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Abstract

Typically, conventional image-enhancementmethods have acommon problem concerning the over-enhancement

in an image which contains both less-visible and nicely-visible areas, while preserve such the key-lighting of

image or the tone of original image. To solve such problem, wepropose two new less-visible-image enhancement

schemes, called the less-visible contrast enhancement method (LVCE) and the less-visible contrast enhancement

based on human visual perception (LVCEHP). For the LVCE, we propose a new contrast enhancement method

based on the singular value decomposition (SVD), an adaptive non-linear scaling function, and a pyramid-based

blending method. The SVD is used to decompose an image into several. Based on our investigation, we found that

some layers are associated with the less-visible area. Then, the less-visible layers are selected and enhanced by

using the proposed logarithm-function. For the LVCEHP, we propose a new contrast enhancement method based

on several principles of visual human perception such as theWeber's law in image contrast and the Just-Noticeable-

Different (JND). At the beginning, we study the principle of image contrast. Based on this study, we found that the

human perception is more sensitive to image contrast ratherthan absolute luminance values.

The original idea of LVCEHP is to enhance an image by applyingseveral principles of visual human perception

such as the Weber's law in image contrast and the Just-Noticeable-Different (JND) to create the algorithm. Then,

we apply definition of the Weber's contrast to the proposed non-scaling function. By investigating the characteristic

of Weber's equation, there are three possible cases that could be occurred in the entire image. We used these cases

as the inspiration to calculate the enhancement rate of the proposed non-linear scaling function. We also use the

principle of JND in the image to guarantee that the less-visible areas perceived discriminatory from the previous

ones too. Moreover, we used the principle of singular value decomposition (SVD) to propose a new technique for

analyze and remove the hidden noise of the input image. We experimentally found that the smaller area-bounded

of the singular-value curve implies the higher level of noise. If the area of singular value contains the area-bounded

less than the threshold value of the hidden noise value. Then, we remove the noise layer before the enhancement

process. Lastly, to recover the nicely-visible area, we propose the pyramid-based blending techniques for fusing

two images in order to solve the problem of information missing in the blending process. This recovery process

is mandatory because enhancing images in the previous step might cause the over-enhancement. Objective and

subjective evaluations were conducted, and experimental results show that our proposed method can successfully

improve the less-visible contrast without amplifying noise. It also preserves the tone and texture of original images

and produces satisfying results in terms of human preference.

Keywords: less-visible contrast enhancement, human visual perception, singular value decomposition, pyramid-

based blending, just-noticeable-different
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Chapter 1

Introduction

1.1 Less-visible Contrast Enhancement: Importance and Chal-

lenge

Over the last few years, one of the challenging problems in digital image processing is to

enhance an image which contains both less-visible and nicely-visible areas. In this case, only

the former are needed to be enhanced, whereas the latter areas should be preserved. Note

that, in this work, we call an image that is correctly exposeda nicely-visible one. In general,

a good enhancement method should produce a resulting image in which information in less-

visible areas can be easily perceived by our visual system. Also image tone, texture, and other

characteristics, e.g. the naturalness, should be similar to those of the original image. Moreover,

a good enhancement process should avoid unwanted side effects, such as noise amplification or

the halo effect [1].

During the early years, the power-law transformation, the logarithmic transformation, and

the histogram equalization (HE) are ones of famous techniques for enhancing images [2]. The

power-law and the logarithmic transformations deploy non-linear functions to expand input

image ranges, i.e. a smaller input value is amplified with a greater factor. Therefore, the less-

visible areas could be enhanced. However, both introduce a side effect, i.e. hidden noise in

the less-visible areas is amplified, and nicely-visible areas are unnecessarily amplified as well.

Consequently, they cause the noisy and over-exposed image.The HE enhances an input image

by expanding its histogram range. However, performance of this method strongly depends on

characteristics of the histogram. These three methods are classified as the global enhancement,
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and they all share the common problems of noise amplificationand over-enhancement.

Later, several local enhancement methods have been proposed. These methods include the

histogram-based [3], [4], the just-noticeable-different-based (JND-based) [5], the retinex-based

[6], [7], [8], and the singular-value-decomposition-based (SVD-based) methods [9], [10]. For

example, the adaptive histogram equalization (AHE) and thecontrast limit adaptive histogram

equalization (CLAHE) [3] are histogram-based and widely used to improve local contents.

However, this approach still suffers from unnecessarily amplifying, and it suppresses values in

some regions in the case that distribution of intensity is narrow and intensity values are too high

or too low. Recently, X. Fuet al. try to solve these problems by implementing an enhancement

method based on the multi exposure fusion with a sigmoid function and adoptive histogram

equalization [11]. In this paper, we abbreviate the name of this method as MEF. According

to this method, the under-exposed images, well-exposed images, and over-exposed images are

blended together to generate the resulting image. This method can solve those two problems.

However, in some cases, it still amplifies the hidden noise. An example of this case is to be

shown in Sect. 3.3.

The JND-based approach employs the Weber’s law, which is based on the human visual per-

ception, to create a non-linear function [5]. The advantageof this approach is that an enhanced

image looks clearly visible because the average local contrast is increased. Although the less-

visible areas can be seen clearly, the contrast in the nicely-visible areas is also strengthened.

Hence, in some cases, the resulting image looks different from the original one.

The retinex-based methods, such as the single-scale retinex (SSR) [6], the multi-scale retinex

(MSR) [7], and the multi-scale retinex with color restoration (MSRCR) [8], originate from a

theory proposed by Edwin H. Landet al. [12]. Functions used in these methods are based on

the human visual perception. These methods enhance less-visible areas by using logarithmic

transformation and the Gaussian surround function. These methods have a critical problem

concerning the value of standard deviation of the Gaussian function. That is, if the standard

deviation is too small, the nicely-visible parts of an enhanced image will be degraded and look

unnatural. Even though the MSR and the MSRCR have tried to solve the problem by using

several different standard deviations, the problem still persists, especially when the biggest

standard deviation used by the algorithm is smaller than an object size displayed on the im-

age. The multi-scale retinex with chromaticity perservation (MSRCP), which is an improved

2



MSRCR, was proposed by A. B. Petroet al. [13] to solve such problem. In stead of performing

the algorithm to each RGB channels, MSRCP performs only on the luminance channel. Then,

it computes the scaling factor to restore true color. In mostof the cases, resulting images

enhanced by the MSRCP are excellent. However, in some cases,this algorithm produces an

image which is too colorful, hence an unnatural-looking image. The Frankle and McCann

algorithm is another retinex, and this method uses a single pixel to estimate a new value by

computing long-distance interactions between pixels and progressively move to short-distance

interactions [14]. The benefit of this method is that it can reduce a computational-complexity

time. However, it cannot tolerate hidden noise. Another method similar to the retinex-based is

fast center surround modification [1]. The algorithm employed concept of the shunting centre-

surround cells of the human visual system to modify the underand over-expose regions [1]. To

our knowledge, this method produce the best resulting images in terms of tone preservation,

detail preservation, and human preference. However, in some cases, it still amplifies the hidden

noise. An example of this case is to be shown in Sect. 3.3.

The SVD-based methods enhance an input image by amplifying all singular values of

the matrix representing the image [9], [10]. The performance of these methods depends on

characteristics of the input image. That is, the algorithm works well only when most pixel of

the input image have low intensity values; otherwise, the problem of over-enhancement occurs.

1.2 Motivation and Research Goal

As stated in the previous section, this work aims to propose anew method based on adaptive

non-linear mapping function of the averaged-pixel values.Also it should not suffer from

amplifying hidden noise and distort the original tone, texture, key-lighting, etc. We choose

to investigate the Singular Vector Decomposition (SVD) because according to its advantages:

either the possibility to enhance the visible areas withoutamplifying the hidden noise or the

ability to remove the hidden noise along the input image.

This paper proposes a new less-visible enhancement method based on the human visual

perception using an adaptive none-linear scaling function. The proposed method aims to satisfy

the following properties.

• The less-visible areas are enhanced to be visible without amplifying noise.

3



• The tone, texture, and key-lighting of the enhanced image should be similar to those of

the original one.

• The enhancement method should not cause unwanted side effects, such as the halo effect,

over-enhancement, etc.

• The enhancement method should create the resulting image that is preferred by partici-

pants in a preference test.

1.3 Thesis Outline

The outline of the rest of this thesis, which consists of five chapters, is as follows. Chapter 2

details on the proposed methods. The first one is called the less-visible contrast enhancement

(LVCE) which it mainly focused on on a non-linear scaling function and the singular value

decomposition (SVD). The SVD is used to decompose the image into several layers. Some

layers are associated with the less-visible areas. Then, such layers are strengthened by using

the proposed logarithmic-scaling function. The second oneis called the less-visible contrast

enhancement based on human-visual perception (LVCEHP). Atthis techniques, we first analyze

a hidden noise level of an image in order to avoid such a hiddennoise. If the level of hidden

is greater than a predefined value, an SVD-based technique will be used to remove the noise.

Then, we use that image to create the result. We believe that afunction used to enhance an pixel

value should depend not only the pixel value but also on its neighbors. Also, this enhancement

function should be based on a human perception model.

Chapter 3 reports from our simulations in implementation and evaluation of the proposed

methods. The explanation of evaluation methods, and parameters are also describe in this

chapter. Chapter 4 discuss about the strength and weakness of the proposed methods as well as

the reason for choosing different kinds of objective and subjective method.

Chapter 5 summarizes this work. It emphasizes the contributions and discusses possibilities

for further improvement.

4



Chapter 2

Proposed method

We proposed two methods in this chapter, an our scheme are based on adaptive non-linear

scaling function, the singular value decomposition (SVD),and the pyramid-based blending

method. The first one is called the less-visible contrast enhancement (LVCE) in which only the

associated layers obtained from the SVD will be used to enhanced the less-visible areas. The

second one is called the less-visible contrast enhancementbased on human visual perception,

which is constructed by generating the non-linear scaling function for each pixel values. The

just-noticeable-different (JND) is used to control the slope of scaling function along each pixel.

To recover the visible-area of the image, the pyramid-basedblending method is applied.

2.1 Less-visible contrast enhancement based on Singular Value

Decomposition

In this method, we study a characteristic of the singular value decomposition (SVD) which it

can decompose the original image into several layers. Basedon our investigation, some layers

may associate with the less-visible areas. Hence, if we can extract and enhance such layers, our

goal may be achieved.

To enhance the less-visible contrast without amplifying noise, we use the SVD to decom-

pose an input image into three additive layers: main body, less-visible areas, and noise. Only the

less-visible areas are strengthened before all three layers are combined to produce the enhanced

image. Then, the pyramid-based blending method is used to reduce the brightness of over-

enhanced areas due to the selective enhancement and to make the resulting image smooth. The

5



Figure 2.1: Less-visible contrast enhancement method.

block diagram of our proposed method for the less-visible contrast enhancement is shown in

Fig.2.1. The details are provided in the following subsections.

2.1.1 Singular Value Decomposition

In linear algebra, the SVD is a factorization of a matrix. LetXm×n denote a matrixX of size

m×n. The SVD decomposes the matrixXm×n into a product of three matricesUm×m, Dm×n, and

Vn×n with the following relationship.

X = UDVT, (2.1)

whereX is a matrix being decomposed,U andV are orthogonal matrices, andD is a diagonal

matrix whose non-zero elements are called thesingular values.

LetUi andVi denote vectors at the columni of U andV, respectively, i.e.U= [U1 U2 U3 ... Um]

andV = [V1 V2 V3 ... Vn]. Let λi denote theeigenvaluesof XXT (or XTX). The vectorsUi and

Vi are theeigenvectorsof XXT andXTX, respectively, and are sorted in descending order of the

corresponding eigenvalues. The elements on the main diagonal of D are then the square root of

these eigenvalues. Mathematically, the matrixX can be expressed in the following expansion.

X = X1 + X2 + ... + Xd. (2.2)

Xi =
√

λi × Ui × VT
i , (2.3)

whered = max{i, such thatλi > 0}.

6



In this work, the SVD is used to decompose a gray scale imageA into several additiveAi.

In other words,

A =
d

∑

i=1

Ai . (2.4)

We experimentally discovered that the set of singular-value indices,I = {1, 2, 3, ..., d}, can

be partitioned into three disjoint subsetsB, L, andN such that the imageA can be decomposed

into three imagesAB, AL, and AN, where they are the main-body image, the less-visible-area

image, and the noise, respectively, and each of them can be reconstructed by the following

equations:AB=
∑

i∈B Ai, AL=
∑

i∈L Ai, andAN=
∑

i∈N Ai.

To determine these three subsets, we first extract the singular values of the matrixA. An

example of the singular values is shown in Fig. 2.2. The singular values in this figure are linearly

normalized such that the new values cover the range from 0 to 1, where the new minimum and

maximum values are 0 and 1, respectively. Then, we investigate the distribution of the singular

values on the binary-logarithmic scale. That is, on the linear scale, we divide the range [0, 1] of

normalized singular values intob bins of which their width is equal to 2− j, where j is the bin

index. An example is shown in Fig. 2.3(a). Letf (
√
λi) denote the normalized log-singular-value

of the singular value
√
λi. It is defined as follows.

f (
√

λi) = 1+
1
b

log2

( √
λi −
√
λd√

λ1 −
√
λd

)

, (2.5)

for all i such that
√
λi >

√
λd. Otherwise,f (

√
λi)=0

The plot of f (
√
λi) againsti is shown in Fig. 2.3(b). Subsequently, we plot the numbers of

the singular values that fall within each bin. Fig. 2.5 (left) shows the distribution of singular-

values illustrated in Fig. 2.2. Note that when the number of bins increased, the distribution looks

more similar to the normal distribution. In our experiment,we set the value ofb to 21.

We observed that the first eight to ten bins associate with themain-body image, whereas

the last five to seven bins always associate with the noise. Fig. 2.4 demonstrates examples of

these observations. We made use of these findings to propose an algorithm that automatically

determines the subsetsB, L, andN as follows.

1. The distribution of singular values of the image on the binary-logarithmic scale is plotted.

2. The maximum bin is determined. We denote the index of this bin by q.

3. An indexp ∈ L if and only if the normalized
√

λp is in the range of binSth as [q+dmin,q+

dmax].
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Figure 2.2: Singular values of the image displayed on the top-right.

4. The subsetB contains all indices that are less than the smallest member of L, then the

subsetN=I − (B ∪ L).

Fig. 2.5 shows an example of these three subsets. The subsetB contains the indices in the

black bins, the subsetL contains the indices in the white bin, and the subsetN contains the rest.

Fig. 2.5(b), 2.5(c), and 2.5(d) showAB, AL, andAN, respectively.

2.1.2 Contrast Enhancement

To enhance only the less-visible areas on the image without amplifying noise, only the less-

visible-area layer, i.e.AL =
∑

i∈L Ai, obtained from the previous step is strengthened. Our

proposed enhancement method is similar to and based on theRetinex algorithm.

Conventionally, the Retinex algorithm utilizes a non-linear scale to increase smaller values

(i.e. the less-visible areas on the image) with the factors that are greater than those used to

increase the larger values (i.e. the clearly-visible areas). According to this algorithm, the

enhanced imageRSSRof the input imageI is produced by the following equations [12].

RSSR
xy = ln Ixy − ln (Fxy ∗ Ixy), (2.6)
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(a)

(b)

Figure 2.3: Normalized singular values against the indices: (a) on the linear scale and (b) on

binary-logarithmic scale.

whereFxy is the Gaussian surround function given by

Fxy = e−
1
σ2 (x2+y2) (2.7)

with the property "
Fxy dx dy=1.

Note that the subscriptx andy of the matrices represent the matrix elements at the rowx

and columny.
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Similarly, to produce the enhanced layerÂL, we deploy the following formulae:

ÂL,xy =













55×












ÃL,xy − ÃL,min

ÃL,min − ÃL,max













+ 255













× ÃL,xy, (2.8)

ÃL,xy =

log15

(

αĂ
2
L,xy + β ĂL,xy + γ

)

2
, (2.9)

ĂL,xy = AL,xy + |AL,min|. (2.10)

whereÃL,min, ÃL,max, andAL,min are the minimum value of the matrix̃AL, the maximum value

of the matrixÃL, and the minimum value of the matrixAL, respectively. The values ofα, β, and

γ are the scaling function as set in the predefined values as shown in section 3.2.1. We do not

need the subtraction in eq. (2.6) because we enhance only theless-visible-area layer. Finally,

the enhanced imagêA is created by

Â = AB + ÂL + AN. (2.11)

2.1.3 Pyramid-based Blending Method

The resulting image from the contrast enhancement described in the previous subsection some-

times can be over-enhanced because some pixel values may be greater than 1. This problem

can be solved by adopting a blending technique. In this work,we adopt a scheme based on the

Laplacian pyramid to reduce the over-enhancement effect.

The method based on Gaussian and Laplacian pyramids was originally proposed by Burt

et al. [15]. Let �n and�n denote then-level Gaussian and Laplacian operators, respectively.

Then, then-level Gaussian pyramid of the imageI,�n(I), returnsn+ 1 images (G0,G1, ...,Gn),

whereG0 is I, andGi, for i ≥ 1, are output images obtained from the low-pass filter with the

decimation at the layeri. Then-level Laplacian pyramid of the imageI, �n(I), returnsn + 1

images (L0, L1, ..., Ln), whereLn is Gn, and Li = Gi− ↑ Gi+1 for i < n. The symbol↑ Gi+1

represents the imageGi+1 after it is upsampled by a factor of 2.

We can reconstruct the imageI by the inverse Laplacian�−n, which is defined as

�−n(�n(I)) = L0+ ↑L1+ ↑↑L1 + ...+ ↑n Ln, (2.12)

where↑n denotes the upsampling by a factor of 2n.
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(a) (b)

(c) (d)

Figure 2.4: Reconstructed images
∑

i∈T Ai, where the setT contains indices (a) in the first bin,

(b) in the first four bins, (c) in the first twelve bins, and (d) in the last six bins.

We previously proposed a variant of the Laplacian operation, which was employed in our

improved Laplacian-pyramid-based blending method [16]. We denote our operator by�n and

define it as follows.

�
n(I) = �n(I) △ �n(ζ(I)), (2.13)

whereζ(I) is the Dodge and Burn function, which adaptively reduces values of the imageI [16].

Given that�n(I)= (S0, S1, ..., Sn) and�n(ζ(I))= (T0,T1, ...,Tn), the operator△ is defined as

(S0, S1, ..., Sn) △ (T0,T1, ...,Tn) = (S0,T1, ...,Tn). (2.14)

The blending imageR from two source imagesI1 and I2 is calculated by our blending

function, which is adapted from the function proposed by Mertenset al. [17], as follows.

�n(R) =
2

∑

i=1

�n(W i) ◦�n(Ii), (2.15)
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Figure 2.5: Histogram and the reconstructed images: (left)the subsetB, F, andN contain

indices in the black, gray, and white bins, respectively, (top-right) the main-body layerAB,

(middle-right) the less-visilble-area layerAL, and (bottom-right) the noise layerAN.

W i,xy =
1

W1,xy +W2,xy
× e−

1
2σ2 (Ii,xy−0.5)2

, (2.16)

whereW i,xy denotes the elements of the matrixW i at the rowx and columny, σ is a standard

deviation of the Gaussian function, and the operator◦ is theHadamardproduct (i.e. element-

wise multiplication).

In this work, the resulting imageR is produced by blending two imageŝAN and ÂC, where

ÂN is the normalization of the enhanced imageÂ, and ÂC is the Â after its over-range values

are clipped or clamped.

2.2 Less-visible contrast enhancement based on human vi-

sual perception

The proposed method consists of three stages: noise-level analysis, less-visible-area improve-

ment, and image blending. The block diagram of our proposed algorithm is shown in Fig. 2.6.

To enhance the less-visible contrast without amplifying the hidden noise, we first determine a

noise level of the input image. If the hidden-noise level of the image is greater than a threshold

value, the SVD-based technique is used to remove the noise before moving forward to the

12



less-visible-area improvement stage; otherwise, the original input image is inputted into the

next stage. Then, a non-linear scaling function and a human-perception-based improvement

technique are used to enhance the contrast of the image. Finally, the pyramid-based blending

method is used to reduce the brightness of over-enhanced areas due to the selective enhancement

and to make the resulting image smoother.

Figure 2.6: Less-visible contrast enhancement based on human visual perception.

2.2.1 Noise-level Analysis

Basically, the less-visible areas of an image contain hidden noise. We simply define the hidden

noise as the noise hidden in the less-visible areas. That is,we normally cannot perceive the noise

unless it is enhanced by any typical enhancement method. Thehidden noise can be chromatic

or achromatic, and it can be additive or multiplicative [18]. There are many sources that can

cause the hidden noise, for example, a camera sensor with lowquality, inappropriate camera

settings, or some limitations of a capturing device. To avoid enhancing the hidden noise, we

adopt the Singular Value Decomposition (SVD) to analyze thenoise level of the input image.

In general, the SVD is a factorization of a matrix. LetXm×n denote a matrixX of sizem×n.

The SVD decomposes the matrixXm×n into a product of three matricesUm×m, Dm×n, andVn×n

with the following relationship.

X = UDVT, (2.17)

whereU andV are orthogonal matrices, andD is a diagonal matrix whose non-zero elements

are called thesingular values.

Let Ui and Vi denote the vectors at the columni of U and V, respectively, i.e. U =

[U1 U2 U3 ... Um] and V = [V1 V2 V3 ... Vn]. Let λi denote theeigenvaluesof XXT (or

XTX). The vectorsUi andVi are theeigenvectorsof XXT andXTX, respectively, and are sorted
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in descending order of the corresponding eigenvalues. The elements on the main diagonal ofD

are then the square root of these eigenvalues. Mathematically, the matrixX can be expressed in

the following expansion.

X = X1 + X2 + ... + Xd. (2.18)

Xi =
√

λi × Ui × VT
i , (2.19)

whered = max{i, such thatλi > 0}.

In this work, the SVD is used to decompose each channel of a color imageA into several

additive layersAi. In other words,

A =
d

∑

i=1

( √

λi × Ui × VT
i

)

=

d
∑

i=1

Ai . (2.20)

Konstatinideset al. [19] observed the effect of SVD under the additive noise model and

found that the group of latter singular values can be represented the image noise. Our analysis

of the noise level is based on this finding.

First, we extract the singular values of the matrixA representing the input image. An

example of the plot of singular values is shown in Fig. 2.7. Then, given a set of singular values

{
√
λ1,
√
λ2, ...,

√
λd}, we calculate the summation of all singular values:

S =
d

∑

i=1

√

λi. (2.21)

The summationS can be used to estimate the area bounded by the singular-value curve and

the singular-value-index axis. We experimentally found that the smaller area implies the higher

level of noise.

Based on our experiments, ifS is less than a threshold value of hidden-noise levelSth,

which is set the hidden-noise level in the input image is too high. When the contrast of the

input image is enhanced, in this case, the noise will be noticeable. Hence, the noise of such

image should be removed before the enhancement process. Fig. 2.8 (a) shows an example of the

input image where its value ofS is less thanSth. If we enhance this image without removing the

hidden noise, the noise will appear, and the resulting imagelooks noisy, as shown in Fig. 2.8 (b).

However, when the noise is removed before the enhancement, the resulting image looks better,

as shown in Fig. 2.8 (c).

To remove the noise, the singular values are firstly normalized such that the new values cover

the range from 0 to 1, where the new minimum and maximum valuesare 0 and 1, respectively.
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Figure 2.7: Plot of singular values of the image displayed onthe top-right.

The set of singular-value indices,I = {1, 2, 3, ..., d}, is partitioned into two disjoint subsetsB

andN such that the imageA can be decomposed into two imagesAB and AN, where they are

the main-body image and the noise, respectively.

AB =
∑

i∈B
Ai , (2.22)

and

AN =
∑

i∈N
Ai. (2.23)

Then, we plot the distribution of the singular values on the binary-logarithmic scale. That

is, on the linear scale, we divide the range [0, 1] of the normalized singular values intob bins of

which their width is equal to 2− j, where j is the bin index. Letf (
√
λi) denote the normalized

log-singular-value of the singular value
√
λi. It is defined as follows.

f (
√

λi) = 1+
1
b

log2

( √
λi −
√
λd√

λ1 −
√
λd

)

, (2.24)

for all i where
√
λi >

√
λd. Otherwise,f (

√
λi)=0.

Then, we plot the numbers of the singular values that fall within each bin. Note that when

the number of bins increases, the distribution looks more similar to the normal distribution. In
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(a)

(b) (c)

Figure 2.8: Example of resulting images when the input imageis enhanced with and without

hidden noise removal: (a) input image with its value ofS is less thanSth, (b) the resulting image

(only the area in the red box of Fig. 2.8 (a)) in the case that the input image is enhanced without

the noise removal, (c) the resulting image in the case that the hidden noise is removed before

the enhancement process.

our experiment, we set the value ofb to 21. We define the singular-value indices of the singular

values from the bin with the maximum number of singular values to the last bin as the members

of the subsetN. Then, the subsetB is determined byI − N. In the caseS≤Sth, only theAB is

inputted into the next stage.

Fig. 2.9 (a) shows an example of these two subsets: the subsetB is indicated by the light

bars, whereas the subsetN is indicated by the dark bars. Fig. 2.9 (b) and Fig. 2.9 (c) show AB

andAN, respectively.
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(a)

(b)

(c)

Figure 2.9: Histogram and the reconstructed images: (a) thesubsetsB andN contain the indices

of singular values in the light bars and in the dark bars, respectively, (b) the main-body image

AB, (c) the noiseAN.

On the other hand, ifS is equal to or greater thanSth, the original input image is directly

inputted into the less-visible-area improvement process.In this case, if we remove the noise

layer AN before the enhancement process, the resulting image will bedistorted as shown in

Fig. 2.10 (c).

In short, the noise-level analysis takes the input imageA as an input and returns imageAAna

as an output, whereAAna= A if S ≥ Sth; otherwise,AAna= AB. This analysis is summarized by

the flowchart illustrated in Fig. 2.11.

2.2.2 Less-visible-area Improvement

The less-visible-area improvement process enhances the contrast of less-visible areas of the

image AAna and outputs the improved imageAImp. We intentionally enhance the less-visible

areas of the imageAAna considerably, thus this process causes the over-enhancement as shown

in Fig. 2.12. This over-enhancement will be removed by the blending method, which will be

detailed in Sect. 2.2.3.

Our improvement process consists of two subprocesses. The first one is based on a non-

linear scaling function. The second one is based on the concept of human perception, i.e. the

concept of just noticeable difference (JND). The block diagram of these two subprocesses are

shown in Fig. 2.13.
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(a)

(b) (c)

Figure 2.10: Example of resulting images when the input image is enhanced with and without

hidden noise removal: (a) input image with its value ofS is equal to or greater thanSth, (b) the

resulting image (only the area in the red box of Fig. 2.10 (a))in the case that the input image is

enhanced without the noise removal, (c) the resulting imagein the case that the hidden noise is

removed before the enhancement process.

The reason we have two subprocesses is that our proposed non-linear scaling function

deployed in the first subprocess causes the foggy effect as shown in Fig. 2.14 (b). Therefore,

the normalization is used to mitigate this effect. Consequently, the enhancement function is

compressed so that the imageANorm looks a bit darker than the imageANon. Therefore, we

enhance the imageANorm for the second time by using a JND-based concept.

According to our proposed non-linear scaling function, which will be discussed in details

in Sect. 2.2.2, an output of this function covers the range from 46.76 to 347.7. Hence, we
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Figure 2.11: Flowchart of the noise-level analysis.

(a) (b)

Figure 2.12: Example of an over-enhance improved image: (a)original image and (b) improved

image.

19



Figure 2.13: Block diagram of the less-visible-area improvement process.

(a)

(b) (c)

Figure 2.14: Foggy effect due to the non-linear scaling function: (a) original image AAna, (b)

the imageANon, and (c) the imageAImp.

normalized the range [46.76, 347.7] to the range [0, 255] before inputting it into the JND-

based improvement process. The JND-based improvement is based on the concept that we

can perceive a pixel value easily when the pixel value increased by its JND value.

Less-visible-area Improvement Based on the Non-linear Scaling Function

Our scaling function is proposed based on the assumption that it should be not only a function

of the input pixel value but also the input pixel’s neighbors. If it is the function of only the pixel

value, it might produce image noise due to the difference between the pixel and its neighbors.

Let AAna(x, y) denote the pixel values of the imageAAna at the position (x, y) as illustrated in
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Fig. 2.15 (a). In this work, the neighbors ofAAna(x, y) are defined as the eight pixels surrounding

the AAna(x, y). We first calculate the average value (N̄) of the neighbors ofAAna(x, y).

N̄(x, y) =
1
8
×

































x+1
∑

i=x−1

y+1
∑

j=y−1

AAna(i, j)

















− AAna(x, y)

















. (2.25)

Then, our proposed non-linear scaling function is defined asfollows.

ANon(x, y) =
log(B(x, y))
log(F(x, y))

, (2.26)

where

F(x, y) =



























20− 17
√

|127−AAna(x,y)|
127 , if AAna(x, y) ≤ 127,

3
128 (|127− AAna(x, y)| + 1) , otherwise,

(2.27)

and

B(x, y) =



























20− 17
√

N̄(x,y)
127 , if N̄(x, y) ≤ 127,

3
128

(

N̄(x, y) + 1
)

, otherwise.
(2.28)

Note that these equations, especially the forms of eq. (2.27) and eq. (2.28), are inspired by

the JND formula proposed by Chouet al. [20].

The plot of this functionf
(

AAna (x, y) , N̄ (x, y)
)

is shown in Fig. 2.16. The idea behind this

formula is that we want to enhance the pixel value, and we try to reduce the difference between

the pixel value and the neighbors’ values at the same time. Ifthe pixel valueAAna(x, y) is equal

to the average valuēN(x, y), as illustrated in Fig. 2.15 (b), the enhancement functionis indicated

by the red curve shown in Fig. 2.16.

It can be seen clearly from this figure that, if̄N(x, y) is lesser thanAAna(x, y), as illustrated

in Fig. 2.15 (c), the enhancement rate is lower than that of the caseAAna(x, y) = N̄(x, y). On the

other hand, ifN̄(x, y) is greater thanAAna(x, y), as illustrated in Fig. 2.15 (d), the enhancement

rate is greater than that of the caseAAna(x, y) = N̄(x, y).

Since the range of this function is not from 0 to 255, it is normalized by the following

formula before inputting to the next subprocess.

ANorm(x, y) =
255

327.94
× (ANon (x, y) − 46.76) . (2.29)

Less-visible-area Improvement Based on JND

In image processing, the JND is defined as the minimum visibility threshold when visual

contents are altered [21]. Our idea behind this JND-based improvement process is that, if we
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(a) (b)

(c) (d)

Figure 2.15: Pixel valueAAna(x, y) and its neighbors: (a) the positions of an area surrounded

AAna(x, y), (b) the case thatAAna(x, y) = N̄(x, y), (c) the case thatAAna(x, y) > N̄(x, y), and (d)

the case thatAAna(x, y) < N̄(x, y)

increase the pixel values of the less-visible areas by at least their JND values, such areas are

easier to perceive by the human perception. This is because,by the definition of JND, the new

values cause the less-visible areas perceived discriminatorily from the previous ones. Therefore,

we propose the following formula:

AImp(x, y) = ANorm(x, y) + k× JND(ANorm (x, y)) , (2.30)

wherek is a factor, which is greater than 1, and JND(ANorm (x, y)) is the JND ofANorm(x, y),

which is modeled by Chouet al. [20] as follows.

JND(ANorm (x, y)) =



























[

17×
(

1−
√

ANorm(x,y)
127

)]

+3, if ANorm (x, y) ≤ 127,
[

3
128 × (ANorm (x, y)−127)

]

+3, otherwise.
(2.31)
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Figure 2.16: Non-linear scaling functionf (AAna(x, y), N̄) for the less-visible-area improvement.

In this work, we assume thatk is a function ofAAna and JND(ANorm). We experimentally

found that the relation

k =
AAna(x, y)

JND(ANorm (x, y))
+ 1 (2.32)

works well for our purpose.

2.2.3 Pyramid-based Blending Method

We use a blending technique to resolve the over-enhancementproblem caused by the less-

visible-area improvement process described in the previous subsection. We adopt the technique

based on the Gaussian and Laplacian pyramids, which is proposed by Burtet al.[15]. We do not

use a conventional pyramid-based blending method, which isproposed by Mertenset al. [17],

because some information is lost after blending, especially the information in small areas [16].

Thus, we propose a more sophisticated technique to overcomesuch problem. Our proposed

blending method is summarized by a flowchart shown in Fig.2.17 and consists of five steps as

follows.

First, let�n and�n denote then-level Gaussian and Laplacian operators, respectively. The

n-level Gaussian pyramid of the imageI,�n(I), returnsn+ 1 images (G0,G1, ...,Gn), whereG0

is I, andGi, for i ≥ 1, are output images obtained from the low-pass filter with the decimation
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Figure 2.17: Flowchart of pyramid-based blending method.

at the layeri. The n-level Laplacian pyramid of the imageI, �n(I), returnsn + 1 images

(L0, L1, ..., Ln), whereLn is Gn, andLi = Gi− ↑Gi+1 for i<n. The symbol↑Gi+1 represents the

imageGi+1 after it is upsampled by a factor of 2.

We can reconstruct the imageI by the inverse Laplacian�−n, which is defined as

�−n(�n(I)) = L0+ ↑L1+ ↑↑L1 + ...+ ↑n Ln, (2.33)

where↑n denotes the upsampling by a factor of 2n.

The resulting imageRB of the pyramid-based blending method proposed by Mertenset al.
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is then calculated as follows [17].

�n(RB) = �n(W1) ◦ �n(A) + �n(W2) ◦ �n(AImp), (2.34)

whereA andAImp are two source images.W1 andW2 are weighting matrices, and the operator

◦ is the Hadamard product (i.e., element-wise multiplication).

The matricesW1 andW2 are constructed by the following formulae.

W1(x, y) =
e−

1
2σ2 (A(x,y)−0.5)2

e−
1

2σ2 (A(x,y)−0.5)2

+ e−
1

2σ2 (AImp(x,y)−0.5)2 , (2.35)

and

W2(x, y) =
e−

1
2σ2 (AImp(x,y)−0.5)2

e−
1

2σ2 (A(x,y)−0.5)2

+ e−
1

2σ2 (AImp(x,y)−0.5)2 , (2.36)

whereW i(x, y) denotes the element of the matrixW i at row x and columny, andσ is a

constant and set to 0.2.

Second, over-enhanced positions are determined. The over-enhanced positions are defined

as the positions of which their pixel values are greater than1. Let P denote a set of the over-

enhanced positions. Thus,P = {(x, y)|RB(x, y) > 1}.

Third, for all (x,y) in P, we calculateB1(x, y) andB2(x, y) by

B1(x, y) = �−n
(

�n
(

W2
(

x, y
)

)

◦ �n
(

A
(

x, y
)

)

)

, (2.37)

and

B2(x, y) = �−n
(

�n
(

W2
(

x, y
)

)

◦ �n
(

AImp
(

x, y
)

)

)

. (2.38)

Forth, we compareB1(x, y) andB2(x, y), for all (x,y) in P. If B1(x, y) < B2(x, y), the matrix

W1 is modified; otherwise, the matrixW2 is modified. Our idea behind this modification is as

follows. SinceW i is a Gaussian function of input-pixel values, a high value ofW i(x, y) indicates

that the input-pixel value at the position (x, y), A(x, y) or AImp(x, y), is not too low or not too

high. As a result, it is less likely to cause the over-enhancement, compared with a low value of

W i(x, y). Therefore, a value ofW1(x, y) is decreased in order to mitigate the over-enhancement

effect whenB1(x, y) < B2(x, y). Otherwise, a value ofW2(x, y) is decreased. Note that, in this
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situation, we can ignore the case that an input-pixel value is too low due to the definition of the

setP.

The modified weighting matrixWmi(x, y) is determined by the following equation.

Wmi(x, y) =W i(x, y) − |W i(x, y) − Bi(x, y)| (2.39)

Fifth, the modified weighting matricesWm1 andWm2 obtained from the previous step are

used to create the resulting imageR.

R = �−n (�n (R))

= �−n
(

�n (Wm1) ◦ �n (A) + �n (Wm2) ◦ �n
(

AImp

))

(2.40)

According to eq. (2.39), it is possible that there existsR(x, y) such that its value is less than 0.

In this case, the value ofR(x, y) is clipped to 0. In other words, ifR(x, y) < 0, thenR(x, y) = 0.
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Chapter 3

Dataset, Implementation and Evaluation

of the Proposed Methods

3.1 Dataset

In this work, two datasets in which their images contain different levels of noise were used

in our experiments. The first one was provided by the authors of this work. It consists of

30 photos captured from various devices. The second one was suggested by V. Vonikakiset

al. [1], and it consists of 20 photos. However,to avoid the dizzyeffect to the evaluation, only 20

images between the first and second sets were selected to evaluate the performance of proposed

algorithm. In the dataset, some areas of these images are correctly-exposed, whereas other

areas are under-exposed or over-exposed. All images were downsampled to a size of 512× 339

in order to reduce the computational time-complexity of theSVD and of the pyramid-based

blending method.

3.2 Implementation of the Proposed Methods

As described in Chapter 2, both proposed methods have some predefined parameters. This

section described those parameters we used in our simulations. Note that values of those

parameters are empirical, and we obtain them from our preliminary experiments.
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3.2.1 LVCE Implementation

To evaluation the performance of LVCE, we implement the method described in Section 2.1

which the following parameters. The scaling factor for enhance the less-visible layers (α, β, and

γ) are set to 1, 3.7, and 2.7, respectively. The range for selecting an appropriate bin[q + dmin,

q + dmax] is set into single indexed-bin [q + 3]. Lastly, the standard deviation of the Gaussian

function (σ) is set to 0.2.

3.2.2 LVCEHP Implementation

To evaluation the performance of LVCEHP, we implement the method described in Section

2.2 which the following parameters. The threshold value of hidden-noise level (Sth) and the

standard deviation of the Gaussian function (σ) are set to 9×104 and 0.2.

3.3 Evaluation of the Proposed Methods

In this experiment, we compared our proposed method with sixconventional methods: LVCE

[22], FCSM [1], MSRCP [13], MEF [11], MSRCR [8], and CLAHE [3]. To test the FCSM,

we used the software called Orasis [23]. For MSRCP, we used anonline application provided

by the IPOL journal [24]. The rest were implemented with MATLAB. The parameters used in

the CLAHE were set as follow: the Rayleigh distribution withthe contrast enhancement limit

of 0.02. Parameters used in the LVCE, FCSM, MSRCP, and MEF methodswere set to the

values suggested by their authors. The ratio between color values in each color channel and

the luminance values are kept in order to reconstruct the color images in the MSRCP and the

CLAHE. Comparison examples of resulting images obtained from all methods are shown in

Fig.3.1 - Fig. 3.20.

As mentioned in the introduction, it can be seen from these figures that the images #15 and

#21 obtained from the MEF and the FCSM contain image noise. The images obtained from

the LVCE have the foggy effect. The images #3, #8 and #11 obtained from the MSRCP suffer

from the over-enhancement. The images obtained from the MSRCR lose some details, and

they look like over-exposed images. The images obtained from the CLAHE suffer from the

over-enhancement problem similar to the MSRCP.
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The performance of our proposed algorithm was evaluated objectively and subjectively.

Objective measures and subjective tests are detailed in thefollowing subsection.

3.3.1 Objective Evaluation

Four measures were used to evaluate the performance of our proposed algorithm: image en-

hancement metric (IEM) [26], universal image quality index(QI) [27], entropy, and homogene-

ity.

The IEM is a full-reference metric. Normally, the higher thevalue of IEM, the better the

improvement in contrast. However, this work aims to improvethe contrast only in the less-

visible areas. Thus, we expected that this values should notbe too close to 1 because if it is too

close to 1, a resulting image seems not to be enhanced. On the other hand, if the value is too far

from 1, the resulting image will be over-enhanced.

Basically, the QI is based on the mathematical model of imagedistortion using three factors,

which are the loss of correlation, the luminance distortion, and the contrast distortion. The

closer the QI to 1, the image quality of the enhanced image is closer to that of the original

image.

The calculations of entropy and homogeneity are based on thegray level co-occurence

matrix (GLCM) [28]. The entropy was used to evaluate the texture and key-lighting of an

enhanced image. The homogeneity was used to evaluate the similarity of the pixels in the

neighborhood area. We do not want the enhancement process todamage image tone and to

amplify the hidden noise. Therefore, both measurements should be as close to those of the

original image as possible. Because the great difference in entropy between the original and the

enhanced images can imply the over-enhancement. Ideally, the homogeneity of the enhanced

image should be the same as that of the original one.

The results from the objective evaluations for IEM, QI, entropy, and homogeneity are shown

in Table 3.2. It can be seen that the average IEM of the LVCE is the lowest, whereas that of the

CLAHE is the highest. The average IEM of our proposed algorithm is 1.431. We will discuss

in Sect. 4 that the number 1.431, as well as that of the MEF, is in an appropriate range for the

purpose of this work. In terms of image distortion, the LVCE is the best with the average QI of

0.558. The average QI of the images obtained from our proposed algorithm is 0.529, which is

third rank compares to those of the other methods.
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The average entropy of LVCE is the best since it is closest to that of the original images while

LVCEHP holds the fifth place for the detail preservation criterion. For the noise amplification,

the average homogeneity of LVCE is the best since it is closest to that of the original images

while LVCEHP holds the second place.

We will discuss what should be an appropriate range for the good resulting image in Sect. 4

because the interpretation of these numbers should be done after we have subjective test results.

3.3.2 Subjective Evaluation

To measure an image quality by human beings, we conducted subjective experiments with

respect to three aspects that we want to measure: noise amplification, tone preservation, and

detail preservation.

The subjective tests were conducted as follows. We showed 8 images to participants, where

one of these image is the original image, and the rest are enhanced images obtained from 7

methods including our proposed one. We asked the participants to select three enhanced images

that they thought those three images contain less noise compared with the others, as well as the

original image, and to sort them from the least-noise image to the noisiest image. Similarly, we

also asked the participants to select and rank the first threepreferred images in terms of tone

preservation and detail preservation. Finally, we asked the participants to select and rank the

first three preferred images with respect to the combinationof these three criteria, where they

could assign weights to each criterion according to their preference.

Note that the term of detail preservation is used instead of over-enhancement. Since lot of

participants have confused in the term of over-enhancementand could not complete the evalu-

ations. The participants did not know how much of the brightness is called over-enhancement.

Thus, some dataset did not clearly distinguish the problem of over-enhancement. Sometimes, it

is hard to measure which resulting image can avoid the over-enhancement problem. Based on

these problems, the participants are difficult to finish the subjective measurement. In that case,

we re-arrange the term of over-enhancement to detail preservation. Since, the term of detail

preservation has had the relationships to the term of over-enhancement. When the enhanced

images have the highest rank to preserve the detail preservation, it can be implied that those

images are also far apart to create such the over-enhancement problem too. In other word, the

images that contain the lowest rank of detail preservation,it means that those images are facing
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Table 3.1: Subjective-evaluation results.

Method
Noise amplification Tone preservation Detail preservaton Preference testing

Rank #1 Rank #2 Rank #3Rank #1 Rank #2 Rank #3Rank #1 Rank #2 Rank #3Rank #1 Rank #2 Rank #3

Proposed method 58 77 41 84 70 32 36 47 55 52 61 58

LVCE [22] 66 32 28 21 34 49 16 11 23 5 16 31

FCSM [1] 30 38 48 51 39 60 41 59 44 56 47 48

MSRCP [13] 27 30 38 11 19 23 9 16 19 18 29 17

MEF [11] 18 21 42 31 37 30 56 46 42 66 45 40

MSRCR [8] 0 0 2 1 1 1 10 11 13 1 1 3

CLAHE [3] 1 2 1 1 0 5 32 10 4 2 1 3

the problem of over-enhancement.

In this experiment, ten subjects who have an experience withtaking the photography are

participated. Their ages were ranging from 21 to 45 years. The results from the subjective

evaluations are shown in Table 3.1.

It can be seen from the table that the enhanced images obtained from the LVCE got 66

votes (or 33%) for the first rank in the noise-amplification criterion. That is, one-third of the

participants thought these images contained least noise compared with the others. The LVCEHP

hold the second place for the first rank in this criterion, andit also hold the first place for the

second rank. In terms of tone preservation, 42% of the participants thought the proposed method

was the best compared with the others. In terms of detail preservation, the MEF, the MSRCP,

and the proposed method got 56, 41, and 36 votes for the first rank, respectively. However,

the MEF and the LVCEHP got approximately the same votes for the second rank in the detail

preservation. For the preference testing, 33%, 28%, and 26%of the participants thought that the

MEF, the MSRCP, and the LVCEHP were the best, respectively. Also, 30.5% of the participants

thought that the LVCEHP should be the second rank in the preference testing. In short, the

subjective evaluation results show that the LVCEHP can achieve one of the first three ranks in

all criteria.
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Table 3.2: Results from the objective evaluations.

Image Enhancement Metric (IEM)

Input LVCEHP [25] LVCE [22] FCSM [1] MSRCP [13] MEF [11] MSRCR[8] CLAHE [3]

Avg 1.000 1.431 1.044 2.109 1.812 2.307 2.000 2.512

Std 0.000 0.215 0.067 0.991 0.625 1.207 1.280 0.994

Quality Index (QI)

Input LVCEHP [25] LVCE [22] FCSM [1] MSRCP [13] MEF [11] MSRCR[8] CLAHE [3]

Avg 1.000 0.529 0.558 0.548 0.397 0.487 0.311 0.374

Std 0.000 0.226 0.227 0.238 0.138 0.224 0.136 0.156

Entropy

Input LVCEHP [25] LVCE [22] FCSM [1] MSRCP [13] MEF [11] MSRCR[8] CLAHE [3]

Avg 6.178 6.864 6.220 6.804 6.781 7.076 6.799 6.839

Std 1.371 0.963 1.222 1.034 0.999 0.761 0.827 0.998

Homogeneity

Input LVCEHP [25] LVCE [22] FCSM [1] MSRCP [13] MEF [11] MSRCR[8] CLAHE [3]

Avg 0.954 0.929 0.950 0.911 0.920 0.902 0.919 0.886

Std 0.042 0.046 0.041 0.047 0.050 0.051 0.035 0.055
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(c) (d)

(e) (f)

(g) (h)

Figure 3.3: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure 3.5: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure 3.6: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(g) (h)

Figure 3.7: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure 3.8: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure 3.9: Image comparison with the existing method: (a) input image, (b) LVCEHP [25], (c)

LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.10: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]

42



(a) (b)

(c) (d)

(e) (f)
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Figure 3.11: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.12: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.13: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.14: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.15: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.16: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.17: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.18: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.19: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure 3.20: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Chapter 4

Analysis and Discussion of the Proposed

Method

4.1 Analysis the Flexibility of the Proposed Method

4.1.1 Adjust the Parameter on LVCE

In LVCE, there are five parameters which can be adjusted; the first-two parameters (S elbin and

σ) come from the range of selected bin to assign as the less-visible areas and the standard

deviation of the Gaussian low-pass filter in the processes ofSVD-based image decomposition

and pyramid-based blending method. The latter-three parameters (α, β, andγ) come from the

scaling factor in the non-linear contrast enhancement process.

Parameter setting in SVD-based Decomposition Process

In SVD-based decomposition process, it allows the users to select the range (S elbin) to define

the less-visible areas of the input image. The range (S elbin) of less-visible image is calculated by

plotting the distribution of singular values on the binary-logarithmic scale. Then, the maximum

bin, q, is determined. Finally, we can adjust the range ofS elbin from q+ dmin to q+ dmax

To adjust an appropriate range (S elbin) of less-visible areas, there are few factors that users

need to consider.

1. The range of selection is one of the major factor that we need to concern. Even through,

the wider range ofS elbin may create the higher chance for improving the less-visibleareas
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as shown in Fig. 4.1(b)- 4.1(d). Too wider range may cause some distortion effect to the

resulting image as shown in Fig. 4.1(b).

(a) (b)

(c) (d)

Figure 4.1: Image comparison with different ranges ofS elbin. (a) Input image, (b)-(d) Resulting

images obtained from the different ranges of Selbin; [q−1, q+3], [q+1, q+3], and [q+3, q+3],

respectively.

2. The position of selected bin,S elbin, is another factor that might affect the quality of

resulting image.

(a) Select the bin on the highest bin or left-hand side of the highest bin (q): too far apart

from the highest bin may cause the over-enhancement and distortion problems to

the resulting image. Thus, in our experiment, selecting theappropriate bin at the

highest bin (q) may cause the problems too as shown in Fig. 4.2(b)- 4.2(c).

(b) Select the bin on right-hand side of the highest bin (q): too far apart from the highest

bin (q) might not cause any problem. However, due to the less pixel values on the

less-visible areas image, the enhancement process cannot be scaled up the targeted
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pixel to improve the less-visible areas of the resulting image as expected. Figure

4.2(b)- 4.2(c) show the example of the image with different positions ofS elbin.

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Image comparison with different positions ofS elbin. (a) Input image, (b)-(f)

Resulting images obtain from the different position of Selbin; [q− 1], [q+ 0], [q+ 3], [q+ 5],

and [q+ 7], respectively.
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Parameters setting in Non-linear Contrast Enhancement Process

In the non-linear contrast enhancement process, there are three parameters (α, β, andγ) that can

be adjusted in the following non-linear equation.

ÃL,xy =

log15

(

αĂ
2
L,xy + β ĂL,xy + γ

)

2
, (4.1)

ĂL,xy = AL,xy + |AL,min|. (4.2)

whereAL,min and the minimum value of the matrixAL.

By substituting the predefined value intoα, β, andγ in eq.4.1, we can rearrange the equation

as follow.

ÃL,xy =

log15

(

1Ă
2
L,xy + 3.7ĂL,xy + 2.7

)

2

=
log15

(

(1ĂL,xy + 1)(ĂL,xy + 2.7)
)

2

=
log15

(

(1ĂL,xy + 1)+ log15(ĂL,xy + 2.7)
)

2

=
1
2
×

log15

(

(1ĂL,xy + 1)+ log15(ĂL,xy + 2.7)
)

log15

(4.3)

Note that logb xy= logbx+ logby and logb x = logk x
logk b

From the rearrange equation, the parameterβ can be calculated by summation betweenα,

andγ.

ĂL,xy =
1
2
×

log15

(

(1ĂL,xy + 1)+ log15(ĂL,xy + 2.7)
)

log15

. (4.4)

In such case, it is possible to adjust the parametersα andγ as follow:

1. Improve the less-visible areas without concerning the Just-Noticeable-Different (JND)

in the dark area: based on the experiment, it found that the summation ofα andγ or

parameter is proportion to the scaling factor. Greater value of β, higher information on

less-visible area to be improved. However, the users need tocarefully adjust the values of

α andγ. If the summation ofα andγ is greater than 4, the over-enhancement may occur

in the resulting image. Thus, the proposed non-linear contrast enhancement is a pixel-

based approach which separately apply into each red, green and blue (R,G,B) channel. If
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the pixel value (R,G,B) is closely to (0, 0, 0) or black, the proposed contrast enhancement

will produce the increment value with the same amount or closely to each channel. Based

on principle of digital image processing, when the pixel value in red, green, and blue

channel are produced the same amount or closely to each other, it will generate the shade

of gray (dark gray to gray). Finally, the foggy effect could be occurred in the resulting

image as shown in Fig. 4.3(c)- 4.3(d).

(a) (b)

(c) (d)

Figure 4.3: Image comparison with different values of the summation betweenα andγ. (a)

Input image, (b)-(d) Resulting images obtained from the summation values ofα andγ; 3.75, 5,

and 6, respectively.
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2. Improve the less-visible areas by concerning Just-Noticeable-Different (JND) in the dark

areas. Based on JND in digital image processing, JND is defined as the minimum visibil-

ity threshold when visual contents are altered. In this work, the JND model from Chou

et al [20]. is used to find the appropriate range for scaling the pixel value in less-visible

image without create any foggy effect.

In the enhancement process, the pixel value (R,G,B), which closes to (0, 0, 0), should not

be enhanced exceed the minimum visibility that the human cannotice. Otherwise, the

foggy effect might be occurred. By investigating the characteristicof JND, we found

that the JND at intensity equal to 0 produces the highest JND values. In that case, we

take an advantage of its values to avoid the foggy effect. By setting the suitable values

of summation betweenα and γ regards toJND(0), we found that it can avoid such

the foggy effect and other areas also successfully enhance the less-visible area. In the

experiment, suitable value of summation between and are around 2.01− 2.5. Anyway,

due to limitation of scaling factor, the less-visible area in resulting image may not be

improved as much as we expected (Fig. 4.4(c)- 4.4(d)).
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(a) (b)

(c) (d)

Figure 4.4: Image comparison with different values of the summation betweenα andγ. (a)

Input image, (b)-(d) Resulting images obtained from the summation values ofα andγ; 2, 2.5,

and 3, respectively.

Parameter setting in Pyramid-based Blending Process

In the pyramid-based blending process, the standard deviation of the Gaussian function (σ)

in the local exposure weight can be adjusted. By increasing the parameterσ, the width of

the Gaussian function will be expanded. As consequent, the exposure weights at the small

pixel values are also gradually scaled up, and allow the blending algorithm hard to find the

most saliency pixel (x,y) along the dataset. Finally, the resulting image obtained from blend-

ing function cannot recover the less-visible areas from enhanced image as shown in Fig. 4.5.

Consequently, the resulting image is not improved as much aswe expected.
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(a) (b)

(c) (d)

Figure 4.5: Image comparison with different values of standard deviation (σ) in pyramid-based

blending method. (a) Input image, (b)-(d) Resulting imagesobtained from the summation

values of ; 0.2, 0.4, and 0.6, respectively.

4.1.2 Adjust the Parameter on LVCEHP

In LVCEHP, there are two parameters which can be adjusted; the first parameter,Sth, is the

threshold value to indicate whether the input image has a risk to contain the high level of noise

or not. Another parameter is the standard deviation,σ , of the Gaussian low-pass filter in the

processes of pyramid-based blending method which is similarly to LVCE.

Parameter setting in Noise-level Analysis Process

In the process of noise-level analysis, the algorithm analyzes the level of noise in the input

images using the Singular Value Decomposition (SVD). Firstly, we decompose the input image

using SVD. Then, we calculate the summation of all singular values, S, which is used to estimate

the area bounded by the singular-value curve and the singular-value-index axis. If the S value
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is less than a threshold value of hidden-noise levelSth, the algorithm will eliminate the latter

group of singular value. However, the users need to carefully set the parameterSth. By setting

the high threshold valueSth, sometimes, it may distort the information which is contained in the

latter group of singular value. Finally, the resulting image may cause some unwanted effects as

shown in Fig. 4.6(c). In the other hand, setting the low threshold valueSth, may allow the image

that contains the high level of noise to be enhanced. Finally, the resulting image may look noisy

as shown in Fig. 4.7(b).

(a)

(b) (c)

Figure 4.6: Image comparison with different threshold valuesSth in noise-level analysis process.

(a) Input image, (b)-(c) Resulting images obtained from thethreshold values; 9× 104, and

9× 1020, respectively.
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(a)

(b) (c)

Figure 4.7: Image comparison with different threshold valuesSth in noise-level analysis process.

(a) Input image, (b)-(c) Resulting images obtained from thethreshold values; 9×103, and 9×104,

respectively.

4.2 Discussion

There are six issues that we would like to discuss in this section. Also, the interpretation of the

evaluation results is to be explained. First, the predefinedvalue of several parameters from the

proposed methods e.g. the range of the less-visible binS elbin, the scaling factor for enhance the

less-visible layers (α, β, andγ), and the threshold value of hidden-noise level (Sth), etc. that

used in our simulation are based on a process of trial and error, and it might depend upon a data

set. To improve the proposed algorithm further, we need a general process that can determine

those parameters automatically.

Second, in this work, we used the IEM, QI, entropy, and homogeneity as our objective

measurements. We did not use the measure of enhancement (EMEE), the measure of enhance-

ment by entropy (EMEE), the logarithmic Michelson contrastmeasure (AME), and the second
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derivative the measure of enhancement (SDME). Even though these measurements are popular

for measuring the enhanced image, but they are not good at measuring the enhancement only

in some specifics areas, especially the less-visible areas.In general, these measurements are

calculated from the summation of the ratio between the minimum and the maximum values of

each block of the enhanced image.

Third, since the first three prefered methods, according to the subjective tests, are the MEF,

the FCSM, and the proposed method, the value of IEM and QI should be in the ranges of

[1.4 − 2.3] and [0.4, 0.6], respectively. The value of entropy should be greater than 6.8, and

lesser than 7.0, and the value of homogeneity should be greater than 0.9, and lesser than 0.93.

Forth, from the evaluation results, it can conclude that theLVCE is quite effective to enhance

the less-visible areas of the input image without amplifying the hidden noise. However, the

property of this proposed method may be a two-edged sword. Since the LVCE select only some

layers that to modify or enhance, sometimes, such layers arenot contain enough pixel value to

increase the luminance or intensity of the less-visible areas. However, increasing the number

of selected bin may enhance the targeted areas, but it may cause the effect of amplifying the

hidden noise.

Fifth, the LVCEHP is one of the most effective compare to the existing methods. The

LVCEHP can achieve one of the first three ranks in all criteriafrom the subjective evaluation.

Anyway, the LVCEHP still suffer to preserve the intensity of the improved imageAImp. The

problem occur in the step of image blending which the resulting image are such degraded the

intensity at the less-visible areas when compare to the improved imageAImp as shown in Fig.

4.8. This limitation will be improved in the near future.

Sixth, we would like to discuss about limitation of the proposed method. Even though the

proposed algorithm can solve the various problems, e.g., over-enhancement, noise-amplification,

and tone and texture modification as shown in Fig. 4.9, 4.10, 4.11, the proposed algorithm

cannot restore true color information in some cases. The example of this problem is shown in

Fig. 4.12.
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(a) (b)

(c)

Figure 4.8: Limitation of the LVCEHP: comparison of the improved imageAImp and the

resulting image. (a) Input Image, (b) Improved image and (c)LVCEHP.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Examples of the over-enhancement problem: comparison of an enlarged area of the

images obtained from (a) Input Image, (b) LVCEHP [25], (c) LVCE [22], (d) FCSM [1], (e)

MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Examples of the noise amplification problem: comparison of an enlarged area of

the images obtained from (a) Input Image, (b) [25], (c) LVCE [22], (d) FCSM [1], (e) MSRCP

[13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Examples of the tone and texture modification problem: comparison of an enlarged

area of the images obtained from (a) Input Image, (b) [25], (c) LVCE [22], (d) FCSM [1], (e)

MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Examples of the limitation of the proposed method: comparison of an enlarged

area of the images obtained from (a) Input Image, (b) [25], (c) LVCE [22], (d) FCSM [1], (e)

MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].
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Chapter 5

Conclusion

5.1 Summary

5.1.1 Unique and New Concept from This Work

The conventional image enhancement methods suffer to enhance an image which contains

both less-visible and nicely-visible areas while preservesuch the key-lighting of image or the

tone of original image. In this work, we propose two new less-visible-image enhancement

schemes, called the less-visible contrast enhancement method (LVCE) and the less-visible

contrast enhancement based on human visual perception (LVCEHP). For the LVCE, we propose

the new image enhancement techniques based on a non-linear scaling function and the singular

value decomposition (SVD). The SVD is used to decompose the image into several layers.

We found that, some layers are associated with the less-visible areas. Then, such layers are

selected and strengthened by using the proposed logarithmic-scaling function. For the LVCEHP,

we propose a new technique for enhancing each pixel with the different non-linear scaling

functions. Since, the targeted pixel is constructed based on Just-Noticeable-Different (JND)

of the average-pixel value, with this approach, the pixel that has the same pixel value may

use different non-linear scaling functions. Moreover, we also propose a new techniques for

analyze and remove the hidden noise of the input image. We experimentally found that the

smaller area-bounded of the singular-value curve implies the higher level of noise. If the area

of singular value contains the area-bounded less than the threshold value of the hidden noise

value (S < Sth). Then, we remove the noise layerAN before the enhancement process. Lastly,

we also propose the pyramid-based blending techniques for fusing two images in order to solve
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the problem of information missing in the blending process.

The original idea of this research is to model precisely to the algorithm based on on human

vision system while the existing methods always mention to the human visual system as the

inspiration to create the algorithm, but they never use the principle of human vision system

precisely in their models.

5.1.2 Advantages and Disadvantages of the Proposed Methods

• Less-visible contrast Enhancement (LVCE): The strengthenpoint of LVCE is its ability to

enhance the less-visible area without amplifying the hidden noise, and distort the original

tone of the input image. According to the noise-compressingcriterion from objective and

subject evaluation, the LVCE get the first rank. However, it has a problem concerning

the foggy effect due to number of selection and the position for choosing the less-visible-

area’s layers in the SVD.

• Less-visible contrast enhancement based on human visual perception (LVCEHP): The

advantage of the LVCEHP is it can enhance the less-visible areas while preserve the

tone, texture, and the key-lighting of visible parts from the input image. The concept of

the LVCEHP comes from the concept of human sensitivity whichrelates to the image

contrast rather than absolute intensity values. An increase of pixel values with the same

scaling function may not satisfy the human visual perception. By enhancing each pixel

with the different non-linear scaling functions based on Just-Noticeable-Different (JND),

the resulting image looks more natural and satisfies the human perception. According to

the evaluation results, the LVCEHP always places in the firstthree-ranked of all criterion.

However, the LVCEHP still suffers to preserve the intensity of the improved imageAImp.

The example of this limitation is shown in Fig. 4.8. The intensities of resulting image at

the less-visible areas look darker when compared to the improved imageAImp.

5.2 Contributions

The contribution of this research is to enhance the less-visible areas while preserve the tone,

texture, and the key-lighting of visible parts from the input image. Therefore, compared with

the existing methods in literature, one of the successful method is to enhance the less-visible
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area based on human visual perception (LVCEHP). In this work, it has three contributions as

follows. First, it proposes a new noise-reduction technique, which is the preprocessing of the

proposed method. Second, we introduce a new adaptive non-scaling function based on the

human visual perception. This function compromises a trade-off between tone preservation and

detail preservation, and it is used in the contrast enhancement process.

Last, as a part of the proposed method, we propose a new pyramid-based blending technique

for fusing two images.

5.3 Future Work

Despite the success of the LVCEHP framework which can enhance the less-visible areas while

preserve the tone, texture, and the key-lighting of visibleparts from the input image, there are

rooms for further improvement.

• The LVCEHP algorithm has suffered to preserve the intensity of less-visible areas com-

pare to the improved imageAImp. To solve the problem, it is necessary to investigate the

structure of conventional pyramid-based blending method for fusing two high hidden-

noise-level images.

• In addition, we would like to apply our proposed method in other color models such as

exact Hue, Saturation and Intensity (eHSI) color space to improve the detail and color

information from the foggy image. Since, the foggy images always contain lot of gray

color, applying the concept of adaptive non-scaling function based on the human visual

perception in saturation channel may recover the detail andtrue color information. We

will keep investigation this challenge problem in the future.

69



Appendices

70



Appendix A

Image comparison
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]

72



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.2: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.3: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.4: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.5: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.6: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.7: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.8: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.9: Image comparison with the existing method: (a) input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.10: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.11: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.12: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.13: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.14: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.15: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.16: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.17: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.18: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.19: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.20: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(c) (d)

(e) (f)

(g) (h)

Figure A.21: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.22: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(g) (h)

Figure A.23: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure A.24: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.25: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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(e) (f)

(g) (h)

Figure A.26: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.27: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.28: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.29: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.30: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.31: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.32: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.33: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.34: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.35: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.36: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.37: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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Figure A.38: Image comparison with the existing method: (a)input image, (b) LVCEHP [25],

(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRCR [8], (h) CLAHE [3]
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