JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title gddddooooooooooo

Author(s) oo, 00

Citation

Issue Date 2002-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 1556
Rights

Description Supervisor: gooo 0Od, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



The study of A Multithreaded Processor Architecture
for Parallel Logical Languages

Masayuki Hosoi (910102)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 15, 2002

Keywords: parallel, GHC,JTD,context,thread,multithread.

Abstract

This paper proposes architectural support for parallel logical programming lan-
guages and parallel execution mechanism suitable for the paradigms involving paral-
lelism.Although the paradigms including functional,logical,and object oriented lan-
guages can be simulated in cost effectively on the sequential architecture, parallel
execution potentialities involved in those paradigms has been ignored. And those
have been little concerned with parallel execution mechanisms which can be com-
monly used those paradigms in spite of many studies about parallel execution ded-
icated to each paradigm. For example,a multithreaded processor architecture for
functional programgs has been proposed.In this study,the authors intend to provide
parallel execution mechanism commonly.First,the authors intend to use a multi-
threaded pipeline processor architecture by centering on parallel logical program-
ming languages,especially,guarded Horn clauses,called GHC.And then,this architec-
ture shows good performance in other paradigm involving parallelism.

1 Introduction

This paper proposes architectural support for parallel logical programming
languages and parallel execution mechanisim suitable for the paradigms
involving parallelism.Formerly,architectural support for programming lan-
guages has traditionally been popular as an in indirect way of application
specific support. But ”High-Level Language Computer” has been forgotten
for at least 20 years. The present day,the Microprocessor focused our atten-
tion on RISC is vigorous. People tried that problems of software was solved

Copyright © 2002 by Masayuki Hosoi



by hardware on ”High-Level Language Computer”.Nevertheless, value of
computer systems for users is not the achievement of ” High-Level Language
Computer” but overall cost effectiveness. There are two major subjects in
software development. One approach is attempts in engineering to grasp ef-
ficient methods of software development.The other is paradigm shifts from
the paradigm of imperative languages which is based on von Neumann
Architecture to others.One of the other paradigms is logical programming
language which takes interest in parallel processing or parallel machine ar-
chitecture.However,this is not agreed with overall cost effectiveness. ;From
the cost effectiveness view point,a machine as a hardware made by simpler
structure and from less resources is priority even if it causes a little per-
fomance fall.Accordingly,” High-Level Language Computer” is not worth
anymore if exists.

Generally speaking,programming languages processing is divided into
three phases.First is language translation phase. Second is operation se-
quence control phase.Third is execution phase. In translation phase, we
can see that it is cost effectiveness to assign the software compiler transla-
tion jobs. On the other hand,in order to speed up execution phase, using
hardware leads execution phase themselves to highest effectiveness. Speed-
up by hardware is effective in parallel processing. Remaining opinion that
we have already discussed in ”High-Level Language Computer” is opera-
tion control phase. So far, this is discussed in the problems of instruction
issue or instruction scheduling for a sequential architecture having instruc-
tion pipeline.Although the paradigms including functional,logical,and ob-
ject oriented languages can be simulated effectively in cost on the sequential
architecture,those paradigms involving parallel execution potentialities are
ignored. And in spite of many studies about parallel execution dedicated
to each paradigm,it is little concerned with parallel execution mechanisms
commonly used those paradigms.

2 Logical Programming Languages and the manner
of process

This paper preliminarily concentrate to one paradigm. Because we study
parallel executable mechanism commonly. This mechanism can be used for

2



each paradigm including logical,functional,and object oriented languages.
And the authors will explore the idea of parallel executable potential-
ities hiding in the paradigm implying logical,functional,and object ori-
ented languages. Focusing one paradigm is logical language. The authors
center on parallel logical programming languages,especially guarded Horn
clauses.We use the term "GHC” to describe language which is guarded
Horn clauses. An ordinary sequential architecture execute GHC uneffec-
tively. Mainly,there are two causes.One is a repetition of pattern matching
called unification. The other is switching of running contexts which is re-
sulted frequently. In order to execute unification efficently,data types must
be determined as soon as possible.In this measures,it has been reported that
a tag dispatch instruction which can jump to multi branches including from
four-way to sixteen-way by A instruction.In other words,the instruction can
issue from four to sixteen data types dependent instruction streams. We
use the term ”JTD” to describe a tag dispatch instruction. In order to
execute switching of running contexts,switching of running contexts must
be hidden effectively. According to studies of machines for parallel logical
programming languages as before,the report says as follows: PE(Processing
Elements),or uniprocessor was not treated importantly. What is treated
importantly is parallel machines. Those parallel machines mean network
structure, methods of communication among uniprocessors. GHC causes
context switching. Context switching causes high frequency. This is heavy-
weight processes. Heaveweight processes casues low performance. (ICOT
Technical Report: TR-670[July,1991].) Context switching is casued by syn-
chronization among fine-grain processes(threads) for data dependencies. In
order to avoid heavyweight processes,we need mechanism which can switch
lightweight contexts by hardware.

3 Thread Scheduling

The author perform an experiment on simulation to prove our proposal.
Simulation program is hand-compiled code of GHC.Consequently,the au-
thor must determine threading policy of hand-compiled code for multi-
threaded program. Thus,in this chapter,we remark Java as a typical lan-
guage which can be design multithreaded programmings and test that Java



Virtual machine behavior which show how to determine thread which must
be execute in time.

4 Design of A Proposed Architecture

A multithreaded processor architecture for functional programgs has been
proposed. This processor has multiple hardware resources for every thread,and
a thread select unit which picks out the next thread to be executed.Therefore,data
hazards,branch hazards,and structure hazards are avoided.The processor
makes no stalling the pipeline by a control unit dealing with cache miss.The
processor is composed of superpipeline and can treat the same number of
threads associated with a program counter,register file,all kinds of control
register as the number of pipeline stage.This switching policy is switch
on every cycle.This policy allows switching on every cycle,independent of
whether it is a load or not. In other words,it switches contexts from differ-
ent threads on cycle-by-cycle basis.Successive instructions become indepen-
dent,which will benefit pipelined execution.The context switching can hide
pipeline dependencies and reduce the context switch cost. Therefore,it can
provides a performance advantage over switching. The main features of this
processor is four.First,the processor is being fully utilized,as long as there
are enough threads in the processor so that the number of pipeline stage are
filled with the number of threads. Thus,it is only necessary to have enough
threads to fill in stages of superpipeline.Once stages of superpipeline are
filled,the processor is running at peak performance and additional threads
do not speed the result. Second,the processor supports multiple instruction
threads in a uniprocessor environment.Third,the architecture model con-
sists of pipelined,dedicated units supporting multiple instruction issuing
in every clock cycle. Fourth,the processor can hide pipeline hazards with
issuing the same number of threads as the number of pipeline stages. While
it has seventeen-stage instruction pipeline,it didn’t conduct simulations on
the processor to prove practical effect executing functional programgs.
Now,as we can see above,in order to overcome heavyweight contexts of
GHC caused by synchronization among fine-grain processes(threads) for
data dependencies and make the best use of parallel execution potential-
ities, the authors will aim at a multithreaded processor which can switch



lightweight contexts and propose that the Multithreaded Pipeline Proces-
sor for GHC Execution.This architecture can execute GHC efficiently , is
of much benefit to each language implying parallelism ,and make the best
of parallel execution potentialities. There are at least four things which the
authors try in sequence in order to prove the proposal. First, the authors
make multithreaded pipeline processor of simple structure. Second, the
authors simulate execution of GHC in practice. Third,the authors have
it improve performance by making the best of parallel execution poten-
tialities in GHC. Fourth, the authors suggest common parallel execution
mechanism which can be applied to each language implying parallelism.we
use high-level logic synthesis sysytem PARTHENON which is Parallel Ar-
chitecture Refiner THEorized by Ntt Original coNcept in order to design
the processor and simulate it. The CPU executes each instruction in a
series of small steps. This sequence of steps is frequently referred to as
the fetch-decode-execute cycle.It is central to the operation of all comput-
ers. Thus,the execution cycle of a most fundamental instruction is three
phases: fetch,decode,execution.These instruction phases can be executed
by an instruction pipeline.Because of designing simpler processor and sim-
ulating more efficiently,we apply three-stage instruction pipeline as a most
fundamental pipeline structure.Moreover,in order to process unification of
GHC efficiently, JTD is needed as we can see in above.Consequently,the
author designs two kinds of processors and carries out basic evaluations
of the proposed mechanisms in order to show that the proposed architec-
ture is efficient.One is pipeline processor including three-stage instruction
pipeline and JTD.The other is multithreaded pipeline processor including
three-stage instruction pipeline and JTD.

5 Simulation

The authors conduct four simulation whose programs is all hand-compiled
code on those processors to prove the proposal whose architecture is effi-
cent for execution in GHC and each languge implying parallelism. First,the
authors test whether JTD is efficient or not.Second,the authors perform
thread saturation tests in order to confirm that the processor is being fully
utilized,as long as there are enough threads in the processor so that the



number of pipeline stages are filled with the number of threads. Third,the
authors cause test program implying a necessity of a synchronization run
in order to show hiding effect of processing of synchronization. Fourth,the
authors carried out test program implying parallelism which does not de-
pend the characteristic code of the parallel paradigm.As this program, we
use matrix multiplication.

6 Consideration

Those perfomance evaluations indicate that JTD is capable of reducing
clock cycles by about seventy percent, Multithreaded architecture can pro-
vide that high performance pipeline for execution of GHC,execution of
GHC including JTD, and execution of program implying parallelism and
make the values of CPI about 1.0. As a result,the authors consider two
things.First,multithreaded pipeline processor including JTD can greatly
improve GHC execution performance by making the best of parallel ex-
ecution potentialities in GHC.Seconds, multithreaded pipeline processor
including JTD can provide parallel execution mechanism commonly which
is of much benefit to each language implying parallelism.

7 Conclusion

The authors conclude two things.First,multithreaded pipeline processor in-
cluding JTD can greatly improve GHC execution performance by making
the best of parallel execution potentialities in GHC.Seconds, multithreaded
pipeline processor including JTD can provide parallel execution mechanism
commonly which is of much benefit to each language implying parallelism.



