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Chapter 1

Introduction

Recently a lot of studies have been done in the fields of substructural logics. Both classic
logic (Cl) and intuitionistic logic (Int) have three structural rules which are exchange,
contraction and weakening rules. However, substructural logics does not have some or
all structural rules. For example, Lambek calculus does not have all structural rules,
linear logic has neither contraction nor weakening rules, and BCK logic does not have
contraction rule. Studying properties of substructural logic in contrast to properties of
Cl and Int can clarify the role the structural rules play. Also by using algebraic semantics
we are able to consider substructural logics from more universal points. From that points
of view, we can investigate relations between substructural logics.

In this paper, we will deal with the class of logics without contraction and exchange
rules called FLy,. The notation FL means Full Lambek calculus which is extension of
Lambek calculus by adding binary connectives V and A, and rules pertaining to these
connectives. (also we say that FL is intuitionistic logics without structural rules). The
subscripts w, c,e denote weakening rule, contraction rule, exchange rule, respectively.
Thus, FL, means Full Lambek calculus which is added by weakening rule. In this pa-
per, by comparing to FL, we also deal with FL., which is the class of logics without
contraction rule.

Residuated lattices have been studied since 1930. But recently it is noticed that resid-
uated lattices are algebraic semantics of substractual logics. We have already had many
results of algebraic semantics of FLey (see [6], [9]). However, there are not so many
studies of algebraic semantics of FL,,. Many problems still remain in it.

Exchange rule in sutractural rules corresponds to commutativity in algebraic semantics.
Thus, an algebra for FLy does not always have commutativity. We have known that
noncommutative algebras sometimes have different properties from those of commutative
algebras. Thus, study of noncomutative algebraic semantics will be interesting topic.

In this paper, we will introduce left residuated lattices which are the algebraic coun-
terparts of FL, | which in turn is a reduct of FLy,. We will study basic properties of left
residuated lattices, comparing them with commutative residuated lattices. Next, we will
introduce the identity C,. And we will study a classification of left residuated lattices by
Ch.

Next, we will give a summary of this paper.



In Chapter 2, we will describe the systems FLey and FL by using sequent calculi.
We will also introduce FL, which is a fragment of FL.

In Chapter 3, we will introduce left residuated lattices which is algebras for FL,,. We
will show characterizations of some basic properties which are filters for left residuated
lattices, subdirectly irreducible left residuated lattices and simple left residuated lattices.
Lastly we will show the existence of a lattice isomorphism between the set of all filters
and the set of all congruences.

In Chapter 4, we will introduce a condition (C},) on left residuated lattices, for each n.
When a left residuated lattice satisfies the condition C),, we will demonstrate that filters
of left residuated lattices coincide those of commutative residuated lattices. Next, we will
introduce a classification of left residuated lattices by C),.



Chapter 2

Preliminaries

The sequent system LJ which Gentzen introduced for intuitionistic logic has three kind
of structural rules (exchange, contraction and weakening). Roughly speaking, the se-
quent calculus FLy, is obtained from intuitionistic logic Int by eliminating contraction
and exchange rules. Also, sequent calculus FL.y, is obtained from intuitionistic logic by
eliminating only contraction rule. Since FL,,, is closely related to FL,,, we compare FL,,
and FLey,. In this chapter, first we introduce the notations in this thesis and preparation
for lattices. Next, we will introduce a sequent calculus FLey. Lastly we will introduce
sequent calculi FL, and FL, . The latter has single implication.

2.1 Preparations for lattices

We will explain notions in this paper. We will assume a familiarity with the most basic
notions of sets. A class of sets is frequently called a family of sets. Define I as I =
{0,1,2,3,---}. The notations A;, i € I, and (4;);cr refer to a family of sets indexed
by a set I. We assume readers are familiar with membership (€), subset (C), union (U),
intersection(N) and ordered n-tuples({xy,--- ,z,)).

Definition 1 (Partial order sets (posets)) A binary relation < defined on a set A is
a partial order on the set A if it satisfies, for any x,y,z € A

(O1) z <z (reflexivity),
(02) z<yandy < zimplya=> (antisymmetry),
(03) z<yandy < zimply z < z (transitivity).

A nonempty set with a partial order on it is called a partial order set, or briefly a
poset.

we call (O1)-(O3) axioms of posets. We define lattices, as follows.



Definition 2 (Lattices) Let (M, <) be a poset. When for any x,y € M, there exists
supremum x N y and infimum x Ay of the set {x,y} on M, M = (M,V,A) is said to be
a lattice.

Now, we call that V is join and A is meet. The following proposition gives an alterna-
tive definition of lattices.

Proposition 1 An algebra M = (M, V, A) is a lattice, if it satisfies, for x,y,z € M,

(L1) eV =z, s Nz =z, (idempotent laws),
(L2) aVy=yVz, zcANy=yAu, (commutative laws),
(L3) zV(yVz)=(xVy Vz, zA(yAz)=(@xAy) Az, (associative laws),
(L4) 2V (zANy) ==z, zA(zVy) ==z (absorption laws).

We call (L1)-(L4) axioms of lattices. Next, we define bounded lattices as follows.

Definition 3 (Bounded lattices) An algebra M = (M, V, A,0,1) with two binary and
two nullary operations is a bounded lattice if it satisfies,

1. M = (M,V,A\,0,1) is a lattice,
2.2 N0=0,2V1=1 foranyx € M.

For brevity’s sake, we suppose that any lattice under consideration in this paper is
non-trivial, i.e. it has at least two elements. In this paper, we do not consider a trivial
lattice which has only one element. Lastly we define congruences.

Definition 4 (Congruences) Let A be an algebra of type F and 0 be an equivalence
relation (that is, a reflexive, symmetric, and transitive binary relation) on A. Then, 0 is
a congruence on A if 0 satisfies the following;

for each n-ary function symbol f € F and elements a;,b; € A, if (a;, b;) € 0 holds for
1 <¢<n then

(fA(ar,...,an), fA(by,...,D,)) €0

holds.



2.2 Sequent calculus FLy

The language of FLey, consists of a logical constance 1, logical connectives D, Ap, Vy,
and * (called multiplicative conjunction or fusion). The negation —A is defined as an
abbreviation of A D L. Sometimes we abbreviate the formula (A D B) A (B D A) to
A = B. A sequent is of the form A, Ay, ..., A,, — B for m > 0 where A, As,... , A, B
are formulas. The system FLey consist of the initial sequents and rules of inference
given below. (Here, A, B are formulas, C is either a formula or empty, and ', A, 3 are a
(possibly empty) sequence of formulas.)

1. Initial sequents:
(a) A— A

(b) L —

2. Structural rules:
(Cut rule)

r-A AA-C
LA —=C

(Weakening rule)

r—c¢

— . .
AT S0 (weakening right)

(weakening left)

(Exchange rule)

3. Logical rules:

AT C BT —=C
A\/LB,F—>O

7



r—A B,A—>C’(D_>) Al —- B
ADB,I'’)A—=C ' -ADB

(—=2)

r— A AT — )
Ao R ey (SRight)
r—-A A—B VA, B, A — C

Fasa:8 % TasBascr™)

The provability of a given sequent is defined in the usual way. We say that in FL¢y, a
formula A is provable, when the sequent — A is provable in it. For more information on
syntactic and semantic properties of FLegy, see [8]. The cut elimination, the decidability
and Craig’s interpolation theorem of FLey, hold. Moreover, a Hilbert-style formulation of
FL.y is given, a Kripke-type semantics for FLe,, and related systems is introduced and
their completeness with respect to the semantics is proved.

2.3 Sequent calculus FLy,

It is natural to introduce two implications on FL,, since it does not have exchange rule.
The negation —; A and —5 A are defined as an abbreviations of A D; L and A D, 1,
respectively. The system FL,, consists of the initial sequents and rules of inference given
below.

1. Initial sequents:
(a) A— A
(b) L —

2. Structural rules:
(Cut rule)

r—-A AAY—>C
ADTY —=C

(Weakening rule)

NLA—=C
AA—=C

(weakening left) (weakening right)

r— A

3. Logical rules:

FLAA—C
F,A/\LB,A%C

B, A—C
F,A/\LB,A%C

(A1 —) (Az2 =)



r—A I'=>B

Toan B M
r— A (= Vi) ' - B (= V1)
I > AV, B W T 5 Av, B L2
A A —C F,B,A—>C(v )
I,AV;. B,A = C L
r—A A,B,E%C(D_}) I A— B (51)
AAD, B, - C " I >A> B !
r-A ABY—C Al - B

AT A5, BxoC 27 Toas,5077)

r—= A4 rA—
—_— | T L 7’ —/ )
_llA,F —>( ! eft) I — _|1A( IRZght)
r—= A4 AT —
— (-9 Left —  (—~yRight
F, _|2A —>( 2 ef ) I — _|2A( QRZg )
r—-A A—B VA, B, A — C

Tas4:8 Y TasBascor ™

The provability of a given sequent is defined similarly to FLey. We say that in FLey
a formula A is provable, when the sequent — A is provable in it. In this paper, for
simplifying the discussion, we consider only one implication (D7) and one negation (—y).
We call this restricted system FL,. Clearly, FL.,, C FL,, holds.

The class of logics over FL! is ordered by the set inclusion C. Of course, FL! is the
smallest logic among them and the set of all formulas is the greatest one. The latter is
called the inconsistent logic. Here we are concerned only with consistent logics, among
which the classical logic Cl is the greatest.

Suppose that {L;},.; is a set of logics, where I is a (possibly infinite) nonempty set of
indices. Then, the set intersection M;c;L; of them becomes also a logic. It is obvious that
their set union is not always a logic, so we define,

VierL; = {A : there exist ji, ... ,jx € I and formulas Bj, € Lj;, for 1 <
t < k such that the formula (Bj; x -+ % Bj) D A is provable in FL,,}

Then, we can show that V;crL; is the smallest logic which includes all logics L;s.

9



Let Ly and L be logics such that Ly C L. Then, L is said to be finitely aziomatized
over Lo by the axioms Ay,..., A, if L is the smallest logic contains both Ly and the
set {A1,...,A,}. Then, for any formula C, C is in L if and only if there exist formulas
By, ... ,B,(for some n > 0), each of substitution instance of some Ay, such that the
formula (B * --- % B,) D C belongs to Ly. The logic L is denoted by Lg[A1, ..., An]
in this case. A logic L is said to be finitely aziomatizable over Lo when there exist some
axioms by which L is finitely axiomatized over Ly. We will omit the word ”over Ly” when
Ly is FL,,. It is easy to see that L[Ay,...,A,] = L[A; *---x A,], by the help of the
weakening rule of FL,, i.e. by using the fact that (C' x D) D C' is provable in FL,. It is
easy to see the following.

Proposition 2 Suppose that logics L and L' are finitely axiomatized over Loy by the az-
ioms A and B, respectively. Then, logics LN L' and LV L' are finitely aziomatized over
Ly by axioms AV B and A x B, respectively. (In the latter case, it is necessary to assume
moreover that A and B have no propositional variable in common)

10



Chapter 3

Left residuated lattices

In this section, we will introduce left residuated lattices. As shown later, the class of
left residuated lattices gives algebraic semantics for FL. , as the class of Boolean algebras
(and of Heyting algebras) does for classical logic (and intuitionistic logic, respectively).
For a left residuated lattice, the commutativity of the monoidal operator is not always
assumed, since commutativity corresponds to exchange rule. The class of commutative
residuated lattices is algebraic semantics for FLey,. We will discuss properties of left
residuated lattices, comparing with commutative residuated lattices.

3.1 Definition of left residuated lattices

Definition 5 (Left residuated lattices) An algebra M = (M, A,V,-,—,0,1) is a left
residuated lattice if it satisfies

1. (M,A,V,0,1) is a bounded lattice with the greatest element 1 and the least 0,
2. (M,-,1) is a monoid,

3.cca<bec<a—b (left-residuation),

4. w-(zVy)-z=(w-z-2)V(w-y-2).

The relation between the monoidal operator - and its left residual — shown in 3 of
Definition 1 is called the law of left residuation. In the following, we assume that left
residuated lattices are always non-degenerate ones, i.e. left residuated lattices satisfying
0 # 1. We define ~ x by ~ x =x — 0. The term g -- -z is denoted by x".

n

It is easy to see following properties from the above definition.

Lemma 1 Let M be a left residuated lattice. For all x,y,z € M
1. Ife <y, thenz-x<z-yandzx-z2<y-z,

2. If x <y, then z > x <z —y,

11



If v <y, theny — 2 <x — z,
(r—=y) -z <y,
z-(x—=y)<z—2z-y,

(z = 2)(y—2) <y—rz,
z—=x<(y—2) — (y—x),

z—=(y—x)=(2-y) =z,

© X X S &

(z=2)={ly—=2) = H—=2))=1
10. 1 -z ==,

1, 2 —1=1,

12. v - x =1,

13. x = y=max{z]z -z < y}.

Here, we can show the following, similarly to Idziak [3] for commutative residuated
lattices.

Proposition 3 The class all left residuated lattices forms a variety.

A variety K is congruence-distributive when the lattice of all congruence relations of any
algebra in K is distributive, and is congruence permutable when every two congruences
of any algebra in K is permute. Moreover, if K is both congruence-distributive and
congruence permutable, it is said to be arithmetical. Then the following holds.

Proposition 4 The variety of left residuated lattices is arithmetical.

3.1.1 Comparison with commutative residuated lattices

Definition 6 (Commutative residuated lattice) An algebra M =
(M,\,V,-,—,0,1) is a commutative residuated lattice if it satisfies

1. (M,A,V,0,1) is bounded lattice with the greatest element 1 and least 0,
2. (M,-,1) is a commutative monoid,
S.cca<bec<a—b.

When we assume the commutativity of the monoidal operator -, clearly (M, -, 1) is a
commutative monoid. The following condition (4) becomes redundant in commutative
residuated lattices, as shown below.

w-(xVy)-z=(w-z-2)V(w-y-2) (4)

Before proving (4), we show the following i and ii.

12



i o<y implies v -2<y-z

i (zVy)-z=(x-2)V(y-=2)
Proof of i.
Suppose that x < y.
y-z2<y-z & y<z—y-z
= r<y<z—y-z (.0 Bytheassumption)
= z-2<5y-2

Proof of ii.
The inequality (zxUvy) -z < (z-2) U (y - 2) can be shown as follows.

{x-zg(x-z)\/(y-z)cmd o {x<z—>( 2)V (y-2)and

y-z2<(x-2)V(y-2) y<z—=(x-2)V(y-2)
& rsVy<z—=(x-2)V(y-2)
& (eVy)-z2<(z-2)V(y2)

To show (z-2)V (y-z) < (zVy)-z, by using i.

r<zVyand z-z2<(xVy)-zand
y<zVy y-z<(zVy)-z

S (T-2)V(y-2)<(zVy) -z

Hence, (zVy)-z=(x-2)V (y-2).
Now, by using the commutativity, we can show (4) easily.

3.2 Connections between the class of left residuated
lattices and FL.,

We will focus on connections between the class of left residuated lattices and FL,,. At
first, we define the wvalidity of a formula (of FL,,) in a given left residuated lattice.

Let M be a left residuated lattice. Any mapping v from the set of all propositional
variables to the set M is called a valuation on M. A given valuation v can be extended
to a mapping from the set of all formulas to M, inductively as follow.

1. v(Ll) =0,
v(ANAL B) =v(A) ANv(B),
3. v(AVy B) =v(A) Vu(B),

13



4. v(AxB) =v(A)-v(B),
5. v(A D B) =v(A) = v(B).

A formula A is valid in M if v(A) = 1 holds for any valuation on M. The set of formulas
which are valid in M is denoted by L(M). Next, a given sequent A;,---, A, — B is said
to be valid in M if the formula (A; % --- % A,;,) D B is valid in it. Then, the following
completeness theorem of FL, can be shown.

Theorem 1 A sequent S is provable in FL., if and only if it is valid in all left residuated
lattices.

It is easy to see that L(M) is a logic over FL., for any left residuated lattices M, which
is called the logic determined by M. Conversely, we can show that for any logic L over
FL,, there exists a left residuated lattice M such that L = L(M). The latter can be
proved by taking the Lindenbaum algebra of L for M.

3.3 Definition of filters

Definition 7 (filters) A nonempty subset F of a left residuated lattice M is an im-
plicative filter (or, simply a filter) if for a,b € M it satisfies

1. 1€F,
2. a,a—>beF imply beF,
3. a€F implies (a—b) —beF.

The following proposition is equal to the above definition.

Proposition 5 A nonempty subset F of a left residuated lattice M is a filter, if for
a,b € M it satisfies,

1.a<banda € F imply beF,
2. a,be F implies a-be€eF,

3. a€F implies (a—b) —beF.
Proof.

1. Conditions of filters implies conditions in Proposition 5.

14



(a) a <banda € Fimply b€ F:

a<b & 1-a<b
S 1<a—b
& a—b=1€F
(" The greatest element on M is 1)
= beF
(. By the assumption and the condition 2 of filters)

(b) a,b € F implies a-b € F:

a-b<a-b & a<b—(a-b)
< 1<a—{b—(a-b)}
< a—={b—(a-b)} =1
(. The greatest element on M is 1)
= b—(a-b)eF
(. By the assumption and the condition 2 of filters)
= a-belF
(. By the assumption and the condition 2 of filters)

(c) a € F implies (a = b) — b€ F:
It is the same as the condition 3 of filters.

2. Conditions of Proposition 5 imply conditions of filters.

(a) 1€ F:
Since F is not empty, there exists at least one element in F. Let us call it =
holds. Clearly, z < 1. By the first condition of Proposition 5, 1 € F' holds.

(b) a,a — b € F implies b € F":
we have (a = b)-a <bby a—b<a—b Here, (¢ = b)-a € F since using
the condition 2 of Proposition 5. Thus, by the condition 1 of Proposition 5
and (@ — b) -a < b, b € F holds.

(c) a € F implies (a = b) = b€ F:
It is the same as the condition 3 of Proposition 5. 1

The following proposition is also equal to the definition of filters.

Proposition 6 A nonempty subset F of a left residuated lattice M is a filter, if for
a,b,c € M it satisfies,

1. 1€F,

2. a,b— (a—c)€F implies b—ceF.

15



Proof.

1. Conditions of filters imply conditions of Proposition 6
The condition 1 of Proposition 6 is the same as the condition 1 of filters. It is enough
to show that a,b — (a — ¢) € I implies b —c€ F.
Since a € F, (a — ¢) — ¢ € F holds for any ¢ € M. By the condition 9 of Lemma

L,
{la=¢)=ct—=[{b=(a—=c)}—(b—c)]=1€F
By the second condition of the definition of filters,
{b—=(a—c¢c)} > (b—c)eF

By the assumption, b — (a — ¢) € F holds. Thus, by the second condition of the
definition of filters,

b—ceF.

2. Conditions of Proposition 6 imply conditions of filters.

(a) 1€ F:
It is the same as the condition 1 of Proposition 6.

(b) a,a —be F implies be F:

1 = (a=b)—=(a—=b=1={(a—=b)—(a—>b}eF
= 1> (a—>beF
(" By the assumption and the condition 2 of Propsition5)
= 1l=b=beF
(". By the assumption and the condition 2 of Propsitionb)

(c) a€ F implies (a—0b) —>beF:

(a—=b) —(a—=b)=1€F
= (a—>b)—>beF
(. By the assumption and the condition 2 of Propsition5)

Thus, we can define filters by using either conditions in Proposition 5 or those in

Proposition 6.
Let S be a nonempty subset of a left residuated lattice M. We can define the minimum

filter including S, as follows.

16



Lemma 2 Let S be a nonempty subset of a left residuated lattice M. Define A3 by
induction on M, as follows.

Dy = S

A = {wy - -wpw; € DY k> 1}

D} = {(zx—y) —ylreA],ye M}
Al = {wy---wg|w; € DYk > 1}

Dj = {(z—y) —»ylveAye M}
Angl = {wl"'wk|wi€D§+1,k21}

Then, H = {x|m >0, 2€ A5 2 < x} s the minimum filter including S, called the filter
generated by S.

Proof. At first, we confirm Df C Dy C D§ C ---. Forany z € D}, (z = 2) = z =
z € D, holds by z € A7. Thus, Dy C A7 C D7, holds.
Next, we will show that H = {x|m >0, z€ A% 2 < x} is the minimum filter including

m?

S. First, we show that H is a filter including S.

1. H is a filter including S.
We will demonstrate this by using Proposition 5.

(a) x € H and z <y for y € M imply y € H:
By the assumption, z < x for some z € A> and some m(> 1). Since z < y,
2z < y holds. Therefore, y € H.

(b) x,y € H implies z -y € H:
By the assumption, there exist 29, z; which satisfy zg € AS 20 < wand z; € A3,
z1 < y, respectively. We have zp - 21 < x -y by the condition 1 of Lemma 1.
Since 2y - 21 € Afnax{m,n}ﬂ, x -y € H holds.

(c) z € H implies (z — y) —y € H for y € M:
Before proving (c), we will first show the following.

u<w implies w—z<u—2 (3.1)
The proof of (3.1).

w—=z<w—z & (w—z) w<z
= (w—=z2)u<(w—2)-w<z( ulw)
= w—z<u—2

Suppose that z € A and 2z < 2. Then, x — y < z — y holds by using (3.1).
Using (3.1) again, we have (z » y) -y < (x = y) = y.
By (z »y) »y€ Ay, (r = y) =y € H holds.

17



(d) H includes S:
It is obvious by the definition of H.

2. H is the minimum filter including S:
We will show H C F for any filters F' including S. First, we will demonstrate
AP C F inductively.

A5 C F is obvious. Suppose that A7 C F. Take w € A,f“. By the definition, we
can express w as {(y1 — z1) = 21} {(y2 = 22) = 22} - - {(yn — 2) — 2} for some
Y1, Y2, Yn € AY and some 21, 29, -+ , 2z, € M. Since y1,y2, -+ ,y, € Ay C F and
the conditions 2, 3 of Proposition 5, w € F' holds. Therefore, A/,fJrl CF.

Hence, AZS C F for any 7 > 0.
Now, suppose that * € H. Then, there exists z € A> such that 2 < x. Since
A5 CF, 2z € F and hence v € F. 1

The filter generated by S is expressed as (S). For a € M, ({a}) is denoted by (a),
which is called the filter generated by a. We are able to describe (a) as the following.

(a)y ={xlm >0, z€ A z<uzx}
3.3.1 Comparison with filters of commutative residuated lat-
tices

Filters of commutative residuated lattices are expressed as follows.

Definition 8 (filters) A nonempty subset F of a commutative residuated lattice M is a
filter, if for a,b € M it satisfies

1. 1€ F,
2. a,a—beF tmplies beF.

Now, the third condition of filters of left residuated lattices in Definition 7 is obtained
as follows.

Let M be a commutative residuated lattice and F' be a filter of M. Suppose that a € F
and b € M.

a—-b<a—b & (a—b-a<b

a-(a—=0b)<b (. commutativity)
a<(a—b)—b

1<a— ((a—0b) —b)

a— ((a—0b) —0b=1

S I

(" The greatest element on M is 1)

Thus, a — ((a — b) — b) = 1 € F. By the assumption (a € F') and the second condition
of filters in Definition 8, we have (@ — b) — b € F.
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Let S be a subset of M. Now, we will define the filter generated by S on M. Similarly
to the above, we also have a < (@ — b) — b for any a,b € M. For any n > 0, any
s € A and any t € M, we have s < (s = ¢) = t. Thus, {z|m >0,z € A,z <z} =
{z|z € A,z < x} holds. Therefore, by the definition of A3, the filter (S) generated by
S can be expressed as follows.

(S) =A{zxlay---ar < x for some ay,--- ,a, € S}
In particular, the filter (a) generated by singleton set {a} is expressed as follows.

(a) = {z]a® <z for some positive integer k}

3.4 Relations between filters and congruences

For left residuated lattices, there exists a lattice isomorphism between the set of all filters
and the set of all congruences, (see [10]). We demonstrate this as follows.

1. Showing that both the set Fyp of all filters of a given left residuated lattice M and
the set C'onM of all congruences of M are complete lattices.

2. Defining a map from ConM to Fy and a map from Fyp to ConM.

3. Showing that these maps give lattice isomorphisms between Fy; and C'onM.
First, we define complete lattices, (see [2]).

Definition 9 (Complete lattices) A poset P is complete if for each subset A of P
both supA and infA exist (in P). All complete posets are lattices, and a lattice L which
18 complete as a poset is a complete lattice.

The elements supA and infA will be denoted by VA and AA, respectively. Next, the
following is shown.

Proposition 7 Let P be a poset. Then, P is a complete lattice if P has a largest element
and the inf of any nonempty subset exist. Also, P is a complete lattice if P has has a
smallest element and the sup of every nonempty subset exist.

By using Proposition 7, we will show that the set of all filters of a given left residuated
lattice is a complete lattice.

Lemma 3 Let M be a left residuated lattice and Fyg be the set of all filters of M. Then,
(Fa, VEy, ARy ) 08 a complete lattice.

Proof. The greatest element is M.
Suppose G = {F;|i € [} C Fy. We will show Ap,,G = NG = Nier F; € Fm.
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1. NerF; is a filter.

(a) 1e ﬂiE]Fii

Since all filters includes 1, 1 € N, F; holds.
(b) a,a — b € NieF; implies b € Ny Fi:

For a,a — b € N/ Fj,

a,a > b€ Nie/F;, & a,a—beF; (foranyjel)
= beF; (foranyjel)
& b e NierF

(¢) a € NierF; implies (a — b) — b € Ny F; for any b € M:
(FOI‘ a € ﬁieIFi),

a €NierF; & a€F; (foranyjel)
= (a—=b) —=beF; (foranyjel)
<~ (a—>b)—>b€ﬁi€1Fi

2. NjerF; is the infimum of G.
For any ¢ € I and any F; € G, N;er F; C F; holds. Suppose B which satisfies B C F;
for any 2 € I. Then, B C Nj;cr F;. Therefore, N;cr F; is the infimum of G. I

It is easy to see that Vg, and Ag,, are defined as follows.
For any F,G € Fy,

FVg, G © the filter generated by F UG

FAp, G ¥ FNnG

Next, by using Proposition 7, we will show that the set of all congruences is a complete
lattice.

Lemma 4 Let M be a left residuated lattice and ConM be the set of all congruences of
M. Then, (ConM,V con, Acon) S a complete lattice.

Proof. The greatest element of ConM is § which contains (z,y) for any z,y € M.
For any Y = {91|91 € CO?’LM, 1€ [} - OORM, we will show Acg,X = /\Conielgi =
ﬂieIG € ConM.

1. Reflexivity:
For any i € I, (a,a) € 0; holds. Thus, (a,a) € N;c/0;.

2. Symmetry:
Suppose (a,b) € Nier0;. We have (a,b) € 6; for any i € I. Hence, (b,a) € ;. Thus,
(b, a) € Nicrb.

20



3. Transitivity:
Suppose (a,b), (b, c) € Nierb;. Since (a,b), (b, c) € O; for any i € I, {(a,c) € 6; holds.
Thus, {(a,c) € Nier0;.

4. Preservation of operators:

Let @ be any operators on ConM. Take any a;,b; as (ai,b), - ,{ay, b,) € 6;
for any ¢ € I. Then, we have (a; ® as @ -+ D ay,, 0y B by ® -+ D by,) € ;. Thus,
<a1®a269---69an,b1EBbQGB---Gan)Gﬂiefﬁiholds. 1

In (ConM, Veon, Acon)s Vcon and Ace, are defined by the following, (see [2]).
Firstly, we define the relational product ros of two binary relations r, s on M. It is given
by: (a.b) € r o s if and only if for some ¢, (a,c) € r,{c, b) € s. For any 0,0, € ConM,

91\/00n92 déf 91U(91092)U(91092091)U(91092091092)U"'

01 Ncon 02 o 01 N Oy

Next, we will define a map form Fy; to ConM as follows. Let M be a left residuated
lattice, and F be a filter of M. Define ~¢ as follows,

def
r~pYy = —y,y—xeF.
Lemma 5 The relation ~g s a congruence on M.

Proof. We will show that ~g is a congruence.

1. Reflexivity:
Since v - =1¢€ F, x ~g x holds.

2. Symmetry:
Since x ~p y, © — y,y — x € F holds. Then, it is clear that y ~p x.

3. Transitivity:
Suppose © ~g y and y ~g 2. T — Y,y — x,y — 2,2 — y € F holds. Since the
condition 9 of Lemma 1, (y — z) — {(z = y) = (2 > x)} = 1 € F holds. Since
y—>x€F, (z—>y) — (22— x) € F. Since z -y € F, we have z - = € F.
Similarly, we can show © — 2 € F. Therefore, x ~g z holds.

4. Preservation of operators:
(a) Preserving A (meet):
We will show that a; ~p b1, as ~p by implies (a; A ay) ~p (b1 A bs), as follows.
i. Suppose ay ~p by. Then, (¢ A as) ~F (¢ A by) holds for any ¢ € M.
ii. Suppose a; ~p b;. Then, (a; A ¢) ~g (b1 A ¢) holds for any ¢ € M.
iii. By ¢ =ay on i, (a1 A ag) ~F (a; A by).

By Cc = b2 on 11, (a1 VAN bg) ~F (b1 VAN bg)
Since ~p is transitive, we have (a; A as) ~g (b1 A by).
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The proof of i.
By the assumption, we have ay — by, by — as € F.

cAas < ay and N (ay = bo)(c A ag) < (ag — by)ay and
cAhas <c (ay = bo)(c A ag) < (ag — by)c
N (ay = bo)(c A ag) < by and
(ay = by)(cANag) < c

(" (a2 = by)as < by and (ay — by)c < ¢)
& (ag = by)(cNay) < cAby
& ag = by <(cNhay) = (cAby) €F
(. By the assumption (ay — by € F') and
Proposition 5)

We also have by — as < (¢ Aby) — (¢ Aay) € F. Hence, (¢ A ay) ~p (¢ A by).
The proof of ii
By the assumption, we have a; — b;,by — a; € F.

a A e < a; and N (a1 = by)(a1 Ae) < (ag = bi)ay and
am Ne<c (a1 = by)(a1 Ae) < (a1 = by)c
N (a1 = by)(a1 Ac) < by and
(ag = by)(a1 Ae) < c

(" (a1 = b1)ay < by and (a1 — by)e < ¢)
& (a; = b)(ag Ae) <b Ac
& a; = b <(agNe)—=(byAe)€F
(. By the assumption (ay — by € F) and
Proposition 5)

We also have by — a; < (by Ac¢) = (a1 Ac¢) € F. Hence, (a1 A ¢) ~p (b1 A c).

(b) Preserving V (join):
We will show that a; ~p by, as ~p by implies (a; V az) ~g (by V by), similarly
A.
i. Suppose ay ~p by. Then, (¢ V as) ~x (¢ V by) holds for any ¢ € M.
ii. Suppose a; ~p b;. Then, (a; V ¢) ~g (b V ¢) holds for any ¢ € M.
iii. By ¢ =ay on i, (a1 V as) ~r (a; V by).
By ¢ = by on ii, (a; V by) ~g (b1 V by).
Since ~p is transitive, we have (a; V ay) ~g (b1 V by).

The proof of i

22



By the assumption, we have ay — by, by — as € F.

as — by < a — by and (ag — by)ay < by and
as = by <c—c=1 (ag — by)e < ¢

{ (ay — be)as < ¢V by and
(ay = ba)e < ¢V by

(b <eVbyandc<cVby)

(ay = bo)e V (ag — by)ag < ¢V by

(ay = by)(cV as) < cV by

ag — by < (cVay) = (cVby)eF
(.- By the assumption (ay — by € F)

t e

and Proposition 5)

We also have by — as < (¢ V by) — (¢ V ay) € F. Hence, (¢ V ay) ~p (cV by).
The proof of ii
By the assumption, we have a; — by,b; — a; € F.

{a1—>b1§a1—>b1and o {(a1—>b1) 1 < by and

o, — b <c—e=1 (a3 — by) <ec

{ (a1 = b1)a; < by Vcand
(a3 = b)e<b Ve

(b <byVeandc<b V)

(ap = by)a; V (a; = b1)ce< b Ve
(ap = by)(a; Ve)<b Ve

ap >0 <(@Ve)—> (b Ve)eF
(" By the assumption (a; — by € F)

and Proposition 5)

Tt e

We also have by — a; < (b V¢) = (a1 V¢) € F. Hence, (a; V¢) ~p (b1 V ¢).

(c) Preserving the operation (—) :
We will show that a; ~p b, as ~F by implies (a; — az) ~g (by — b2). By the
assumption, we have a; — by,b; — ay,a0 — by, by — ao € F. First we will
show (3.2) and (3.3).

Here, (3.2) holds, as follows.

(a1 = az) = {(by > a1) = (b > ax)} =1€F

(. The condition 9 of Lemma 1)

(a1 — az) = (by > ay) € F (3.2)
(". By the assumption (by — a; € F) and Proposition 6)
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Here, (3.3) holds, as follows.

(ag = by) = {(by = as) = (by > by)} =1€F

(. The condition 9 of Lemma 1)

(by = az) — (by = by) € F (3.3)
(". By the assumption (az — by € F) and the definition of
filters)

=

By using (3.2) and (3.3), we have the following.

{(by = az) = (by = ba)} = [{(a1 = a2) = (b1 = a9)}
—{(a1 waz) > (by = b))} =1€F
(. The condition 9 of Lemma 1)

= {(ag = as) = (by » a2)} = {(a1 = az) = (by > b))} € F
(" (3.3) and the definition of filters)

= (a1 = ay) = (by = by) €F
(.- (3.2) and the definition of filters)

We also have (b — by) — (a1 — a3) € F. Hence, (a1 — ay) ~F (b — bo).

(d) Preserving the operator (-) :
We will show that a; ~g by, ay ~p by implies (a; - az) ~p (b1 - by). First, we
will show (3.4) and (3.5).
Here, (3.4) holds, as follows.

ar — by <a; — b (g = by)-ap <y

(ag = by) - ay-as < by -ay

(g = b)) <ay-ay — by -ay

1<(a; = b)) — (a1 -as = by - as)

(ag = b)) = (a1 a9 = by-ax) =1€F

a;-ay — by -ay € F (3.4)
(" a; — by € F and the definition of filters)

LU
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Here, (3.5) holds, as follows.

ag = by < as = by & (ag = by)-ay < by

by - (ag — by) - ag < by - by

by - (ag = by) < ag — by - by

by < (az = by) — (ag — by - ba)

1 <b — {(ag = by) = (ag — by - b2)}

by = {(ay = b)) = (ay > by -by)} =1€ F

by — (ag = by - by) € F

(" ag — by € F and Proposition 6)

bi-as by by €F (3.5)
(" The condition 8 of Lemma 1)

LIRS (R

4

By using (3.4) and (3.5), we have the following.

(by -ag — by -by) = {(a1-ag — by - az) —

(a1 -ag — by -by)} =1€ F (. The condition 9 of Lemma 1)
= (a1-ay — by -az) = (a;-ay = by -by) € F

(.- (3.5) and the definition of filters)
= ai-ay —> b byeF

(.- (3.4) and the definition of filters)

We also have by - by — a; - as € F. Hence, a; - ay ~ by - bs. I

We will define a map from ConM to Fy; as follows. Let M be a left residuated lattice
and 6 be a congruence of M. Define Fj, as follows.

Fy < {al(a,1) € 0}
Lemma 6 Fjy is a filter.

Proof.

1. 1€ Fy:
By (1,1) € 6, we have 1 € Fj.

2. a,a — b € Fp implies b € Fy:

aeFy & (al1)€
= (a—>b1—0b)€b
= (a—>bb)cb
= (b,1) €0 (- By {(a = b,1) € 6, 0 is both transitive and symmetric)
s beF,
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3. a € Fp implies (a - b) — b € Fy:

a € Fy 1) e

a—>b1—>b) €0
a—b,b) €0
(a—b) = bb—0b)eb
(a—0b) —0b1)€b

a—b) >be Fy

a,
(
(
(
(
(

T4 4 e

The following Theorem 2 shows the existence of the lattice isomorphism between the
set Fyp of all filters of a left residuated lattice M and the set ConM of all congruences of
M.

Theorem 2 Let M be a left residuated lattice. Then, there exits a lattice isomorphism
between the set of all filters of M and the set of all congruences of M.

Proof. Let the set of all filters of M be Fyg and the set of all congruences of M be
ConM. By Lemma 3,4, Fy and ConM are complete lattices. We define a map « from
Fy to ConM and a map 3 from ConM to Fyy.

Oz(F) = ~Fm
BO) = Fy
1. « is one-to-one.
For any F, G € Fyp, we will show F' # G implies a(F) # o(G).
Without losing the generality, we can suppose a € F\G. Sincea - 1=1,1 - a =

a € F, {(a,1) € a(F) holds. On the other hand, since 1 - a=1a ¢ G, (a,1) € a(G)
does not hold. Hence, a(F) # a(G).

2. « is onto.
For any 0 € ConM, we will show § = a(3(9)).

(a) 0 C a(B(9)):
For any {(a,b) € 0,

(a,by €0 = (a—b,1),(b—>a,1)€b
& a—bb—ac p(0)

& (a,b) € a((0))

(b) a(B(0)) C 0:
For any (a,b) € a(3(0)),

(a,b) € a(B(0)) & a—bb—ac B(0)
& (a—0b1),(b—al)ecb
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Here, for (a — b,1) € 6,

(a—0b1)€ebl < (1,a—0b €

= (1-a,(a—b)-a)€b

= (l-a,{(a—=b)-a}nbyeh (.(a—b)-a<b)
and
({(a = b)-a}Nband)ycd

= (a,anb) e

We also have (b,aNb) € 0 by using (a,b) € 6. Hence, (a,b) € 6.

Therefore, a(3(f)) = 6 holds. This says that any # € ConM is in the range of a
map «. Thus, « is onto.

3. « is order preserving.
We will show that for any F,G € Fy, F C G if and only if o(F) C a(G).

(a) Only if part:
For any (a,b) € a(F),

(a,b) e a(F) & a—>bb—acF
= a—=bb—aceCG (-FCQG)
< {a,b) € a(G)

(b) If part:
We show that FF ¢ G implies a(F) € «(G). For a € F\G, (1,a) € a(F) holds,
while (1,a) € a(G) does not hold. Hence, a(F) € a(G).

4. « is a homomorphism.

(a) Preserving Vp,,:
Suppose that any F, G € Fy. We will show that a(F Vg, G) is the least upper
bound of a(F) and a(G) on ConM. We have already known that ConM is a

complete lattice which has Acon, Voon, by Lemma 4.

i. We show that a(F) C a(F Vg,, G) and o(F) C o(F Vg, G).
We have F' C F'Vg,, G and G C F Vg G. Since « is order preserving,
a(F) C a(F Vpy, G) and o(F) C aF Vr,, G) hold.

ii. Next, suppose that both a(F) C X and «(G) C X for X € ConM. We
show that a(F Vg, G) C X.
Since « is onto and one-to-one, there exists a H which satisfies o(H) = X
for H € Fm. By o(F) C a(H),a(G) C a(H) and order-isomorphism
of a, we have F' C H and G C H. Hence, F' Vg, G C H. Since o is
order-isomorphic, we have a(F Vp,, G) C a(H) = X.

By using i, ii, a(F Vg, G) = a(F) Veen @(G) holds.
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(b) Preserving Ap,,:
Suppose any F, G € Fyp. Since Ay and Ac,p, are defined by N, we have a(F Ag,,
G) = a(FNG) and a(F) Acon a(G) = a(F) N a(G).
Now, we will show a(F NG) = a(F) Na(G).

i a(FNG) CalF)NalG):

FNGCFand a(FNG) Ca
{FﬂGQG {a(FﬂG)Qa(G)
& a(FNG) CalF)NalG)

ii. a(F)Na(G) C a(FNG):
For any a € a(F) N a(G),

acaF)Na(@) & a€alF)andac oG)
= beF, be G (forbsuchthat a = a(b))
(" ais one — to — one and onto)
be FNG
a(b) € a(FNG)
a € a(FNQG)

Tt ¢

Hence, a(F Ar G) = a(F) Acon a(G). 1

By the above theorem, we can consider that each filter of M corresponds to a congruence
of M and vice versa.

3.4.1 Comparison with commutative residuated lattices

On a commutative residuated lattice M, we also have a lattice isomorphism between the
set of all filters of M and the set of all congruences of M, similarly to Theorem 2. We are
able to use the same proof as the above, since the class of left residuated lattices includes
the class of commutative residuated lattices.

3.5 Characterization of subdirectly irreducible left
residuated lattices

In this section, we will characterize subdirectly irreducible left residuated lattices.

Let M and Nj for each i € I be left residuated lattices. By a subdirect representation
of M with factors N;, we mean an embedding f :M— II;c;N; such that each f; defined
by fi; = p; o f is onto Nj for each ¢ € I. Here, p; denotes the i-th projection. A left
residuated lattice M is subdirectly irreducible if it is non-degenerate and for any subdirect
representation f :M—> II;c;IN;, there exists a j such that f; is an isomorphism of M onto
N;.
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From Birkohoff’s subdirect representation theorem it follows that every left residuated
lattice has a subdirect representation with subdirectly irreducible left residuated lattice.
( see [7]). Note that when a left residuated lattice M is subdirectly represented by a
set{Nj} ., of left residuated lattices, the logic L(M) determined by M can be expressed
as ﬂjE]L(Nj).

By Theorem 2 and the following lemma (see [2]), it is easy to show the following
corollary.

Lemma 7 Let M be a left residuated lattice. Define A by A = {(a,a)|la € M}. An
left residuated lattice M s subdirectly irreducible if and only if there is the minimum
congruence in ConM — {A}.

Corollary 1 A left residuated lattice is subdirectly irreducible if and only if it has the
second smallest filter, i.e. the smallest filter among all filters except {1}.

Next, we will show the following by corollary 1.

Lemma 8 A left residuated lattice M s subdirectly irreducible if and only if there exists
an element ¢(< 1) such that for any x < 1 there exists z € AX (m > 0) for which z < ¢
holds.

Proof. By Corollary 1, it is enough to show that a left residuated lattice has the second
smallest filter if and only if there exists an element ¢(< 1) such that for any < 1 there
exists z € AZ (m € I) for which z < ¢ holds.

1. Only if part:
Let Fy be the minimum filter which includes {1} properly. Since Fjy is not {1},
we can suppose that there exists an element ¢ € Fy (¢ < 1). Let G, be the filter
generated by z for any x € M (x < 1). We can write G, as follows.

Gy ={um>0,z€ A7  z < u}

By Fy C G, ¢ € Fy implies ¢ € G;,. Hence, z < ¢. Therefore, we have that there
exists ¢(< 1) such that for any x < 1 there exists z € AT (m > 0) for which z < ¢
holds.

2. If part:
Take ¢ which satisfies the assumption. Let F. be the filter generated by ¢, which
can be written as follows.

F.={z|l > 0,2 € A7,z <=x}

Take any filter F' except {1}. We will show F,. C F.

Take any w € F\ {1}. AY C F holds for any n > 0. By the assumption, z < ¢ holds
for some z € AY (m > 0). Thus, z € F. Hence, ¢ € F' by Proposition 5 and the
assumption. Since F, is the minimum filter including ¢, F,. C F holds. Therefore,
F, is the minimum filter which includes {1} properly. 1
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3.5.1 Comparison with commutative residuated lattices

We also have Corollary 1 on commutative residuated lattices. Now, the subdirectly irre-
ducible of commutative residuated lattices are expressed as follows.

Proposition 8 A commutative residuated lattice M s subdirectly irreducible if and only
if there exists an element c¢(< 1) such that for any v < 1 there exists a positive integer m
for which x™ < ¢ holds.

In section 3.3.1, the filter generated by x is defined as G, = {u|k >0, ¢ < u} By
using this filter, we can show the above proposition in the similar way as Lemma 8.

3.6 Characterization of simple left residuated lattices

In this section, we will discuss a simple left residuated lattice which is a special type of
subdirectly irreducible left residuated lattices. A left residuated lattice M is simple if it is
a non-degenerate left residuated lattice which has only two filters {1} and M itself. It is
easy to see that for any filter F' of a given left residuated lattice M* the quotient algebra
M*/F is simple if and only if F' is a maximal filter. Now, we can give that the following
characterization of simple left residuated lattices holds.

Lemma 9 (Simple left residuated lattices) A left residuated lattice M is simple if
and only if for any x < 1 in M there exists a positive integer m such that 0 € AZ.

Proof.

1. Only if part:
For each x < 1, let H, be the filter generated by any x. We have H, =
{ulm >0,z € A% z < u} . By the assumption, there exist only two filters {1} and
M on M. Hence, H, = M > 0. By taking 0 for 2 we have 0 € A7 .

2. If part:
Let F' be an arbitrary filter except {1}. Thus, there exists at least one element
in F\ {1}. Take z € F (z # 1). Let H, be the filter generated by z. H, =
{uln >0,z € AT,z < u}. We have H, C F. By the assumption (0 € A7 for some
m > 0), 0 € H, holds. Thus, 0 € F. It follows F' = M. Therefore, M is the single
filter different from {1}. Thus, M is a simple left residuated lattice.

3.6.1 Comparison with commutative residuated lattices

Proposition 9 (Simple commutative residuated lattices) A commutative residuated
lattice M is simple if and only if for any x < 1 in M there exists a positive integer m
such that ™ = 0.

On commutative residuated lattice, we have already known that the filter H., generated
by = is H, = {u|k >0, 2F < u} By using H| instead of H, in the proof of Lemma 9, we
are able to obtain Proposition 9.
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Chapter 4

Left residuated lattices with C,

In this section, we will introduce the condition C,, (see [12]), and discuss left residuated
lattices with C,,. When a left residuated lattice M satisfies C,, we can show that filters
of M can be defined in the same as those in a commutative residuated lattices. Thus, we
can give a simple characterization of subdirectly irreducible left residuated lattices and
simple left residuated lattices with C),, as shown in 4.2.

Now, let us define N'C,, to be the variety of left residuated lattices with C,,. In 4.3, we
show that {NC,}, forms an infinite ascending chains.

4.1 The conditions C, and n-weak exchange

We introduce first (), for n > 1. On left residuated lattice M, C,, denote the condition
that, for any z,y € M, n > 1,

y'<ly—w) =z (Co)

Next, we introduce another condition W E,,, called n-weak exchange, by: for any x,y €
M, n>1,

y"v <azy (WE,)
We will show the following Lemma 10.

Lemma 10 For any n, C, is equivalent to W E,,, i.e.
C,, holds in M if and only if W E,, holds in M, for any left residuated lattice M.

Proof.

1. Only if part:

n

Yz y'(y = zy) (oo <y— ay)

zy (.- By the assumption, y" < (y — zy) — zy)

IA N
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2. If part:
By the assumption, we have y™(y — =) < (y — x)y.

Thus, we have y" < (y — z) — x. 1

4.2 Properties of left residuated lattices with C),

We will show that filters of left residuated lattices with C,, can be defined in the same
way as filters of commutative residuated lattices.

Proposition 10 (filters of left residuated lattices with C,) A nonempty subset F
of a left residuated lattices with C,, M s a filter, if and only if F' satisfies the following,

1. 1€F,

2. a,a—beF tmplies beF.

Proof. It suffices to show that the condition 3 of Definition 7 in section 3.3 (i.e. a € F
implies (a — b) — b € F) is obtained by the above two conditions 1,2.

acl = a"€eF
= (a—=b)=>beF
(fa"<(a—=b)—=b and a,a— b€ Fimpliesb € F)

As a corollary of Proposition 10, we can show immediately the following.

Proposition 11 (Subdirectly irreducible left residuated lattices with C),) Let M
be a left residuated lattice with C,,. M is subdirectly irreducible if and only if there exists
an element c(< 1) such that for any x < 1 there exists a positive integer m for which
™ < ¢ holds.

Proposition 12 (Simple left residuated lattices with C,) Let M be a left residu-
ated lattice with C,. M 1is simple if and only if for any x < 1 in M there exists a positive
integer m such that ™ = 0.

We will show the following.

Lemma 11 In any subdirectly irreducible left residuated lattices with Cy,, if x Uy =1
then either x =1 or y = 1 holds.
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Proof. By taking the contraposition, it suffices to show that x, y < 1 impliesxUy < 1 in
subdirectly irreducible left residuated lattices with C),. Let M be a subdirectly irreducible
left residuated lattice with C),. Since M is subdirectly irreducible, there exists a < 1 such
that for any z < 1 there exists a number k satisfying 2¥ < a. In particular, both 2™ < a
and 2™ < a hold for some positive integers m and n. Define s = max {m,n} and t = 2s—1.
Then, clearly z* < a and y* < a hold. We can write (z Uy)" as follows.

(ny)t: r---x Uz---azyz---zU---U y---y
¢ elements ¢ elements t elements

On the right-hand side, every term has ¢ elements which consist of multiplications of x
and y.

Take any term 7" among them. Suppose that  and y appear k times and j times,
respectively, in T'. It is clear that K+ 7 =t. If k > j, then k£ > s. Thus,

T<z¥<z*<a.
Otherwise, 7 > s. In this case,
T<y <y <a

Thus, (z Uy)! < a. Therefore, 2 Uy cannot be equal to 1. 1
Next, we introduce the formula Lin by,

Lin: (p>q) V(¢ Dp).

The formula Lin is sometimes called the (algebraic) strong de Morgan law. Using Lemma
11, we can show the following.

Lemma 12 Let M be a subdirectly irreducible left residuated lattices with C,,. The for-
mula Lin is valid in M if and only if M s linearly ordered.

Proof. Suppose first that M is linearly ordered. For an arbitrary valuation v on M,
let v(p) = a and v(q) =b. Then, either a < b or b < a holds by the assumption. It
follows that either « — b =1 or b — a = 1. Therefore, v(Lin) = (& — b) U (b — a) = 1.
Hence, Lin is valid in M. Conversely, suppose that Lin is valid in M. This implies that
(@ —=b)U((b—a)=1forall a,b € M. By Lemma 11, eithera - b=10rb —»a=1
holds. Thus, either a < b or b < a. Hence, M is linearly ordered. 1

4.3 Varieties NC, of left residuated lattices with C,

By Proposition 3, the class of all left residuated lattices forms variety. In the following,
the variety of left residuated lattices with C,,, the variety of left residuated lattices and
the variety of commutative residuated lattice are denoted by N'C,,, A" and R, respectively.
We will show the NC,, T NCp 1.
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Lemma 13 NC; = R.

Proof. By Lemma 10, the condition C' is equivalent to the condition yz < zy. It means
the commutativity. 1

Theorem 3 NC, ; C NC, holds.

Proof. It is easy to show NC,_; C NC,. So, we will show NC,,_; # NC,. By using the
following linear left residuated lattice M,,, we will show this.

In M,, = (M,,N,U,+,—,0,1) for M,, = {1,a,a? ---,a" ' b ab,a?b,--- ,a" b0}, we
define the operation (-) of M,, by the table 4.1. We also define a"b = ba = 0.

Table 4.1: The definition of the operator (-) in M,

1 a a2 o' on b ab -+ a" % a"'b 0

1 1 a --- av? a"!' a b ab - a" % a"'b 0

a a a’ a ' e a® ab a*b - a7 0 0
a’ a>  a? a” a®  a® a’b a’b - 0 0 0
a®t | o™t " a” " a® a" ' 0 0 0 0
a” a” a” a” " " 0 0 0 0 0
b b 0 0
ab ab 0 0
a b | a™ b 0 0
0 0 0 0

We will show that M, satisfies the following conditions.
1. Firstly we will demonstrate that M, is a left residuated lattice.

(a) It is clear that M, is a bounded lattice with the greatest element 1 and the
least 0.

(b) Next, we show that (M,,-, 1) is a monoid:
By the definition of My, 1 is the identity. Next, we will check the associativity.
To do so, it suffices to consider every combination described in table 4.2. We
will show the associativity on each combinations.
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Table 4.2: The combinations for the associativity

x Y z
a't a'? a'?
at | a” | a’b
at | a’b | a*
a’b | a" | a®
b | a?2b | a
a*b | ab | a’?b
a’ | ab | a’?b
a'b | a?2b | ai2b
(i1,19,13,5 € I)

i. z=a" y=a" z=a®
A.i3=00ri=0o0r i3 =0:
Since @ =1 or a’”> =1 or a" =1, the associativity holds.
B. ¢y >1and i3 > 1 and i3 > 1:

(azlazz)azg — mm{zl—l—zz,n}

at2q for iy +1i, < n
a a“”, for n <4 + 19
mm{zl+22+7,3,n} for 11+ <n

a”, forn <1+ i

i1+i2+i3, for 7:1 + ’i2 + 7:3 S n
a”, formn <y +19+ i3
, forn§i1+i2§i1+i2+i3
7'1+7'2+23 for 7:1 + ’iz + 7:3 S n
a”, for n < iy + 119 + 13

min{is+iz,n}

atra?t® for iy +1i3 < n
aa”, for n < iy + ig
mm{zl+22+7,3,n} for o +1i3<n

a™, forn <iy+ i3

i1+i2+i3, for 7:1 + ’i2 + 7:3 S n
a™, forn <iy 4 iy 4+ i3
nooforn <9 +i3 < iy +ig+ i3
at Tt for i +iy +i3 < n

a”, for n < iy + 19 + 13

s
s
{1
a'(a?a) = ja
-
s
{1
s

Thus, (aa)a® = a(a™a).



ii. x =a", y=a", z=adb:
A.i;=00ri, =0:
Since a" =1 or a'> = 1, the associativity holds.
B. iy > 1 and i, > 1:

(azlazz)a]b mm{zl—l—zz,n}ajb

IS]

at2qib, for i; +iy <m
ana]b, for n < iy + 1o
amin{i1+i2+j:”}b, fori; +i; <n
0, for n <4 + 19
attietip fori; +is+j5<n
0, forn§i1+i2+j
0, for n <4 + 19
att2tip foriy +ip+j5<n
0, forn§i1+i2+j

i1 amzn{12+],n}b

ail(aizajb) =
a{i1+i2+j}b, forio+75<n
a"a’b, for n < iy + o
agmindintiztinky - for 4 44y <
0, forn <iy+is
{ atietip for iy +iy+j <n
0, forn<i +is+7
0, forn <iy+is
at2tip for iy 4+ +j < n
0, forn<i +is+7

— N N A R A —AN— N

iii. = a’b or y = alb:
We find that the terms have (a’b)a’ = 0 or (a/'b)(a’2b) = 0. Thus, the
associativity holds.

(c) Define the operator (—):
By ¢ — y = max {z € M,, : zz < y} and the table 4.1, we can show that a left
residuation is always defined.

(d) Showing w(z Uy)z = wrz U wyz:
Before proving (d), we will demonstrate the following.

In a linear left residuated lattice M, for any w,z,y,z € M, w(z Uy)z =
wxz Uwyz holds if and only if x <y implies wrz < wyz.

Suppose that < y. By the assumption, wzz < wyz holds. Thus, we have
wrz Uwyz = wyz. Since x < y, we obtain wyz = w(x U y)z = wrz U wyz.
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Conversely, we suppose that w(zx U y)z = wrz Uwyz and = < y. We have
wyz = w(zxUy)z = wrzUwyz. It means wrz < wyz.

By using the above and the table 4.1, it is easy to show that w(z U y)z =
wxz U wyz holds on M,.

2. Next, we will demonstrate that M,, satisfies M,, € NC,, and M,, € NC,_;.

(a) M, € NC,.
i. o =a",y=a® for iy, iy > 0:
It is obvious that x"y < yz.
ii. x =a"b, y = a®b for i, 4, jo > 0 and j; > 1:
We have z"y = (a®0')"(a*20’?) = 0. Thus, z"y < yz holds.
iii. = a™, y = a”V for iy,ip, > 0 and j > 1:
We have 2"y = a™b’ = 0. Thus, 2"y < yz holds.
(b) M, € NC,,_1.
Take a and b for z and y, respectively. We have a”~'b > ba = 0. Thus, C,,_,

does not hold. 1
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Chapter 5

Conclusions and remarks

In this thesis, we study logics without contraction and exchange rules, from the point of
view of algebraic semantics.

In Chapter 3, we study left residuated lattices which correspond to FL,,. By defin-
ing filters of left residuated lattices as in Definition 7, we show the existence of a lattice
isomorphism between the set of all filters and the set of all congruences of a given left
residuated lattice. We give a characterization of subdirectly irreducible left residuated lat-
tices by Lemma 8 and simple left residuated lattices by Lemma 9. Thus, these properties
which we obtained include those of commutative residuated lattices.

In Chapter 4, we study left residuated lattices with C),. By using C,,, we define filters
of left residuated lattices with €, in the same way as filters of commutative residuated
lattices. Then, we show that subdirectly irreducible and simple left residuated lattices
with C), can be characterized, similarly to those of commutative residuated lattices. Next,
we discuss varieties N'C,, of left residuated lattices by using C,. Our result say that
{NC,}, forms an infinite ascending chain.

Many problems on left residuated lattices remain. Here, we give two problems.

1. In this paper, we deal with left residuated lattices which have only one residuation.
How can we characterize filters on bi-residuated lattices which have two residua-
tions?

2. We have already know some relations between R and N'Cy (see [4]). What relations
are there between NC,, and N7

38



Bibliography

1]

7]

8]

9]
[10]

[11]

[12]

Blount,K. On the structure of residuated lattices. Ph.D. dissertation at Vanderbilt
University, Nashville, Tennessee, 1999.

Burris,S. and Sankappanavar,H.P. A Course in Universal Algebra. Springer-
Verlag,1981.

Idziak,P.M. Lattice operation in BCK-algebras. Math.Japonica 29, (1984)
Jipsen,P. and Tsinakis,C. A survey of residuated lattices. Draft.

Katou,Y.. A study of substructural logic by algebraic models. Master Thesis at
Japan Institute of Science and Technology, 2002.

Kowalski, T. and Ono,H. Residuated lattices: an algebraic glimpse at logics without
contraction. (preliminary report), 2001.

McKenzie,R.N., McNulty,G.F. and Tailor, W.F. Algebras, Lattice, Variety vol.l.
Wadsworth & Books/Cole, California, (1987).

Ono,H and Komori,Y. Logics without the contraction rule. Journal of Symbolic Logic
50 (1985) pp.169-201.

Ono,H. Logic without contraction rule and residuated lattice I. To appear.

Raftery,J.G. and van Alten,C.J. On the algebra of noncommutative residuation:
Polrims and left residuation algebras. Math.Japonica 46, No.1(1997), pp.29-46.

Ueda,M. A study of classification of residuated lattices and logics without contraction
rule. Master Thesis at Japan Institute of Science and Technology, 2000.

Van Alten,C.J. and Raftery,J.G. On quasivariety semantics of fragments of intu-
itionistic propositional logic without exchange and contraction rules. Reports on
mathematical logic 31, (1997), pp.3-55.

39



