JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title gooosMTUOOOUOOOOoOoooooo

Author(s) Mal eehuan, Pattaravut
Citation

Issue Date 2018-09

Type Thesis or Dissertation

Text version

ETD

19/ 15532

URL http://hdl . handle.net/ 101
Rights
Description Supervisor: goooag, ooooooo

HEN

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



K £ MALEEHUAN, Pattaravut

EE VARONE S W (RS

¥ i &5 [IEE 400 5

FALREBHE AR EK3049H 21 H

Program Verification for Multiprocessors with Relaxed Memory
Models using an SMT Solver

i # A £ B FEE HAMR RGBSR TR iR

i X @& H

TR i #iz
A EA f eI
CERIT f eI
R RS Hiz

X ONBEDEE

In modern multiprocessors, the consistency of shared memory would be relaxed to increase the computing
power; hence, the value of a memory location could be observed as different values at the same time on each
execution unit. Note that, term memory model is usually used to determine the semantics of the memory
system. In particular, the memory model that relaxes the consistency of the shared memory is usually called
relaxed memory model. Consequently, an anomalous result of the concurrent programs could occur on relaxed
memory models. Therefore, relaxed memory model is the primary concern to ensure the program correctness.
For ensuring program correctness, the program property is defined as the invariant of the concurrent programs.
Due to the relaxed memory models, this research provides an abstraction, called operation structures, of the
concurrent programs. The targets of this abstraction are (1) to be sufficient for program verification, and (2)
can describe the essence of assembly programs to be verified. Consequently, the program verification approach
should be introduced to prove the program property on target relaxed memory model. In particular, this
research uses SMT-based program verification approach to ensure the program correctness automatically.

This thesis shows two program verification methods for relaxed memory models. Mainly, the methods rely on
the SMT-based program verification approach. In both methods, the behavior of program execution and the
program property are encoded into a verification condition represented by a first-order formula; the formula is
then used to check every execution satisfies the program property. The primary difference between the
proposed methods is the way to abstract the behavior of program executions into the verification condition.

In both methods, the program executions are abstracted symbolically. In particular, the computation of program
execution is considered in SMT-based program verification. The first method uses the bounded loop unwinding
technique to abstract the symbolic executions. In the bounded method, the loop iterations are unwound
systematically within a bound. For the second method, the inductive invariant approach is used instead of loop

unwinding. However, the proposed inductive invariant method has seemed to be sound for partial store




ordering (PSO) and stronger memory models. For SMT-based program verification, the abstraction of
program execution and the program property are encoded regarding the relaxed memory model into a
first-order formula. Primarily, the encoded formula is a decidable formula to be solved by an SMT solver
automatically. Consequently, the program correctness can be ensured automatically.

In the experiment, an experiment tool was developed, and the Z3 solver is adopted to solve the first-order
formula. As a result, the tool can automatically verify the property of the abstraction of concurrent programs on
a relaxed memory model. In particular, the abstraction of concurrent programs can represent some essential
behaviors of assembly programs. Besides, the bounded method is an under-approximation approach, while the
inductive invariant method is an over-approximation approach.

In summary, concurrent assembly programs can be abstracted for ensuring the correctness by our methods. For
the bounded method, the program correctness on a relaxed memory model can be ensured if there is no loop.
Otherwise, the method can at least disprove the program property on a relaxed memory model. As for inductive
invariant method, the correctness of concurrent program contains loop can be ensured on partial store ordering
(PSO).

Keywords: Concurrent Program Verification, SMT-based Program Verification, Multi- processors, Relaxed

Memory Model, and Automated Program Verification.

RXEBEORRENOES

AL/ LTI, FOAEY —EHETLICESW T LT a7y « 2 LF 7ty YT
DWFNT a7 T DERFET D FEEREL WD, FEOEFAT Y~ LF Tk vy
AT LI, PEREM EOToOIT, BRx RV AEY —BWETLVERMAL TS, Ll
WH, TOIXTIE, FEZIAL, G LamOFTIEFL, 7r s T LR S 7 EE
CRBRDGEENDH DD, ELWF ST AEBERT D2 EIIES TIERY. 22T, K
MLmCTlE, 7Ry 7 U SHETiikanz7n s 7 0k, H0AEY —EEET R
DNT, BRAET D FIEZREL TS,

MEFIETIE, EEERO ey PRF 77 Y SEEEZE]Y 5 728, Operation
Structure & MEIN 25 E I A EA L T 5. Operation Structure (28T 5FiAH L,
HEERBaFOETIERFL, B0 AT) —HEETVOREEZIT TRED. £IT,
Operation Structure DR 5 FEWITIBNT, 590 AE Y —BHEE TV E2N T T F4T/ 32 % JiL
D57, SMT Y 3% FAWTUW%. Operation Structure (%, HEIIZ, REARE:
BRI s, FHOAE Y —BEET VOmBARE, R LHAEDETHREIIC
BRENEmEND. FFWAEY —BYWET VT, Hix 7227 7 ZAH 0 % 3, TSO(Total Store
Order), PSO(Partial Store Order), ARM & > —%4 3 ¥ /L7257 Tdh %5 SC(Sequential
Consistency) Z B > T\ 5. WEEERE, A—7 2 GREERR L CTHRGET 2 Bkl r—7
REFRFAZEN L CTHRIET D FEEZREL TV 5. BIE T, RICHREEN £l T & 573,



N—T% BT D E FANCIRET A2 HERH Y, EEOAL—TEHN, FRE LZEK
L0 BWEAIT, ELHEENER SRV, %EF1L, EEROL—FOEITICBNTY
Ta T ADELIERIET DI ENTES. VAT —EWEET WD REEE
TV BRI NTWVDEN, DAR—=LTNEIIFNAEY —EMET LD T A, REF
AT 5 FIEICE L THRMERRD b D, EBRTIE, NTOFERMLNTND
SPARC > u & v %61 Linux Kernel DAY a7 7a 7S LIBWT, FONNTDOH
BRI LT A, £72, ARM [fi TOPPERS/FMP # — (/L DAE v v 7
077 LAOHEBEELRIL, ZOELIZERTETCNDS. LD Z LD, REF
LEORIEPHER SN TND.

Pk, KRSt TBRAWEEE ZE T 500 M E FIEZIRELTEY, FeIcE#R
HETANKEN. Lo, il (FEFY) OFbmme LTHAICERH D b D &
BT,



