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Abstract

Nowadays, along with the rapid growth of the e-commerce economy, consumers have become more

and more dependent upon review data to make decisions on shopping websites. However, reading reviews

is a very time-consuming, even frustrating process when the number of reviews is overwhelmingly large.

Both academia and industry have been working to devise algorithms that can automatically extract

knowledge of products or services from the review data to improve users’ review-reading experience.

The knowledge extraction is usually treated as a sentence-level opinion classification problem, that is

to detect what attributes of products or services consumers have discussed about, and how they felt of

the attributes in the review sentences. This dissertation mainly focuses on the following 2 fundamental

problems related to the classification task: sentence representations, the limited availability of training

data. Also, based on the results of the opinion classification process, this dissertation proposes a novel

machine learning based approach to identify the aspects that are generally attractive to consumers. The

discovered attractive attributes allow users to quick capture the selling points of a product or service. A

brief introduction to the originality of this dissertation is presented as follows.

1) Sentence representations. Word embeddings models, as an effective way to represent text, have

been widely used in various text classification tasks. Since word embeddings are only optimised to

represent individual words, one has to define ways to aggregate word embeddings to represent sentences.

A very effective, easy-to-compute aggregation function is averaging, though it obviously leads to loss

of information. Recently, researchers have applied complex, but also computationally expensive neural

network structures, such as convolutional neural network (CNN) and recursive neural network (RNN)

units, to aggregate word embeddings. This dissertation proposes a novel weighted average approach,

named ‘Abstract Keywords’, as an alternative to the existing aggregation operators. The proposed

approach assumes there exist some extremely important abstract keywords that can be derived in the

training process, and assigns words different weights according to their semantic similarities to the abstract

words. Each sentence is represented by the weighed average of the embeddings of all words in the sentence.
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Experiment results show that the proposed approach is computationally efficient, and outperforms the

simple averaging approach.

2) Limited availability of labelled training data. As an important aspect of review mining, sentence-

level sentiment classification has received much attention from both academia and industry. Many recently

developed methods, especially the ones based on deep learning models, have centred around the task.

Generally speaking, training sentence-level sentiment classifiers requires training datasets of labelled

sentences, that are usually every expensive to obtain. It is possible to use the less expensive labelled review

documents to train sentence-level sentiment classifiers, by treating each document as a long sentence, and

the label of the document as the label for the long sentence. However, this way is obviously questionable

because there may exist sentences in a document whose sentiments are very different from the sentiment

of the document. Therefore, the sentiments of individual sentences can be easily misrepresented by the

document-level labels in the training process. To address the problem, we propose a novel approach,

named ‘Averaged-logits’, that also uses labelled documents to train sentence-level sentiment classifiers,

but makes a difference by assuming different sentences in a document have different sentiments, and

the ‘average’ of the sentence-level sentiments is used to determine the document-level sentiment. In the

experiment, we collected two review datasets: one contains 50,000 hotel reviews crawled from TripAdvisor,

the other 50,000 reviews from Amazon. The proposed approach was evaluated on the two datasets. The

results show that, the proposed approach outperforms the existing approach treating each document as

a long sentence, by margins of 3%-8% on sentence-level sentiment classification .

3) Attractive attribute classifiers. Researchers have proposed statistical regression models that anal-

yse on-line review data to identify attractive attributes of a product or service. This dissertation has

the same aim, but with an approach based on machine learning models instead of statistical models.

The proposed approach first extracts attribute-level sentiments from the review text by natural language

processing techniques, then derives features that reflect the non-linear relations between attribute perfor-

mance and customer satisfaction based on the sentiments. The non-linear features are fed to the Support

Vector Machine (SVM) model to train predictive attractive attribute classifiers. The proposed approach

is evaluated on a hotel review dataset crawled from TripAdvisor. The experiment results indicate that

the classifiers reach a precision of 79.3% and outperform the existing statistical models by a margin of

over 10%.
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Chapter 1

Introduction

This chapter introduces the research background, motivation, and the structure of this

thesis.

1.1 Research background and motivation

In recent years, thanks to the popularisation of mobile devices, the popularity of on-line

shopping has been raised to an unprecedented level. Various on-line shopping sites, such

as Amazon, Alibaba, Rakuten, etc., have reported record-high growth in on-line sales

volume. The sales growth prompts those companies to constantly increase the variety

of their products or services, and expand the sizes and scales of their websites. Today,

for each product or service category, they will be hundreds, even thousands of choices

available on a major shopping site. For users, the more choices they have, on one hand,

the higher the chances in making satisfying deals; on the other hand, the more difficult

they will feel to navigate through the ocean of webpages.

Fortunately, on-line shopping sites host a natural wealth that can help users effectively

locate the products or services fitting their needs: review data. A review usually consists

of a piece of textual description that details a user’s evaluation on a product or service,

and a numeric rating that summarises the user’s overall feelings on it. A typical review is

shown in Figure 1.1 . By reading reviews, people can gain a certain degree of knowledge

of a target product or service to reduce the risk of a regretful purchase. Nowadays, on-

line shoppers have become more and more dependent upon the review data for making
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Figure 1.1: A toy example of reviews

decisions on shopping websites.

However, reading reviews is very a time-consuming, confusing process when the num-

ber of reviews is overwhelmingly large. To ease the review-reading process of users,

researchers have been working to devise powerful computer algorithms that can automat-

ically extract knowledge from the review data. One of the topics related to the efforts,

is review summarisation, that aims to summarise what product or service aspects users

talk about, and how they feel of them in all the reviews for each product or service [1–4].

A pictorial demonstration of review summarisation is shown in Figure 1.2 .

Review summarisation is usually treated as a text classification problem: understand-

ing what aspects are discussed in reviews is treated as an aspect (or topic) classification

problem; understanding users’ feelings on each aspect is a sentiment classification problem.

For conventional documents, such as news articles, book chapters, etc., the two classifi-

cation tasks are well-studied topics with a long research history [5]. However, for review

documents that are usually short and full of informal use of language, the classification

tasks are particularly challenging.

The challenges mainly lie in the following 3 aspects:

• Document representations. Traditional bag-of-words based document representation

models, such as one-hot encoding, term frequency-inverse document frequency(tf-

idf), [6] etc., do not work well on review data because of the short length and noisy
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Figure 1.2: A pictorial demonstration of review summarisation

nature of the data. Also, in opinion classification, semantic information usually

plays critical roles. Unfortunately, the traditional representation models cannot

encode the information.

• Limited availability of labelled data. Review summarisation involves sentence-level

aspect and sentiment classification. Currently, methods for the classification tasks

are usually based on supervised machine learning models. To use the supervised

learning models, datasets of review sentences annotated with ground-truth senti-

ment and aspect labels have to be supplied as the training data. The data anno-

tation process involves intense human labor even linguistic expertise, therefore, the

availability of the training data is usually very limited.

• Encoding the non-linearity of the data. Review data is full of comparative and shift-

ing opinions, therefore, the boundaries separating different opinion classes should be

highly non-linear. Traditional learning models, such as SVM, Naive Bayes, Logistic

regression, etc., are not strong enough to capture the non-linearity [7].

1.2 Research scope and general methodologies

This dissertation mainly focuses on the aforementioned problems in the classification

tasks. This dissertation explores a number of recently developed techniques for possible
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solutions to the problems. In this dissertation, text embedding models [8,9] are used as an

alternative to the traditional bag-of-words models to address the document representation

problem; a semi-supervised learning model is proposed to reduce the intense manual labor

for data annotation; a number of deep learning structures are adopted as the building

blocks of the opinion classifiers used through out this dissertation to better encode the

non-linearity of the review data

Furthermore, inspired by the recent progresses in precision marketing [10–12], this

dissertation aims to build machine learning classifiers that can identify the ‘specialties’,

or attractive aspects of a product or service based on the discovered opinions. The attrac-

tive aspects can be used as a supplementary indicator to the review summaries to help

consumers quick capture the selling points of a product or service.

1.3 Structure of the dissertation

The remaining of this dissertation is organised as follows.

• Chapter 2 presents a brief introduction to a number of building blocks of the opinion

classifiers, such as text embedding models to represent review documents, the deep

learning models to encode the non-linear relations between the textual content and

the ground truth labels.

• Chapter 3 presents a novel weighted average approach to represent review sentences

based on word embedding models. The difficulty of using word embedding models

to represent the textual content of reviews lies in that, word embedding models are

to represent individual words, not sentences or documents. To represent a review

sentence, one has to combine the representations of individual words in the sentence.

Researchers have used the average of the embedding vectors of individual words in

a sentence as the representation of the sentence. Obviously, this approach leads to

loss of information. In recent years, the deep learning models that can encode the

spatial or sequential information of textual documents, such as convolutional neural

network (CNN) and recurrent neural network (RNN), have been used as the oper-

ators to combine word embeddings. The disadvantage of these approaches is that

the CNN and RNN models are usually very computationally expensive. The pro-

4



posed approach assigns different words different weights according to their semantic

meaning, and combine the word embedding vectors in a sentence by their weighted

average. Evaluation results show that, the proposed approach is competitive to the

CNN and RNN models in performance, but much computationally cheaper.

• Chapter 4 proposes a weakly-supervised structure for sentence-level sentiment clas-

sification based on the neural network models. Conventionally, to train a sentence-

level sentiment classifier, labelled sentences have to be supplied as the training set.

However, as previously mentioned, the labelled datasets are usually every expensive

to obtain. The proposed weakly-supervised model uses ratings, instead of the manu-

ally annotated sentence-level sentiment labels, to train the sentence-level sentiment

classifiers. Since the ratings are prevalently available in review data, no manual

labor for data annotation is involved in the proposed approach.

• Chapter 5 proposes a machine-learning based approach to identify the attractive

attributes of a product or services. According to the Kano theory [13], all the

aspects of a product or service can be divided into 3 main categories: must-be

attributes, one-dimensional attributes, attractive attributes. Must-be attributes are

the minimum requirements customers expect, while attractive attributes usually

serve as the ‘bonus’ to boost customer satisfaction. There are existing research

works that use statistical models to identify the attractive attributes. However,

so far, no previous work has used machine learning techniques to train predictive

classifiers to identify the attractive attributes. The proposed model is to fill in the

gap. A critical problem in training such a machine learning classifier is deriving

features to encode the dynamics in the relations between customer sentiments on

each individual attribute and the overall sentiments on the whole product or service.

In the proposed approach, a novel neural network structure is proposed to model

the relations.

• Chapter 6 summarises the contributions of this dissertation to the community of

Knowledge Science, and provides a conclusion and future research directions.
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Chapter 2

Background knowledge in the

opinion classification

Generally speaking, most methods for sentiment and aspect classification are based on

supervised machine learning models. The process to train such classifiers usually consists

of the following steps: 1) preparing and pre-processing the labelled data; 2) numerically

representing the data; 3) selecting the learning models; 4) fitting the models. This chapter

presents a brief introduction to the background knowledge related to the 4 steps. Fur-

thermore, at the end of this chapter, a brief introduction to the Kano model theory is

presented as the prerequisite knowledge for chapter 5.

2.1 Preparing and processing the data

Supervised machine learning models [14] require labelled datasets for the training process.

A labelled data sample usually consists of 2 parts: the feature vector (or matrix) and

ground truth label. This dissertation mainly focuses on sentiment and aspect classification

on review sentences, therefore, the ground truth labels are the aspects each sentence

discusses about or its sentiment orientation. Obviously, the ground truth labels are not

inherently available, and usually obtained by employing human experts to manually read

the content of each sentence. Since a dataset may contain up to millions of sentences,

laborious human efforts can be involved in the data preparation process.

Each English textual document may contain many decorative words, such as ‘the’,

6



‘at’, ‘be’, that have no or little semantic meaning. Therefore, according to the traditional

natural language processing practices, those words have to be removed from the documents

in the pre-processing [15]. Furthermore, there exist many compound words that consist of

multiple words but have to be treated as a single word, such as ‘New York’, ‘front desk’,

‘king bed’, etc. It is imperative to identify the compound words in the pre-processing.

A widely used approach to identify the compound words is checking whether there exists

statistically significant difference between the probability distribution of a group of words

being treated as a single compound word and the joint probability distribution of the

words being treated as independent [16].

It is also possible to feed the data directly into the learning models without any pre-

processing efforts to train the classifiers. However, a premise has to be met to skip the

pre-processing step: the training size has to be large enough [17].

2.2 Representing the data

In traditional natural language processing practices, documents are usually treated as

‘bags of words’ [6]. The ‘words’ here are actually the n-grams, that are contiguous se-

quences of n words from a given document. Though theoretically n can be an arbitrary

integer, in practice it is usually limited under 4. There is no order among the ‘words’ in

the ‘bag’

Based on the bag-of-words model, the simplest way to represent a document is the

one-hot encoding [6]. In this representation model, each dimension of a vector corresponds

to each unique word in the vocabulary, and takes a binary value to code the occurrence

or absence of the corresponding word in a given document.

Another widely used bag-of-words based representation model is the term frequency-

inverse document frequency (tf-idf) model [6]. In the tf-idf vector of a given document,

each dimension holds the weight of each unique word from the vocabulary in the docu-

ment. The weight of each word in the document is proportional to the product of the

term frequency of the word in the document and the inverse of the document frequency

of the word in the entire corpus. The underlying argument of tf-idf is that the words

frequently occur in many documents are usually the stop words, therefore, the weights of

those words have to be suppressed by factoring in their inverse document frequencies.

7



Topic models [18] have also been used to derive the representation vectors of textual

documents. In a representation vector generated by topic models, each dimension repre-

sents the membership of the document in each topic. The membership is derived based

on a generative model that defines each topic as a probability distribution over all the

unique words in the vocabulary, and each document as a probability distribution over all

the topics.

All the three models have gained huge successes in various classification tasks on

conventional textual documents. However, on short document classification, their perfor-

mance is usually limited. When the corpus is large and the average document length is

very short, the representations generated by tf-idf and one-hot encoding are very high-

dimensional and sparse that can easily cause severe over-fitting problems; the representa-

tions generated by topic models are usually very noisy that can cause misrepresentation

of the data [19].

In recent years, word embedding models [8] have been used as a powerful alternative

to the traditional representation models in short text classification. Word embedding

models generate low-dimensional and dense vectors to represent words, that are much

easier to be handled by machine learning models. Each dimension of a word embedding

vector represents the membership of the word in each abstract sense, therefore, it allows for

computing the semantic similarity between any pair of words in the vocabulary. Currently,

the most representative word embedding models are the word-to-vector (word2vec) [9] and

global vectors (Glove) [20].

Word2ve is essentially a language model built upon shallow neural networks that

predicts what a word may appear given a textual context, or what a textual context

may appear next to a given word. The architecture to tackle the former task is called

‘continuous bag-of-words’, and the architecture for the latter task ‘skip-gram’. A pictorial

demonstration of the two architectures are shown in Figure 2.1 [9] . The representation

of each word is derived by fitting the shallow neural network on the training corpus.

Penninton et al. [20] argued that both CBOW and Skip-gram fail to adequately in-

corporate the global statistics of word occurrences. They observed that the co-occurring

frequency of a pair of words usually suggests the semantic similarity between them. The

authors proposed the GloVec model that assumes the co-occurring frequency of a word
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Figure 2.1: The structures of CBOW and Skip-gram

pair is somehow linearly related to their distance in semantic spaces, and treats the in-

ference of the embedding vectors as a least-square regression problem.

2.3 Machine learning models

Traditional machine learning models, such as SVM, Logistic regression, Naive Bayes, etc.,

can be used to train the aspect and sentiment classifiers. In recent years, the neural

network models have been proven more effective than the traditional learning models in a

wide range of short text classification tasks [21]. This section presents a brief introduction

to the 3 most frequently used neural network architectures: multi-layer perceptron (MLP),

convolutional neural network (CNN), and recurrent neural network (RNN) [22].

A multi-layer perceptron consists of an input layer, an output layer, and at least a

hidden layer. Assuming an input vector is x, the activations of the first hidden layer are

computed as:

A[1] = g(W [1]x+ b[1]) (2.1)

Where W [1] is the linear weight matrix, b[1] is the bias term for the first hidden layer,

g is the activation function. Similarly, the activations of the nth hidden layer is computed

as:

A[n] = g(W [n]An−1 + b[n]) (2.2)

9



Figure 2.2: The structure of MLP

Where W [n] and b[n] are the linear weight matrix and bias term for the nth hidden layer,

respectively, A[n−1] is the activations of the previous hidden layer.

The activations in output layer are computed as :

A[o] = s(W [o]A[o−1] + b[o]) (2.3)

Where s is usually the softmax function, A[o−1] is the activations of hidden layer

proceeding the output layer, A[o] can be interpreted as the probability distribution of the

input sample over all the target classes. The cost of the sample is measured by the cross

entropy between A[o] and the ground truth label y of the sample:

J = −
C∑
c=1

yc ∗ logA[o]
c (2.4)

The architecture of MLP is shown in Figure 2.2

CNN models use convolution operators instead of the linear mapping in MLP to

compute the activations. Assuming the input of a CNN model is x, x can be a vector or

a matrix, the activations resulting from convolution operation j in the first hidden layer

is computed as:

A[1] = g(W
[1]
j ~ x+ b

[1]
j ) (2.5)

Where ~ is the convolution operator, W
[1]
j and b

[1]
j are the jth convolution filter and bias

term, respectively. In each hidden layer, there can be an arbitrary number of convolution

filters, and the activations resulting from all convolution operations are stacked to form

a 3-d activation matrixes.
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Figure 2.3: The structure of RNN

One more difference of CNN from MLP is that CNN always adopts the pooling op-

erations to reduce the sizes of the hidden activations. Two types of pooling operations

are frequently used in various applications: average pooling that replace all the activation

values in each neighbourhood of a predefined size with the their average, and max pooling

that replaces the activation values with their maximum.

RNN is to handle sequential data. Each input consists of a varying number of time

steps. The activations 1at each time step depend upon the activations of the previous

time step. Assuming the activations of time step t are A<t>, then the activations of time

step t+ 1 are computed as:

A<t+1> = g(Wxx
<t+1> +WaA

<t> + b) (2.6)

Where Wx is the linear weight matrix for the input at each time step, Wa is the linear

weight matrix for the activations of the previous step, b is the bias term. The architecture

of RNN is shown in Figure 2.3

In practice, the RNN model is rarely used because RNN is usually ineffective to encode

long time dependency among all the time steps in each training sample [23]. Two variants

of the RNN model: the long short time memory (LSTM) [24] and gated recurrent network

(GRU) [25], have been widely used as the alternatives to the plain RNN model. The

general structures of GRU and LSTM are similar as RNN except for that they use more

complex mapping functions to compute the activations of each time step.

1In RNN, the activations’ here are actually the ‘hidden state’ values. The term is still kept to make

the description of RNN consistent with that of MLP and CNN.
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In GRU, the activations computed by equation (2.6) are treated as the ‘candidate

activations’ Ã<t+1>, and the actual activations are the weighted combination of the acti-

vations of the previous step and the candidate activations. The combination weights of

the two types of activations are decided by the ‘update’ gate Γu :

Γu = σ(Wuxx
<t+1> +WuaA

<t> + bu) (2.7)

Where σ is the sigmoid function, Wux and Wua are the linear weight matrices for the

input and the previous activations to compute the update weight, respectively. The actual

activations of time step t<t+1> are computed as:

A<t+1> = ΓuA
<t> + (1− Γu)Ã

<t+1> (2.8)

In LSTM, each unit contains two types of values: activation values and ‘memory cell’

values. The candidate values for the memory cell at step t+ 1 are computed as :

c̃<t+1> = g(WmaA
<t> +Wmxx

<t+1> + bm) (2.9)

Where Wma and Wmx are the linear weight matrices for the activations of the previous

time step and the input, respectively, bm is the bias term. The actual memory cell values

for the time step is a weighted combination of the memory cell values c<t> of time step

t and the candidate memory cell values c̃<t+1>. The weights for c<t> and c̃<t+1> are

governed by a ‘forget gate’ Γf and an ‘update gate’ Γu , whose values are computed by

two independent equations similar as (2.7), respectively. The actual memory cell values

are computed as follows:

c<t+1> = Γfc
<t> + Γuc̃

<t+1> (2.10)

LSTM uses an ‘output gate’ value Γo, that is also computed in a similar way as the

forget and update gate values, to compute the activations of time step t+ 1 based on the

memory cell values of that time step:

A<t+1> = Γo ∗ g(c<t+1>) (2.11)

2.4 Fitting the models

The training process of a learning model is essentially a numerical optimisation problem

with a goal of minimising the costs of the learning model. Various convex optimisa-
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tion techniques [26], such as gradient decent, the Newton method, conjugated gradient,

etc., can be used for the training processes of the traditional learning models whose cost

functions are convex.

However, in the context of deep learning, the training process is more difficult because

the deep structures result in very high risk of gradient explosion or gradient vanishing [27].

To stabilise the training process, the following special treatments are usually necessary.

Firstly, the weight matrices have to initialised with small non-zero fractions to prevent

their gradients from quickly exploding or vanishing [28]. Secondly, in each iteration of

the training process, it is beneficial to normalise the activations of each hidden layer [29].

Thirdly, special optimisation techniques, such as gradient decent with momentum ??,

RMSProp [30], Adam [31], etc., are usually much more effective than the aforementioned

optimisation techniques. Details of the initialisation process, activation normalisation,

and the special optimisation algorithms are introduced as follows.

2.4.1 Weight initialisation

In practice, the weight matrices cannot be initialised with 0 as it can cause the ‘symmetric

gradient’ problem: the derivatives of the loss function with respect to all the weights are

all the same, thus, all the weight matrices will have the same values in the subsequent

iterations.

The weight matrices have to be initialised with small values that are close but not

equal to 0. There are existing the following frequently used and effective methods for the

weight initialisation: Xavier initialisation [32] and He initialisation [33].

Assuming the number of nodes in hidden layer l is n[l], then in the Xavier initialisation,

the weight matrix w[l] will be initialised with values that are sampled from a normal

distribution with a mean of 0 and a variance of 1
n[l] :

w[l] ∼ N(0,

√
1

n[l]
) (2.12)

He initialisation is similar as Xavier initialisation, but is specifically for the tanh

activation function. In He initialisation, the weight matrix w[l] for the tanh activation

functions is initialised with values that are sampled from a normal distribution with the

mean of 0 and the variance of 2
n[l] :
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w[l] ∼ N(0,

√
2

n[l]
) (2.13)

2.4.2 Activation normalisation

In the training process, the activation values of the hidden layers may vary significantly

as the input data changes. Drastic changes in the hidden activation values may cause the

training process to be very unstable. In practice, batch normalisation is usually imposed

on activation values to alleviate the problem.

Given a dataset containing M training examples, assuming the state values of a hidden

layer is Z. In the normalisation process, Z is first normalised as follows:

Znorm =
Z − µ
σ

(2.14)

where µ is the mean of the state values of all the M examples, σ is the standard deviation

of the state values for all the M examples. Then Znorm is linearly transformed as follows:

Z̃ = γ ∗ Znorm + β (2.15)

where γ and β are unknown linear coefficients, that will be learned in the training process.

Z̃ is used to replace the original state values and compute the activation values of the

hidden layer.

2.4.3 Optimisation algorithms

In the generic gradient decent algorithm, the gradients of the cost function with respect

to the trainable variables may oscillate wildly around the shortest decent path. In other

words, the generic gradient decent algorithm always detours around the optimum, and

have difficulties to identify the short decent path. A pictorial demonstration of the be-

haviour of gradient decent is shown in Figure 2.4.

The gradient oscillation can significantly slow down the training process, even cause

the algorithm to miss the optimum. To accelerate and stabilise the training process,

the following optimisation algorithms are usually used: gradient decent with momentum,

RMSProp, Adam.
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Figure 2.4: The oscillation behaviour of gradient decent

‘Momentum’ in the gradient decent with momentum algorithm is essentially the smoothed

gradients. Smoothing the gradients is the core idea to alleviate the gradient oscillation

problem. Assuming the gradient of the weight matrix in the first iteration of a gra-

dient decent process is dw<0>, the gradients of the second and the third iteration are

dw<1>,dw<2>, respectively, then the smoothed versions of dw<0>, dw<1> and dw<2> are

computed as follows:

Vdw<1> = (1− β) ∗ dw<0>

Vdw<2> = β ∗ Vdw<1> + (1− β) ∗ dw<1>

Vdw<3> = β ∗ Vdw<2> + (1− β) ∗ dw<2>

(2.16)

where β is the a hyper-parameter that controls the smoothing level. Similarly, given the

smoothed gradient of the ith iteration Vdw<i> , and the original gradient of iteration i+ 1

dw<i+1>, the smoothed gradient of iteration i+ 1 is computed as:

Vdw<i+1> = β ∗ Vdw<i> + (1− β) ∗ dw<i+1> (2.17)

In gradient decent with momentum, at each iteration i, assuming the learning rate is

α, then the weight matrix w is updated as follows:

w = w − α ∗ Vdw<i> (2.18)

In the RMSDrop algorithm, let S denote the momentum, and it can be computed as

follows:

Sdw<i+1> = β ∗ Sdw<i> + (1− β) ∗ (dw<i+1>)2 (2.19)

The weight matrix w in an iteration i is updated as follows:

w = w − α ∗ dw<i>√
Sdw<i>

(2.20)
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Figure 2.5: The relations between attribute performance and customer satisfaction

Adam algorithm combines the momentum in both algorithms. The weight matrix w

in an iteration i can be updated as follows:

w = w − α ∗ Vdw<i>√
Sdw<i>

(2.21)

2.5 Kano model theory

The relations between the performance of an attributes and the overall satisfaction level

can reflect the nature of the attribute. Based on the relations, Kano theory [13] di-

vides all attributes of a product or service into the following 5 categories: must-be,

one-dimensional, attractive, indifference, and reverse attributes. The definitions of the

5 attribute categories are as follows:

• Must be: these are the requirements that the customers expect and are taken for

granted. When their performance is sufficient, customers are not necessarily satis-

fied; but when their performance is insufficient, customers are very dissatisfied. For

example, for a cellphone, signal quality is a must-be attribute.

• One-dimensional: they result in satisfaction when their performance is sufficient,

and dissatisfaction when their performance is insufficient. For example, the screen

resolution of a cell phone is an one-dimensional attribute: customers are satisfied if

the resolution is high and dissatisfied if the resolution is poor.
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• Attractive: they result in satisfaction if their performance is sufficient, but not nec-

essarily lead to dissatisfaction if their performance is insufficient. For example, the

voice assistant of a smart phone is an attractive attribute: users would be satisfied if

the system works well but not necessarily dissatisfied if the system performs poorly.

• Indifference: the performance of those attributes has no or very limited impacts on

customer satisfaction. For example, some rarely used features of a cellphone can

be counted as indifference’ : users just ignore them and their performance poses no

impact on overall customer satisfaction.

• Reverse quality: they result in dissatisfaction when those attributes are overly im-

plemented. For example, for a phone with a target group of the people who are not

very tech-savvy, a state-of-the-art touch screen may result in dissatisfaction.

The asymmetric relations between attribute-level performance and customer satisfac-

tion is pictorially demonstrated in Figure 2.5 [13]. Categorising the attributes of a product

or service into those categories (especially into the first 3 categories) helps people under-

stand the driving forces of customer satisfaction, and optimally allocate limited resources

in the product or service development process to maximise customer satisfaction.

The Kano questionnaire is commonly used to categorise attributes into those cate-

gories. The questionnaire consists of functional and dysfunctional questions. Functional

questions aim to get respondents’ responses when the performance of an attribute is

sufficient; the dysfunctional questions are to collect respondents’ responses when the per-

formance is insufficient. Based on the responses, one can make the categorisation decision

based on the Kano matrix shown in Table 2.1.

In the table, ‘M’ stands for must-be, ‘O’ stands for one-dimensional, ‘A’ stands for

attractive, ‘I’ stands for indifferent, ‘R’ stands for reverse. If an respondent’s answer

regarding an attribute falls in a cell, then the corresponding category shown in the cell

should be the category the attribute belongs to.
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Table 2.1: The Kano matrix

Dysfunctional question

How do you feel if the performance

of the attribute is insufficient?

satisfied
it should be

that way

I am

neutral

I can live

with it

I dislike it

that

way

Functional question

How do you feel

if the performance of

the attribute is sufficient ?

satisfied A A A O

It should be

that way
R I I I M

I am

neutral
R I I I M

I am

live with it
R I I I M

Dissatisfied R R R R
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Chapter 3

Representing sentences by a

weighted average of word

embeddings

This chapter presents a novel weighted average approach, named ‘Abstract Keywords’,

to combine word embedding vectors to represent sentences in the training process of the

opinion classifiers.

3.1 Introduction

In short text classification, the traditional text encoding models, such as one-hot encoding

and TF-IDF [6], would inevitably result in very sparse, high-dimensional representations,

that are generally hard for existing learning models to handle. Furthermore, traditional

text representation models do not encode semantical information and rely only on word

overlaps to measure document similarities, therefore, cannot capture the similarity be-

tween a pair of documents that are semantically related but have no words in common.

Word embedding models [9, 20, 34, 35], that learn low-dimensional and dense feature

vectors for each individual word to represent their semantic meaning, have been proven

more effective in a wide range of short text classification tasks. However, word embedding

models have an obvious downside: to represent a document in the classification task, one

must combine embedding vectors of all words in the documment into a single vector by
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predefined composition operators. Currently, the easiest and most widely used composi-

tion operator is element-wise averaging [36, 37], though it is obviously problematic since

it assign words equal weights that can easily dilute salient signals and augment noisy

signals.

One can also use convolutional layers in CNN [38, 39], or the recurrent units in

RNN [40, 41], as the composition operators. Compared with the averaging approach, on

one hand, CNN and RNN are much more computationally expensive; on the other hand,

they encode much richer structural information of the training documents. Theoretically,

the CNN and RNN based approaches would have better performance than the averaging

composition operator. However, surprisingly, Iyyer et al. [37] found that the performance

of the averaging composition operator can rival that of the RNN or CNN based composi-

tion operators in short text classification. One possible reason, as the authors stated, is

that the diluted salient signals in the averaging operator will be increasingly amplified as

the learning models getting deeper.

In short text classification, the averaging operator is still a strong baseline. To surpass

it, many researchers have been focusing on devising more complex structures based on

the frameworks of CNN or RNN. Though exciting improvements have been reported in

recently published papers [42–47], the more complex model structures usually lead to

massive increases in computation costs and require more labelled data for the training

process.

In this research, we aim to build a weighted averaging operator, that assigns differ-

ent words different weights according to their semantical meaning. We assume in each

particular classification task, there exist some abstract keywords whose embeddings are

extremely salient. For the words in each document, the more similar they are to the

keywords, the higher the weights they will be assigned in the composition process. Since

the abstract words are unknown beforehand, they are integrated into the structure of the

learning model under study and learned along with the existing model parameters in the

training process. Experiment results show that, this approach is much more computation-

ally cheaper than the CNN and RNN based approaches, and has better performance than

the averaging approach. The remaining of this chapter is organised as follows. Section

2 presents a brief introduction to related work. Section 3 details the proposed approach.
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Section 4 shows the evaluation results and Section 5 presents the conclusion and future

research directions.

3.2 Related work

In this section we give a brief introduction to the compositionality of word embeddings

based on deep learning models. Also, since this research is related to text embedding

models, a number of representative works in this filed are introduced though they are not

the focus of this research .

3.2.1 Composition of word embeddings based on deep learning

models

Iyyer et al. [37] proposed to use the average of word embeddings of a document as the

compositional representation of the document. The authors feed the averaged represen-

tation to a deep multilayer perceptron model, called DAN, and find that its performance

rivals other models using more complex structures, such as CNN, LSTM, etc.

Kim [38] proposed to apply the convolution operator to model the semantic composi-

tion of word embeddings. The author first stacks all the word embedding vectors in each

document into a matrix, then applies convolution filters of varying sizes on the embedding

matrix to get the convolution responses of the matrix. The most salient features of the

responses, that are selected by applying the pair-wise max pooling on the convolution re-

sults, are concatenated as the representation of the document. A pictorial demonstrator

of the process is shown in Figure 3.1 [38].
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Figure 3.1: The structure of the CNN model for combining word embeddings

Tai et al. [40] proposed to use the many-to-one structured LSTM model to combine

word embeddings. In this structure, each word position of a sentence is treated as a

time step, and the embedding of the word at each position is fed into the RNN unit

of the corresponding time step. The hidden state ht at time step t is a function of the

embedding vector for the time step and the previous hidden state ht−1. The hidden state

at the last time step is used as the semantic representation of the document. A pictorial

demonstration of the composition process is shown in Figure 3.2.

Wang et al. [48] proposed a hybrid RNN-LSTM model for the composition process.

In the model, the authors first feed the input data to a CNN model, then pass the output

of the CNN model to a LSTM model. The output of the LSTM sequence is used as

the compositional representations. The authors claimed that this approach combines the

expressiveness of the both models, therefore, is more effective than the approaches using

RNN or CNN alone.

3.2.2 Text embedding models

Besides the word embedding models, there exist a number of sentence embedding models.

Sentence-embedding models also use word embeddings as the building blocks, however,

they take into account the semantical composition of individual words during their training

process. In other words, the word embeddings generated by sentence embedding models

are already optimised for the composition process based on their predefined composition

operators, before being fed into a classifier.
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Figure 3.2: The structure of the RNN model for combining word embeddings

One of the most widely used sentence embedding models is the paragraph to vector

model (Para2vec) [49], that is an extension of the Word2vec model. Similar as Word2vec,

Para2vec is also built upon the language model that uses a piece of textual context to

predict a word may appear inside or next to the context. The difference between them

lies in that, Word2vec uses only words in a sentence as the context, whereas Para2vec uses

both words and the indexing identities of sentences as the contextual information. By

fitting the shallow neural network based language model, the embedding representation

of each sentence and each word can be learned at the same time.

Kenter et al. proposed the Siamese CBOW model [50] to derive sentence embeddings.

This model is build upon a language model that predicts whether a pair of sentences

should be adjacent to one another in the training set. In the model, each sentence is

represented by the average of the word embeddings in the sentence, and the possibility

of a pair of sentences being adjacent is decided by their cosine similarity. By fitting

the language model, word embeddings will be optimised for being averaged to represent

sentences.

Kiros et al. proposed the Skip-thought model [51] that uses encoder-decoder structure

to encode the composition process. The encoder of the model uses a LSTM model to

aggregate the embeddings of all words in a sentence, and the decoder uses another LSTM

model to predict the previous and next sentences of the input sentence conditioning

on the output of the encoder. Compared with the Siamese CBOW model, this model
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encodes word order of documents therefore has better performance in applications that

are sensitive to the sequential information.

3.3 The Abstract Keywords approach

Assuming there exists an extremely salient abstract keyword wa for a particular classifi-

cation task, let va denote the embedding vector of the abstract keyword. As mentioned

previously, we assume the more similar the words in a document are to the abstract key-

word wa, the higher the weights they will be assigned in the composition process. In this

paper the similarity between a pair of word embeddings vi and vj is measured by their

dot product.

Assuming there are nm words in a document, the weights of the words in the document

for the composition process are computed by the softmax function based on their semantic

similarities to the abstract keyword:

wi =
ev
>
i va∑nm

i=1 e
v>i va

(3.1)

The compositional embedding vector of the document is computed as follows:

v̄m =
nm∑
i=1

wi ∗ vi (3.2)

The compositional embedding vectors are fed into the learning models. Let h(x)

denote the prediction function of a deep MLP model, then the negative log-likelihood loss

is computed as follows:

L(θ, va) = −
C∑
c=1

1{ym = c} log(h(v̄m; θ, va)) (3.3)

θ is the parameters of the MLP model. As the equation suggests, the embedding of

the abstract keyword is integrated into the loss function and can be derived along with

the model parameters θ in the training process. In the test phase, the word embedding

vectors of an unseen sentence are combined by the same weighted averaging shown in

equation (3.2).

It is also possible to introduce multiple abstract keywords to make the model more

non-linear. In this case, we compute a compositional embedding with respect to each
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Figure 3.3: A toy example of the word embedding aggregation in Abstract Keyword

abstract keyword, and combine the multiple compositional vectors by concatenating or

averaging as the input of the MLP. However, for computation efficiency, we limit the

number of abstract keywords within 2 in this research.

A pictorial demonstration of the composition process in Abstract Keywords is shown

in Figure 3.3.

3.4 Evaluation

In this section we evaluate the performance of the proposed weighted average approach.

DAN [37], CNN [38], RNN (including GRU and LSTM ) [40] and the CNN-RNN hybrid

model [48] are used as the baselines. The following datasets that are frequently used in

existing papers are used in the experiment.

• MR: Movie reviews with one sentence per review. Classification involves detecting

positive/negative reviews [52].

• SST-1: Stanford Sentiment Treebankan extension of MR but with train/dev/test

splits provided and fine-grained labels (very positive, positive, neutral, negative,

very negative) [53].

• SST-2: Same as SST-1 but with neutral reviews removed and binary labels.

• Subjectivity dataset where the task is to classify a sentence as being subjective or

objective [54].
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• TREC: TREC question datasettask involves classifying a question into 6 question

types (whether the question is about person, location, numeric information, etc.)

[55].

• MPQA: Opinion polarity detection subtask of the MPQA dataset [56].

Statistics of the datasets are shown in Table 3.1. The Google’s word2vec model 1 pre-

trained on the Google News corpus is used across for all the models. The dimensionality

of each word embedding vector is 300. For all the baseline models, we use the same

architectures reported in the original papers introducing those models. For the proposed

approach, we choose the architecture shown in Table 3.2 by grid search on the SST-1

dataset and use it across on all the datasets.

Table 3.1: Statistics of the datasets used Chapter 3

Data
Number of

target class

Average

sentence

length

Data

Size

Vocabulary

size

SST-1 5 18 14065 17836

SST-2 2 19 11434 16185

Subj 2 23 10000 21323

TREC 6 10 6452 9592

MR 2 20 10662 18765

MPQA 2 3 10606 6246

Also, as mentioned in Section 3.3, it is possible to use multiple abstract words. To

demonstrate the impact of the number of abstract words, we train two models, one with

only one abstract word, and the other with two. The 10-fold cross validation is used on

each task and the classification performance of all the models is evaluated in terms of

average accuracy. The comparison results are shown in Table 3.3.

We first compare the performance of the average baseline approach against that of

other baseline models. As the results indicate, the performance of the DAN model is

1https://code.google.com/archive/p/word2vec/
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Table 3.2: The architecture of Abstract Keywords

layers size
regularisation

strength
drop-out rate

input 300 - -

abstract word 300 - -

1st layer 500 0.001 0.15

2nd layer 150 0.001 0.15

3rd layer 60 0.001 0.15

output layer task specific - -

not always lower than that of other baseline models, though it uses the simplest model

structure. On Subj and SST-1, the DAN model even outperforms other baseline models.

We then compare the proposed approach against the average baseline approach. The

proposed approach outperforms the averaging approach on all the datasets except for

SUBJ. The proposed approach enjoys an average advantage margin of 1% over the averag

approach when using 1 keyword, and an average advantage of 2.1% when using two

keywords.

Lastly, we compare the proposed approach against other baseline models. When using

1 keyword, the performance of the proposed approach is on par with that of the LSTM,

GRU and CNN models; when using 2 keywords, the average accuracy of the proposed

approach is very close to that of the CNN-LSTM hybrid model.

Furthermore, to demonstrate the computation efficiency of the proposed approach, the

average training time (from the start of the training to the point when the performance on

the validation data starts to decrease) for each model is also recorded. The computation

environment is as follows: MacBook Pro, 2.7 GHz Intel Core i5, 8 GB 1867 MHz DDR3.

The time comparison is shown in Table 3.4. As the results indicate, on each dataset, the

training process of the proposed approach with one abstract keyword takes 35% less time

by average than the most computationally efficient model among all the baselines except

for DAN, and around 20% less when using two.

We also check the semantic meaning of the abstract words. We show the top 10
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Table 3.3: Performance of Abstract Keyword and the baseline models

Model SST-1 SST-2 Subj TREC MR MPQA

DAN 0.466 0.821 0.924 0.896 0.782 0.895

RNN(LSTM) 0.463 0.839 0.902 0.910 0.796 0.906

RNN (GRU) 0.459 0.835 0.90 0.912 0.820 0.880

CNN 0.450 0.865 0.906 0.914 0.810 0.873

CNN-LSTM hybrid 0.464 0.856 0.910 0.919 0.812 0.921

Ours-1 abstract word 0.475 0.835 0.912 0.900 0.815 0.90

Ours-2 abstract word 0.487 0.850 0.919 0.910 0.827 0.912

Table 3.4: Time (seconds) for the training process of Abstract Keywords and the

baseline models

Model SST-1 SST-2 Subj TREC MR MPQA

DAN 40 45 47 33 68 32

RNN(LSTM) 330 305 310 162 400 266

RNN (GRU) 311 285 309 169 392 271

CNN 235 270 272 140 334 280

CNN-LSTM hybrid 190 210 255 120 266 154

Ours-1 abstract word 107 130 146 100 185 125

Ours-2 abstract word 136 160 180 132 210 150

semantically nearest words, and the top 10 most distant words of the learned abstract

word (from the model using only one abstract keyword) in Table 3.5. We observe that the

nearest words are the ones that are semantically related to the target class labels, while the

majority of the most distant words are stop words that have no or little semantic meaning.

This further justifies our approach of weighting words according to their similarities to

the abstract words.
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Table 3.5: The most semantically nearest words of the abstract word

TREC SST-1 SUBJ MPQA

prize guaranteed

half price

ipod

pub

chance win

bonus caller

auction

services

wine

replying

pitiful

dreadful

lousy

unappealing

dismal

sloppy

defecates

incapable

miserably

undressed

enjoyably

talky

overlong

formulaic

likably

unsatisfying

joyless

unengaging

mundanity

tiresomely

ineffective

excused

barred

upset

harm

detrimental

nothing

incapable

doubtful

runin

Table 3.6: The most semantically distant words of the abstract word

TREC SST-1 SUBJ MPQA

situation

vomit

changed

congratulations

wonder

correct

kinda

happened

joke

txting

the

this

here

at

our

its

local

we

now

today

now

is

the

in

may

will

below

within

above

first

bring

our

is

has

get

at

come

follow

put

world
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3.5 Conclusion

In this chapter we propose a weighted average approach to aggregate word vectors to

represent short text. The proposed approach assumes there exist some very important

abstract keywords, and the weight of each word in each document is determined by the

semantic similarities between the word and the abstract keywords. The abstract keywords

are integrated into the cost function of the learning model under study, and learned along

with other model parameters during the training process. Experiment results show that

the performance of the proposed approach is better than that of the basic averaging

approach, and on par with that of the aggregation operators based on complex neural

networks, such as CNN and RNN. Furthermore, compared with the CNN, RNN and

their hybrid model, the training process of the proposed approach is computationally

effective. In this research we limit the number of abstract keywords to 2. In the future,

we plan to extend the proposed approach by using more abstract keywords to have broader

understanding of the proposed composition process.
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Chapter 4

Averaged-logits: a

Weakly-supervised Approach to Use

Labelled Documents to Train

Sentence-level Sentiment Classifiers

4.1 Introduction

Supervised machine learning methods have been widely applied in sentiment analysis

[57–63]. To train such classifiers, one needs to provide training data labelled at the

granularity the same as that of the sentiment classification task at hand. For example,

it requires labelled documents to train document-level sentiment classifiers, and labelled

sentences for sentence-level sentiment classifiers. To label the data, one needs to manually

read the textual content of each training example, and decides which sentiment class each

sample is associated with. Therefore, the labelling process usually takes laborious manual

efforts. Also, the finer the granularity, the more difficulties to make the labelling decisions

and more examples to be labelled, therefore, more manual efforts are needed to prepare the

data. In practice, datasets of labelled sentences are much more expensive than datasets

of labelled documents to obtain. The difficulty of the sentence labelling process can be

reflected by the fact that only few datasets containing sentence-level sentiment labels are

publicly available on the internet. The unavailability of labelled sentence datasets limits
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the feasibility of training effective sentence-level sentiment classifiers, especially in today’s

era when many methods are built upon deep learning models that usually require very

large datasets for the training processes.

One possible way to ease the problem is using labelled documents that are less ex-

pensive, sometimes even free (such as on-line reviews with ratings) to obtain, to train

sentence-level sentiment classifiers. The easiest way to do that is treating each document

as a single long sentence, the label of the document as the label for the long sentence, and

apply the generic methods for sentence-level sentiment classification to train the classifiers.

However, there exists a problem in training sentence-level sentiment classifiers with

labelled documents: the sentiments of individual sentences may be very different from

the sentiments of their containing documents. For example, there may exist very negative

sentences in a generally positive document, or positive sentences in a generally nega-

tive document. By using document-level sentiments as the supervision signal, the true

sentiment orientations of individual sentences can be easily misrepresented, that would in-

evitably result in harmful impacts to the classifiers. Furthermore, sequential deep learning

models, such as GRU and LSTM, cannot handle long word sequences. To train classifiers

with these models on long documents, one has to either shorten the documents by throw-

ing away words or use the truncated back-propagation technique in the training process.

The former way leads to loss of information, the latter way may significantly increase the

training time.

This paper proposes a novel end-to-end approach, called ‘Averaged-logits’, that uses

labelled documents to train sentence-level sentiment classifiers. Unlike the previously

mentioned methods, the proposed approach keeps the sentiments of individual sentences,

and allows for using the sequential models without truncating the documents or the

need of the truncated back-propagation method. In the proposed approach, individual

sentences are fed as the inputs, and the averages of the resulting logit vectors of sentences

from the same reviews are used to compute the sentiment distributions of the containing

documents. The cross entropies between the resulting sentiment distributions and the

ground-truth document-level labels are used as the cost function. In the experiment, we

collected two review datasets: one contains 50,000 hotel reviews crawled from TripAdvisor,

the other 50,000 electronic product reviews crawled from Amazon. We used the review
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data to train classifiers based on the proposed approach and the results indicate that,

the Averaged-logits classifiers outperform the existing approach that treats documents as

long sentences by margins of 3% − 8%. At the meantime, we observed that, by using a

large enough training dataset, the performance of the Averaged-logits classifiers can be

on par with that of generic classifiers trained with labelled sentences.

The rest of this paper is organised as follows: Section 4.2 presents a brief introduction

to the existing work; Section 4.3 introduces the proposed approach; Section 4.4 presents

the evaluation results and Section 4.5 provides the conclusion and future research direc-

tion.

4.2 Related work

This section first presents a brief introduction to existing methods that use labelled sen-

tences to train sentence-level sentiment classifiers, then present a few rare methods that

exploit document-level sentiment labels to train sentence-level sentiment classifiers.

4.2.1 Sentence-level sentiment classification based on labelled

sentences

A critical phase in generic text classification problem is extracting effective input features

to represent the raw text. This is especially true for sentence-level sentiment classification,

as sentences are usually very short and noisy. Based on how the features are extracted, the

existing methods are divided into two categories: 1) lexicon-based methods whose feature

extraction process involves the use of external opinion lexicons ; 2) machine-learning

based methods that exploit the statistical patterns or contextual structures of sentences

to define the features.

Lexicon based methods

Lexicon based models require lexicons consisting of opinion words or phrases. Those

methods assume that opinions words and phrases are the dominating indicator for sen-

timent classification, therefore, the input features of those methods are usually derived

based on the presence or absence of the opinion words in a text fragment. A big array of
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models, ranging from rule based algorithms [68–70], to unsupervised [71–73] and super-

vised machine learning models [74–78], have been proposed to build sentiment classifiers

with the help of sentiment lexicons.

A problem with the lexicon based methods is that the opinion lexicons are manually

built, therefore, the scope and size of a lexicon is usually very limited. There exists a

high possibility that the words of an opinionated sentence has no overlap with the opinion

lexicon. Researchers have proposed to automatically expand the lexicons by iteratively

searching WordNet or other dictionaries for synonyms and antonyms of the opinion words

as the addition to the lexicons [4, 79–81]. The shortcoming of this approach is that

the added words from the external dictionaries can be unrelated to the training corpus,

therefore, cannot reflect the domain knowledge and corpus-specific statistics. To address

the problem, Liu et al. [70,82] proposed to search the training corpus, instead of external

dictionaries, for words that are semantically or syntactically related to the opinion words.

However, it is usually not easy to determine the sentiment orientation of the newly added

words by the semantic or syntactical connection, therefore, external linguistic knowledge

and intense labor are still needed to help make the decision.

Machine learning based methods

Compared with lexicon based methods, machine learning based methods do not involve

opinion lexicons in the feature extraction process. Generic text features, such part-

of-speech tags, tf-idf weights, term frequencies, etc., are very popular in those meth-

ods [57–63]. Inevitably, those features are much more noisy than the features generated

from opinion lexicons. To compensate for the downside, those methods usually use com-

plex model structures or large datasets. This is especially true in recent years as many

newly developed methods are built upon deep learning models and big data. Socher et

al. [53] proposed the recursive neural network, in which the authors first use the tree struc-

ture grammars to parse an input sentence into sub-phrases, then combine the embedding

vectors of words in each sub-phrase through a set of pre-defined combination functions

as the compositional representation for the sub-phrase. The sub-phrase representations

are passed to a MLP model to predict the sentiment of each phrase. By fitting the MLP,

not only the sentiment classifier, but also the phrase representations, can be learned. Tai
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et al. [40] proposed the Tree-LSTM, in which the authors apply the LSTM model on a

sentence, and combine the hidden and memory cell states of words in each sub-phrase

as the representation of the sub-phrase. Kim [38] stacks the embedding representations

of words in each sentence and applies the convolutional neural network on the stacked

feature matrix to train a sentiment classifier. Wang et al. [48] combine the expressiveness

of LSTM and CNN by proposing a hybrid model, that first applies 1-dimensional convo-

lutional filters on the embedding feature matrixes of the input sentences, then passes the

resulting feature maps to RNN units to get deep sentence representations for sentiment

classification.

4.2.2 Exploiting document-level sentiment labels for sentence-

level sentiment classification

Besides the methods mentioned in the Introduction section, there also exist the following

methods that exploit document-level sentiment labels to train sentence-level sentiment

classifiers. In those models, document-level sentiments are usually used as a form of weak

supervision, that has to work with other knowledge, such as opinion lexicons, human

linguistic expertise, sentence-level sentiment labels, etc., to train sentence-level classifiers.

Qu et al. [64] proposed a multi-expert model that makes use of local syntactic patterns of

sentences, and opinion lexicons to build a set of rule-based base predictors, and predict

the sentiment labels based on the votes of the base predictors. Yang et al. [65] proposed a

CRF model that uses sentence-level sentiment labels as the main supervision signal, and

use overall ratings as a form of posterior regularisation to keep sentence-level sentiments

and document-level sentiments consistent. Tackstrom et al. [66] proposed a Hidden CRF

model, that treats the sentence-level sentiments of a review as latent variables, and the

overall ratings are observable variables conditioning on the latent variables. Opinion

lexicons are used in the method to define the feature functions for the CRF model. Wu

et al. [67] proposed the SSWS model that uses two levels of features: document-level

sentiments and word-level sentiments, along with a predefined set of linguistic rules, to

train a linear sentence-level sentiment classifier.

As previously mentioned, those methods also require intense human labor and lin-

guistic expertise to build the opinion lexicons and linguistic rules. We differ our research
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Figure 4.1: The application of MLP in sentiment classification

from those existing work by that we focus on generalised, end-to-end approach to train

the sentence-level sentiment classifiers, to avoid the laborious efforts to build the lexicons

or the external linguistic expertise .

4.3 The Averaged-logits model

In this paper, 4 types of neural network models: MLP, LSTM, GRU, and CNN, can

be used in the proposed approach to train sentence-level sentiment classifiers under the

supervision of document-level labels. This section will first introduce the structures of the

4 models in sentiment classification, then present the framework of the proposed approach.

Word-to-vector (Word2vec) embedding vectors are used across on all the 4 models as the

word representations.

4.3.1 Multiple layer perceptron

To use MLP to train the sentence-level sentiment classifier, one first has to combine

the multiple word vectors associated with a sentence into a single vector as the sentence

representation. The most commonly used method to combine word vectors is element-wise

averaging.

Assuming the average of the word vectors of a sentence is x̄, the activation function
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Figure 4.2: The application of CNN in sentiment classification.

of a MLP model is denoted as g, then the activation of the first hidden layer is :

A[1] = g(W [1]x̄+ b[1]) (4.1)

where W [1], b[1] are the linear weights and bias for the first layer, respectively. Similarly,

the activation in the nth hidden layer is computed as

A[n] = g(W [n]A[n−1] + b[n]) (4.2)

In the output layer l[N ], the activation of layer l[N−1] is linearly mapped to a vector called

‘logits’ as follows:

Z [N ] = W [N ]A[N−1] + b[N ] (4.3)

Z [N ] is used to used to compute the probability distribution of the input over all the target

classes based on the Softmax function:

p(yi|x̄) =
expZ

[N ]
i∑C

j=1 expZ
[N ]
j

(4.4)

The structure of MLP in sentiment classification is shown in Figure 4.1.

4.3.2 Convolutional neural network

In a CNN model, the word vectors associated with a sentence are stacked to form a

matrix X as the input. A set of convolution operations are applied on the input matrix

to combine the multiple word vectors into a compositional sentence representation.
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Figure 4.3: The application of RNN in sentiment classification

Assuming K convolution kernels h are used in a CNN model, the size of the kth kernel

is d ∗ n, where d is the dimensionality of the word vectors, and n is the number of words

each sliding window of the kernel crosses. At a window crossing from the mth word to

the (m+n)th word, the feature results from the convolution operation between the kernel

and the input matrix is:

skm = g([xm : xm+n] ◦ hk + bk) (4.5)

where ◦ is Hadamard product between the n word vectors and the convolution kernel, g

is the activation function, bk is the bias term for the kernel. The features of all the sliding

windows of the kernel are concatenated as a feature map sk. The max pooling is then

applied on sk to take the maximum value ŝk = max sk as the final feature corresponding

to hk.

The features of all convolution kernels are concatenated as the compositional repre-

sentation ŝ of the input sentence, that is further fed into some dense layers. The resulting

logit vector of the subsequent dense layers is used to computed the probability distribu-

tion over the target classes. The structure of CNN is shown in Figure 4.2 ( In the figure,

the features marked by the blue colour result from convolution operations crossing two

words at each step, the red one 3 words.).

4.3.3 LSTM and GRU

LSTM and GRU are two variants of the recurrent neural network (RNN). The many-to-

one structured RNN is usually used for sentiment classification. In this structure, each

word position of a sentence is treated as a time step, and the word vector at each position
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is fed into the RNN unit of the corresponding time step. The hidden state of the last

RNN unit is used as the sentence representation. In practice, the plain RNN model is

rarely used because of its ineffectiveness in the word order of long sentences. Instead,

GRU and LSTM, are frequently used to train the classifiers.

Assuming the hidden state of time step t − 1 is h<t−1> in a GRU model, then the

hidden state of time step t is computed as follows:

r<t> = σ(Wrx
<t> + Urh

<t−1>) (4.6)

z<t> = σ(Wzx
<t> + Uzh

<t−1>) (4.7)

h̃<t> = tanh(Wx(t) + U(rt ◦ h<t−1>)) (4.8)

h<t> = (1− z<t>)h<t−1> + z<t>h̃<t> (4.9)

Where x<t> is the word vector at time step t, σ is the sigmoid function. h̃<t> is the

candidate value for h<t>, r<t> is to govern how much the existing hidden state should be

related to the previous state, z<t> how much information from previous time step should

be kept at the existing step.

In the LSTM model, at a time step t, besides the hidden state h<t>, there also exists

the ‘memory cell state’ c<t>. That two states can be computed as follows:

i<t> = σ(Wixt + Uih
<t−1>) (4.10)

f<t> = σ(Wfx
<t> + Ufh

<t−1>) (4.11)

o<t> = σ(Wox
<t> + Uoh

<t−1>) (4.12)

g<t> = tanh(Wgx
<t> + Ugh

<t−1>) (4.13)

c<t> = f<t> ◦ c<t−1> + i<t> ◦ g<t> (4.14)

h<t> = o<t> ◦ tanh(c<t>) (4.15)

where g<t> is the candidate value for c<t>, i<t> and f<t> govern how much information

from the previous memory cell state and the candidate memory cell state should be kept,

respectively, o<t> controls how the hidden state h<t> is related to the memory cell state.

The hidden state at the last time step is further fed into some dense layers, and the

logit vector in the output layer is used to compute probability distribution over all the

target classes. The structure of the RNN model is shown in Figure 4.3.
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Figure 4.4: The structure of the Averaged-logits model

4.3.4 The structure of the Averaged-logits model

Assuming a neural network model is used to train the classifier. Given a document d

consisting of N sentences, each sentence is fed into the neural network. As previously

mentioned, each sentence will result in a logit vector in the output layer of the neural net-

work model, that is usually used to computed the probability distribution of the sentence

over all the sentiment classes. If the sentence-level ground-truth labels are available, the

losses of the model can be computed by minimising the cross entropy between the labels

and the probability distributions.

Since we wish to avoid the laborious sentence labelling efforts, the sentence-level labels

are not available. Instead, we assume only document-level labels are available and use

them as the supervision signal to train the sentence-level classifier. To achieve that, a way

to associate the sentence-level logit vectors with document-level labels have to be defined.

In the proposed approach, we first average over the logit vectors of sentences from the

same review into a single logit vector, then compute the losses based on the averages and

document-level labels. The approach can be formulated as follows.

Assuming the resulting logit vector of a sentence n of a review d in a neural network
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model is Z
(n)
d

Z̄d =
N∑
n=1

Z
(n)
d (4.16)

where Z̄d is the average of the sentence-level logit vectors for all the N sentence in doc-

ument d, Z̄d is used to compute the document’s probability distribution p(ÿ) over the

target classes:

p(ÿ = i|d) =
exp z̄di∑C
j=1 exp z̄dj

(4.17)

Then the loss on the document is computed as follows:

ld = −
∑
i

1 {ÿ = j} log p(ÿ = j) (4.18)

A pictorial demonstration of the proposed approach is shown in Figure 4.4. The

training process minimises the losses in (4.18) to derive the unknown parameters of the

sentence-level models by the back-propagation technique.

4.4 Evaluation

This section presents the evaluation results. We collected two datasets, one contains

50,000 electronic product reviews from Amazon, the other 50,000 hotel reviews from

Tripadvisor. Each review consists a piece of text, and an overall rating on a 5-point scale

that can serve as the document-level sentiment label. Statistics of the two datasets are

shown in Table 4.1

Table 4.1: Statistics of the review datasets

Num

of reviews

Avg num

of sentences

Avg num

of words

Num of

sentiment classes

TripAdvisor 50,000 9 176 5

Amazon 50,000 12 126 5

We manually read part of the reviews, and labelled 7000 sentences for each dataset.

Each sentiment label takes 3 possible categorical values: positive, negative, neutral.

Statistics of the labelled sentence sets are shown in Table 4.2. We use the labelled review
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sentences to train classifiers based on the SVM, MLP, CNN, GRU and LSTM models.

To train the classifiers, 5,000 labelled sentences are randomly chosen from each dataset

as the training set, and the remaining as the test set.

Table 4.2: Statistics of the review sentence sets

Training

size

Test

size

Avg num

of words

Num of

classes

TripAdvisor 5000 2000 22 3

Amazon 5000 2000 17 3

At the meantime, we use the reviews to train sentence-level sentiment classifiers based

on the proposed approach and the existing approach treating documents as long sentences.

The performance of those classifiers are also evaluated on the test set of labelled sentences.

It is noteworthy that, since the ratings are on a 5-star scale, the predictions of the classifiers

trained under the supervision of the ratings would also be values on that scale. Therefore,

the predicted labels have to be converted into the same ‘negative-neutral-positive’ format

used by the labelled sentences in the evaluation process. In this paper, the following

conversion scheme is used: ‘negative’ when predictions are less than 2 stars, ‘neutral’

when equal to 2 stars, ‘positive’ otherwise. The performance comparison among all the

classifiers will be shown in 4.4.3.

Naturally, the performance of the classifiers trained with the proposed approach should

be lower than that of the classifiers trained with sentence-level labels when their training

sizes are close 1. However, by increasing the training sizes of the proposed approach simply

by adding more raw reviews, the performance gap is expected to narrow down. Details

of the effects of training sizes on the performance of the classifiers will be shown in 4.4.4.

It is also possible to mix raw reviews with labelled sentences to train the classifiers with

the proposed approach. In this case, each labelled sentence is treated as a review consisting

of only one sentence, the label of the sentence is treated as the document-level sentiment

label. Once again, the ratings of the reviews are on a 5-point scale, therefore, have

to be converted into the negative-neutral-positive format to be mixed with the labelled

1When labelled sentences are used to train the classifiers, each sentence is counted as a training sample;

when reviews are used as the training data, each review is counted as a training sample
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sentences. The aforementioned scheme is also used for the label conversion process. The

performance of the classifiers trained on the mixed data will be shown in 4.4.5.

4.4.1 Pre-processing and Hyper-parameter Setting

In the experiment, other than sentence tokenisation and removing the words that appear

for less than 5 times in the datasets, no additional pre-processing treatment is performed.

Google’s W2V model 2 pre-trained on the Google news corpus is used to represent words.

The dimensionality of the W2V vectors is 300. In the training process, the W2V vec-

tors are set as non-trainable. The Keras package with Tensorflow backend 3 is used to

implement both the baseline models and the proposed approach.

4.4.2 Convergence of Averaged-logits

In the experiment we observed that the training process of Averaged-logits converges

quickly and steadily. The training and validation accuracies of the proposed model on

each dataset over epochs are visualised in Figure 4.5 (It is noteworthy the validation data

is a set of around 500 reviews, that are randomly drawn from the training data). As shown

in the figure, the validation accuracies of all the classifiers based on Averaged-logits begin

to stabilise at approximately the 30th epoch. Also, the classifiers trained on the Amazon

dataset have a more obvious overfitting problem. One possible reason is that the average

length of the Amazon reviews is shorter than that of the TripAdvisor reviews, therefore,

the dataset provides less information for Averaged-logitsl to fit on.

4.4.3 Comparison of Averaged-logits with the baselines

As mentioned previously, we train three types of classifiers: generic classifiers trained

with the datasets of 5,000 review sentences; generic classifiers trained with the review

datasets; Averaged-logits classifiers trained with the review datasets. To make a fair

comparison, 5,000 reviews are only drawn from each review dataset for the latter two

types of classifiers to make their training sizes equal to that of the firs type of classifiers.

The following models: SVM, MLP, CNN, GRU, LSTM are used to train the first and

2https://code.google.com/archive/p/word2vec/
3https://www.keras.io/
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Figure 4.5: The training and validation accuracies of Averaged-logits on each dataset.

second types of classifiers; MLP, CNN, GRU, LSTM are used to train the Averaged-logits

classifiers. The hyper-parameters of each model is decided by the grid-search technique

on each dataset. Details of the hyper-parameters are shown in the accompanying code

and therefore being omitted in the paper.

The performance comparison in terms of accuracy among all the models is shown in

Table 4.3. We first compare the performance of the first type of classifiers trained using

labelled sentences, against the performance of the Averaged-logits classifiers trained using

reviews. As the results indicate, the performance of the Average-logits classifiers, is close

to that of the SVM classifier, and around 6-10% lower than that of other classifiers in the

first type.

We then compare the performance of the Average-logits classifiers against the second

type of classifiers trained by treating documents as long sentences. As the results show

that, Averaged-logits classifiers enjoys good margins of 6%-8% over the second type of

classifiers on the Amazon dataset, and 3-5% on the TripAdvisor dataset. The advantage

of the Averaged-logits model is more obvious on the Amazon dataset. One possible reason

is that there are more cases where the sentiments of individual sentences are opposite to
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that of the reviews in the Amazon dataset.

Table 4.3: Performance of the three types of classifiers: generic classifiers trained with

review sentences; generic classifiers trained with the review datasets; Averaged-logits

classifiers trained with the review datasets

Model Structure Training data type Features TripAdvisor Amazon

SVM
generic labelled sentences ParaVec 0.71 0.66

generic reviews ParaVec 0.58 0.49

MLP

generic labelled sentences W2V mean 0.75 0.70

Avg-logits reviews W2V mean 0.64 0.55

generic reviews W2V mean 0.68 0.63

CNN

generic labelled sentences W2V 0.81 0.75

Avg-logits reviews W2V 0.68 0.62

generic reviews W2V 0.73 0.69

LSTM

generic labelled sentences W2V 0.77 0.73

Avg-logits reviews W2V 0.66 0.58

generic reviews W2V 0.69 0.65

GRU

generic labelled sentence W2V 0.80 0.72

Avg-logits reviews W2V 0.66 0.60

generic reviews W2V 0.71 0.66

4.4.4 Impacts of training sizes

To improve the performance of the classifiers, one can use larger training datasets to

re-train the classifiers. However, for the first type of classifiers, increasing the training

size comes at the heavy cost of labelling many more review sentences, therefore, is out

of the question in this experiment. The training sizes of the second type of classifiers

and the Average-logits classifiers can be increased simply by adding more reviews into

the original training sets. In the experiment, the raw reviews are divided into 5 portions.

We iteratively increase the training sizes of the classifiers by adding one portion of the

reviews at a time into the training set. The performance of the classifies with varying
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Figure 4.6: Performance of the proposed approach and the existing approach trained

by varying percentages of the original review dataset.

sizes of training data is shown in Figure 4.6 (The red dash line is the performance of the

first type of classifiers trained with the 5,000 review sentences).

The figure indicates, as the training size increases, the performance of all the classifiers

increases. However, the performance of the Averaged-logits classifiers increases more

obviously and quickly. On both datasets, when 3 or 4 portions of reviews are added into

the training sets, the performance of all the Averaged-logits classifiers is close to that of

the first type of classifiers trained using the 5,000 sentences; whereas the performance of

the second type of classifiers is still obviously lower than that of the first type even all the

5 portions of reviews are added into the training datasets.

4.4.5 Mixing reviews and labelled sentences as the training data

As previously mentioned, it is also possible to mix labelled sentences and reviews to train

the classifiers. In the experiment, we also divide each review sentence dataset into 5

portions (1000 sentences in each portion), and mix them with the review datasets. We

mix one portion of the reviews and one portion of review sentences as the training set at
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Figure 4.7: Performance of the classifiers trained with the mixed data

the beginning, and proceed by iteratively adding one portion of the both types of data

at each time into the training sets, to train the classifiers. The performance is shown in

Figure 4.7.

We compare the performance of the classifiers trained with the mixed data against

that of the classifiers trained only with the reviews. The results indicate that, the addition

of all the review sentences helps improve the performance of the Averaged-logits classifiers

by a margin of 5% on the Amazon dataset, 7.5% on the TripAdvisor dataset; whereas

improves the performance of the generic classifiers by 3% on the Amazon dataset, and

4.5% on the TripAdvisor dataset. The improvements on the Averaged-logits classifiers

are more obvious. As shown in the figure, the review sentences result in little change for

the generic classifiers after 3 portions of reviews are used. Also, it is noteworthy that the

performance of the generic classifiers trained with the mixed data is still below that of

the generic classifiers trained only with the review sentences. One possible reason is that,

each unit in the input of the generic models is a review, that contains much more words

therefore has dominantly stronger impacts in the training process. This makes it difficult

for the models to capture the information of the added review sentences.

The performance of the Averaged-logits classifiers trained with the mixed data sur-
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passes that of the classifiers trained with review sentences more quickly and strongly than

do the Averged-logits classifiers trained with only the reviews. This might be because the

mixed data allows the classifiers to capture both the sentence-level and document-level

statistical patterns.

4.5 Conclusion

In review mining, a majority of existing methods for sentence-level sentiment classification

are based on supervised machine learning models, that require a large number of labelled

sentences for the training process. In practice, the labelled data usually takes intense

manual efforts to obtain. To avoid or reduce the manual efforts, one can use reviews, that

are much less expensive even free to obtain, to train sentence-level sentiment classifiers.

In this approach, each review document is treated as a long sentence, the rating of the

review is treated as the sentiment label of the long sentence. However, there exists an

obvious problem with this approach: it loses the sentiment signals of individual sentences

in the training process.

In this paper, we propose a novel approach, called ‘Averaged-logits’, to address the

problem. The proposed approach assumes each sentence in a review has its own sentiment

label, and the average of the sentence-level sentiments should be close to the rating of the

review. The evaluation results show that, the proposed approach outperforms the existing

approach by good margins of 3%-8%. In the future, we plan to train the classifiers based

on the proposed approach on a much larger training set to have better understanding of

the true potential of the proposed approach.
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Chapter 5

An machine learning approach to

identify the attractive aspects

This chapter proposes a machine learning based approach to identify the attractive as-

pects of hotels based on review data. The main challenge in building such a classifier

is extracting discriminative features to represent each aspect. The proposed approach

extracts two types of features, named ‘empirical’ and ‘interactive effect’ features, that re-

flect the asymmetric relations between attribute-level performance and overall customer

satisfaction based on the results of the opinion classification process, to represent each as-

pect. The two types features are fed into the SVM model to train the classifiers classifiers.

Experiment results show that the proposed approach outperforms the existing statistical

model based approaches by a margin of 10%.

5.1 Introduction

The Kano model [13] has been widely used by researchers and marketing practitioners

as a good tool to identify the drivers of customer satisfaction. According to the model,

all the attributes of a product or service can be divided into 3 main categories: must-

be attributes, one-dimensional attributes, and attractive attributes. Must-be attributes

are the minimum requirements that customers expect. Extreme dissatisfaction is caused

if their performance is insufficient while satisfaction is not necessarily caused if their

performance is sufficient. One-dimensional attributes are also expected by customers but
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they differ from the must-be aspects in affecting customer satisfaction in a linear way:

satisfaction is caused if their performance is sufficient and dissatisfaction is caused if their

performance is insufficient. Attractive attributes are usually not expected by customers

and their effects are opposite to that of must-be attributes: satisfaction is caused if their

performance is sufficient but dissatisfaction is not necessarily caused if their performance

is insufficient.

Categorising product attributes into those 3 categories helps people understand bet-

ter the drivers of customer satisfaction [83]. In particular, pinpointing the attractive

attributes is of strong interest to marketing practitioners because attractive attributes

can distinguish a product or service from its competitors. In a mature market where

players are homogenous, attractive attributes are usually vital to boost customer sat-

isfaction and expand customer bases. In this research we focus only on the attractive

attributes and aim to build a model to classify an attribute of a product or service as

whether belonging to the attractive category.

The propensity of an attribute belonging to the attractive category can be decided

by using regression techniques to estimate the effects of its performance on customer

satisfaction. The first phase in the classification task is to collect customer opinions about

their responses to various levels of attribute performance. In the early days of marketing

research, researchers usually relied on quantitive questionnaire-based surveys to get the

opinion data [84–87]. Since questionnaire-based surveys use a limited set of predefined

questions and can investigate only a trivial fraction of a population, it provides a relatively

narrow spectrum of information, especially in today’s era of big data. As e-commerce grew

rapidly in recent years, on-line reviews have been used to extract the opinions. Because

of the accessibility and flexibility customers enjoy on on-line review platforms, the data

can cover much broader demographic groups and deliver richer information than the

questionnaire-based survey data.

However, there is a problem when trying to use review data for the classification

task. Review data usually consists of numerical ratings that indicate overall customer

satisfaction levels and free-form text that details customers’ evaluation on each attribute.

Obviously, the qualitative textual description cannot be processed by regression tools. To

address the problem, researchers have proposed approaches [88–91] that first use natural
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language processing (NLP) techniques to extract customer sentiments associated with

each attribute as the quantitive proxy for the qualitative description, then apply sta-

tistical regression models to derive the effects of the attribute-level sentiments on the

overall ratings as an approximation for the effects of attribute performance on customer

satisfaction.

A major weakness of those works lie in their ineffectiveness in encoding the non-

linearity of the effects. Also, those works treat the items to be analysed as isolated

and their regression processes are performed on the local data of individual items. The

global statistical patterns across the attributes of different items are overlooked. Those

limitations lead to severe loss of information. Furthermore, the attribute-level sentiment

analysis process usually generates heavy noise as the NLP techniques are still far from

being mature. Ignoring the global statistics may also cause those methods to be sensitive

to the noise.

In this study, the review data is also used to collect the customer opinions. However,

this study differs its research goal from the existing ones by using machine learning mod-

els instead of statistical models to train classifiers to determine the Kano categories of

attributes. To train such classifiers, numerical features that reflect the aforementioned

effects have to be derived from the review data to represent attributes. A very natural

form of attribute representation is the empirical probabilities of ratings conditioning on

various sentiments associated with each attribute. To compute the representation, the

effects of the sentiments have to be assumed as independent. However, in a realistic sit-

uation, the sentiments should closely interact with each other in determining the overall

ratings; ignoring these interactions may lead to misrepresentation of attributes. Mod-

elling the interactions is difficult as it is essentially a regression problem with a very high

degree of nonlinearity. In this research a neural network model is proposed to encode the

non-linearity. In the neural network, the input is the attribute-level sentiments of a review

and the output is the possibility of each possible rating for the review. The weights of a

particular hidden layer are used as the attribute representation incorporating the impacts

of the interactions. For the convenience of expression, in the rest of this chapter, the

former type of representation will be called ‘empirical effect’, and the latter type will be

called ‘interactive effect’.
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SVM classifiers are trained with the derived attribute representations. Since the ma-

jority of the existing statistical models focus on hotel review data [88–91], this study also

aligns the target on hotel review data for a fair comparative evaluation. The experiment

results show that the proposed classifiers outperform the statistical models by a consid-

erable margin of over 10%. This is partly because the classifiers make use of the global

statistics and can better encode the non-linearity of the training data. The contributions

of this chapter are as follows. Firstly, we are the first to use machine learning techniques

to train predictive classifiers to identify attractive attributes from on-line review data.

Secondly, we propose to use neural network techniques to derive the non-linear inter-

actions among different levels of attribute performance in determining overall customer

satisfaction.

A flowchart of the proposed approach is shown in Figure 5.1. The rest of this chapter

is organised as follows. Section 2 reviews the related literature; Section 3 introduces the

proposed attribute representation models; Section 4 presents details of the attribute-level

sentiment analysis; Section 5 analyses the data and summarises the results; Section 6

provides conclusions and future research directions.

Figure 5.1: The workflow of the proposed attractive attribute identification process
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5.2 Related work

In the proposed approach, the premise to identify the attractive attributes is devising

natural language processing techniques to obtain structured customer opinions from the

unstructured review text. In this research, the opinion extraction process is treated as an

attribute-level sentiment analysis problem [92], that is to detect the attributes mentioned

in a review and the sentiment orientations on them. This is the first major subproblem

that needs to be discussed. Based on the structured customer opinions, associations

between attribute performance and customer satisfaction have to be derived to determine

the Kano category of each attribute. This is the second subproblem that needs to be

investigated. In this section some representative works related to the two problems are

presented.

5.2.1 Attribute-level sentiment analysis

As the name suggests, attribute-level sentiment analysis consists of two sub-classification

problems: sentiment classification and attribute classification. The two tasks can be per-

formed either separately or jointly. Various off-the-shelf supervised classification models

can be used if they are treated as two separate tasks. A key problem in the classifica-

tion tasks is deriving features to represent the text. The traditional bag-of-words based

feature models, such as one-hot-encoding, tf-idf, etc., have been widely used to represent

the review text [57,61,93–95]. However, the bag-of-words based features are usually very

noisy because reviews are very short and the frequencies of informative words in a review

are too low to reflect their semantic meaning. To reduce the noise, lexicons of attribute or

sentiment keywords can be used and the representation of a review is defined only by the

keywords present in the review [1–4,96–98]. In recent years, text embedding models that

project textual data into a semantic space to derive their semantic representations have

been proven to be effective in the two classification tasks [9, 20, 36, 50, 99]. The elements

of an embedding feature vector represent the membership of a word or a text fragment in

a limited set of abstract senses. Compared with the bag-of-words based features, the em-

bedding representations are much semantically richer, lower-dimensional, and therefore,

easier to be processed by machine learning models.

In the joint approach, the aspect labels and the sentiment labels are included in the
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same cost functions and the syntactic or semantical dependencies between the two labels

serve as the constraints for the cost functions. Optimising such cost functions will generate

the two types of labels simultaneously. Methods based on conditional random field [2,100,

101] and topic modeling [72, 102–105] have been proposed for this approach. Compared

with the separate approach, the joint approach is naturally more computationally efficient.

Furthermore, some of those methods [72, 102, 104] are unsupervised and do not require

manual labor to annotate the training data. However, the performance of the methods in

the joint approach is usually worse than the separate approach because they rely on strong

assumptions about the correlations between the attribute and sentiment labels that are

not necessarily realistic in the real world.

5.2.2 Statistical Kano classification models

With the extracted customer opinions, methods based on penalty-reward contrast analy-

sis(PRCA) [106] can be used to classify each attribute into 1 of the 3 categories. PRCA

based methods are focused on estimating the impacts of each attribute on customer satis-

faction. The impacts of an attribute consist of the reward impact and the penalty impact.

The former represents the impact when the performance of the attribute is sufficient, and

the latter indicates the impacts when performance is insufficient. If the reward impact of

an attribute is stronger than the penalty impact, then the attribute is very likely to be

an attractive attribute. Tontini et al. [90] first perform attribute-level sentiment analysis

on review data, then apply the linear regression model to derive the relations between

the sentiments and ratings as an approximation of the impacts. Zhang et al. [91] extract

keywords and their sentiment weights for each attribute from the review data to quantise

the attribute performance. By conditioning on the derived attribute performance, the

authors apply the logistic regression model to derive the reward and penalty impacts.

There are also existing models based on the critical incident technique (CIT) [107]. A

critical incident refers to the incidents that cause significant contributions or damages to

customer satisfaction. If an attribute frequently causes positive incidents in favourable

reviews but rarely causes negative incidents in unfavourable reviews, then the attribute is

very likely to be attractive. Lu et al. [89] identify the incidents in each attribute based on

the attribute-level sentiments and employ the Krusal-Wallis test to determine the relation
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between the incidents and the overall ratings. Xu et al. [88] first divide all reviews into

a positive group and a negative group, then represent all the words in each review group

by a matrix of TF-IDF weights. The authors employ the latent semantic analysis (LSA)

model to decompose the matrices to uncover the keywords and critical incidents for each

attribute. The correlation between the incidents and each review group is determined by

aggregating the weights of the corresponding keywords.

5.3 Attribute representations

As mentioned in Section 1, two types of representations, the empirical effects and the

interactive effects, are derived from the review data to represent attributes to train the

classifiers. Assuming there is a set of M review documents for an item, the mth review

document is denoted as d(m). The evaluation of the item involves a set of K aspects.

There are I different scales of sentiments; the larger a sentiment index i the more positive

the sentiment. There are J scales of overall ratings; the larger a rating j the higher the

overall customer satisfaction. The notation used throughout this section is shown in Table

5.1.

Table 5.1: Notation used throughout Section 3

m review index

k attribute index

i sentiment index

j rating index

d(m) the mth review document

s
(m)
k the sentiment set on attribute k

in d(m)

r(m) the rating of d(m)

uk the empirical effect features of k

vk the interactive effect features of k
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5.3.1 Empirical effect

Let r denote the ratings, rl and rh are a rating falling in the lower half of the rating

range and a rating in the higher half of the rating range, respectively. Let sk denote

the sentiments on attribute k, sk−and sk+ are a negative and a positive sentiment on the

attribute, respectively.

According to the definition, for must-be attributes, the probability of a negative sen-

timent leading to a low rating must be greater than the probability of a positive senti-

ment leading to a high rating, namely, p(rl|sk−) > p(rh|sk+); for attractive attributes,

p(rh|sk+) > p(rl|sk−); for one-dimensional attributes, p(rl|sk−) ≈ p(rh|sk+). In this re-

search, the conditional probabilities associated with an attribute are concatenated to

form a feature vector to represent the attribute:

uk = [p(r = j|sk = i)]i∈[1,I],j∈[1,J ] (5.1)

p(r = j|sk = i) =

∑M
m=1 1{i ∈ s(m)

k , r(m) = j}∑M
m=1 1{i ∈ s(m)

k }
(5.2)

where p(r = j|sk = i) denotes the probability of rating scale j given sentiment index i

associated with aspect k across all M reviews for the item, s
(m)
k is the set of sentiments

on attribute k in review d(m), and r(m) is the overall rating of the review.

According to the previously presented analysis, the empirical effects of attributes in

the same Kano category would share some common patterns. However, there is an obvi-

ous weakness in the representation: it assumes aspects are independent of each other and

does not reflect the interactions among attributes in deciding the overall ratings. The in-

teractions can also provide information related to the nature of an attribute. For instance,

when a basic need is poorly fulfilled, it is very likely that the probability p(rl|sk−) would

be pushed high and the conditional probabilities on other attributes would be lowered

significantly. This is because customers may simply ignore the performance of other at-

tributes if a must-be attribute fails to meet their expectations. In this chapter we model

the interactions with the neural network model and show the details in the following

subsection.
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Figure 5.2: The structure of the neural network for extracting the interactive effect

features

5.3.2 Interactive effect

This subsection assumes that the effects of attribute-level sentiments are dependent and

connected in determining the overall ratings. Theoretically, one can hard encode the

rules of how the effects interact with each other and use probabilistic models to derive

the effects based on those rules. However, given the high variety and complexity of the

effects, it is infeasible to construct such a model. Instead, this research uses the neural

network model as a mapper that aggregates the effects of the attribute-level sentiments

appearing in a review and maps them to the rating of the review. Since the output of

the neural network, namely the ratings, is observable in the data, the back-propagation

algorithm [108] can be used to derive the mapping function of the neural network and the

interactive effects.

In the proposed neural network, the input is a vector indicating the presence or

absence of each attribute-level sentiment: O(m) = [1{i ∈ s
(m)
k }]k∈[1,K],i∈[1,I]. Let V =

[vki]k∈[1,K],i∈[1,I] denote the matrix of interactive effects of all attribute-level sentiments.

The activations of the first layer are the weighted average of the effects of the attribute-

level sentiments present in review d(m):

A[1] = W [1]>(O(m) ⊗ V ) + b[1] (5.3)

where W [1] is the vector of weights for the attribute-level sentiments, b[1] is the bias term,

O(m)⊗V is the element-wise product of the indicator vector and the interactive represen-

tation matrix. By applying the element-wise product operation, only the attribute-level
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sentiments present in the review play roles in determining the overall ratings.

The activations in the first hidden layer are fed into subsequent layers in which neurons

are fully connected to model the interactions among the attribute-level sentiments in

deciding the overall ratings. Assuming there are L hidden layers in the neural network,

the activations of a hidden layer l ∈ (1, L] can be computed as follows:

A[l] = g(W [l]A[l−1] + b[l]) (5.4)

where g is the tanh activation function of the neural network, W [l] is the matrix of weights

of the connections between layer l−1 and layer l, b[l] is the bias term. In the output layer,

the softmax function σ is used to compute the probability of each possible rating for the

review:

A[o] = σ(W [o]A[L] + b[o]) (5.5)

where A[o] = [p(r̂(m) = 1), p(r̂(m) = 2), ...p(r̂(m) = J)], p(r̂(m) = j) is the probability to

predict a rating of j for the review. The negative log likelihood is used as the loss function

of the proposed model:

C(m) = −
∑
j∈[1,J ]

1
{
r(m) = j

}
∗ log p(r̂(m) = j) (5.6)

The backward propagation method [108] is used to derive the unknown interactive

effects and the hidden layer weights and biases. The structure of the neural network is

shown in Figure 5.2. The hyper-parameters of the structure, including the dimensionality

of the interactive effect features, the number of hidden layers, and the number of activa-

tions in each hidden layer, are also unknown beforehand and decided by the grid search

technique [?] in the training process. Details of the hyper-parameter search process will

be shown in Section 5.

After the training process, the learned interactive effects of all the sentiments asso-

ciated with an attribute k are concatenated to represent the attribute: vk = [vki]i∈[1,I].

Furthermore, we concatenate the interactive effects to the aforementioned empirical effects

to form a more informative representation for the attribute.
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5.4 Extracting attribute-level sentiments

This section introduces the proposed approach for attribute-level sentiment analysis. The

attribute classification and sentiment classification are treated as two separate problems.

In other words, two separate classifiers are trained for the attribute classification and the

sentiment classification. In the proposed approach, a review is decomposed into sentences

and the classifications are performed on each individual sentence. Assuming a sentence

of a review d(m) is classified as discussing about attribute k with sentiment i, then the

sentiment i is added to the sentiment set for attribute k to make i ∈ s
(m)
k true. In

this research, the off-the-shelf sentiment classifier in the StanfordNLP package [109] is

used for the sentiment classification and the following method is used for the attribute

classification.

Word-to-vector (W2V) [9], a representative text embedding model, is used to represent

the review text because it reflects the semantic information and allow for computing the

similarity between any pair of words in the vocabulary. Assuming there exists a set of

keywords φk for each aspect k, the similarity between a review sentence and an given

aspect k is computed as follows:

sim
(
d(m,n), k

)
= max

e1∈d(m,n),e2∈φk
Cos(fe1 , fe2) (5.7)

where d(m,n)denotes the nth sentence in review d(m), e1 ∈ d(m,n) denotes each word in the

review sentence, e2 ∈ φk denotes each keyword for aspect k, f denotes the word-to-vector

features of a word, Cos denotes the cosine similarity between a pair of feature vectors.

The equation indicates that we compute the similarity between each word of a sentence

and each keyword of an aspect and use the maximum similarity as the similarity between

the sentence and the aspect.

If the similarity between a sentence and an aspect exceeds a predefined threshold γ,

then the sentence is deemed to be about the aspect:

z(m,n) = argk sim(d(m,n), k) > γ (5.8)

where z(m,n) is the set of aspects the sentence may discuss about.
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5.5 Evaluation

A dataset containing around 60,000 reviews of 400 hotels in New York city is collected

from TripAdvisor [3]. In this dataset, each hotel has at least 100 reviews. Each review

has an integer rating in the range [1, 5] and a piece of review text. The distributions

of customer opinions may vary significantly by room rate, therefore, all the hotels are

divided into 4 categories according to their room rates: cheap, budget, medium, and

luxury. Statistics of each category of hotels are shown in Table 5.2.

Table 5.2: Statistics of each hotel category

Hotel

type

Price

range(USD)

Number of

hotels

Number of

reviews

Average

rating

Standard deviation

of ratings

Cheap 0-100 86 18567 3.23 1.75

Budget 100-200 114 20463 3.05 1.64

Medium 200-400 120 26742 3.39 1.67

Luxury above 400 85 15064 3.71 1.26

Table 5.3: The Kano matrix

Dysfunctional question

How do you feel if the performance

of the attribute is insufficient?

I am

neutral

I can live

with it

that way

I dislike it

that

way

Functional question

How do you feel

if the performance of

the attribute is sufficient ?

I like it

that way
A A

It must be

that way

I am

neutral

To get the ground truth labels for the training process, all the reviews of each hotel

are evenly divided into 15 portions. 15 volunteers with background in hotel management

are employed to read the reviews, each volunteer is assigned one portion of the reviews.

Based on their understanding from the reading, each volunteer is asked to fill in the Kano
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matrix shown in Table 5.3 for each attribute discussed in the reviews. According to the

Kano theory [13], if the answer of a volunteer for an attribute falls in the cells marked with

‘A’ then the attribute is attractive. If more than 7 of the 15 volunteers give the attractive

response then the attribute is labelled as attractive, otherwise as non-attractive.

In the attribute-level sentiment analysis, as previously mentioned in Section 4, the

sentiment classifier provided by StanfordNLP [109] is used to determine the sentiment

of each review sentence. In this classifier each sentiment is indicated by an integer in

the range [1, 4], such that close to 4 indicates a strong positive sentiment while close to 1

indicates a strong negative sentiment. The proposed method described in Section 4 is used

to detect the attributes in each review sentence. To use the method, the word-to-vectors

features have to be learned from the review text. Since the aspects of a sentence are mostly

characterised by the nouns, verbs, adjective, and adverbs, the part-of-speech tagger [109]

is used to select those words from each sentence as the input of the word-to-vector model.

The number of dimensions of the representation is set to be 100.

A set of attributes shown in Table 5.4 that are frequently discussed in the existing

hospitality research papers [88–91] are used as the possible labels the proposed method

would assign to a review sentence. Also, 10 keywords for each attribute are obtained

by consulting a volunteer expert in the hospitality industry. We set the threshold γ in

Equation (8) to 0.6, on which the best performance is observed.
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Table 5.4: The rating attributes of the reviews

General hotel

attributes

lobby, accessibility, parking,

shuttle services, check-in/out,

staff, price, reservation,

nearby leisure facility, taxi-calling

General room

attributes

cleanliness, quietness, room size,

furniture, bedding, AC,

view, bathroom, decoration,

internet, pet-friendliness

Room

appliances

fridge, microwave,

coffee-maker,

computer

Food related

attributes

breakfasts,

affiliated restaurants,

complimentary food and drinks

Additional

facilities

conference rooms,

gym,

pool

5.5.1 Aspect identification

The performance of the proposed attribute detection method is compared with the fol-

lowing methods: the supervised Naive Bayesian [110] and SVM model [94] trained with

the bag-of-words based tf-idf features, the lexicon based Boot-strapping method [3], and

the SVM model trained with the word-to-vector features [99]. The comparison results

are shown in Table 5.5. The results indicate that the proposed method outperforms the

best among the first 3 methods by a margin of 5% in terms of the F1 score. The SVM

classifier trained with word-to-vector features outperforms the proposed method, but the

advantage comes at the price of tedious manual labor for labelling the training data. Also,

since the threshold γ in Equation (8) allows the proposed method to assign aspect labels

to an instance only when it is ‘extremely’ confident about the decision, the proposed
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method usually assigns no label, while other models usually assign wrong labels in the

false negative cases. This may result in less noise in analysing the correlations between

attribute-level sentiments and the overall ratings, especially when the training data comes

in very large volume.

We also show the number of review sentences related to each aspect across the whole

dataset in Figure 5.3. The results indicate that staff is the most frequently discussed

attribute in the dataset. This is consistent with the fact that professional ethics and

competence of staff members are crucial elements to increase customer satisfaction in the

hospitality industry.

Figure 5.3: Number of sentences related to each aspect
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Table 5.5: Performance of the attribute classification models

SVM

+tf-idf

Naive Bayesian

+tf-idf

Lexicon-based

boots-strapping
SVM+W2V

Our

model

Average

precision
0.80 0.72 0.82 0.88 0.85

Average

recall
0.66 0.62 0.60 0.79 0.70

Average

F1 score
0.72 0.67 0.69 0.83 0.77

5.5.2 Empirical effect

Figure 5.4: A snippet of the empirical effect features

The tick p(rj |si) represents the conditional probability of rating j given sentiment i

associated with an aspect.

As previously mentioned, the dimensionality of the empirical effects of an aspect is

I ∗ J = 4 ∗ 5 = 20. Each dimension represents the conditional probability of an overall

rating given a sentiment index detected on the aspect. We compute the features for each
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aspect of each hotel and show a snippet of them in Figure 5.4. The features in the first

two rows are for two attractive aspects of a hotel: gym and shuttle service. The waves

of the two features have relatively low values when the sentiments are not positive and

have sharp peaks at p(r = 4|s = 4) and p(r = 5|s = 4). This indicates that customers

are prone to give high ratings when the performance of those aspects is sufficient, but are

insensitive to them when their performance is insufficient. The two features in the middle

row are for two must-be aspects of the same hotel: check-in/out and room quietness. The

waves are opposite to that of the attractive aspects. This indicates that customers can be

easily dissatisfied when the performance of the aspects is insufficient but less possible to

be satisfied when the performance is sufficient. The features in the third row are for two

one-dimensional attributes: staff and cleanliness. Those waves have peaks at both ends,

reflecting the linear relation between the performance of those aspects and the overall

customer satisfaction.

5.5.3 Interactive effect

In this research, the Tensorflow package [111] is used to implement the proposed neural

network to derive the interactive effects. As previously mentioned in Section 3, there

are several hyper parameters of the neural network that need to be determined by grid

search: the dimensionality of the interactive effect features, the number of hidden layers,

and the number of activations in each hidden layer. In the grid search, the dimensionality

of the interactive effect features is empirically set in the interval [5, 20] with a step size

of 2; the number of layers in the interval [2, 10] with a step size of 1; the activation size

in the interval [10, 30] with a step size of 2;. The grid search tries all possible parameter

combinations and finds the neural network that has the best performance when the di-

mensionality of the features is 9, the number of hidden layers is 3, the first hidden layer

size is 9 (the same as the dimensionality of the features), the second hidden layer size is

20, and the third hidden layer size is 12.

The interactive effect features of sentiments associated with each attribute are visu-

alised by the Hinton diagram [112]. There are 4 rows in the diagram, each row for a

sentiment indicator. The white blocks in the diagram represent positive values, and the

black blocks negative values. The areas of those blocks indicate the magnitude of the
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Figure 5.5: A snippet of the interactive effects of attractive attributes

(the number below each diagram is the hotel ID used during the experiment)

values. We find that the features of attractive attributes have appearance distinctively

different from that of the must-be and the one-dimensional attributes. A snippet of the

results is shown in Figure 5.5 and Figure 5.6. In these figures, the features of attrac-

tive attributes are usually preoccupied with tiny blocks after the second column, while in

the features of non-attractive attributes relatively large blocks appear across the whole

matrix.
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Figure 5.6: A snippet of the interactive effects of non-attractive attributes

Figure 5.7: The results of K-means clustering with the interactive effect features

The red cross marks represent attractive attributes, and the white squares non-attractive

attributes.
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To further demonstrate the discriminatory power of the features, K-means clustering

is performed on the features. The number of clusters is set to 2, one cluster represents

attractive attributes, and the other non-attractive attributes. In the results, the cluster-

ing purities for the cheap, budget, medium, and luxury categories are 0.63, 0.62, 0.75,

and 0.68, respectively. We visualise the clustering results on 20 hotels randomly chosen

from each hotel category in Figure 5.7. As the 4 plots indicate, the majority of the at-

tractive attributes fall in the cluster with yellow background, and the majority of the

non-attractive aspects in the cluster with green background. It is noteworthy that the

clustering quality on the medium category data is the best. This is partly because the

number of favourable and unfavourable reviews in this category is relatively balanced,

providing evenly distributed information about the attractive attributes for the neural

network.

5.5.4 The attractive attribute classifiers

Each detected aspect of each hotel is treated as a data instance, and the following 3

features are used to train 3 separate SVM classifiers: the empirical effect features, the

interactive effect features, and the concatenation of the two types of features. We use the

5-fold cross validation to evaluate the classifiers. We also evaluate the PRCA [90] and

CIT [89] methods on the data and compare their performance with the classifiers. The

results are shown in Table 5.6.

Firstly, the results show that the average precision of the 3 classifiers is 79.3% and

the average recall is 73.6%. This can be interpreted as that around 80% of the attractive

attributes classified by the classifiers are actually attractive in the ground truth and the

classifiers can retrieve more than 70% of the attractive attributes in the ground truth.

Among the 3 classifiers, the one trained with the concatenation features is the best,

followed by the one trained with the interactive effect features. The classifier trained

with the empirical effect features is the worst. It is noteworthy that the concatenation

features and the interactive effect features have more clear advantages over the empirical

effect features on the luxury category. One possible reason is that the favourable reviews

dominantly outnumber the unfavourable reviews in this category, therefore, information

concerning negative opinions is severely inadequate. The empirical effect features are
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more sensitive to such lack of information.

Secondly, the performance of the classifiers is over 10% higher than that of the sta-

tistical models in terms of the F1 score. According to the analysis in Section 1, the low

performance of the statistical models is partly caused by the noisy nature of the derived

attribute-level sentiments and their ineffectiveness in modelling the non-linearity of the

data.

In the experiment, the average rating of the hotels on which attractive attributes are

detected is higher than that of the hotels on which no attractive attribute is detected

across the 4 hotel categories. The averag rating of the hotels with attractive attributes

is 0.27 higher than that of the hotels without the attributes in the cheap category, 0.31

higher in the budget category, 0.42 higher in the the medium category and 0.21 higher in

the luxury category. The highest difference margin occurs in the medium category. This

may indicate that there exists very intense competition in this category and the clients of

those hotels are more sensitive to the attractive attributes than the clients of other hotel

categories.

Table 5.6: Performance of the proposed classifiers and the PRAC/CIT based methods.

Prec stands for ‘Precision’, Rec stands for Recall’.

SVM+

the empirical

effects

SVM+

the interactive

effects

SVM+the

concatenation

features

PRCA [90] CIT [89]

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Luxury 0.76 0.690.72 0.86 0.80 0.83 0.88 0.85 0.86 0.65 0.550.60 0.65 0.610.63

Medium 0.71 0.510.59 0.76 0.59 0.66 0.80 0.61 0.69 0.46 0.620.53 0.70 0.500.58

Budget 0.69 0.890.78 0.73 0.91 0.81 0.77 0.91 0.83 0.59 0.740.66 0.67 0.590.63

Cheap 0.82 0.650.73 0.85 0.69 0.76 0.87 0.74 0.80 0.68 0.630.65 0.79 0.620.69

Average 0.75 0.680.70 0.80 0.75 0.76 0.83 0.78 0.79 0.60 0.640.61 0.66 0.610.63
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5.6 Conclusion

This chapter aims to develop predictive classifiers based on machine learning techniques

that analyse on-line review data to identify the attractive attributes of a product or service.

A critical problem in training such classifiers is deriving discriminative features that can

reflect the non-linear relations between attribute-level opinions and overall ratings. Two

types of features, the empirical effect feature that is the empirical probabilities of ratings

conditioning on various attribute-level opinions, and the interactive effect feature that

encodes the interactions among attribute-level opinions in deciding the overall ratings,

are used together to train the classifiers. Compared with the existing methods based on

statistical models, the proposed classifiers not only encode a much higher degree of non-

linearity in customer opinions, but also make use of the global statistics of the training

data. The proposed classifiers are evaluated on a hotel review dataset crawled from

TripAdvisor. The experiment results indicate that the classifiers reach a precision of

79.3% and outperform the existing statistical models by a margin of over 10%.

One drawback with the classifiers is that the information encoded by the empirical ef-

fect feature and the interactive effect feature may overlap to some degree. The information

redundancy can result in severe overfitting. In the future, we will improve the attribute

representations and investigate the possibilities of applying deep learning techniques to

build more reliable classifiers.

70



Chapter 6

Conclusion

This chapter summarises the main contributions of this dissertation, and conclude the

dissertation with future research directions.

6.1 The main contribution

This dissertation discusses two fundamental problems in sentence-level opinion classifi-

cation on review data: sentence representations and the limited availability of training

data.

To address the former problem, this dissertation proposes a weighted average approach

to aggregate word vectors to represent short text. The proposed approach assumes there

exist some very important abstract keywords, and the weight of each word in a document

is determined by the semantic similarity between the word and the abstract keywords.

The abstract keywords are integrated into the cost function of the learning model under

study, and learned along with other model parameters during the training process. Ex-

periment results show that this approach has better performance than the deep learning

models using complex structures, such as CNN and RNN, but much less computationally

expensive.

To address the latter problem, this dissertation proposes the Averaged Logits model,

that uses ratings, instead of sentence-level sentiment labels, to train the sentence-level

sentiment classifiers. Since ratings are prevalently available in review data, no manual

labor for data annotation is involved. Evaluation results show that the performance of the
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proposed approach is close to the traditional learning models using sentence-level labels

as the supervision signal .

Also, based on the results of the opinion classification process , this dissertation pro-

poses a machine learning based approach to identify the attractive aspects of a product or

service. Evaluation results show that the proposed approach reaches a precision of 79.3%

and outperforms the existing statistical model based methods by a margin of over 10%.

6.2 Contributions the community of Knowledge Sci-

ence

The tasks related review summarisation discussed throughout this dissertation are essen-

tially a data-knowledge transformation problem, that is an important research topic in

the community of Knowledge Science. To be specific, the dissertation contributes to the

development of Knowledge Science in at least the following aspects :

• Data representation. Chapter 3 proposes the Abstract Keywords model to derive

sentence embedding representations in the opinion classification process.

• Data management. Chapter 4 proposes the weakly-supervised Averaged Logits

model that requires no manual labelling efforts to train sentence-level classifiers.

The proposed model significantly improves the effectiveness of the data management

process.

• Processing information into Knowledge. The results of the opinion classification

are random, loosely organised information. Chapter 5 proposes a machine learning

approach to process the opinion information to discover the selling points of products

or services, that is a very useful form of knowledge for consumers’ decision-making

processes.

6.3 Directions for future work

The transformation from knowledge to wisdom is not covered in this dissertation. In the

context of review summarisation, wisdom can be translated as ‘personalised’, that requires
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the system to present different review summaries for different consumers based on the

personal preferences of the consumers. This dissertation mainly aims to address problems

that are generally applicable to all the stakeholders as a whole, and no personalised data,

information or knowledge is taken into account. In the future, the author will explore for

new methods to incorporate wisdom into the review summarisation process.
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