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ABSTRACT  

Highly proton-conductive polymers have long attracted the attention of researchers for use in 

energy conversion, sensors, catalysts, and other applications. From the viewpoint of scientific 

history of creation of highly proton-conductive polymers, one fundamental approach is based on 

the strategy of phase-segregated structures with strong acid groups. This Feature Article presents 

a new approach to enhance the proton conductivity of the polymer thin films using an interface 

that can modify the degrees of freedom for a polymer structure through interaction between the 

substrate surface and polymers. The author introduces suppressed proton conductivity in Nafion 

thin films and then specifically examines the enhancement of proton conductivity by the 

molecular orientation in the polymers. As the last topic, the highly proton-conductive organized 

polyimide thin film is demonstrated using the lyotropic liquid-crystal property. Both molecular 

ordering and the in-plane oriented structure can enhance proton conductivity. Moreover, the 
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optical domain and degree of the molecular ordering derived from the molecular weight can 

contribute strongly to the proton transport property.  

KEYWORDS:  interface, oriented structure, substrate dependence, thickness dependence, 

organized structure, lyotropic liquid crystal property, molecular ordering, molecular weight 

dependence 

 

Introduction 

Proton transfer in ionic channels of biological proteins has attracted the efforts of many 

researchers since the 1960s.1 Many have investigated the purple membrane including 

bacteriorhodopsin to elucidate its fundamental role in proton transport in biological systems.2-5 

Surface proton conduction at the lipid monolayer, including the phenomena of the proton 

diffusion enhancement at the interface, has also been studied intensively.6, 7 Work in inorganic 

research fields indicates that diffusion at the interface or grain boundary plays an important role 

in the ionic conduction. Liang reported in 1973 approximately 50-times enhancement of Li+ ion 

conduction using the non-conductive interface of the Al2O3.8 The sample was simply mixed with 

inert Al2O3 ultrafine particles into LiI. In most cases, ionic conductivity enhancement was 

observed with non-conductive materials such as SiO2 or Al2O3 as the second phase, which is 

nearly insoluble in the host material. To elucidate the enhancement phenomena of ionic 

conductivities at the interface, widely diverse 2D ion conducting materials have been reported 

from studies conducted over more than 30 years.9-15 In 2000, Sata et al. demonstrated that ionic 

conductivity in solid electrolytes can be improved by introducing interfaces that redistribute ions 

in space-charge regions.10 These findings gave us the opportunity to improve ionic transport 
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properties using an interface. In recent years, various thin materials have been reported on the 

high proton conduction using the interface concept: multilayer thin films by a layer-by-layer,16-18 

two-dimensionally confined Langmuir–Blodgett thin films,19, 20 metal–organic framework thin 

films,21 and graphene based thin films.22, 23 Today, the proton transport property modulated by 

the interface attracts researchers of various research backgrounds.  

Many proton conductive polymers have been reported and intensively studied.24, 25 These 

designs are based on the phase segregation between the hydrophobic and hydrophilic parts with 

water uptake. Protons are considered to be transported through the hydrophilic parts. In the 

recent polymer research fields, taking advantage of the interface extends the molecular design 

such as the oriented structure and organized structure for the highly proton conductive materials. 

In this Feature Article, the author proposed the concept of molecular orientation to improve 

proton conductivity for various proton-conductive polymers using the interface of substrate 

surfaces.26-33 The interface can modify the degrees of freedom for polymer structures through 

interaction for functional groups, wettability, and surface charge between the substrate surface 

and polymers. Some proton-conductive polymers exhibit an oriented structure by fabrication of 

thin films. Their oriented thin films show unique proton transport properties compared to those 

of non-oriented samples. Some polymer thin films exhibited not only higher proton conduction 

but also thickness-dependence or substrate-dependence for the proton transport property. 

Understanding the relation between the structure and proton transport property is fundamentally 

important, but this attempt has often been hampered in many highly proton-conductive polymers 

because of less structural information derived from amorphous or amorphous-like nature.  

Recent studies by the author and co-workers have demonstrated the organized polyimide 

structure using a lyotropic liquid crystal property in the thin films.30-33 This organized thin film 



 4 

shows a lamellar structure and exhibits in-plane high proton conductivity with more than 10-1 S 

cm-1. The author introduces suppressed proton conductivity in the Nafion thin films, then 

specifically examines enhancement of proton conductivity by the molecular orientation and 

organized structure.  

 

Suppressed Proton Conductivity in Nafion Thin Films 

The Nafion membrane has been the most widely investigated polymer electrolyte for use in 

energy conversion as fuel cells for automotive, portable device and other applications since the 

1960s because it exhibits high proton conductivity, good mechanical and chemical stability.24, 34-

36 Figure 1 shows the Nafion chemical structure, which comprises a perfluorocarbon backbone 

and side chains terminated with sulfonic acid groups. Protons at the sulfonic acid groups of the 

side chain can be transported through hydrated water channels in hydrophilic pathways, which 

are separated by phase segregation from the hydrophobic backbone.24, 34-39 

 

 

Figure 1 Nafion structure with equivalent weight of 1100: x=6-7 and y=1. 

In 2008, Siroma et al. demonstrated the proton conductivity drop with decreasing thickness 

in a Nafion thin film.40 Until now, the interfacial structure,41-67 proton conductivity,40, 50, 52, 53, 64, 

65, 68-78 water uptake,54, 60, 64, 76, 79-86 and diffusivity81, 83, 85, 87-89 in the Nafion thin films have been 

reported. These structural and physical properties differ from those of the thick Nafion 

membrane and depend on the thickness and substrate. The Nafion thin films can be prepared 
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from a commercially available solution using spin casting, drop casting, Langmuir–Blodgett, 

Langmuir–Schaefer, spray deposition, or self-assembled adsorption on various substrates.  One 

pioneer study for the interfacial structure of the Nafion thin film examined a multilayer lamellar 

structure between the SiO2 substrate and Nafion thin film using neutron reflectometry (NR).45 On 

the other hand, a single hydrated layer appeared at metal interfaces such as at Pt and Au 

surfaces.44, 45 These results suggest that the interfacial structure of the Nafion thin film depends 

on the substrate surface. Kusoglu and Weber summarized recent studies of Nafion thin films 

conducted up through 2016.36 The degree of micro-phase separation lessened with decreasing 

thin film thickness.53 Less micro-phase separation can affect the proton conductivity drop.  

In-plane proton conductivity of the Nafion thin film decreases concomitantly with decreasing 

film thickness as shown in Figures 2a and 2b.40, 50, 52, 53, 65 Commercial Nafion membranes with 

thickness of more than several tens of micrometers exhibit good proton conductivity (10-1 S 

cm-1). The proton conductivity and activation energy for the proton conduction of the Nafion thin 

films depend on substrate surfaces: quartz, MgO, and modified surfaces sputtered by Pt.50, 52, 65, 77 

Proton conductivity of the Nafion thin film on the quartz surface shows different thickness 

dependence from those on the MgO(100) and sputtered Pt surfaces.50, 52, 65 As portrayed in Figure 

2c, the activation energy of the Nafion thin film for the proton conduction on the quartz shows a 

higher value than that on the sputtered Pt surface, especially in the low RH condition.65 These 

differences of the proton conductivity can be derived from different interfacial structures of the 

Nafion thin films and water uptake/diffusion properties. 
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Figure 2. (a), (b) Thickness dependence of proton conductivity for Nafion thin films at various 

relative humidity (RH): (a) on SiO2 and (b) on Pt-deposited surface. (c) Activation energy for the 

40-nm-thick Nafion thin films on SiO2 and Pt-deposited surface as a function of the RH. Adapted 

with permission from ref 65. Copyright 2016 American Chemical Society. 
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Oriented structures of Nafion thin films also receive attention. Anisotropic IR spectra 

between the in-plane (IP) and out-of-plane (OP) direction to the MgO (Figure 3a), 50 Si,52 and Pt 

deposited65 surfaces (Figure 3b) by p-polarized multiple angle incidence resolution spectrometry 

(pMAIRS)90, 91 have been reported. The IR pMAIRS technique can provide opportunities to 

investigate pure IP and pure OP molecular vibrations to the substrate surface. The pMAIRS 

technique can reveal the degree of the molecular orientation quantitatively for each functional 

group according to the following equation (1) as 

,                                                             (1) 

where IIP and IOP are the IP and OP peak absorbance and where ϕ denotes the orientation angle 

from the surface normal. For the Nafion thin film, the IP spectrum shows the well-known 

spectrum of the thick Nafion membrane.92, 93 However, the OP spectrum differs greatly from the 

IP spectrum, as shown in Figure 3a. The characteristic absorption band at 1260 cm-1 is observed 

only in the OP spectrum. This band cannot be obtained in the IP spectrum. A few reports of the 

literature describe this peak located at 1260 cm-1 experimentally by polarization modulation 

infrared reflection absorption spectroscopy.47, 88 They assigned different attributions of the band 

at 1260 cm-1 as ν (CF2)88 and νas (CF3) + δs (COC)47 vibration mode, respectively. Zeng et al. 

assigned νas (CF3) vibration mode at the 1269 cm-1 in the Raman spectra.94 Malevich et al. and 

Korzeniewski et al. assigned attributions of the band at 1250–1350 cm-1 and 1249–1275 cm-1 as –

SO3
- from a deconvoluted IR spectrum.95, 96 Figure 3b shows that this absorbance of the band at 

1260 cm-1 in the OP spectrum on the Pt deposited surface changes with decreasing thickness.65 

To discuss the absorbance change, the relative intensity ratio is calculated as 

OP

IP

I
I2tan 1−=ϕ
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Intensity ratio  = 𝐼𝐼𝑂𝑂𝑂𝑂�1260 𝑐𝑐𝑐𝑐−1�
𝐼𝐼2𝐼𝐼𝑂𝑂(1215 𝑐𝑐𝑐𝑐−1),      (2) 

where IOP and I2IP are derived from peak absorbance of IR p-MAIR spectra. Figure 3c shows that 

a threshold is observed around 50–70 nm in the case of the Pt-deposited surface. The ratio 

changes gradually with decreasing thickness on the MgO substrate surfaces, but no apparent 

threshold of the ratio is visible. This result suggests that the interfacial oriented structure depends 

on the substrate surface. 

 
Figure 3 Oriented Nafion thin films. (a) pMAIR spectra on the MgO substrate. (b) pMAIR 

spectra on the Pt-sputtered surface. (c) Thickness dependence of relative intensity ratios 
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according to eq. (2). Adapted with permission from ref 65. Copyright 2016 American Chemical 

Society. 

 

Other reports have described studies of the molecular orientation of the Nafion thin films. 

Kendrick et al. measured the polarization-modulated IR spectra of Pt-Nafion interfaces. The 

ordered structure of the SO3
- groups on the Pt surface is well supported by their results and DFT 

calculations.47 Yagi et al. discussed the orientation of SO3
- groups in the ca. 5 nm region of the 

Nafion/Pt interface based on results of vibrational sum frequency generation spectroscopy.59 

The adsorbed water also plays an important role in the proton transport property. The number 

of the adsorbed water and distribution of the water in the Nafion thin film can be investigated 

using an in-situ quartz crystal microbalance,53, 54, 60, 76, 80, 82, 85 NR,44-46, 54, 61, 81, 84, 86 and 

photoluminescence82, 85 measurements. Compared to the thick Nafion membrane, the lower water 

uptake and lower effective diffusion coefficient of water in the Nafion thin film were discussed. 

Their properties were found to be dependent on the film thickness. Less water uptake of the 

Nafion thin films causes the proton conductivity drop.  Water uptake of the 25-nm-thick Nafion 

thin film on SiO2 shows less amount than that on Pt surface.76 Ogata et al. reported that multi 

stepwise hydration was observed through the water uptake kinetics in ca. 50-nm-thick Nafion 

thin films on silver and quartz substrates by the surface plasmon resonance and NR 

measurements.84 An NMR study for 10-nm-thick and 160-nm-thick Nafion thin films showed 

that the local mobility of the proton within the hydrogen-bonded domain is equivalent and that it 

is governed by the fast exchange limit in terms of NMR time scales.89 
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In summary, the Nafion thin film structure is unique and different from the thick Nafion 

membrane structure. The interfacial structure depends strongly on the thickness and substrate 

surface. To date, all results have shown that the proton conductivity of the Nafion thin film 

exhibits a lower value than that of the thick Nafion membrane. The proton conductivity of the 

Nafion thin film decreases concomitantly with decreasing thickness. Water uptake and diffusion 

of the Nafion thin film decrease compared to that of the thick Nafion membrane. The property of 

the Nafion thin film is related with the reaction sites for the polymer electrolyte fuel cells as an 

ionomer.43, 97  Therefore, understanding the relation between the interfacial structure and proton 

transport property is necessary for both fundamental and application studies. 

 

Enhancement of Proton Conductivity in Molecular Oriented Thin Films 

Oriented Oligomeric Amide Thin Films 

The proton conductivity of the Nafion thin films is lower than that of the thick Nafion membrane. 

Nagao and Naito et al. first reported the observation of anomalous proton conductivity in amide 

thin films of oligo[(1, 2-propanediamine)-alt-(oxalic acid)] in 2008.98 From the results of 1H 

NMR, FT-IR, and MALDI-TOF mass spectra, the synthesized amides are inferred as a mixture 

of the oligomers with different end groups and low-molecular-weights including the macrocyclic 

amides, as shown in Figure 4a. The oligomeric amide thin films were prepared by spin coating 

on the SiO2 substrate with thickness of 60–400 nm. Figure 4b shows that the in-plane proton 

conductivity depended on thickness and showed 4.0 × 10−3 S cm−1 as a maximum value in the 

200-nm-thick at the RH of 80%. For comparison between the thin film and bulk conductivity, the 

pelletized sample as bulk was processed into pellets of 2.5 mmϕ under pressure of approx. 1 GPa 
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because of failure of the self-standing membrane. The proton conductivity of the pelletized 

sample was 3.0 × 10−4 S cm−1, which is one order of magnitude lower than that of the 200-nm-

thick thin film. The activation energies of the 200-nm-thick film and pelletized sample were, 

respectively, 0.69 and 1.0 eV. Figure 4c shows that the substrate dependence of the proton 

conductivity was observed in the amide thin films.26, 99 The amide thin films showed different 

proton conductivity on the SiO2, R-plane sapphire, and MgO(100). The proton conductivity 

varied from 4 × 10-3 to 1 × 10-4 S cm-1 under the same condition of the 80% RH and 298 K. This 

difference of the proton conductivity is probably attributable to the difference of the interfacial 

structure. The pMAIRS results show that the spectra of the thin film on the R-plane (1102) 

sapphire (Figure 4d) differ greatly from those of the MgO substrate (Figure 4e). Both thin films 

show the anisotropic oriented structure from the IP and OP spectra. The absorption bands at 1680 

and 1520 cm-1 in the OP spectrum on MgO substrate can be assigned respectively to the 

vibrational modes of Amide I and Amide II. The DFT calculation suggests that the wavenumber 

of the Amide I band depends on the oligomer–oligomer chain interaction through the hydrogen 

bonding networks. The difference of the proton conductivity can be derived from the differently 

oriented structure and hydrogen bonding networks in the thin films. Results obtained for the 

amide thin films demonstrate that the oriented structure in the thin films contributes to 

improvement of the proton conductivity. Therefore, preparing an oriented structure by thin films 

can be proposed as a new method to improve proton transport properties. 
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Figure 4 (a) Synthetic scheme of the oligomeric amide. (b) RH dependence of the proton 

conductivity of the amide bulk and thin films with thickness of 60 – 400 nm on SiO2 substrates. 

(c) RH dependence of the proton conductivity of the amide thin films on different substrates. (d) 

pMAIR spectra of the amide thin films on sapphire substrate. (e) IR spectrum of the bulk powder 

and pMAIR spectra of the amide thin films on the MgO substrate. Figure 4b was adapted with 

permission from ref 98. Copyright 2009 Elsevier. Figures 4c-e were adapted with permission 

from ref 26. Copyright 2013 The Chemical Society of Japan. 

 

Oriented Polypeptide Thin Films 

An oriented polypeptide also improves the proton conductivity by thin films. Biological 

molecules and polymers with hydrogen bonding networks often exhibit hierarchical structures 

for the specific functionality. Proton transport into protein ionic channels has attracted many 
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researchers since the 1960s.1 Polypeptides are widely acknowledged to take several hierarchical 

structures such as α-helix or β-sheets via hydrogen bonding between the amino acids. The 

poly(aspartic acid) has free carboxylic acid groups at the side chains. The protons at these groups 

are mobile as proton conduction in the synthetic scheme shown in Figure 5a.27, 29, 100-102 The fully 

protonated poly(aspartic acid) thin film shows no oriented structure (Figure 5b),29  although a 

partially protonated poly(aspartic acid) (P-Asp) thin film with 60 nm thick exhibits an 

anisotropic oriented structure between the IP and OP direction to the substrate by pMAIRS 

results, as depicted in Figure 5c.27 The Amide I band is visible in both IP and OP spectra from 

pMAIR spectra at 1670 cm-1. The peak position of the Amide I band is related to the polypeptide 

main-chain structure.103, 104  It is plausible that the P-Asp thin film exists in neither regular 

secondary structures such as an α-helix or β-sheet nor in an irregular structure because these 

secondary structures respectively portray the Amide I bands at the range of 1640-1660, 1620-

1640, and 1640-1660 cm–1, respectively.103, 104 Figure 5d portrays a proposed non-periodic α-

sheet like model. High proton migration paths were realized through α-sheet layers with water 

uptake, which percolate in-plane, formed by the stacked layer structure in OP direction of the 

substrate. This model does not necessarily mean that the thin film is composed exclusively of α-

sheet layers. For proton conductivity, the fully protonated poly(aspartic acid) thin film shows 

high surface conductivity. The proton conduction path is dominated on the surface rather than 

inside the thin film (Figure 5e).29 By contrast, the oriented P-Asp thin film shows that protons 

can be transported easily inside the thin film and that they exhibit in-plane proton conductivity of 

3 × 10-3 S cm-1 on the MgO substrate at 298K, as shown in Figures 5f and 5g.27 It is remarkable 

that the proton conductivity shows such a high value by carboxylic acid groups as proton 

sources.105 To compare proton conductivity between the oriented and random oriented P-Asp, the 
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randomly oriented sample is prepared using a pelletized sample.27 The Amide I band appears 

correspondingly at ca. 1650 cm-1 in the IR ATR result, which is attributable to the existence of 

the irregular structure that produces the band at 1640-1660 cm–1.103, 104 The proton conductivity 

of the random oriented P-Asp shows  4 × 10-4 S cm-1 at 298 K and 70% RH, which is one order 

of magnitude lower than that of the oriented P-Asp thin film (Figure 5g). The activation energies 

for proton conductivity are 0.34 eV for the oriented P-Asp thin film and 0.65 eV for the random 

oriented P-Asp, as shown in Figure 5h. For comparison, examination using a quartz crystal 

microbalance is conducted for the water uptake between the oriented and random oriented P-Asp. 

Both the oriented and random oriented P-Asp show similar isotherm curves; both adsorb two 

water molecules per chain unit, at most (Figure 5i). Therefore, the results demonstrate that the 

oriented structure contributes to improvement of the proton transport property.  
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Figure 5 (a) Synthetic scheme of fully and partially protonated poly(aspartic acid). (b) pMAIR 

spectra of the fully protonated poly(aspartic acid) thin film. (c) pMAIR spectra of the partially 

protonated poly(aspartic acid). (d) Proposed structure of P-Asp thin film with non-periodic α-

sheet like. Pink atoms surrounded by yellow represent proton carriers of carboxylic acid groups: 

C gray, N blue, O red, H white. (e) Schematic view of surface proton conduction in the fully 

protonated poly(aspartic acid) thin film. (f) Schematic view of proton conduction inside P-Asp 

thin film. (g) RH dependence of proton conductivity by the oriented and random oriented 

structures. (h) Temperature dependence of proton conductivity by the oriented and random 

oriented structures. (i) Water isotherm curve between the oriented and random oriented 

structures. Figures 5b,e,f were adapted with permission from ref 29. Copyright 2014 Elsevier. 

Figures 5c,d,g-i were adapted with permission from ref 27. Copyright 2013 American Chemical 

Society. 

 

Results obtained for both amide and polypeptide thin films demonstrate new aspects to 

enhance proton conductivity by the oriented structure induced by the interface. In the next 

chapter, a highly proton-conductive organized thin film designed to obtain higher proton 

conductivity will be demonstrated using not only an oriented structure but also molecular 

ordering, which can respond reversibly to humidity. 

 

Enhancement of the Proton Conductivity in Highly Molecular Organized Thin Films of 

Sulfonated Polyimide 
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Relation between Lyotropic Organized Structure and Proton Conductivity 

Sulfonated polyimides (SPIs) are promising candidates for use as polymer electrolytes for fuel 

cells because of their thermal and chemical stabilities. 106-113 Recently, highly proton-conductive 

oriented SPI thin films have been reported as shown in Figure 6a. 30-33 Many highly proton-

conductive polymers are amorphous or amorphous-like. However, this SPI thin film presents an 

organized structure by water uptake based on the lyotropic liquid crystal property with more than 

10-1 S cm-1. This is the first report to demonstrate high proton-conduction by the oriented 

organized structure in the solid thin films, which responds reversibly by the humidified 

atmosphere. The organized structure and liquid crystal property of the SPI thin film on the quartz 

substrate were confirmed respectively by humidity-controlled in-situ grazing incidence small 

angle X-ray scattering (GISAXS) measurements and birefringence by polarized optical 

microscopy (POM) measurements. The SPI thin film shows lyotropic liquid crystalline lamellar 

behavior. The existence of high relative humidity induces expansion of the lamellar structure in 

the out-of-plane direction by water uptake, as shown in Figure 6b. Increasing intensity of the OP 

peak from the GISAXS profile (Figure 6c) by water uptake suggests improvement of the degree 

of molecular ordering. Along with the improvement of the degree of molecular ordering for the 

oriented lamellar structure, the in-plane proton conductivity also increases from 10-4 S cm-1 to 

10-1 Scm-1 at 25 ºC. Not only because of the oriented lamellar structure but also because of the 

large scaled LC ordering and interchain ch-packing114 of SPI thin films, the proton transport 

characteristic is much improved in the high-humidity condition.  
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Figure 6 (a) Chemical structure of the sulfonated polyimide. (b) Schematic views of the 

organized lamellar structure. Molecular ordering improves with water uptake by the lyotropic 

liquid crystal property. (c) 2D GISAXS patterns at 0% RH and 95% RH, respectively, and 

humidity-dependent 1D GISAXS profiles in the IP and OP directions of the SPI thin film. 

Asterisks denote scattering from the Kapton windows. Adapted with permission from ref 32. 

Copyright 2015 American Chemical Society. 
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Effects of Molecular Weight to Proton Conductivity 

Proton conductive polymers do not usually exhibit a strong effect of the molecular weight for 

proton conductivity when the molecular weight is greater than some thousands.115, 116 However, 

the SPI thin films show strong correlation between the molecular weight and proton 

conductivity.32 Analyses of the thin films by GISAXS reveal that the HMw (Mw= 2.6 × 105) SPI 

film exhibits a higher degree of inherent liquid crystalline-like lamellar ordering than the LMw 

(Mw= 1.3 × 104) SPI film does, as shown in Figures 7a and 7b. Such molecular ordering and the 

in-plane oriented structure can strongly influence the proton transport characteristics in thin films. 

The larger ordered domains in the HMw SPI thin film with thickness of approximately 500 nm 

show marked proton conductivity enhancement to a value of 2.6 × 10−1 S cm-1 at 25ºC and 95% 

RH (Figure 7c), which is more than an order of magnitude higher value than that of the smaller 

ordered domains in the LMw SPI thin film with less molecular ordering. The larger ordered 

domains in the HMw SPI thin film (Figure 7d and 7e) influence the proton conducting 

characteristics attributable to the fewer liquid crystalline-like domain boundaries relative to the 

LMw SPI thin films (Figure 7f and 7g). That influence derives from the smaller ordered domains 

in the LMw SPI thin film, which more clearly exhibit large-scaled domain boundaries that can 

disrupt the fast ion transportation, as shown in Figure 7h and 7i. Revealing roles of the domain 

size and domain boundary for the high proton conduction in the SPI thin films is attractive issues 

to understand the proton conduction mechanism. 
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Figure 7 (a) RH dependence of 1D GISAXS profiles in the IP direction of both LMw and HMw 

SPI thin films. Asterisks denote scattering from the Kapton windows. (b) RH dependence of 1D 

GISAXS profiles in the OP direction of both LMw and HMw SPI thin films. (c) RH dependence 

of the proton conductivity for both LMw and HMw SPI thin films. (d), (e) POM images for larger 

domain size of HMw SPI thin films at 0º and 45º, respectively. (f), (g) POM images for smaller 

domain size of LMw SPI thin films at 0º and 45º, respectively. (h) Schematic view of the lower 

proton conductivity in LMw SPI thin film with less molecular ordering in the out-of-plane 

direction and smaller domain. (i) Schematic view of the higher proton conductivity in HMw SPI 

thin film with better molecular ordering in the out-of-plane direction and larger domain. Adapted 

with permission from ref 32. Copyright 2015 American Chemical Society. 

 

Summary 

From the viewpoint of the scientific history of the creation of highly proton-conductive polymers, 

one fundamental approach is based on the strategy of phase-segregated structures with strong 

acid groups. In this Feature Article, the author demonstrated another method to improve proton 

conductivity using the interface. The interface can modify the degrees of freedom for a polymer 

structure by interaction between the substrate surface and polymers. This approach enables us to 

discuss the relation between the interfacial structure and proton transport property. The Nafion 

thin film exhibits a thickness-dependent structure at the interface, with proton conductivity 

decreasing along with decreasing thickness. The oligomeric amide thin films show a substrate-

dependent oriented structure. The polypeptide thin films show proton conductivity improvement 

by molecular orientation compared to the random oriented structure. As the last topic discussed 
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in this article, a highly proton-conductive organized polyimide thin film was demonstrated using 

the lyotropic liquid crystal property. Both molecular ordering and the in-plane oriented structure 

can enhance proton conductivity in SPI thin films. Moreover, the optical domain and degree of 

the molecular ordering derived from the molecular weight can contribute strongly to the proton 

transport property. Other studies have also specifically examined the molecular orientation or 

organized structure for obtaining the proton condustion.19, 20, 117-120 Some issues still remain 

unsolved: roles of the surface wettability, functional groups, surface charge to understand the 

interfacial interactions. Moreover, a side of the free-surface of the thin films should be 

considered. An equilibrium structure expected from slow assembly vs kinetically frozen structure 

from spin coating is also one of the attractive issues. These discoveries are expected not only to 

encourage further discussion of the relation between the interfacial structure and proton transport 

properties but also to contribute to the development of Solid State Protonics. 
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