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Abstract

Typically, conventionalimage-enhancement methods haeeranon problem concerning the over-enhancement
in an image which contains both less-visible and nicelyblésareas, while preserve such the key-lighting of
image or the tone of original image. To solve such problempre@ose two new less-visible-image enhancement
schemes, called the less-visible contrast enhancemehbth@tVCE) and the less-visible contrast enhancement
based on human visual perception (LVCEHP). For the LVCE, vop@se a new contrast enhancement method
based on the singular value decomposition (SVD), an adaptiwm-linear scaling function, and a pyramid-based
blending method. The SVD is used to decompose an image imoaeBased on our investigation, we found that
some layers are associated with the less-visible area. , Theess-visible layers are selected and enhanced by
using the proposed logarithm-function. For the LVCEHP, wappse a new contrast enhancement method based
on several principles of visual human perception such ag/tzer's law in image contrast and the Just-Noticeable-
Different (JND). At the beginning, we study the principle of irmagntrast. Based on this study, we found that the
human perception is more sensitive to image contrast rgtharabsolute luminance values.

The original idea of LVCEHP is to enhance animage by applg@geral principles of visual human perception
such as the Weber's law in image contrast and the Just-ldbte®iferent (JND) to create the algorithm. Then,
we apply definition of the Weber's contrast to the proposedstaling function. By investigating the characteristic
of Weber's equation, there are three possible cases thidtl®woccurred in the entire image. We used these cases
as the inspiration to calculate the enhancement rate ofrthyigoped non-linear scaling function. We also use the
principle of JND in the image to guarantee that the lesbldsareas perceived discriminatory from the previous
ones too. Moreover, we used the principle of singular vakeodhposition (SVD) to propose a new technique for
analyze and remove the hidden noise of the input image. Werempntally found that the smaller area-bounded
of the singular-value curve implies the higher level of eoil§ the area of singular value contains the area-bounded
less than the threshold value of the hidden noise value. ,Miememove the noise layer before the enhancement
process. Lastly, to recover the nicely-visible area, wepse the pyramid-based blending techniques for fusing
two images in order to solve the problem of information nmigsin the blending process. This recovery process
is mandatory because enhancing images in the previous stgh cause the over-enhancement. Objective and
subjective evaluations were conducted, and experimeggalts show that our proposed method can successfully
improve the less-visible contrast without amplifying reift also preserves the tone and texture of original images
and produces satisfying results in terms of human preferenc

Keywords: less-visible contrast enhancement, human visual paotgingular value decomposition, pyramid-

based blending, just-noticeablefférent
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Chapter 1

Introduction

1.1 Less-visible Contrast Enhancement: Importance and CHa
lenge

Over the last few years, one of the challenging problems gitaliimage processing is to
enhance an image which contains both less-visible andyriggible areas. In this case, only
the former are needed to be enhanced, whereas the latter streald be preserved. Note
that, in this work, we call an image that is correctly expoaadcely-visible one. In general,
a good enhancement method should produce a resulting imaghich information in less-
visible areas can be easily perceived by our visual systdsu ifage tone, texture, and other
characteristics, e.g. the naturalness, should be simildnose of the original image. Moreover,
a good enhancement process should avoid unwantedf$abtse such as noise amplification or
the halo &ect [1].

During the early years, the power-law transformation, trgatithmic transformation, and
the histogram equalization (HE) are ones of famous teclesidor enhancing images [2]. The
power-law and the logarithmic transformations deploy hoear functions to expand input
image ranges, i.e. a smaller input value is amplified withesatgr factor. Therefore, the less-
visible areas could be enhanced. However, both introduddeaefect, i.e. hidden noise in
the less-visible areas is amplified, and nicely-visiblexarare unnecessarily amplified as well.
Consequently, they cause the noisy and over-exposed iriage-lE enhances an input image
by expanding its histogram range. However, performancaisfrhethod strongly depends on

characteristics of the histogram. These three methoddassified as the global enhancement,



and they all share the common problems of noise amplificainmhover-enhancement.

Later, several local enhancement methods have been pobpbsese methods include the
histogram-based [3], [4], the just-noticeabléfelient-based (JND-based) [5], the retinex-based
[6], [7], [8], and the singular-value-decomposition-b&$8VD-based) methods [9], [10]. For
example, the adaptive histogram equalization (AHE) ancctrgrast limit adaptive histogram
equalization (CLAHE) [3] are histogram-based and widelgdiso improve local contents.
However, this approach still fiers from unnecessarily amplifying, and it suppresses gdlue
some regions in the case that distribution of intensity rsavaand intensity values are too high
or too low. Recently, X. Fet al. try to solve these problems by implementing an enhancement
method based on the multi exposure fusion with a sigmoidtfon@and adoptive histogram
equalization [11]. In this paper, we abbreviate the namehisf inethod as MEF. According
to this method, the under-exposed images, well-exposegasjand over-exposed images are
blended together to generate the resulting image. Thisodethn solve those two problems.
However, in some cases, it still amplifies the hidden noisa.ekample of this case is to be
shown in Sect. 3.3.

The JND-based approach employs the Weber’s law, which edbas the human visual per-
ception, to create a non-linear function [5]. The advantaghis approach is that an enhanced
image looks clearly visible because the average local ashis increased. Although the less-
visible areas can be seen clearly, the contrast in the nigsilyle areas is also strengthened.
Hence, in some cases, the resulting image looferdint from the original one.

The retinex-based methods, such as the single-scalex¢B8®) [6], the multi-scale retinex
(MSR) [7], and the multi-scale retinex with color restooatiMSRCR) [8], originate from a
theory proposed by Edwin H. Laret al.[12]. Functions used in these methods are based on
the human visual perception. These methods enhance Ebtevareas by using logarithmic
transformation and the Gaussian surround function. Thesthods have a critical problem
concerning the value of standard deviation of the Gaussiaation. That is, if the standard
deviation is too small, the nicely-visible parts of an endehimage will be degraded and look
unnatural. Even though the MSR and the MSRCR have tried wgedbke problem by using
several diterent standard deviations, the problem still persistse@afly when the biggest
standard deviation used by the algorithm is smaller thankgeco size displayed on the im-

age. The multi-scale retinex with chromaticity perseatfMSRCP), which is an improved



MSRCR, was proposed by A. B. Peebal.[13] to solve such problem. In stead of performing
the algorithm to each RGB channels, MSRCP performs only eduiminance channel. Then,
it computes the scaling factor to restore true color. In nodsthe cases, resulting images
enhanced by the MSRCP are excellent. However, in some dées|gorithm produces an
image which is too colorful, hence an unnatural-looking gea The Frankle and McCann
algorithm is another retinex, and this method uses a singld o estimate a new value by
computing long-distance interactions between pixels angnessively move to short-distance
interactions [14]. The benefit of this method is that it catluee a computational-complexity
time. However, it cannot tolerate hidden noise. Anotheroétsimilar to the retinex-based is
fast center surround modification [1]. The algorithm empldgoncept of the shunting centre-
surround cells of the human visual system to modify the uaddrover-expose regions [1]. To
our knowledge, this method produce the best resulting ismiagéerms of tone preservation,
detail preservation, and human preference. However, iresmases, it still amplifies the hidden
noise. An example of this case is to be shown in Sect. 3.3.

The SVD-based methods enhance an input image by amplifyingirgular values of
the matrix representing the image [9], [10]. The perforneant these methods depends on
characteristics of the input image. That is, the algorithanks well only when most pixel of

the input image have low intensity values; otherwise, tlubj@m of over-enhancement occurs.

1.2 Motivation and Research Goal

As stated in the previous section, this work aims to proposevamethod based on adaptive
non-linear mapping function of the averaged-pixel valugdso it should not sffer from
amplifying hidden noise and distort the original tone, te&t key-lighting, etc. We choose
to investigate the Singular Vector Decomposition (SVD)&wese according to its advantages:
either the possibility to enhance the visible areas witraaplifying the hidden noise or the
ability to remove the hidden noise along the input image.

This paper proposes a new less-visible enhancement metssdi lon the human visual
perception using an adaptive none-linear scaling funcfldr proposed method aims to satisfy

the following properties.

e The less-visible areas are enhanced to be visible withoptifyimg noise.



e The tone, texture, and key-lighting of the enhanced imageilshbe similar to those of

the original one.

e The enhancement method should not cause unwantedfdésesuch as the halffect,

over-enhancement, etc.

e The enhancement method should create the resulting imagiestpreferred by partici-

pants in a preference test.

1.3 Thesis Outline

The outline of the rest of this thesis, which consists of fikapters, is as follows. Chapter 2
details on the proposed methods. The first one is called #sevisible contrast enhancement
(LVCE) which it mainly focused on on a non-linear scaling ¢tion and the singular value
decomposition (SVD). The SVD is used to decompose the imaigeseveral layers. Some
layers are associated with the less-visible areas. Theh, layers are strengthened by using
the proposed logarithmic-scaling function. The secondierealled the less-visible contrast
enhancement based on human-visual perception (LVCEHRhiftechniques, we first analyze
a hidden noise level of an image in order to avoid such a hiddése. If the level of hidden
is greater than a predefined value, an SVD-based technidulbemised to remove the noise.
Then, we use that image to create the result. We believe thattion used to enhance an pixel
value should depend not only the pixel value but also on iight®rs. Also, this enhancement
function should be based on a human perception model.

Chapter 3 reports from our simulations in implementatiod amaluation of the proposed
methods. The explanation of evaluation methods, and paessnare also describe in this
chapter. Chapter 4 discuss about the strength and weakinbesproposed methods as well as
the reason for choosingftierent kinds of objective and subjective method.

Chapter 5 summarizes this work. It emphasizes the coniind discusses possibilities

for further improvement.



Chapter 2

Proposed method

We proposed two methods in this chapter, an our scheme aegl lmas adaptive non-linear
scaling function, the singular value decomposition (Sva)d the pyramid-based blending
method. The first one is called the less-visible contrasaeroément (LVCE) in which only the
associated layers obtained from the SVD will be used to erdththe less-visible areas. The
second one is called the less-visible contrast enhancedased on human visual perception,
which is constructed by generating the non-linear scalimgtion for each pixel values. The
just-noticeable-dierent (JND) is used to control the slope of scaling functiomgeach pixel.

To recover the visible-area of the image, the pyramid-bassuding method is applied.

2.1 Less-visible contrast enhancement based on Singular Ma
Decomposition

In this method, we study a characteristic of the singulanealecomposition (SVD) which it
can decompose the original image into several layers. Basedir investigation, some layers
may associate with the less-visible areas. Hence, if we xtaat and enhance such layers, our
goal may be achieved.

To enhance the less-visible contrast without amplifyingsepwe use the SVD to decom-
pose an input image into three additive layers: main bodg;iasible areas, and noise. Only the
less-visible areas are strengthened before all threed@yercombined to produce the enhanced
image. Then, the pyramid-based blending method is useddieceethe brightness of over-

enhanced areas due to the selective enhancement and tohreaksulting image smooth. The
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Figure 2.1: Less-visible contrast enhancement method.

block diagram of our proposed method for the less-visibletrest enhancement is shown in

Fig.2.1. The details are provided in the following subsetdi

2.1.1 Singular Value Decomposition

In linear algebra, the SVD is a factorization of a matrix. D&t., denote a matriXX of size
mxn. The SVD decomposes the matXx.., into a product of three matricés.m, Dmxn, and

Vnxn With the following relationship.
X = UDVT, (2.1)

whereX is a matrix being decomposed,andV are orthogonal matrices, ardlis a diagonal
matrix whose non-zero elements are calleddimgular values

LetU; andV; denote vectors at the columaf U andV, respectively, i.eU=[U; U, Uz ... U]
andV =[V; V, V5 ... V,]. Let A denote theeigenvalue®f XX (or X™X). The vectordJ; and
V; are theeigenvectoref XX andX™X, respectively, and are sorted in descending order of the
corresponding eigenvalues. The elements on the main dagbb are then the square root of

these eigenvalues. Mathematically, the ma¥igan be expressed in the following expansion.

X=X+ Xo+ ...+ Xqg. (2.2)

Xi = A x Uy x V[, (2.3)

whered = maxi, such thaf; > 0}.



In this work, the SVD is used to decompose a gray scale imdageo several additived;.

In other words, ;
A=) A. (2.4)

We experimentally discovered that the :s_elt of singulareahdices,3 ={1,2,3,...,d}, can
be partitioned into three disjoint subs&is¢, andd%t such that the imagé can be decomposed
into three image®\y, A¢, and Ay, where they are the main-body image, the less-visible-area
image, and the noise, respectively, and each of them cancbastucted by the following
equationsAg =Yg Ai, Ae=Yice Ai, aNdAg = Yicq Ai

To determine these three subsets, we first extract the singalues of the matriXA. An
example of the singular values is shown in Fig. 2.2. The darg@lues in this figure are linearly
normalized such that the new values cover the range from OQwinére the new minimum and
maximum values are 0 and 1, respectively. Then, we inveastie distribution of the singular
values on the binary-logarithmic scale. That is, on thedirszale, we divide the range, [ of
normalized singular values intobins of which their width is equal to2, wherej is the bin
index. An example is shown in Fig. 2.3(a). Lfgty/4;) denote the normalized log-singular-value

of the singular valuey2;. It is defined as follows.

1 (V-
f(\/Z) =1+ B |ng(m), (25)

for all i such thatva; > vAq4. Otherwise,f(V1)=0

The plot of f (/1)) against is shown in Fig. 2.3(b). Subsequently, we plot the numbers of
the singular values that fall within each bin. Fig. 2.5 (lefihows the distribution of singular-
valuesiillustrated in Fig. 2.2. Note that when the numbeiirg lncreased, the distribution looks
more similar to the normal distribution. In our experimemé set the value db to 21.

We observed that the first eight to ten bins associate witmtam-body image, whereas
the last five to seven bins always associate with the noisg.2E demonstrates examples of
these observations. We made use of these findings to propadgaithm that automatically

determines the subseXs £, anddt as follows.

1. The distribution of singular values of the image on thabyAogarithmic scale is plotted.
2. The maximum bin is determined. We denote the index of timi¥p g.

3. Anindexp € L ifand only if the normalized\//l—p is in the range of bits:h as |g+ dmin,q+
Omaxl-
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Figure 2.2: Singular values of the image displayed on theigin.

4. The subse® contains all indices that are less than the smallest menfbgy then the

subseti=3 - (BU Q).

Fig. 2.5 shows an example of these three subsets. The sBleegitains the indices in the
black bins, the subseétcontains the indices in the white bin, and the subsebntains the rest.

Fig. 2.5(b), 2.5(c), and 2.5(d) shatvs, Ae¢, and Ay, respectively.

2.1.2 Contrast Enhancement

To enhance only the less-visible areas on the image withoptiying noise, only the less-
visible-area layer, i.e.A¢ = Yico Ai, obtained from the previous step is strengthened. Our
proposed enhancement method is similar to and based dretiireex algorithm

Conventionally, the Retinex algorithm utilizes a non-anacale to increase smaller values
(i.e. the less-visible areas on the image) with the factioas are greater than those used to
increase the larger values (i.e. the clearly-visible greasccording to this algorithm, the

enhanced imagBRSSRof the input imagd is produced by the following equations [12].

Ry =1y = IN(Fyyx |y), (2.6)
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Figure 2.3: Normalized singular values against the indi¢ason the linear scale and (b) on

binary-logarithmic scale.

whereF,, is the Gaussian surround function given by

Fyy = e_‘f_lz (+) (2.7)

ffFXydxdyzl.

Note that the subscript andy of the matrices represent the matrix elements at thexow

with the property

and columry.



Similarly, to produce the enhanced lay&y, we deploy the following formulae:

. Acyy — Agmi "
Agry = (55><( Ly T mn ) + 255) X Ry, (2.8)

Aﬁ,min - Ai’,max

v2 o
log;s (aAQ,xy +BAgxy + )’)
2 b

A53,xy = (2-9)

Aﬁ,xy = Ai’,xy + |A2,min|- (2-10)

where Ag min, Aemax andAg min are the minimum value of the matrik,, the maximum value
of the matrixA,, and the minimum value of the matrix,, respectively. The values of 3, and

v are the scaling function as set in the predefined values assimosection 3.2.1. We do not
need the subtraction in eq. (2.6) because we enhance onlgg$wwisible-area layer. Finally,

the enhanced imagg is created by

A=Ay + A + Ag. (2.11)

2.1.3 Pyramid-based Blending Method

The resulting image from the contrast enhancement deskinitée previous subsection some-
times can be over-enhanced because some pixel values magdierghan 1. This problem
can be solved by adopting a blending technique. In this wwekadopt a scheme based on the
Laplacian pyramid to reduce the over-enhancemfate

The method based on Gaussian and Laplacian pyramids wasadiygoroposed by Burt
et al.[15]. Let G" andIL" denote then-level Gaussian and Laplacian operators, respectively.
Then, then-level Gaussian pyramid of the imageG"(l), returnsn + 1 images Go, Gy, ..., Gy),
whereGq is |, andG;, for i > 1, are output images obtained from the low-pass filter with th
decimation at the layer Then-level Laplacian pyramid of the imade IL"(1), returnsn + 1
images Lo, Ly, ..., Ln), whereL, is G,, andL; = Gj— 7 Gj;; for i <n. The symboll Gj,;
represents the imadgg,,; after it is upsampled by a factor of 2.

We can reconstruct the imaddy the inverse Laplaciah™, which is defined as
L™™L"(1)) = Lo+ TLi+ 1ML+ ...+ T"Lp, (2.12)
where1" denotes the upsampling by a factor 6f 2

10



(c) (d)

Figure 2.4: Reconstructed imaggs; A, where the set contains indices (a) in the first bin,

(b) in the first four bins, (c) in the first twelve bins, and (d}the last six bins.

We previously proposed a variant of the Laplacian operatidnch was employed in our
improved Laplacian-pyramid-based blending method [16¢ d&note our operator dy¢" and

define it as follows.
K"(1) = L"(1) a L"(2(1)), (2.13)

where/(l) is the Dodge and Burn function, which adaptively reducésesof the imagé [16].
Given thatlL."(1)=(Sg, S, ..., Sy) andIL"(¢(1))=(To, T4, ..., Ty), the operaton is defined as

(S0, Sty s S) A (Tos Ty ey Tr) = (S0, Ty ooy Th). (2.14)

The blending imagdR from two source images$; and |, is calculated by our blending

function, which is adapted from the function proposed by teleset al.[17], as follows.
2
L'(R) = > G"(W;) o K"(1), (2.15)
i=1

11
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Figure 2.5: Histogram and the reconstructed images: (le&)subset3, §, and9t contain
indices in the black, gray, and white bins, respectivelyp{tight) the main-body layeAy,
(middle-right) the less-visilble-area lay#, and (bottom-right) the noise layéy,.

W x & 22 (110-08)", (2.16)

YT Wiy + Wayy
whereW, ,, denotes the elements of the matik at the rowx and columny, o is a standard
deviation of the Gaussian function, and the operatisrtheHadamardproduct (i.e. element-
wise multiplication).

In this work, the resulting imagR is produced by blending two imagés, and Ac, where
Ay is the normalization of the enhanced ima§jeand A is the A after its over-range values

are clipped or clamped.

2.2 Less-visible contrast enhancement based on human vi-

sual perception

The proposed method consists of three stages: noise-leablsis, less-visible-area improve-
ment, and image blending. The block diagram of our propokgatithm is shown in Fig. 2.6.

To enhance the less-visible contrast without amplifying lidden noise, we first determine a
noise level of the input image. If the hidden-noise levelha image is greater than a threshold

value, the SVD-based technique is used to remove the nofeeebeoving forward to the

12



less-visible-area improvement stage; otherwise, thar@ignput image is inputted into the
next stage. Then, a non-linear scaling function and a hupeaception-based improvement
technique are used to enhance the contrast of the imagelyFtha pyramid-based blending
method is used to reduce the brightness of over-enhancasl @we to the selective enhancement

and to make the resulting image smoother.

Noise-level | Aana | Less-visible-area| Aimp

Analysis Improvement
Blending Resulting
Image A Method based Image
on R
A Laplacian Pyramid

Figure 2.6: Less-visible contrast enhancement based oamuisual perception.

2.2.1 Noise-level Analysis

Basically, the less-visible areas of an image contain mdaese. We simply define the hidden
noise as the noise hidden in the less-visible areas. Tha¢isprmally cannot perceive the noise
unless it is enhanced by any typical enhancement methodhi@lden noise can be chromatic
or achromatic, and it can be additive or multiplicative [18here are many sources that can
cause the hidden noise, for example, a camera sensor witlquality, inappropriate camera
settings, or some limitations of a capturing device. To dwmhancing the hidden noise, we
adopt the Singular Value Decomposition (SVD) to analyzenthise level of the input image.

In general, the SVD is a factorization of a matrix. &, denote a matrix of sizemxn.
The SVD decomposes the matd,., into a product of three matricé$,m, Dmxn, andV nun
with the following relationship.

X =UDVT, (2.17)

whereU andV are orthogonal matrices, aridlis a diagonal matrix whose non-zero elements
are called thesingular values

Let U; and V; denote the vectors at the colunirof U and V, respectively, i.e. U =
[Ui U, Us ... Uyl andV =[V; V, Vs ... V,]. Let 4 denote theeigenvaluesof XX (or

X™X). The vectordJ; andV; are theeigenvectoref XX and XX, respectively, and are sorted

13



in descending order of the corresponding eigenvalues. [Eneemts on the main diagonal bf
are then the square root of these eigenvalues. Mathenhatib@ matrixX can be expressed in

the following expansion.

X=X+ Xo+ ...+ Xq. (2.18)

Xi = /4 x U x V[, (2.19)
whered = maxi, such that; > 0}.
In this work, the SVD is used to decompose each channel ofa oohgeA into several
additive layersA;. In other words,

d d
A=Y (VaixUixV)=>" A (2.20)

Konstatinideset al. [19] observed theféect of SVD under the additive noise model and
found that the group of latter singular values can be reptegethe image noise. Our analysis
of the noise level is based on this finding.

First, we extract the singular values of the matAxrepresenting the input image. An
example of the plot of singular values is shown in Fig. 2.7egiven a set of singular values

{ VA1, VAo, ..., VAq}, we calculate the summation of all singular values:

d
sS=> . (2.21)

The summatiors can be used to estimate the area bounded by the singula-aaive and
the singular-value-index axis. We experimentally fourat the smaller area implies the higher
level of noise.

Based on our experiments, ¥ is less than a threshold value of hidden-noise &gl
which is set the hidden-noise level in the input image is tmhh When the contrast of the
input image is enhanced, in this case, the noise will be eakite. Hence, the noise of such
image should be removed before the enhancement proces2.8g) shows an example of the
input image where its value & is less thargy,. If we enhance this image without removing the
hidden noise, the noise will appear, and the resulting ink@gles noisy, as shown in Fig. 2.8 (b).
However, when the noise is removed before the enhancerhenigsulting image looks better,
as shown in Fig. 2.8 (¢).

To remove the noise, the singular values are firstly norredlsuich that the new values cover

the range from 0 to 1, where the new minimum and maximum value$ and 1, respectively.

14
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Figure 2.7: Plot of singular values of the image displayethentop-right.

The set of singular-value indice$,= {1, 2, 3, ..., d}, is partitioned into two disjoint subse®
and such that the imagé can be decomposed into two imagks and Ay, where they are
the main-body image and the noise, respectively.

Au= > A (2.22)

ieB
and
Ay = Z A. (2.23)
ieNn
Then, we plot the distribution of the singular values on timaty-logarithmic scale. That
is, on the linear scale, we divide the rangelpof the normalized singular values inbdins of
which their width is equal to 2, wherej is the bin index. Leff (/) denote the normalized

log-singular-value of the singular valugt;. It is defined as follows.

1 (V-

for all i where v4; > v/14. Otherwise,f(/4;)=0.
Then, we plot the numbers of the singular values that falhmieach bin. Note that when

the number of bins increases, the distribution looks marglai to the normal distribution. In
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(b) (©

Figure 2.8: Example of resulting images when the input imagahanced with and without
hidden noise removal: (a) input image with its valuesas less thargy, (b) the resulting image

(only the area in the red box of Fig. 2.8 (a)) in the case thatrthut image is enhanced without
the noise removal, (c) the resulting image in the case tleahithden noise is removed before

the enhancement process.

our experiment, we set the valuelofo 21. We define the singular-value indices of the singular
values from the bin with the maximum number of singular valigethe last bin as the members
of the subsefi. Then, the subsés is determined by — %. In the caseS < Sy, only the Ag is
inputted into the next stage.

Fig. 2.9 (a) shows an example of these two subsets: the s@biseindicated by the light
bars, whereas the sub$gts indicated by the dark bars. Fig.2.9 (b) and Fig. 2.9 (csliAg;

and Ay, respectively.
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Figure 2.9: Histogram and the reconstructed images: (auhset®3 anddt contain the indices
of singular values in the light bars and in the dark bars,eetyely, (b) the main-body image
Ay, (C) the noiseAy;.

On the other hand, i% is equal to or greater tha®y, the original input image is directly
inputted into the less-visible-area improvement procésghis case, if we remove the noise
layer Ay before the enhancement process, the resulting image wdidierted as shown in
Fig.2.10(c).

In short, the noise-level analysis takes the input images an input and returns imaéena
as an output, wher@ana= A if S > Sy; otherwise,Aana= Ag. This analysis is summarized by

the flowchart illustrated in Fig. 2.11.

2.2.2 Less-visible-area Improvement

The less-visible-area improvement process enhances titeasbof less-visible areas of the
image Aana @and outputs the improved imag&m,. We intentionally enhance the less-visible
areas of the imagé&ana considerably, thus this process causes the over-enhantasmshown
in Fig. 2.12. This over-enhancement will be removed by tlending method, which will be
detailed in Sect. 2.2.3.

Our improvement process consists of two subprocesses. Bh@ffie is based on a non-
linear scaling function. The second one is based on the ppieédhuman perception, i.e. the
concept of just noticeable filerence (JND). The block diagram of these two subprocesses ar

shown in Fig. 2.13.
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(b) (©

Figure 2.10: Example of resulting images when the input inagnhanced with and without
hidden noise removal: (a) input image with its valuesat equal to or greater tha®y, (b) the

resulting image (only the area in the red box of Fig. 2.10i(a)pe case that the input image is
enhanced without the noise removal, (c) the resulting imadfee case that the hidden noise is

removed before the enhancement process.

The reason we have two subprocesses is that our proposelinean-scaling function
deployed in the first subprocess causes the fodpceas shown in Fig.2.14 (b). Therefore,
the normalization is used to mitigate thifext. Consequently, the enhancement function is
compressed so that the imadeom looks a bit darker than the imag&wo.n. Therefore, we
enhance the imagRyom for the second time by using a JND-based concept.

According to our proposed non-linear scaling function, athwill be discussed in details

in Sect. 2.2.2, an output of this function covers the rangenfd676 to 3477. Hence, we
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Figure 2.11: Flowchart of the noise-level analysis.

(a) (b)

Figure 2.12: Example of an over-enhance improved imagar{gnal image and (b) improved

image.
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Figure 2.14: Foggy féect due to the non-linear scaling function: (a) original ga@®ana, (b)
the imageAnon, and (c) the imagé\mp.

normalized the range [4B6,347.7] to the range [(255] before inputting it into the JND-
based improvement process. The JND-based improvemensé ki the concept that we

can perceive a pixel value easily when the pixel value irsgddy its JND value.

Less-visible-area Improvement Based on the Non-linear Stiag Function

Our scaling function is proposed based on the assumptiaiit t@ould be not only a function
of the input pixel value but also the input pixel’s neighbdfst is the function of only the pixel
value, it might produce image noise due to thetence between the pixel and its neighbors.

Let Aana(X, ¥) denote the pixel values of the imaée,, at the positionX, y) as illustrated in
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Fig.2.15 (a). In this work, the neighbors Afa(X, y) are defined as the eight pixels surrounding
the Aana(X, y). We first calculate the average vaIUN_b) (of the neighbors oRana(X, Y).

x+1  y+1
(j§] D Al J)

N(xy) = = x
8 i=x-1 j=y-1

- AAna(X, y)] . (225)

Then, our proposed non-linear scaling function is definefdliésvys.

_ log(B(x.Y))

A = = 2.2
) = fogF Gy (2.26)
where
20— 17 /L2 Aunab) if Aana(X,y) < 127,
F(xy) = o A (2.27)
5 (1127 - Apna(X. )l + 1), otherwise,
and

20— 17N i N(x,y) < 127,

127 >

B(X, y) = (228)

25 (N(xy) + 1), otherwise.

Note that these equations, especially the forms of eq.2&2d eq. (2.28), are inspired by
the JND formula proposed by Cheti al. [20].

The plot of this functionf (AAna(x, y), N (x, y)) is shown in Fig. 2.16. The idea behind this
formula is that we want to enhance the pixel value, and weotreduce the diierence between
the pixel value and the neighbors’ values at the same tintbeelpixel valueAana(X, y) is equal
to the average valus(x, y), as illustrated in Fig. 2.15 (b), the enhancement fundsendicated
by the red curve shown in Fig. 2.16.

It can be seen clearly from this figure thatl\T(x, y) is lesser thamana(X, Y), as illustrated
in Fig. 2.15 (c), the enhancement rate is lower than that®ttseAana(X, y) = N(X, y). On the
other hand, ifN(x, y) is greater thamana(X, Y), as illustrated in Fig. 2.15 (d), the enhancement
rate is greater than that of the ca&g,.(x, y) = N_(x, y).

Since the range of this function is not from 0 to 255, it is nalimed by the following

formula before inputting to the next subprocess.

255
Anorm(X, ) = 37794 X (Anon (X, y) —46.76). (2.29)

Less-visible-area Improvement Based on JND

In image processing, the JND is defined as the minimum vigikihreshold when visual

contents are altered [21]. Our idea behind this IND-basg@dawement process is that, if we
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x—=1Ly+D| (x,y+1) [(x+1,y+1)

(a) (b)

(c) (d)

Figure 2.15: Pixel valué\ana(X, y) and its neighbors: (a) the positions of an area surrounded
Anna(X.Y), (b) the case thaBana(x,y) = N(x.Y), (c) the case thahana(x,Y) > N(x.y), and (d)
the case thaBana(X, y) < N(X,Y)

increase the pixel values of the less-visible areas by at tbair JND values, such areas are
easier to perceive by the human perception. This is becaydbe definition of JND, the new
values cause the less-visible areas perceived discriamitydtom the previous ones. Therefore,

we propose the following formula:
Aimp(XY) = Anom(X, Y) + KX IND (Anorm (X, ) » (2.30)

wherek is a factor, which is greater than 1, and JN&om (X, Y)) is the IND of Anorm(X, ),

which is modeled by Choat al.[20] as follows.

[17>< (2- \/A”%gx’”)]ﬂ% it Ao (X.Y) < 127,
JIND (Anorm (X Y)) = (2.31)
[1_:;8 X (Anorm (X, y)—127)]+3, otherwise.
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Figure 2.16: Non-linear scaling functidifAana(x, ¥), N) for the less-visible-area improvement.

In this work, we assume thétis a function of Aana and IND(Anorm). We experimentally

found that the relation
— AAna(X, Y)
J N D (ANorm (X, Y))

(2.32)

works well for our purpose.

2.2.3 Pyramid-based Blending Method

We use a blending technique to resolve the over-enhancepneblem caused by the less-
visible-area improvement process described in the prewsabsection. We adopt the technique
based on the Gaussian and Laplacian pyramids, which is peoldny Buret al.[15]. We do not
use a conventional pyramid-based blending method, whiphojgosed by Mertenst al.[17],
because some information is lost after blending, espgdiadl information in small areas [16].
Thus, we propose a more sophisticated technique to oversogte problem. Our proposed
blending method is summarized by a flowchart shown in Fig21id consists of five steps as
follows.

First, letG" andIL" denote than-level Gaussian and Laplacian operators, respectivelg. Th
n-level Gaussian pyramid of the imageG"(l), returnsn + 1 images Go, Gy, ..., G,), whereGg

is |, andG;, fori > 1, are output images obtained from the low-pass filter wighdacimation
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e

Pyramid-based blending method
proposed by Mertens et al. [20]

!

Determining over-enhanced positions

P = {(x,y)IRp(x,y) > 1}

!

Calculating B1(x,y) and Bz(x,y)
for all positions in P

Bi(x,y) < Ba(x.y)

Modification of the Modification of the
Matrix Wy Matrix W,

!

Creating the resulting image R

k

Figure 2.17: Flowchart of pyramid-based blending method.

at the layeri. The n-level Laplacian pyramid of the imagle LL"(1), returnsn + 1 images
(Lo, Ly, ..., Lp), whereL, is G,, andL; = Gj— T Gj,; fori<n. The symbolf G,; represents the
imageG;,, after it is upsampled by a factor of 2.

We can reconstruct the imad¢idy the inverse Laplaciah™", which is defined as
L"(IL"(1)) = Lo+ TL1+ Ly + ...+ T "Ly, (2.33)

whereT" denotes the upsampling by a factor 8f 2

The resulting imag&g of the pyramid-based blending method proposed by Mereas
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is then calculated as follows [17].

L"(Rg) = G"(W1) o L"(A) + G"(W7) o L"(Amp), (2.34)
whereA and A, are two source imagesV; andW, are weighting matrices, and the operator
o is the Hadamard product (i.e., element-wise multipliaatio

The matrice®V,; andW, are constructed by the following formulae.

o 22 (AY)-057
Wl(x’ y) =

) 2.35
e_T;L'Z(A(X’Y)_O'S)Z + e_TJ,:z(Almp(X,y)—OB)Z ( )

and

e‘ﬁ (Almp(x,y)—os)2

Wa(X,y) = (2.36)

o 22 (AY-05 | =505 (Aimp(xy)-05)”

whereW;(x, y) denotes the element of the matki¥ at row x and columny, ando is a
constant and set to 0.2.

Second, over-enhanced positions are determined. Thesovmnced positions are defined
as the positions of which their pixel values are greater thahet P denote a set of the over-
enhanced positions. ThuB,= {(x, y)|IRs(X, y) > 1}.

Third, for all (x,y) inP, we calculateB;(x, y) andB,(x, y) by

Bi(xY) = L6 (Wa(x y) o LY(Ax y))) (2.37)

and

Bo(x,y) = ]L‘”(G”(Wz(x, y)) o ]L”(A|mp(x, y))). (2.38)

Forth, we compar®,(X,y) andB,(x,y), for all (x,y) in P. If B1(x,y) < Bx(X,y), the matrix
W, is modified; otherwise, the matrW/, is modified. Our idea behind this modification is as
follows. SinceW; is a Gaussian function of input-pixel values, a high valugd/gix, y) indicates
that the input-pixel value at the positior, {), A(X,y) or Aimp(X,Y), is not too low or not too
high. As a result, it is less likely to cause the over-enharer®, compared with a low value of
W;(x,y). Therefore, a value dV,(x, y) is decreased in order to mitigate the over-enhancement

effect whenB1(X,y) < By(X,y). Otherwise, a value dlN,(x,y) is decreased. Note that, in this
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situation, we can ignore the case that an input-pixel vaduea low due to the definition of the
setP.

The modified weighting matri¥Vy,i(x, y) is determined by the following equation.

Whi(X, y) = Wi(x,y) = IWi(X,y) = Bi(x,y)| (2.39)

Fifth, the modified weighting matrice#&/,, andW,, obtained from the previous step are

used to create the resulting imaBe

R=L"(L"(R)
(2.40)
=L ™" (G" (Wiy) o L" (A) + G" (Wirp) © L" (Aimp))
According to eq. (2.39), itis possible that there exi®ts, y) such that its value is less than O.

In this case, the value d®(x, y) is clipped to 0. In other words, R(x,y) < 0, thenR(x,y) = O.
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Chapter 3

Dataset, Implementation and Evaluation

of the Proposed Methods

3.1 Dataset

In this work, two datasets in which their images contaifiedent levels of noise were used
in our experiments. The first one was provided by the authbtkis work. It consists of
30 photos captured from various devices. The second one wggested by V. Vonikakiget
al. [1], and it consists of 20 photos. However,to avoid the digfgct to the evaluation, only 20
images between the first and second sets were selected tatvide performance of proposed
algorithm. In the dataset, some areas of these images amctpiexposed, whereas other
areas are under-exposed or over-exposed. All images wenesampled to a size of 522339

in order to reduce the computational time-complexity of 8D and of the pyramid-based

blending method.

3.2 Implementation of the Proposed Methods

As described in Chapter 2, both proposed methods have somdefpred parameters. This
section described those parameters we used in our simmaatidlote that values of those

parameters are empirical, and we obtain them from our pne#irg experiments.
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3.2.1 LVCE Implementation

To evaluation the performance of LVCE, we implement the méttescribed in Section 2.1
which the following parameters. The scaling factor for erdethe less-visible layers (8, and

v) are setto 1, 3, and 27, respectively. The range for selecting an appropriatddpidnin,

g + dmay] is set into single indexed-bimg[+ 3]. Lastly, the standard deviation of the Gaussian

function () is set to (2.

3.2.2 LVCEHP Implementation

To evaluation the performance of LVCEHP, we implement thehoe described in Section
2.2 which the following parameters. The threshold valueidtlén-noise level%y) and the

standard deviation of the Gaussian functiof ére set to %$10* and Q2.

3.3 Evaluation of the Proposed Methods

In this experiment, we compared our proposed method witle@mwentional methods: LVCE
[22], FCSM [1], MSRCP [13], MEF [11], MSRCR [8], and CLAHE [3]To test the FCSM,
we used the software called Orasis [23]. For MSRCP, we useaxhkme application provided
by the IPOL journal [24]. The rest were implemented with MAIR. The parameters used in
the CLAHE were set as follow: the Rayleigh distribution witie contrast enhancement limit
of 0.02. Parameters used in the LVCE, FCSM, MSRCP, and MEF metheds set to the
values suggested by their authors. The ratio between calaes in each color channel and
the luminance values are kept in order to reconstruct ther @mlages in the MSRCP and the
CLAHE. Comparison examples of resulting images obtainedchfall methods are shown in
Fig.3.1 - Fig. 3.20.

As mentioned in the introduction, it can be seen from thesedigthat the images #15 and
#21 obtained from the MEF and the FCSM contain image noise iiffages obtained from
the LVCE have the foggyfect. The images #3, #8 and #11 obtained from the MSR@Rrsu
from the over-enhancement. The images obtained from the G/RSRse some details, and
they look like over-exposed images. The images obtained fite CLAHE siifer from the

over-enhancement problem similar to the MSRCP.
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The performance of our proposed algorithm was evaluatedctiagly and subjectively.

Objective measures and subjective tests are detailed foltbe/ing subsection.

3.3.1 Objective Evaluation

Four measures were used to evaluate the performance of opoged algorithm: image en-
hancement metric (IEM) [26], universal image quality indé%) [27], entropy, and homogene-
ity.

The IEM is a full-reference metric. Normally, the higher wedue of IEM, the better the
improvement in contrast. However, this work aims to impréwve contrast only in the less-
visible areas. Thus, we expected that this values shouldentiio close to 1 because if it is too
close to 1, a resulting image seems not to be enhanced. Othirehand, if the value is too far
from 1, the resulting image will be over-enhanced.

Basically, the QI is based on the mathematical model of ing@gfertion using three factors,
which are the loss of correlation, the luminance distortiand the contrast distortion. The
closer the QI to 1, the image quality of the enhanced imagdosec to that of the original
image.

The calculations of entropy and homogeneity are based omridne level co-occurence
matrix (GLCM) [28]. The entropy was used to evaluate theusxtand key-lighting of an
enhanced image. The homogeneity was used to evaluate tilargymof the pixels in the
neighborhood area. We do not want the enhancement procelssnage image tone and to
amplify the hidden noise. Therefore, both measurementsldhme as close to those of the
original image as possible. Because the gre@tidince in entropy between the original and the
enhanced images can imply the over-enhancement. Idda\ndmogeneity of the enhanced
image should be the same as that of the original one.

The results from the objective evaluations for IEM, QI, epir, and homogeneity are shown
in Table 3.2. It can be seen that the average IEM of the LVCRaddwest, whereas that of the
CLAHE is the highest. The average IEM of our proposed alparits 1431. We will discuss
in Sect. 4 that the number4i31, as well as that of the MEF, is in an appropriate rangehfer t
purpose of this work. In terms of image distortion, the LVGEhe best with the average QI of
0.558. The average QI of the images obtained from our propdgedithm is 0529, which is

third rank compares to those of the other methods.
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The average entropy of LVCE is the best since it is closes$igtdf the original images while
LVCEHP holds the fifth place for the detail preservationastian. For the noise amplification,
the average homogeneity of LVCE is the best since it is ctasethat of the original images
while LVCEHP holds the second place.

We will discuss what should be an appropriate range for tloel gesulting image in Sect. 4

because the interpretation of these numbers should be ften&va have subjective test results.

3.3.2 Subjective Evaluation

To measure an image quality by human beings, we conductgdcsire experiments with
respect to three aspects that we want to measure: noisefiaatfn, tone preservation, and
detail preservation.

The subjective tests were conducted as follows. We showeth§es to participants, where
one of these image is the original image, and the rest arenealamages obtained from 7
methods including our proposed one. We asked the partispaselect three enhanced images
that they thought those three images contain less noisear@apvith the others, as well as the
original image, and to sort them from the least-noise imadbéd noisiest image. Similarly, we
also asked the participants to select and rank the first fmeferred images in terms of tone
preservation and detail preservation. Finally, we askedptirticipants to select and rank the
first three preferred images with respect to the combinaifdhese three criteria, where they
could assign weights to each criterion according to theifgrence.

Note that the term of detail preservation is used instead/ef-enhancement. Since lot of
participants have confused in the term of over-enhancearahtould not complete the evalu-
ations. The participants did not know how much of the brigktis called over-enhancement.
Thus, some dataset did not clearly distinguish the probleover-enhancement. Sometimes, it
is hard to measure which resulting image can avoid the avieasgcement problem. Based on
these problems, the participants arfidult to finish the subjective measurement. In that case,
we re-arrange the term of over-enhancement to detail pr&ts@n. Since, the term of detail
preservation has had the relationships to the term of aveargcement. When the enhanced
images have the highest rank to preserve the detail pregeryé can be implied that those
images are also far apart to create such the over-enhantpnoblem too. In other word, the

images that contain the lowest rank of detail preservationeans that those images are facing
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Table 3.1: Subjective-evaluation results.

Method ‘ Noise amplification ‘ Tone preservation ‘ Detail preservaton ‘ Preference testing
etho

‘ Rank #1 Rank#2 Rank #PRank #1 Rank#2 Rank #bRank #1 Rank#2 Rank #FRank #1 Rank#2 Rank#3
Proposed method 58 77 41 84 70 32 36 47 55 52 61 58
LVCE [22] 66 32 28 21 34 49 16 11 23 5 16 31
FCSM [1] 30 38 48 51 39 60 41 59 44 56 a7 48
MSRCP [13] 27 30 38 11 19 23 9 16 19 18 29 17
MEF [11] 18 21 42 31 37 30 56 46 42 66 45 40
MSRCR [8] 0 0 2 1 1 1 10 11 13 1 1
CLAHE [3] 1 2 1 1 0 5 32 10 4 2 1

the problem of over-enhancement.

In this experiment, ten subjects who have an experience taiing the photography are
participated. Their ages were ranging from 21 to 45 yearse rEsults from the subjective
evaluations are shown in Table 3.1.

It can be seen from the table that the enhanced images othtaiora the LVCE got 66
votes (or 33%) for the first rank in the noise-amplificatiotesion. That is, one-third of the
participants thought these images contained least nompa@d with the others. The LVCEHP
hold the second place for the first rank in this criterion, @ralso hold the first place for the
second rank. In terms of tone preservation, 42% of the paatits thought the proposed method
was the best compared with the others. In terms of detaieprason, the MEF, the MSRCP,
and the proposed method got 56, 41, and 36 votes for the fitkt raspectively. However,
the MEF and the LVCEHP got approximately the same votes ®isgétond rank in the detalil
preservation. For the preference testing, 33%, 28%, anddt@be participants thought that the
MEF, the MSRCP, and the LVCEHP were the best, respectivdgo,805% of the participants
thought that the LVCEHP should be the second rank in the meée testing. In short, the
subjective evaluation results show that the LVCEHP caneaghone of the first three ranks in

all criteria.
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Table 3.2: Results from the objective evaluations.

Image Enhancement Metric (IEM)

Input LVCEHP [25] LVCE[22] FCSM[1] MSRCP [13] MEF[11] MSRCE] CLAHE[3]
Avg 1.000 1431 1.044 2.109 1.812 2.307 2.000 2,512
Std  0.000 0.215 0.067 0.991 0.625 1.207 1.280 0.994

Quality Index (QI)

Input LVCEHP [25] LVCE[22] FCSM[1] MSRCP [13] MEF[11] MSRCE] CLAHE[3]
Avg 1.000 0.529 0.558 0.548 0.397 0.487 0.311 0.374
Std  0.000 0.226 0.227 0.238 0.138 0.224 0.136 0.156

Entropy

Input LVCEHP [25] LVCE[22] FCSM[1] MSRCP[13] MEF [11] MSRCE] CLAHE [3]
Avg 6.178 6.864 6.220 6.804 6.781 7.076 6.799 6.839
Std  1.371 0.963 1.222 1.034 0.999 0.761 0.827 0.998

Homogeneity

Input LVCEHP [25] LVCE[22] FCSM[1] MSRCP [13] MEF [11] MSRCE] CLAHE [3]
Avg 0.954 0.929 0.950 0.911 0.920 0.902 0.919 0.886
Std  0.042 0.046 0.041 0.047 0.050 0.051 0.035 0.055
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(9) (h)

Figure 3.1: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(9) (h)

Figure 3.2: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(9) (h)

Figure 3.3: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(9) (h)

Figure 3.4: Image comparison with the existing method:r{galut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure 3.5: Image comparison with the existing method:r{galut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(9) (h)

Figure 3.6: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure 3.7: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(c) (d)

Figure 3.8: Image comparison with the existing method:r{gaut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure 3.9: Image comparison with the existing method:r{glut image, (b) LVCEHP [25], (¢)
LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) MSRE[8], (h) CLAHE [3]
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(9) (h)

Figure 3.10: Image comparison with the existing methodir(alit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure 3.11: Image comparison with the existing methodir(aiit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure 3.12: Image comparison with the existing methodir(alit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]

44



(c) (d)

(9) (h)

Figure 3.13: Image comparison with the existing methodir(ayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure 3.14: Image comparison with the existing methodir(aiit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure 3.15: Image comparison with the existing methodir(ayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure 3.16: Image comparison with the existing methodirayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure 3.17: Image comparison with the existing methodir(ayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]

49



0 _ezy o) w9

/

F
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Figure 3.18: Image comparison with the existing methodir{ayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure 3.19: Image comparison with the existing methodir(aiit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure 3.20: Image comparison with the existing methodir(ayit image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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Chapter 4

Analysis and Discussion of the Proposed
Method

4.1 Analysis the Flexibility of the Proposed Method

4.1.1 Adjustthe Parameter on LVCE

In LVCE, there are five parameters which can be adjusted; iibtetivo parametersSel,, and
o) come from the range of selected bin to assign as the legdevisreas and the standard
deviation of the Gaussian low-pass filter in the process&\V@-based image decomposition
and pyramid-based blending method. The latter-three pateamg, B, andy) come from the

scaling factor in the non-linear contrast enhancementgs®c

Parameter setting in SVD-based Decomposition Process

In SVD-based decomposition process, it allows the userslaxsthe rangeS e}i,) to define
the less-visible areas of the inputimage. The ra®yg,) of less-visible image is calculated by
plotting the distribution of singular values on the bindogarithmic scale. Then, the maximum
bin, g, is determined. Finally, we can adjust the rang& ef,i, from g + din t0 g + dmax

To adjust an appropriate rang® €hi,) of less-visible areas, there are few factors that users

need to consider.

1. The range of selection is one of the major factor that wel nee€oncern. Even through,

the wider range o$ e},, may create the higher chance for improving the less-visitdas
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as shown in Fig. 4.1(b)-4.1(d). Too wider range may causesstistortion &ect to the
resulting image as shown in Fig. 4.1(b).

() (d)

Figure 4.1: Image comparison withflirent ranges dd e},i,. (a) Inputimage, (b)-(d) Resulting
images obtained from theftierent ranges of Selbingf 1, q+3], [+ 1, g+ 3], and g+ 3, g+ 3],
respectively.

2. The position of selected bir§ e},,, is another factor that mightffect the quality of

resulting image.

(a) Select the bin on the highest bin or left-hand side of thkést bin §): too far apart
from the highest bin may cause the over-enhancement armttehst problems to
the resulting image. Thus, in our experiment, selectingajweropriate bin at the

highest bin ) may cause the problems too as shown in Fig. 4.2(b)- 4.2(c).

(b) Select the bin on right-hand side of the highest )ntoo far apart from the highest
bin (g) might not cause any problem. However, due to the lesd palues on the

less-visible areas image, the enhancement process camsoaled up the targeted
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pixel to improve the less-visible areas of the resultinggmas expected. Figure

4.2(b)- 4.2(c) show the example of the image witfiehient positions o el;,.

(c) (d)

(e) ()

Figure 4.2: Image comparison withfilirent positions ofSel;,. (a) Input image, (b)-(f)
Resulting images obtain from thefidirent position of Selbin - 1], [q + 0], [q + 3], [q + 5],

and [g + 7], respectively.
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Parameters setting in Non-linear Contrast Enhancement Proess

In the non-linear contrast enhancement process, therbraeparameters (3, andy) that can

be adjusted in the following non-linear equation.

) o
log;s (aAQ,xy +BAgxy + )’)
2 b

Aﬁ’xy = (4. 1)

Aﬁ,xy = Ai’,xy + |A2,min|- (4-2)

whereA¢ min @nd the minimum value of the matriXe.
By substituting the predefined value intgB3, andy in eq.4.1, we can rearrange the equation

as follow.

l0g,s (1A§Xy +3.7A0p + 2.7)

AQ,xy = 2
.l ) (4.3)
- 2
2 log,s
Note that log xy = logyX + logpy and log, x = :ggtg

From the rearrange equation, the paramgtean be calculated by summation betwegen

andy.
T2 logs

In such case, itis possible to adjust the parametensdy as follow:

. (4.4)

1. Improve the less-visible areas without concerning thst-Bioticeable-Dfierent (JND)
in the dark area: based on the experiment, it found that theration ofa andy or
parameter is proportion to the scaling factor. Greaterevalig, higher information on
less-visible area to be improved. However, the users neearédully adjust the values of
a andy. If the summation ofr andy is greater than 4, the over-enhancement may occur
in the resulting image. Thus, the proposed non-linear esh&nhancement is a pixel-

based approach which separately apply into each red, greeblae (R,G,B) channel. If
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the pixel value (R,G,B) is closely to (0, 0) or black, the proposed contrast enhancement
will produce the increment value with the same amount oredjo® each channel. Based
on principle of digital image processing, when the pixelueain red, green, and blue
channel are produced the same amount or closely to each ibthidrgenerate the shade

of gray (dark gray to gray). Finally, the foggyfect could be occurred in the resulting
image as shown in Fig. 4.3(c)- 4.3(d).

(b)

() (d)

Figure 4.3: Image comparison withffirent values of the summation betweemandy. (a)
Input image, (b)-(d) Resulting images obtained from thersation values ofr andy; 3.75, 5,

and 6, respectively.
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2. Improve the less-visible areas by concerning Just-Kahte-Diferent (JND) in the dark
areas. Based on JND in digital image processing, JND is akfiaghe minimum visibil-
ity threshold when visual contents are altered. In this wirk JND model from Chou
et al [20]. is used to find the appropriate range for scalimgpixel value in less-visible

image without create any foggyfect.

In the enhancement process, the pixel value (R,G,B), whases to (00, 0), should not
be enhanced exceed the minimum visibility that the humanncditce. Otherwise, the
foggy dfect might be occurred. By investigating the characterigtidND, we found
that the JND at intensity equal to O produces the highest JalDeg. In that case, we
take an advantage of its values to avoid the fogfijgat. By setting the suitable values
of summation between andy regards toJND(0), we found that it can avoid such
the foggy éfect and other areas also successfully enhance the lebtevasea. In the
experiment, suitable value of summation between and arendrd01 - 2.5. Anyway,
due to limitation of scaling factor, the less-visible arearésulting image may not be

improved as much as we expected (Fig. 4.4(c)- 4.4(d)).
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(a) (b)

(c) (d)

Figure 4.4: Image comparison withffirent values of the summation betweemandy. (a)
Input image, (b)-(d) Resulting images obtained from themation values ofr andy; 2, 2.5,

and 3, respectively.

Parameter setting in Pyramid-based Blending Process

In the pyramid-based blending process, the standard dmviaf the Gaussian functionr{

in the local exposure weight can be adjusted. By increasiegpirameter, the width of
the Gaussian function will be expanded. As consequent, xpeseire weights at the small
pixel values are also gradually scaled up, and allow thedahgnalgorithm hard to find the
most saliency pixel (x,y) along the dataset. Finally, theuting image obtained from blend-
ing function cannot recover the less-visible areas fromaaobd image as shown in Fig. 4.5.

Consequently, the resulting image is not improved as mueteasxpected.
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(a) (b)

() (d)

Figure 4.5: Image comparison withfiirent values of standard deviatian) (n pyramid-based
blending method. (a) Input image, (b)-(d) Resulting imagbtined from the summation

values of ; 02, 04, and 06, respectively.

4.1.2 Adjust the Parameter on LVCEHP

In LVCEHP, there are two parameters which can be adjustefitst parameteBy, is the
threshold value to indicate whether the input image haskaaisontain the high level of noise
or not. Another parameter is the standard deviattgnef the Gaussian low-pass filter in the

processes of pyramid-based blending method which is simtiaLVCE.

Parameter setting in Noise-level Analysis Process

In the process of noise-level analysis, the algorithm aesythe level of noise in the input
images using the Singular Value Decomposition (SVD). Kirste decompose the input image
using SVD. Then, we calculate the summation of all singuddues, S, which is used to estimate

the area bounded by the singular-value curve and the singaliae-index axis. If the S value
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is less than a threshold value of hidden-noise 1&gl the algorithm will eliminate the latter
group of singular value. However, the users need to cayefell the paramet&y,. By setting
the high threshold valu8y,, sometimes, it may distort the information which is con¢aiim the
latter group of singular value. Finally, the resulting ireagay cause some unwantefteets as
shown in Fig. 4.6(c). In the other hand, setting the low thodd valueS,, may allow the image
that contains the high level of noise to be enhanced. Firtalyresulting image may look noisy

as shown in Fig. 4.7(b).

(b) (©)

Figure 4.6: Image comparison withfiirent threshold value;, in noise-level analysis process.
(a) Input image, (b)-(c) Resulting images obtained from ttveshold values; & 10%, and

9 x 1070, respectively.
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(a)

(b) (c)

Figure 4.7: Image comparison withfiirent threshold valu&s;, in noise-level analysis process.
(a) Inputimage, (b)-(c) Resulting images obtained fronthineshold values;®10°, and 9<10%,

respectively.

4.2 Discussion

There are six issues that we would like to discuss in this@®cAlso, the interpretation of the
evaluation results is to be explained. First, the predefuadale of several parameters from the
proposed methods e.g. the range of the less-visibl& e, the scaling factor for enhance the
less-visible layersd, 8, andy), and the threshold value of hidden-noise lex&l)( etc. that
used in our simulation are based on a process of trial and amd it might depend upon a data
set. To improve the proposed algorithm further, we need amgprocess that can determine
those parameters automatically.

Second, in this work, we used the IEM, QI, entropy, and homedyg as our objective
measurements. We did not use the measure of enhancemenE)EME measure of enhance-

ment by entropy (EMEE), the logarithmic Michelson contrastasure (AME), and the second
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derivative the measure of enhancement (SDME). Even thcuggetmeasurements are popular
for measuring the enhanced image, but they are not good aumeg the enhancement only
in some specifics areas, especially the less-visible aleageneral, these measurements are
calculated from the summation of the ratio between the mimmand the maximum values of
each block of the enhanced image.

Third, since the first three prefered methods, accordingesubjective tests, are the MEF,
the FCSM, and the proposed method, the value of IEM and Qlldhwmei in the ranges of
[1.4 — 2.3] and [Q4, 0.6], respectively. The value of entropy should be greaten 58, and
lesser than D, and the value of homogeneity should be greater th&radd lesser than @3.

Forth, from the evaluation results, it can conclude that¥H€E is quite dfective to enhance
the less-visible areas of the input image without ampliythe hidden noise. However, the
property of this proposed method may be a two-edged swonde$he LVCE select only some
layers that to modify or enhance, sometimes, such layemsareontain enough pixel value to
increase the luminance or intensity of the less-visiblasréHowever, increasing the number
of selected bin may enhance the targeted areas, but it mag ¢the &ect of amplifying the
hidden noise.

Fifth, the LVCEHP is one of the mostfective compare to the existing methods. The
LVCEHP can achieve one of the first three ranks in all crittwan the subjective evaluation.
Anyway, the LVCEHP still stfer to preserve the intensity of the improved imagg,. The
problem occur in the step of image blending which the resglimage are such degraded the
intensity at the less-visible areas when compare to theaugal imageA,, as shown in Fig.
4.8. This limitation will be improved in the near future.

Sixth, we would like to discuss about limitation of the prepd method. Even though the
proposed algorithm can solve the various problems, e.gr;@hancement, noise-amplification,
and tone and texture modification as shown in Fig. 4.9, 4.101,4he proposed algorithm
cannot restore true color information in some cases. Thmpbeaof this problem is shown in

Fig. 4.12.
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(©)

Figure 4.8: Limitation of the LVCEHP: comparison of the iroped imageA,, and the
resulting image. (a) Input Image, (b) Improved image and\Y&JEHP.
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(e) () (9 (h)
Figure 4.9: Examples of the over-enhancement problem: aasgn of an enlarged area of the
images obtained from (a) Input Image, (b) LVCEHP [25], (c)AK [22], (d) FCSM [1], (e)
MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].

() (f) (9) (h)

Figure 4.10: Examples of the noise amplification problemmparison of an enlarged area of
the images obtained from (a) Input Image, (b) [25], (c) LV@R]| (d) FCSM [1], () MSRCP
[13], () MEF [11], (9) MSRCR [8] and (h) CLAHE [3].
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(@) (b) (© (d)

(e) (® (9 (h)
Figure 4.11: Examples of the tone and texture modificatioblem: comparison of an enlarged
area of the images obtained from (a) Input Image, (b) [25]LUCE [22], (d) FCSM [1], (e)
MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].

(a) (b)
(e) ®
Figure 4.12: Examples of the limitation of the proposed radthcomparison of an enlarged

area of the images obtained from (a) Input Image, (b) [25]LY6CE [22], (d) FCSM [1], (e)
MSRCP [13], (f) MEF [11], (g) MSRCR [8] and (h) CLAHE [3].

(9) (h)
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Chapter 5

Conclusion

5.1 Summary

5.1.1 Unique and New Concept from This Work

The conventional image enhancement methodiestio enhance an image which contains
both less-visible and nicely-visible areas while presenweh the key-lighting of image or the
tone of original image. In this work, we propose two new lessble-image enhancement
schemes, called the less-visible contrast enhancememiochétVCE) and the less-visible
contrast enhancement based on human visual perceptioreH¥PL For the LVCE, we propose
the new image enhancement techniques based on a non-loadiagfunction and the singular
value decomposition (SVD). The SVD is used to decomposertage into several layers.
We found that, some layers are associated with the ledsi&iareas. Then, such layers are
selected and strengthened by using the proposed logacibraling function. For the LVCEHP,
we propose a new technique for enhancing each pixel with tiierent non-linear scaling
functions. Since, the targeted pixel is constructed basedust-Noticeable-Dierent (JND)
of the average-pixel value, with this approach, the pixet thas the same pixel value may
use diterent non-linear scaling functions. Moreover, we also psapa new techniques for
analyze and remove the hidden noise of the input image. Werementally found that the
smaller area-bounded of the singular-value curve impheshigher level of noise. If the area
of singular value contains the area-bounded less than thehbld value of the hidden noise
value § < Sy). Then, we remove the noise layAf, before the enhancement process. Lastly,

we also propose the pyramid-based blending techniquesgorg two images in order to solve
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the problem of information missing in the blending process.

The original idea of this research is to model precisely &algorithm based on on human
vision system while the existing methods always mentiorh®hiuman visual system as the
inspiration to create the algorithm, but they never use tieciple of human vision system

precisely in their models.

5.1.2 Advantages and Disadvantages of the Proposed Methods

e Less-visible contrast Enhancement (LVCE): The strenggpioémt of LVCE is its ability to
enhance the less-visible area without amplifying the hidugise, and distort the original
tone of the inputimage. According to the noise-compressiitgrion from objective and
subject evaluation, the LVCE get the first rank. However,ai$ la problem concerning
the foggy dfect due to number of selection and the position for choosiaddss-visible-

area’s layers in the SVD.

e Less-visible contrast enhancement based on human visuzgimn (LVCEHP): The
advantage of the LVCEHP is it can enhance the less-visil@asawhile preserve the
tone, texture, and the key-lighting of visible parts frore thput image. The concept of
the LVCEHP comes from the concept of human sensitivity whigdates to the image
contrast rather than absolute intensity values. An inereapixel values with the same
scaling function may not satisfy the human visual perceptiBy enhancing each pixel
with the different non-linear scaling functions based on Just-Notiee@lfferent (JND),
the resulting image looks more natural and satisfies the hypraeception. According to
the evaluation results, the LVCEHP always places in thetfirste-ranked of all criterion.
However, the LVCEHP still sftiers to preserve the intensity of the improved imagg.
The example of this limitation is shown in Fig. 4.8. The irdi¢ies of resulting image at

the less-visible areas look darker when compared to theoveorimagei .

5.2 Contributions

The contribution of this research is to enhance the lesblgiareas while preserve the tone,
texture, and the key-lighting of visible parts from the ihpuage. Therefore, compared with

the existing methods in literature, one of the successfuhatkeis to enhance the less-visible
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area based on human visual perception (LVCEHP). In this wibhas three contributions as
follows. First, it proposes a new noise-reduction techajauhich is the preprocessing of the
proposed method. Second, we introduce a new adaptive mdingdunction based on the
human visual perception. This function compromises a ttlbetween tone preservation and
detail preservation, and it is used in the contrast enhaaoeprocess.

Last, as a part of the proposed method, we propose a new xzased blending technique

for fusing two images.

5.3 Future Work

Despite the success of the LVCEHP framework which can erdhtirecless-visible areas while
preserve the tone, texture, and the key-lighting of visgaes from the input image, there are

rooms for further improvement.

e The LVCEHP algorithm has siered to preserve the intensity of less-visible areas com-
pare to the improved imag&m,. To solve the problem, it is necessary to investigate the
structure of conventional pyramid-based blending metlwdusing two high hidden-

noise-level images.

¢ In addition, we would like to apply our proposed method inestbolor models such as
exact Hue, Saturation and Intensity (eHSI) color space farane the detail and color
information from the foggy image. Since, the foggy imagegagts contain lot of gray
color, applying the concept of adaptive non-scaling fuorctbased on the human visual
perception in saturation channel may recover the detailtaredcolor information. We

will keep investigation this challenge problem in the fatur
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Image comparison
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(a) (b)

(c) (d)

(9) (h)

Figure A.1: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]

72



(9) (h)

Figure A.2: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure A.3: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.4: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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Figure A.5: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]

76



(9) (h)

Figure A.6: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure A.7: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.8: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.9: Image comparison with the existing method: (gut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.10: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.11: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.12: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.13: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.14: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.15: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.16: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure A.17: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.18: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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Figure A.19: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(e)

)
Figure A.20: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]

(f)
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(9) (h)

Figure A.21: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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Figure A.22: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.23: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure A.24: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.25: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.26: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.27: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.28: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.29: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.30: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.31: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(c) (d)

(9) (h)

Figure A.32: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.33: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.34: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.35: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(9) (h)

Figure A.36: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(a) (b)

(9) (h)

Figure A.37: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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(c) (d)

(9) (h)

Figure A.38: Image comparison with the existing method:irfaut image, (b) LVCEHP [25],
(c) LVCE [22], (d) FCSM [1], (e) MSRCP [13], (f) MEF [11], (g) BRCR [8], (h) CLAHE [3]
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