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Abstract

Developmental learning is essential for cognitive development. In this research, we examine one of its

applications for robots which is active depth perception. Depth perception is one of the most fundamental

problems for biological and artificial vision systems. Humans use several different cues to infer the depth

layout of a scene or estimate the distance of individual objects. Usually, depth perception in humans is

an active process involving different kinds of eye and/or body movements.

During active binocular vision, when an object is fixated with both eyes such that the optical axes of

the two eyes intersect at a point on the object’s surface, the vergence angle between the two eyes provides

an estimate of the object’s distance. When the observer moves sideways by a known distance, the eye

rotations necessary to keep the object at the centers of gaze, the so-called motion parallax, also provide

information about the object’s distance. When the observer approaches the object with a known velocity,

the changing optic flow pattern created by the movement also provides information about the object’s

distance. Note that while active depth perception based on vergence eye movements obviously requires

at least two eyes, depth perception based on motion parallax or optic flow requires only a single eye.

However, humans do not only use one active depth perception for their whole lifetime. They can utilize

multiple active depth perceptions when they move. Thus, we consider the full active depth perception

which are stimulated when the observer moves in a direction and looking at a specific visual field. All of

the three-active depth perception are then evoked as (1) the eye rotation that is necessary to keep the

previous visual field to compensate the lateral body movement. (2) the eye rotation required to reduce

the disparity between two eyes.

The main goal of the research is to implement a biological inspired active depth perception framework

for robots which is developmental and has the ability of self-calibration. A literature review of various

studies implementing the vision system indicates that there are several ways to implement the active

depth perception. One way is to use the conventional computer techniques to create the depth perception

algorithm. Despite their impressive accuracy of the depth perception, most of the frameworks fails to

adapt and learn to various environment. So, to solve the problem, some studies proposed the framework

with learning algorithms which generally solve the learning issue. However, the studies fail to create a

link between action and perception which is important for creating a developmental learning framework.

In this thesis, we describe the works that relate to the research and how we solve the problem with

the proposed frameworks such as generating smooth pursuit eye movement when the robot moves in a

lateral direction, estimating the distance between the robot and the fixating object with motion parallax,

extending the presented visual learning framework to accurately and autonomously represent the various

ranges of absolute distance by using the pursuit eye movements from multiple lateral body movements,

integrating motion parallax and stereo vision cue within one framework.

Finally, we show that the proposed models, which are implemented in the HOAP3 humanoid robot

simulator, can successfully solve the problem that is raised toward achieving the main goal.

Keywords: Active Depth Perception, Cognitive Developmental Robot, Autonomous Learning, Motion

Parallax, Self-Calibration, Active Efficient Coding, Integrated Cue, Distance Estimation, Developmental

Vision, Eye pursuit, Sensory-motor Coordination
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Chapter 1

Introduction

1.1 Importance of Research and Its Challenges

With the rise of new developments in robotics and artificial intelligence, they have brought

many attentions recently. For examples, Alpha Go [1] won a human world champion in

Go, a strategy board game, self-driving car [2, 3] that can learn how to drive by itself

without a driver, a study on a very human-like robot that can display emotion [4], and

very recent studies of a social humanoid robot, Pepper, that can do various things [5–7].

In the future, we may expect to see many kinds of robot that can learn and interact

with us in our daily life like in many movies/novels. However, to reach the vision, a solid

foundation of how the robot learns must be established first. Many studies are pursing

the vision in many different field such as follows. In [8], they discuss how ubiquitous

robotics could be in the far future. It combines the cloud technology which lets numbers

of robots share information they learned together. It will open to space of applications

such as companion assisting, co-working alongside people, and safety guarding. In [9], they

described the state-of-the-art and the future direction of realizing a socialize-able robot

which can learn and act alongside with human. Certainly, the development of the surgical

robotics could save many lives. In [10] they reviewed the works in the surgical robotics

field and highlighting the significant achievements. They described how the research in

this field is progressing.

In [11], they described cognitive developmental robotics (CDR), an important key for

achieving the vision. In general, there are 3 requirements.
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1. Action and perception should be tightly coupled.

2. An agent must be able to learn sensorimotor mapping from experience.

3. An agent must be able to adapt itself to changes.

A robot that satisfied the above requirements should unlock the physical embodiment

necessary to be an intelligence system [12,13]. However, most of the studies does not hold

all of the requirements (more to discuss on Chapter 2). Therefore, implementing such a

system that satisfies all of the conditions while the performance is in an acceptable range

is one of the challenge in creating the cognitive developmental robot.

1.1.1 Cognitive Developmental Robotics

CDR gives the keys needed to create such a robot that can learn and perform a variety of

complex tasks. It aims to realize and understand human’s cognitive functions by synthetic

approach since there is little knowledge on the mechanism of the higher order human

cognitive functions. To achieve the concept of CDR, physical embodiment is necessary.

In the early stage of the human, experiences gained through interacting with various

environments effect how the individual’s information structuring such as body and image

representation is formed. In the later stage, the individual then may learn by interacting

to other agent or being exposed to a new environment. In other words, an individual

can learn by obtaining meaningful information through their actions in any form. This

concept is what shapes the physical embodiment [14–19].

The studies [20–28] consider the body representation of a robot which associate the

visual and tactile sensation that let the robot realize the frame of reference or its own

body. The studies share the important key, physical embodiment. They interact to the

environment, in this case the robot itself, to gain the information needed to learn its own

body representation. [29–38] study the development of joint attention. It simply means

two or more agents looking at the same object. The studies share the concept of CDR.

The actions generated from the models are gazes, while the information they received is

gazes from the other agents/supervisor. There are also other studies that concern CDR

such as follows. [39–41] develop model that mimic vocal imitation that baby does. [42,43]

proposed models distinct facial expression. [44–46] built lexicon acquisition models.
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Recently, there are CDR studies [47–51] that consider gaze control. However, these

works do not consider active depth perception under self-induced motion which is one of

the abilities that infants use to learn and interact with various things. In this thesis, we

further investigate and extend the proposed gaze control models for self-induced motion

based active depth perception.

1.2 Motivation and Research Goal

To estimate the distance between a robot and an object, the robot must have depth

perception mechanism in order to perceive the depth. There are many ways to estimate

the depth such as, stereo vision which is widely used, and there are a lot of researches

about stereo vision which give the depth perception ability to robots. However, there is

a critical problem.

Most of monocular and binocular depth estimation researches does not only require

calibrations before operating, it also requires that the configurations of the system must

not be altered. So, if there is any situation or accident that interfere the configurations

of the vision system a little bit, the system would begin to fail. Thus, some kind of

autonomous and self calibrating mechanism would be needed in those kinds of situation.

In order to make a robot or a vision system that suitable for all environment and robust

to interferences, the problems are very crucial and must be solved. A representation of

vision system in developed organism, such as human, could be useful to overcome the

problems, because humans vision system can adapt to many environment and can recover

from interferences. A simple concept of perceiving vision or depth in our human brain is

described in Fig. 1.1, the action cycle. The eyes send sensory information to the brain to

create vision and depth perception, while the brain learn to control the eyes movement

in order to make eye perceive the environment effectively.

The curiosity of creating an autonomous learning active depth perception has been

the motivation of this research, such as what are the benefits of implementing the frame-

work? Is it possible to combine the advantages of all active depth perception together

by integration? Is it possible to find such a movement that is optimal for active depth

perception? If the answers are positive, the research should be able to satisfy the CDR

requirements and overcome the critical problem.
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Figure 1.1: Action cycle in most of developed organism

Again, this research aims to satisfy the requirements and overcome the problem. The

ultimate goal of the research is to implement a biological inspired active depth percep-

tion framework for robots which is developmental and has the ability of self-calibration.

The proposed models will contain two important abilities, autonomous learning and self-

calibrating. The system will be able to learn how to perform active depth perception.

This work will be an another step to create a full representation of biological vision system

for artificial vision system.

1.3 Thesis Outline

The organization of this dissertation consists of 9 Chapters. They are organized as follows.

• Chapter 2 introduces the background and related works of this research. The

researches in neural science, robotics, and computer vision field are mentioned and

discussed how they are related and motivated to our work.

• Chapter 3 explains the preliminaries that are required to implement this research.

• Chapter 4 introduces the framework that the research is based on. It explains how

to create the binocular active perception system for a robot.

• Chapter 5 demonstrates how the framework is extended to understand the motion

parallax phenomenon. The robot learns how to generate the smooth pursuit eye

movement together with depth estimation.
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• Chapter 6 describes how the framework in Chapter 5 could be improved with the

new learning strategy. It compares and analyzes the results with the two different

schemes.

• Chapter 7 questions the predefined lateral movement in the previous chapters that

the movement should be learned by the robot. This chapter explains how the robot

can learn the optimal lateral body movements.

• Chapter 8 integrates the two active depth perception cues together which are

motion parallax and stereo vision. Dominant eye concept is used to create the

unification of the two cues.

• Chapter 9 Conclude and summarize the research that is done so far. It also shows

the contributions of this study and discuss how to further improve the research in

the future.

1.4 Summary

The unique points can be summed up as follows: (1) The research focuses on building a

mimicked biological vision framework in order to implement the developmental learning

vision system for robots, (2) to understand the model underlying in most of the devel-

oped organism, (3) unified-learning of action and perception to encourage developmental

learning, and (4) the information generated within the framework can be further used for

distance and depth perception.
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Chapter 2

Related Works

This chapter discusses the related works and where the thesis lies in implementing active

depth perception.

The concept of realizing a vision system has been studied extensively in numerous of

studies. There are also many applications benefit from the vision system such as mobile

robot navigation [52], human-robot interaction [53], and active vision [54].

Remarkably, there are many studies [55–58] that proposed image processing and ma-

chine learning techniques to implement depth perception for solving a given task. In [59],

they utilize multiple frames captured with a single camera to predict distance. Prediction

algorithm is designed and used as a distance estimator under the assumption that the

camera motion is known. [60] proposed a biologically plausible visual attention system

to selectively localize a salient area. [61–65] proposed image tracking models. [66] used

an information theoretic approach to minimize an uncertainty. [67, 68] proposed models

to create depth maps from head and eye movement. In [69], they utilized a monocu-

lar vision-based obstacle avoidance system by coupling a reinforcement learning together

with a linear regression method. [70] combines the triangulation from stereo vision and

processed feature from monocular image to yield better depth estimation accuracy.

However, with the aforementioned works, it is quite challenging to create such a sys-

tem that can develop and adapt itself to the different environments by developing both

of perceptual and behavioral abilities at the same time. The main reason is that man-

ual calibrations and prior knowledge are required to finely tune the system during their

artificial life.

6



2.1 Keys to Realize the Biological Inspired Vision

System

There are two keys to unlock the biological inspired vision which are developmental learn-

ing, and action-perception cycle. By possessing these two keys, it is possible to endow

the intelligent behavior to a robot.

2.1.1 Developmental Learning

As discussed in Section 3.1, developed organisms is able to understand the environment

around them by learning through their lifetime. The ability to adapt and learn by them-

selves during their life is usually referred as developmental learning. Certainly, a biological

inspired system should follow the developmental learning concept. Since this approach

and the traditional approach may lead to similar results, it may seems to be unnecessary to

develop the developmental system. However, a system that has the developmental learn-

ing ability has a larger potential in terms of creating human-like behavior or adapting to

various environments, because, for non-developmental systems, robot’s configuration and

environment are difficult to model and able to change unpredictably [71].

Here are some of the studies that are great examples for having the developmental

learning ability. In [72], they proposed a way to implement a developmental learning

framework based on work in [73] of eye-head coordination by mimicking the human infants

in humanoid robots. They use a constraint-based field-mapping approach for the learning

of gaze control. In [74], a convolutional network was used to train vergence eye movements.

They use supervised signal to minimize the cost function. [75] proposed a learning model

that integrates both static and self motion based visual cues for depth estimation.

2.1.2 Action-perception Cycle

By coupling the action and perception together, the system is able to achieve the physical

embodiment, since physical bodies are able to bring the system into meaningful interaction

with the physical environment [76]. Visual information improves the robot’s behavior,

while the resulted actions effectively reinforce the perceptual learning.

In [77–79], they propose a visual servo method to create the link between action and
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perception. They use the kinematic connection between the visual information and the

camera velocity to realize the action-perception link.

2.2 Active Perception

In the previous section, we showed some of the studies that is related to each key. However,

those studies do not have both of the abilities. The visual servo method [77–79] can

connect the action and perception together, but it lacks the ability to learn and adapt

to different configurations and environments since it need prior knowledge to construct

the kinematic link. The gaze control studies [72,74] achieved the developmental learning

ability, however the connection between the action and perception is unclear.

Recently, in [47, 48] they proposed a framework that has the two keys. They use re-

inforcement learning couple with efficient sensory coding [80–82] to create a vergence eye

movement control with a unified cost function, i.e., perception learns to improve behav-

ior and vice versa (joint development). This means that the action and perception are

tightly connected resulting an action-perception cycle (Fig. 1.1) which exists in developed

organisms.

This has been successfully demonstrated for the case of active binocular vision, where

a representation of binocular disparity and the control of vergence eye movements need

to be learned. In [83], they also took a similar approach with Gabor filter for binocular

disparity coding and Hebbian learning for the eye movement control. In these mentioned

studies, the behavior does not simply learn by itself, but it also learns with the help of the

perception part, and vice versa. Also, in [50, 51], they showed that extending the frame-

work with the representation of optic flow and pursuit eye movement is possible [50, 51].

Moreover, in [49], they integrated the learning of active stereo vision and active motion vi-

sion together. They successfully demonstrated to generate multiple eye movements which

are smooth pursuit and vergence eye movements to track an object.

Interestingly, the models are not explicitly trained to perform vergence or pursuit eye

movements, but they discover that it is useful to engage in these behaviors, because it

improves their coding efficiency. The models encourage the relation between action and

perception which are learned by themselves without any supervision.

Furthermore, the scope of this thesis lies in between these works. We propose novel
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Table 2.1: Active perception studies versus the key issue. The works below the double

horizontal line represent the research in this thesis.

Body Movement Key Issue Study

Stationary

Vergence eye movement control [47,48]

Pursuit eye movement control [50,51]

Vergence and pursuit eye movement control [49]

Lateral Movement
(Motion Parallax)

Motion parallax with Depth Perception Chapter 5, 6

Motion parallax with Optimal Movement Chapter 7

Integration of stereo vision and motion parallax Chapter 8

frameworks by extending the previous studies [47–51] with self-induced motion parallax.

Also, we propose a new strategy to integrate stereo vision and motion parallax cues

together by utilizing dominant eye concept. To list the contribution of each study, we can

see Table 2.1.

2.3 Summary

This chapter presented the background of some of the studies that have attempted to

implement a vision system. The studies are effective and specialized in their own way.

To summarize, the mentioned works are categorized as shown in the Table 2.2. However,

with the traditional computer vision approaches, it is not possible to mimic the biological

vision system which has the ability to adapt and learn. For the developmental learning

approaches it can learn by their own to achieve the biological-like vision system. But,

to realize the completed biological vision system, the action-perception cycle is required.

Thus, the studies that falls in the highlighted cell is preferred for creating the biological

inspired vision system.
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Table 2.2: The mentioned studies in this chapter are categorized as whether they are

developmental or has the action-perception (AP) cycle.

Non-Developmental Developmental

Without AP cycle
[55–60,66,70]

[72,74,75]
Traditional computer vision

With AP cycle [77–79]
[47–51,83]

This Thesis
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Chapter 3

Preliminaries

This chapter explains the concept, tools, and algorithms that are used in this research.

3.1 Developmental Learning and Active Depth Per-

ception

For living organisms such as humans and mammals, when they were born they do not

instantly understand how to use the information they perceived. They continuously learn

and improve their perception while interacting with the environments during their lifetime.

This is usually described as developmental learning.

The essence of building the biologically plausible robot is based on the developmental

learning of perceptual and behavioral abilities from humans and developed organisms.

Recently, there are many studies on computer vision related to human cognitive systems

for autonomous robots, inspired by the facts that humans can autonomously develop and

recover their perceptual and behavioral abilities to survive in various environments. These

abilities are not only useful for extracting visual information for guiding actions, but they

are also for perceiving the environments.

However, the data that are collected by human or animals organs are very noisy messy

data. It is not self-explanatory meaningful information [84, 85]. In [86], they discussed

that our brain did not programed to know how to use those data, but instead the brain

is trained autonomously to learn how to translate those noisy unordered information into

useful information.
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Synthetic approaches based on explanation and design could be proposed to overcome

the shallow knowledge [11], but it is still a very challenging task to implement the devel-

opmental system in an autonomous learning manner. In order to realize a developmental

robot, a system should equip the two important learning principals which are (1) au-

tonomous development through their artificial life and (2) unified-learning of action and

perception. By establishing a tight connection between action and perception, the visual

information can be used to improve the robot’s behavior [76], while the resulted actions

effectively reinforce the perceptual learning.

The same idea also applies to the active depth perception which is a process of pro-

ducing different kinds of eye and body movement to utilize active visual depth cues.

Moreover, it is required that several cognitive developments such as visual representa-

tion (sensory coding), eye movement control (action strategy), and depth representation

(high-level sensory perception) should be simultaneously performed by integrating each

other during their lifetime (life-long learning). However, the underlying ideas of the active

depth perception are still unclear.

Depth perception is a visual ability to perceive the world in three dimensions and the

distance of an object. Depth perception is the most fundamental artificial vision problem

that must be solved. It is an active process that can involve different kinds of movement

such as eyes movement, head movement, and body movement. By adapting the biological

vision systems with the current artificial vision systems, we can get rid of the dearth of

robustness. In neural science, to use information from sensory system, the system should

efficiently encode the sensory information by taking advantages of redundancies. So, we

may use the nature of the sensory systems in humans to adapt with our artificial vision

system. Neurons are the cells that are in our body. They have an ability to propagate

signals rapidly over large distances. Sensory neurons fire sequences of action potentials

in various temporal patterns to change their activities. To resemble the neurons in our

body, sparse coding is used to represent sensory inputs [87].

Active depth perception is depth perception with action of the agent [88], such as

movement of the eyes, body, or manipulating the object. There are three approaches of

active depth perception (Fig. 3.1). The first one is depth estimation based on the vergence

angle between two eyes [89], or stereo vision [90] (Fig. 3.1a). The second one is estimation
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(a) Vergence (b) Motion parallax (c) Optic flow

Figure 3.1: Three different depth perception

based on motion parallax [91, 92]. A controlled lateral movement produces a change of

the angle under which the object is perceived (Fig. 3.1b). The depth can be estimated

by this change. The last one is estimation based on optic flow [93, 94]. The pattern of

optic flow or the visual size of the targeted object could be used to estimate the depth

(Fig. 3.1c).

3.2 Sensory Coding

Sensory coding is the information processing that is occurring in nervous systems. Signals

from each individual neurons are combined and converged to be be processed at the higher

levels in the central nervous system to achieve a specific task such as recognizing an object

in visual cortex for the visual sensory. To mimic and realize such a system, there are some

hypotheses. In this research, we consider the efficient coding hypothesis in order to realize

the visual sensory coding for active perception.

The efficient coding hypothesis [80–82] states that sensory systems should encode

sensory information in an efficient manner by exploiting redundancies in their inputs.

The idea is very promising and lead to numbers of research. For example, it inspired

a substantial amount of work on the statistics of natural sensory signals and how they

may explain receptive field properties of sensory neurons in visual, auditory, or olfactory

systems. This idea was used to extended to associate with active perception that involves

the movements of the sense organs, because the statistics of sensory signal will always be
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the product of the sensory environment, the characteristics of the sense organs and the

agent’s behavior. Thus, it is possible to improve the sensory coding by learning to move

sense organs in an optimal way.

3.3 Reinforcement Learning

In machine learning, we treat an environment as Markov decision process (MDP). Since

a real-world environments are very complicated and involves many variables, reinforce-

ment learning does not aim to fully realize the whole environment, but to simulate them

with out prior knowledge about the environment model (unsupervised learning). This

makes the reinforcement learning suit to this research. Through out this thesis, we use a

reinforcement algorithm to represent the learning of behavior of the robot.

Reinforcement learning define a policy which maps the state of the actor in its envi-

ronment to a specific action. The main concept is that an agent (the robot) do something,

then it receives a reward with respect to the selected action (training) such as in Fig. 3.2.

Figure 3.2: Basic diagram of reinforcement learning

The foundation of every reinforcement learning model is that it has a set of environ-
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ment states S, a set of actions A, and policy. The flow of the steps is as follows:

1. Observe state, st

2. Decide on an action, at

3. Perform action

4. Observe new state, st+1

5. Observe reward, rt+1

6. Learn from experience

7. Repeat step 1

The agent aims to find a suitable policy that maximizes the observed rewards over its

lifetime. It considers two important functions. Value function evaluates the best rewards

that the agent could get in its lifetime based on its action in the past.

V π(st) = R(st, π(s), st+1) + V π(st+1) (3.1)

Where, R(st, π(st), st+1) is the reward that the agent would get, if the agent perform

action at state st with respect to the policy π to the state st+1.

The another function is a state-action value function Q(st, at). It is different from the

previous value function V π(st). It shows the best reward that the agent could get if take

the action at from state st.

Q(st, at) = R(st, at, st+1) + max
a′

Q(st+1, a
′) (3.2)

In this research, we use the Natural Actor-Critic Reinforcement Learning algorihtm

[95], a modified actor-critic reinforcement learning. The next section will explain the

basic of the actor-critic reinforcement learning and then the last section will explain the

algorithm we use.

3.3.1 Actor-Critic

Actor-Critic is a reinforcement learning that consider two subconscious mind which are

actor and critic. The actor generate an action based on the critic, by mapping states to
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actions based on probabilistic. The critic criticize the action selected by the actor, by

mapping states to expected cumulative future reward. In other word, the critic consider

a prediction problem, while the actor focus on the control of the action. Both actor and

critic shares the same error which is temporal difference (TD) as shown in Fig. 3.3.

The error is used to estimate the average reward for a state-action pair. TD error, δt, is

defined by

δt = rt+1 + γV (st+1)− V (st) (3.3)

Critic: an action at is strengthened based on the TD error. TD error measures the

selected action. Positive TD error means that the selected action at has a better reward,

so the action at should be encouraged in the future. While, a negative TD error discourage

the action at.

Actor: actor use the information from the critic to update the policy parameter of

the actor, θ(st, at) as follows:

θ(st, at) = θ(st, at) + βδt (3.4)

Figure 3.3: Actor-Critic model
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3.3.2 Natural Actor Critic

Natural actor critic proposed in [95] is considered as a reinforced actor critic reinforcement

learning algorithm. They provide 4 variations of the algorithm. In this research, we choose

the algorithm number 3, since it is also recommended by the creator themselves.

Natural actor critic uses two linear neural networks to implement the actor and the

critic (Fig. 3.4).

Figure 3.4: Two neural network implementing actor and critic

The selected algorithm is explained in Table 3.1 below.

• t is the iteration number.

• Ĵ is average reward.

• fst is a feature vector for state st.

• v is neural network weights for feature vector fst .

• w is neural network weights for policy parameter vector θ.

• θ is policy parameter vector.

• α, β, ξ are step sizes for updating weight vector w, θ, and average reward Ĵ respec-

tively.

• φstat is a feature vector for state-action pair.

for softmax activation policy, Gibbs distribution, which we use in this research

π(st, at) =
eθ

ᵀφstat∑
a′∈A e

θᵀφsta′
(3.5)
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Table 3.1: Natural Actor Critic Algorithm 3 in [95]

1: Input:

• Randomized parameterized policy π

• Value function feature vector fs

2: Initialization:

• Policy parameters θ = θ0

• Value function weight vector v = v0

• Step sizes α = α0, β = β0, ξ = cα0

• Initial state s0

3: for t = 0, 1, 2, ... do

4: Execution:

• Draw action at ∼ π(st, at)

5: Average Reward Update: Ĵt+1 = (1− ξt)Ĵt + ξtrt+1

6: TD Error: δt = rt+1 − Ĵt+1 + vᵀfst+1 − v
ᵀ
t fst

7: Critic Update: vt+1 = vt + αtδtfst

wt+1 = [I − αtψstatψᵀ
stat ]wt + αtδtψstat

8: Actor Update: θt+1 = θt + βtwt+1

9: endfor

10: return Policy and value

function parameters θ, v

ψstat = φstat −
∑
a′t∈A

π(st, a
′
t)φsta′t (3.6)

3.4 Neural Network

Neural network is an artificial systems that is inspired by the biological neural networks

that can mostly be found in the developed organisms. The system learns to achieve the

given tasks by accounting the given supervised examples. It can be used to predict or

estimate a specific value if it is given enough of the examples.

Throughout the thesis, we consider only a basic neural network which contains only

3 layers of the artificial neurons for realizing the depth perception module. We chose
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the neural network because it suits to our goal which is creating the biological inspired

framework for robots.
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Chapter 4

Realizing of Active Perception

This chapter explains the fundamental of each module in the framework proposed in

[47,48] which are the foundation of our research.

4.1 Philosophy of This Work

Before we start to explain the work in detail, we would like to emphasize the philosophy

of the work. The work aims to generate the vergence eye movement that is require to

minimize the disparity of the perceived images from the two cameras. This task can be

done with the conventional computer vision techniques as discussed in the introduction

chapter. However, the studies either lack of the link between action and perception or are

non-developmental system. So, it is difficult to mimic the developing organisms visual

systems which has the processes tightly coupled.

4.2 Vergence Eye Movement

When we look or focus at an object, the line of sights of the two eyes cross. The movement

that is required to achieve that is called vergence eye movement. It is a simple function

that control both eyes to point their fovea on a visual stimulus. Both eyes rotates in

opposite direction to maintain the same binocular vision (Fig. 4.1). In case of the robot,

two cameras are rotated around the vertical axis (pan) so that the observed images are

similar.
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Figure 4.1: Vergence eye movement

4.3 Model Architecture

The work utilizes the active efficient coding theory together with a reinforcement learner

to create the binocular active perception framework. It focuses to generate appropriate

eye movements to fixate a visual stimulus for both eyes (vergence eye movement). Their

framework is shown in Fig. 4.2. Two images are taken from two cameras and then input

to the sensory coding model. Sensory coding model represent as the perception module

of the robot. It encodes the input images into a sparsely encoded image vector which

is then sent to the behavior module, the reinforcement leaner. Reinforcement learner

learns to select a vergence eye movement based on the unified cost function which is the

reconstruction error from the sensory encoder. This cost function measures how efficient

the images could be encoded. Low reconstruction error means that the two input images

are similar, thus the two images has low disparity, i.e. the two cameras are pointing at

the similar point. The following sub-sections will explain the details of each module.

4.3.1 Sensory Coding Model

As discussed earlier in Chapter 1, a sensory system should encode sensory information

efficiently by exploiting redundancies in their inputs. A sparse coding technique is used to

implement the sensory coding model under the active efficient coding theory. It encodes

the input images from the two cameras into a one dimensional sparse vector. It also

computes the loss or the reconstruction error of the encoded vector. Each part of the
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Figure 4.2: Zhao et al.’s framework

sensory coding model is shown in Fig. 4.3

Figure 4.3: Inside of sensory coding model

The inputs are the images taken from the two cameras. Disparities are measured by the

horizontal shift of image of the object from left to right. Different depth makes different

disparity. To understand the framework, we recreate the framework in a simulation. 6

images are used to test the framework (Fig. 4.4).

Throughout the simulation, the images are selected randomly every 10 iterations. To

virtually simulate the image taken from cameras, the images are cropped with the windows

size of 128 by 128 pixels in the center of the images. There are two crop windows to

represent each camera. One window is fixed at the center, while the another window
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Figure 4.4: Images that are used in binocular vision framework simulation

can be shifted horizontally to represent the vergence eye movement, i.e. the stereo pairs

are artificially generated by shifting one of the input images horizontally. The goal of

the framework is to generate the vergence eye movement that yields close to zero retinal

disparity.

The two input images are converted to gray scale. Then, we extract images into a

multiple of 8 by 8 pixel patches. The patches are extracted by shifting 1 pixel horizontally

and vertically. The patches are then sub-sampled by a factor of 8 by using Gaussian

pyramid algorithm. Finally the patches are converted to a vector and normalized to have

zero mean and unit norm xi(t), where i is the index of the patches. The processed image

vector from left and right eye are concatenated into a single vector x(t). The vector has

P = 128 elements.

For the encoding part, the sensory encoder select a linear combination of basis func-

tions drawn from an over-complete dictionary φ(t) = {φn(t)}Nn=1 to represent the sparse

coding [87]. In our setup, we prepare a visual dictionary that contains N = 288 randomly

generated normalized basis functions. Matching pursuit algorithm is used to estimate and
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find the appropriate linear combination as follows:

xi(t) ≈
N∑
n=1

ai,n(t)φn(t) (4.1)

We limit the number of non-zero scalar coefficients ai,n(t) used in the matching pursuit

algorithm to 10 elements to enforce the sparsity of the encoded image (efficient coding).

The coefficients generated by the algorithm are the final product of this module which

will be used later in the reinforcement learner as pooled activity. Pooled activity simply

represent the activeness of each neuron (the coefficients). It consider the sum of all

coefficient from every patches as follows:

fn(t) =
P∑
i=1

ai,n(t)2 (4.2)

To measure the redundancy in the input images, we use the reconstruction error which

compares between the encoded images and the input images.

e(t) =
1

P

P∑
i=1

‖xi(t)−
∑N

n=1 ai,n(t)φn(t)‖2

‖xi(t)2‖
(4.3)

This error can be used to improve the visual dictionary by using the gradient descent

updating technique. Importantly, this error will also be used in the reinforcement learner,

thus the unified cost function.

4.3.2 Multi-Scale Framework

Binocular cells tuned to different disparity ranges in visual cortex areas. These cells

adjust and adapt the controlling mechanism to generate fast or slow vergence response

depending to the range of disparity [96]. In [48], they show that the framework proposed

in [47] has the input disparities limitation which means that the framework could not

generate an appropriate eye movement if the disparity is too high. So, [48] propose a

strategy to overcome the problem. They use multi-scale input images to represent two

areas, foveal and parafoveal area. The model use two scales of images which are fine scale

and coarse scale as shown in Fig. 4.5. Fine scale images represent a foveal region in our

eyes, as we can get more detail from the center of vision. The coarse scale represents a

parafoveal area.
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Figure 4.5: Multi-scale binocular vision model

The process is still similar to the above, but with multi-scale we add two 80x80 pix-

els crop windows to represent the fine scale. The sub-sample factor for this scale is 2.

The patches are extracted by shifting 4 pixels horizontally and vertically. An additional

dictionary is used to represent the fine scale’s visual dictionary.

4.3.3 Reinforcement Learning

Uni-scale Framework

As mentioned in Chapter 3, we use the natural actor critic reinforcement learning algo-

rithm. The state is represented by the pooled activity, while the reward is a function of

the reconstruction error (unified cost function). The pooled activities are used as state

as follows:

fst = f(t) =


f1(t)

f2(t)
...

fP (t)

 (4.4)

Actions that are generated from this reinforcement learner are the vergence eye move-

ments. Negative of the reconstruction error is used as the reward to train the reinforcement

learner.

rt = −e(t) (4.5)
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The reinforcement learner learns to select actions that maximize the discounted cumula-

tive future reward, i.e. minimizing the reconstruction error.

Actions are defined as A = {−2,−1, 0, 1, 2}. The elements in A represents the num-

ber of pixels to be horizontally shifted (virtual vergence eye movement). We use Gibbs

distribution for choosing an action. In this simulation, the step sizes are set as follows:

• α = 0.1

• β = 0.01

• ξ = 0.01

The neural network weights v, w, and policy parameter θ are initially randomized.

Multi-Scale Framework

Similar to the above, we use the pooled activities to represent the current state. The

difference is we concatenate the two pooled activity together.

fst = f(t) =



fC1 (t)

fC2 (t)
...

fCP (t)

fF1 (t)

fF2 (t)
...

fFP (t)



(4.6)

The reward is also modified to consider the sum of the error from both scales.

rt = −(eC(t) + eF (t)) (4.7)

Superscript F means fine scale, while superscript C means coarse scale. We use the

set of actions, step sizes, and softmax operation as the same in the uni-scale framework

simulation setup.
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4.4 Simulation & Results

We use mean absolute error (MAE) to measure the eye movement performance. It tracks

the vergence error in the iteration before the image is changed which is every 9th iteration.

MAE is defined as follows:

MAE(t) =
1

100

99∑
k=0

|α(t+ 9 + 10k)− α∗(t+ 9 + 10k)| (4.8)

where α∗ is the target vergence at the current iteration. Fig. 4.6 shows the eye movement

MAE from the simulation.
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Figure 4.6: MAE of the simulation

The error reduces over time and stays around 2 pixels. This means that with the

current specification, the framework has learn its best from the available input images.

After the framework is trained to generate the overlapped images (Fig. 4.7), we perform

another test to evaluate the framework at different disparities. Fig. 4.8 shows the actual

vergence eye movement versus the desired vergence, while Fig. 4.9 shows the vergence

error.
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Figure 4.7: Example of some of results of the simulation

Figure 4.8: Vergence tracking after training is finished

We can see that the framework can properly control the vergence eye movement. It

can handle the quick changes in disparity. It can maintain the disparity after reaching

zero retinal disparity. The maximum error is around 1 pixels.

4.5 Summary

In this chapter, a novel framework proposed in [47] and multi-scale extension of the

framework [48] have been explained and discussed. We showed that the system can
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Figure 4.9: Vergence error

autonomously learn how to control left and right camera to generate vergence eye move-

ment.
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Chapter 5

Schemes of Motion Parallax Based

After we have studied and understand the previous framework in the chapter 4, this

chapter explains the extended framework with motion parallax.

5.1 Philosophy of This Work

Estimating depth by using vision system has been continuously researched for a long time.

There are a lot of works that can estimate depth by using binocular disparity. However,

there is little work on depth estimation by using monocular depth cue. Some of them

require specific condition such as environment, some requires calibration. So, if there

are some changes or interferences in environment or configuration of vision system, the

solution seems to fail later. In order to overcome this problem, we extend the framework

in the chapter 4.

The proposed model will have two important abilities, autonomous learning and self-

calibrating. The system will be able to learn how to generate an appropriate eye movement

during lateral movement for fixating an object. Finally, this chapter will show that ex-

tending the stereo active depth perception to another kind of active depth perception is

possible.

5.2 Motion Parallax

Parallax is derived from ”parallaxis”, a Greek word which means alteration. It is used

in many application such as in astronomy for measuring distances to the closer stars.
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Combining with motion we get a phenomenon which happens when we move laterally. It

let us to perceive the apparent position of an object from two different viewpoints.

It is an important effect that can be observed in daily life. It gives us useful information

that helps to learn and understand the surrounding environments. When we moves in

a lateral direction, we can observe various ranges of motion parallax effect occur by

maintaining the visual fixation on an object. We perceive close object to move faster

than the object that is farther as shown in Fig. 5.1. For an example, at start we can

see red box and yellow box (Fig. 5.1a), but after we moved laterally we can see only the

yellow box (Fig. 5.1b). We can conclude that yellow box is farther than the red box.

Usually, motion parallax effect provides two different kinds of depth perception which

are the distance from the observer to the fixating object (egocentric distance), and the

distance from the fixating object to another object (allocentric distance). Usually, allo-

centric distance is extracted from the motion parallax phenomenon such as in [97] they

discuss how it is possible to generalize the relationship between the eye movements and

the allocentric distance. However, that is not only the strong point of utilizing the motion

parallax effect. In [98], they show that it is possible for humans to extract the egocentric

distance. Also, the retinal motion induced by the motion parallax effect can be utilized

to observe the apparent depth (egocentric distance) appears on the sagittal plane [99].

For simplicity, in this thesis, depth and distance mean the egocentric distance.

(a) Start position (b) End position

Figure 5.1: Images created by lateral movement from left to right
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5.3 Smooth Pursuit Eye Movement

To maintain fixation on an object, a smooth pursuit eye movement is required. It is

simply an eye movement that keeps track of a visual stimulus. As shown in Fig. 5.2, the

eye must rotate in the opposite direction of the movement to maintain the fixation. If the

subject move to the left, the eye must rotate to the right, and vice versa.

Figure 5.2: Depth perception from motion parallax

5.4 Model Architecture

We consider different image input and camera control to extend the framework as shown

in Fig. 5.3. Also, we only use one camera for the image input, since to achieve motion

parallax one eye is sufficient. Two different viewpoint is achieve by moving camera later-

ally. The images from the two viewpoints are used as the input images. The output of the

reinforcement learner is the smooth pursuit eye movement. The goal of the framework

is to generate the smooth pursuit eye movement to fixate the object at the center of the

gaze after moving laterally. Then the movement information is used to estimate depth by

using a two layer neural network. The neural network is supervised. It use the ground

truth depth information.
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5.5 Experiments & Results

We verify the framework with MATLAB and a robot simulator called V-REP. The main

framework and algorithm are implemented in the MATLAB, while V-REP provides the

environment simulation, Fig. 5.4. The simulation environment composes of a HOAP3

robot, an interchangeable texture box, and a background.

5.5.1 Simulation

Lateral movement of the robot is simply pick-and-place. The possible distance between

the box and the robot are 1 meter to 2 meters. The robot moves laterally from left to

right by 50 centimeters for 5 steps, thus we get 5 images for one lateral movement from

left to right, Fig. 5.5. Two successive images are used as the input images. Similar to

the previous chapter, we use the image shifting to simulate the eye movement.

After processing the first two successive images for 15 iteration, the sensory coding

model selects the next pair of the successive images. After reaching the final pair of the

successive images, the texture box is picked an d placed farther by 10 centimeters. The

process is repeated until the depth reaches 2 meters, then the depth is reset to 1 meter.

Every 14 iterations, we record the number of shifting pixel q (eye movements) together

with depth d at that point of the time in a depth data matrix D.

D =

q1 q2 q3 · · ·

d1 d2 d3 · · ·

 (5.1)

After the framework can properly generate the smooth pursuit eye movement (by over-

lapping the two successive images), we train the depth estimation part. Neural network

is used to estimate the depth by learning from the depth data D. We use a two layer

feed-forward neural network with a sigmoid transfer function in the hidden layer and a

linear transfer function in the output layer (Fig. 5.6). The hidden layer has 10 neurons.

The training algorithm is Levenberg-Marquardt method. In the first row of the depth

data matrix D, we use it for the input of neural network. We use the second row of the

matrix to be the target. 70-percent of the data is reserved for training. 15-percent is for

validating. And another 15-percent is for testing.
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Simulation Results

Figure 5.7 shows that the robot is able to generate the smooth pursuit eye movement to

fixate the object. The MAE is shown in Fig. 5.8. The error is around 1 and 2 pixels.

Even though the result is not perfect, but it is near zero and it is still useful for estimating

the depth information.

For the result of the depth estimation, we can see Fig. 5.9. It shows the error

histogram of the depth estimation error, which is the comparison between real depth and

the estimated depth. Each bin contains instances that have error in that range. We can

see that most of the error is closed to zero.

After that, we test the depth estimation by varying the depth between 1 and 2 meters

in the resolution of 10 centimeters by using the same image texture in the training. Table

5.1 shows the errors. We also perform another test, but we use different image texture

than the one we used in the training. The result is shown in Table 5.2.

Table 5.1: HOAP3 simulation result (training depths)

Input Depth (meter) Output Depth (meter) Error (centimeter)

1.00 1.02 2

1.10 1.10 0

1.20 1.20 0

1.30 1.27 3

1.40 1.47 7

1.50 1.47 3

1.60 1.60 0

1.70 1.81 11

1.80 1.86 6

1.90 1.91 1

2.00 1.99 1

We can see that the framework is able to estimate the depth of the texture box with

small errors. Although at some depths, the estimated depths are the same. The reason

behind this is that there is a little offset error of the eye movements. And the difference

of disparity between each depth is quite small or similar. So, for depths that are close
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Table 5.2: HOAP3 simulation result (random depths)

Input Depth (meter) Output Depth (meter) Error (centimeter)

1.25 1.29 4

1.53 1.60 7

1.77 1.86 9

1.92 1.90 2

together, it is possible that the results are the same. This problem could be eased by

increasing the image resolution and the patch size, however a higher computational power

is required.

5.5.2 Real Hardware Experiment

After we verified the framework in the simulation, we test the framework in the real world.

Hardware Setup

The setup that we use in this experiment is shown in Fig. 5.10. We use MATLAB to

run the framework. A micro-controller, Arduino, is used for receiving command from

MATLAB and controlling an XY-table. A camera is attached to the XY-table.

However, motion parallax requires only lateral movement, so we use only one axis of

the XY-table. The flow of the system is the same as in the simulation, except that the

camera and camera controlling part are in the real world.

In this experiment, we have the XY-table and object on a floor. As shown in Fig. 5.11,

the camera (blue eye symbol) can move laterally to generate the motion parallax images.

The depth between the camera and the object (black cube with red stripe) will be varied

by hand manually. In this case, the camera will move laterally for 12 centimeters. Each

step move for 3 centimeters, thus we have 4 images per lateral movement. The view from

the camera is shown in Fig. 5.12.

In order to make training easier, we gather all of the data required to train before run

the training. We capture all images generated from lateral movement in various depth,

from 40 centimeters to 1 meter (each step increased by 10 centimeters). Then we use the

set of images that we have gathered to train the framework.
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Experimental Results

Fig. 5.13 shows an example of tracking of object from two successive frames. Fig. 5.14

shows MAE of pixel shifting.

Fig. 5.15 shows error histogram of the trained neural network. We test the framework

in the same way as in HOAP3 simulation. The results are shown in Table 5.3, and Table

5.4.

Table 5.3: Experimental result (training depths)

Input Depth (centimeter) Output Depth (centimeter) Error (centimeter)

40 35.34 4.66

50 49.40 0.60

60 54.33 5.67

70 72.18 2.18

80 83.45 3.45

90 88.76 1.24

100 91.98 8.02

Table 5.4: Experimental result (random depths)

Input Depth (centimeter) Output Depth (centimeter) Error (centimeter)

45 47.90 2.90

65 60.35 4.65

85 88.76 3.76

The experimental results are similar to the simulation results in the HOAP3 simula-

tion. As discussed in the simulation section 5.5.1, we can increase the resolution of the

input images and patch size to increase perceivable depth resolution. But, it comes with

costs of computation time.

5.5.3 Robustness Test

The simulation and experiment show that our system is able to learn to generate eye

movements to stabilize the object in the image center. To demonstrate that the system
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has an ability of developmental learning, we apply a perturbation to the system. We

rotate the camera clockwise by 20 degrees and keep training the system. The rotation of

the camera for the real world experiment is simulated by rotating the input images. As

shown in Fig. 5.16, a noticeable increase in error occurs when the perturbation is applied.

The figure also shows that the system can recover from the perturbation, i.e. the system

is able to learn to adapt to the changes in configuration.

5.6 Summary

This research extends the recent works on self-calibration of active motion vision. We

applied it to create a model that learns to keep fixating an object when the camera

is moving laterally. We showed that we can utilize the eye movements for estimating

the depth of an object by using a neural network. The difference from their works is

that we consider self-induced motion parallax, which helps the system to extract depth

information.

According to the simulation results, the proposed framework can successfully estimate

depth and generate eye movements to keep the object at the center of gaze. Both ac-

tion and perception learning are trained by the same reconstruction error function. The

framework can simultaneously learn to choose actions and create visual representations

to understand the motion parallax effect. Moreover, the proposed model can be applied

with any single camera system, because it does not depend on details of the hardware

and its configuration.

The extended framework can also be described as the low-level visual cue in the

primary visual cortex (V1) [100], as it only focuses on maximizing the sensory encoding

efficiency (sparse coding) of the available visual stimulus. Since allocentric depth requires

a higher understanding of the concept of the object such as border ownership which is

represented by some of the V2 and V4 neurons in the visual cortex [101], this research

focuses on observing the egocentric distance.

In conclusion, we have proposed a method to extend the active depth perception

of original framework proposed in [47]. In addition, we proposed a method to use the

information from motion parallax to estimate the depth between camera and the object.
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Figure 5.3: Motion parallax framework. Camera is at original position with pan angle

initially set to φ0. After lateral movement the camera is panned additionally by ∆φ

(φ(t) = φ(t − 1) + ∆φ) which is a eye movement command received from reinforcement

learner part.
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Figure 5.4: Motion parallax framework simulation by using V-REP

Figure 5.5: Example of motion parallax images from simulation (left to right)
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Figure 5.6: The neural network used in this simulation

Figure 5.7: Example of object fixating in simulation
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Figure 5.8: MAE of HOAP3 simulation
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Figure 5.10: Setup for real world experiment

Figure 5.11: XY-table and the object
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Figure 5.12: View from camera

Figure 5.13: Example of object fixating image from real world
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Figure 5.14: MAE of real world experiment
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(a) Real world experiment

(b) HOAP3 simulation

Figure 5.16: MAE of the simulation and the real world experiment after 20 degrees

rotation perturbation
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Chapter 6

Schemes of Motion Parallax Based

with Multiple Lateral Movement

With the success of extending the framework to be compatible with motion parallax effect,

we take a deeper look of how it can be improved. In this chapter, we will discuss how the

framework in the chapter 5 can be reinforce with a new learning strategy.

6.1 Philosophy of This Work

When humans move in a lateral direction, they can intuitively understand the motion

parallax phenomenon while jointly developing sensory neurons and pursuit eye movements

with the help of their life-long learning experiences. At that time, various ranges of the

motion parallax are used to extract meaningful pieces of information such as relative

depth of variously positioned objects and the spatial separation between the robot and

the fixating object (absolute distance).

By mimicking the visual learning in mammals to realize an autonomous robot sys-

tem, a visual learning framework in the chapter 5 was proposed to concurrently develop

both visual sensory coding and pursuit eye movement with an addition of depth per-

ception. Within the proposed framework, an artificial neural network was used to learn

the relationship between the eye movements and the absolute distance. Nonetheless, the

limitation of the proposed framework is that the predefined single lateral body movement

can not fully evoke the motion parallax for depth perception.
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In this chapter, we extend the presented visual learning framework to accurately and

autonomously represent the various ranges of absolute distance by using the pursuit eye

movements from multiple lateral body movements. We show that the proposed model,

which is implemented in the HOAP3 humanoid robot simulator, can successfully enhance

the smooth pursuit eye movement control with the self-calibrating ability and the distance

estimation comparing to the single lateral movement based approach.

6.2 Model Architectures

With monocular vision system, we can utilize motion parallax to perceive depth. The phe-

nomenon is evoked when an observer move laterally while fixating a visual stimulus. By

letting a robot move laterally, it can generate the motion parallax effect in many positions

and translation speeds. There are two kinds of depth information which are egocentric

distance and allocentric distance. In this chapter we focus on only the developments of

cognitive functions and the understanding of egocentric distance information.

In this chapter, we try to implement a framework that can generate the smooth pursuit

eye movement that can fixate the visual stimulus while the robot is moving laterally at

different positions. Fig. 6.1 represents the overview of the model of the framework. The

amount of eye movement is used to map the depth information. There are 3 main cognitive

functions that is required to be tightly coupled with each other: (1) Visual representation

based on sparse coding, (2) eye movements control based on reinforcement learning, (3)

artificial networks to represent the distance information by interacting with human.

Sparse coding scheme is used as the sensory coding model which is coupled with the

reinforcement learner. With this combination, we can achieve the efficient coding schemes

as the sensory coding model. The sensory coding model find the efficient representation of

the input images, while the reinforcement learner finds the actions that achieve best image

representation. Finally, multiple lateral movements aids the framework to understand

various ranges of motion parallax. In addition, the amount of eye movements are input

to an artificial neural networks to represent that egocentric distance information.
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6.2.1 Single & Multiple Lateral Positions

Two different learning strategies are considered and compared. The strategies are single

lateral body movement and multiple lateral body movement. Fig. 6.2 highlights the

key difference between the two strategies. With the multiple lateral boyd movement,

the robot have multiple difficulty of the learning signal compared to the single lateral

movement which has only one single learning difficulty. Fig. 6.2a shows that if the lateral

movement was too large then the learning difficulty will also be greatly increased. This

is inappropriate for learning at the initial stage. However, for the multiple lateral body

movement, Fig. 6.2b, provide gradual steps of learning difficulties which soothe make the

learning easier in the earlier state.

Position Setup

Initially, image I0 is captured from the camera at the original position (home position) for

the reference image. After that, the robot moves laterally from the previous position l0 to

l1 which is selected from L = {l1, l2, . . . , lp, . . . , lr}. p is the index of the lateral positions

on the list L as shown in Fig. 6.3. The framework then proceeds to the next iteration.

Obtaining Motion Parallax

After the robot achieves the position l = l1, Fig. 6.4, the motion parallax effect is evoked.

The parallax angle is defined as the angle of difference between the two line of sight which

is shown as q in the figure.

An image Ilk(t) is captured from the camera at the lateral position kth to collect the

information of the visual stimulus which is then used to generate the smooth pursuit eye

movements. The two captured images I(t) =
[
I0 Ilk(t)

]
are input to the sensory encoder

to generate one eye movement from the reinforcement learner. This process of capturing

Ilk(t) and generating eye movement is repeated for h iterations (one trial). Theoretically,

the framework should produce a total amount of eye movements so that it is similar to q.

The robot moves to the next lateral position l2 which is from L. It then repeats the

process until it reaches the last position lr. After reaching lr, the robot simply moves

back to l0 preparing for the next visual stimulus.
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6.2.2 Sensory Coding Model

Two input images are cropped by 250× 250 pixels and 150× 150 pixels from the center

of the images. Two cropped images represent a fine scale and a coarse scale respectively.

10 by 10 pixels patches are then extracted from the grayscale images, whose locations

are generated by 1 pixel and 4 pixels shifts horizontally and vertically for coarse scale

and fine scale, respectively. The image patches are sub-sampled, using Gaussian pyramid

algorithm by a factor of 8 for coarse scale, and a factor of 2 for fine scale. The patches are

reshaped to be one-dimensional vectors which have zero mean and unit norm, γji (t). i is

the index of the patch, which j ∈ {C,F}. C is for coarse scale, and F stands for fine scale.

With the sub-sampled images, the framework will able to handle image disparity that is

larger than patch width. Note that the fine scale helps in fine-tuning the eye movements.

For the coarse scale and the fine scale, the two one-dimensional vectors are then

combined into a single vector γj(t). The first 100 elements of the vectors are from the

first image I0 and the remaining are from the second image Ilk(t). The result vectors

(γC(t) and γF (t)) consist of K = 200 elements.

Later, the patches are encoded by a sparse coding algorithm in a linear fashion. Each

patch is represented by a linear combination of basis functions picked up from a dictionary

φj(t) = {φjn(t)}Nn=1 [87]. We use N = 288 basis functions. Two dictionaries are randomly

initialized and normalized. One is for coarse scale and the another is fine scale dictionary

as shown in Fig. 6.1.

For the coarse scale and the fine scale, the two one-dimensional vectors are then

combined into a single vector γj(t). The first 100 elements of the vectors are from the

first image I0 and the remaining are from the second image Ilk(t). The result vectors

(γC(t) and γF (t)) consist of K = 200 elements.

Later, the patches are encoded by a sparse coding algorithm in a linear fashion. Each

patch is represented by a linear combination of basis functions picked up from a dictionary

φj(t) = {φjn(t)}Nn=1 [87]. We use N = 288 basis functions. Two dictionaries are randomly

initialized and normalized. One is for coarse scale and the another is fine scale dictionary

as shown in Fig. 6.1.

We use the matching pursuit algorithm to estimate and find the sparse representation
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of the input vector by the weighted sum as follows:

γji (t) ≈ γ̂ji (t) =
N∑
n=1

bji,n(t)φjn(t) . (6.1)

The matching pursuit algorithm suits to the concept of sparse coding, because it can

estimate Γi(t) by using a limited number of coefficients. In this research, the maximum

number of non-zero scalar coefficients bi,n(t) is set to be 10 elements to ensure sparseness

of the efficient coding. For later use in reinforcement learner part, pooled activity, θn(t),

which represent the activity of each neuron cell is calculated from the coefficients from

the matching pursuit algorithm as follows:

θj(t) =


θj1(t)

θj2(t)
...

θjN(t)

 . (6.2)

Where, each element of the vector θj(t) is described as:

θjn(t) =
1

P

P∑
i=1

bji,n(t)2 (6.3)

, where P is the number of patches extracted from one input image. A reconstruction error

is introduced as a cost function to be used in sensory coding model and reinforcement

learner. It measures the estimation error of vector x(t). The reconstruction error is

defined as:

ej(t) =
1

P

P∑
i=1

‖γji (t)−
∑N

n=1 b
j
i,n(t)φjn(t)‖2

‖γji (t)2‖
. (6.4)

A gradient descent method is used to update the dictionaries with the reconstruction

error as a cost function. After each update, the dictionaries are then normalized.

6.2.3 Reinforcement Learning

The state representation of the reinforcement learner can be described by combination of

coarse scale and fine scale pooled activity, θn(t) as follows:

θ(t) =

θC(t)

θF (t)

 . (6.5)
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The reward that is given to the learning agent is a negative of the summation of recon-

struction error from both scales which is described as:

R(t) = −(eC(t) + eF (t)) . (6.6)

The actor-critic algorithm number 3 proposed in [95] is employed for the leaner agent.

For action selection, we use Gibbs distribution (softmax) for probabilistically choosing an

action as follows:

π(θ(t), at) =
eza∑

a′∈A e
za′

. (6.7)

For each action, the activation value za is given by:

za =
N∑
n=1

wa(t)θn(t) , (6.8)

where wa(t) is a weight vector from the state f(t) to action a. The action is pan angle

of the cameras in degrees. Possible actions a are contained in a set of actions A. In this

research we use A = {−0.2◦,−0.1◦,−0.05◦, 0◦, 0.05◦, 0.1◦, 0.2◦}. Thus, the policy maps

θ(t) to a ∈ A.

6.2.4 Depth Representation

To extract the distance information, one may calculate it directly with the knowledge

it has, such as traveled distance and eye movement. Since in this research, we focus on

building the framework that can adapt to the various configuration of the system and

environments, so it is impractical to specifically calculate the distance information which

usually requires exact system’s parameters.

To let the system learn the relationship between the distance and the eye movements,

the robot must know (1) lateral distance and (2) amount of eye movements. Since the

robot moves according to the lateral position list L, the speed of the lateral transla-

tion is constant. So, the knowledge of the lateral distance can be excluded from the

learning. For the amount of eye movements, at the end of each trial of each lateral po-

sition, the eye movements (q in Fig.6.3) are memorized and accumulated in the vector

~q =
[
q1 q2 . . . qp . . . qr

]>
.
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We suppose that the robot can remember c of its previous eye movement vector ~q.

The previous eye movement vectors are concatenated to create a queue-memory matrix

Q =
[
~q1 ~q2 · · · ~qc

]
(6.9)

, where ~q1 is the latest eye movement vector collected, and ~qc is the last eye movement

vector that the robot can remember. When a new eye movement information ~q is available,

vecqc in the matrix is discarded (dequeued). The indexes of the remaining vectors are

shifted by one, i.e. ~qk is assigned to be ~qk+1. The new vector is then assigned (queued)

as ~q1

Here, we use a feed-forward neural network with a hidden layer as the egocentric

distance learner to interpret the eye movements to the distance information. We use

Levenberg-Marquardt method [102] for training the neural network. The input of the

neural network is Q (batch training). The sigmoid activation function is used in the

hidden layer which has 30 neurons. The output layer uses the linear activation function.

The target is ground truth distances provided by the supervisor. The supervised signals

(ground truth absolute distances) are provided for letting the robot understand the metric

system. The neural network starts to train after the robot has filled the memory matrix

Q, i.e. qc exists. The training occurs every iteration that the new ~q is available.

Normalization of Generated Eye Movements for Neural Networks

Sensitive information should be carefully used as inputs for neural networks. Because large

lateral body movement makes the eye movement generation more difficult, the generated

eye movement from large lateral body movements that would be considered sensitive

information.

To determine which lateral body movement gives sensitive to eye movements, we con-

sider disparity scores which tell how much the sensory encoder can derive the information

from the two input images. The lateral body movements that give disparity score, which

is higher than the patch size, are marked as sensitive lateral positions. We try to reduce

the negative effect of the sensitive information by weighting the neural network input Q.

If the lateral position lp is the considered as the sensitive lateral position, then the

lateral positions lp to lr are sensitive. Weighting is then applied to the inputs that are

from the sensitive lateral positions which can be expressed as follows:
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Q =



w1q1,1 w1q1,2 w1q1,c

w2q2,1 w1q2,2 w1q2,c
...

...

wpqp,1 wpqp,2 · · · w1qp,c
...

...

wrqr,1 wrqr,2 w1qr,c


(6.10)

. The weight wk is defined as:

wk =


1

(1 + lr − lk)
· 1

y
, if k ≥ p

1, otherwise

(6.11)

where y is a hyperparameter.

6.3 Simulations & Results

6.3.1 Experimental Setup

V-REP is used as the environment simulator for the robot as shown in the top picture

in , while MATLAB is used to implemented the framework Fig. 6.1. In this simulation

the egocentric distance can be varied in 0.1 meters interval from 3 meters to 10 meters.

The object’s texture is interchangeable with the prepared 100 images for learning of the

various texture in environment.

Joint Development of Active Depth Perception

In this section, we analyze and verify the performance of the system. c = 300 eye move-

ments are used as inputs for the neural networks to test the distance estimation. Eye

movement generation and reconstruction errors are observed to verify the progress of

learning. To track the performance of the eye movement generation, eye movements at

30th iteration are recorded and compared with the expected eye movement. The mean

absolute error (MAE) is computed to evaluate the training.

In order to compare the two different learning strategies, we test the performance of the

framework with 6 different set of experiments. Each set of the experiments use different
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Table 6.1: Disparity score of the two input images at the beginning of each trial at 3

meters distance

Lateral Position (cm) Disparity (pixel) at 3 m

5 9

7 12

10 18

13 23

15 27

20 35

single lateral position. We use L = 5, 7, 10, 13, 15 and 20 cm as the lateral positions.

Every set of the experiments contains 3 simulations.

We picked these lateral positions based on the disparity score which is an approximated

distance between the two input images in pixels, as seen in Table 6.1 below. The disparity

score is calculated by using geometry at 3 meters distance, because at the closest distance

we can observe the maximum disparity for each lateral position.

Because the coarse scale is sub-sampled from the original image by 8, the maximum

horizontal disparity that causes no overlap between two 10x10 pixels patches would be

10 ·
√

8 which is around 28. At 15 cm lateral position, it barely gets two patches overlap

at the start of each trial. While 20 cm lateral position has no overlap. These 2 lateral

positions would be good examples of the effect of having large lateral movement.

After we confirmed the training of the single lateral position simulation, we test the

performance of the system with two sets of multiple lateral positions which are L =

{5, 6, 7, . . . , 10} (cm) and L = {5, 6, 7, . . . , 20} (cm).

6.3.2 Performance Comparison

The training results of multiple lateral positions are shown in Fig. 6.12 for 5-10 cm and

Fig. 6.13 for 5-20 cm, respectively. The blue dashed lines represents the variance of each

trial from 3 simulations. The solid line is the average of the MAE from 3 simulations. Ta-

ble 6.2 show the comparison results between a single lateral body movement and multiple

lateral movements.
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Table 6.2: Performance of the single lateral position (Sing.) and multiple lateral positions

(Mult.)

Lateral Position
Average (Variance) of last 100 trials

Sing. Mult. 5-10 cm Mult. 5-20 cm

5 0.18 (0.10) 0.18 (0.08) 0.25 (0.13)

7 0.16 (0.06) 0.16 (0.06) 0.18 (0.06)

10 0.16 (0.02) 0.17 (0.06) 0.18 (0.07)

13 0.18 (0.02) - 0.17 (0.03)

15 0.30 (0.08) - 0.17 (0.03)

20 0.91 (1.15) - 0.19 (0.04)

Some of the lateral position has a high peak of MAE and is slower to get stable,

because the redundancies between input images is very low initially, so it is quite difficult

for the framework to learn with such small information.

As shown in Table 6.2, all of the simulation except for the 15 and 20 cm lateral position

show a similar performance in terms of the last 100 trials eye movement MAE. In the

beginning period of training, there are a lot of combinations of texture and distance of the

object to be learned, so the rises and declines of the MAE are expected as seen in Fig. 6.21.

When the lateral movement is too large, it makes the distance between two input images

I1 and I2(t) initially large. So, the framework could not utilize the redundancy between

the two images effectively, which results in unstable eye movement generation as shown

in Fig 6.19. However, we can see that it can still maintain the eye movement with enough

precision.

6.3.3 Robustness Test

To test the robustness of the system, we apply two types of perturbation to the robot.

First, the camera is rotated by 15 degrees in roll-plane. Second, a Gaussian filter with

standard deviation of 2 is applied to the input image to represent the blurriness.

The disturbances are applied after the training which are shown in sub-section 6.3.2.

As shown in Fig. 6.14 – Fig. 6.21 and Table 6.3, noticeable increasing in the MAE are

observed after including the disturbance which is presented by gray dashed line in the
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Table 6.3: Performance of the single lateral position (Sing.) and multiple lateral positions

(Mult.) after perturbations applied.

Lateral Position
Average (Variance) of last 100 trials

Sing. Mult. 5-10 cm Mult. 5-20 cm

5 0.12 (0.01) 0.13 (0.01) 0.16 (0.02)

7 0.14 (0.01) 0.15 (0.01) 0.16 (0.03)

10 0.21 (0.04) 0.18 (0.02) 0.18 (0.01)

13 0.36 (0.12) - 0.21 (0.04)

15 0.54 (0.21) - 0.25 (0.04)

20 1.09 (1.03) - 0.39 (0.13)

figure.

For small single lateral positions, the framework can recover from the disturbances to

have a similar performance before the interferences. For the larger lateral positions from

10 cm, we can see that they could not recover MAE to be similar to the performance before

the perturbations. However, they could recover and maintain the MAE. Interestingly, for

the 20 cm lateral position test, it can still maintain the MAE as shown in Fig. 6.19.

Noticeably, the lateral positions from 5 to 10 cm can fully recover to the similar or even

better performance from the disturbances. Some perform better after the disturbances

because it simply has more time to learn. Also, disturbances encourage the framework to

explore and learn more. While at the lateral positions form 13 to 20 cm, the framework

could not fully recover from the disturbances. Because, combining with high disparity

scores and the disturbances, the framework could not effectively learn to generate eye

movement. However, it still shows that it can maintain the MAE.

6.3.4 Distance Estimation

Without the weighting algorithm, the depth representation is still useful for the far dis-

tance such as 5m to 10m, but the closer distance such as 3m to 5m is worse. With the

proposed weighting, it is shown that the depth estimation is improved for both near and

far distance. In addition, the proposed model is robust to the perturbations.

The performance and robustness of the distance estimation is investigated in Fig 6.22
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Table 6.4: Average distance estimation error for each range of distances.

Simulation 3 to 4.9 (m) distances 5 to 6.9 (m) distances 7 to 10 (m) distances Total Average

5-10 cm without weighting 3.97% 4.09% 4.74% 4.33%

5-20 cm without weighting 6.39% 2.24% 3.06% 3.77%

5-20 cm with weighting 3.66% 1.89% 2.55% 2.69%

Table 6.5: Average distance estimation error after perturbations for each range of dis-

tances.

Simulation 3 to 4.9 (m) distances 5 to 6.9 (m) distances 7 to 10 (m) distances Total Average

5-10 cm without weighting 3.95% 3.52% 5.50% 4.48%

5-20 cm without weighting 4.30% 2.76% 3.03% 3.31%

5-20 cm with weighting 2.29% 0.98% 0.82% 1.30%

and Fig. 6.23, respectively. The distance estimation performances are shown. Minimum

and maximum error of single lateral movement distance estimation are represented by the

blue solid line. The red solid line shows the performance of the multiple lateral positions.

We can see in Fig. 6.22 that by applying multiple lateral position learning strategy is

better compared to the average and the minimum of the single lateral position. With the

weighting shown in red line, performance is significantly improved at 3-5m distance range.

In addition, comparing to the magenta line (without weighting), the proposed learning

strategy has better overall performance in far distance 9-10m.

In Fig. 6.23, it shows the performance after the disturbance which is similar to the

before interruption for both single and multiple lateral position. Table 6.4 and Table 6.5

show the distance estimation error in each distance. The lateral position from 5 to 20cm

with weighting performs better than the other two strategies in every case. In addition,

the performance of every lateral movement strategies is robust to the perturbations. We

can say that the proposed learning scheme is robust to the changing of the system’s

parameters.

6.4 Summary

In this chapter, we propose a novel visual learning framework to actively perceive the

various ranges of distance from motion parallax by integrative learning of sensory rep-

57



resentation and eye pursuit during self-induced multiple lateral body movements. An

artificial neural network was used to represent the egocentric distance by autonomously

understanding the relationship between the amount of eye movements and distance infor-

mation under a human supervision instead of a certain equation. The generated multiple

eye movements were effectively used to represent the distance information and it has a

better accuracy to perceive the distance than a single body movement. Moreover, the

proposed model also can seamlessly recover the artifacts from the perturbations such as

image blur and rotation.
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Figure 6.1: Model architecture. The robot captures a reference image and then moves

to the lateral position lk from L. To perform the motion parallax, the successive images

I(t) into the sensory encoders with multiple image scales. Then, an output reward signal

generated from the sensory encoders is sent to the reinforcement learner to generate an

appropriate eye movement to hold the fixation during the body movement. Finally, a

pan command is sent to the robot and it generates the smooth pursuit eye movement to

maximize the redundancy between the successive images. The memorized eye movements

(q1, q2, . . . , qr) are used as an input for the neural network to represent the distance

information which is given by human-robot interaction.
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(a) Single lateral distance

(b) Multiple lateral distance

Figure 6.2: a shows a learning scheme when using only single lateral movement. It has

only one scale of learning signal. While, b shows the flow of performing the same task

but with multiple lateral body movement. It can provide multiple scale of learning signal

to the reinforcement learner.
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Figure 6.3: The lateral body movement of the robot and the total eye movements at

each position. The robot moves laterally for a certain distance from L. Then it tries to

generate eye movements q1, q2, · · · , qp, · · · , qr to fixate the visual stimulus at the center of

the gaze.

Figure 6.4: The parallax angle q which is identical to the total eye movement required to

fixate the stimulus at a certain lateral distance l.
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Figure 6.5: The 3 layers feed forward neural network for estimating the egocentric dis-

tance. The feature inputs are the eye movements from each lateral position in L. Sigmoid

activation function is used in the hidden layer, while the output layer uses linear activation

function. The output layer has only one node which is the absolute distance.
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Figure 6.6: Eye movement MAE of single lateral position at 5 cm
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Figure 6.7: Eye movement MAE of single lateral position at 7 cm
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Figure 6.8: Eye movement MAE of single lateral position at 10 cm
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Figure 6.9: Eye movement MAE of single lateral position at 13 cm
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Figure 6.10: Eye movement MAE of single lateral position at 15 cm
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Figure 6.11: Eye movement MAE of single lateral position at 20 cm
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Figure 6.12: Eye movement MAE of multiple lateral position 5-10 cm
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Figure 6.13: Eye movement MAE of multiple lateral positions 5-20 cm
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Figure 6.14: Eye movement MAE of single lateral position at 5 cm after the disturbances
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Figure 6.15: Eye movement MAE of single lateral position at 7 cm after the disturbances
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Figure 6.16: Eye movement MAE of single lateral position at 10 cm after the disturbances
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Figure 6.17: Eye movement MAE of single lateral position at 13 cm after the disturbances
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Figure 6.18: Eye movement MAE of single lateral position at 15 cm after the disturbances
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Figure 6.19: Eye movement MAE of single lateral position at 20 cm after the disturbances
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Figure 6.20: Eye movement MAE of multiple lateral positions 5-10 cm after the distur-

bances
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Figure 6.21: Eye movement MAE of multiple lateral positions 5-20 cm after the distur-

bances
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Figure 6.22: Distance estimation error
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Figure 6.23: Distance estimation error at each distance after the disturbances
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Chapter 7

Schemes of Motion Parallax Based

with Optimal Lateral Movement

In the previous chapter, we propose a way to improve the framework by moving laterally

at multiple position. However, in practice the robot movement should not be predefined.

In this chapter, we will discuss how to make the robot learns to move optimally based on

its training experiences.

7.1 Philosophy of This Work

To understand the surrounding environment, motion parallax phenomenon is one of the

important key to be aware of depth in the environment. Motion parallax gives two kinds

of depth information which are the distance from the observer to the fixating object d

(egocentric), and the distance from the fixating object to another object M (allocentric),

as shown in Fig. 7.1. Motion parallax involves 4 parameters which are the egocentric

depth (d), allocentric depth (m), change in angle between the two objects (θ), and the

angle required to fixate the object (pan1). By knowing the ratio of changes between the

two angle and one kind of depth, we can determine another kind of depth [103,104].

In the previous chapters, we successfully create the framework that utilizes motion

parallax effect to estimate various depths. However, the lateral movement is predefined.

The robot has to travel to the same lateral distance every time which is redundant for

close visual stimuli. The study also does not cover allocentric depth which is meaningful
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information provided from the motion parallax effect. To be able to recognize the relative

depth, parallax angles may be observed during lateral body movements. Large lateral

movement usually results in large parallax angle. Since a small parallax angle could

be unnoticeable, the lateral movement should be large enough to provide a meaningful

parallax information. In [105], they make experiments to understand how well human

can distinguish between close and far objects. They found that there is a certain parallax

threshold that effects the performance. So, a mechanism that selects optimal lateral body

movement that is sufficient to differentiate allocentric depth can be based on the parallax

threshold.

In this chapter, we propose a novel framework that lets robots understand the depth

information provided by the motion parallax phenomenon while using an appropriate lat-

eral movement. The framework considers three important mechanisms (1) visual sensory

representation by sparse coding, (2) eye movement generation by reinforcement learning,

and (3) understanding of allocentric depth information by utilizing the optimal lateral

movement. This approach enables robots not only to autonomously learn sensory repre-

sentation and eye movement controls but also to understand relative depth information

from the motion parallax effect. The robot will be able to learn the optimal lateral body

movement integrating with the developmental learning framework to differentiate two

visual stimuli with allocentric depth.

7.2 Model Architecture

By letting the robot move laterally and capture the successive images, it can generate a

motion parallax phenomenon under the different conditions, such as positions and speeds

of its body. In this research, we assume that the robot can perfectly control their lateral

body movements without uncertainty. The developments of related cognitive functions,

such as visual representation and eye movements control, will only be focused on for

understanding motion parallax and depth information in this study. Fig. 7.2 shows the

architecture of the framework. The goal of this framework is to find lateral movement that

generates parallax angle that is enough to distinguish visual stimuli which have variable

textures at various depths and lateral positions. We utilize multiple sparse coding schemes

as a sensory coding model coupled with reinforcement learners to achieve efficient coding
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Figure 7.1: The model of parallax occurs when moving laterally by l. θ represents the

parallax angle that is formed when focusing on fixating point F while there is another

object A in the field of view. d is the egocentric depth between the robot and the fixating

object. M is the relative depth between the two objects.

of the visual inputs from the camera. The sensory coding models learn to represent the

input images, while the reinforcement learner learns to generate an action to increase the

efficiency of the coding model.

7.2.1 Optimal Lateral Movement Selection

This section explains how the robot can select an optimal lateral movement based on the

motion parallax effect.
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Parallax Threshold

According to [105], there exists a certain parallax threshold for a human to be able to

differentiate close and far objects. Depending on each person, the threshold that they

can notice parallax are different. As shown in Fig. 7.1, the parallax, θ, is created after

the observer moved laterally, while keep fixating at the object F. By using the fact that

the observers can distinguish close and far objects if they could notice the change in

parallax, it is possible to implement the optimal lateral movement selection. So, the

parallax threshold is necessary to implement the optimal lateral selection for the robot.

Since the parallax threshold depends on how the observers could feel the movement

of the images physically (eye’s muscles) or visually (images on the retina), the parallax

threshold for the robot can be assumed to be θ∗ a multiple of smallest movements of the

eye that the robot can make. For the relative depth, we assume that the robot is supposed

to be able to classify objects that are placed M meters far from each other.

Comparing Parallax

We can find the parallax angles by taking subtraction of the two pan angles fixating on

F and A, i.e. pan1 − pan2 = θ. Then we can determine if the current lateral distance l is

enough to distinguish two objects at depth-pair d and f +M by testing if:

θ ≥ θ∗ (7.1)

If the condition satisfies, it means that there is enough eye movement for the robot to

detect between the two objects that are placed M far from each other. Figure 7.3 shows

an example when M = 0.2 m and the objects are placed between 2 and 5 meters. The

pan angles are calculated by hand using trigonometry. White cells are the position where

the condition is met and vice versa for the black cells. It represents distinguish-ability

of the two objects placed in the different depth (depth-pair) with respect to the lateral

distance l. We can see that large lateral movement can mostly differentiate most of the

depth-pair, while the small lateral movement can barely see the difference between depth

2.0 and 2.2 meters.
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The Selection

Optimal lateral movement selection is a mechanism that helps the robot decide at which

lateral position is enough to differentiate objects at a different depth. As shown in the

previous section, we may observe the parallax angles and then compare them with the

parallax threshold to know if the lateral movement was enough for the robot to distinguish

the depth-pair or not. Then, we can determine lateral movements that are effective for

each depths. However, in the robot application, the distance between the robot and the

objects is unknown. So, it is not possible to calculate the optimal lateral movement. In

that way, the robot has to learn how to generate optimal lateral movements.

In this research, the robot moves laterally step by step. At each step the robot moves

by ls meters, while it tries to sequentially fixate two visual stimuli which are placed M

meters far from each other with two pan angles, αj,i and αj,i+1. The robot moves until it

reaches the optimal lateral distance l∗ or the maximum lateral distance l∗ = lm. The robot

then moves back to the center (zero lateral distance). Every time the robot return to the

center, the robot moves backward for another M meters to increase the distance between

itself and the visual stimuli. The robot moves backward until it reaches the maximum

depth d = D, which then it will return to the original position. This is considered as

one-trip.

To enable the robot to learn optimal lateral movement, we assume that the robot can

remember eye movements at each lateral position for all q depths after one trip which can

be represented by:

X =
[
~α1 ~α2 · · · ~αq

]
(7.2)

~αi =
[
αj,i αj+1,i · · ·αr,i

]>
is a column vector containing r = lm

ls
pan angles required to

fixate i-th depth from all of the lateral movements. Then the parallaxes can be calculated

by subtracting each column with its next column as follows:

Y =
[
~θ1 ~θ2 · · · ~θq−1

]
(7.3)

where, ~θi = ~αi− ~αi+1. Since the robot could make mistake on generating eye movement

which directly effects the parallax angles. To prevent the problem, an additional condition

is presented. Since the robot always moves far away from the objects, we can safely assume
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that the lateral movement should be an increasing function, i.e. the lateral movement in

the farther depth should be larger than the close depth. Thus, the new condition is:

l(t) ≥ l∗p (7.4)

, where l∗p is the optimal lateral movement from the previous depth (the lateral position

that the robot stopped).

Every time the robot moves laterally, it checks θj,i in Y if it satisfies the Eqn. 7.1 and

Eqn. 7.4. If the condition was satisfied, then the robot consider the current movement as

the optimal lateral movement. The robot then proceeds to move backward and continue

the procedure. Otherwise, the robot continues moving laterally.

7.2.2 Sensory Coding Model

At the center position (zero lateral distance), an image I0 is captured from the camera as

a reference. The robot then moves laterally by one step l(t) = l(t−1)+ ls. An image Ip(t)

is captured from the camera, p = l(t)
ls

. The robot then generates a smooth pursuit eye

movement by using two captured images I(t) =
[
I0 Ip(t)

]
to learn sensory representation

of motion parallax and smooth pursuit eye movement for the camera.

After generating smooth pursuit eye movement for h iterations, i.e. one trial, the

robot continues to move laterally to the next position. This process is repeated pm = l∗

ls

times reaching the optimal lateral position l∗, changing the depth and the texture of the

visual stimulus.

The two input images in the matrix I(t) are cropped by 250x250 pixels and 150x150

pixels from the center of the images which will be sub-sampled. The two cropped images

represent a fine scale and a coarse scale, respectively. The two scales of the images

represent the foveal system in human eyes. The fine scale image represents a foveal region

in our eyes which can catch more details at the center of vision. While the coarse scale

represents a parafoveal area which contains smaller details. Discussions and comparisons

of using multiple scales of images have been done in [48]. They discussed how gaining the

access to multi-scale images could improve the learning of the framework. On the other

hand, having only one scale might prevent the system from learning appropriately.

After the cropping, the cropped images are converted to grayscale. 10 by 10 pixels
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patches are then extracted from the grayscale images, whose locations are generated

by 1 pixel and 4 pixels shifts horizontally and vertically for coarse scale and fine scale,

respectively. The image patches are then sub-sampled by using the Gaussian pyramid

algorithm which has a sub-sample factor of 8 for the coarse scale, and 2 for the fine scale.

The patches are reshaped and normalized to be one-dimensional vectors which have zero

mean and unit norm, γji (t). i is the index of the patch, which j ∈ {C,F}. C is for the

coarse scale, and F is for the fine scale. With the sub-sampled images, the framework will

be able to handle image disparity that is larger than patch width. Note that the fine-scale

helps in fine-tuning the eye movements.

The two one-dimensional vectors are then combined into a single vector γj(t). The

first 100 elements of the vectors are from the first image I0 and the remaining are from

the second image Ip(t). The result vectors (γC(t) and γF (t)) consist K = 200 elements.

Initially, two dictionaries, φj(t) = {φjn(t)}Nn=1, are randomly generated using a uniform

distribution. Each of the dictionaries contains N = 288 basis functions φjn(t). One

dictionary is for the coarse scale, and another one is for the fine scale. Later, the patches

are encoded by the sparse coding algorithm in a linear fashion. Each patch can be

represented by a linear combination of the basis functions picked from the coarse or fine

scale dictionary.

We use the matching pursuit algorithm [106] to estimate and find the sparse represen-

tation of the input vector by the weighted sum as follows:

γji (t) ≈ γ̂ji (t) =
N∑
n=1

bji,n(t)φjn(t) (7.5)

The matching pursuit algorithm suits to concept of sparse coding, which can estimate

Γi(t) by using a limited number of coefficients. In this research, the maximum number

of non-zero scalar coefficients bi,n(t) is set to be 10 elements to ensure sparseness of the

efficient coding. For later use in reinforcement learner part, pooled activity, fn(t), which

represent the activity of each neuron cell is calculated from the coefficients from matching

pursuit algorithm as follows:

f j(t) =


f j1 (t)

f j2 (t)
...

f jK(t)

 . (7.6)
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Where, each element of the vector f j(t) is described as:

f jn(t) =
K∑
i=1

bji,n(t)2. (7.7)

A reconstruction error is introduced as a cost function to be used in the sensory coding

model and the reinforcement learner. It measures the estimation error of vector x(t). The

reconstruction error is defined as:

ej(t) =
1

K

K∑
i=1

‖γji (t)−
∑N

n=1 b
j
i,n(t)φjn(t)‖2

‖γji (t)2‖
. (7.8)

Gradient descent method is used to update the dictionaries with the reconstruction error

as the cost function. After each updates, the dictionaries are normalized.

7.2.3 Reinforcement Learning

The state representation of the reinforcement learner can be directly described by a com-

bination of the coarse scale and the fine scale pooled activity, fn(t) as follows:

f(t) =

fC(t)

fF (t)

 . (7.9)

The reward that is given to the learning agent is a negative summation of the reconstruc-

tion error from both of the image scales which is described as:

R(t) = −(eC(t) + eF (t)) . (7.10)

The actor-critic algorithm number 3 proposed in [95] is employed for the leaner agent.

For action selection, we use Gibbs distribution (softmax) for probabilistically choosing an

action as follows:

π(f(t), at) =
eza∑

a′∈A e
za′

. (7.11)

For each action, the activation value za is given by:

za =
N∑
n=1

wa(t)fn(t) , (7.12)

where wa(t) is a weight vector from the state f(t) to action a. The action is a pan angle

of the cameras in degrees. Possible actions a are contained in a set of actions A. In this

research we use A = {−0.2◦,−0.1◦,−0.05◦, 0◦, 0.05◦, 0.1◦, 0.2◦}. Thus, the policy maps

f(t) to a ∈ A.
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7.3 Simulations & Results

In this section, we evaluate the framework by observing and analyzing the lateral move-

ment together with the eye movement generation.

7.3.1 Experimental Setup

We use V-REP, a robot simulator, as a 3D environment visualization for the frame-

work and the framework is implemented on MATLAB. The environment in the simulator

comprises HOAP3 robot model, an object with interchangeable textures, and a still back-

ground image as shown in the top picture in Fig 7.2. We assume the parallax threshold

θ∗ for the robot to be 2 times of the smallest eye movement in A which is 0.1◦. In this

experiment, we virtually simulate the two visual stimuli by making the robot moves back

for another M = 0.2 m instead, while the texture is also changed. To capture the suc-

cessive image frames, the lateral movement of the robot is simplified to be pick-and-place

and the amounts of movement with ls = 0.01, lm = 0.15. The maximum depth is set to be

D = 4.8 m (the distance between the robot and the farthest stimuli is 5 m). 100 images

are prepared as the texture of the visual stimuli. Each image is iteratively trained with

h = 30 iterations. We conduct 4 experiments with the same setup.

7.3.2 Eye Movement Analysis

In this section, we analyze the eye movements performance of the framework. Eye move-

ment generation is observed to verify the progress of learning. Eye movements at the

end of each trial are recorded and compared with the desired eye movement. The mean

absolute error (MAE) is computed to evaluate the training as shown in Fig. 7.4. The

black dashed line represents the variance between the simulations. We can see that the

robot learns and improve eye movement generation over time. Since the visual stimuli

are changed periodically, the increased in MAE is presented. Because the robot has to

learn to create the new visual representation of the new textures. The 4 simulations do

not differ from each other much as seen with the variance.
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7.3.3 Optimal Lateral Movement

In this section, we visualize and validate the robot’s choice of the lateral movement. Fig-

ure 7.5 shows a heat-map of the chosen lateral movement averaging from the 4 simulations

in each trip starting from the top row. The amount of the lateral body movement is rep-

resented by the color bar. The bottom row shows the expected lateral movement that is

calculated by hand. We can see that most of the trips, the robot chose the amount of the

lateral movement near the expected lateral movement in the bottom row.

To further understand how the chosen lateral movement affects the distinguish-ability

of the depth-pair, we may see Fig. 7.6. The figure tells how well the robot can distinguish

the depth-pair. The color’s value represents the number of simulations that could suc-

cessfully differentiate the depth-pair. e.g. White means 4 simulations can distinguish the

depth-pair. Also, similar to the previous figure, the bottom row represent the expected

classification. The figure shows that the robot can classify most of the close depth depth-

pair (left side). However, at the far depth (right side) the robot could not distinguish

the depth-pair most of the time, which follows the expectation as seen in the bottom

row. However, some cells in the right side report as a success (gray-white) which does not

follow the expected value. The reason is simply that there still exist eye movement errors

as shown in the previous section.

To summarize the results from the experiments, Fig. 7.7 shows the distinguish-ability

map for the 4 simulations similar to the Fig. 7.3. We can directly compare them together

since Fig.7.3 is made up with the same set-up. Similar to the previous figure, the color

bar’s value represent the number of simulations that can distinguish the depth-pair. We

can see that the chosen lateral movement are similar to the example shown in Fig. 7.3.

This tells us that it is possible for the robot to learn how to generate optimal lateral

movement. In addition, averaging all of the 4 simulations, the robot saves 25.22% of the

lateral movement.

7.4 Summary

In this chapter, we propose the framework with the learning strategy that enables the

robot to learn optimal lateral movement to distinguish two depths. While it can actively
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generate an accurate smooth pursuit eye movement for various ranges of motion parallax

during self-induced lateral body movement. The proposed framework can simultaneously

learn to choose eye movements, select the optimal lateral movement, and create visual

representations to understand the motion parallax effect. This research has proven that it

is possible for the robot to find suitable lateral movements that are enough to differentiate

allocentric depth of two visual stimuli that are closed together. In addition, the framework

still remains the extendability of the egocentric depth estimation.
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Figure 7.2: The robot then captures a reference image and then moves to the lateral

position l(t). To perform the motion parallax, the successive images I0 and Ip are input

into the sensory encoders with multiple image scales. Then, an output reward signal

generated from the sensory encoders is sent to the reinforcement learner to generate an

appropriate eye movement to hold the fixation during the body movement. Finally, a

pan command is sent to the robot and it generates the smooth pursuit eye movement to

maximize the redundancy between the successive images.
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Figure 7.3: Distinguish-ability between each pair of depth (depth-pair). Black represents

ambiguous depths that are difficult to distinguish with respect to the lateral distance.

While white shows the depths that are easy to distinguish. e.g. at lateral distance 10 cm,

it can easily tell the difference between depth 3.3 m and 3.4 m and the earlier depth-pairs.

However, it can’t distinguish the depth-pairs from 3.4 m

Figure 7.4: Eye movement mean absolute error (MAE) of the 4 simulations. Dashed lines

represent the variance between the simulations
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Figure 7.5: Heat-map represents the chosen lateral movement. Each row represents lateral

movement that the robot chose to stop at each trip. The bottom row shows the expected

lateral movement
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Figure 7.6: Classification for each depth-pair from each trip. White(4) means all of the 4

simulations can successfully differentiate the depth-pair, while black(0) means none can

distinguish the depth-pair. The bottom row shows the expected classification
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Figure 7.7: Distinguish-ability between each pair of the depth of the 4 simulations from

the final trip. Black represents ambiguous depths that are difficult to distinguish. White

and gray represent how many simulations can distinguish the depth-pair. e.g. at lateral

distance 10 cm, there are 3 simulations that can differentiate depth 2.4 and 2.6.
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Chapter 8

Integration of the Motion Parallax

and Stereo Vision

In this chapter, we propose a new strategy to combine the frameworks from the chapter

4 and 5 into a unified framework. The framework will be able to learn to generate both

of the vergence and smooth pursuit eye movement.

8.1 Philosophy of This Work

In the previous chapters, we considered only the smooth pursuit eye movement and the

vergence eye movement in isolation. Interestingly, developed organisms do not use only

one visual depth cue for their whole lifetime. They can integrate the information about

multiple visual depth cues and analyze the eye movements to perceive the spatial infor-

mation about the surrounding environment.

In [49], they have successfully demonstrated generating multiple eye movements, which

are smooth pursuit and vergence to track a moving object, but depth perception is not

included in the learning framework. Moreover, all of the generated eye movement infor-

mation could not be used for depth perception because stationary observer cannot extract

depth information from motion parallax or optic flow without a priori knowledge such as

object size.

Generally, in psychology, dominant eye is a concept that implies that one eye moves

before another eye does. Recently there are studies that support the dominant eye hypoth-
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esis [107–109]. Also, according to [110], they reported that when a motion is self-induced

by active observer, two visual depth cues (stereo vision and motion parallax) will be

sequentially activated which is not observable in a static observer. Therefore, we may

consider that two eye movements for different visual depth cues during the self-induced

lateral body movement can be sequentially generated in an independent process to min-

imize the conflict of multiple cues and then finally multiple eye movements are used to

analyze the depth information by integrating each of them. This approach enables to

autonomously learn not only sensory representation and eye movement controls for the

multiple visual depth cue analysis but also active depth perception during self-induced

body movements.

8.2 Model Architectures

In this chapter, we present a dominant eye strategy to combine two cues which are stereo

vision and motion parallax together. One of each eye is assigned to be dominant and

non-dominant eye. Dominant eye is responsible for motion parallax effect, while the

non-dominant eye is for stereo vision.

The framework (Fig. 8.1) is divided into 2 parts which are motion parallax and stereo

vision. The robot observe motion parallax effect through the dominant eye first, then

followed by the stereo vision with the non-dominant eye, i.e. the two cues are performed

sequentially. One iteration t is divided into 2 steps k1 and k2. First, at k1 the robot

moves laterally from the original position to the leftmost position to observe the motion

parallax and generating the smooth pursuit eye movement. Then, at k2 the robot perform

the stereo vision just after the smooth pursuit eye movement is done by using vergence

eye movement. After h iterations, the robot moves to the rightmost position. Then the

robot observe the motion parallax and stereo vision respectively for another h iterations.

Finally, the texture of the object and the depth between the robot and the object are

changed.

Step k1: images Im,k1(t) =
[
Im1(t) Im2(t)

]
from the dominant eye are input to the

framework to learn the sensory representation and smooth pursuit eye movement. The

images are captured at different position before and after the lateral body movement.

Step k2: after k1, images from both dominant eye and non-dominant eye are captured,
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Is,k2(t) =
[
Is1(t) Is2(t)

]
. The stereo images are then input to the framework to learn the

sensory representation of stereo disparity and vergence eye movement.

8.2.1 Sensory Coding Model

The images that are input in the sensory coding model are treated as follows. Two input

images are cropped by 128x128 pixels and 80x80 pixels at the center. The cropped images

are converted to gray scale. Then they are extracted to multiple of 10x10 pixels patches

which the locations are generated by 1 pixel and 4 pixels shift horizontally and vertically

for the 128x128 window and 80x80 window respectively. The image patches are then sub-

sampled using Gaussian pyramid algorithm by a factor of 8 for the larger window and

factor of 2 for the smaller window. The two cropping sizes represent the foveal system

in the human eyes. The smaller windows represents the foveal region (fine scale) in our

eyes which can capture more detail more than the parafoveal area (coarse scale) which is

represented by the larger window.

The image patches are reshaped to one-dimensional vectors which have zero mean and

unit norm. The resulted vectors from the first image is then concatenated with the one

from the second image resulting in a single vector, xji (t) consisting of P = 200 elements.

Where, i is the index of the patch, and j ∈ {C,F}. C is for coarse scale and F stands for

fine scale.

The vectors are then encoded by the sparse coding algorithm. They are encoded so that

they can be represented by a linear combination of basis functions. The basis functions

are picked from an over-complete dictionary φj(t) = {φjn(t)}Nn=1. In this research, there

are 4 dictionaries. One pair for the stereo vision (d = s), and another for the motion

parallax (d = m) as shown in Fig. 8.1. Each pair is responsible for coarse scale and fine

scale. Initially randomized and normalized N = 288 basis functions are used to create

the dictionaries. We use matching pursuit algorithm to find the sparse representation of

the input vector with respect to the weighted sum

xji (t) ≈ x̂ji (t) =
N∑
n=1

aji,n(t)φjn(t) . (8.1)

In this research, we limit the number of non-zero scalar coefficients ai,n(t) to be 10

elements to ensure the sparseness of the encoding (efficient coding). To be associated with
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the reinforcement learner later, we define the pool activity which represent the activity

of the neuron cells as follows:

f j(t) =


f j1 (t)

f j2 (t)
...

f jP (t)

 . (8.2)

Where, each element of the vector f j(t) is described as:

fn(t) =
P∑
i=1

ai,n(t)2. (8.3)

The reconstruction error is defined as:

e(t) =
1

P

P∑
i=1

‖xi(t)−
∑N

n=1 ai,n(t)φn(t)‖2

‖xi(t)2‖
. (8.4)

The error is used to update the dictionaries with the gradient descent method. Every

update, the dictionaries are normalized.

8.2.2 Reinforcement Learning

Pooled activities from both coarse scale and fine scale are combined to represent the state

fn(t) for the reinforcement learner as follows:

f(t) =

fC(t)

fF (t)

 . (8.5)

The reward that is given to the learning agent is a negative of the summation of recon-

struction error from both scales which is described as:

Rd,k(t) = −(eC(t) + eF (t)) . (8.6)

Where, k ∈ {k1, k2} and d ∈ {m, s}. m is for motion parallax. s is for stereo vision.

An actor-critic algorithm number 3 proposed in [95] is employed for the leaner agent.

For action selection, we use Gibbs distribution (softmax) for probabilistically choosing an

action as follows:

π(f(t), at) =
eza∑

a′∈A e
za′

. (8.7)
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For each action, the activation value za is given by:

za =
N∑
n=1

wa(t)fn(t) , (8.8)

where wa(t) is a weight vector from the state f(t) to action a that is initially random. The

action is pan angle of the cameras in degrees. Possible actions a are contained in a set of

actions A. In this research we use A = {−0.2◦,−0.1◦,−0.05◦, 0◦, 0.05◦, 0.1◦, 0.2◦}. Thus,

the policy maps f(t) to a ∈ A. The selected actions are Pm,k1(t) for motion parallax and

Ps,k2(t) for stereo vision.

8.2.3 Depth Representation

A feed forward artificial neural network is used to translate eye movements to the visual

stimulus distance. The network consist of input, hidden, and output layer. The eye

movements are stored for depth estimation in every iteration after the stereo vision were

executed.

Amount of eye movements ~q are used to trained the neural network.

~q =


q1

q2

q3

q4

 (8.9)

where, q1 represents the left eye’s pan movement at leftmost position. q2 is vergence

eye movement at leftmost position. q3 is left eye’s pan movement at rightmost position.

q4 is vergence eye movement at rightmost position.

Levengerg-Marquardt method [102] is used for training the neural network. Hidden

layer composes of 10 neurons which has sigmoid transfer function. Input layer is the

vector ~q. The output has one neurons which is the estimated depth supervised by ground

truth depth provided by a supervisor.
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8.3 Simulations & Results

8.3.1 Experimental Setup

We test multiple cues to estimate the distance of the object starting from the observer

(robot). We use V-REP as the 3D environment simulator for the robot. The algorithm

and framework are employed in MATLAB. The target distance can be varied in 0.1 meter

interval starting from 1 to 3 meters. The absolute distance between the left and right

position δ = 0.1 meter. Baseline distance of the two cameras is 0.06 meter. We use h = 30

iterations. The object’s texture is interchangeable with the prepared 100 textures.

In this simulation, we define the MAE as follows:

MAE(t) =
1

1000

999∑
k=0

|θ(t + 29 + 30k)− θ∗(t + 29 + 30k)| . (8.10)

Where, θ(t) is the pan/vergence angle of the eye and θ∗(t) is the expected pan/vergence

angle.

8.3.2 Development of the Visual Dictionary

To analyze the distribution and variance of the visual dictionaries used in the sensory cod-

ing model, we apply principal component analysis (PCA). For the first stage of the visual

dictionaries, it is expected to see each parts are redundant to each other. In Figs. 8.2a -

8.2c, they show the first and the second principal component of the visual dictionaries.

In the final stage, we can see that the dictionaries are more sparsely distributed than the

first stage.

8.3.3 Eye Movement Performance

We use the earlier defined MAE to measure the eye movement performance. The er-

ror compares the actual eye movements versus the expected eye movements. Fig. 8.3a

represents the eye movement MAE.

While, Fig. 8.3b shows the depth perception performance. The eye movement infor-

mation ~q which is effected by different experimental conditions is used as inputs for the
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neural network. The depth estimation output is used to calculated the depth estimation

MAE.

We can see that the robot could learn and improve both sensory coding and eye

movement. In addition, the robot learns to estimate depth with stereo vision and motion

parallax together.

8.3.4 Robustness Test

Since in practical application, disturbances are expected to happen. In this simulation,

we test one of the robustness of the system. We apply a constant rotation to the dominant

eye camera in roll-plane Fig. 8.4. As we can see in Fig. 8.4a, the eye movement MAE

noticeably increased after the perturbation is applied (after the dashed line). Motion

parallax cue was not effected much since the rotation effect both of the input images.

However, for the stereo vision which depends on the motion parallax cue receive the effect

much more. However, the framework could recover from the disturbance and reduce the

MAE significantly for the stereo vision cue. Since depth perception is supported by both

cues the depth estimation performance could be recovered similar to the performance

before the test Fig. 8.4b.

8.4 Summary

In this chapter, we proposed a novel developmental learning framework to actively the

active depth perception during self-induced lateral body movements. The proposed frame-

work can simultaneously develop the sensory representation, eye movement control and

integration of the visual depth cues such as stereo disparity and motion parallax. In

order to avoid the conflict of multiple eye movements, the two different eye movements

are sequentially trained and generated, while they share the same learning architecture.

Finally, the generated multiple eye movements are effectively used to represent the depth

information. Also, the proposed learning framework can be seamlessly recovered from the

external perturbations.
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Figure 8.1: Model architecture. (1) At the first step k1, to perform the motion parallax,

the robot captures the successive images Im,k1(t) during the self-induced lateral body

movement which are fed into the sensory encoders with multiple image scales. Later,

an output reward signal, Rm,k1(t), is sent to the reinforcement learner to generate an

appropriate eye movement to hold the fixation during the body movement. Finally, pan

command Pm,k1(t) is sent to the robot and it generates the smooth pursuit eye movement

for dominant eye camera to maximize the redundancy between the successive images. (2)

At the second step k2, stereo images Is,k2(t) are captured from both two cameras and sent

to the sensory encoders. An output reward signal, Rs,k2(t), is sent to the reinforcement

learner to generate the vergence command Ps,k2(t) to maximize the redundancy between

the stereo images. The visual dictionaries are then updated based on visual reconstruction

errors for both of visual depth cues. Finally, the stored eye movements (q1, q2, q3, and q4)

are used as an input for the neural network to represent the depth information which is

given by human-robot interaction.
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(a) Coarse scale for stereo disparity (b) Fine scale for stereo disparity

(c) Coarse scale for motion parallax (d) Fine scale for motion parallax

Figure 8.2: Visualization of development of the visual dictionaries. The distribution of

the visual dictionaries using the first and second PCs at the initial time and the end of

training, respectively.
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(a) MAE of eye movements

(b) MAE of depth perception

Figure 8.3: The development of the system. visual representation (coding), eye movement

and depth estimation. a represents the eye movement MAE. b shows depth estimation

MAE.
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(a) MAE of eye movements with perturbation

(b) MAE of depth perception with perturbation

Figure 8.4: Robustness test. a eye movement MAE after perturbation. b MAE of the

depth perception after perturbation
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Chapter 9

Conclusions

This last chapter summarizes all of the works done and emphasizes its contributions to the

cognitive developmental robotics as well as the other research fields. Since the ultimate

goal of implementing a full active depth perception has yet to be achieved, this chapter

also discusses the room for the future improvement.

9.1 Summary

To create the biological inspired active depth perception model, it needs to be develop-

mental and has the action-perception cycle. Most of the studies either consider the action

and perception separately or do not have the developmental learning ability.

In this research we proposed a frameworks that have those properties. We use the

active efficient coding together with the reinforcement learning to create a tight connection

between action and perception. The depth perception module has been developed with

the artificial neural networks. These parts are the keys to implement the goal model.

Throughout the research the proposed frameworks are verified and analyzed with

simulations and experiments. The finding and the framework related to each framework

can be found in the summary section in each chapter. The contributions of this research

will be discussed in the next section.

Importantly, this research does not focus to compete with the other computer vision

techniques that is designed and optimized to solve a specific problem (such as depth

estimation performance). But, this research aims to prove the concept of creating the
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biological inspired model that can learn by itself. Improvement of the performance maybe

done in the future works.

9.2 Contributions

The contributions of this research can be seen from different viewpoints. The two fields

that mainly concern the research would be robotics and neural science. For robotics,

the developed framework could be implemented in the biological inspired robots such as

humanoid robot which is continuously developing by many researchers. It will enable the

developmental learning scheme for the robot. As for the neural science, the framework

could also be used as the model for the development in various vision pathologies or under

unnatural rearing conditions. This could enable a new forms of clinical intervention.

To summarize the unique and novel points, they are listed as follows.

1. We proposed a novel framework that can generate smooth pursuit eye movement to

fixate an object during the self-induced lateral movement. It is also able to estimate

the distance between the robot and the fixating object with supervised learning.

The framework is developmental learning which means it can learn and adapt to

the changes and new things in its configuration and the environment.

2. We also proposed a new learning strategy to enable the framework improve the

depth estimation accuracy and step beyond its limitation.

3. The framework can select an optimal lateral movement that is require to distin-

guish between two close depths. This enable the natural movement instead of the

predefined movement.

4. Finally, the two cues of the active depth perception which are stereo vision and

motion parallax are integrated together into a single unified framework.

To the best of our knowledge, no study has attempted to propose the active depth

perception frameworks for developmental robots under the efficient coding theory. This

approach enables robots not only to autonomously learn sensory representation and eye

movement controls but also the first step toward creating active depth perception.
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9.3 Future Work

In this research, we have the success on implementing and creating the frameworks. How-

ever, our final goal has not been reached yet. Here we discuss some of the possible

improvement.

1. Optic Flow Extension

As we have mentioned before that there are three types of depth perception which

are stereo vision, motion parallax, and optic flow. We have studied the stereo vision

framework. We have proposed a way to extended the active depth perception with

motion parallax. However, there is one remaining type of depth perception that

have not yet been used yet which is optic flow. To perceive depth by optic flow, we

have to move forward and backward. When we are moving forward and backward,

we can sense that the closer object have the size increased more than the object

that is far away. So, the question is left that can we utilize those information to

extend the framework.

The change of the size of the perceived visual stimuli due to the proximity be-

tween the observer and the object could be considered in the sensory coding model.

Smooth pursuit eye movement (tilt) could be introduced in the reinforcement learn-

ing.

2. Active Depth Perception Integration

The prospective of this thesis is to mimic the depth perception system in developed

organisms. We have shown that it is possible to integrate both the stereo vision and

motion parallax together. With the implementation of the optic flow, the complete

integration of the active perception could be done. We may use the same dominant

eye concept to additionally include the optic flow, since the optic flow is also the

smooth pursuit eye movement but in the different rotational axis.

3. Multiple Visual Stimuli

Even though, we can extended the active depth perception part with motion parallax

and estimate the depth, we can only find the distance of a single object in the

scene. A visual attention or saliency map could be added to the framework to
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Figure 9.1: A candidate model that are designed by using deep-learning studies

enable fixating in the various area in the field of view. This should also enable

the ability of observing multiple egocentric and allocentric distance of objects in an

environment.

4. Unsupervised Depth Estimation

In this research, we considered only the supervised learning method which is the

artificial neural network. The frameworks need supervised signals in order to learn

the depth in the form of metric system. However, an unsupervised learning method

may be used to let the framework learn the depth in the form of its own unit. For

an example, after fixating an object, the robot may move to touch the object and

then associate the number of step it took with the amount of eye movement.

5. Deep Learning Infusion

With the recent developments, deep learning has become popular in the machine

learning field. With the state-of-the-art deep-learning perspective, we can employ a

sparse auto-encoder as a visual leaner, while a deep Q-network (DQN) [111] is used

as an action learner. The model maybe described as shown in Figure 9.1 below.

According to the previous works, if a sensory coding is defined and it could find a

meaningful representation of the input images, then a reinforcement learning algo-

rithm that is capable of mapping action-value function in the continuous state could

be used to achieve the same task. Even though the performance of the candidate

model is unknown, but we can expected a better performance with the cutting-edge

sparse auto-encoder and DQN framework.
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