed. Our
research would like to propose a method that can realize the effect of program executions
for program verification on relaxed memory model.

Due to there is no standard description of memory models, one could consider the
program semantics on a specific memory model, such as [Rid10, LV15]. However, this
research would like to realize the program behavior on a variety of memory models.
Currently, there are frameworks, such as [AMT14, Gha95], to model relaxed memory
models to realize the effect of program execution on their abstraction. The idea of those

36

Figure 3-1: Overview of Bounded SMT-based Verification

frameworks is to give the constraints on the program behavior and realize the effect of
program execution on the behavior. The constraints are given by a specification of a
memory model provided in the standard of a modeling framework. Hence, adopting the
memory model specifications would be an appropriate way to realize the effect of program
execution for verification.

SMT-based Program Verification is an appropriate approach to realize a valid effect
of program executions based on the given constraints. Using an SMT solver in program
verification, the behavior to be verified must be represented in a first-order formula, in
which the read value is represented by a free-variable to be evaluated with respect to a
memory model. Besides, the program property is also abstracted in the formula as the
condition must not occur to ensure the correctness. For instance, if the read value of read
R1 is abstracted as variable val1 and there is an assertion condition val > 1, the formula
consists of (val1 = ReadVal(R1)) ∧ (¬(val > 1)), where ReadVal is an uninterpreted
function to realize the read value of a read access based on a memory model. Using that
shape of the formula, if the solver cannot find any valuation, we can ensure there is no
valuation that violates the program property val > 1.

The idea of an operation structure is to capture the operations which are granules of
assembly instructions to appear in multiprocessors, in which the operations that affected
by relaxed memory models are considered, such as read operation and write operation.
However, operation structures cannot solely express the program behavior on a relaxed
memory model. Thus, the abstraction of program executions, called execution path, is
considered.

Figure 3-1 shows the overview of the approach to verify the program property of the
given assembly concurrent programs on target memory model. First of all, given a se-
quence of assembly programs, each program must be translated into a corresponding
operation structure, defined in Section 3.2, which abstracts the way to execute a program
in a general way among various instruction semantics. The idea of an operation struc-
ture is to capture the operations which are granules of assembly instructions to appear in

CHAPTER 3. BOUNDED METHOD 37

multiprocessors, in which the operations that affected by relaxed memory models are con-
sidered, such as read operation and write operation. However, operation structures cannot
solely express the program behavior on a relaxed memory model. Thus, the abstraction
of program executions, called execution path, is considered.

The sequence of operation structures is then explored as a set of execution paths, in
which the execution path represents a way to perform operation into a system in the
program order. To verify the program property, an SMT solver is used to automati-
cally realize the valid effect of program executions under the constraints regarding target
memory model. In particular, an execution path is encoded with the constraints repre-
senting the specification of target memory model into a first-order formula. Especially,
the program property of an execution path is accumulated from the property statements
appearing in the execution path. In program verification, let the encoded formula rep-
resents the effect that violates the program property, then, the SMT solver must not
provide a valuation of the effect that violates the program property. Therefore, to ensure
the program correctness, the encoded formula of any corresponding execution path must
not have a valuation provided by the SMT solver.

3.2 Abstractions of Assembly Programs

In our research, the abstraction is used to provide the sufficient information of the con-
current programs for program verification on relaxed memory models. As the target of
memory models is at the hardware level, the behavior of programs performed at the hard-
ware level is our concern. Besides, due to assembly programs is close to the hardware
behavior, the behavior of assembly programs are also considered to provide the abstrac-
tion. However, in practice, the assembly programs could provide various behavior to
facilitate the processors, while the target of abstraction focuses on the behavior that pro-
duces significant behavior at the hardware level for relaxed memory models. Therefore,
Section 3.2.1 shows the assumptions on assembly programs for program verification.

Then, our research introduces an operation structure, as shown in Section 3.2.2, as a
representation of an assembly program. Note that the representation focuses on the op-
erations, which are granules of instructions, that affect the calculation of local variables
in a program. Figure 3-2(a) shows a fragment of Spinlock implementation in FMP kernel
of TOPPERS project for ARM processors. Figure 3-2(b) then shows the operation struc-
ture of the assembly program, in which interruption instruction wfene and coprocessor
instruction wfene are not considered. Although interruption and coprocessor instructions
are used to change the behavior of processors, the side effects of those do not affect the
calculation of programs. Thus, our operation structure is an abstraction of an assem-
bly program, which focuses on the behavior that is sufficient for program verification on
relaxed memory models.

For program verification, the program property of concurrent programs is then defined
by assertion conditions and assumption conditions as the program invariant. This means
the conditions must be satisfied for any program execution on the target memory model.
In particular, as the value of shared-memory locations could not be the same as the

CHAPTER 3. BOUNDED METHOD 38

1mov r2, #0x01

2 ldreq r1, [lock]

3cmp r1, #0x00

4 msrne cpsr_c, %2

5 wfene
6 msrne cpsr_c, %3

7 strexeq r1, r2, [lock]

(a) assembly program

1 instr { //move r2 , #0x01

2 val := 1;

3 r2 := val

4 };

5 instr { // ldreq r1 , [lock]

6 val_z := z;

7 i f (val_z = 1){

8 l l (val , [lock]);

9 r1 := val

10 }

11 };

12 instr { // cmp r1 , #0x00

13 (rd := r1 ‖ rt := 0);

14 (val_z := (rd =rt)? 1:0 ‖
15 val_n := (rd =rt)? 0:1) ;

16 (z:= val_z ‖ n := val_n)

17 };

18 instr { // strexeq r1 , r2 , [lock]

19 val_z := z;

20 i f (val_z = 1){

21 rt := r2;

22 sc(val , [lock], rt);

23 r1 := val

24 }

25 }

(b) Operation Structure

Figure 3-2: Representation of an assembly program

same value at the same time on each processor, the local variables are used to define the
program property.

Figure 3-3 shows a sequence of operation structures for store buffer (sb) programs
in Figure 2-5 and the program property defined by assertion and assumption. In our
operation structure, assertion and assumption annotations are allowed to be injected in
the structures at appropriate program locations. In this program property, assumption
assume(val = 0) restricts the state space of program verification, in which the read
value of location [Y] observed by structure γ1 equals 0. On the other hand, assertion
assert(val = 1) ensures the return value of read access to location [X] must be 1 for
every valid evaluation of read values.

Nevertheless, a sequence of operation structures cannot be used in SMT-based program
verification directly. Thus, an execution of operation structures is defined in Section 3.2.3
in a formal way. Then, the executions of the given sequence can be considered using the
semantics of operation structures, shown in Section 3.2.4. The semantics of operation
structures considers the executions on operations to be performed in an abstract way

CHAPTER 3. BOUNDED METHOD 39

1 instr { // mov r1 , #0x01

2 val := 1;

3 r1 := val

4 };

5 instr { //str r1 , [X]

6 val := r1;

7 [X] := val

8 };

9 instr { // ldr r2 , [Y]

10 val := [Y];

11 r2 := val

12 };

13 assume(val = 0)

(a) Operation Structure γ1

1 instr { // mov r1 , #0x01

2 val := 1;

3 r1 := val

4 };

5 instr { //str r1 , [Y]

6 val := r1;

7 [Y] := val

8 };

9 instr { // ldr r2 , [X]

10 val := [X];

11 r2 := val

12 };

13 assert (val = 1)

(b) Operation Structure γ2

Figure 3-3: Example of program property

because the computed value on a read access depends on target memory model. However,
the semantics can represent a way to performed operations to the system.

3.2.1 Assumptions on Assembly Programs

In practice, there are various assembly instructions to facilitate processors, such as in-
terruption and supervisor call. Besides, assembly programs could use macro instructions
and/or assembler directives in the programs to describe the behavior of the programs.
However, as the target of this research is to verify the concurrent assembly programs on
relaxed memory models, the essential behaviors of assembly programs are considered in
an abstraction of assembly programs. Thus, this subsection introduces the assumptions
on assembly programs to be considered.

Assumption on Computation

For the computation of assembly programs, there are various factors such, as using word or
byte, to be considered for calculating. However, for the simplicity of program verification,
those values are considered as natural numbers in the abstraction. Besides, the basic
operators + and - are used for calculation.

Among the assembly instructions, the data-processing instructions are the concern for
realizing the program computation. In practice, there are various computations can be
done on registers, such as multiplication and shift instructions. However, as the assump-
tion restricts the operators to be + and - for the computation, the complicated instructions
are not considered in the abstraction of assembly programs. For instance, multiplication
instruction MUL of ARM instruction is not considered in this research. On the other hand,
addition instruction ADD of ARM instruction is considered in this research.

Besides, as the data type to be used in the abstraction is natural numbers, all data type

CHAPTER 3. BOUNDED METHOD 40

in assembly programs is considered as the same type. Thus, the abstraction would be
the same, even if there is a variety of assembly instructions for data type. For example,
POWER instruction for word data type lwz and POWER instruction for by byte data
type lbz are considered as loading the integer value from the memory location.

Assumption on Assembly Instructions

In this research, the target of program property is to ensure the computation of concurrent
programs executed on relaxed memory models. According to Section 2.2.1, although there
are various assembly instructions provided by processor architectures, the instructions
that are affected by relaxed memory models is our concern. For instances, supervision calls
are not considered in the abstraction for program verification. In multiprocessors using
relaxed memory models, the instructions accessing shared-memory locations are directly
affected, such as load and store instructions. In addition, there are also instructions that
facilitate the computation of concurrent programs on multiprocessors systems, such as
fence instructions.

Load/Store instruction. For program verification, the instructions that access the
shared-memory locations are the primary concern in this research. According to Section
2.2.1, load/store instructions are the instructions to be considered for the abstraction of as-
sembly programs. For instance, the behavior of ldr r1, [0x02] that access the memory
location [0x02] is taken into account. In addition, the load-exclusive and store-exclusive
instructions are considered in this research as load-link and store-condition instructions,
which could be more general for other multiprocessors. For instance, the following pro-
gram shows the usage of load-link instruction ldrex and store-condition strex. These
instructions are supposed to be used as a pair.

1 ldrex r1, [X]

2cmp r1, #0x00

3 moveq r2, #0x04

4 strex r3, r2, [X]

The write access issued by strex can succeed if there is no intermediate write access to
memory location [X] after instruction ldrex. If the write access cannot be completed,
the result of r3 becomes 1, while the result of r3 equals 0 if the write can succeed.
Note that the intermediate write access can be external write access from other programs
in which the behavior of load-link and store-condition helps to avoid anomalous results
among concurrent programs. Consequently, the program verification can realize the effect
of program execution regarding the relaxed memory models.

Swap and test-and-set instructions are also considered because those instructions
can access the shared-memory locations. As these instructions could be used in the
concurrent programs, the behavior of these instructions must be taken into account for
program verification. Note that these instructions are considered as read-modify-write in
this research.

Read-modify-write instructions are instructions that issue both read and write accesses
to the same memory location and require the behavior of both accesses appears to be

CHAPTER 3. BOUNDED METHOD 41

atomic. A practical instruction for this kind of instructions is swap instruction, which
is used for some concurrent programs to prevent interruption between read and write
accesses.

Predicated Instruction. In addition, the behavior of condition executions is also
considered in the abstraction of assembly programs. In particular, this behavior is con-
sidered as predicated instruction in this research. In practice, if the load/store instructions
contain the behavior of condition execution, the instruction can access the target memory
location if the condition is satisfied during program execution. For instance, ldreq r1,

[X] is an assembly instruction for ARM processors that has a condition, denoted by eq,
flag register z must equal 1 to perform instruction ldr r1, [X]. Note that the condition
usually relies on local registers, such as flag register, to be evaluated as 0 or 1. This
behavior is attached to almost instructions in recent processors. Thus, this behavior must
be considered as the decision to access the memory locations could affect the computation
of the programs executed on relaxed memory models.

Synchronizing Instruction. Besides, as the behavior of multiprocessors is needed for
program verification, the instructions for synchronization are the significant instructions to
be considered. In the implementation of concurrent programs, there are various concerns,
such as data race and race condition, to be considered to prevent anomalous behaviors
occurring in program executions. In particular, these instructions are used to maintain the
result of program execution as not to be affected by relaxed memory models. For instance,
memory barrier or fence instructions can prevent the side effects of prior instructions to
be taken or their memory accesses must be completed before the following instructions.
In some processors, there might be various fence instructions to prevent anomalous on
the specific type of behaviors, such as dmb and dsb in ARM processors. Obviously, the
behavior of a fence is provided based on specific memory models and specific processor
architectures.

Branch Instruction is a standard instruction for assembly instructions for any pro-
cessor. The behavior of a branch is to change the program counter of a processing unit
to fetch the instruction at the target branch if its condition is satisfied. Normally, the
target of the branch is abstracted as a label in the assembly program, which represents
the specific line number of programs. The branch is used with predicated instruction
or no condition to go to the target location. For instance, instructions bne CS and b L

are branch instructions to jump onto the label CS and L, respectively, if the condition is
satisfied.

1 L:

2 sub r1, r1, 1

3cmp r1, #0x10

4 beq CS

5mov r2, r1

6 add r1, r2, 2

7 b L

8 CS:

Normally, the condition of each processor architecture relies on a flag register, such as z

CHAPTER 3. BOUNDED METHOD 42

and n. In the above program, the condition is extracted by decoded instruction, such as
beq has condition (z = 1), while b has no condition which is always satisfied.

Branch to subroutine is not considered in this research yet. As the primary
concern is the control flow of the program, only the basic control flows in considered for
simplicity of program verification. Besides, due to the behavior of a branch, an assembly
program is considered as unstructured programming, in which a spaghetti code can occur
during implementation.

Assumption on Memory Locations

In our program verification, as the target to be verified is the property of concurrent pro-
grams, the abstraction to be considered assumes the shared-memory locations to be used
must be known beforehand. Intuitively, the scope of memory locations is already defined
during implementation. Thus, the assumption that memory locations to be considered in
program verification must be provided explicitly.

For instance, given the following programs, the addressing mode of each load/store
instructions indicates the memory locations to access directly.

1 ldr r1, [0x01]

2 str r2, [0x02]

1 ldr r3, [0x02]

2 str r4, [0x01]

In this example, ones explicitly know the memory locations [0x01] and [0x02] are used
to communicate between concurrent programs. On the other hand, the following example
uses register r1 to indicate memory location [0x01], which can be known by program
analysis.

1mov r1, 0x01

2 ldr r3, [r1]

1mov r1, 0x01

2 str r4, [r1]

This means the scope of memory locations to be accessed is restricted finitely. Thus, these
behaviors are considered in this research.

Memory Allocation should not occur. Due to the assumption that the memory
locations must be known beforehand, the concurrent programs to be considered must not
access to a fresh memory location. This means the memory locations must be known
before providing the abstraction of the concurrent assembly programs.

Limitation of the assumptions

In programs’ point-of-view, there is missing information that cannot be represented by the
abstraction. According to send event (sev) and wait for an event (wfe), these instructions
would cause the starvation problem for program verification. Intuitively, the behavior of
interruptions is not taken into account for program verification. For example, the following
program uses to wait for event (wfe) instruction to enter the low-power state and wait
for an event. If there is a possibility to wait forever, the starvation property must be a
concern for this program.

CHAPTER 3. BOUNDED METHOD 43

1 L:

2 ldr r1, [0x04]

3cmp r1, #1

4 wfeeq

5 beq L

6 ; critical section

7 sev

Among load/store instructions, pop and push instructions are also included in this
category. However, the abstraction does not intent to realize the stack behavior during
the program execution. Using stack behavior, the memory allocation could occur, which
is not supposed to occur in the abstraction. For example, the following assembly program
uses push instruction to store the values of r1 and r2 to the memory locations indicated
by stack pointer (sp). During the pushing process, a fresh memory location is used in the
program.

1 ; Save sp before push.

2mov r0, sp

3 ; Push.

4mov r1, #1

5mov r2, #2

6 push {r1, r2}

Thus, the program containing the pop and push instructions cannot be represented by
the proposed abstraction.

However, in our program verification approach, the SMT-based program verification
approach is supposed to be used. Hence, a verification condition of the target programs
must be decidable. By the assumptions: (1) memory locations are known beforehand, and
(2) the operators + and - are used for computations, the verification condition becomes
decidable because the scope of instances to be realized by SMT solvers is finite. Although
the abstraction to be proposed does not represent the whole behavior of practical assem-
bly programs, the essential behaviors to be considered on relaxed memory models are
expected to be captured in the abstraction. Note that the discussion of the advantages
and disadvantages of the proposed abstractions are shown in Section 5.3.4.

3.2.2 Operation Structure

At the hardware-level, an assembly instruction is not always executed atomically. Besides,
one instruction can do more than one actions, such as multiple write accesses. Thus, an
instruction is assumed to be a collection of operations to be executed in the hardware.
Note that an operation might not be executed atomically in the hardware. For example,
once an operation is performed by a processor, it might appear to each processor in a
different time as a micro-operation.

In an assembly language, instructions can access register, memory locations and tem-
poral registers using for calculation. For temporal register, this research assumes the data
flow of a processor should have an intermediate storage to temporally keep the value for

CHAPTER 3. BOUNDED METHOD 44

the further process in the behavior of an instruction. For example, instruction ldr r1,

[X] reads the value of location [X] and store in a temporal register before writing back to
register r1. In this research, the target accesses are considered as variables to be used in
our abstraction, which are shown in Definition 3.1. Note that, in practice, the components
to be accessed are different on each processor. For simplicity, the sets of target accesses
are defined similarly to the followings for the explanation in the thesis.

Reg = {r0, r1, . . . , r13} ∪ {z, n, v, c}
Loc = {[A], [B], [x], [y]}

Tmp = {val, v1, v2, result}

For memory locations, in an assembly program, a memory address could be calculated
during the program execution to determine the memory location. However, this research
assumes that the shared-memory locations to be accessed should be known beforehand.
Besides, the behavior of program executed on relaxed memory models can be determined
on the known memory locations using the memory model specification. Therefore, the
memory locations are defined in set Loc as symbolic values, in which each value is different
from each other.

Definition 3.1 (Variable). A variable is either register, memory location and temporal
register. Let V be the set of variables, Reg be the set of registers, Loc be the set of
memory location and Tmp be the set temporal registers, such that V = Reg∪Loc∪Tmp
and Reg ∩ Loc ∩ Tmp = ∅.

To define computation of programs, expression and boolean expression is defined on
temporal registers. The main reasons not to consider on memory locations and registers
are: (1) the consistency of memory locations is not the same for any memory model, and
(2) we would like to separate the behavior of reading/writing to a register and computation
on a value even if the computation is seemed to be done immediately in a processor unit.
Consequently, the sets of expressions and boolean expressions are shown in Definition 3.2
and Definition 3.3, respectively.

Definition 3.2 (Expression). An expression e ∈ Exp over temporal register Tmp is
defined on operators + and − for verification purpose. Set Exp is the smallest set X with
the properties:

1. N ⊂ X,Tmp ⊂ X,

2. ϕ, ψ ∈ X implies (ϕ+ ψ), (ϕ− ψ) ∈ X,

3. β ∈ Bexp and ϕ, ψ ∈ X implies ((β)?ϕ : ψ) ∈ X.

where + and − are connectives, (,), :, and ? are auxiliary symbols.

Definition 3.3 (Boolean Expression). Set Bexp is the smallest set X with the properties:

1. >,⊥ ∈ X,

CHAPTER 3. BOUNDED METHOD 45

2. e1, e2 ∈ Exp implies (e1 = e2), (e1 < e2), (e1 > e2) ∈ X,

3. ϕ, ψ ∈ X implies (ϕ ∧ ψ), (ϕ ∨ ψ) ∈ X,

4. ϕ ∈ X implies ¬(ϕ) ∈ X

where =, <,>,∧,∨, and ¬ are connectives, (and) are auxiliary symbols.

The usage of expressions is to compute the arithmetic calculation of assembly instruc-
tions. For instance, ARM instruction add r2, r1, 2 computes the value of register r1

by adding 2 and then save the result into register r2. To abstract the behavior, the value
of register r1 is loaded into a temporal register, and the computation is done on the
temporal register by adding 2; After the computation, the value of the temporal regis-
ter is saved into register r2. Note that, according to Section 2.1.2, POWER and ARM
multiprocessors requires dependencies on the memory accesses to consider the behavior of
program execution. As temporal registers are introduced and the arithmetic calculation
is done on the temporal registers, the dependency on POWER and ARM multiprocessors
can be determined on the read and write operations directly.

In a system, operations are supposed to be granules of assembly instructions to be
performed implicitly. Especially, operations representing memory accessing are our con-
cern, which is affected by relaxed memory models. Definition 3.5 shows the types of
an operation to be used in an operation structure. For simplicity, the representation of
read operation, write operation and arithmetic operation is considered as an assignment,
shown in Definition 3.4. Note that there is a restriction on an assignment that either v
or e must be a temporal register, which allows us to distinguish the type of an operation
as either read operation, write operation or arithmetic operation.

Definition 3.4 (Assignment). An assignment is of the form v:= e, where v ∈ V , e ∈
Exp ∪ V such that v ∈ Tmp ∨ e ∈ Tmp.

Definition 3.5 (Operation). An operation op ∈ Opr is a granule of assembly instructions,
which is either:

• Read operation, which is an assignment v:= e, where e 6∈ Tmp,

• Write operation, which is an assignment v:= e, where v 6∈ Tmp,

• Arithmetic operation, which is an assignment v:= e, where v ∈ Tmp and e ∈ Exp,

• Branch operation branch(c, l), where c ∈ BExp and l is a label annotation,

• Fence operation f ∈ Fence,

• Load-Link operation ll(v, loc), where v ∈ Tmp and loc ∈ Loc, or

• Store-Condition operation sc(v1, loc, v2), where v1, v2 ∈ Tmp, loc ∈ Loc.

where Fence is the set of fence operations.

CHAPTER 3. BOUNDED METHOD 46

Branch operation branch(c, l) represents the behavior of a branch instruction that
condition c ∈ BExp must be satisfied to jump onto program location at label l, shown
in Definition 3.6. This is a decision branch for program flow to control the execution of
operations based on the evaluation of condition c.

Definition 3.6 (Label). A label annotation is of the form label(l) where l ∈ Lid is a
label identifier.

Fence operation f ∈ Fence corresponds to a fence instruction, or memory barrier,
appearing in an instruction set architecture. Set Fence could be different from each
processor, such as FenceARM = {dmb,dsb}. Especially, the semantics of each fence
operation is also different from each other. However, our operation structure only focuses
on the way to perform operations in a system, excluding the concrete semantics of each
operation.

Load-link ll(v, loc) and store-condition sc(v1, loc, v2) are the abstractions of synchronize
instructions, introduced in modern processors. These operations are used as a pair in a
program to access the same memory location. Note that these synchronize instructions are
proposed in both programming language and at hardware-level, such as C++ and Power
[SMO+12], in which the semantics of these varies on a practical processor. Generally,
load-link ll(v, loc) produces a read access to location loc; store-condition sc(v1, loc, v2)
writes the value of v2 to location loc and assigns a flag to v1 if the write access fails.

In relaxed memory models, the operations proposed in Definition 3.5 would be sufficient
to realize the effect of program execution. For example, a write operation issues a cor-
responding write access, and a read operation issues a corresponding read access. These
issued accesses are necessary to determine the effect of relaxed memory models. Besides,
store-condition operation and load-link operation are motivated by the synchronizing in-
structions proposed in ARM and POWER. These operations provide a read access and a
write access with conditions. Then, the operations also proposed to cover the behavior of
basic assembly instructions for the purpose of program verification.

In the instruction semantics of a processor architecture, the corresponding operations
of an instruction are supposed to be performed in a partial order. In addition, there might
be instructions that restrict the behavior of the operations, e.g., predicated instruction
and read-modify-write instruction. Thus, an execution structure shown in 3.7 is used to
capture the way to perform the corresponding operations.

Definition 3.7 (Execution Structure). Given operation op, Boolean expression c and
execution structures γ1, γ2, an execution structure is either an operation,

• nil,

• Sequential Execution γ1; γ2,

• Parallel Execution γ1 ‖ γ2,

• Atomic Execution atom(op), where op is either read operation or write operation,
or

CHAPTER 3. BOUNDED METHOD 47

• Condition Execution if(c){γ1}.

An execution structure is defined based on operations regarding operators and aux-
iliary symbols to indicate the way to perform operations and the relations on operations,
such as atomic requirement. First of all, nil is a basic structure indicating there is no op-
eration to be performed. For sequential execution and parallel execution, these are used
to indicate the partial order of operations to be performed. As we suspect operations
of an instruction are not needed to be performed in a sequential way, this means some
operations are allowed to be performed simultaneously. Hence, the parallel execution is
introduced for our operation structure.

As for condition execution if(c){γ1}, the behavior of a predicated instruction is then
captured by this execution. The motivation of this execution comes from the behavior of
predicated instruction which performed its own behavior once the condition is satisfied.
For example, load instruction ldreq r1, [X] issues a read access if the flag register z

equals 1.
For atomic execution atom(op), wrapper atom is used to indicate which operations

must appear as a read-modify-write manner. The motivation of this notation comes
from the read-modify-write instructions that require its read and write accesses to appear
atomically, such as swap instruction. Instead of using a direct operation to represent such
behavior, the wrapper is used to indicate a pair of read and write operations to allows
the calculation before the write access is issued.

In practical, there might be compare-and-swap instruction that is an atomic instruction
to load a memory location to be compared before exchanging the values between register
and the memory location. By the definitions of condition execution and atomic execution,
we would adapt the definition to represent the behavior as the following.

1 atom(val_l := [L]);

2 i f (val_l = 0){

3 val_r := r1;

4 r1 := val_l;

5 atom([L] := val_r)

6 }

where the operations val l := [L] and [L] := val r are required to appear atomically
if the operation [L] := val r is performed.

Given an assembly instruction, the corresponding operations to be performed is defined
in γ, in which the order to be performed is defined with respect to the instruction seman-
tics. The order to perform operations can be described in a partial order using defined
execution structures, such as sequential execution and parallel execution. For instance,
instruction cmp r1, r2 that could read the values of r1 and r2 concurrently can be rep-
resented by parallel execution (v1 := r1 ‖ v2 := r2), where v1 and v2 are temporal
registers such that v1, v2 ∈ Tmp. In addition, to define the scope of those operations
that are performed by the same assembly instruction, execution structure γ must be the
element of instruction execution instr{γ}.

CHAPTER 3. BOUNDED METHOD 48

1 instr {
2 val_z = z;

3 i f (val_z = 1){

4 val := [X];

5 r1 := val

6 }

7 }

ldreq r1, [x]

1 instr {
2 atom(val := [x]);

3 r2 := val;

4 atom([x] := 1)

5 }

ldstub [x], r2

Figure 3-4: Examples of corresponding execution structures for instructions

Definition 3.8 (Instruction Execution). Given an execution structure γ, an instruction
execution is of the form instr{γ}.

Figure 3-4 illustrates the instruction executions of a predicated instruction and an
atomic instruction. The behavior of a predicated instruction, in which its execution occurs
if the condition holds, can be represented by condition execution. For instance, ldreq
r1, [x] can be represented as the left execution structure in Figure 3-4. To illustrate
more behavior, let’s consider read-modify-write instruction ldstub [x], r2 that reads
the value of memory location [x] into register r2 and then writes 1 to memory location
[x] atomically. The instruction can be represented as the right execution structure in
Figure 3-4. Atomic wrapper atom is used to indicate read and write operations that are
required to appear atomically.

Definition 3.9 (Property Statement). Let c ∈ Bexp be a Boolean expression, a property
statement is either assume(c) or assert(c).

For the purpose of program verification, the requirement of programs is described in the
programs using assertion and assumption statements. Note that the property statements
is to define the invariant condition of programs. Assumption assume(c) restricts the
scope of behavior in which the effect of the behavior always satisfies condition c. If there
is no behavior that satisfies the condition, this means there is no behavior to be considered
for program verification. Note that, by using assumptions, users could be able to analysis
the cases to be verified.

For assertion assert(c), the effect of program behavior at the specific location is re-
quired to satisfies the assertion condition c. In contrast to usual assertion statements, the
assertion conditions in the programs must be used together with assumption conditions
to determine the invariant condition of the programs. In relaxed memory models, the
interleaving step of program execution is not the matter for program verification, while
the invariant condition to always be satisfied is the concern. This means the termination
during the program execution does not the matter for program verification.

Figure 3-5 shows the difference between assertion and assumption. Both of them read
memory location [X], in which the left-side requires the return value that stored in tem-
poral register val must equal 0 for any effect of program behavior, while the right-side

CHAPTER 3. BOUNDED METHOD 49

1 instr {
2 val := [X]

3 r1 := val

4 };

5 assert (val = 0)

1 instr {
2 val := [X]

3 r1 := val

4 };

5 assume(val = 0)

Figure 3-5: The difference between two statements

1 instr { [X] := 1 };

2 instr { val_y := [Y] };

3 assume(val_y = 1)

1 instr { [Y] := 1 };

2 instr { val_x := [X] };

3 assert (val_x = 1)

Figure 3-6: Example of Program Property

just restricts the scope of program behavior such that the behavior that causes val equals
0 is of interest for program verification.

In addition, Figure 3-6 shows the way to define the program property using property
statements. Assumption condition val y = 1 is used to restrict the execution to be con-
sidered must have return value val y equals 1. For program verification, the assumption
condition is given to ensure that the executions satisfying the assumption condition must
satisfy assertion condition val x = 1. Thus, the program property does not consider
the interleaving step of program execution, however, the effect of program executions is
considered regarding the program invariant defined by the property statements.

Definition 3.10 and Definition 3.11 represent the way to define operation structures for
representing a sequence of assembly programs. Figure 3-7 shows the corresponding oper-
ation structures of the message passing programs in Figure 1-2. Note that an assignment
such as val z := (rd = rt)?1:0 is a condition assignment in which 1 is assigned to
val z if (rd = rt) is satisfied, and 0 is assigned for otherwise. Each instruction is repre-
sented by instruction execution instr{. . . } to represent the way to execute with respect
to its processor.

Definition 3.10 (Operation Structure). An operation structure is a sequence of instruc-
tion execution, property statement, and/or label.

Definition 3.11 (A sequence of operation structure). Let P1, P2, . . . , Pn be n operation
structures corresponding to n programs to be verified. The sequence of operation struc-
tures is of the form P1 · P2 · . . . · Pn.

By given n concurrent programs, these programs are expected to be performed con-
currently on multiprocessors, in which n operation structures are used to represent these
programs for program verification. Not that this means n operation structures can be
considered on at most n multiprocessors for program verification. However, if n concur-
rent programs are executed on a single processor by context switching, the programs are
not suffered by relaxed memory models.

CHAPTER 3. BOUNDED METHOD 50

1 instr {
2 val := 1;

3 r1 := val

4 };

5 instr {
6 val := r1

7 [x] := val

8 };

9 instr {
10 val := r1

11 [y] := val

12 }

Operation structure γ1

1 labe l (L);
2 instr {
3 val := [y];

4 r1 := val

5 };

6 instr {
7 (rd := 1‖rt := r2);

8 valz := (rd = rt)?1:0;

9 z := valz;
10 valn := (rd = rt)?0:1;

11 n := valn
12 };

13 instr {
14 valn := n;

15 branch(valn = 1, labe l (l))
16 };

17 instr {
18 val := [x];

19 r1 := val

20 };

21 assert (val = 1)

Operation structure γ2

Figure 3-7: An operation structure for message passing

3.2.3 Executions of Operation Structures

In program execution, an event shown in Definition 3.12 is supposed to be a granule
instance in the system, which is issued by an operation. Once an operation, excepting
arithmetic operation, is performed, an event is supposed to be issued by a processing unit
with a unique identifier eid ∈ Eid among events in the system.

Definition 3.12 (Event). An event ev ∈ Event is tuple 〈eid, op〉 of event identifier eid ∈
Eid and performed operation op, which is categorized as either:

• Read event 〈eid, Rop〉 ∈ Rev where Rop is either read operation or load-link operation,

• Write event 〈eid,Wop〉 ∈Wev where Wop is either write operation or store-condition
operation,

• Fence event 〈eid, f〉 ∈ Fenceev, where eid ∈ Eid and f ∈ Fence, or

• Branch event 〈eid,br〉, where eid ∈ Eid and br is a branch operation,

Where Rev,Wev,Fence,Branch ⊆ Event. For simplicity, the set of event identifiers is
assumed to be a subset of natural numbers, such that Eid ⊆ N.

CHAPTER 3. BOUNDED METHOD 51

Read event and write event represent read access and write access, respectively, to
access either memory location loc ∈ Loc or register r ∈ Reg. For write event, there
always is a write value to store at target memory location. For read event, the read value
is supposed to be either initial value 0 or the write value of a conflicting write event in
a system. In particular, uninterpreted functions shown in Definition 3.14 are used to
describe the effect of the read events and write events in an abstract way. Note that
partial function S shown in the definition is used to indicate the success flag of the write
event issued by a store-condition operation. If write event w issued by a store-condition
operation succeeded, the value of function SJwK is 0, while SJwK is 1 for otherwise. In
addition, the location of the read event and write event can be indicated by the following
function.

Definition 3.13 (Location of Memory Events). Let L : Rev ∪Wev → Loc such that

L(ev(eid, v:=e)) =

{
e if e ∈ Loc
v if v ∈ Loc

L(ev(eid, ll(v, loc))) = loc

L(ev(eid, sc(v1, loc, v2))) = loc

Definition 3.14 (Uninterpreted Functions for Memory Events). Let Rval,Wval and S be
uninterpreted functions.

Rval : Rev → N
Wval : Wev → N

S : Wev ↪→ {0, 1}
where ↪→ represents a partial function from write event. This means the success flag is
considered on only write events corresponding to a store-condition operation.

Figure 3-8 shows a usage of synchronize operations in operation structure A1. From
these operation structures, let the read events issued by ll(val, [X]) and val := [X]

are considered as Rll and Rx, respectively. For write events, the events of [X] := 1,
sc(val 1, [X], 3) and [Y] := 2 are considered as Wx,Wsc and Wy, respectively. To
indicate the value of memory event for computation, RvalJrK and WvalJwK are used to
indicate the read value of read event r and write value w, respectively. In addition, there
is a special case for write event Wsc issued by store-condition operation such as sc(val

1, [X], 3), in which SJWscK represents the success write flag to be returned to temporal
register val 1.

According to Figure 3-8, read event Rll and write event Wsc are supposed to be used
as a pair in the program order. In the semantics, write event Wsc finds the recent read
issued by load-link operation such as Rll in the program order first, then, the write can
succeed if there is no write operation appear after the read event is completed. According
to the figure, the write seemed to always succeed because there is no other conflicting
write to memory location [X]. However, in practical system, write event Wy would cause
the write not to succeed due to the processor implementation.

CHAPTER 3. BOUNDED METHOD 52

1 instr {
2 [X] := 1;

3 };

4 instr {
5 l l (val , [X]);

6 };

7 instr {
8 [Y] := 2;

9 };

10 instr {
11 sc(val_1 , [X], 3);

12 };

(a) Operation Structure A1

1 instr {
2 val := [X]

3 };

(b) Operation Structre A2

Figure 3-8: Example operation structures contain synchronize operations

A fence event is used to restrict the behavior of the read events and write events to
behave in an expected manner. For instance, dmb instruction for ARM memory model
ensures a specific group of events issued before the instruction must be completed, in some
manner, before completing the following events in the program order. In this research,
the behavior of fence event is not considered in the detail because there are various
implementations regarding processor architectures.

A branch event is considered as a decided branch appearing in a system. In some
relaxed memory models such as POWER, a branch event causes control dependency
which restricts the behavior of program execution. Intuitively, the event let us know the
following operations of the branch event in the program order is issued after the evaluation
of loop condition was resolved, thus, we also consider this event to appear in the system
for considering the behavior precisely.

An event state shown in Definition 3.15 represents the state of events appearing in a
system including the information of program order, intra-instruction casual order, and
requirement for atomic instructions. The intention of an even state is to keep the event
that appearing in the system regarding the program order on them. Especially, the
program order is a partial order so as to allow the parallelism of events issued by the
same assembly instruction.

Definition 3.15 (Event State). An event state ε is tuple 〈e, po, iico, atom〉 consisting of
event set e ⊆ Event, program order po and intra-instruction casual order iico on e, and
the set of atomic pairs atom ⊆ (R×W).

Adding an event to an event state can be done by the following using operator ≺,
shown in Definition 3.16. The operator is proposed to append a new event to the event
state in the program order. In addition, for instantiating operation op in event state ε,
function ev∗(op, ε) shown in Definition 3.17 is used to find a unique event id eid ∈ Eid to
instantiate an event.

CHAPTER 3. BOUNDED METHOD 53

Definition 3.16 (Event Adding Operator). Let ≺ be an operator for an event state and
event to produced a new state that include the event in a program order. Given event
state 〈s, po, iico, atom〉 and event ev, the operator is defined as the following.

〈s, po, iico, atom〉 ≺ ev = 〈s ∪ ev, po ∪ po′, iico, atom〉

where po′ = {(a, ev) | a ∈ s} and ev is an event.

Definition 3.17 (Unique Event). Let ev∗(op, ε) be a function to instantiate a new event
issued by operation op regarding the existing events in ε, such that

ev∗(op, 〈s, po, iico, atom〉) = 〈Max({eid | 〈eid, op′〉 ∈ s}) + 1, op〉

where Max(s) is a maximum value of elements in set s.

Besides, addition relation intra-instruction casual order (iico) is supposed to defined the
scope of events issued by the same assembly instruction regarding the program order. For
instance, the following operation structure is supposed to issue eventsR1,Wreg1, R2,Wreg2

in the program order.

1 instr {
2 val := [X]; // R1

3 r1 := val // Wreg1

4 };

5 instr {
6 val := [Y]; // R2

7 r2 := val // Wreg2

8 }

The relation iico is then represented by {(R1,Wreg1), (R2,Wreg2)}. Moreover, there might
be relations on pairs of read event and write event, denoted by atom, to restrict the ef-
fect of program executions so as to appear atomically without any interruption from any
event. Let’s consider the following sequence of operation structures, wrapper atom de-
fines a relation atom on events R1 and W1, such that atom = {(R1,W1)}.

1 instr {
2 atom(val := [L]); // R1

3 val := val + 1

4 atom([L]:= val); // W1

5 }

1 instr {
2 [L] := 2 // W ′

3 }

The relation restricts write event W ′ is completed either before or after read event R1

and write event W1.
An execution state shown in Definition 3.18 represents the intermediate state during

execution which keeps the information of each local processor and issued events in the
systems, represented by an event state; The local information is supposed to include the
current performing instruction on each processing units and the state of local registers.

To consider the execution of operation structures P = P1 · . . . · Pn, each operation
structure is supposed to be executed by a processor independently from each other, such

CHAPTER 3. BOUNDED METHOD 54

that operation structure Pi is executed on processor i, where 1 ≤ i ≤ n. Thus, set Pid is
defined as the set of processor identifiers such that Pid = {1, . . . , n}.

Definition 3.18 (Execution State). An execution state is tuple 〈exec, reg, ε〉 of execution
units exec, register state reg, and event state ε. Given execution state ς, its elements can
be indicated by the following abbreviations: ς.exec, ς.reg, and ς.es.

An execution unit shown in Definition 3.19 represents the storage of a processor unit
that fetches the corresponding of an instruction to be performed. The unit is abstracted
as either ready state, complete state, or an execution structure. The states are used for
determining the semantics of operation structures, while an execution structure represents
the behavior of the fetched instruction.

Definition 3.19 (Execution Units). An execution units is a mapping from processor
identifier to either execution structure or a state of a processor unit, such that

exec : Pid→ ExecStructure ∪ {ready, complete}

where ExecStructure is the set of execution structures. If the execution unit represents
an execution structure, the operations in the structure are supposed to be performed on
the system.

A register state shown in Definition 3.20 represents the local information of each pro-
cessor. The local information includes the state of registers, program pointer, and next
program pointer of each processor. For program pointer pc and next program pointer
nPC, the state of these is captured for realizing the fetching behavior of an assembly pro-
gram, which allows branch instruction jump to anywhere in the program. Moreover, there
are the semantics of an expression N and the semantics of a Boolean expression B, shown
in Figure 3-9 and Figure 3-10, in which n ∈ N, x ∈ Tmp, e1, e2 ∈ Exp, c1, c2 ∈ BExp, and
ρ is the register state for a processor i, e.g., ρ = ς.reg(i).

Definition 3.20 (Register State). A register state is a mapping of each program executed
in a processor, such that

reg : Pid→ (Tmp ∪ {nPC, pc} → N)

In practical, the effect of issued operations could appear in the systems in various ways,
such as caches and write buffers. In addition, the fence operations in each memory model
could be used to prevent the anomalous effect in some cases. In our research, event state ε
shown in Definition 3.15 is used to capture the issued event in an abstract way. However,
the evaluation during execution is abstracted by evaluation function RJrevKε of memory
model M is used to evaluate the return value of read access rev based on the issued
operation appearing in ε.

CHAPTER 3. BOUNDED METHOD 55

N JnKρ = n

N JxKρ = ρ(x)

N Je1 + e2Kρ = N Je1Kρ+N Je2Kρ
N Je1 − e2Kρ = N Je1Kρ−N Je2Kρ

N J(c)?e1 : e2Kρ =

{
e1 if BJcKρ = >
e2 if BJcKρ = ⊥

Figure 3-9: The semantics of an expression

3.2.4 Semantics of Operation Structures

Let P be a sequence of operation structures and ς be an execution state, the execution
can either reach a terminated state, represented as an execution state ς ′, or violate state,
written by E. Thus, the semantics is proposed to express the execution behavior in a
system.

To define the semantics of operation structure, we use an operational semantics to
describe the behavior of the operation structure in a system. The semantics borrows the
definitions in a structural operational semantics [RN07], which describes the individual
steps of the execution. In the semantics, a transition shown in Definition 3.21 is used to
define a rule. Each rule is used to describe the step of an execution of P from execution
state ς. The possible outcomes of θ are:

• θ is of the form 〈P ′, ς ′〉 : This means the execution is not finished.

• θ is of the form ς ′ : This means the execution from state ς is finished.

• θ is E : This means the execution violates the program property.

Definition 3.21 (Transition of an execution step). A transition to describe an execution
step has the form

〈P, ς〉 → θ

where θ is either E (violation), of the form 〈P ′, ς ′〉, or of the form ς ′.

Given execution structure γ, the order to perform operations could be defined using
sequential execution and/or parallel operation. To simplify the representation, we would
like to use an evaluation context1 shown in Definition 3.22 to indicate the fragment of
execution structure to be evaluated.

Definition 3.22 (Evaluation Context of Execution Structure). Evaluation context E of
an execution structure is defined as following.

E ::= � | E; γ | E ‖ γ | γ ‖ E

1This term is adopted from reduction semantics with evaluation contexts, which is an alternative
representation of operational semantics

CHAPTER 3. BOUNDED METHOD 56

BJ>Kρ = >
BJ⊥Kρ = ⊥

BJe1 = e2Kρ =

{
> if N Je1Kρ = N Je2Kρ
⊥ if N Je1Kρ 6= N Je2Kρ

BJe1 > e2Kρ =

{
> if N Je1Kρ > N Je2Kρ
⊥ if N Je1Kρ ≤ N Je2Kρ

BJe1 < e2Kρ =

{
> if N Je1Kρ < N Je2Kρ
⊥ if N Je1Kρ ≥ N Je2Kρ

BJc1 ∧ c2Kρ =

{
> if BJc1Kρ = > and BJc2Kρ = >
⊥ if BJc1Kρ = ⊥ or BJc2Kρ = ⊥

BJc1 ∨ c2Kρ =

{
> if BJc1Kρ = > or BJc2Kρ = >
⊥ if BJc1Kρ = ⊥ and BJc2Kρ = ⊥

BJ¬c1Kρ =

{
> if BJc1Kρ = ⊥
⊥ if BJc1Kρ = >

Figure 3-10: The semantics of a Boolean expression

where � is a placeholder to place an execution structure into the context.

For example, given evaluation context (γ1 ‖ (�; γ3)) and execution structure γ2, thus,
(γ1 ‖ (�; γ3))[γ2] = (γ1 ‖ (γ2; γ3)). Besides, the execution structure (γ1 ‖ (γ2; γ3)) can be
separated to be context (� ‖ (γ2; γ3)) and γ1, such that (γ1 ‖ (γ2; γ3)) = (� ‖ (γ2; γ3))[γ1].
Thus, the context can simplify the representation of the execution structure in instruction
execution, such as instr{E[val z := 1]} where E = (� ‖ val n := 0).

In addition to execution structure, we also introduce the substitutions of operation
structures shown in Definition 3.23 to simplify the semantics.

Definition 3.23 (Substitutions of Operation Structures). Let P be a sequence of oper-
ation structures, such that P = ϕ1 · . . . · ϕn and each operation structure is of a form
ϕi = γ1; . . . ; γmi

, where 0 ≤ i ≤ n and n,mi ∈ N+. The substitutions of operation
structure and a sequence of operation structures are defined as followings.

(γ1; γ2; . . . ; γmi
)j[γ′](k) =


γ′ if j = k and 1 ≤ k ≤ mi

γ1 if k = 1 and j 6= k
(γ2; . . . ; γn)(j−1)[γ′](k − 1) if j 6= k and 2 ≤ k ≤ mi

⊥ otherwise

(ϕ1 · ϕ2 · . . . · ϕn)i,j[γ′](k) =


(ϕ1)j[γ′] if k = 1
(ϕ2 · . . . · ϕn)j[γ′](k − 1) if 2 ≤ k ≤ n
⊥ otherwise

CHAPTER 3. BOUNDED METHOD 57

According to the definition, the intention of the former substitution is to replace element
γ′ into an operation structure γ1; γ2; . . . ; γmi

at index jth, and then access the element
at index kth. For the latter substitution, the element γ′ replaces the element at index
jth of structure ϕi. Thus, the semantics can replace or refer to the specific element using
these substitutions. For example, let P = P1 ·P2 and P2 = γ1; γ2; γ3, P 2,3[assume(z = 1)]
replaces the element γ3 with assume(z = 1).

Moreover, we could define a generic substitution shown in Definition 3.24 to update a
state in the semantics definition. Besides, the substitutions of execution units and register
states to processor i ∈ Pid are abbreviated as Definition 3.25 to simplify the expression
in semantics. In the definition, superscripts r(i) and e(i) are used to indicate the register
state and the execution unit of processor i to be substituted by reg′ and γ′, respectively.

Definition 3.24 (Generic Substitution). Let X ,Y be any arbitrary sets, and % is any
mapping X → Y ,

%[y 7→ v](x) =

{
v if x = y
%(x) if x 6= y

where v ∈ Y and x, y ∈ X .

Definition 3.25 (Substitution of Execution Units and Register State). Let 〈exec, reg, ε〉
be an execution state, there are substitutions as followings.

〈exec, reg, ε〉r(i)[reg′] = 〈exec, reg[i 7→ reg′], ε〉
〈exec, reg, ε〉e(i)[γ′] = 〈exec[i 7→ γ], reg, ε〉

Then, the behavior of instruction fetching and the way to operate execution structures
is defined as following rules.

[nil] 〈P, ςe(i)[nil]〉 → 〈P, ςe(i)[complete]〉
[seq] 〈P, ςe(i)[E[nil; γ]]〉 → 〈P, ςe(i)[E[γ]]〉
[par-l] 〈P, ςe(i)[E[nil ‖ γ]]〉 → 〈P, ςe(i)[E[γ]]〉
[par-r] 〈P, ςe(i)[E[γ ‖ nil]]〉 → 〈P, ςe(i)[E[γ]]〉
[fetch] 〈P i,j[instr{γ}], ςe(i)[ready]〉 → 〈P i,j[instr{γ}], (ςnPC++)e(i)[γ]〉
[terminate] 〈P, ς〉 → ς if ∀i ∈ Pid.(P (i)(ς.reg(i)(pc)) = ⊥)

[next] 〈P, ςe(i)[complete]〉 → 〈P, (ςpc7→nPC)e(i)[ready]〉
where σnPC++ and ς ′pc 7→nPC are defined as followings.

j = ς.reg(i)(pc)

σnPC++ = ςr(i)[ς.reg(i)[nPc 7→ j + 1]]

nPC = ς.reg(i)(nPC)

σpc 7→nPC = ςr(i)[ς.reg(i)[pc 7→ nPC]]

CHAPTER 3. BOUNDED METHOD 58

The following rules describe the behavior of operations that are performed by an exe-
cution unit on processor i.

[read] 〈P, ςe(i)[E[v:=e]]〉 → 〈P, ς+r〉 if e ∈ V \ Tmp

where result ς+ris defined as the followings.

Rev = ev∗(v := e, ς.es)

ςes = ς.es ≺ Rev

regi = ς.reg(i)[v 7→ RJRevKςes]

ς+r = (〈ς.exec, ς.reg, ςes〉r(i)[regi])
e(i)[E[nil]]

According to rule [read], RJrKε is a return value of read event r considered on event state
ε. The function depends on each memory model, which could be a non-deterministic
value. For instance, if there is only a write event to location [X] with value 1, the read
event to location [X] can return either value 1 or an initial value 0. However, the decision
could be more complicated on the relaxed memory models if there are various events in
the system.

[write] 〈P, ςe(i)[E[v:=e]]〉 → 〈P, ς+w〉 if v ∈ V \ Tmp

where result ς+w is defined as the followings.

ςes = ς.es ≺ ev∗(v := e, ς.es)

ς+w = 〈ς.exec, ς.reg, ςes〉e(i)[E[nil]]

[arith] 〈P, ςe(i)[E[v:=e]]〉 → 〈P, ςv:=e〉 if e, v ∈ Tmp

where result ςv:=e is defined as the followings.

regi = ς.reg(i)[v 7→ N JeKς.reg(i)]

ςv:=e = (ςr(i)[regi])
e(i)[E[nil]]

[fence] 〈P, ςe(i)[E[f]]〉 → 〈P, ς+f〉 if f ∈ Fence

where ς+f = 〈ς.exec, ς.reg, ς.es ≺ ev∗(f, ς.es)〉e(i)[E[nil]].

[ll] 〈P, ςe(i)[E[ll(v, loc)]]〉 → 〈P, (ς+ll)e(i)[E[nil]]〉
where ς+ll is defined as followings.

llev = ev∗(ll(v, loc), ς.es)

ςes+ev = ς.es ≺ llev

regi = ς.reg(i)[v 7→ RJllev]

ς+ll = 〈ς.exec, ς.reg, ςes+ev〉r(i)[regi]

CHAPTER 3. BOUNDED METHOD 59

[sc-fail] 〈P, ςe(i)[E[sc(v1, loc, v2)]]〉 → 〈P, ςf〉 if ¬Csucc
[sc-suc] 〈P, ςe(i)[E[sc(v1, loc, v2)]]〉 → 〈P, ς+sc

s 〉 if Csucc

where ςf , ς
+sc
s are defined as followings.

scev = ev∗(sc(v1, loc, v2), ς.es)

regi = ς.reg(i)

ςes+sc = ς.es ≺ scev

Csucc iff (SyncJscevKς.es = >)

ςf = (ςr(i)[regi[v1 7→ 1]])e(i)[E[nil]]

ς+sc
temp = 〈ς.exec, ς.reg, ςes+sc〉r(i)[regi[v1 7→ 0]]

ς+sc
s = (ς+sc

temp)
e(i)[E[nil]]

In these rules, SyncJevKε is evaluated to be either > or ⊥ to checks whether there is
the event corresponding a load-link operation in ε to event ev and the target location of
the events is not written by any write access yet. If the condition is not satisfied, the
write event does not appear in the system and flag v1 is set. On the other hand, the
write event appears in the system and flag v1 is clear. Note that the function SyncJevKε
depends on an implementation, in which some processors would use multiple locations on
the same cache-line for this synchronize behavior. This means if there is a non-conflicting
write event following the event corresponding a load-link operation, the store-condition
operation can fail if the target locations are located at the same cache-line. Thus, to
generalize the semantics, the function Sync is given for target processor, which relies on
the implementation of the processor.

[if->] 〈P, ςe(i)[E[if(c){γ′}]]〉 → θ> if BJcKρ=>
[if-⊥] 〈P, ςe(i)[E[if(c){γ′}]]〉 → θ⊥ if BJcKρ=⊥
where θ>, θ⊥ are defined as followings.

ρ = ς.reg(i)

θ> = 〈P, ςe(i)[E[γ′]]〉
θ⊥ = 〈P, ςe(i)[E[nil]]〉

These rules, [if->] and [if-⊥], represent the behavior of predicated instruction, which is
abstracted by our operation structure.

[br->] 〈P, ςe(i)[E[branch(c, l)]]〉→θ> if BJcKρ = >
[br-⊥] 〈P, ςe(i)[E[branch(c, l)]]〉→θ⊥ if BJcKρ = ⊥

CHAPTER 3. BOUNDED METHOD 60

where θ> and θ⊥ are defined as followings.

ρ = ς.reg(i)
ς+br = 〈ς.exec, ς.reg, ς.es ≺ ev∗(branch(c, l), ς.es)〉
P = Qi,k[l]

regi = ς.reg(i)[nPC 7→ k]
θ> = 〈P, ((ς+br)r(i)[regi])

e(i)[E[nil]]〉
θ⊥ = 〈P, (ς+br)e(i)[E[nil]]〉

Rules [br->] and [br-⊥] represent the behavior of a branch operation that can change the
next fetching instruction of the processor. To simulate such behavior, register nPC is used
to indicate the next program counter for fetching the next instruction. In this semantics,
label l is located in line number k in structure P (i). Thus, register nPC is substituted by
k if condition c is satisfied.

[atm-R] 〈P, ςe(i)[E[atom(v1 :=e1)]]〉→θ+R if e1∈V\Tmp

[atm-W] 〈P, ςe(i)[E[atom(v2 := e2)]]〉→θ+W if v2∈V\Tmp

where θ+R and θ+W are defined as followings.

ςes+r = ς.es ≺ ev∗(atom(v1 := e1), ς.es)

regi,r = ς.reg(i)[v1 7→ RJRevKσes+r]

ς+R = 〈ς.exec, ς.reg, ςes+r〉r(i)[regi,r]

θ+R = 〈P, (ς+R)e(i)[E[nil]]〉
ςes+w = ς.es ≺ ev∗(atom(v2 := e2), ς.es)

σ+W = 〈ς.exec, ς.reg, ςes+w〉
θ+W = 〈P, (ς+W)e(i)[E[nil]]〉

For the remaining, the behaviors of label and property statements are defined as fol-
lowings.

[label] 〈P i,j[label(l)], ς〉 → 〈P i,j[label(l)], ς ′〉
[assume] 〈P i,j[assume(c)], ς〉 → 〈P i,j[assume(c)], ς ′〉 if BJcKς.reg(i) = >
[assert->] 〈P i,j[assert(c)], ς〉 → 〈P i,j[assert(c)], ς ′〉 if BJcKς.reg(i) = >
[assert-⊥] 〈P i,j[assert(c)], ς〉 → E if BJcKς.reg(i) = ⊥
where

j = ς.reg(i)(pc)

regnew = ς.reg(i)[pc 7→ j + 1][nPC 7→ j + 1]

ς ′ = ςr(i)[regnew]

Then, a derivation sequence shown in Definition 3.26 is used to represent the seqeunce
to represent how the programs are executed.

CHAPTER 3. BOUNDED METHOD 61

Definition 3.26 (Derivation Sequence). Given sequence of operation structures P and
execution state ς, a derivation state is either:

• a finite sequence:
θ1 → θ2 → . . .→ θk

such that θ1 = 〈P, ς〉, θi → θi+1 for 1 ≤ i ≤ k, and k > 1.

• an infinite sequence:
θ1 → θ2 → . . .

such that θ1 = 〈P, ς〉 and θi → θi+1 for i ≥ 1.

We could write θ1
i−→ θi+1 to indicate ith steps to reach θi+1 from θ1. In addition,

θ1
∗−→ θi+1 is written to indicate that there is a finite sequence from θ1 to θi+1. Thus,

we could write a semantics function to define the semantics of operation structure as the
following definition.

Definition 3.27 (Semantics Function of Operation Structures).

SJP KRς =


ς ′ If 〈P, ς〉 ∗−→ ς ′

E If 〈P, ς〉 ∗−→ E
undef Otherwise

where R is a function to realize the return value form existing events regarding memory
model M.

Note that result undef means the execution is not terminated properly, which can
be either invalid execution under the memory model or there is an infinite derivation
sequence. In program verification, every derivation from the initial state must not reach
violation state E to ensure the program correctness.

3.3 SMT-based Program Verification

In SMT-based program verification, the events are supposed to be considered. The ab-
straction of programs is analyzed to extract the possible ways to instantiate operations,
called execution paths. Besides, as assembly language is described in the unstructured
programming style, we construct the corresponding control flow graph to consider the
possible instantiating of the programs. Intuitively, an execution path represents the se-
quence of control flows to instantiate the assembly programs.

In the executions of operation structures, there could be an infinite derivation sequence
produced by the structure if there is a loop caused by branch operations. Consequently,
the number of events becomes infinite as well as the number of free variables in the encoded
formula which corresponding to existing events. In SMT-based program verification,
the number of free variables should be finite, thus, we consider the executions that are
eventually terminated for the purpose of program verification

CHAPTER 3. BOUNDED METHOD 62

Besides, a direct method to explore the corresponding execution paths is loop unwinding,
which is a systematic way to expand the loop from a control flow graph if there is a loop.
Nevertheless, the number of execution paths for SMT-based program verification is infinite
if a loop appears. To limit the state space, the bounded method to unwind loop in an
operation structure is given. Therefore, the exploration can be done automatically to
produce a finite set of execution paths.

For the encoding method, the specification of target memory model provided by an
existing modeling framework is used to consider the possible effects on an execution path.
According to a modeling framework, the behavior of program execution is valid if it
satisfies the memory model specification. Thus, to realize the effects of an execution
path, the execution path is encoded as a first-order formula regarding the memory model
specification provided by a modeling framework. In our research, a framework provided
by Adve and Gharachorloo [Gha95] and Herding Cats framework [AMT14] are considered
to encode an execution path.

3.3.1 Execution Path

An execution path shown in Definition 3.28 is the operation structures that has no condi-
tion to be considered whether operations should be performed or not. Given a sequence of
operation structure P , there could be various candidate executions of P to be considered in
program verification. By the representation of an execution path, the possible executions
is restricted based on existing events regarding the program order on the events.

Definition 3.28 (Execution Path). An execution path is a sequence of operation struc-
tures such that each operation structure always perform the same operations into a system.

In an operation structure, branch operation branch(c, l) and condition execution if(c){γ}
cause the number of operations cannot be determined systematically regarding the evalu-
ation of condition c. Therefore, an execution path is introduced to represent the operation
structures in which the operations are performed without any decision.

The operation structure that always performs operations, in the same way, is consid-
ered as unique operation structure shown in Definition 3.29. Thus, every execution can
be constructed by an execution path always contain the same events. In addition, every
branch in an execution path must be unique branch shown in Definition 3.30, in which the
next performing operations must be the same in every execution. For instance, branch
operation branch(>, l) is an always branch that goes to only label l. Otherwise, branch
operation branch(c, l) is a unique branch if condition c is always either satisfied or unsat-
isfied in every execution. To make a unique branch, a tricky way is to add an assumption
assume(c) or assumption assume(¬c) before the branch, such as assume(c); branch(c,
l).

Definition 3.29 (Unique operation structure). An operation structure is unique if there
is no a condition structure and all branches are unique branches.

CHAPTER 3. BOUNDED METHOD 63

Definition 3.30 (Unique branch). branch(c, l) is a unique branch if condition c is
always either satisfied or unsatisfied by every execution.

Figure 3-11 shows an execution path of message passing in Figure 3-7. A unique
operation structure ψ1

1 is same to γ1 in Figure 3-7, while operation structure ψ1
2 is a

unique operation structure of γ2. Assumption assume(¬(valn = 1)) at line 31 make
branch(n = 1, label(L)) at line 27 is always unsatisfied.

In program verification, the set of execution paths is used to represent the behavior
of the original operation structures. The behavior of each operation structure can be
represented by the set of unique operation structures, that should cover original behaviors.
Thus, the set of execution paths is the combinations of those sets, in which Definition 3.31
shows a way to construct the set. Note that, if there is an infinite set of unique operation
structures, the set of execution paths is also infinite. For automatically verifying, a
bounded unwinding method is used to construct the finite set of execution paths.

Definition 3.31 (The set of execution paths). Given a sequence of operation structures
Γ = Γ1 · . . . · Γn, let ΨΓi

be the set of unique operation structures of operation structure
Γi. An execution path is a combination of sets ΨΓ1 , . . . ,ΨΓn , in which the set of execution
paths is ΠΓ = {(ψ1 · . . . · ψn) | ψ1 ∈ Ψ1 ∧ · · · ∧ ψn ∈ Ψn}.

3.3.2 Bounded Loop Unwinding

An execution path is an essential component in this method, in which the set of execution
paths should cover every execution of the given operation structures. A way to explore
execution paths is to use a bounded model checking approach [AMP09] to unwind a loop
under bound k. First, this section introduces control flow graph definition for our path
exploring approach. Then, an approach to unwinding loops under bound k is proposed.

Given an operation structure, a corresponding control flow graph (CFG) shown in
Definition 3.32 describes the way in which the operation structure can execute. A node
is either: nil, instruction execution, or annotation. Note that initial node n is the first
element in the operation structure. An edge is a directed edge defined for indicating the
possible ways to perform operations from the current node, in which the target can be
either the consequence instruction in the program order or the target label annotation.
Also, Definition 3.33 and Definition 3.34 show auxiliary notations on nodes in a control
flow graph for loop detecting in path exploring algorithm. In particular, these notations
are used to detect a loop in the control flow graph.

Definition 3.32 (Control Flow Graph of Operation Structure). A control flow graph of
operation structure is tuple 〈V,E, n〉 where V is a set of nodes, E is a set of directed
edges, and n ∈ V is an initial node.

Definition 3.33 (Path). Given 〈V,E, n〉, a path is a sequence of node u1, . . . un such that
u1, . . . , un ∈ V and (uk, uk+1) ∈ E where 1 ≤ k < n.

CHAPTER 3. BOUNDED METHOD 64

1 instr {
2 val := 1;

3 r1 := val

4 };

5 instr {
6 val := r1

7 [x] := val

8 };

9 instr {
10 val := r1

11 [y] := val

12 }

Operation structure ψ1
1

13 labe l (l);
14 instr {
15 val := [y];

16 r1 := val

17 };

18 instr {
19 (rd := 1 || rt := r2);

20 valz := (rd = rt)?1:0;

21 z := valz;
22 valn := (rd = rt)?0:1;

23 n := valn
24 };

25 instr {
26 valn := n;

27 };

28 assume(¬(valn = 1));

29 instr {
30 valn := n;

31 branch(valn = 1, labe l (l))
32 };

33 instr {
34 val := [x];

35 r1 := val

36 };

37 assert (r1 = 1)

Operation structure ψ1
2

Figure 3-11: Execution path π1 = (ψ1
1 · ψ1

2)

Definition 3.34 (Dominate). Given 〈V,E, n〉 and u, v ∈ V , u dominates v if u = v or
every path from n to v must have u in the path.

In practice, the way to instantiate a program depends on fetch-cycle behavior in a
processor, in which instructions are expected to be fetched follow the control flow graph
of the program. Nevertheless, SPARC architecture [WG] allows the following instruction
after a branch to be fetched before the branch decides the next instruction to be fetched.
Thus, our research suspects the generation of control flow graphs of some processors might
be different for program verification. However, due to the most processors could sequen-
tially fetch instructions, Algorithm 1 is proposed for generating a CFG from an operation
structure. This algorithm considers the behavior of a branch operation contained in an
execution structure, which corresponds to transformation rules [br->] and [br-⊥] proposed
in Section 3.2.4. Instead of realizing the behavior of fetching execution in detail as same
as the semantics, edges in control flow graph can represent the possible directions of the
node containing a branch operation. For instance, an operation structure Γ2 in Figure
3-7 has a sequence of 6 elements. Figure 3-12 is the output of CFG(Γ2), in which the

CHAPTER 3. BOUNDED METHOD 65

Figure 3-12: The control flow graph for operation structure Γ2

nodes corresponding to elements in Γ2, and the edges represent the flows to fetch the next
element into the system. Note that the detail of instruction cmp r1, r2 is omitted in
this control flow graph.

Algorithm 1 CFG Generation for Basic Instruction Cycle

1: procedure CFG((e1; e2; . . . ; en))
2: (v1, . . . vn)← (new Node(e1), . . . ,new Node(en))
3: n0 ← v1

4: V ← {v1, . . . , vn}
5: E ← {(v1, v2), (v2, v3), . . . , (vn−1, vn)}
6: for i = 1 to n do
7: if vi.body contains branch(cond, label) then
8: E ← E ∪ {(vi, v) | v ∈ V ∧ v.body is label}
9: end if

10: end for
11: return 〈V,E, n0〉
12: end procedure

An approach to loop unwinding under a bound is a way to explore program behaviors for
program verification using an SAT/SMT solver [AKT13, AMP09, DHKR11]. Although
there are transformations for while-loop and reducible CFG shown in [AMP09, DHKR11],
the transformations cannot be used directly to an unstructured program, such as assem-
bly program, in which the control flow graph of a program could be irreducible. Thus,

CHAPTER 3. BOUNDED METHOD 66

our approach extended the transformations for loop unwinding under a bound k in an
assembly program. Besides, the behavior of predicated instruction described as a condi-
tion execution is also extracted as two control flows through this approach. Then, a set
of execution paths can be constructed by combining the possible control flows under a
giving bound in our loop unwinding approach. However, this is an under-approximation
approach to program verification.

As operation structures can contain loops and/or condition executions such as Figure 3-
7, the number of events cannot be determined systematically for program verification using
existing modeling frameworks. Thus, procedure PathExploring shown in Algorithm
2 is supposed to explore execution paths, such that there is no condition to decide the
number of instances to appear in a system; then, the program verification using existing
modeling framework can use each execution path directly. For exploring execution paths,
the set of control flow graphs corresponding to target operation structures are explored
by procedure PathExploring shown in Algorithm 2. Each control flow graph of an
operation structure, such as Figure 3-12, is then extracted as unique operation structures
under a bound using procedure Explore shown in Algorithm 3. However, the input graph
of procedure Explore is required to be prepared because each control flow is expected
to be a unique operation structure. These preparations are done by PrepareCond and
PrepareBranch appearing in Algorithms 4 and 5.

Algorithm 2 Path Exploring algorithm

1: procedure PathExploring(G, k)
2: s← ∅
3: for all 〈V,E, n〉 in G do
4: 〈V,E, n〉 ←PrepareCond(〈V,E, n〉)
5: (〈V,E, n〉, loopEdges)←PrepareBranch(〈V,E, n〉)
6: s← s ∪ {Explore(〈V,E, n〉, n, k, loopEdges)}
7: end for . Cartesian product of every set of control flows
8: return {(P1 · P2 · . . . · Pn|(P1, P2, . . . , Pn) ∈

∏
i∈S

i}

9: end procedure

For the behavior of condition execution if(c){γ}, rules [if->] and [if-⊥] show that
there are two ways to perform condition execution if(c){γ}, in which the number of
events could be affected by this behavior. Thus, procedure PrepareCond shown in
Algorithm 4 replaces every condition execution in the graph by two additional control
flows, in which one for taking the condition execution and another one for taking nothing.
In each additional flow, a proper assumption annotation is added. Figure 3-13(a) shows
a node containing execution execution if(z = 1){val := [A]; r1:= val}. This node
represents the execution of instruction ldreq r1, [A] of ARM architecture. Figure 3-
13(b) shows the result of replacing node by PrepareCond.

For the behavior of branch operation branch(c, l), rules [br->] and [br-⊥] show two ways
for executing programs, which affect the number of events to be considered in program
verification. In path exploring process, every branch is expected to be uniquely determined

CHAPTER 3. BOUNDED METHOD 67

Algorithm 3 Explore unique operation structures

1: procedure Explore(〈V,E, n〉, v, k, loopEdges)
2: next← {u | (v, u) ∈ E}
3: if next = ∅ then
4: return {v.body}
5: else if |next| > 1 and ∃(v, u) ∈ next.(v, u) ∈ loopEdges then
6: if k ≤ 0 then
7: next← {u | u ∈ next ∧ (v, u) 6∈ loopEdges}
8: end if
9: R←

⋃
i∈next Explore(〈V,E, n〉, i,max(k − 1, 0), loopEdges)

10: return {(v.body;u) | u ∈ R}
11: else
12: R←

⋃
i∈next Explore(〈V,E, n〉, i, k, loopEdges)

13: return {(v.body;u) | u ∈ R}
14: end if
15: end procedure

Algorithm 4 Prepare condition execution

1: procedure PrepareCond(〈V,E, n〉)
2: for all v in V do
3: if v.body = instr {if(cond){γ}} then
4: v0 ← new Node(assume(cond))
5: v1 ← new Node(instr{γ})
6: v2 ← new Node(assume(¬cond))
7: E1 ← {(v0, v1), (v1, n), (v2, n) | (v, n) ∈ E ∧ n ∈ V }
8: E2 ← {(v, v0), (v, v2)}
9: E0 ← E \ {(v, n) | (v, n) ∈ E ∧ n ∈ V }

10: E ← E0 ∪ {(v0, v1)} ∪ E1 ∪ E2

11: V ← V ∪ {v0, v1, v2}
12: v.body← nil
13: end if
14: end for
15: return 〈V,E, n〉
16: end procedure

CHAPTER 3. BOUNDED METHOD 68

Algorithm 5 Eliminate branch

1: procedure PrepareBranch(〈V,E, n〉)
2: visited← ∅
3: loopEdges← ∅
4: for all v in V do
5: if v.body contains branch(cond, label) and v 6∈ visited then
6: v1 ← new Node(instr{ assume(cond) })
7: v2 ← v.clone()
8: E1 ← {(v, v1), (v1, v2), (v2, n) | (v, n) ∈ E ∧ n ∈ V ∧ n contains label(l)}
9: loopEdges← loopEdges ∪ {(v, v1)|(v, n) ∈ E ∧ n dominates v}

10: v3 ← new Node(instr{ assume(¬cond) })
11: v4 ← v.clone()
12: E2 ← {(v, v3), (v3, v4), (v4, n) | (v, n) ∈ E ∧ n ∈ V ∧
¬(n contains label(l))}

13: E0 ← E \ {(v, n) | (v, n) ∈ E ∧ n ∈ V }
14: E ← E0 ∪ E1 ∪ E2

15: V ← V ∪ {v1, v2, v3, v4}
16: visited← visited ∪ {v1, v2, v3, v4}
17: v.body← nil
18: end if
19: end for
20: return (〈V,E, n〉, loopEdges)
21: end procedure

CHAPTER 3. BOUNDED METHOD 69

(a) Original node (b) Result of elimination

Figure 3-13: Eliminating execution condition

(a) Original branch node (b) Result of preparing

Figure 3-14: Preparing unique branches

by the semantics. This means among rules [br->] and [br-⊥], the execution state can
be determined in a deterministic way. Thus, procedure PrepareBranch shown in
Algorithm 5 adds a proper assumption for each path and branch operation also exists in
the path; This means the assumption enforces the execution state to satisfy the condition
before considering the condition in a branch, which is the same. Thus, in each control flow,
the semantics can have only a derivation sequence for those control decisions. Note that
this procedure also collects the edges that causes a backward branch in the set loopEdges.
Figure 3-14 illustrates the translation of the given graph. Figure 3-14(a) shows the original
graph that contains a branch node; Figure 3-14(b) shows that each control flow can be
considered as an execution in which branches are unique.

For procedure Explore in Algorithm 3, inputs are a control flow graph, a consider-
ing node, and a bound for loop unwinding. The input graph 〈V,E, n〉 is assumed to be
prepared by procedures PrepareCond and PrepareBranch. This procedure firstly
checks the number of the next edges from node v. If there is no consequence edge, the

CHAPTER 3. BOUNDED METHOD 70

Figure 3-15: A prepared CFG for procedure Explore

procedure returns the content of a current node. If the node v is a backward branch, which
can be checked by set loopEdges, the procedure checks the current bound for exploring
the unique operation structures. If it exceeds the bound, the procedure does not consider
the path that causes the backward branch from node v. Otherwise, the procedure ex-
plores every consequence nodes. In the case of a forward branch, the procedure explores
every possible operation structures by considering every consequence paths. Finally, this
procedure can produce a set of unique operation structures under a bound.

Giving the set of control flow graphs G = {G1, . . . , Gn} corresponding to operation
structures for program verification, PathExploring(G, k) in Algorithm 2 explores a set
of execution paths of G under bound k. For each graph G ∈ G, procedures PrepareCond
and PrepareBranch are applied to the graph G. For instance, Figure 3-15 shows the
result after applying PrepareCond and PrepareBranch to the graph in Figure 3-12.
Then, the possible unique operation structures are explored by procedure Explore shown
in Algorithm 3. The unique operation structures are combined together as the Cartesian
product of the sets produced by procedure Explore. Note that a unique operation
structure is considered as a way to perform operations of one program, and the result of
Explore are all ways to perform operations of a CFG that can be explored under bound
k. Finally, those results, sets of unique operation structures provided by Explore, are
combined each other as sequences of unique operation structures for representing execution
paths. Then, the set of execution paths must be verified to ensure there is no assertion
violation occur in every execution path of G. However, one would propose an alternative
approach to exploring execution paths that cover every execution of the programs.

CHAPTER 3. BOUNDED METHOD 71

3.3.3 Encoding Scheme

By given an execution path, we first transform the execution path into a static single
assignment form (SSA) to represent a symbolic execution, in which the evaluation of
variables represented by symbolic values. Then, given an execution path ψ = ψ1 · . . . · ψn
in SSA form, the program property of execution path ψ is of the form (p =⇒ a) where p
is the property condition and a is the assertion condition accumulated from the execution
path. In addition, event state εψ of execution path ψ can be constructed by considered the
operation to be performed. To ensure the program correctness, the valuation of symbolic
values must always satisfy p =⇒ a. However, to adopt an SMT solver in program
verification, we would like to ensure there is no valuation such that ¬(p =⇒ a) is
satisfied on memory model M, written by εψ 6|=M ¬(p =⇒ a).

In static single assignment form (SSA), the variables appearing in a program are sup-
posed to be assigned at most one time. For instance, the following program is in SSA
form, in which the variable can represent how the data is flown in the program.

1 a1 = 2;

2 v1 = 1;

3 v2 = v1 + a1;

4 assert (v2 > a1);

In an execution path, we rename only local variable names: temporal registers Tmp and
registers Reg, excluding memory locations Loc. For instance, Figure 3-16 shows the corre-
sponding SSA form of an execution path from Figure 3-11. Consequently, the variables in
the operations can appear in the formula directly. According to SSA form, the program
condition p and assertion condition a can be accumulated from assumption conditions
and assertion conditions, respectively, such as p ⇐⇒ ¬(val0n = 1) and a ⇐⇒ (r12 = 1).

To provide an event state from an execution path in SSA form, the operations in each
operation structure are then performed in the program order (po) and collected them in
the event state. For program order (po), the order appearing in the path already represent
the order of the operation to perform those operations. Thus, the events performed by a
prior operation must be ordered before the events of consequence operations. For instance,
if operation A appears before operation B in sequential executions, such as A;B, or nested
execution structures, such as instr{A};instr{B ‖ . . . }, the events of A must be ordered
before the events of B in the program order (po). As the parallel execution, such as A ‖
B, do not restrict the program order among its components, a system can freely change
the execution order of events. For intra-instruction casual order (iico), this relation is
used to represent the order of events performed by the same instruction. For example, if
there is an instruction structure instr{A;B}, the events of A must be ordered before the
events of B in the intra-instruction casual order (iico).

Consequently, a first-order formula is then required to find a valuation on the free
variables. Thus, the encoded formula must include the property ¬(p =⇒ a), event
state describing the behavior of programs symbolically ε, and the first-order formula to
constraint the effect on event state regarding memory model M. The way to encode the
behavior is then explained in the followings regarding a memory model for using in an

CHAPTER 3. BOUNDED METHOD 72

1 instr {
2 val0 := 1;

3 r10 := val0

4 };

5 instr {
6 val1 := r10

7 [x] := val1

8 };

9 instr {
10 val2 := r10

11 [y] := val2

12 }

The SSA form of ψ1
1

1 labe l (L);
2 instr {
3 val3 := [y];

4 r11 := val3

5 };

6 instr {

7 (rd0 := 1 || rt0 := r11);

8 val0z := (rd0 = rt0)?1:0;

9 z0 := val0z;
10 val0n := (rd0 = rt0)?0:1;
11 n0 := val0n
12 };

13 instr {
14 val1n := n0

15 };

16 assume(¬(val0n = 1));

17 instr {
18 val2n := n0;

19 branch(val2n = 1, labe l (L))
20 };

21 instr {
22 val4 := [x];

23 r12 := val4

24 };

25 assert (r12 = 1)

The SSA form of ψ1
2

Figure 3-16: The SSA form of execution path π1

SMT solver. Note that the encoding methods proposed in this research rely on Herding
cats [AMT14] and Gharachorloo framework [Gha95].

Encoding Scheme of Gharachorloo Framework

In this framework, the execution order is expected to be realized explicitly, in which the
order relies on the sub-operations appearing to the target processor. In this framework,
there is an abstraction of a multiprocessor system consisting of n processors, such that
a write access must be separated into n sub-operations to appear on each processor.
Then, the write access can be completed once all sub-operations are updated the target
memory location. For read access, there is a corresponding sub-operation to be considered
regarding the sub-operations appear to its processor that issued the read access. To control
the behavior regarding memory model M, the program information which is extracted
from ε is used with the constraints on the execution order to consider which order is
allowed to occur on the target memory model. Note that the effect of execution can be

CHAPTER 3. BOUNDED METHOD 73

realized by the execution order.
In the previous work [MCA17], the way to abstract the behavior as a formula is proposed

for Gharachorloo framework [Gha95]. In particular, predicated functions are used to
represent the program information that can be extracted from the event state, while the
axioms and/or conditions are abstracted on the predicated functions to realize the possible
execution orders. This means the predicated functions are also considered to be realized
under some constraints.

Given even state ε, property condition p, assertion condition a and memory modelM,
the encoded formula is of the form

Cε ∧ AεM ∧ p ∧ ¬a

where Cε represents the program behavior and AεM represents constraints of memory
model M for event state ε. The encoded formula represents the condition of execution
state σ whether there is a computation violating assertion a.

Program Behavior Program behavior Cε captures the program semantics, such as
arithmetic semantics, and memory accesses in event state ε. In particular, Cε contains
the encoded program information Infoε and the behavior properties Basisε. The formulas
in Infoε represent what was extracted from event state ε directly such as program order
and representations of memory accesses. While Basisε of event state ε is constructed
by analyzing behavior properties of programs such as conflicting operations and conflict
orders. The formulas in Basisε are necessary to determine a possible execution order of
event state ε. Therefore, the program behavior Cε consists of Infoε and Basisε such that:

Cε = Infoε ∧ Basisε

Program Information: Given event state ε = 〈s, po, iico, rmw〉, every read and write
accesses in s are considered specifically for each processor. Let’s assume there are n pro-
cessors, every write access w eventually appears as sub-operation w(i) on each processor
i for any i ∈ {1, . . . , n}. For read access r issued by processor i, there is a sub-operation
r(i) appear on processor i to access. Note that, although there is no processor identifier
information in an event state, the identifier can be analyzed dynamically from program
order po information; If the events are issued by the same processor, those events might
be related either directly or indirectly. For instance, if there are a

po−→ b and a
po−→ c, events

a, b, and c are issued by the same processor. Those sub-operations are then used by un-
interpreted functions, such as program order and execution order, to realize an execution
order and the return values of the read accesses.

Definition 3.35 (Sub-Operation of Memory Event). Let Wε be the set of sub-operations
of the write events, Rε be the set of sub-operations of the read events, and RWε be the
set of sub-operations, such that RWε \Rε = Wε,

Wε = {w(i) | ε = 〈s, po, iico, rmw〉 and w ∈ s and w is a write event and 1 ≤ i ≤ n},
Rε = {r(i) | ε = 〈s, po, iico, rmw〉 and r ∈ s and r is a read event and

r is issued by processor i }.

CHAPTER 3. BOUNDED METHOD 74

Besides, uninterpreted functions shown in the following definition represent the infor-
mation of those events, where Evε = RWε ∪ Fenceε and Fenceε is the set of fence events
appearing in event state ε.

Definition 3.36 (Uninterpreted Functions for Gharachorloo framework).

loc : RWε → Loc (target location of a memory access)
write value : Wε → N (write value of sub-operation)
read value : Rε → N (read value of sub-operation)

pid : Evε → {1, . . . , n} (processor identifier)
po : (Evε × Evε)→ {>,⊥} (program order)

rmw : (Rε ×Wε)→ {>,⊥} (read-modified-write requirement)

Then, the following formulas are built to capture the information of event state ε =
〈s, po, iico, rmw〉.
ewrite =

∧
w(i)∈Wε

(L(w) = loc(w(i)) ∧WvalJwK = write val(w(i)))

eread =
∧
r(i)∈Rε

(L(r) = loc(r(i)) ∧ RvalJrK = read val(r(i)))

epid =
∧

ev∈Evε
(pid(ev) = j) where j is the issued processor of ev

epo =
∧
a,b∈s((a, b) ∈ po =⇒ po(a, b))

ermw =
∧
r(i),w(i)∈RWε

((r, w) ∈ rmw iff rmw(r(i), w(i)))

Consequently, formula Infoε is ewrite ∧ eread ∧ epid ∧ epo ∧ ermw. Note that this formula
captures only the information of events to be represented in the first-order formula. The
uninterpreted functions, such as read val, are then evaluated under the constraints using
an SMT solver later.

Behavior Property The program order information is given in formula Infoε which
is extracted directly. For program orders that are not given, the solver can assume the
existence of an order by itself. For instance, if there are pid(c) 6= pid(b), po(a, b) and
po(c, d), an SMT solver could assume po(c, b) occur even if it should not. To avoid this,
formula epo’ is given such that

epo′ =
∧

x,y∈RWε

(pid(x) 6= pid(y) =⇒ ¬(po(x, y)))

Two memory operations are the conflict operations if one of them is a write operation
and they access the same location. For every events x, y appearing in event state ε, the
uninterpreted function conflict(x, y) is defined such that

econf =
∧

x(i),y(j)∈RWε

(conflict(x, y) iff (loc(x(i)) = loc(y(j)) ∧ (x(i) ∈ Wε ∨ y(j) ∈ Wε)))

Besides, there are two basic orders for constraining the execution order, which are con-

flicting order, denoted by
co−→, and inter-conflicting order, denoted by

co′
−→. These orders

are defined regarding the execution order
xo−→. Thus, let co, coe, and xo be uninterpreted

CHAPTER 3. BOUNDED METHOD 75

functions of those orders, such that

eco =
∧
x(i),y(j)∈RWε

(co(x, y) iff conflict(x, y) ∧ ∃k.xo(x(k), y(k)))

ecoe =
∧
x(i),y(j)∈RWε

(coe(x, y) iff co(x, y) ∧ pid(x) 6= pid(y))

Then,
Basicε = epo′ ∧ econf ∧ eco ∧ ecoe

Constraints of a memory model The specification of a memory model is of the form
similar to Figure 2-10, which consists of the definition of significant orders, underlying
requirements, and conditions on an execution order

xo−→, such that

AεM =Mdef ∧ Uε ∧Mcond

where Mdef represents the definitions of significant orders, such as
spo−−→ and

sco−→, Uε rep-
resents the underlying behaviors of multiprocessor systems, and Mcond represents the
conditions on an execution order of memory model M. Note that the sub-formulas of
these formulas usually contain the axioms to constraints the valid execution regarding
memory model M.

Underlying behavior: The formula of underlying behavior consists of the formulas
of conditions 1, 2, 3 shown in Section 2.3.1, such that

Uε = Condε1 ∧ Condε2 ∧ Condε3

The termination condition, Condition 1, of writes events ensures every corresponding sub-
operation of a write event must eventually appear in the execution order

xo−→, which is
described by the following formula.

Condε1 =
∧

w(i)∈Wε,y(j)∈RWε

(xo(w(i), y(j)) xor xo(y(j), w(i)))

where operator xor is used to choose one of orders must occur in a system.
To preserve Condition 2, the return value of read sub-operations, the corresponding sub-

operation r(i) ∈ Rε must appear in an execution order
xo−→, thus, the following formula

must be included in formula Condε2.∧
r(i)∈Rε,y(j)∈RWε

(xo(r(i), y(j)) xor xo(y(j), r(i)))

Besides, return value function is then defined regarding condition 2 as following definition.

Definition 3.37 (Return value function for Gharchorloo framework).

read val(r(i)) =


init(loc(r(i))) If no wpo(r(i)) ∧ no wxo(r(i))
Wxo(r(i)) If no wpo(r(i)) ∧ ¬no wxo(r(i))
Wpo(r(i)) Otherwise

CHAPTER 3. BOUNDED METHOD 76

where init(L) represents the initial value of location L, which can be an arbitrary value,
Wxo and Wpo are the return values from write sub-operations that satisfy their conditions,
which are defined later. The following definition of no wpo(r(i)) checks that there is no
conflicting write operation that appears before read operation r in the program order
and appears in execution order before read event r. The definition no wxo(r(i)) checks
that there is no conflicting write operation appear in the execution order before read
sub-operation r(i).

Definition 3.38 (Return value predicates for Gharachorloo framework).

no wpo(r(i)) iff
∧

w(i)∈Wε

(conflict(w, r) ∧ po(w, r) =⇒ xo(w(i), r(i)))

no wxo(r(i)) iff
∧

w(i)∈Wε

(conflict(r, w) =⇒ xo(r(i), w(i)))

The value Wpo(r) is returned by the conflict write operation that has no other conflicting
write operations appear between that read and write operations in the program order.
For the value Wxo(r), it is returned by the conflict write operation that has no another
conflict write operations appear between that read and write operation in the execution
order. To determine those values, the following formulas are used.

eWpo =
∧

r(i)∈Rε

(
∃w(i) ∈ Wε.

(
conflict(r, w) ∧ xo(r(i), w(i))∧
Conseqpo(w, r) ∧ write val(w(i)) = Wpo

))

eWxo =
∧

r(i)∈Rε

(
∃w(i) ∈ Wε.

(
conflict(r, w) ∧ xo(w(i), r(i))∧
Conseqxo(w(i), r(i)) ∧ write val(w(i)) = Wxo

))

Predicate Conseqpo(w, r) is used to check that write event w is followed by conflicting
read event r in the program order consecutively. Similarly, Conseqxo(w(i), r(i)) is used
to check whether write sub-operation w(i) is followed by conflicting read sub-operation
r(i) immediately in execution order

xo−→. The following formulas are then used to defined
predicates Conseqpo(w, r) and Conseqxo(w(i), r(i)).

econseq po =
∧

w(i)∈Wε,r(i)∈Rε

 Conseqpo(w, r) iff(
po(w, r) ∧

∧
w′(i)∈Wε\{w(i)}

(conflict(w′, r) =⇒ notInterrupt(po, w, r, w′))

) 
econseq xo =

∧
w(i)∈Wε,r(i)∈Rε

 Conseqxo(w(i), r(i)) iff(
xo(w(i), r(i)) ∧

∧
w′(i)∈Wε\{w(i)}

(conflict(w′, r) =⇒ notInterrupt(xo,w(i), r(i),w′(i)))

) 
Note that function notUnterrupt(rel, x, y, z) is used to check whether z does not appear

between x and y in relation rel.

notInterrupt(rel, x, y, z) iff (rel(z, x) ∧ rel(z, y)) xor (rel(x, z) ∧ rel(y, z))

CHAPTER 3. BOUNDED METHOD 77

Therefore, the formula for Condε2 is defined as

Condε2 = exo r ∧ eWpo ∧ eWxo ∧ econseq po ∧ econseq xo

For condition 3, atomicity of read-modify-write operation, Condε3 is then defined as the
following equation.

Condε3 =
∧

w(i),w′(j)∈Wε,r(i)∈Rε

(
rmw(r(i), w(i)) ∧ pid(w′) 6= ‘pid(w) =⇒
notInterrupt(xo, r(i), w(i), w′(i))

)

Definitions of significant orders: Each specification in [Gha95] usually has its own

definitions for specific orders, such as
spo−→ and

sco−→, for significant program order and
significant conflict order, respectively. These orders are usually used to consider the valid
execution order in the conditions. However, each model has different definitions of these
orders and conditions. Constraints should be defined independently for each model. For

example, the definition of
spo”−−→ of TSO in Figure 2-10 is defined by formula TSOspo′′ .

TSOspo′′ =
∧

x(i),y(j)∈RWε


spo′′(x, y) iff (
(x(i) ∈ Rε ∧ po(x, y))∨
(x(i), y(j) ∈ Wε ∧ po(x, y))∨
(x(i) ∈ Wε ∧ y(i) ∈ Rε∧
∃m ∈ MemWRε.(po(x,m) ∧ po(m, y))))


where MemWR is the set of memory barrier events issued by SPARC instruction such
that MemWR ⊆ Fenceε.

Conditions on execution orders: Lets consider the condition W
sco−→ R

spo−−→ {A sco−→
B

spo−−→}+R. The condition consists of a transitive relation x{ sco−→ A
spo−→}+ y that can be

formalized as a relation function loop by the following formula.

TSOloop =
∧

x(i),y(j)∈RWε

 loop(x, y) iff (
(∃z(k) ∈ RWε.(sco(x, z) ∧ spo(z, y)))∨
(∃z(k) ∈ RWε.(loop(x, z) ∧ loop(z, y))))


Condition W

sco−→ R
spo−−→ {A sco−→ B

spo−−→} + R is then formalized using loop using the
following formula.

TSOmDep3 =
∧

x(i)∈Wε,y(i),z(j)∈Rε,a(k)∈RWε

(
conflict(x, y) ∧ sco(x, z)∧
spo(z, a) ∧ loop(a, y) =⇒ xo(x(i), y(i))

)

Encoding Scheme of Herding Cats Framework

In this framework, the communication between events in the system is a concern to
determine the data flow of the read accesses and the write accesses. In contrast to the
previous framework, herding cats framework uses relations instead of orders. Besides, as
the events are directly used to determine the data flow, the completing order of each event

CHAPTER 3. BOUNDED METHOD 78

is not realized explicitly in this framework. However, it is sufficient to consider the effect
of program executions for program verification.

In the encoding method, predicated functions are used to represent the relations on the
existing events. In the constraint of this framework, the basis relations are provided for
all constraints, such as read-from relation, and additional relations for relaxed memory
models could be constructed from the basis relations. Then, the constraints are considered
as the property on those relations, such as acyclic of a relation.

Given even state ε, property condition p, assertion condition a and memory modelM,
the encoded formula is of the form

Basisε ∧ ConsεM ∧ p ∧ ¬a

where Basisε represents the basis relations on event state ε and ConsεM represents con-
straints of memory model M for event state ε. Note that, although the form of encoded
formula is similar to the previous framework, the way to encode relies on relations of
existing events.

According to cats specifications [ACM16], the constraints rely on the relations of ex-
isting events. Besides, there might be additional relations for the constraints in formula
ConsεM. Our approach also provides the way to constructs those additional relations for
realizing a specification in term of first-order formula.

Basis Relations Given event state ε = 〈s, po, iico, rmw〉, every read or write event are
considered as a single-event, which is different to Gharachorloo framework. However, each
event also has its processor identifier, which can be analyzed as same as Gharachorloo
framework. In addition, read and write events are categorized for registers and shared-
memory to distinguish the behavior, in which there are the following basic sets.

Definition 3.39 (Basic sets for Herding Cats framework).

Wε = {w | ε = 〈s′ ∪ {w}, po, iico, rmw〉 ∧ w is a write event to shared memory}
∪ {w0

L | w0
L writes an initial value to share memory L ∈ Loc}

Rε = {r | ε = 〈s′ ∪ {r}, po, iico, rmw〉 ∧ w is a read event to shared memory}
Wregε = {w | ε = 〈s′ ∪ {w}, po, iico, rmw〉 ∧ w is a write event to register}

∪ {w0
R | w0

R writes an initial value to register R ∈ Reg}
Rregε = {r | ε = 〈s′ ∪ {r}, po, iico, rmw〉 ∧ w is a read event to register}

where w0
L and w0

R are write events to shared memory L and register R, which usually
write 0 and have processor identifier 0.

The additional writes w0
L and w0

R are used to realize the initial value of every target
access because the read value of read events relies on a relation from the existing write

events, represented by read-from relation
rf−→.

Besides, uninterpreted formulas are also used in this encoding to represent relations in
an encoded formula. First four basis uninterpreted functions are po, po−loc, iico, and

CHAPTER 3. BOUNDED METHOD 79

rmw, which are abstracted by the following formulas.

epo =
∧

x,y∈Evε

(po(x, y) iff (x, y) ∈ po)

epo-loc =
∧

x,y∈Evε

(po−loc(x, y) iff (po(x, y) ∧ Loc(x) = Loc(y)))

eiico =
∧

x,y∈Evε

(iico(x, y) iff (x, y) ∈ iico)

ermw =
∧

x,y∈Evε

(rmw(x, y) iff (x, y) ∈ rmw)

where po−loc represents the program order of events that accesses to the same location.

To realize the read value of a read event, read-from relation
rf−→ is used to represent

the data flow from a write event to the read event. The relation considers all conflicting
writes, represented by cf(W, r) from set of write event and conflict with read event r.
The representation of read-from relation → rf is abstracted by uninterpreted function rf,
which is defined by the following formulas.

erf =
∧
r∈Rε

 ∨
w∈cf(Wε,r)

(rf(w, r))

 ∧ ∧
e1∈Evε\Rε

(¬∀e.¬(rf(e, e1)))

erf-val =
∧

r∈Rε,w∈cf(Wε,r)

(rf(w, r) =⇒ Rval(r) = Wval(w))

erfe = (rfe(x, y) iff (rf(x, y) ∧ pid(x) 6= pid(y)))

cf(W, r) = {w | w ∈ W ∧ Loc(w) = Loc(r)}

Note that uninterpreted function rfe is also defined to indicate the read-from relation that
the value is transferred across processors.

There is also conflicting order definition in this encoding approach, which relies on
the relations instead of execution order. Uninterpreted functions co and coe are used
to indicate conflicting order and inter-conflicting order, which are defined by following
equations.

eco =
∧

x,y∈Evε\Wscε

(co(x, y) iff (x 6= y ∧ x, y ∈ Wε ∧ ¬co(y, x) ∧ pid(y) 6= 0))

ecoe =
∧

x,y∈Evε

(coe(x, y) iff (co(x, y) ∧ pid(x) 6= pid(y)))

where Wscε is the set of write events issued by store-condition operations, such that
Wscε = {(eid, sc(v1, loc, v2)) ∈Wev | eid ∈ Eid ∧ v1 ∈ Tmp ∧ v2 ∈ Tmp}.

Moreover, there is a relation from-read, denoted by
fr−→, to indicate the conflicting write

events following the read event. This relation is used for basic information to build other
relations for constraining the behavior. The relation is then defined by the following

CHAPTER 3. BOUNDED METHOD 80

formulas. Note that uninterpreted function fre also appear to indicate the relation across
processors.

efr =
∧

x,y∈Evε

(∀e1, e2, e3 ∈ Evε((rf(e2, e1) ∧ co(e2, e3)) =⇒ fr(e1, e3)))

efre =
∧

x,y∈Evε

(fre(x, y) iff (fr(x, y) ∧ pid(x) 6= pid(y)))

To realize the semantics of the store-condition operation, the following formulas are
provided to consider the behavior in which the write accesses provided by store-condition
operations can arbitrarily fail.

esc =
∧
w∈Wscε

(r = syncR(w, ε) =⇒ (sc cond1(w, r) ∨ sc cond2(w, r)))
sc cond1(w, r) iff (∀wp ∈Wev.(rf(wp, r) ∧ w 6= wp =⇒ (∀w′ ∈Wev.(co(wp, w′) ∧ w 6= w′

=⇒ co(wp, w) ∧ co(w,w′))))) ∧ (SJwK = 0)
sc cond2(w, r) iff (∀w′ ∈Wev.(¬co(w′, w) ∧ ¬co(w,w′))∧

∀r′ ∈ Rev.(¬rf(w, r′)) ∧ SJwK = 0)

where syncR(w, ε) is the recent load-link event in the program order prior write event w.
Consequently, the basis relations include uninterpreted functions: po, po−loc, iico,

rmw, co, coe, rf, rfe, fr, and fre. These functions are abstracted in first-order formula
Basisε, such that

Basisε = epo ∧ epo-loc ∧ eiico ∧ ermw ∧ eco ∧ ecoe ∧ erf ∧ erf-val ∧ erfe ∧ efr ∧ efre ∧ esc

Additional Relations According to specifications for herding cats framework, there
are additional relations to realize the behavior regarding a memory model. However,
those relations are basically constructed from the basis relations. For instance, relation
fre;coe−−−→ appearing in Figure 2-12 is constructed by concatenation of relations

fre−−→ and
coe−→.

Thus, to construct additional relations, there are four operators are used: ∪ (union),
; (sequence), ∩ (intersection), and \ (set difference). The following formulas are used
to define those operations on relations r1 and r2. Note that these definitions are just
guidance for defining additional relations on specific specification.

eunion =
∧

x,y∈Evε

(union(x, y) iff (r1(x, y) ∨ r2(x, y)))

eseq =
∧

x,y∈Evε

(
seq(x, y) iff (

∨
z∈Evε

(r1(x, z) ∧ r2(z, y)))

)
eintersec =

∧
x,y∈Evε

(intersec(x, y) iff (r1(x, y) ∧ r2(x, y)))

ediff =
∧

x,y∈Evε

(diff(x, y) iff (r1(x, y) ∧ ¬r2(x, y)))

Moreover, most of the modern memory models usually use memory barrier or fence
operation to prevent anomalous behaviors. In specification for herding cats framework,

CHAPTER 3. BOUNDED METHOD 81

the relation of two events are ordered by a fence operation is usually used. For instance,

a
dmb−−→ b represents event a is ordered before b, in which there is event dmb between those

events. To define an additional relation to indicate such behavior, the following formula
can be adopted to define uninterpreted function for fence F , where f is a fence instance
f ∈ F and F ⊆ Fenceε.

efence =
∧

x,y∈Evε

(
fence(x, y) iff (

∨
f∈F

(po(x, f) ∧ po(f, y)))

)

Constraints Relations Given event state ε = 〈s, po, iico, rmw〉 and the specification
of memory model M, the relations of ε represented by basis relations and additional
relations must be constrained to realize the valid read values of read events. The way to
constrain the relations in specifications for herding cats framework relies on constraints:
acyclic, irreflexive, and empty.

Acyclic constraint ensures there is no loop of the relation can occur in a system. To check
the relation, addition relation trans is used to represent relation r, instead of check the
relation directly. Then, the transitive closure of relation trans is introduced by a formula.
Finally, the acyclic constraint checks there is no irreflexive of relation trans occur in a
system. Thus, the following formulas are used to represent the acyclic constraint.

eacyclic-1 =
∧

x,y∈Evε

(r(x, y) =⇒ trans(x, y))

eacyclic-2 = ∀x, y, z ∈ Evε.((trans(x, y) ∧ trans(y, z)) =⇒ trans(x, z))

eacyclic-3 = ∀e.¬(trans(e, e))

For irreflexive constraint and empty constraint, the following formulas can be used directly
for any relation r.

eirreflexive = ∀e.¬(r(e, e))

eempty = ∀x, y.¬(r(x, y))

3.4 Conclusions

This chapter proposes an SMT-based program verification method to verify concurrent
programs executed on a multiprocessor system. Primarily, the effect of programs caused
by a relaxed memory model is considered to verify the program property. In this method,
we can deal with a variety of assembly languages and the program behavior on a variety
of relaxed memory models. In particular, the contributions of this method are (1) the
abstraction of concurrent programs to deal with a variety of assembly language and (2)
an SMT-based method to ensure the program correctness based on the specification of
target memory model.

CHAPTER 3. BOUNDED METHOD 82

3.4.1 Achievements

Among assembly languages, an abstraction, called operation structure, is introduced to
capture the essential behavior of an assembly program for program verification on a re-
laxed memory model. In this abstraction, operations are assumed to be granules of pro-
grams to be performed by a processing unit, and the way to perform those also represented
by the abstraction, such as parallelisms of performing and unstructured programming of
assembly language. The considered operations are the side effects of assembly instructions
that could change the computation of the programs because of relaxed memory models.
Mainly, the effects of memory instructions are the primary concern of this research, while
the effect of instructions such as interruptions is excluded in our abstraction. However, as
the target program property to be verified is the effect caused by relaxed memory models,
our abstraction is sufficient to capture those effect for program verification.

In SMT-based program verification, the corresponding program executions are ab-
stracted by execution path. To ensure the program correctness, the program property
of every execution path must be verified with the behavior of the execution path on
target memory model. Thus, the encoding scheme is provided to represent the target
verification property as a first-order formula to be used in an SMT solver.

In general, an assembly program usually has branch instructions and predicate instruc-
tions to decide the control flow based on the computation of the program. Especially, the
computation is also affected by relaxed memory models. To explore the corresponding
execution paths without considering the computation, the bounded loop unwinding method
is introduced for the programs to restrict the number of state-space if programs contain
loops.

To provide a first-order formula for program verification, the specification of target
memory models is adopted as a standard description of memory model to realize the
effect of program execution. In this research, two encoding schemes are proposed based
on Gharachorloo framework [Gha95] and Herding cats framework [AMT14]. Although the
program behavior of each framework is different from each other, the effect of program
executions can be realized based on those behaviors.

In summary, by given a sequence of operation structures corresponding to target concur-
rent programs, the method can automatically verify the program property of the programs
on target memory model. By using bounded loop unwinding, the corresponding execution
paths can be explored automatically. The coverage of the provided execution paths can
capture all program executions if there is no loop in the programs, while the executions
are assumed to be eventually terminated if there is a loop. For encoding method, a given
execution path is also encoded as a first-order formula to be verified automatically by
an SMT solver. As a result, if there is a valuation found by the solver, the effect of the
valuation can disprove the correctness of the assembly programs. On the other hand,
the program correctness is ensured if there is no valuation founded by the solver for any
execution path of programs containing no loop. Otherwise, if the programs contain at
least one loop, the correctness cannot be ensured because the execution of the program
is bounded.

CHAPTER 3. BOUNDED METHOD 83

3.4.2 Limitations

Due to the consistency of shared-memory of a relaxed memory model, the global variables
cannot be expressed in our assertion language. Although the local variables can be used
to express safety property of the programs, the expressiveness of the program property is
limited as the property of concurrent programs can rely on the effect on global variables.
For instance, the mutual exclusion property usually uses a global counter to count the
number of process entering its critical section.

In addition, if the programs contain a loop, a bounded method is used to consider a
finite number of execution paths. Besides, the loop is assumed to be eventually termi-
nated to consider a finite number of events in SMT-based program verification. Thus, the
bounded method cannot ensure the program correctness of programs contain at least one
loop, such that (1) each loop is eventually terminated and (2) the number of execution
paths is finite. However, some programs could use a local variable to determine the num-
ber of loop iterations, such as

1 i := 0;

2 do{
3 // do something

4 i := i + 1;

5 }while(i < 10)

ones could be able to determine the number of loop iterations explicitly if the local vari-
ables used for loop condition are not affected by other programs.

CHAPTER 3. BOUNDED METHOD 84

Chapter 4

Inductive Invariant Method for
SMT-based Program Verification

4.1 Motivation

In our SMT-based program verification, an SMT solver is adopted to find a valuation
of free variables appearing in the given formula. Due to SMT solvers cannot handle the
infinite number of free variables, the previous method proposed in Chapter 3 assumes the
corresponding executions are eventually terminated. In addition, the bounded method
described in Chapter 3 has been used to systematically analyze the corresponding execu-
tions to be verified in SMT-based program verification. Obviously, the bounded method
limits the corresponding executions to be verified by using a bound if there is a loop in
the program. Consequently, the program property is then verified automatically.

According to our bounded method proposed in Chapter 3, if the number of loop iter-
ations can be determined systematically, the program correctness can be ensured auto-
matically using the number of loop iterations as a bound. Regarding the loop behavior,
the branch condition that causes a loop relies on the local variables. If the local variables
used in the loop condition are not affected by other programs, the bounded method can
be used due to the number of iterations could be considered beforehand. However, if the
local variables can be affected by the computation of other processing units, the number
of iterations could not be determined beforehand, and the infinite iterations can occur.
As our research focuses on the program verification for concurrent programs, the latter
effect must be considered, in which the number of iterations could be infinite.

Due to the limitation of the bounded method, this method adopts the inductive in-
variant approach using in software verification [DHKR11], which considers a sequential
program. Our work intends to use loop invariant to abstract the infinite iterations for
program verification on relaxed memory models. In addition to the effect of loop itera-
tion for the following iterations, the effect of write events to other processing units is also
captured in our method. Consequently, the effect of infinite iterations is abstracted to
produce finite events for program verification.

In this chapter, first, the overview of proposing method is explained to show the overall

85

idea to abstract the behavior for SMT-based program verification. Then, the abstrac-
tions of program executions for this method is introduced which is a modified version of
the abstraction for the bounded method. After that, the inductive invariant method is
proposed using transform functions instead of control flow graphs used in Chapter 3.

4.2 Overview of Inductive Invariant Method

To use the loop invariant for abstracting the loop behavior, the description of a loop
behavior is of the form do{γ〈inv〉}while(c) where γ is the loop body, inv is the invariant
condition and c is the loop condition. In particular, the program is required to be described
in structured programming style, in which the branch is not allowed to jump into/out a
loop. Then, the invariant condition is provided to each loop to abstract the behavior of
the loop. Thus, an operation structure used in the method must not allow unstructured
programming style, and the invariant has to be placed explicitly for each loop.

Due to the limitation of the bounded method, the inductive invariant method focuses on
the loop behavior that causes infinite loop iterations for program verification. Especially,
the loop condition that relies on the computation of other programs to exit the loop is
considered in this method. For instance, the following loop behavior waiting for the result
of memory location [X] becomes 1 to exit the loop.

1 do{
2 v:=[X]

3 〈v = 1 ∨ v = 0〉
4 }while(v = 0);

In the loop behavior, the infinite iterations can occur, which is the target behavior to be
abstracted in our inductive invariant method.

4.2.1 Issues for Program Verification

As the original approach [DHKR11] is proposed for a sequential program, the invariant is
expected to abstract the loop iterations for the next iteration for considering arbitrarily.
For instance, the following program provides the invariant for the loop.

1 do{
2 v:=v+1

3 〈v ≤ 4〉
4 }while(v < 4)

Invariant condition v ≤ 4 is used to ensure the value of local variable v always less than
or equal 4. In original approach uses this fact to provide the following description to
simulate an arbitrary loop iteration.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 86

1 v := *;

2 assume(v ≤ 4);
3 v:=v+1

where v := * is an assignment that ∗ refers to an arbitrary value and then assume(v ≤ 4)
constrains the arbitrary value to be in the scope described by the invariant condition.
These two statements are expected to abstract the effect of previous iterations using
invariant and statement v:=v+1 is then an arbitrary behavior of a loop iteration. Although
this is an appropriate approach for verifying a sequential program using SAT/SMT-solvers,
the concurrent programs cannot be abstracted by this approach directly because the
information could be lost.

1 v:=0;

2 do{
3 v := v+1;

4 [X] := v;

5 〈v ≤ 4〉
6 }while(v < 4);

1 u:=[X];

2 v:=[X];

3 assert (u < v);

Figure 4-1: Concurrent Programs

For instance, Figure 4-1 shows concurrent programs containing a loop and another pro-
gram has two read operations to memory location [X]. By inductive invariant approach,
an arbitrary loop iteration would be described as

1 v := *

2 assume(v ≤ 4);
3 v:=v+1;

4 [X] := v;

Consequently, the read events issued by another program can see only the effect of a
single write event from this arbitrary iteration. This means the write events are missing
due to the abstraction. Thus, our method considers this issue for program verification of
concurrent programs.

In addition to the missing information, the program verification for relaxed memory
models has another concern that the read events and write events could be completed
out-of-order. This means some relaxed memory models would allow events issued after a
loop iteration could be completed before the events issued by the iteration. For instance,
POWER allows a read operation to be delayed if it is independent to the following oper-
ations. If the target program verification is the following:

CHAPTER 4. INDUCTIVE INVARIANT METHOD 87

1 v:=0;

2 do{
3 v := [X]

4 〈v ≤ 5〉
5 }while(v < 5);

6 [Y] := 10

Intuitively, write operation [Y] := 10 can be completed before v:=[X] in any loop iter-
ation due to it is independent to the read operation. Consequently, if there is another
program that gets the write value of [Y] := 10 and reflect the result to read operation
v:=[X], the invariant condition is not satisfied for this situation. This means the abstrac-
tion of loop behavior would be affected by the following loop iterations or the memory
operations appearing after the loop.

4.2.2 Overview of Method for Relaxed Memory Models

Regarding a loop behavior, the loop body can be described arbitrarily regarding its in-
variant condition to abstract the effect of previous loop iterations. Besides, as concurrent
programs are the target of our method, the abstraction must also cover the effect of the
other concurrent programs which can see the effect of each iteration. In our case, the effect
to other programs corresponds to the write operations inside the loop body. Thus, the
effect of write events issued by infinite iterations must be abstracted for other programs
appropriately. Besides, the motivation of this method is to provide the first-order for-
mula for SMT-based program verification automatically. Thus, the abstraction of infinite
iterations is expected to be generated automatically.

1 γ1;

2 do{
3 v := [Y];

4 [X] := ψ(v);
5 〈inv〉
6 }while(φ(v));
7 γ2;

1 r1:=[X];

2 r2:=[X];

3 . . .
4 rk:=[X]

Figure 4-2: Infinite Loop Programs with k reads

Although infinite iterations are allowed to occur, there is an assumption that k loop
iterations would be sufficient for program verification if there are k read events issued
by other processors. For instance, Figure 4-2 shows the concurrent programs where the
loop body writes the value which is calculated from ψ(v) to memory location [X] and
there are k read operations accessing to memory location [X] on another program. In
program verification on relaxed memory models, the program execution is assumed to
be eventually terminated. This means there are i iterations to instantiate the loop body
where i ≥ 0. However, as there are only k read events to memory location [X] issued by

CHAPTER 4. INDUCTIVE INVARIANT METHOD 88

the programs, the number of write events to memory location [X] is at most k in which
the read events get the values from different write events. Also, according to Figure 4-3,
although there are ith iterations that can occur, at most k iterations would be considered
to determine the computation on other programs as there are only k read events.

1 γ1;

2 // iteration 0

3 v := [Y];

4 [X] := ψ(v);
5 assume(φ(v));
6 . . .
7 // iteration 1

8 assume(φ(v));
9 v := [Y];

10 [X] := ψ(v);
11 . . .
12 // iteration k

13 assume(φ(v));
14 v := [Y];

15 [X] := ψ(v);
16 . . .
17 // iteration i

18 assume(φ(v));
19 v := [Y];

20 [X] := ψ(v);
21 assume(¬φ(v));
22 γ2

1 r1:=[X];

2 r2:=[X];

3 . . .
4 rk:=[X]

Figure 4-3: k iteration with k reads

According to the assumption, the infinite iterations for k read events are expected to
abstracted as an arbitrary effect of k iterations that satisfies the loop invariant. The
following description shows the target abstraction which abstracts the effect of write
events from k+ 1 loop iterations where inv(v, wx) is the invariant condition that relies on
the value of local variable v and write value wx.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 89

1 // arbitrary iteration

2 v := *;

3 assume(φ(v) ∧ inv(v, wx));
4 // iteration 1

5 [X] := wx;
6 assume(φ(v) ∧ inv(v, wx));
7 . . .
8 // iteration k+1

9 [X] := wx;
10 assume(φ(v) ∧ inv(v, wx));
11 v := [Y];

12 [X] := ψ(v);

By the assumption, the number of the read events on other programs is the concern
to abstract a loop iteration. Besides, iteration (k + 1)th is used to abstract the prior
iteration for the read events in an arbitrary loop iteration. However, if there is a loop
on other programs, the number of events could be infinite that also affects the number of
abstraction.

Regarding the number of the read events caused by loop behaviors, the infinite number
of the read events would be caused by the behavior that waits for the read values from
outside not to satisfy the loop condition. In the purpose of program verification, arbitrary
behavior of loop body is considered in which the read value can be affected by outside
memory events. Thus, the number of the read events to be considered caused by the loop
equals the number of the read operations. For instance, the following description is an
arbitrary loop iteration of do{v := [X];u := [Y]〈inv(v, u)〉}while(φ(v, u)).

1 // arbitrary effect

2 v := *;

3 u := *;

4 assume(φ(v, u) ∧ inv(v, u));
5 // arbitrary iteration

6 v := [X];

7 u := [Y];

If there is a loop on another program to write values to memory locations [X] and [Y],
at most two loop iterations can be considered to consider this arbitrary value of this
arbitrary loop iteration.

Given concurrent programs P = P1 ·Q where Q = P2 · . . . · Pn and each Pi is executed
on processing unit i such that 1 ≤ i ≤ n. Let P1 be γ1; do{γs〈inv〉}while(c); γ2 and Q be
arbitrary programs that can read and write to the same memory locations that P1 uses.
Thus, the method derives the control flows to be verified regarding the loop invariant
in P1 and the number of read events that access the same memory locations that γs
access. For simplicity, the control flow graph shown in Figure 4-4 derives the execution
of P1 regarding invariant condition inv where arb v is the arbitrary assignments of local
variables and arb wi is the arbitrary assignment of memory locations for iteration i. In

CHAPTER 4. INDUCTIVE INVARIANT METHOD 90

addition, k is the number of read events appearing in Q that access the same memory
locations written by the write operations in the loop body.

Figure 4-4: Overview of Inductive Invariant Method

For the arbitrary assignment of local variables arb v, we collect the assigning target of
the read operation and load-link operation to the local variables. Those local variables
are assigned by arbitrary values for considering the arbitrary effect from the previous
iteration. Then, assumption assume(c ∧ inv) is used to restrict the scope of assigning
values to those local variables.

For the arbitrary assignment of memory locations arb w, we consider the target assign-
ment of write operations and store-condition operations to the memory locations. Due
to the behavior of store-condition operation, there is a possibility the write event issued
by the operation can fail. Besides, the sequence of write operations would be the matter
because of the behavior of store-condition operations. Thus, the possible ways to issue the
write events from the loop body are considered for the arbitrary assignment of memory
locations arb w. For instance, the following description illustrates the loop body to be
abstracted for arb w.

1 // loop body

2 u := v+z;

3 [X] := u;

4 i f (z = 1){

5 sc(z, [X], u);

6 [X] := v;

7 }

Figure 4-5 shows the control flow graph by analyzing the possible ways to issue the write
events regarding the program order. Note that there are restrictions in this method that

CHAPTER 4. INDUCTIVE INVARIANT METHOD 91

(1) the local variable for assigning the result of store-condition operation must not be used
in the read operations and load-link operations, and (2) the loop behavior is not allowed
as a nested loop. Then, the arbitrary assignment to memory locations must consider
every case to issue the write events.

Figure 4-5: Control flow graph for considering arbitrary assignments to memory locations

To summarize, each control flow derived from the graph is then considered regarding
the target memory model as the same as the bounded method. In this method, the way to
abstract the effect of infinite iterations is the primary concern for program verification on
relaxed memory models. This means after the loop behavior is abstracted, the encoding
method for program verification using SMT-solver is the same. However, as this method
also use the invariant condition to restrict the scope of write values to memory locations,
the assertion language is also improved to support such requirement.

Nevertheless, the proposed inductive invariant method did not take the memory events
occurring after a loop iteration into account. This means this method would not be sound
for any relaxed memory models. However, as partial store ordering (PSO) doesn’t allow
a read operation to be delayed; thus, the method is sound for PSO and stronger memory
models.

4.3 Abstractions for Program Execution

In the inductive invariant method, a program to be considered must be described by
structured programming style as so not to allow jump into/out a loop which could violate
the loop invariant. In the structured programming, the control flows of a program are
usually determined by if-branch and loop-branch explicitly, while unstructured program-
ming allows branch statements to jump onto any place in the program which is the usual
behavior of an assembly program.

In this section, the operation structure is modified to be described in a structured
programming style to support inductive invariant method. Although the behavior of
an assembly program would not be captured directly, the infinite loop iterations can
be abstracted for program verification on relaxed memory models. Then, the executions
produced derived by the modified operation structure is described for program verification.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 92

4.3.1 Abstractions of Assembly Programs

First of all, the inductive invariant method expects the invariant conditions to define
the scope of local variables and write values of a loop iteration. However, the boolean
expression used in the bounded method covers only the scope of local variables. Thus,
definition 4.1 extends the boolean expression to determine the write value of the recent
write operation in the program order. For instance, the following description uses an
assertion expression as the assumption condition to restrict the value of u and v such that
v = 3 ∧ u > 2.

1 [X] := 2;

2 [X] := u;

3 [Y] := v;

4 assume([Y] = 3 ∧ [X] > 2)

Note that the intention to indicate memory locations in an assertion expression is not to
ensure the value of the memory locations because the value of global variables cannot be
determined due to relaxed memory models. In this description, the memory locations in
an assertion expression are used to indicate the recent write operations appearing before
the condition. Then, this expression can be used in the inductive invariant method.

Definition 4.1 (Assertion Expression). the set Aexp is the smallest set X with the
properties:

1. >,⊥ ∈ X,

2. e1, e2 ∈ Exp ∪ Loc implies (e1 = e2), (e1 < e2), (e1 > e2) ∈ X,

3. ϕ, ψ ∈ X implies (ϕ ∧ ψ), (ϕ ∨ ψ) ∈ X,

4. ϕ ∈ X implies ¬(ϕ) ∈ X

where =, <,>,∧,∨, and ¬ are connectives, (and) are auxiliary symbols.

To describe a loop invariant condition, we modify the abstraction of an operation struc-
ture described in Section 3.2 to distinguish the behavior of if-branch and loop-branch
explicitly. In particular, we introduce control flow structure shown in Definition 4.2 to
indicate the if-branch and loop-branch explicitly.

Definition 4.2 (Control Flow Structure). Let γ be an execution structure, inv ∈ AExp
be an assertion expression and c ∈ BExp be a boolean expression, a control flow structure
is either: (1) Forward branch ifBr(c){ γ } or (2) Loop branch do{γ〈inv〉}while(c).

For the forward branch, description ifBr(c){γ} is used to indicate branch condition c as
a condition for performing the operations appearing in γ if the evaluation of the condition
is satisfied. Otherwise, the operations appearing in γ are not performed.

For the backward branch, description do{γ〈inv〉}while(c) is used to describe the loop
behavior such that operations appearing in γ are performed once and check condition c to

CHAPTER 4. INDUCTIVE INVARIANT METHOD 93

1 instr {
2 val_z := z

3 };

4 i fBr (¬(val_z = 1)){ //beq

L

5 instr {
6 val := [X]

7 r1 := val

8 }

9 } // L

(a) Forward branch behavior

1 do{ // L

2 instr {
3 val := [X]

4 r1 := val

5 };

6 instr {
7 val_z := z

8 }

9 }while(val_z = 1) // beq L

(b) Backward branch behavior

Figure 4-6: Examples of branch behavior

repeat the performing those operations again. As for invariant condition inv, this boolean
expression is used for the inductive invariant method later. Note that this description
intends to represent the behavior of label and branch that cause a loop in an assembly
program directly. For instance, Figure 4-6 shows the difference between a forward branch
and a backward branch of instruction beq L where label L is located in different places.

According to control flow structure, the branch operation should not be used in the
operation structure, which is already abstracted by if-branch and loop-branch. Thus, the
elements of an operation structure for the inductive invariant method must include control
flow structure and exclude branch operation branch(c, l) and label label(l). Figure 4-7
shows the corresponding operation structures of the message passing programs in Figure
1-2 for the inductive invariant method. In contrast to Figure 3-7, the label and brach are
replaced by loob branch explicitly.

4.3.2 Execution of Operation Structures

For program executions, an event state defined in Chapter 3 is also used to represent
the abstraction of issued events to the system. However, as the description of operation
structures for the inductive invariant method is in structured programming style, the
control flow graph of an operation structure is not necessary for considering the possible
issued operations into a system. Thus, instead of constructing a control flow graph, the
transform function of operation structures is proposed directly to expand the possible
executions regarding the loop unwinding approach. Consequently, we define transforma-
tion function to transform a set of states based on program description to generate the
corresponding set of states that represent all symbolic executions directly based on the
program description. For instance, let a state to be considered be a formula, such as v = k,
and FJif(v > 1){γ}K be a transform function based on if condition, the computation of
the transform function could be defined as the following formula.

FJif(v > 1){γ}K{(v = k)} = FJγK{(v > 1 ∧ v = k) ∪ {(¬(v > 1) ∧ v = k)}

CHAPTER 4. INDUCTIVE INVARIANT METHOD 94

1 instr {
2 val := 1;

3 r1 := val

4 };

5 instr {
6 val := r1

7 [x] := val

8 };

9 instr {
10 val := r1

11 [y] := val

12 }

Operation structure γ1

1 do{
2 instr {
3 val := [y];

4 r1 := val

5 };

6 instr {
7 (rd := 1‖rt := r2);

8 valz := (rd = rt)?1:0;

9 z := valz;
10 valn := (rd = rt)?0:1;

11 n := valn
12 };

13 instr {
14 valn := n

15 }

16 }while(valn = 1);
17 instr {
18 val := [x];

19 r1 := val

20 };

21 assert (val = 1)

Operation structure γ2

Figure 4-7: An operation structure for message passing

where the output is the set of formulas by analyzing condition v > 1. However, this is the
overview of transform function; The target of the transform function used in this method
is to extract the symbolic execution directly instead of using control flow analysis shown
in the bounded method.

To abstract the program execution in the transform function, symbolic execution state
shown in Definition 4.3 is used to represent the way to representation instead of execution
path described in previous chapter. A symbolic execution state consists of event state ε,
property condition p and assertion condition a that required by the execution, in which
the undetermined values in the conditions are symbolic values shown in definition 4.4. The
intention of p and a is to represent property and assertion on symbolic variables appearing
in ε. Property p on given event state ε represents how the data of local variables are flown
among events. While assertion a ensures the values of local variables satisfy the condition
to show the program correctness. Consequently, the elements of a symbolic execution
state can be used in SMT-based program verification directly.

Definition 4.3 (Symbolic Execution State). A symbolic execution state σ ∈ Σ is a tuple
〈ε, p, a〉 where ε is an event state, p, a ∈ Bexp is a boolean expression.

Definition 4.4 (Symbolic Value). Given SymVal be the set of symbolic values, a symbolic
value is either an arbitrary value, written by ∗, or the value of a temporal register, written

CHAPTER 4. INDUCTIVE INVARIANT METHOD 95

by tj for temporal register t ∈ Tmp and identifier j ∈ N+.

A symbolic value is intended to represent the intermediate value of each step a temporal
register is changed, in which the value is not evaluated yet. To indicate each step, we use
the superscript on a temporal variable to indicate the step by using a natural number.
Hence, to capture the step of a variable during generation, the variable state shown in
Definition 4.5 is used to save the state of counters on temporal registers. In addition, the
value might be an arbitrary value of natural number N.

Definition 4.5 (Variable State). Variable state v ∈ V is a mapping from temporal register
Tmp to a positive natuaral number N+ where V is the set of variable states.

In addition to variable states, a write variable state shown in Definition 4.6 is used to
capture the recent temporal variable to a memory location for checking in an assertion
expression. For instance, the following description produces three write events to memory
locations [X] and [Y].

1 [X] := w1
x;

2 [Y] := w1
y;

3 [X] := w2
x;

4 assert ([X] = 2);

For the assertion, the assertion expression is expected to ensure the value of w2
x equals 2

for any program execution. Thus, the intention of the write variable state is to remember
the last symbolic variable used by the write operation.

Definition 4.6 (Write Variable State). Write variable state µ ∈ Ξ is a mapping from
memory location Loc to a symbolic value SymVal where Ξ is the set of write variable
states.

Definition 4.7 (Symbolic Expression). Let SymExpJeKv be either an expression or a
boolean expression that can contain symbolic values in the expression, where e be either
an expression or a boolean expression, and v is a variable state, such that

SymExpJcKρ = c

SymExpJtK〈v, µ, θ〉 =

 tv(t)−1 If v(t) ≥ 1
µ(t) If t ∈ Loc
∗ Otherwise

SymExpJe1�e2Kρ =


∗ If SymExpJe1Kρ = ∗ or SymExpJe2Kρ = ∗
SymExpJe1Kρ Otherwise
� SymExpJe2Kρ

SymExpJ¬e1Kρ = ¬(SymExpJe1Kρ)

SymExpJ(e1)?e2 : e3Kρ = (SymExpJe1Kρ)?(SymExpJe2Kρ) : (SymExpJ¬e3Kρ)

where ∗ is an arbitrary value, which can be any value v′ ∈ N, and � ∈ {+,−,∧,∨}.

In some situations, the symbolic execution state is a merging state between two or more
states to represent the parallelism of among event states and requirement on them. Thus,

CHAPTER 4. INDUCTIVE INVARIANT METHOD 96

the operator ⊕ is a binary operator to merge the behavior of two symbolic execution
states, such that

Definition 4.8 (State Merging Operator). Let ⊕ be a binary operator on symbolic exe-
cution states to consider the concurrent execution of events on those states, such that

〈ε1, p1, a1〉 ⊕ 〈ε2, p2, a2〉 = 〈ε′, p1 ∧ p2, a1 ∧ a2〉

where: ε1 = 〈e1, po1, iico1, atom1〉,
ε2 = 〈e2, po2, iico2, atom2〉,
ε′ = 〈e1 ∪ e2, po1 ∪ po2, iico1 ∪ iico2, atom1 ∪ atom2〉, and
∅ = e1 ∩ e2

To explore the possible symbolic execution states of a sequence of operation structures
P = P1 · . . . ·Pn, an intermediate state ρ shown in 4.9 is introduced for the loop unwinding
method. Then, we consider the set of intermediate states ϑ as a configuration shown in
Definition 4.10 to define a transform function. Transform function EJP Kϑ represents the
set of intermediate states that consider the behavior of P from configuration ϑ.

Definition 4.9 (Intermediate State). An intermediate state ρ is a pair 〈v, µ, θ〉 where v
is a variable state, µ is a write variable state and θ is either symbolic execution state σ
or the abortion of symbolic execution state, written by abort(σ).

Definition 4.10 (Configuration). A configuration is a set of intermediate states such
that ϑ ⊆ (V× Ξ× Σ). Let v0 be the initial variable state and σ0 be the initial symbolic
execution state, initial configuration ϑ0 = {〈v0, µ0, σ0〉} such that v0(t) = 0 for any
t ∈ Tmp, µ0(l) = ∗ for any l ∈ Loc and σ0 = 〈〈∅, ∅, ∅, ∅〉,>,>〉.

Th abortion of a symbolic execution state σ, written by abort(σ), means a termination
of a program, in which the further operations are not performed anymore. Given a
configuration ϑ, let ϑexec and ϑabort be the set containing executable state and the set
containing aborted state, respectively, such that

ϑexec = {〈v, µ, σ〉 | 〈v, µ, σ〉 ∈ ϑ}
ϑabort = {〈v, µ, abort(σ)〉 | 〈v, µ, abort(σ)〉 ∈ ϑ}

Transform function E is used to explore the possible symbolic execution states for
program verification. First of all, the semantics of an execution structure γ, defined by
semantics function IJγKϑ, is defined to systematically capture the events issued by the
elements of operation structures.

Let IJγKϑ is a configuration containing the possible intermediate states that can be
produced by γ from configuration ϑ. The following definitions represent the semantics of
execution structure.

IJv:=eKϑ =


WriteEv(v, e, v:=e)ϑ if v ∈ V \ Tmp
ReadEv(v, e, v:=e)ϑ if e ∈ V \ Tmp
Assn(v, e)ϑ if v, e ∈ Tmp

CHAPTER 4. INDUCTIVE INVARIANT METHOD 97

Abort(ϑ) = {〈v, µ, abort(σ)〉 | 〈v, µ, σ〉 ∈ ϑexec} ∪ ϑabort

Prop(c)(ϑ) =
{
〈v, µ, 〈ε, p ∧ (c ρ), a〉〉

∣∣ ρ = 〈v, µ, 〈ε, p, a〉〉 ∧ ρ ∈ ϑexec
}
∪ ϑabort

Assert(c)(ϑ) =
{
〈v, µ, 〈ε, p, a ∧ (c ρ)〉〉

∣∣ ρ = 〈v, µ, 〈ε, p, a〉〉 ∧ ρ ∈ ϑexec
}
∪ ϑabort

Atom(r, w)(ϑ) = {〈v, µ, 〈〈s, po, iico, atom ∪ {(r, w)}〉, p, a〉〉 |
〈v, µ, 〈〈s, po, iico, atom〉, p, a〉〉 ∈ ϑexec} ∪ ϑabort

ReadEv(t, e, op)(ϑ) = {〈v′, µ, 〈ε′, p ∧ (tv(t) = e′), a〉〉 | e′ = RvalJRevK ∧Rev = ev∗(op, ε) ∧
ρ = 〈v, µ, 〈ε′, p, a〉〉 ∧ (ε′ = ε ≺ Rev) ∧ 〈v, µ, 〈ε, p, a〉〉 ∈ ϑexec}
∪ϑabort

WriteEv(t, e, op)(ϑ) = {〈v, µ[t 7→ e′], 〈ε′, p ∧ (WvalJWevK = e′), a〉〉 |
e′ = SymExpJeK〈v, µ, 〈ε, p, a〉〉 ∧Wev = ev∗(op, ε) ∧
ε′ = ε ≺ Wev ∧ 〈v, µ, 〈ε, p, a〉〉 ∈ ϑexec} ∪ ϑabort

Assn(t, e)(ϑ) = {〈v[t 7→ v(t) + 1], µ, 〈ε, (p ∧ tv(t) = SymExpJeK〈v, µ, 〈ε, p, a〉〉), a〉〉 |
〈v, µ, 〈ε, p, a〉〉 ∈ ϑexec} ∪ ϑabort

Figure 4-8: Auxiliary functions

where ReadEv,WriteEv, and Assn are auxiliary functions, defined in Figure 4-8, to add
read event, add write event, and define computation for a symbolic assignment for con-
figuration ϑ.

IJll(v, loc)Kϑ = ReadEv(v, loc, ll(v, loc))ϑ
IJsc(v1, loc, v2)Kϑ = {〈v, µ[loc 7→ e′], 〈ε′, p ∧ (WvalJWevK = e′) ∧ (v1 = SJWevK), a〉〉 |

e′ = SymExpJv2K〈v, µ, 〈ε, p, a〉〉 ∧Wev = ev∗(sc(v1, loc, v2), ε) ∧
ε′ = ε ≺ Wev ∧ 〈v, µ, 〈ε, p, a〉〉 ∈ ϑexec} ∪ ϑabort

IJfenceKϑ = {〈v, µ, 〈ε ≺ ev∗(fence, ε), p, a〉〉 | 〈v, µ, 〈ε, p, a〉〉 ∈ ϑ} if fence ∈ Fence

where fence operation fence is performed to issue an fence event, denoted by ev∗(fence, ε),
to be added in event state ε.

IJinstr{γ}Kϑ = Instr(IJγK)ϑ
where: Instr(s)ϑ = {〈v′, µ′, 〈ε′′′, p′, a′〉〉 | 〈v, µ, 〈ε, p, a〉〉 ∈ ϑ ∧

〈v′, µ′, 〈ε′′, p′, a′〉〉 ∈ s{〈v, µ, 〈ε′, p, a〉〉}}
ε = 〈ev, po, iico, atom〉
ε′ = 〈ev, ∅, ∅, ∅〉
ε′′ = 〈ev′, po′, iico′, atom′〉
ε′′′ = 〈ev′, po ∪ po′ ∪ {(a, b) | a ∈ ev ∧ b ∈ ev′}, iico ∪ po′, atom〉

IJatom(v1:=e1); γ; atom(v2:=e2)Kϑ = (Atom(Rev,Wev) ◦ addR ◦ IJγK ◦ addR)ϑ

where addR = ReadEv(v1, e1, v1:=e1), addW = WriteEv(v2, e2, v2:=e2), and Atom is
an auxiliary function to put atomic constraint to configuration ϑ.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 98

EJinstr{γ}Kϑ = IJinstr{γ}Kϑexec ∪ ϑabort

EJP1 · P2Kϑ = {〈v′′, µ0, θ
′ ⊕ θ′′〉 | 〈v′′, µ′′, θ′′〉 ∈ EJP2K{〈v′, µ0, θ〉} ∧

〈v′, µ′, θ′〉 ∈ EJP1K{〈v, µ0, θ〉 | 〈v, µ, θ〉 ∈ ϑ}}
EJγ1; γ2Kϑ = (EJγ2K ◦ EJγ1K)ϑ

EJifBr(c){γ}Kϑ = ifBrCond(SymExpJcK, EJγK)ϑ
where IfBrCond(c, s)ϑ = (Prop(¬c))ϑ ∪ (s ◦ Prop(c))ϑ

EJdo{γ}while(c)Kϑ =
⋃
i≥0(Prop(¬SymExpJcK) ◦ loop(EJγK ◦ Prop(c′), i) ◦ EJγK)ϑ

where c′ = SymExpJcK

loop(s, i) =


s if i = 1
s ◦ loop(s, i− 1) if i > 1
idϑ Otherwise

EJassume(c)Kϑ = Prop(SymExpJcK)ϑ

EJassert(c)Kϑ = Assert(SymExpJcK)ϑ

Figure 4-9: Transform Function E of Operation Structure

IJnilKϑ = ϑ

IJγ1; γ2Kϑ = (IJγ2K ◦ IJγ1K)ϑ

IJγ1 ‖ γ2Kϑ = {〈v′′, µ′′, σ′ ⊕ σ′′〉 | 〈v′′, µ′′, σ′′〉 ∈ IJγ2K{〈v′, µ′, σ〉} ∧
〈v′, µ′, σ′〉 ∈ IJγ1K{〈v, µ, σ〉} ∧ 〈v, µ, σ〉 ∈ ϑ}

IJif(c){γ}Kϑ = Prop(¬SymExpJcK)ϑ ∪ (IJγK ◦ Prop(SymExpJcK))ϑ

Given a sequence of operation structures P = P1 · . . . ·Pn, the transform function is de-
fined by EJP Kϑ where ϑ is a configuration, in which transform function E is defined in Fig.
4-9. This function systematically explores the symbolic execution states by expanding a
loop if any.

4.4 Inductive Invariant Method

This section would like to introduce derivation executions for programs that containing
loop behavior for program verification. Mainly, the derived executions are then used in
our SMT-based program verification approach in which a derived execution is encoded as
a formula for an SMT solver. Firstly, the inductive invariant method is explained using
transform functions, in which the functions are described to abstract the loop behavior
in the programs to produce the finite executions to be considered in program verification.
Then, the way to encode each of executions regarding the memory model is as the same
as the bounded method.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 99

4.4.1 Derivation of Programs containing Loop

In the inductive invariant method, the abstraction of loop behavior relies on the number
of the read events that need to get that computation of a loop iteration. In other words,
the effect of write operations in each loop iteration is needed to be considered for the read
events issued by other programs. Thus, we would like to define a transform function to
derive the executions regarding the number of the read events issued by other programs.

First of all, to determine the number of the read events for considerations, the decision
of if-branches and predicated conditions are eliminated to determine the number of the
read events to be considered explicitly. However, the descriptions of loop-branches are still
as the number of the read operations appearing in the loop body are determined explicitly.
In program verification, all decisions of branch conditions and predicated conditions are
captured by the set of operation structures, in which each operation structure in the set
represents a decision case for program executions. Thus, transform function SJγKΓ shown
in Definition 4.11 is given to explore the cases of if-branch and predicated conditions to
be considered where Γ is the set of operation structures in which initial set Γ0 = {nil}.

Definition 4.11 (Condition Extraction Function). Given an operation structure γ and
set of operation structures Γ, transform function SJγKϑ is defined as the following.

SJγ1; γ2KΓ = (SJγ2K ◦ SJγ1K)Γ
SJifBr(c){γ}KΓ = SJassume(¬c)KΓ ∪ (SJγK ◦ SJassume(c)K)Γ
SJassume(c)KΓ = {s; assume(c) | s ∈ Γ}
SJassert(c)KΓ = {s; assert(c) | s ∈ Γ}

SJdo{γ〈inv〉}while(c)KΓ = {s; do{γ〈inv〉}while(c) | s ∈ Γ}
SJinstr{γ}KΓ = {s; instr{γ′} | γ′ = I ′JγK{nil} ∧ s ∈ Γ}

As for transform function I ′ appearing in Definition 4.11, this function is used to extract
the cases to perform operations in an instruction without any decision. Definition 4.12
shows the semantics of the function to eliminate the predicated condition appearing in
an instruction if any. By this elimination, the number of the read events can be counted
explicitly.

Definition 4.12 (Condition Execution Extraction Fucntion). Given an instruction ex-
ecution instr{γ} and γ is its execution strucutre, transformation function I ′JγK can be
defined in the followings.

I ′JnilKΓ = Γ
I ′Jv:=eKΓ = {γ; v:=e | γ ∈ Γ}
I ′Jll(v1, l)KΓ = {γ; ll(v1, l) | γ ∈ Γ}

I ′Jsc(v1, l, v2)KΓ = {γ; sc(v1, l, v2) | γ ∈ Γ}
I ′JfenceKΓ = {γ; fence | γ ∈ Γ}
I ′Jγ1; γ2KΓ = (I ′Jγ2K ◦ I ′Jγ1K)Γ
I ′Jγ1 ‖ γ2KΓ = {γ; (γ1 ‖ γ2) | γ ∈ Γ}
I ′Jif(c){γ}KΓ = I ′Jassume(c); γKΓ ∪ I ′Jassume(¬c)KΓ

CHAPTER 4. INDUCTIVE INVARIANT METHOD 100

By given the set of operation structures for counting the number of the read events,
transform function info shown in Definition 4.14 is introduced to accumulate the number
of the read events to be considered. To accumulate the number of events, mapping
δ : Loc → N+ shown in Definition 4.13 is used to remember the number of read events
to a specific memory location. Then, the loop body can determine the significant read
events affected by the write events issued by each loop iteration.

Definition 4.13 (Counter of Read Events). Let δ ∈ ∆ be a mapping from memory
locations Loc to positive natural numbers N+ where ∆ is the set of the mapping functions
Loc→ N+. The initial mapping is defined as δ0 where δ0(l) = 0 for any l ∈ Loc.

Definition 4.14 (Information of Read Event Counters). Given set of operation structure
Γ and mapping δ : Loc→ N+, function infoJΓKδ is defined as the followings.

info(Γ) =

{
δ0 if Γ = ∅
countRJγK(info(Γ \ {γ})) if Γ = Γ′ ∪ {γ}

For function countR appearing in Definition 4.14, the function shown in Definition 4.15
is used to count the number of read events to be considered in a single operation structure.
Although the loop would appear on the operation structure and the number of the read
events becomes infinite, the number of the read events to be considered equals the number
of the read operations and load-link operations appearing in the loop body. Thus, in the
definition, the number of the read operations appearing in the loop body is considered
directly.

Definition 4.15 (Read Counter Function). Given an operation structure γ and mapping
δ : Loc→ N+, function countRJγKδ is defined as the followings.

countRJnilKδ = δ
countRJassume(c)Kδ = δ

countRJassert(c)Kδ = δ
countRJγ1; γ2Kδ = (countRJγ2K ◦ countRJγ1K)δ

countRJγ1 ‖ γ2Kδ = (countRJγ2K ◦ countRJγ1K)δ
countRJinstr{γ}Kδ = countRJγKδ

countRJll(v, l)Kδ = δ[l 7→ δ(l) + 1]

countRJv := eKδ =

{
δ[v 7→ δ(v) + 1] If v ∈ Loc
δ Otherwise

countRJsc(v1, l, v2)Kδ = δ
countRJfenceKδ = δ If fence ∈ Fence

countRJdo{γ〈inv〉}while(c)Kδ = countRJγKδ
countRJifBr(c){γ}Kδ = countRJγKδ

countRJif(c){γ}Kδ = countRJγKδ

CHAPTER 4. INDUCTIVE INVARIANT METHOD 101

Given a sequence of operation structure P = P1 · . . . ·Pn, Inductive Invariant transform
function InvJP K shown in Definition 4.16 is given to analyzing the cases to be consid-
ered for program verification. Firstly, the function uses function S and function info to
determine the read events to memory locations for specific operation structure Pi by con-
sidering every operation structure Pj where j 6= i. Then, transformation function LδJγKϑ
shown in Definition 4.17 is used to abstract the loop behavior in operation structure γ
with the information of read events described in δ for program verification.

Definition 4.16 (Inductive Invariant Transform Function). Given a sequence of operation
structure P = P1·P2·. . .·Pn, the inductive invariant transform function InvJP K for sequence
P is defined as the following.

InvJP1 · P2 · . . . · PnK= {σ1 ⊕ σ2 ⊕ . . .⊕ σn |
s1 ∈ SJP1K{nil} ∧ s2 ∈ SJP2K{nil} ∧ . . . ∧ sn ∈ SJPnK{nil}∧
Γ = {s1, s2, . . . , sn} ∧ δ1 = info(Γ \ {s1})∧
δ2 = info(Γ \ {s2}) ∧ . . . ∧ δn = info(Γ \ {sn})∧
〈v1, µ1σ1〉 ∈ Lδ1Js1K{〈v0, µ0, σ0〉} ∧
〈v2, µ2σ2〉 ∈ Lδ2Js2K{〈v1, µ0, σ0〉} ∧ . . .
∧ 〈vn, µn, σn〉 ∈ LδnJsnK{〈vn−1, µ0, σ0〉}}

In particular, transform function LδJdo{γ〈inv〉}while(c)K provides the cases regarding
the provided invariant condition inv and the number of read events described in mapping
function δ. The main idea is to provide the cases to be considered in the inductive
invariant approach, in which the number of the read events is needed to consider the
effect of write events to be abstracted in the inductive cases.

Definition 4.17 (Loop Abstraction Transformation). Given operation structure γ, map-
ping function δ, and configuration ϑ, transform function LδJγKϑ is defined as the follow-

CHAPTER 4. INDUCTIVE INVARIANT METHOD 102

ings.

LδJnilKϑ = ϑ
LδJγ1; γ2Kϑ = (LδJγ2K ◦ LδJγ1K)ϑ

LδJassume(c)Kϑ = Prop(SymExpJcK)ϑexec ∪ ϑabort

LδJassert(c)Kϑ = Assert(SymExpJcK)ϑexec ∪ ϑabort

LδJinstr{γ}Kϑ = IJinstr{γ}Kϑexec ∪ ϑabort

LδJdo{γ〈inv〉}while(c)Kϑ = (Prop(¬SymExpJcK) ◦ LδJγK)ϑ ∪
(Abort ◦ Assert(SymExpJinvK) ◦ body ◦

Prop(SymExpJc ∧ invK) ◦ loop(arb w, k + 1) ◦ Arbitr(γ) ◦
Assert(inv) ◦ Prop(SymExpJcK) ◦ LδJγK)ϑ ∪

(Prop(¬SymExpJcK) ◦ body ◦ Prop(SymExpJc ∧ invK) ◦
loop(arb w, k + 1) ◦ Arbitr(γ) ◦ Assert(inv) ◦
Prop(SymExpJcK) ◦ LδJγK)ϑ

where k = Σl∈locW(γ)δ(l),
arb w = Prop(SymExpJc ∧ invK) ◦ ArbWJγsKidϑ, and

body = (LδJγK ◦ Prop(SymExpJc ∧ invK))ϑ

loop(s, i) =


s if i = 1
s ◦ loop(s, i− 1) if i > 1
idϑ Otherwise

To determine the induction cases, the arbitrary state of a loop iteration is constructed
by considering the arbitrary effect of previous loop iterations. As the method concerns
the infinite loop iterations, there could be any i iterations before exiting the loop behavior
where i ≥ 0. To consider the arbitrary effect of previous iterations, the effect of assign-
ments to temporal registers and the effect of the write events to memory locations are
considered. According to Definition 4.17, Arbtr(γ) is the arbitrary effect of assignments
to temporal registers, while ArbWJγKidϑ is the transformation function representing the
arbitrary performing of write operations to memory locations regarding γ where idϑ is
the identity function of configuration ϑ.

For the arbitrary effect of assignments to temporal registers, transform function Arbitr(γ)
shown in Definition 4.18 represents the arbitrary effect in which the arbitrary value would
be assigned to temporal registers. To represent an arbitrary value in a first-order formula,
a fresh variable of a natural number is used in the formula without any constraint on it.
Consequently, the variable appearing in the formula will be evaluated by an SMT solver
to find an instance that satisfying the provided constraint in the formula. Thus, all of
the variables appearing in γ, explored by function AssnV(γ) shown in Definition 4.19, are
used to instantiate the fresh variables for use in the formula. In the definition, a fresh
variable can be instantiated by increasing the specific counters in the variable state.

Definition 4.18 (Arbitrary Assignment). Given operation structure γ, transform func-
tion Arbitr(γ) is defined as the following.

Arbitr(γ)ϑ = {〈v[l 7→ v(l) + 1], µ, σ〉 | l ∈ AssnV(γ) ∧ 〈v, µ, σ〉 ∈ ϑexec} ∪ ϑabort

CHAPTER 4. INDUCTIVE INVARIANT METHOD 103

Definition 4.19 (Assignment Target). Given operation structure γ, function AssnV(γ)
is defined as the followings to capture the target assignments appearing in the operation
structure.

AssnV(op) =


{v} if op = v:=e ∧ v ∈ Tmp
{v} if op = atom(v:=e)∧

v ∈ Tmp
∅ Otherwise

AssnV(nil) = ∅
AssnV(γ1; γ2) = AssnV(γ1) ∪

AssnV(γ2)
AssnV(γ1 ‖ γ2) = AssnV(γ1) ∪

AssnV(γ2)
AssnV(instr{γ}) = AssnV(γ)

AssnV(if(c){γ}) = AssnV(γ)
AssnV(ifBr{c}{γ}) = AssnV(γ)

AssnV
(

do{γ〈inv〉}while(c)
)

= AssnV(γ)

where op is an assignment, c, inv ∈ BExp, γ, γ1, γ2 are either operation structures or
execution structures.

For the effect of the write events to memory locations, function ArbWJγKF shown
in Definition 4.20 represents the set of transformation functions to capture the possible
effects of write events from a loop iteration where γ is an operation structure and F is
the set of transformation functions. Due to the effect of a store-condition operation can
arbitrary fail, this means the write event issued by the operation would not be considered
as the effect of the loop behavior. In the abstraction, transformation functions produced
by ArbWJγKidϑ are the possible instantiations of write events in which the write values
are arbitrary values where idϑ is the identity function for configuration ϑ.

Definition 4.20 (Arbitrary Write Events). Given operation structure γ and transform
function for configuration ϑ, transform fuction ArbWJγKf is defined as the followings.

ArbWJnilKf = f
ArbWJassume(c)Kf = f

ArbWJassert(c)Kf = f
ArbWJifBr(c){γ}Kf = AltF(ArbWJγKf, f)

ArbWJinstr{γ}Kf = ArbWJγKf
ArbWJγ1; γ2Kf = (ArbWJγ2K ◦ ArbWJγ1K)f

ArbWJγ1 ‖ γ2Kf = ParallelF(ArbWJγ1Kidϑ,ArbWJγ2Kidϑ) ◦ f
ArbWJif(c){γ}Kf = AltF(ArbWJγKf, f)

ArbWJv := eKf =

{
WriteEv∗(v) ◦ f If v ∈ Loc
f Otherwise

ArbWJll(v, l)Kf = f
ArbWJsc(v1, l, v2)Kf = AltF(WriteEv∗(l) ◦ Assn(v1, 0) ◦ f,Assn(v1, 1) ◦ f)

where idϑ is the identity function of configuration ϑ, AltF(f1, f2) is the function repre-
senting alternative cases for consideration, ParalellF(f1, f2) is the function to consider the
behavior of parallelism of operations in an instruction, and WriteEv∗(l) is an abstract

CHAPTER 4. INDUCTIVE INVARIANT METHOD 104

write instance to memory location l such that

AltF(f1, f2)ϑ = f1 ϑ ∪ f2 ϑ
ParallelF(F1, F2)ϑ = {〈v′′, σ1 ⊕ σ2〉 | 〈v, σ〉 ∈ ϑ ∧ 〈v′, σ1〉 ∈ F1{〈v, σ〉} ∧

〈v′, σ2〉 ∈ F2{〈v′, σ〉}}
WriteEv∗(l)ϑ = {v[wl 7→ v(wl) + 1], µ[l 7→ w

v(wl)+1
l] | 〈v, µ, σ〉 ∈ ϑexec} ∪ ϑabort

To summarize, given a sequence of operation structures P = P1 · . . . · Pn, the symbolic
execution states derived from InvJP K can be used for SMT-based program verification
directly. In particular, each of the symbolic execution states is automatically encoded
as a first-order formula regarding a memory model, in which the formula represents the
executions that cause a violation of the program property. Thus, to ensure the program
correctness, there must be no valuation of the formula for any symbolic execution states
derived from the inductive invariant method.

4.4.2 Soundness of Inductive Invariant Method

Given a sequence of operation structures P for the inductive invariant method, sequence
P is partially correct on memory model M if all of the executions always satisfy the
program property of P where the execution is eventually terminated. Note that, in our
SMT-based program verification approach, a symbolic execution state is expected to be
terminated to determine the effect on any relaxed memory model.

To determine whether symbolic execution state 〈ε, p, a〉 is correct on memory model
M , the corresponding first-order formula is provided as the following.

Encode(ε,M) ∧ p ∧ ¬a

where Encode is the encoding function to translate event state ε regarding memory model
M as a first-order formula to represent the program behavior, as explained in Chapter 3.
Hence, the correctness of a symbolic execution state on a memory model is shown in
Definition 4.21 by determining the corresponding first-order formula.

Definition 4.21 (Correctness of Symbolic Execution). Given a symbolic execution state
σ = 〈ε, p, a〉 and corresponding formula Encode(ε,M) ∧ p ∧ ¬a, the symbolic execution
state is correct on memory model M if there is no valuation of symbolic values in the
corresponding formula.

Consequently, given a sequence of operation structures P , the correctness of P on a
memory model can be determined by considering the correctness of the corresponding
symbolic execution states of P . In particular, the partial correctness shown in Defini-
tion 4.22 is considered in which the corresponding executions are supposed to be eventu-
ally terminated.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 105

Definition 4.22 (Partial Correctness of Operation Structures). Given a sequence of op-
eration structures P and memory modelM, P is partial correct on memory modelM is
written by M |= P such that

M |= P iff ∀〈v, σ〉 ∈ EJP Kϑ0.σ is correct on memory model M

where the corresponding symbolic executions of P are derived by transform function
EJP Kϑ0.

Regarding transform function EJP K of sequence P , the number of loop iterations is a
positive natural number. In particular, if the number cannot be determined in a system-
atic way regarding the programs, the number of loop iterations to be considered becomes
infinite. For instance, the loop condition that relies on the effect of other programs can
be waiting for an arbitrary number of loop iterations before exiting the loop behavior.
Instead of using transform function EJP K of sequence P , the derived symbolic execution
states from the inductive invariant method is used to determine the partial correctness of
P . Definition 4.23 shows the partial correctness of P using the inductive invariant method
in which the symbolic execution states to be considered are derived by InvJP K.

Definition 4.23 (Partial Correctness using Indutive Invariant Method). Given a sequence
of operation structures P and the symbolic execution states of P are derived by InvJP K,
the partial correctness of P is written by M ` P such that

M ` P iff ∀σ ∈ InvJP K.σ is correct on memory model M

According to the out-of-order executions occurring on relaxed memory models, the
inductive invariant method seems not to be sound for any relaxed memory model. For
instance, some relaxed memory models such as POWER allows the completion of a read
operation to be delayed if the following memory operations do not rely on the effect of the
read operation. Hence, in concurrent programs, the operations after the loop behavior
could affect the prior read operations. However, in the inductive invariant method, the
behavior after an arbitrary loop iteration is not considered. Thus, the invariant condition
cannot be ensured for any relaxed memory model.

However, some relaxed memory models that do not allow any read operation to be de-
layed, the inductive invariant approach would be sound for those relaxed memory models.
Thus, we consider partial store ordering (PSO) as the relaxed memory model to consider
the soundness of the inductive invariant method. In particular, to determine the program
behavior on partial store ordering, the specification shown in Figure 4-10 provided for
herding cats [AMT14] is used. Intuitively, the specification requires: (1) the data flow of
conflicting events issued by the same program must follow the program order, and (2) the
completing order of memory operations after a read operation must follow the program
order. Consequently, the inductive invariant method seems to be sound on partial store
ordering (PSO).

CHAPTER 4. INDUCTIVE INVARIANT METHOD 106

let po-loc = po & loc
acyclic po-loc | rf | co | fr
let ppo = po \ (W*RW)
acyclic ppo | rfe | co | fr

Figure 4-10: PSO specification in cat language

In addition, for simplicity of determining the soundness, operator / shown in Defini-
tion 4.24 is used instead of transform functions to represent the way to constructing a
symbolic execution state. Moreover, we use curly brackets { and } to represent the repeti-
tion of operator /. For instance, σ0 /{σ1/}2σn can be interpreted as σ0 /σ

1
1 /σ

2
1 /σn where

the content of σ1 is repeated 2 times and the symbolic variables in σ1
1 is different from

σ2
1. On the other words, the curly brackets correspond to transform function loop(f1, 2)

where the symbolic execution states σ1 corresponds to f1.

Definition 4.24 (Adding Symbolic Execution State). Given two symbolic execution
states 〈ε1, p1, a1〉 and 〈ε2, p2, a2〉, operator / is defined as the following.

〈ε1, p1, a1〉 / 〈ε2, p2, a2〉 = 〈ε′, p1 ∧ p2, a1 ∧ a2〉

where ε1 = 〈s1, po1, iico1, atom1〉, ε1 = 〈s2, po2, iico2, atom2〉, and ε′ = 〈s1 ∪ s2, po1 ∪
po2, iico1 ∪ iico2, atom1 ∪ atom2〉.

First of all, Lemma 1 is provided to ensure the program execution on a single processor
must be preserved as the same as the program executed in the program order. Note that
this behavior is expected to be preserved on any relaxed memory model to maintain the
program correctness on a uniprocessor. However, in the lemma, the specification of PSO
is used as a reference to determine the behavior.

Lemma 1 (The effect on Uniprocessors). Given the program order of conflicting write
events issued by the same program, a read event can get the write value from the last write
events appear in the program order before the read event.

Proof. To ensure the lemma, we consider two cases: (1) the write events appear before
the recent write event in the program order must not be seen by the following read event,
and (2) the write events appear after the read event must not be seen by the prior read
event.

Given two write events w1 and w2, and read event r accessing to the same memory
location, such that LJw1K = LJw2K and LJw1K = LJrK. Besides, the events are issued in
the program order, abstracted by predicated function po such that po(w1, w2)∧po(w1, r)∧
po(w2, r). Given a contradiction case that the write value w1 can be flown to read event
r, such that rf(w1, r). This means the following formula must be satisfied.

po(w1, w2) ∧ po(w1, r) ∧ po(w2, r) ∧ rf(w1, r) (4.1)

In this proof, we use a restriction of PSO specification shown in Figure 4-10, which is
acyclic po-loc | rf | co | fr. This restriction is then presented as the following

CHAPTER 4. INDUCTIVE INVARIANT METHOD 107

formulas.

∀x, y ∈ {w1, w2, r}.rel(x, y) iff (po−loc(x, y) ∨ rf(x, y) ∨ co(x, y) ∨ fr(x, y))
∀x, y, z ∈ {w1, w2, r}.rel(x, y) ∧ y, z =⇒ rel(x, z)

∀x ∈ {w1, w2, r}.¬(rel(x, x))
(4.2)

where rel is a fresh relation to detect a cycle of po-loc | rf | co | fr. As rf(w1, r) is
the assumption for contradiction case, this means rf(w1, r) ∨ po−loc(w1, r) ∨ co(w1, r) ∨
fr(w1, r) must not cause a cycle relation, denoted by predicated function rel. For po−loc
relation, as all the events access the same memory location, the relation is the same as
po where the following formula is derived.

po−loc(w1, w2) ∧ po−loc(w1, r) ∧ po−loc(w2, r) (4.3)

According to the formula for fr relation and rf(w1, r) is given, the following formula is
derived.

∀w′ ∈ {w1, w2}.rf(w1, r) ∧ co(w1, w
′) =⇒ fr(r, w′) (4.4)

According to the formula for co relation, write event w′ of relation fr(r, w′) can be evalu-
ated as w2, such that the following formula is derived.

co(w1, w2) ∧ fr(r, w2) (4.5)

Consequently, the derived formulas cause a cycle of relation rel where fr(r, w2) and
po−loc(w2, r) are derived. Thus, this shows the contradiction to the restriction acyclic

po-loc | rf | co | fr.
On the other hand, given two write events w1 and w2, and read event r accessing to the

same memory location, where w1, w2, and r are issued in the program order, such that
the following formula is derived.

po(w1, r) ∧ po(r, w2) ∧ w1,w2 (4.6)

Let’s assume the contradiction case that the value of write event w2 that occur after read
event r in the program order can be read by read event, such that rf(w2, r). This means
the following formula is satisfied on the behavior of uniprocessors.

po(w1, r) ∧ po(r, w2) ∧ po(w1, w2) ∧ rf(w2, r) (4.7)

For po−loc relation, as all the events access the same memory location, the relation is
the same as po, such that

po−loc(w1, r) ∧ po−loc(r, w2) ∧ po−loc(w1, w2) (4.8)

According to the restruction represented by Equation 4.2, the fact po−loc(r, w2) and
rf(w2, r) cause a cycle which is prohibited by the restriction. Thus, this also shows a
contradiction. Consequently, we can conclude that (1) the write event that is not the last
write before the read event cannot be seen by the read event, and (2) the write occur
later than the read event cannot be seen by the prior read event. These implies that only
the last write can be seen by the conflicting read event occur in the program order.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 108

Moreover, Lemma 2 shows the required property for ensuring the soundness of the
method that the effect of following write operations cannot be seen by the prior read issued
by the same program. Intuitively, ppo relation appearing in the specification restricts the
effect of the read event must be completed before any read events and write events after
the read event.

Lemma 2 (Read is not delayed in PSO). In partial store ordering, the effect of a write
event occur after a read event in the program order cannot be seen by the prior read issued
by the same program.

Proof. According to Lemma 1, the write effect appearing after a read event cannot be seen
directly. In addition, the effect on concurrent programs contains more than 1 programs
is considered for this proof.

Given read event r and write event w are issued in the program order, such that po(r, w),
and the events access to the same memory location. In addition, there are read event r′

and write event w′ on another program accessing to the same memory location of read
event r and write event w. We give a contradiction case that read event r can be affected
by write event w indirectly through other program, such that

rf(w, r′) ∧ po(r′, w′) ∧WvalJw′K = f(RvalJr′K) ∧ rf(w′, r) (4.9)

where events w′ and r′ are issued by other program in the program order such that
po(r′, w′), and function f computes a new value regarding the read value of event r′ such
that RvalJr′K. Regarding the formula to realize the read value, the following formula is
derived.

rf(w, r′) =⇒ RvalJr′K = WvalJwK (4.10)

and
rf(w′, r) =⇒ RvalJrK = WvalJw′K (4.11)

This case assumes read event r is affected by the following w indirectly, such that RvalJrK =
WvalJw′K where WvalJw′K = f(RvalJr′K) and RvalJr′K = WvalJwK.

According to the specification of PSO shown in Figure 4-10, the restriction acyclic

ppo | rfe | co | fr can be derived as the following formulas

∀x, y ∈ {r, w, r′, w′}.rel2(x, y) = (ppo(x, y) ∨ rfe(x, y) ∨ co(x, y) ∨ fr(x, y))
∀x, y, z ∈ {r, w, r′, w′}.rel2(x, y) ∧ rel2(y, z) =⇒ rel2(x, z)

∀x ∈ {r, w, r′, w′}.¬rel2(x, x)
(4.12)

where rel2 is a fresh relation to detect the cycle of relation ppo | rfe | co | fr. Ac-
cording to ppo relation, defined by let ppo = po \ (W*RW) and the existing events, the
relation can be derived as the following formula.

ppo(r, w) ∧ ppo(r′, w′) (4.13)

For rfe relation and the existing assumption on rf, the following formula is derived.

rfe(w, r′) ∧ rfe(w′, r) (4.14)

CHAPTER 4. INDUCTIVE INVARIANT METHOD 109

Then, the derived formulas are contradict where ppo(r, w), rfe(w, r′), ppo(r′, w′) and
rfe(w′, r) cause a cycle, which contradict the formulas 4.12.

According to the inductive invariant method, the number of abstraction arb w to be
used in the method depends on the number of read events issued by other programs.
Thus, Lemma 4 shows k read events on other programs need at most k abstractions to be
considered. In addition, Lemma 3 derives the fact of Herding cats framework to support
the Lemma 4.

Lemma 3 (At most k write events are read by k read events). In herding cats framework,
at most k write events are accessed if there are k read events.

Proof. According to herding cat framework [AMT14], the read-from relation rf is defined
based on conflicting write events in the system. Besides, our encoding method provides
initial write event w0

L for memory location L. Thus, given read event r, at least one write
event in the system must be accessed by the read event, such that∨

w∈cf(W,r)

.(rf(w, r)) (4.15)

where cf(W, r) is the conflicting write events of event r among the write events in W .
Thus, if we have n read events and m write events in the system, at most n write events
are read by the read event separately if m ≥ n.

On the other hand, if the number of write events is less than the number of read events
where m < n, there is at least two read events that access to the same write events by
the pigeonhole principle1.

Lemma 4 (The number of write abstractions in the method). In the inductive invariant
method, if there is k read events issued by other operation structures to memory locations,
at most k abstractions of arbitrary loop iterations are needed for realizing the write values
produced by any m loop iterations where m > k.

Proof. Given an operation structure P1 = γ1; do{γs〈inv〉}while(c); γ2 and P2 contains k
read events to the same memory locations accessed by γs. For the target of inductive
invariant method, the number of loop iterations is any arbitrary number due to the loop
condition relies on the read events. In our method, arb w represents an arbitrary effect
of write events appearing in loop body γs that satisfying invariant condition inv, where
arb w = Prop(SymExpJc ∧ invK) ◦ArbWJγsK{idϑ}. Note that the effect of arb w is over-
approximation approach that realizes the arbitrary computations satisfying the invariant
condition.

In each abstract iteration, the effect of arb w would be different from each other. As-
sume that there are m possible computations can be produced by m abstractions of loop
iteration separately, without any order. According to Lemma 3, k read events on other

1https://en.wikipedia.org/wiki/Pigeonhole principle

CHAPTER 4. INDUCTIVE INVARIANT METHOD 110

programs need at most k write events to be considered. As m computations are produced
by m abstractions, at most k computations are needed for k read events on other proces-
sors. This means at most k abstractions of arbitrary loop iteration are needed for k read
events issued by other programs even if there are m possible computations.

Consequently, Theorem 1 shows if the derived symbolic execution states from the in-
ductive invariant method are correct on partial store ordering (PSO), the corresponding
symbolic execution states that are eventually terminated are also correct on partial store
ordering (PSO). This means if sequence P is correct by the inductive invariant method,
the partial correctness can be ensured on PSO.

Theorem 1 (Soundness of Inductive Invariant Method for PSO). Given a sequence of
operation structures P , M ` P =⇒ M |= P in which M is PSO memory model.

Proof. First of all, let’s consider an arbitrary sequence of operation structures P , there
are two cases: only one operation structure and n operation structures. For the case 1
structure, the effect of any execution is always as the same as the program executed on
sequential consistency model. Consequently, M ` P =⇒ M |= P for any memory
model M if P consists of an operation structure. This means only case P = P1 · . . . · Pn
must be taken into account.

Let Q be a sequence of operation structures such that Q = P2 · . . . · Pn, where Q is
considered as the arbitrary effect of computation in the system. For sequence P = P1 ·Q,
structure P1 is considered to contain arbitrary loop inside the structure such that P1 =
γ1; do{γs1}while(c1); γ2, where γ1, γs1 and γ2 are arbitrary structures. In the proof, we
consider 2 cases: (1) Q is an arbitrary effect that consists of finite read instances to shared-
memory locations and (2) there is a loop in Q that could cause infinite read instances to
the system. For instance, we consider P 1 and P 2 such that

Case 1: P 1 = (γ1; do{γs1}while(c1); γ2) ·Q
Case 2: P 2 = (γ1; do{γs1}while(c1); γ2) · (γ3; do{γs2}while(c2); γ4) ·Q

where each element is considered arbitrary.
Let’s consider the target proof PSO |= P where P is either P 1 or P 2. By the defini-

tion, any arbitrary σ such that 〈v, σ〉 ∈ EJP Kϑ0 must be correct on PSO. In particular,
there must be no evaluation of Encode(ε,M) ∧ p ∧ ¬a for any symbolic execution state
σ = 〈ε, p, a〉 where Encode(ε,M) is the encoded formula to realize the effect of program
execution on memory model M. For each case of P , there is assumption that P derived
by inductive invariant method is correct on PSO, written by PSO ` P . According to the
assumption, both cases must be shown to conclude soundness of the inductive invariant
method.

Case 1 For the case P 1, let P1 = γ1; do{γs1}while(c); γ2, an arbitrary σ is considered
from EJP1 ·QKϑ0 such that

EJP1 ·QK{〈v0, µ0, σ0〉} = {〈v′′, µ0, σ1 ⊕ σQ〉 | 〈v′′, µ′′, σ1〉 ∈ EJP1K{〈v′, µ0, σ0〉} ∧
〈v′, µ′, σQ〉 ∈ EJQK{〈v0, µ0, σ0〉}}

CHAPTER 4. INDUCTIVE INVARIANT METHOD 111

This means arbitrary state σ to be considered is σ1⊕σQ in which σQ = 〈εQ, pQ, aQ〉 for arbi-
trary case. On the other hand, σ1 is considered from EJP1K and P1 = γ1; do{γs1}while(c1);
γ2, where γ1, γs1 and γ2 are arbitrary structures, such that

EJγ1; do{γs1}while(c1); γ2K{〈v′, µ0, σ0〉}
=
⋃
i≥0(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγs1K ◦ EJγ1K){〈v′, µ0, σ0〉}

= (EJγ2K ◦ Prop(¬c′) ◦ EJγs1K ◦ EJγ1K){〈v′, µ0, σ0〉} ∪⋃
i≥1(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγs1K ◦ EJγ1K){〈v′, µ0, σ0〉}

Hence, there are 2 arbitrary cases of σ1 to be considered:

Case 1-1: (EJγ2K ◦ Prop(¬c′) ◦ EJγs1K ◦ EJγ1K){〈v′, σ0〉}
Case 1-2:

⋃
i≥1(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγ1K){〈v′, σ0〉}

Then, arbitrary state σ = σ1 ⊕ σQ can be considered from those 2 cases. For simplicity,
the cases of σ are explained in the following forms:

Case 1-1: σ0 = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
¬c / σ

0
γ2)⊕ σQ

Case 1-2: σinf = (σ0 / σ
0
γ1 / σ

0
s1 / {σc / σs1/}iσinf¬c / σinfγ2)⊕ σQ For any i ≥ 1

There is an assumption that PSO ` P1 · Q, in which the symbolic execution states
derived by indutive invariant method are correct on PSO, where Q = P2 · . . . · Pn. Thus,
arbitrary state σ is considered from InvJP1 · P2 · . . . · PnK such that

InvJP1 · P2 · . . . · PnK = {θ1 ⊕ θ2 ⊕ . . .⊕ θn |
s1 ∈ SJP1K{nil} ∧ s2 ∈ SJP2K{nil} ∧ . . . ∧ snSJPnK{nil}∧
δ1 = info({s2, . . . , sn}) ∧ . . . ∧ δn = info({s1, . . . , sn−1})∧
〈v1, µ1, θ1〉 ∈ Lδ1Js1K{〈v0, µ0, σ0〉} ∧ . . .∧
〈vn, µn, θn〉 ∈ LδnJsnK{〈v0, µ0, σn−1〉}

As P2 · . . . · Pn is considered in an arbitrary way, let σQ = 〈εQ, pQ, aQ〉 be an abstraction
of θ2 ⊕ . . . ⊕ θn for consideration. Besides, we assume that Q has k read accesses to
shared-memory locations, in which could be written by the write accesses in P1. Thus,
let arbitrary state to be considered for P 1 be σ1 = θ1 ⊕ σQ where θ1 is considered from
Lδ1Jγ1; do{γs1}while(c1); γ2K{〈v0, µ0, σ0〉} such that

Lδ1Jγ1; do{γs1}while(c1); γ2K{〈v0, µ0, σ0〉}
= (Lδ1Jγ2K ◦ Lδ1Jdo{γs1}while(c1)K ◦ Lδ1Jγ1K){〈v0, µ0, σ0〉}
= (Lδ1Jγ2K ◦ Lδ1Jdo{γs1}while(c1)K){〈v1, µ1, σ0 / σ

0
γ1〉}

where σ0
γ1 is an arbitrary symbolic execution state corresponding to transform function

Lδ1Jγ1K such that σ0
γ1 = 〈ε0

γ1, p
0
1, a

0
1〉. After that, by case analysis of Lδ1Jdo{γs1}while(c)K,

arbitrary state θ1 can be considered from either of the following cases:

〈v′1, µ′1, θas1〉 ∈ (Prop(¬c′) ◦ Lδ1JγsK){〈v1, µ1, σ0 / σ
0
γ1〉}

〈v′2, µ′2, θas2〉 ∈ (Abort ◦ Assert(inv′) ◦ body ◦ Prop(c′ ∧ inv′) ◦ loop(arb w, k + 1) ◦
Arbitr(γs) ◦ Assert(inv′) ◦ Prop(c′) ◦ Lδ1JγsK){〈v1, µ1, σ0 / σ

0
γ1〉}

〈v′3, µ′3, θas3〉 ∈ (Prop(¬c′) ◦ body ◦ Prop(c′ ∧ inv′) ◦ loop(arb w, k + 1) ◦ Arbitr(γs) ◦
Assert(inv′) ◦ Prop(c′) ◦ Lδ1JγsK){〈v1, µ1, σ0 / σ

0
γ1〉}

where k is the number of read events issued by Q, c′ = SymExpJcK, inv′ = SymExpJinvK,

CHAPTER 4. INDUCTIVE INVARIANT METHOD 112

arb w = ArbWJγsK{idϑ} and body = (Lδ1JγsK ◦ Prop(SymExpJc ∧ invK) ◦ Arbitr(γs)). On
the other words, θ1 is either the followings.

θ1 = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
¬c / σ

0
γ2),

θ2 = abort(σ0 / σ
0
γ1 / σ

0
s1 / σc1 / σinv / σ

a
arb v / {σarb w /}k+1 σc&inv / σ

a
s1 / σ

a
inv), or

θ3 = (σ0 / σ
0
γ1 / σ

0
s1 / /σc1 / σinv / σ

a
arb v / {σarb w /}k+1 σc&inv / σ

a
s1 / σ

a
¬c / σ

a
γ2).

where each symbolic execution state corresponds the transform function to generate the
state. Consequently, arbitrary state σ1 = θ1 ⊕ σQ which is correct on PSO is either:

σh0 = (σ0 / σ
0
1 / σ

0
s1 / σ

0
¬c / σ

0
γ2)⊕ σQ,

σinv = abort(σ0 / σ
0
γ1 / σ

0
s1 / σc1 / σ

a0
inv / σ

a
arb v / {σarb w /}k+1 σc&inv / σ

a
s1 / σ

a
inv)

⊕σQ , or
σt = (σ0 / σ

0
γ1 / σ

0
s1 / σc1 / σ

a0
inv / σ

a
arb v / {σarb w /}k+1 σc&inv / σ

a
s1 / σ

a
¬c / σ

a
γ2)⊕ σQ

According to the first case, σ0 = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
¬c / σ

0
γ2)⊕ σQ, we must show σ0 must

be correct for any arbitrary execution on PSO. By assumption σh0 is correct on PSO, this
can conclude the correctness of σ0 in which the executions of σh0 covers the cases of σ0.
Thus, state σ0 is also correct on PSO.

For case 1-2, σinf = (σ0 / σ
0
γ1 / σ

0
s1 / {σc / σs1/}iσinf¬c / σinfγ2) ⊕ σQ, we must show the

program property of σinf must always be satisfied for any valuation. According to the
assumption of σinv is correct on PSO, where σinv = abort(σ0 /σ

0
γ1 /σ

0
s1 /σc1 /σinv /σ

a
arb v /

{σarb w /}k+1 σc&inv / σ
a
s1 / σ

a
inv) ⊕ σQ where k is the number of read events appearing in

σQ. Intuitively, the idea of σinv is to ensure the invariant condition inv is always satisfied
for any arbitrary loop iteration.

According to σinv, state σa0
inv is of the form 〈ε0,>, finv(~va0)〉 where ~va0 is the local

variables appearing before assertion statement assert(inv) and finv is function to rep-
resent the assertion condition inv regarding the input variables. Thus, if assumption
PSO ` P 1 is proved, assertion condition finv(~va0) is also preserved regarding the behav-
ior of σ0 / σ

0
γ1 / σ

0
s1 / σc1. Intuitively, this ensures the behavior before entering the loop

satifies the invariant condition inv.
For a loop behavior, each iteration i is abstracted as σaarb v/ {σarb w /}j σc&inv/σas1 where

j ≤ i to abstract the effect of write events in j iterations before iteration i. By Lemma 1,
the arbitrary effect of write events from iteration i − 1 is enough for realizing the effect
of previous iterations. Besides, Lemma 4 shows k abstract iterations {σarb w /}k+1 are
enough for realizing the effect of write events to k read events issued by other processing
units and the effect of write events of the last iteration before the arbitrary iteration. If
there are write events on other processing units that affected by those write events in the
prior iterations, the effect of external write events is covered as all write events appeared
in the σinv. Note that, according to Lemma 2, the effect of write operations appearing
after the considering iteration i can be ignored. Consequently, the invariant condition is
ensured as the given symbolic execution state σinv, shown as the following, is correct on
PSO.

σinv = abort(σ0 / σ
0
γ1 / σ

0
s1 / σc1 / σ

a0
inv / σ

a
arb v / {σarb w/}k+1σc&inv / σ

a
s1 / σ

a
inv)⊕ σQ

From state σinv, σ
a
inv is of the form 〈ε0,>, finv(~va)〉 where ~va represents the neccessary

CHAPTER 4. INDUCTIVE INVARIANT METHOD 113

variables appearing in σ0
γ1 and σas1. Thus, as PSO ` P 1, assertion condition finv(~va) is

ensured where states σaarb v and {σarb w/}k+1 are used to consider arbitrary previous loop
iterations at most k+ 1 abstract iterations. Therefore, the invariant condition inv is also
ensured on PSO during loop iterations as Lemma 2 also ensure the effect on PSO. In other
words, if assertion assert(inv) is added at the end of the loop body, symbolic execution
state (σ0 / σ

0
γ1 / σs1 / σinv / {σc / σs1 / σinv /}i≥1 σ′)⊕ σQ is correct on PSO where σ′ is an

arbitrary symbolic execution state.
Besides, assumption σt attempts to show P is correct based on derived program execu-

tions, such that

σt = (σ0 / σ
0
γ1 / σ

0
s1 / σc1 / σ

a0
inv / σ

a
arb v / {σarb w /}k+1 σc&inv / σ

a
s1 / σ

a
¬c / σ

a
γ2)⊕ σQ

Once the invariant condition is ensured by σinv, arbitrary loop iteration (σaarb v/ {σarb w /}k+1

σc&inv/ σ
a
s1) always satisfies the loop invariant. In symbolic execution state σt, arbitrary

loop iteration σas1 eventually exit the loop by σa¬c and then the behavior of γ2 is captured
arbitrary by σaγ2. By Lemma 4, all write events issued by P1 can be covered by σt as the k
abstract iterations {σarb w /}k+1 are the most iterations for realizing the write events from
the loop iterations for k read events from other processing units and read events from
arbitrary iteration σas1. Thus, the computation on other processing units can compute
the write values to the P1 regarding the possible values form P1. Consequently, as σt is
correct on PSO, σinf is also correct on PSO.

Case 2 For the case P 2 = (γ1; do{γs1}while(c1); γ2) · (γ3; do{γs2}while(c2); γ4) · Q,
the number of read events is countable infinite because of loop behavior on other pro-
grams. Consequently, the necessary arbitrary iterations also become countable infinite.
Let P1 = (γ1; do{γs1}while(c1); γ2) and P2 = (γ3; do{γs2}while(c2); γ4), an arbitrary σ
is considered from EJP1 · P2 ·QKϑ0 such that

EJP1 · P2 ·QK{〈v0, µ0, σ0〉}={〈v′′′, µ0, σ1 ⊕ σ2 ⊕ σQ〉 | 〈v′, µ′, σ1〉 ∈ EJP1K{〈v0, µ0, σ0〉}∧
〈v′′, µ′′, σ2〉 ∈ EJP2K{〈v′, µ0, σ0〉}∧
〈v′′′, µ′′′, σQ〉 ∈ EJQK{〈v′′, µ0, σ0〉}}

This means arbitrary state σ to be considered is σ1 ⊕ σ2 ⊕ σQ in which σQ = 〈εQ, pQ, aQ〉
for arbitrary case. On the other hand, σ1 and σ2 are considered from EJP1K and EJP2K,
respectively, where γ1, γs1, γ2, γ3, γs2, γ4 are considered arbitrary. Symbolic execution state
σ1 is considered from EJγ1; do{γs1}while(c1); γ2K such that

EJγ1; do{γs1}while(c1); γ2K{〈v0, µ0, σ0〉}
=
⋃
i≥0(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγs1K ◦ EJγ1K){〈v0, µ0, σ0〉}

= (EJγ2K ◦ Prop(¬c′) ◦ EJγs1K ◦ EJγ1K){〈v0, µ0, σ0〉} ∪⋃
i≥1(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγs1K ◦ EJγ1K){〈v0, µ0, σ0〉}

There are 2 arbitrary cases of σ1 to be considered:

Case P1-1: (EJγ2K ◦ Prop(¬c′) ◦ EJγs1K ◦ EJγ1K){〈v′, µ0, σ0〉}
Case P1-2:

⋃
i≥1(EJγ2K ◦ Prop(¬c′) ◦ loop(EJγs1K ◦ Prop(c′), i) ◦ EJγs1K ◦ EJγ1K){〈v′, µ0, σ0〉}

CHAPTER 4. INDUCTIVE INVARIANT METHOD 114

Besides, the arbitrary cases of σ2 are also considered in a similar way such that

Case P2-1: (EJγ4K ◦ Prop(¬c′) ◦ EJγs2K ◦ EJγ3K){〈v′, µ0, σ0〉}
Case P2-2:

⋃
i≥1(EJγ4K ◦ Prop(¬c′) ◦ loop(EJγs2K ◦ Prop(c′), i) ◦ EJγs2K ◦ EJγ3K){〈v′, µ0, σ0〉}

Then, arbitrary state σ = σ1 ⊕ σ2 ⊕ σQ can be considered as 4 cases by combining each
case of σ1 and σ2. For simplicity, the cases of σ are explained in the following forms:

Case 2-1: σ0,0 = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
¬c1 / σ

0
γ2)⊕ (σ0 / σ

0
γ3 / σ

0
s2 / σ

0
¬c2 / σ

0
γ4)⊕ σQ

Case 2-2: σ0,i = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
¬c1 / σ

0
γ2) ⊕

(σ0 / σ
0
γ3 / σ

0
s2 / {σc2 / σs2/}i≥1σinf

¬c2 / σ
inf
γ4)⊕ σQ

Case 2-3: σi,0 = (σ0 / σ
0
γ1 / σ

0
s1 / {σc1 / σs1/}i≥1σinf

¬c1 / σ
inf
γ2) ⊕

(σ0 / σ
0
γ3 / σ

0
s2 / σ

0
¬c2 / σ

0
γ4)⊕ σQ

Case 2-4: σi,j = (σ0 / σ
0
γ1 / σ

0
s1 / {σc1 / σs1/}i≥1σinf

¬c1 / σ
inf
γ2) ⊕

(σ0 / σ
0
γ3 / σ

0
s2 / {σc2 / σs2/}j≥1σinf

¬c2 / σ
inf
γ4)⊕ σQ

An assumption PSO ` P1 ·P2 ·Q is given in which the symbolic execution states derived
by inductive invariant method are correct on PSO. The arbitrary symbolic execution
states are considred from InvJP1 · P2 · QK. The arbitrary symbolic execution state is
of the form θ1 · θ2 · θQ, where θQ is considered in an arbitrary way. For θ1 and θ2,
the arbitrary states is considered from P1 = γ1; do{γs1〈inv1〉}while(c1); γ2 and P2 =
γ3; do{γs2〈inv2〉}while(c2); γ4, respectively. The way to realize both arbitrary states is
similar to case P 1. For simplicity, aribitrary state θ1 is either the followings.

θ0
1 = (σ0 / σ

0
γ1 / σ

0
s1 / σ

0
¬c1 / σ

0
γ2)

θinv1 = abort(σ0 / σ
0
γ1 / σ

0
s1 / σ

0
c1 / σ

0
inv1 / σ

a
arb v1 / {σarb w1 /}k1+1 σinv&c1 / σ

a
s1 / σ

a
inv1)

θt1 = (σ0 / σ
0
γ1 / σ

0
s1 / σ

0
c1 / σ

0
inv1 / σ

a
arb v1 / {σarb w1 /}k1+1 σinv&c1 / σ

a
s1 / σ

a
¬c1 / σ

0
γ2)

where k1 are the numbers of read operations to access the shared memory locations which
is also accessed by write operaions in loop body s1. For state θ2, the way to realize the
arbitrary state is the same as θ1, where the arbitrary state θ2 is either the followings.

θ0
2 = (σ0 / σ

0
γ3 / σ

0
s2 / σ

0
¬c2 / σ

0
γ4)

θinv2 = abort(σ0 / σ
0
γ3 / σ

0
s2 / σ

0
c2 / σ

0
inv2 / σ

a
arb v2 / {σarb w2 /}k2+1 σinv&c2 / σ

a
s2 / σ

a
inv2)

θt2 = (σ0 / σ
0
γ3 / σ

0
s2 / σ

0
c2 / σ

0
inv2 / σ

a
arb v2 / {σarb w2 /}k2+1 σinv&c2 / σ

a
s2 / σ

a
¬c2 / σγ4)

where k2 are the numbers of read operations to access the shared memory locations
which is also accessed by write operaions in loop body s2. Consequently, arbitrary state
θ1 ⊕ θ2 ⊕ θQ that is correct on PSO is either:

σ0,0 = θ0
1 ⊕ θ0

2 ⊕ θQ,
σ0,inv = θ0

1 ⊕ θinv2 ⊕ θQ,
σ0,t = θ0

1 ⊕ θt2 ⊕ θQ,

σinv,0 = θinv1 ⊕ θ0
2 ⊕ θQ,

σinv,inv = θinv1 ⊕ θinv2 ⊕ θQ,
σinv,t = θinv1 ⊕ θt2 ⊕ θQ,

CHAPTER 4. INDUCTIVE INVARIANT METHOD 115

σt,0 = θt1 ⊕ θ0
2 ⊕ θQ,

σt,inv = θt1 ⊕ θinv2 ⊕ θQ, or
σt,t = θt1 ⊕ θt2 ⊕ θQ.

According to case 2-1, σ0,0 = (σ0 /σ
0
γ1 /σ

0
s1 /σ

0
¬c1 /σ

0
γ2)⊕ (σ0 /σ

0
γ3 /σ

0
s2 /σ

0
¬c2 /σ

0
γ4)⊕σQ

is correct on PSO because the assumption shows σ0,0 is correct on PSO. As for cases of
σ0,i and σi,0, if one of symbolic states producing a finite instances of read events, the
correctness of those cases can be ensured as same as case P 1. In particular, arbitrary
states σ0,inv, σ0,t, σinv,0, and σt,0, which are correct on PSO, are used as the assumption to
show symbolic execution states σ0,i and σi,0 are correct on PSO.

For case σi,j = (σ0 / σ
0
γ1 / σ

0
s1 / {σc1 / σs1/}i≥1σinf

¬c1 / σ
inf
γ2) ⊕ (σ0 / σ

0
γ3 / σ

0
s2 / {σc2 /

σs2/}j≥1σinf
¬c2 / σ

inf
γ4) ⊕ σQ, the given assumption expects to abstract the loop behavior in

both P1 and P2 using invariant conditions. This means the invariant conditions derive the
sufficient behavior from the loop behavior {σc1 / σs1/}i≥1 and {σc2 / σs2/}j≥1 for program
verification. To show that, symbolic execution states σinv,inv, σinv,t, σt,inv, and σt,t are used
to conclude σi,j is correct on PSO.

According to σinv,inv, σinv,t and σt,inv are correct on PSO, invariant conditions inv1 and
inv2 are used to abstract the effect of writes and local variable assignment by using σarbw

and σarb v. Although the number of σarbw to abstract the effect of write events should
equal the number of read events on other processing units, the number of read events
issued by the loop to be considered is only the number of read operations and load-link
operations inside the loop body.

In the derived symbolic execution states by the method, the read events issued by
the loop behavior do{γs〈inv〉}while(c) are only considered in an arbitrary loop iteration.
Thus, the number of read events to realize an arbitrary iteration equals the number of read
operations and load-link operations appearing in the loop body γs. Thus, considering only
the number of read events in the loop is enough to determine the behavior of arbitrary loop
behavior. Therefore, loop behaviors on other programs must realize the sufficent number
of possible effects from a loop iteration aribtrarily regarding their invariant condition.

Then, state σinv,inv implies both invariant conditions, inv1 and inv2, are ensured on
PSO for each loop iteration, while states σinv,t and σt,inv implies the invariant of a program
is still preserved even if there are additional writes after the loop of other processing units.
Consequently, the assumption that σinv,inv, σinv,t, and σt,inv are correct on PSO can imply
the invariant conditions are always satisfied for any iterations of both processing units.

Regarding symbolic execution state σt,t, the state considers both P1 and P2 are even-
tually terminated, such that

σt,t=

(
(σ0 / σ

0
γ1 / σ

0
s1 / σ

0
c1 / σ

0
inv1 / σ

a
arb v1 / {σarb w1 /}k1+1 σinv&c1 / σ

a
s1 / σ

a
¬c1 / σ

0
γ2) ⊕

(σ0 / σ
0
γ3 / σ

0
s2 / σ

0
c2 / σ

0
inv2 / σ

a
arb v2 / {σarb w2 /}k2+1 σinv&c2 / σ

a
s2 / σ

a
¬c2 / σγ4)⊕ θQ

)
As the invariant conditions inv1 and inv2 are correct on PSO by the previous explanation,
the effect of

σ0 / σ
0
γ1 / σ

0
s1 / σ

0
c1 / σ

0
inv1 / σ

a
arb v1 / {σarb w1 /}k1+1

and
σ0 / σ

0
γ3 / σ

0
s2 / σ

0
c2 / σ

0
inv2 / σ

a
arb v2 / {σarb w2 /}k2+1

CHAPTER 4. INDUCTIVE INVARIANT METHOD 116

are the abstractions of
σ0 / σ

0
γ1 / σ

0
s1 / {σc1 / σs1/}i−1

and
σ0 / σ

0
γ3 / σ

0
s2 / {σc2 / σs2/}j−1

, respectively, for any i, j ∈ N. Then, σas1 and σas2 are considered as arbitrary state of any
iteration i and j. Note that the abstraction is an over-approximation model regarding the
invariant conditions inv1 and inv2. Regarding the invariants are given as the assumption
on the computation on PSO, the assertion condition of each loop iteration is always
satisfied because the behavior of each loop iteration is covered by the derived executions
by the inductive invariant method. Then

σinv&c1 / σ
a
s1 / σ

a
¬c1 / σ

0
γ2

and
σinv&c2 / σ

a
s2 / σ

a
¬c2 / σ

0
γ4

are used to represent the last iterations of

σic1 / σ
i
s1 / σ

inf
¬c1 / σ

inf
γ2

and
σjc2 / σ

j
s2 / σ

inf
¬c2 / σ

inf
γ4

, respectively. This means state σt,t is the over-approximation state of σi,j for PSO, where

σi,j =

(
(σ0 / σ

0
γ1 / σ

0
s1 / {σc1 / σs1/}i≥1σinf

¬c1 / σ
inf
γ2) ⊕

(σ0 / σ
0
γ3 / σ

0
s2 / {σc2 / σs2/}j≥1σinf

¬c2 / σ
inf
γ4)⊕ σQ

)
Intuitively, the all write events and read events to consider the evaluation of programs
containing the loop behaviors are captured in state σt,t. Consequently, if the assumption
is given, the assertion conditions appearing in the loop or outside the loop of state σi,j

are ensured on PSO.

4.5 Conclusions

Due to a limitation of the bounded method in Chapter 3, the program could not be proved
if there is a loop. Hence, this chapter adopts the inductive invariant approach, which is
originally described in [DHKR11]. The original approach is proposed for a sequential
program, which does not affect on relaxed memory models occur. However, we adopt the
approach to our SMT-based program verification on a sequence of operation structures. In
this method, the partial correctness of a sequence of operation structures can be ensured
for partial store ordering (PSO); however, the stronger memory models would also be
applicable for this method. The contribution of this method is the partial correctness can
be ensured on PSO if the derived symbolic execution states are correct.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 117

4.5.1 Contrary to Bounded Method

In contrast to the bounded method, first of all, the operation structure to be used in
the inductive invariant method must be described in structured programming style. This
would allow us to define the invariant condition to each loop and restrict the jump into/out
the loop that could violate the invariant condition. However, there is a trade-off between
the style of representations.

In the bounded method, term execution path is used to represent the whole path re-
garding the control flows to perform operations. Contrary, the inductive invariant method
uses term symbolic execution state which is more abstract than execution path. Although
the target of these terms is to be used in an SMT solver, the motivation of a symbolic
execution state is to capture the intermediate step during the performing of operations.
Besides, the inductive invariant method does not consider the whole path; however, the
abstract states are considered for the loop behavior regarding the invariant condition.
Therefore, the symbolic execution state could be a proper term for this method.

4.5.2 Achievements

By adopting the inductive invariant approach, the proposed inductive invariant method
can show the partial correctness of a sequence of operation structures P on partial store
ordering (PSO) if M ` P , such that

M ` P =⇒ M |= P (where M is either TSO, PSO, or stronger memory models)

In particular, the inductive invariant approach supposes the infinite loop iterations could
be abstracted regarding the invariant condition to consider an arbitrary loop iteration. In
theory, the arbitrary value is supposed to assign to the temporal registers and the memory
locations appearing in the loop body for realizing the arbitrary effect of infinite iterations.
However, to derive the abstraction for SMT-based program verification, the arbitrary
effect is realized by considering the sufficient events to be considered. Consequently,
those events and their relations can be encoded as the first-order formula for an SMT
solver directly.

Besides, transform function Inv can automatically produce the symbolic execution
states to be used in SMT-based program verification with a finite number of states. Thus,
a bound is not needed for a loop anymore for SMT-based program verification on partial
store ordering (PSO).

Moreover, as each of loop iterations is considered regarding the invariant condition,
the method is an over-approximation approach which uses the invariant condition to
determine the scope of write values for a loop iteration. In other words, the order of loop
iterations is not considered in this method, in which there might be an order of updating
values. This means if a violation of the program property is found, we cannot conclude
there is a bug in the programs.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 118

4.5.3 Limitations

In practical, assembly language usually allow a branch instruction to jump onto any
program location, which is unstructured programming style. However, the operation
structure used in this method restricts the expressiveness to structured programming
style to support inductive invariant approach. Thus, an assembly program cannot be
translated into an operation structure directly. Besides, the invariant conditions of loops
are not generated automatically. Thus, the method needs a user to provide the invariant
condition to each loop.

Besides, as the realization of write events excluding the loop behavior, the nested loop is
not allowed in the proposed method. Moreover, although the method seems applicable to
abstract the loop behavior regarding the invariant condition, the method is not applicable
for any relaxed memory models, such as ARM and POWER.

CHAPTER 4. INDUCTIVE INVARIANT METHOD 119

Chapter 5

Experiment and Discussion

5.1 Case Study

Message passing the message passing is a famous program that could raise a bug in
relaxed memory models. Figure 1-2 shows an implementation of message passing in ARM
assembly language, and their corresponding abstractions can be shown by either Figure
3-7 or Figure 4-7 which are used in different methods. In program verification, assertion
assert(r2 = 1) is added at line 6 in program R2 in Figure 1-2. For the representation
in an operation structure, the assertion condition has been changed to be val = 1, in
which the condition to be ensured must rely on local variables Tmp. Besides, invariant
condition (valn = 0 ∨ valn = 1) is added to the loop to abstract the loop behavior for the
inductive invariant method, as shown in Figure 5-1. For the bounded method, bound 1
is used to extract the execution paths from the loop behavior, then, each path is encoded
with constraints of target specification provided by a modeling framework. As for the
inductive invariant method, the corresponding execution states are used to construct the
formulae instead of execution paths. Consequently, this research uses Z3 solver to find a
valuation of each formula, if any.

A violation of this program can occur if the read value is not as same as the write value
by the first write event to memory location [X]. This means the completing order of the
write events and the completing order of the read events should be preserved to ensure
the program correctness. As a result, the program property should not be proved on PSO
and weaker memory models, while it can be proved on TSO and the stronger memory
models.

Message passing with fence To preserve the correctness of message passing on PSO
memory model, a proper fence operation must be added between write operations for pre-
venting the reordering of the completing order of write events. For instance, the following
execution structure must be added after line 8 of operation structure γ1 shown in Figure
5-1.

120

1 instr {
2 val := 1;

3 r1 := val

4 };

5 instr {
6 val := r1

7 [x] := val

8 };

9 instr {
10 val := r1

11 [y] := val

12 }

Operation structure γ1

1 do{
2 instr {
3 val := [y];

4 r1 := val

5 };

6 instr {
7 (rd := 1‖rt := r2);

8 valz := (rd = rt)?1:0;

9 z := valz;
10 valn := (rd = rt)?0:1;

11 n := valn
12 };

13 instr {
14 valn := n

15 }

16 〈valn = 0 ∨ valn = 1〉
17 }while(valn = 1);
18 instr {
19 val := [x];

20 r1 := val

21 };

22 assert (val = 1)

Operation structure γ2

Figure 5-1: An operation structure of message passing for inductive invariant method

1 instr {
2 STBar

3 };

STBar refers to fence instruction “stbar” in SPARC architecture to restrict the order of
writes to be completed in the order. By adding this fence, the program property is then
proved by PSO memory model, while it might not be proved on weaker memory models,
such as ARM and POWER. In the case of ARM memory model, a fence, or memory bar-
rier, must be added between the write operations and also between the read operations to
prevent the effect of reordering. This means the following execution structure also injects
after the loop.

1 instr {
2 DMB

3 };

Spinlock for TOPPERS TOPPERS is a platform for embedded real-time systems
[TOP10], such as automotive systems. The lock mechanisms of a Spinlock program in
TOPPERS/FMP kernel is implemented for ARM processors, which is shown in Figure

CHAPTER 5. EXPERIMENT AND DISCUSSION 121

1 L: mov r2, #1

2 ldrex r1, [lock]

3 cmp r1, #0

4 strexeq r1, r2, [lock]

5 cmpeq r1, #0

6 bne L

7 CS:

Figure 5-2: Mutex Lock mechanism of TOPPERS Spinlock

1 instr {
2 l l (val , lock);

3 r1 := val

4 }

ldrex r1, [lock]

1 instr {
2 i f (val_z = 1){

3 val:= r2;

4 sc(result , lock , val);

5 r1 := result

6 }

7 }

strex r1, r2, [lock]

Figure 5-3: Execution Structures for synchronize instructions

5-2. The key of this program is using synchronizing instructions, ldrex and strex, repre-
sented by execution structures in Figure 5-3. However, the program omits the interrupt
instructions, wfe, because the correctness focuses on the read value of a read event.

To ensure the program correctness, the mutual exclusion property must be preserved
by every execution using our methods. However, the semantics of the synchronizing
instruction, ldrex and strex, is not formally defined in neither herding cats [AMT14]
nor Gharachorloo framework [Gha95]. For the verification purpose, the semantics of the
synchronize instructions is defined regarding the semantics described in [SMO+12]. As
the implementation of the synchronize instructions varies on processors, the semantics
includes the arbitrary failure of a store condition instruction even if the condition is
satisfied.

Spinlock for SPARC In prior work [MCA17], a Spin lock program implemented in
Linux Kernel for SPARC was verified using the bounded method on the specifications of
SC, TSO and PSO provided by Gharachorloo framework [Gha95]. In this manuscript, the
program is also represented in an operation structure for the inductive invariant method
to abstract the loop behavior. In particular, SPARC processors usually have the behavior
of delayed branch instructions, in which the following instruction of a branch is executed
before the branch is decided.

Figure 5-4(a) shows the corresponding of Spinlock programs written in an assembly
language implemented in Linux Kernel for SPARC architecture. Spinlock program uses
ldstub instruction which is a primitive instruction for SPARC. The read access and

CHAPTER 5. EXPERIMENT AND DISCUSSION 122

1 L1: ldstub [L], r5

2 brnz, pn r5, L2

3 nop
4 ba CS

5 L2: ldub [L], r5

6 brnz, pt r5, L2

7 nop
8 ba, a, pt L1

9 nop
10 CS: ...

11 Unlock: stb g0, [L]

(a) Spinlock mechanism for SPARC
processors

(b) Control flow graph of Spinlock for
SPARC

Figure 5-4: Spinlock Implementation for SPARC

write access issued by the instruction appear to be performed atomically. Because of
the behavior of delayed branch instructions in SPARC architecture, Figure 5-4(b) shows
the control flow graph of the program that preserves the fetch-cycle semantics of SPARC
architecture. The label of each node represents the line number of an instruction.

For the behavior of delayed branch instructions, the bounded method constructs the
control flow graph corresponding to Figure 5-4 to capture the exact flows to be consid-
ered. For the inductive invariant method, the following instructions that contain a branch
instruction and the following instruction

1 brnz r5 , L2

2 ldub [L], r5

is abstracted by either forward branch

1 i fBr (¬(¬(val_r5 = 0))){

2 instr { /* ldub [L], r5 */}

3 //L2

4 };

5 instr { /* ldub [L], r5 */}

or backward branch

1 do{
2 //L2

3 // ...

4 instr { /* ldub [L], r5 */}

5 }while(¬(¬(val_r5 = 0)));

Given two Spinlock programs, the lock mechanism of each program uses swap instruction
ldstub [L], r5 to atomically read and write to the same memory location [L]. By using

CHAPTER 5. EXPERIMENT AND DISCUSSION 123

Table 5.1: Bounded Gharachorloo Framework

Run time (s) Violation
Program (bound) SC TSO PSO SC TSO PSO

Message passing (1) 0.683 1.921 0.718 n n y
Message passing with fence (1) 0.761 1.722 1.776 n n n
SPARC Spinlock (1) 7.441 7.542 8.004 n n n
Dekker (1) 32.499 34.496 32.477 n y y
Peterson (1) 37.621 204.873 113.963 n y y
Known PSO bug (0) 2.896 125.707 2265.563 n n y

such atomic instruction, the mechanism seems not be affected by relaxed memory models.
Also, as an operation structure represents the program, the property of Spinlock mech-

anism could be verified on ARM memory model, which is memory model weaker than
PSO memory model. One would notice that a program for the specific architecture is not
needed to be checked under other memory models, such as ARM memory model. How-
ever, this case study also shows that our operation structure can capture the essential
behavior issued the program, which could appear on other architecture.

Known PSO bug Figure 5-5 shows a real-world bug program, extracted from a massive
program that can occur on a system using PSO memory model [kno]. The program can be
executed safely on SC and TSO memory models, while an error occurs on PSO memory
model. The error is caused by the write access to object curPosition can be happened
before the write access to the field of the object, which is allowed by PSO memory model.

Although Java language has its memory model, called JMM [MPA05], the memory
model of a programming language is orthogonal with the hardware memory models. This
means the reordering caused at high-level memory model is not known in the low-level
memory model. In Java Memory Model, the writes are allowed to be delayed as same
as TSO and PSO memory model; the Java Virtual Machine also has no fence or barrier
to disable the effect of reordering on a system using TSO and/or PSO memory model.
Consequently, the reordering in PSO memory model causes a bug in Figure 5-5.

Figure 5-6(a) was introduced in [HH16] to capture the significant behavior that causes
an error on PSO memory model, in which the initial values of the memory locations are
x = 1, y = 2, and z = 0. In the programs, print statement at line 9 is supposed not to be
performed. To verify the programs, our research considers the operation structures shown
in Figure 5-6(b), in which the value of val z is assumed to be 1 and the assertion requires
val x = 2 ∧ val y = 4 for all execution. Consequently, the programs are supposed to
have a bug on PSO memory model, or weaker memory models.

CHAPTER 5. EXPERIMENT AND DISCUSSION 124

1 c la s s A {

2 s ta t i c Point currentPos = new Point (1,2);

3 s ta t i c c la s s Point {

4 int x;

5 int y;

6 Point(int x, int y) {

7 th i s .x = x;

8 th i s .y = y;

9 }

10 }

11 public s ta t i c void main(String [] args) {

12 new Thread () {

13 void f(Point p) {

14 synchronized(th i s) {}

15 i f (p.x+1 != p.y) {

16 System.out.println(p.x+" "+p.y);

17 System.exit (1);

18 }

19 }

20 @Override

21 public void run() {

22 while (currentPos == nul l);
23 while (true)
24 f(currentPos);

25 }

26 }.start ();

27 while (true)
28 currentPos = new Point(currentPos.x+1, currentPos.y+1);

29 }

30 }

Figure 5-5: A real PSO bug in an electron microscope software [kno]. This bug caused a
$12 million loss of equipment.

CHAPTER 5. EXPERIMENT AND DISCUSSION 125

1 z=0

2 x=0

3 y=0

4 x=2

5 y=3

6 z=1

7 i f (z == 1)

8 i f (x+1 != y)

9 print(x,y)

(a) Simplified version [HH16]

1 instr {
2 [Z] := 0;

3 [X] := 0;

4 [Y] := 0;

5 [X] := 2;

6 [Y] := 3;

7 [Z] := 1;

8 }

1 instr {
2 val_z := [Z];

3 };

4 assume(val_z = 1);

5 instr {
6 val_x := [X];

7 val_y := [Y];

8 };

9 assert (val_x = 2 ∧
val_y = 3)

(b) Simplified operation structure

Figure 5-6: Simplified programs for Known PSO bug

Table 5.2: Bounded Herding Cats

Run time (s) Violation
Program (bound) SC TSO ARM SC TSO ARM

Message passing (1) 5.614 6.549 14.368 n n y
Message passing with fence (1) 5.724 6.721 36.595 n n n
TOPPERS Spinlock (1) 461.081 535.861 3385.248 n n n
SPARC Spinlock (1) 32.282 38.497 150.107 n n n
Dekker (1) 435.416 561.755 3697.089 n y y
Peterson (1) 267.575 74.058 523.214 n y y
Known PSO bug (0) 4.238 5.559 135.116 n n y

5.2 Experiment

In our research, an experimental tool was developed according to the proposed methods
to verify operation structures with the program property under a relaxed memory model.
The tool has been modified from the previous work [MCA17] to use the inductive invariant
method and also encode the behavior based on herding cats framework. The tool encodes
the symbolic execution states with the axioms of a memory model, based on a modeling
framework into a first-order formula, and then uses the Z3 solver, an SMT solver, to solve
the formula. The valuation of the formula found by the solver can be considered as a
violation of program property.

For the bounded method, Tables 5.1 and 5.2 show the result of the tool to check whether
the program, described by operation structures, is violated under a memory model within
a bound or not. The encoding methods are implemented based on Gharachorloo frame-
work [Gha95] and Herding cats framework [AMT14], in which the abstractions of programs
executed on a memory model are different from each other. The bound value of each test
program is also shown in its parentheses.

CHAPTER 5. EXPERIMENT AND DISCUSSION 126

Table 5.3: Inductive Invariant Herding Cats (Runtime)

Run time (s)
Program SC TSO PSO ARM

Message passing 15.17 19.52 3.38 11.43
Message passing with fence 14.75 19.12 18.98 90.38
TOPPERS Spinlock 15089.42 19584.4 19219.8 136009.13

(≈ 5 hours) (≈ 6 hours) (≈ 6 hours) (≈ 38 hours)
Peterson 4557.97 311.11 310.06 2459.23

Table 5.4: Inductive Invariant Herding Cats (Violation)

Violation
Program SC TSO PSO ARM

Message passing n n y y
Message passing with fence n n n n
TOPPERS Spinlock n n n n
Peterson n y y y

As Section 5.1 explains the details of programs: (1) Message passing, (2) Message pass-
ing with fence, (3) Spinlock TOPPERS, (4) Spinlock SPARC, and (5) Known PSO bug,
tables 5.1 and 5.2 show the experiments on those programs and also Dekker’s and Peter-
son’s algorithms. The result in violation column show if there is an assertion violation,
denoted by y and n for otherwise. From the experiment result, all bugs are raised as we
expected. For run time column, the time includes symbolic analysis, the encoding pro-
cess, and solving time for the encoded formula by Z3 solver [DMB08]. However, if there is
any violating assertion, the program is then stopped immediately. All test results for the
bounded method were produced on a MacBook Air with a 1.4 GHz Intel Core i5 processor
running OS X 10.10.5 with memory 4 GB. As the state space to be verified is restricted by
a bound, the program property cannot be proved though there is no violation; however,
the bug founded by the method can disprove the program property on a memory model.

For the inductive invariant method, the experiment focuses on the program containing
loops, which are: (1) Message passing, (2) Message passing with fence, (3) TOPPERS
Spinlock, and (4) Petersons algorithm. Note that the tool considers the maximum number
of the read events that can be produced from other programs to simplify the implemen-
tation. Although the implementation modifies the proposed method, it still is an over-
approximation approach. The test results shown in Tables 5.3 and 5.4 were produced on
RedHat Enterprise Server with 2.10 GHz Intel Xeon Silver 4116 processors with Memory
15.3 GiB. Each program was tested on the following relaxed memory models: SC, TSO,
PSO, and ARM 1. In each program, an invariant condition is added to the loop. For

1the specification is adopted from http://diy.inria.fr/cats/model-arm/herd.cat

CHAPTER 5. EXPERIMENT AND DISCUSSION 127

instance, val n = 1 ∨ val n = 0 is used as the invariant for message passing and message
passing with fence, defined in the form of:

1 do{
2 γ
3 〈inv〉
4 }while(c)

where inv is the loop invariant. For Peterson program, invariant val z = 1 ∨ val z = 0 is
used.

According to TOPPERS Spinlock shown in Figure 5-2, a store-condition instruction ap-
pearing in the loop body would affect the abstraction of the previous iterations whether
there are write events issued by the instruction or not. To ensure the program correctness,
the invariant must ensure the previous iterations must have no success write event issued
by the instruction, in which the loop is terminated if a write occurs. Thus, the return flag
to register r1 from instruction strexeq r1, r2, [lock] must be considered. Then, the
operation structure to be verified is of the following form.

1 do{
2 instr { /* mov r2, 1 */ };

3 instr { /* ldrex r1, [lock] */};

4 instr { /* cmp r1, 0 */ };

5 instr {
6 val_z := z;

7 i f (val_z = 1){

8 val := r2;

9 sc(res , [lock], val);

10 r1 := res

11 }

12 instr { /* cmpeq r1 , 0 */ };

13 }

14 〈(val r1 = 1 ∨ val r1 = 0) ∧ (res = 1 ∨ res = 0)〉
15 }while(val r1 = 1 ∧ res = 1)

In this operation structure, the condition val r1 = 1∧res = 1 is used to ensure the values
of val r1 and res equal 1. This means there is no write event in the previous iterations
if we need to continue the loop. In particular, if there is no res variable appearing in the
execution state, the valuation of res will be an arbitrary value ∗ that can be evaluated to
be > which is always satisfied.

As the loop invariant can abstract the behavior of the loop, the program property can be
proved on PSO memory model, or stronger memory model, if there is no valuation found
by the Z3 solver. However, we cannot disprove the program property on the memory
model even if the solver found a valuation.

In program verification of mutual exclusion, the program property requires a program
can enter its critical section, while other programs are not in their critical section. One
could say no more than one program can enter its critical section simultaneously. In
general program verification of mutual exclusion, the program property is defined by LTL

CHAPTER 5. EXPERIMENT AND DISCUSSION 128

property or the assertion ensures a global variable always satisfied the conditions, such as:

1 mutex_lock (&lock);

2 //CS

3 cnt = cnt + 1;

4 assert (cnt = 1);

5 cnt = cnt -1;

6 mutex_unlock (&lock)

where cnt is a global variable. However, the consistency of a global variable in each
memory model is different from each other. In other words, each program could observe a
different result of the same global variable at the same time in a relaxed memory model.
Thus, the program property for mutual exclusion could not be entirely verified on relaxed
memory models.

To verify mutual exclusion, as our assertion language considers the local variables as
the program property and an execution of each program is assumed to be eventually ter-
minated, the following fragment of operation structure is added in each critical section of
a program.

1 instr {
2 val := [flag]

3 };

4 assert (val = 0);

5 instr {
6 [flag] := 1

7 }

The initial value of global variable flag is supposed to be 0, and the variable is not used
in any place, except the critical section. As read and write operations on variable [flag]

is conflict, the completing order of these operations could be preserved on the most of
relaxed memory models. As the assumption is added to each mutex lock(&lock) to
eventually lock the variable, the assumption has to be contradicted because two programs
using mutex lock(&lock) are supposed not to enter the critical section at the same time
eventually. If there is a case that the assumption is not contradicted, there must be a
case that a read access to [flag]can return value 1 as the read value, which violates the
program property. To summarize, this verification property considers only the case of
mutex lock(&lock) is implemented correctly on a memory model, while the correctness
does not include the case of mutex unlock(&lock).

5.3 Discussion

5.3.1 Encoded Formula

According to the encoded formula, event state ε is used to determine the data flow on the
existing events. In both proposed methods, the finite events are considered for ensuring the
evaluation of the computation of the program execution. Although there are quantifiers

CHAPTER 5. EXPERIMENT AND DISCUSSION 129

such as ∀ and ∃, the scope of the quantifiers are restricted by the existing events provided
by the methods, such as ∃x ∈ Evε. This means whether a valuation of the formula exists
is decidable because there is a scope on instances using in the quantifiers.

Besides, the arithmetic computation used in the formula relies on the operator plus
and minus. As the target of program verification is at the hardware-level, the arithmetic
calculation on such operators would be sufficient. This means the encoded formula is
decidable.

As for SMT solvers, the most of solvers would support quantifier-free formulae to be
solved. In our experiment, Z3 solver supporting quantifier formulae is used to solve
our encoded formula. However, as our quantifier formulae rely on the number of events
which is finite, those formulae can be translated to quantifier-free formulae. For example,
∀x, y, z ∈ Evs.(f(x, y, z)) can be translated as

∧
x,y,z∈Evs

(f(x, y, z)). This means the
formula would be able to use on other SMT solvers supporting first-order formulae.

5.3.2 Preciseness

In the bounded method, the valuation founded by the SMT solver can be considered
as a flaw to contradict the program correctness. On the other hand, if the structures
contain no loop, the correctness of programs can be ensured. This means our method is
applicable to (1) verify assembly programs, represented by our operation structures, on
target relaxed memory model and (2) automatically detect a flaw of the programs that
can occur on target relaxed memory model.

In practice, a program can be either executed infinitely or eventually terminated due to
the existence of a loop. However, as the modeling frameworks are adopted in our research
to verify the program, the number of instances in an execution to be considered must
be finite. Thus, our research assumes any execution to be considered must eventually
be terminated. For instance, if the program to be verified contains an infinite loop as
shown in Figure 5-7, our methods assume the execution is eventually terminated by
adding assumption assume(¬(>)). However, the assumption condition makes the whole
execution not to considered in the program verification, such that ⊥ =⇒ a is always
valid. This means if the program is probably executed infinitely the program property
cannot be proved for the infinite case using our research. However, among the terminated
programs, the research considers two methods to consider the program executions for
verification.

By using the bounded method, a bound is given for restricting the number of instances
to be considered in program verification. Due to the fact that (1) the loop can cause infi-
nite executions and (2) the symbolic execution states is needed beforehand, in which the
number of loop iterations cannot be determined systematically, the bound must be pro-
vided by users for program verification. Although the method is an under-approximation
to consider the executions of loop behavior, the experiment in Tables 5.1 and 5.2 show the
violation, denoted by y, is a bug that could be raised in the original program. Intuitively,
for a relaxed memory model, this method can ensure (1) the execution is proved under
a certain number of loop iterations, (2) the program property is disproved if the SMT
solver finds a valuation.

CHAPTER 5. EXPERIMENT AND DISCUSSION 130

1 labe l (L);
2 instr { // ldr r1, [X]

3 val := [X];

4 r1 := val

5 };

6 branch(>, labe l (L))

(a) For bounded method

1 do{ // L

2 instr { // ldr r1 , [X]

3 val := [X];

4 r1 := val

5 }

6 }while(>)

(a) For inductive invariant method

Figure 5-7: Infinite Program

On the other hand, the inductive invariant approach used in software verification
[DHKR11] is then adopted to abstract the loop behavior in our method. Originally,
the inductive invariant considers abstracted control flows of a program execution using
loop invariant to be preserved for every iteration of the program executed in a sequential
way. By adopting in our method, the method is applicable for some memory models that
do not permit the effect of following memory accesses in the program order to appear be-
fore a read access, in which total store ordering (TSO) and partial store ordering (PSO)
are applicable for this approach. In other words, the partial correctness of programs
containing loops can be ensured on TSO and PSO using inductive invariant method.

5.3.3 Expressiveness of Assertion Language

In our methods, assertion conditions and assumption conditions are injected into the op-
eration structures to ensure the computation of local variables at the specific program
points. As the interleaving of program executions is not considered explicitly, the condi-
tions are used as program invariant to ensure the program property. Besides, the proposed
assertion language can express a safety property in our target property, in which the val-
ues of the local variables at the specific program point affected by target relaxed memory
model must satisfy the assertion condition. In addition, using assumption statements,
the behavior of specific programs can be restricted to consider the safety property on
such restricted behaviors. Intuitively, users are also allowed to make assumptions about
specific program points to prove or disprove the safety property.

In our assertion language, the condition is expressed as a Boolean expression on tem-
poral registers. Because of the consistency of a memory location, the value of a memory
location could not be used in the assertion language as each program could see a different
value on the same location at the moment. Thus, to check the value of a memory location,
a processor must use a read access to the memory location and check the value returned
by the read access.

Besides, as an execution of a program is assumed to be eventually terminated, some
property such as liveness property could not be checked by the assertion language. How-
ever, as the assumption condition can help to restrict the behavior to be considered, users
could make an assumption to the specific situations to consider the desired property.

In summarize, the assertion conditions and assumption conditions appearing in the

CHAPTER 5. EXPERIMENT AND DISCUSSION 131

programs are used as the invariant of the programs, in which the conditions at the specific
program locations can determine the intermediate computation at those points. To ensure
the program correctness, users would add these conditions at the stable points of the
programs, which is the program locations to ensure the property is always satisfied as
expected.

5.3.4 Expressiveness of Operation Structure

In this research, an operation structure is proposed as an abstraction of an assembly
program for program verification. In particular, the behavior of operation structures
is sufficient to realize the effect regarding the memory model specifications provided by
modeling frameworks. However, as the target of operation structures is to represent the
behavior of assembly programs for program verification. Therefore, this section would
like to show the expressiveness of our abstraction in describing the behavior of assembly
programs.

Assumptions of Operation Structures

This research defines the operation structures regarding the assumptions in Section 3.2.1
to provide an abstraction of assembly programs. Due to the program verification focuses
on the program property of computations that are affected by relaxed memory models, the
abstraction regarding the assumptions is proposed to simplify only the necessary behavior
for program verification. Although an operation structure could not represent most of the
assembly program, the behavior represented by operation structures is useful for program
verification on relaxed memory models.

For the assumption on assembly instructions to be considered, the instructions that
affect the computation and the execution of concurrent programs are taken into account.
The essential instructions that affect the computation of concurrent programs are: (1)
arithmetic calculation instructions, (2) load and store instructions, and (3) read-modify-
write instructions. For effect on program execution, branch instructions and predicated
instructions are the concerns that affect the next computations during the program ex-
ecution. Therefore, these behaviors are sufficient for describing the concurrent assembly
programs that communicate with each other using load and store instructions, such as
the following.

1 ldr r1, [0x01]

2 add r2, r1, 2

3 str r2, [0x02]

1 L:

2 ldr r1, [0x02]

3 str r1, [0x01]

4cmp r1, 0

5 beq L

Besides, the assumption of granularity considers operations are granules of assembly
instructions. In hardware’s point-of-view, more than one action could be performed for
an assembly instruction. By introducing an operation as an abstraction of action at
the hardware level, various assembly instructions could be defined by the corresponding

CHAPTER 5. EXPERIMENT AND DISCUSSION 132

collection of operations. For instance, the instructions ldr r1, [0x01] and lwz r1,

(0x01) of different multiprocessors can be described by the same operation structure for
program verification.

1 instr {
2 val := [0x01];

3 r1 := val

4 }

On the other hand, the indirect address of instruction ldr r1, [r2] could be defined as
the following.

1 instr {
2 address := r2;

3 i f (address = 1) val := [0x01];

4 i f (address = 2) val := [0x02];

5 r1 := val

6 }

where the possible addresses are assumed to be [0x01] and [0x02].
For the assumption of using natural numbers for computations and using basic opera-

tors, the abstraction can consider the simple calculations in the program verification. In
practice, the data types such as word and byte would be used in different instructions,
such as lwz and lbz. However, our abstraction considers those types for computation
as an integer. For example, lbz r1, (X) and lwz r1, (X) are described in the same
operation structure.

1 instr {
2 val := [X];

3 r1 := val

4 }

As the effect of relaxed memory model is the primary concern, the calculation is not
considered in details for the simplicity of program verification.

For the assumption that shared-memory locations are known beforehand, the program
verification can realize the memory locations to be considered explicitly. Besides, the
number of memory locations used in concurrent programs is expected to be finite. Then,
the decidable formula can be provided to realize the behavior based on the known mem-
ory locations. In practical concurrent programs, although the memory address could be
calculated during the executions, the possible addresses for program verifications should
be known beforehand for communication between concurrent programs.

Applicable Assembly Instructions

First of all, the read and write operations are the basic operations to be captured as the
main concern for program verification on relaxed memory models. For example, ldr r3,

CHAPTER 5. EXPERIMENT AND DISCUSSION 133

[X], load a value of address [X], can be represented by execution structure

1 instr {
2 val := [X];

3 r3 := val

4 }

However, our research captures the load and store operations, or read and write opera-
tions, in an abstraction such that the value of val is an integer number for simplicity
instead of considering the way to encode the value as a bit-strings in a practical system.
Besides, the physical address of a memory location is also abstracted by the bracket of
the identity of a memory location, such as [X].

For the order of performing operations, called program order, our operation structure
also captures the simultaneous performing of operations of an assembly instruction in
addition to the performing in a sequential way. For example, the following execution
structure can represent assembly instruction cmp r1, r2.

1 instr {
2 (rt := r1 ‖ rd := r2);

3 (val_z := (rt = rd)?1:0 ‖
4 val_n := (¬(rt=rd))?1:0);
5 (z := val_z ‖ n := val_n)

6 }

The purpose of using parallel connective ‖ is to indicate two execution structures can be
performed simultaneously. In other words, this defines the program order as a partial
order of the operations of a program. In this research, the operations are allowed to be
performed simultaneously if there is no dependency on those operations.

The calculation of an operation structure relies on temporal registers, represented by
arithmetic assignments. In this research, as the read and write operations are used to
capture only the data flow, the arithmetic calculation is considered separately, such as
val := val + 1.

For predicated instructions used in modern processors, the behavior of such instruc-
tion can be represented by the following execution structure, which is the corresponding
structure of streq r1, [X].

1 instr {
2 val_z := z;

3 i f (val_z = 1){

4 val := r1;

5 [X] := val

6 }

7 }

As there is the limitation of a boolean expression, which considers on temporal registers,
there must be a read operation to a register first, such as val z := z, condition execution
if(val z := z){ . . . } is then used to represent the decoded condition of eq in streq

r1, [X].

CHAPTER 5. EXPERIMENT AND DISCUSSION 134

In addition to read and write operations, there are special kinds of instructions that
used for multiprocessor system: read-modify-write and synchronize instructions. For
read-modify-write, the atomic annotation is used to indicate the read operation and write
operation must appear that the completing order of the operations is not interrupted.
For instance, test-and-set instruction ldstub [L], r1 for SPARC architecture that reads
memory location [L] and set the value 1 to memory location [L] can be represented by
the following execution structure.

1 instr {
2 atom(val := [L]);

3 atom([L] := 1);

4 r1 := val

5 }

where annotation atom is considered as a wrapper to indicate two operations that are
required for atomic instruction. For the synchronize instruction, load-link operation and
store-condition operation are proposed to represent the behavior of a load-link and store-
condition instruction directly.

In addition to test-and-set instruction and swap instruction, there could be compare-
and-swap instruction that tests the value before the next access is instantiated. For
instance, the compare-and-swap instruction CMPXCHG r1, [L] in x86 architecture could
be described as the following description.

1 instr {
2 atom(val := [L]);

3 i f (val = 1){

4 val := r1;

5 atom([L] := val)

6 }

7 }

In the description, the read value of the read operation is used in the condition in an in-
struction. If the condition is satisfied, there will be the write operation to be performed.
In this case, the read operation and the write operation are required to appear atomically.

Applications for Program Verification

First of all, as the target for program verification is concurrent programs executed on
relaxed memory models, a sequence of operation structures can be used to represent
the sequence of concurrent programs directly. In program verification, the possible pro-
gram executions are considered regarding the desired program property. To determine
the program execution, as an assembly program can be described in an unstructured
programming style, the operation structure defined in the bounded method uses branch
operation to represent the effect of a branch instruction directly. For instance, branch
instruction bne L where L is a label can be translated as the following description.

CHAPTER 5. EXPERIMENT AND DISCUSSION 135

1 instr {
2 val_n := n;

3 branch(val_n = 1, labe l (L))
4 }

On the other hand, the inductive invariant method uses control flow statements explicitly
for considering the loop behavior. To represent the control flow of the programs, users
must manually provide the corresponding operation structure of an assembly program.
For instance, assembly programs

1 L: ldr r1, [0x01]

2 cmp r1, r2

3 bne L

can be represented by

1 do{
2 instr { /* ldr r1 , [0x01] */ };

3 instr { /* cmp r1 , r2 */ };

4 instr {
5 val_n := r

6 }

7 〈val n = 0 ∨ val n = 1〉
8 }while(val n = 1)

where the execution structures of instructions ldr r1, [0x01] and cmp r1, r2 are omit-
ted. Then, our methods can uses these corresponding operation structures of practical
assembly programs for program verification on relaxed memory models.

To determine the program correctness, the program property in our research is defined
by property statements. As our research does not determine the step of program execution
explicitly, the program property is considered as the invariant of programs to be preserved
for any effect of program execution. In addition to assertion statements used in usual
program testing, assumption statement is used in our research for program verification.
In particular, the assumption statements are used to restrict the cases to be considered in
program verification. For instances, the following concurrent assembly programs would
have the program property that r2 must always equal 1 for the execution that r1 equals
1.

1mov r3, #1

2 str r3, [X]

3 str r3, [Y]

1 ldr r1, [Y]

2 ldr r2, [X]

To defined the desired program property, the following sequence of operation structures
can be used for program verification.

CHAPTER 5. EXPERIMENT AND DISCUSSION 136

1 instr { /* mov r3 */ };

2 instr { /* str r3, [X] */ };

3 instr { /* str r3, [Y] */ }

1 instr { /* ldr r1, [Y] */};

2 instr { val_r1 := r1 };

3 assume(val_r1 = 1);

4 instr { /* ldr r2, [X] */};

5 instr { val_r2 := r2 };

6 assert (val_r2 = 1)

In addition, as the target of SMT-based program verification is to provide a decidable
formula, the basic operators + and - are considered for the computation during program
executions. According to assembly programs, the basic operators have seemed to be
sufficient for practical assembly programs. Besides, the computation is considered on
natural numbers without restriction on the limitation of the maximum value or minimum
value. For instance, the following assembly program

1 ldr r1, [0x02]

2 add r1, r1, 2

can be represented by the following operation structure

1 instr {
2 val := [0x02];

3 r1 := val

4 };

5 instr {
6 val := r1;

7 val := val + 2;

8 r1 := val

9 }

Although the restrictions could be necessary for computation on practical processors,
using natural numbers to realize the computation is sufficient for program verification,
in which the behaviors on relaxed memory models is the main concern. However, it is
possible to add such limitation or realize the restriction on the computation in future
work, if the program property relates to such behavior.

Moreover, most of the concurrent programs would access the same memory locations, in
which the memory locations to be accessed should be known beforehand. If the memory
locations are not in scope, a bug might occur. For instance, the following concurrent
assembly programs use memory locations [X] and [Y] to communicate with each other.

1 str r1, [X]

2 ldr r2, [Y]

1 str r3, [Y]

2 ldr r4, [X]

The corresponding operation structures can be represented as the following.

CHAPTER 5. EXPERIMENT AND DISCUSSION 137

1 instr {
2 val := [X];

3 r1 := val

4 };

5 instr {
6 val := [Y];

7 r2 := val

8 }

1 instr {
2 val := [Y];

3 r3 := val

4 };

5 instr {
6 val := [X];

7 r4 := val

8 }

In practice, the memory location is indicated by a memory address which can be calcu-
lated during the program execution. Ones would notice our operation structures consider
the memory locations symbolically without any computation on the memory address.
However, as the memory locations are assumed to be known beforehand, the operation
structures could use case analysis to determine the possible computation of memory ad-
dress, such as

1 instr { // ldr r1 , [r2]

2 val_r2 := r2;

3 i f (val_r2 = 1){ val := [0x01] };

4 i f (val_r2 = 2){ val := [0x02] };

5 r1 := val

6 }

where [0x01] and [0x02] are symbolic memory locations that are provided beforehand.
This means the calculation of memory address to indicate memory locations is done in-
directly.

Limitations of Operation Structures

In practice, an assembly language is described in the unstructured programming style,
in which the branch behavior can jump from any place of a program. However, the
operation structure for the inductive invariant method restricts the behavior to be in
structured programming style so as to support inductive invariant approach. In other
words, the program is not allowed to jump into/out of a loop, which could violate the
loop invariant conditions. Consequently, an assembly program cannot be transformed
into an operation structure for inductive invariant method directly.

As for the expressiveness on instructions, there are remaining assembly instructions
such as supervisor calls (SVC), interrupt instructions and instructions that change the
processor status that cannot be represented by the proposed operation structure. As the
main concern is to find the method that applicable for program verification on relaxed
memory models, the instructions that issue the read access and write access have the
highest priority for realizing the behavior in this research. However, additional instruc-
tions would be considered as a future work. For example, the interrupt instructions would
affect the liveness property on embedded systems.

In practical assembly programs, the computation of a memory address can be known
during the program execution. However, our abstraction uses a symbolic value to indicate

CHAPTER 5. EXPERIMENT AND DISCUSSION 138

Table 5.5: Solving time of 3 execution paths of Dekker under SC

Gharachorloo Herding cats
Events Solving (s) # Events Solving(s)

12 0.007699 67 0.007831
14 0.003791 82 0.002714
10 0.003179 62 0.005685

Table 5.6: Encoding time of 3 execution paths of Dekker under SC

Gharachorloo Herding cats
Events Encoding (s) # Events Encoding (s)

12 2.344894 67 22.253717
14 3.091485 82 32.933337
10 1.298048 62 18.748727

the memory location such as [X] and [Y]. Although there is an assumption that memory
locations would be known beforehand for concurrent programs, the programs could be
allowed to compute the memory address in the scope. For instance, if the possible value
of register r2 is either 1 or 2, assembly instruction str r1, [r2] can access only memory
address 1 or 2. However, it is possible to support the computation of memory address as
a future work, in which the abstraction must be improved. For the encoding method for
an SMT solver, the encoded formula would still be decidable because (1) the computation
of memory address relies on the plus and minus operators, and (2) the number of memory
addresses would be finite as the shared-memory locations should be known beforehand
for concurrent algorithms.

5.3.5 Scalability

Tables 5.5 and 5.6 show the solving time and encoding time of three symbolic execution
states of Dekker’s algorithm executed under sequential consistency model; According to
Table 5.5, the solving time of both modeling frameworks is not too different, however,
the encoding time shown in Table 5.6 is quite different. In addition, Figure 5-8 shows the
comparison graph between two modeling frameworks in bounded method to encode the
Dekker’s algorithm into a first-order formula. In the setting, the bound is set to be 1 and
consider on sequential consistency model. For each sample, the encoding time of Ghara-
chorloo framework seems less than the encoding method for Herding cats framework. In
fact, the number of events (#Events) is affected by the formalization of a framework.
The encoding method for Gharachorloo [Gha95] considers only shared-memory accesses
as events, while the encoding method for herding cats [AMT14] also consider register
accesses as events. Besides, the constraints that decide valid executions are also proposed
in different ways; The ways to encode is also implemented in a different style, in which

CHAPTER 5. EXPERIMENT AND DISCUSSION 139

Figure 5-8: Encoding time of Dekker’s algorithm

the encoding method for herding cats framework analyzes the behaviors of programs in
detail than the encoding method for Gharachorloo framework. Because of the difference
of formalization, the encoding time (Encoding (s)) in Table 5.6 is quite different.

Figure 5-9: Solving time of Message passing on Gharachorloo framework

Moreover, Figures 5-9 and 5-10 show the graphs of solving time depending on the
number of events. In the setting, message passing algorithm is considered with bounded
loop unwinding approach to generate the number of events for the experiment. In both
graphs, the solving times is growing differently in which the time of weaker memory
models is growing faster than the stronger models. We presume that the state space to be
considered in weaker memory models is more significant because the execution behavior
is flexible than the stronger models.

According to Figure 5-9, the solving time of each relaxed memory model seemed to be
growing too fast even if the number of events is too small. On the other hand, according
to Figure 5-10, the solving time on Herding cats framework seems to be slower than

CHAPTER 5. EXPERIMENT AND DISCUSSION 140

Figure 5-10: Solving time of Message passing on Herding Cats

Table 5.7: Experiment on the number of processors

Runtime (s)
Processors SC TSO PSO ARM

2 14.67 19.03 18.77 88.86
3 123.47 153.18 150.56 1027.9
4 707.47 910.21 904.57 9547.81

Gharachorloo framework. However, if the programs are complicated and contain many
instructions, the solving time also seemed to be increased exponentially.

Figure 5-11: Experiment on the number of processors

Besides, there is an experiment on the number of processors to be considered. In this
experiment, the message passing with the fence operations is considered by replicating
the program containing a loop to consider more than two processors in the experiment.
Table 5.7 and Figure 5-11 show if the number of processors is increased, the runtime
is exponentially increased. The reason would be the number of processors increases the
number of events to be considered, and the relations among processors would be more
complicated than smaller processors.

According to the encoded formula to be solved by an SMT solver, the number of events

CHAPTER 5. EXPERIMENT AND DISCUSSION 141

to be considered affects the instances in the formula for solving. Thus, the complexity of
the formula depends on the number of events to be considered. To improve the scalability
of the method in the future, one would provide abstraction techniques to reduce the
number of events based on the fact of target memory model. For instance, the effect
of the memory events occurs later than an event would not be considered in sequential
consistency model.

CHAPTER 5. EXPERIMENT AND DISCUSSION 142

Chapter 6

Related Work

6.1 Relaxed Memory Models

Although the effect of relaxed memory models causes the difficulty in program verification,
there are several works to model the behavior of programs executed on a memory model
and/or verify the program property on the behavior occurring on a relaxed memory model.

Typically, a high-level language could have its memory model, such as Java Memory
Model (JMM) [MPA05], in which Java Virtual Machine (JVM) permits the write access of
a thread to be delayed. By such allowance, the effect of concurrent programs on threads
could be not the same as the programs executed sequentially. However, the high-level
memory model is orthogonal to the memory model at the hardware level. In addition to
Java, other programming languages such as C/C++ also has its standard of the memory
model, called C/C++11 [BA08], to identify the behavior of reads and writes from threads.

In general, C++ and C are programming language which can be implemented as con-
current programs; however, there are standards [BA08] for the languages to specify the
behavior of concurrent behaviors written by the language, such as a group of write ac-
cesses can be delayed. As the standard of the high-level memory model might not be
formalized, there are works published by [BOS+11] and [NMS16] to formalize the behav-
ior of the C/C++ memory model. In addition to memory models for Java and C/C++,
there is also the weakly ordering model proposed in [BP09] for high-level languages.

In contrast to high-level memory models, hardware memory models are provided for
multiprocessor systems, in which the system would allow the effect of memory accesses to
be completed out-of-order from the program order. Although the concurrent program is
affected by memory model at high-level programming language and/or compiler optimiza-
tion, the hardware memory models, such as ARM and POWER, do not know the behavior
at the high-level. At the hardware level, the memory accesses issued by a processor in
the program order are considered to realize the behavior on the system.

143

6.2 Program Verification for Relaxed Memory Mod-

els

In program verification at low-level programming language, one would provide the seman-
tics of instruction set architecture (ISA) for specific architectures. [FM10] has faithfully
formalized the instruction set architecture of ARMv7 processors in a monadic style. The
model is described based on ARM manual document [ARM07]. This model is quite con-
crete to represent the execution of each instruction in ARM processor, due to the model
is already validated by using the random testing approach with the practical system to
confirm their model do represent the real behaviors of instructions. This means this for-
malization is applicable for program verification at the low-level programming language.

[AFI+09, AAS03] have captured the effect of behavior on relaxed memory models by
events. The related work [AAS03] have proposed the model for POWER shared-memory
architecture by using in-out operations. Such operations are used to capture the behav-
ior of information that flows in the system. In contrast, the related work [AFI+09] has
proposed an axiomatic model to consider the valid execution of events. In this work, con-
current programs are mapped into the corresponding events to interact with the shared-
memory location, in which the semantics is extended from instruction semantics proposed
by [FM10] to capture the micro-operations inside the hardware system.

Instead of considering the behavior of programs in details on specific architectures,
there are several works consider the behavior of memory models in an abstraction that is
sufficient to verify the program property on a relaxed memory model. One would provide
program logic to reasoning the behavior of programs on target memory model to prove
the program property, such as [DL15, Rid10, LV15, AM16]. [Rid10, LV15] provide the
specific program logic for x86-TS0 and C++11 memory model, respectively, while [AM16]
introduce a program logic under a relaxed memory model that uses observation variables
to indicate the possible next value of a variable with respect to the relaxed memory model.
However, the restrictions on observation variables for program execution are not derived
from a memory model specification systematically.

Program Logic and Reasoning Method The proof system in [Rid10] adopts rely-
guarantee reasoning to verify concurrent programs, which focuses on weak x86-TSO mem-
ory model to reason x86-assembly programs. To reason the behavior of a branch instruc-
tion, an invariant must be provided for the instruction to the target location. Besides,
there is a method in [LV15] extends a well- known Owicki-Gries method to reason concur-
rent programs executed on non-interference criterion not to assume sequential consistency,
which is sound for reasoning programs in the release-acquire fragment of the C++11 mem-
ory model. Therefore, these works can prove the concurrent programs on specific memory
models.

In contrast to the proof system [Rid10] and reasoning method [LV15], our research
adopts a modeling framework such as [AMT14, Gha95] to check the behavior of concurrent
programs regarding the specification of a memory model, which is flexible to change a
memory model to be verified. This means the existing events that can be instantiated

CHAPTER 6. RELATED WORK 144

from concurrent programs must be given beforehand. In particular, our research focuses
on the way to realize the symbolic execution systematically. Although the proof system
[Rid10] and reasoning method [LV15] do not need the instantiating step beforehand to
prove the programs, those works cannot deal with a variety of memory models.

Moreover, there is an invariant proof method [AC17] of programs for various relaxed
memory models, in which the programs are described in a programming syntax, named
LISA [AC16], and provides a new style of semantics to describe the behavior of programs
for relaxed memory models. In program verification for the loop behavior, there is a
counter variable to indicate a memory access on each iteration, and a program invariant
is given as the program property. The invariant is then proved by providing a condition
satisfying the invariant, and providing a specification in cats language [ACM16] satisfying
the condition. To ensure the program property is proved on the specification of a memory
model, a proof must be provided to show the behavior of provided specification is included
in the specification of the target memory model.

Model Checking To the best of our knowledge, most of the ordinary model check-
ers must extend the execution of programs to include the behaviors on relaxed memory
models. For TSO and POWER, various works use buffers in their semantics to realize
the behavior such as [HH16, AAA+15]. As for POWER and ARM multiprocessors, the
mechanisms of program executions also includes speculative executions and more com-
plicated mechanisms; thus, the behavior of POWER and ARM multiprocessors would be
difficult to realize the explicitly behaviors in the ordinary model checkers. This means
some abstractions would be needed to extend the model checker to support the behavior,
such as Shasha and Snir trace [SS88].

Instead of verifying program property directly, SATCheck [DL15] considers whether any
execution of programs on a relaxed memory model preserved the effect of execution as
same as executing the program on sequential consistency model. SATCheck tool computes
a concrete execution for checking, in which the execution is used to construct an event
graph to capture observed control flow paths of the program.

In this research, SMT-based program verification approach is adopted to model check
the behavior of program executions regarding the memory model. Instead of considering
the state explicitly, the states are abstracted in the encoded formulae. Then, the valid
states to be considered are determined by axioms. Among the research on relaxed memory
models, there are various works such as [Bur07, Hua15, HH16, AKT13].

CheckFence [Bur07] encodes the C implementation with a test program as the set
of execution traces and defines the sets of execution traces for sequential consistency
and relaxed memory model. In verification, the execution traces of relaxed memory
model must behave in as executing in sequential consistency model. Besides, their relaxed
memory model is an over-approximation model, which is weaker than TSO/PSO/RMO
[WG], Alpha [Sit92], and IBM memory models.

SMC with Maximal Causality Reduction approach in [Hua15, HH16] construct an initial
concrete execution for checking whether the execution can occur under target memory
model using SMT solvers and then find new concrete executions until new executions

CHAPTER 6. RELATED WORK 145

cannot be produced. [HH16] extended MCR approach for TSO and PSO models by
relaxing the must-happens-before relations.

Our proposed approach to use SMT Solver is similar to [AKT13], which finds a witness
execution from a litmus test. In contrast to the approach in [AKT13], the program
assertions in addition to program executions are encoded into a formula to find a violating
execution. The litmus test is, however, only checked whether the specific result is allowed
or not. Also, their approach relies on herding cats framework [AMT14], while our work
also considers Gharachorloo framework [Gha95].

In addition to using SMT-based program verification on the symbolic executions, [AAJL16]
provides a stateless model checker for POWER multiprocessors that realize the execution
on-the-fly as ordinary model checkers. Due to relaxed memory models, an execution is
represented by Shasha and Snir trace [SS88]. Besides, the execution step is considered by
fetching an instruction as fetched events. However, the effect of events will be considered
if the event is committed. For the consideration of which events can be committed, the
memory model specifications provided by Herding cats are considered as a predicated
function. In contrast to our research, the decision of whether a transition is valid is
considered based on the specification for the transition to commit an event, while our
research realizes all possible executions finding a valid execution based on the relaxed
memory model.

6.3 Symbolic Execution Analysis

In program verification, there are various techniques to extract the symbolic executions
of a program in either static way or dynamic way. In addition, as the program could
contain loops, the behavior of the loop is usually abstracted or is bounded by a number
of loop iterations. However, most of the techniques rely on a sequential execution. This
means the effect of each instruction in an execution is completed step-by-step. However,
the effect of concurrent programs executed on relaxed memory models could contradict
the usual assumption to generate symbolic executions.

In a system using a relaxed memory model, all of the existing execution could affect the
data flown in the system. We have used a bounded loop unwinding method in [MCA17],
which directly unwinds the loop within a bound. In addition, the method assumes every
execution of a program must eventually be terminated, even if there is an infinite loop.
Obviously, this is an under-approximation approach, because we need the finite number
of instances to realize the valid execution regarding a memory model. Consequently, the
symbolic execution can capture the issued events from the programs and the effect of
programs on a memory model can be realized using a modeling framework.

Instead of analyzing symbolic executions, one would realize a concrete execution dy-
namically based on a relaxed memory model by considering the value of computation
on-the-fly, such as [AAA+15, AAJL16, Hua15, Hua15]. Relaxed Stateless Model Check-
ing (RSMC) approach [AAA+15, AAJL16] derives a concrete execution model, described
by transition system, regarding a memory model for program verification using stateless
model checker. Note that the derived model can be considered from the axioms of a mem-

CHAPTER 6. RELATED WORK 146

ory model specified by cats language [ACM16]. The approach constructs an execution
model by simulating the behavior of fetching and executing on-the-fly.

In software verification, there are various techniques to program verification with loop
behavior, such as Hoare logic, assume-guarantee, and static/dynamic executions. The
proof system [Rid10] provides the semantics based on rely-guarantee reasoning to abstract
the behavior of other processes in a rely-condition, while our method abstracts a loop itself
to capture the write values of write events issued by the loop. Note that loop invariant is
supposed to be an assumption to guarantee the side effect of the loop behavior.

CHAPTER 6. RELATED WORK 147

Chapter 7

Conclusion

This thesis introduces the methods to program verification of assembly programs for mul-
tiprocessor systems using relaxed memory models, which are the bounded method and
the inductive invariant method. In particular, our research focuses on the side-effect of
program executions that is affected by relaxed memory models. In our methods, the
behavior of assembly programs is considered in an abstract way to capture the essential
behaviors that are sufficient for program verification. For the program verification, exist-
ing frameworks to model the effect of a program execution executed on a relaxed memory
model are adopted. To adopting the frameworks in program verification, (1) the way to
analyze the program executions for the frameworks is proposed, and (2) an SMT solver
is adopted to model the effect of the program execution under a relaxed memory model,
in which an encoding method regarding a modeling framework is proposed.

In the motivation of our research, the concurrent programs should be ensured on a
relaxed memory model. In particular, assembly concurrent programs is considered. In
practical, there are various assembly languages regarding a variety of processor archi-
tectures. Thus, to provide a method for program verification, the abstraction level of
assembly language is proposed as operation structures. An operation structure is used to
capture the essential behavior of assembly instructions to verify concurrent programs on
relaxed memory models.

In program verification on relaxed memory models, an SMT solver is adopted to realize
the effect of a symbolic execution always satisfies the program property, in which existing
frameworks are adopted to realize the encoding methods to abstract the behavior regarding
a relaxed memory model into a first-order formula to be used in the solver.

Moreover, as the operation structure cannot be used in program verification directly,
this research proposed two static analysis methods, which systematically considers the
operation structures. Especially, the proposed analysis methods are used to realize the
corresponding abstract executions to be considered in program verification on relaxed
memory models.

To summarize, our program verification method is applicable to verify concurrent as-
sembly programs represented as a sequence of operation structures. There are two methods
to extract the behavior of program execution symbolically. The first method, bounded
method, extracts the behavior to be considered directly and bound the number of in-

148

stances provided by loops for program verification. On the other hand, the inductive
invariant method was introduced to deal with the loop behavior which is bounded by the
previous method. In latter method, the loop behavior is abstracted by loop invariant to
provide sufficient abstraction of program executions for program verification.

7.1 Advantages

According to the definition of our operation structure, the essential behaviors of assembly
instructions are taken into account, in which the behaviors that could cause the flaw
due to relaxed memory models are considered. As the target property to be verified is
safety property, in which the read value of a read access is affected by relaxed memory
models, the behaviors of assembly instructions are computation behavior and memory-
related behavior. Thus, the operation structure seemed to cover the most of behaviors
that sufficient for program verification on relaxed memory models.

For the bounded method, although the loop behavior is bounded to be an under-
approximation approach, a valuation founded by this method can disprove the correctness
of the concurrent assembly programs. Besides, if the programs contain no loop, the partial
correctness can be ensured if there is no valuation founded by the SMT solver.

On the other hand, the inductive invariant approach proposed by [DHKR11] is adopted
to analyze symbolic executions from a program. Although the original approach is pro-
posed to a system using sequential consistency models, the approach seemed to be usable
for relaxed memory models that do not allow a read access be affected by the following
memory accesses, such as total store ordering (TSO) and partial store ordering (PSO).
Intuitively, the read accesses cannot be delayed on the memory model. Consequently, if
the corresponding symbolic execution states provided by the inductive invariant method
do not violate the program property, the program property is proved for some memory
models that do not allow delayed reads.

In SMT-based program verification, a valuation can be found automatically if there is
any. Besides, both of our static analysis methods of symbolic executions is also considered
automatically in a systematic way. Thus, the process of program verification can be done
automatically.

7.2 Limitations

In program verification, the proposed assertion language can ensure the value of temporal
registers at each program point, in which the safety property on the scope of possible values
of a variable can be verified. However, in practice, the safety property could consider the
value of a global variable to prevent some cooperate behaviors among programs must be
ensured, such as mutual exclusion property. For instance, in general, the safety property
of mutual exclusion requires two or more processes cannot enter the critical section at the
same time, in which a global variable is usually used to ensure this property. According
to our experiment, the correctness of mutual exclusion is not ensured completely, while

CHAPTER 7. CONCLUSION 149

an assumption is made to program verification.
Although the operation structure proposed to abstract the assembly program, the op-

eration structure used for inductive invariant method restrict the behavior to be in a
structured programming style. This limitation is caused by the need that the inductive
invariant approach needs the loop invariant to be specified directly to the loop. Conse-
quently, the manual transformation of an assembly program into an operation structure
is needed.

In the inductive invariant method, a loop invariant must be provided manually by
users. Besides, as the approach has modified the original approach from [DHKR11], it
has seemed not applicable to any relaxed memory models that are weaker than PSO.

7.3 Future Directions

As the limitation of assertion language is restricted to consider only the values of local
variables, some program property might not be able to be verified by our approach. To
extend the limitations of an assertion language, one would provide a property to indicate
the status of other programs, such as a processor is accessing its critical section; This
could extend the expressiveness to consider the situation of other programs. On the
other hand, it would be possible to capture the changing value of a local variable as an
automaton. Consequently, the program property could be able to define an LTL property
on local variables, in which the expressiveness is improved, and the liveness property might
be able to be ensured. However, all extension must be encoded in a proper first-order
formula for SMT-based program verification. Also, to ensure the liveness property, the
infinite execution should be considered in program verification in the future.

For the concurrent programs contain a loop, the inductive invariant approach is adopted
to abstract the loop behavior for program verification. However, the approach requires
the programs be described in a structured programming style, which could not present
an assembly program directly. In software verification, there is a various approach to
dealing with loops for SAT/SMT solvers, such as k-induction methods [DKR11, DKR10],
and combine-case k-induction [DHKR11]. Those approaches would apply to explore the
finite set of symbolic execution states systematically, in which those approaches might be
able to cover more behaviors than the current methods.

Currently, a loop invariant must be proposed manually by users; there might be better if
there is a suggestion mechanism for loop invariant. According to our experiment, the loop
invariant used in program verification considers on the possible values of flag registers,
which is either 1 or 0; However, it has seemed to be sufficient for program verification for
total store ordering (TSO) and partial store ordering (PSO). Thus, the heuristic suggestion
for our assertion language would be possible.

CHAPTER 7. CONCLUSION 150

Publication

International Journal

[1] Pattaravut Maleehuan, Yuki Chiba, and Toshiaki Aoki, “A Verification Framework for
Assembly Programs under Relaxed Memory Model using SMT Solver”, IEICE Trans.
Inf. & Syst., Dec. 2018.

International Conference

[2] Pattaravut Maleehuan, Yuki Chiba, and Toshiaki Aoki, “Assembly Program Verifica-
tion for Multiprocessors with Relaxed Memory Model using SMT Solver”, in Interna-
tional Symposium on Theoretical Aspects of Software Engineering, 2017, pp. 1-8.

[3] Pattaravut Maleehuan, Takashi Tomita, and Toshiaki Aoki, “Indictive Invariant
Method for SMT-based Program Verification under Relaxed Memory Model”. (to
be submitted).

151

Bibliography

[AAA+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,
Carl Leonardsson, and Konstantinos Sagonas. Stateless model checking for
tso and pso. In Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems - Volume 9035,
pages 353–367, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[AAJL16] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. Stateless Model Checking for POWER, pages 134–156.
Springer International Publishing, Cham, 2016.

[AAS03] Allon Adir, Hagit Attiya, and Gil Shurek. Information-flow models for shared
memory with an application to the PowerPC architecture. IEEE Transac-
tions on Parallel and Distributed Systems, 14(5):502–515, 2003.

[AC16] Jade Alglave and Patrick Cousot. Syntax and analytic semantics of LISA.
CoRR, abs/1608.06583, 2016.

[AC17] Jade Alglave and Patrick Cousot. Ogre and Pythia: An Invariance Proof
Method for Weak Consistency Models. SIGPLAN Not., 52(1):3–18, jan 2017.

[ACM16] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and seman-
tics of the weak consistency model specification language cat. CoRR,
abs/1608.07531, 2016.

[AFI+09] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit
Sarkar, Peter Sewell, and Francesco Zappa Nardelli. The semantics of power
and ARM multiprocessor machine code. ACM SIGPLAN Notices, 44(5):8,
2009.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
efficient bounded model checking of concurrent software. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 8044 LNCS:141–157, 2013.

[AM16] Tatsuya Abe and Toshiyuki Maeda. Observation-Based Concurrent Pro-
gram Logic for Relaxed Memory Consistency Models, pages 63–84. Springer
International Publishing, Cham, 2016.

152

[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
Model Checking of Software Using SMT Solvers Instead of SAT Solvers.
pages 146–162. Springer Berlin Heidelberg, 2006.

[AMP09] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using SMT solvers instead of SAT solvers. In-
ternational Journal on Software Tools for Technology Transfer, 11(1):69–83,
2009.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Mod-
elling, simulation, testing, and data mining for weak memory. ACM Trans.
Program. Lang. Syst., 36(2):7:1–7:74, July 2014.

[ARM07] ARM. ARM Architecture Reference Manual (ARMv7-A and ARMv7-R edi-
tion). ARM, 2007.

[BA08] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency
memory model. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation - PLDI ’08, page 68,
2008.

[BOS+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C ++ Concurrency. Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 55–66, 2011.

[BP09] Gérard Boudol and Gustavo Petri. Relaxed memory models: an operational
approach. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, volume 44, pages 392–403, 2009.

[Bur07] CheckFence : Checking Consistency of Concurrent Data Types on Relaxed
Memory Models. Memory, 42(6):12–21, 2007.

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp
Rümmer. Software verification using k-induction. In Proceedings of the
18th International Conference on Static Analysis, SAS’11, pages 351–368,
Berlin, Heidelberg, 2011. Springer-Verlag.

[DKR10] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic
analysis of scratch-pad memory code for heterogeneous multicore processors.
In Proceedings of the 16th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’10, pages 280–295,
Berlin, Heidelberg, 2010. Springer-Verlag.

[DKR11] Alastair F Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic
analysis of DMA races using model checking and k-induction. Formal Meth-
ods in System Design, 39(1):83–113, aug 2011.

BIBLIOGRAPHY 153

[DL15] Brian Demsky and Patrick Lam. SATCheck: SAT-directed Stateless Model
Checking for SC and TSO. Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 20–36, 2015.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[FM10] Anthony Fox and Magnus O. Myreen. A trustworthy monadic formalization
of the ARMv7 Instruction set architecture. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 6172 LNCS, pages 243–258, 2010.

[Gha95] Kourosh Gharachorloo. Memory consistency models for shared-memory mul-
tiprocessors. Technical report, Stanford University, Stanford, CA, USA,
1995.

[HH16] Shiyou Huang and Jeff Huang. Maximal causality reduction for TSO and
PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications -
OOPSLA 2016, pages 447–461, New York, New York, USA, 2016. ACM
Press.

[Hua15] Jeff Huang. Stateless Model Checking Concurrent Programs with Maximal
Causality Reduction. In Pldi, pages 165–174, 2015.

[ISS12] Luc Maranget Inria, Susmit Sarkar, and Peter Sewell. A Tuto-
rial Introduction to the ARM and POWER Relaxed Memory Models.
https://www.cl.cam.ac.uk/ pes20/ppc-supplemental/test7.pdf, 2012.

[kno] A real-world bug caused by relaxed consis-
tency. https://stackoverflow.com/questions/16159203/
why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d.

[Lam97] Leslie Lamport. How to make a correct multiprocess program execute cor-
rectly on a multiprocessor. IEEE Transactions on Computers, 46(7):779–
782, 1997.

[LMP98] Jaejin Lee, Samuel P Midkiff, and David A Padua. Concurrent static single
assignment form and constant propagation for explicitly parallel programs,
pages 114–130. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[LV15] Ori Lahav and Viktor Vafeiadis. Owicki-Gries Reasoning for Weak Memory
Models. In Proceedings, Part II, of the 42Nd International Colloquium on

BIBLIOGRAPHY 154

https://stackoverflow.com/questions/16159203/why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d
https://stackoverflow.com/questions/16159203/why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d

Automata, Languages, and Programming - Volume 9135, ICALP 2015, pages
311–323, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[MCA17] Pattaravut Maleehuan, Yuki Chiba, and Toshiaki Aoki. Assembly program
verification for multiprocessors with relaxed memory model using smt solver.
In 2017 International Symposium on Theoretical Aspects of Software Engi-
neering (TASE), pages 1–8, Sept 2017.

[MHMS+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade
Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and
Derek Williams. An axiomatic memory model for power multiprocessors. In
Proceedings of the 24th International Conference on Computer Aided Veri-
fication, CAV’12, pages 495–512, Berlin, Heidelberg, 2012. Springer-Verlag.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. ACM SIGPLAN Notices, 40(1):378–391, 2005.

[NMS16] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational
semantics for C/C++11 concurrency. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications - OOPSLA 2016, pages 111–128, 2016.

[Rid10] Tom Ridge. A Rely-guarantee Proof System for x86-TSO, pages 55–70.
VSTTE’10. Springer-Verlag, Berlin, Heidelberg, 2010.

[RN07] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: an
Appetizer. 2007.

[Sit92] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press,
Newton, MA, USA, 1992.

[SMO+12] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell,
Luc Maranget, Jade Alglave, and Derek Williams. Synchronising C/C++
and POWER. SIGPLAN Not., 47(6):311–322, jun 2012.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–
312, April 1988.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER multiprocessors. Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and implemen-
tation - PLDI ’11, 46(6):175, 2011.

[TOP10] TOPPERS Project Inc. TOPPERS Project. https://www.toppers.jp/, 2010.

[WG] David L Weaver and Tom Germond. The SPARC Architecture Manual.
https://cr.yp.to/2005-590/sparcv9.pdf.

BIBLIOGRAPHY 155

[Wik18] Wikipedia contributors. Satisfiability modulo theories — Wikipedia, the free
encyclopedia, 2018. [Online; accessed 30-April-2018].

BIBLIOGRAPHY 156

	Abstract
	Acknowledgment
	Introduction
	Background and Motivation
	Memory Models of Multiprocessors
	Program Verification
	Objective
	Thesis Outline

	Preliminaries
	Multiprocessors using Shared Memory
	Hardware Optimization
	Memory Models

	Assembly Program
	Assembly Instructions
	Granulity of Assembly Instruction

	Modeling Framework
	Gharachorloo Framework
	Herding Cats Framework

	Program Verification
	Program Property
	Satisfiability Modulo Theories (SMT)

	Symbolic Analysis for SMT-based Program Verification
	Static Single Assignment (SSA)
	Control Flow Analysis
	Invariant Analysis

	Bounded Method for SMT-based Program Verification
	Motivation
	Abstractions of Assembly Programs
	Assumptions on Assembly Programs
	Operation Structure
	Executions of Operation Structures
	Semantics of Operation Structures

	SMT-based Program Verification
	Execution Path
	Bounded Loop Unwinding
	Encoding Scheme

	Conclusions
	Achievements
	Limitations

	Inductive Invariant Method for SMT-based Program Verification
	Motivation
	Overview of Inductive Invariant Method
	Issues for Program Verification
	Overview of Method for Relaxed Memory Models

	Abstractions for Program Execution
	Abstractions of Assembly Programs
	Execution of Operation Structures

	Inductive Invariant Method
	Derivation of Programs containing Loop
	Soundness of Inductive Invariant Method

	Conclusions
	Contrary to Bounded Method
	Achievements
	Limitations

	Experiment and Discussion
	Case Study
	Experiment
	Discussion
	Encoded Formula
	Preciseness
	Expressiveness of Assertion Language
	Expressiveness of Operation Structure
	Scalability

	Related Work
	Relaxed Memory Models
	Program Verification for Relaxed Memory Models
	Symbolic Execution Analysis

	Conclusion
	Advantages
	Limitations
	Future Directions

	Publication
	Bibliography

