
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 車載ネットワークシステムのモデル検査に関する研究

Author(s) 郭, 暁芸

Citation

Issue Date 2019-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/15793

Rights

Description Supervisor:青木　利晃, 情報科学研究科, 博士

Model Checking of In-vehicle Networking Systems

Xiaoyun Guo

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Model Checking of In-vehicle Networking Systems

Xiaoyun Guo

Supervisor: Toshiaki Aoki

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2019

Abstract

In-vehicle networking (IVN) systems consist of electronic components that are con-
nected by buses and communicate through multiple protocols according to their require-
ments. Communications between these subsystems are getting more complicated as the
requirements for safety, comfort, and entertainment. Different communication protocols
have their special mechanisms to transmit messages on buses, which affect safety and
timed property of the IVN system. In practice, intelligent vehicles need to exchange
safety data between subsystems that use various protocols, such as the Controller Area
Network (CAN) and FlexRay. Such systems are more likely to encounter delays and mes-
sage loss during transmission, presenting serious safety issues. Moreover, IVN systems are
extremely complicated because of their large number of nodes, multiple communication
protocols, and diverse topologies. As a result, it is difficult to check properties of the sys-
tem directly and accurately. Besides, safety-critical events occur with a probability in the
IVN system, such as the probability of failures and the probability of emergency events
happened during driving. These probabilistic events are crucial to estimate real-time and
reliability of the IVN system.
In this work, we propose a framework based on UPPAAL model checker, for modeling

and verifying communicative behaviors between multiple protocols in an IVN system.
Due to the complicated of the IVN system, we present an appropriate abstraction with
two stages for modeling IVN systems that utilize CAN and FlexRay during the design
phase. The architecture of the IVN system is abstracted to reduce the number of nodes
first, and then the composition of each protocol is abstracted to simplify states of sys-
tems based on protocol specifications. As there are numerous IVN system structures, a
reusable framework is developed to build a design model for IVN systems with different
topologies. In the framework, an IVN system model consists of protocol, interface, config-
uration, forwarder and environments modules. The environments and forwarder modules
are changeable according to system design. The protocol, interface and configuration
modules are fixed to construct various IVN systems.
Using this framework, we check IVN systems from qualitative verification and quanti-

tative verification. Through the qualitative verification, the timed properties of communi-
cation are analyzed using the UPPAAL platform; we verify the reachability and response
time of messages in the best case and worst case. Through the quantitative verification,
the probability of message reachability during a time interval is given by application prob-
ability models in the SMC-UPPAAL; the probability density and probability distribution
of response time is used to analyze the frequency for receiving messages. The two verifica-
tions complement each other. The qualitative verification is exhaustive, but the efficiency
and capability is limited. The quantitative verification is more efficient, but the properties
are satisfied with some degree of confidence.
The framework is evaluated through several aspects. First, we evaluate the validity of

the abstraction. The framework is preservation for outside of the subsystem, however,
the inside of subsystem can not be preserved. We list properties from specifications, and

the framework is validated by checking the communication behavior against the protocol
specifications and some properties can be checked. But some properties cannot be checked
because of the abstraction. Second, we demonstrate the applicability of the framework
with three typical topologies. Third, we compare source code of three different systems
in UPPAAL, the framework is reusable for different system with little change. Finally,
we show the performance of the framework in qualitative verification and quantitative
verification.
Keywords: Model Checking, Statistical Model Checking, UPPAAL, In-vehicle Net-

work System, CAN and FlexRay.

ii

Acknowledgments

This research has been conducted under School of Information Science, Japan Advanced
Institute Science and Technology (JAIST). This research could not be completed without
supports and helps from numerous people.
First of all, I would like to express my sincere gratitude to my supervisor, Prof. Toshiaki

Aoki, who supervised me since I started my master’s program. He gave me great help
on my research. He taught me how to do research, and pointed out many problems and
gave me a lot of valuable comments and guiding suggestions. Also, he helped me a lot in
living.
Besides, I would like to express my honest appreciation to Dr. Hsin-hung Lin, who was

my senior in Aoki Laboratory. He always discussed my research and problems with me.
I also would like to thank Dr. Yuki Chiba sincerely, who was a Assistant Professor in our
laboratory. He taught me many basic knowledge about mathematical logic and automata
theory, and gave me comments on my research.
In addition, I wish to gratitude to all committee members including of: Professor Yasuo

Tan, Professor Kunihiko Hiraishi, Associate Professor Masato Suzuki, and Professor Kozo
Okano. They gave me many useful comments, so that I could have improved my research.
I would like to thank to my colleagues and friends for their kindness. Their help and

companionship made me have a good time in Japan.
Last but not least, I would like to express my deepest gratitude to my parents for their

support and encouragement all the time. Without their great love and understanding, I
could not have finished this dissertation successfully.

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objective and Approach . 5
1.3 Contribution . 7
1.4 Outline of This Thesis . 8

2 Preliminaries 9
2.1 Model Checking . 9
2.2 Timed Automata . 13
2.3 UPPAAL . 14

2.3.1 Modeling Language . 15
2.3.2 Specification Language . 16

2.4 UPPAAL-SMC . 17
2.4.1 Modeling Language . 17
2.4.2 Specification Language . 17

2.5 In-vehicle Networking System . 18
2.5.1 Controller Area Network . 19
2.5.2 FlexRay . 20
2.5.3 Topologies of IVN systems . 22

3 Abstractions of IVN Systems 24
3.1 Abstracting the Architecture of IVN Systems 24
3.2 Abstracting the Composition of Protocol Specifications 27

iv

3.2.1 Overview of Protocol Specifications 28
3.2.2 The Composition of protocol specifications 31

3.3 Communication Control Models . 33
3.3.1 CAN Communication Control Model 34
3.3.2 FlexRay Communication Control Model 36
3.3.3 Media Access Control . 39
3.3.4 Frame and Symbol Processing . 49

4 A Framework for Modeling IVN Systems 52
4.1 A Framework in UPPAAL . 52
4.2 Configuration Module . 61
4.3 Interface and Medium Module . 63
4.4 Environmnet Module . 65

4.4.1 Ordinary Environment Model . 66
4.4.2 Probabilistic Environment Model . 66

4.5 Forwarder Module . 70
4.6 An IVN System Design Model . 72
4.7 Message Transmission . 73

5 Verification and Evaluation 81
5.1 Qualitative Verification . 81

5.1.1 Validity of the IVN System Model . 81
5.1.2 Reachability . 85
5.1.3 Response Time . 85

5.2 Quantitative Verification . 87
5.2.1 Application Model with Probability 87
5.2.2 Reachability and Response Time . 89

5.3 Evaluation . 92
5.3.1 Validity of the Abstraction . 93
5.3.2 Applicability . 96
5.3.3 Reusability . 100
5.3.4 Performance . 104

6 Related Work 106
6.1 Verification of IVN Systems Based on Integration Platforms 106
6.2 Model Checking of IVN Systems . 107
6.3 Statistical Model Checking of IVN Systems 108

7 Conclusion and Future Work 109
7.1 Conclusion . 109
7.2 Future Work . 112

v

References 113

List of Figures

1.1 Message response times. 4

2.1 Model checking method . 10
2.2 Example of CAN message transmission. 20
2.3 Example of FlexRay message transmission. 21
2.4 Three topologies of IVN systems. 22

3.1 Subnetwork topologies . 26
3.2 Abstraction for the architecture of IVN systems. 28
3.3 Layered structures of the CAN protocol and FlexRay protocol. 29
3.4 Architecture of the FlexRay protocol. 30
3.5 The common structure of the CAN specification and FlexRay specification. 32
3.6 Structure of the CAN communication controller. 34
3.7 Arbitration automaton. 35
3.8 Transceiver automaton. 35
3.9 Structure of the FlexRay communication controller. 36
3.10 Overview of protocol operation control. 37
3.11 POC automaton. 38
3.12 Communication cycle of FlexRay model . 39
3.13 Media access process . 41
3.14 Media access in static segment . 42
3.15 StaticMAC automaton. 44
3.16 Media access in dynamic segment . 45
3.17 (a) action point a (b) action point b . 46
3.18 Media access in dynamic segment arbitration 47
3.19 Dynamic MAC automaton . 48
3.20 Architecture of the IVN system design. 49
3.21 NIT automaton . 49
3.22 Overview of frame and symbol processing . 50
3.23 FSP automaton . 50

4.1 The framework. 53
4.2 The class diagram of the framework in UML. 54
4.3 The component diagram. 59

vii

4.4 The hierarchy diagram of the Configuration. 62
4.5 Environment automata for writing messages. 67
4.6 Environment automaton for reading messages. 67
4.7 Environment automaton with probabilistic choices. 68
4.8 Distribution of reachability time with probabilistic choices. 68
4.9 Environment automaton with uniform distributions. 69
4.10 Uniform distribution of reachability time. 69
4.11 Environment automaton with exponential distributions. 69
4.12 Exponential distribution of reachability time. 70
4.13 GatewayController fragment for monitoring the Interface. 71
4.14 ForwardController fragment for forwarding messages. 71
4.15 A ForwardController automaton. 76
4.16 Architecture of the IVN system design. 77
4.17 Environment model for the IVN system design. 77
4.18 Six possible system topologies. 78
4.19 The sequence diagram of the Case 1. 78
4.20 The sequence diagram of the Case 2. 79
4.21 The sequence diagram of the Case 3. 79
4.22 The sequence diagram of the Case 4. 80
4.23 The sequence diagram of the Case 5. 80
4.24 The sequence diagram of the Case 6. 80

5.1 Observer for checking response time. 85
5.2 Observer for checking response time. 86
5.3 Transceiver automaton for statistical model checking. 88
5.4 Tasks automata and distributions of reachability time in Design 1. 89
5.5 Probability density distribution of response time in Design 1. 91
5.6 Tasks automata and distributions of reachability time in Design 2. 92
5.7 Probability density distribution of response time in Design 2. 93
5.8 Restored architectures of a subsystem. 97
5.9 Topologies in Case1. 98
5.10 Task automaton for each E1 of the three IVN systems in Case1. 98
5.11 Topologies in Case2 and Case3. 99
5.12 Task automaton for each E1 of the three IVN systems in Case2. 99
5.13 Task automata for each E1 and E2 of the three IVN systems in Case3. . . 100
5.14 The topologies of three systems. 101

viii

List of Tables

2.1 CAN and FlexRay comparison . 19

4.1 Parameters in the Configuration . 58
4.2 Configuration of the IVN system design . 74

5.1 Comparison of models between model checking and statistical model checking 88
5.2 Properties in CAN specifications . 94
5.3 Properties in FlexRay specifications . 95
5.4 Comparison of response times of the FRMsg in different topologies. 97
5.5 Response time of each topology in the three cases. 100
5.6 Comparison of source code of the three systems. 102
5.7 Performance of qualitative verification . 105
5.8 Performance of quantitative verification . 105

ix

Chapter 1

Introduction

1.1 Background and Motivation

Modern automobile industry has replaced most traditional mechanical and hydraulic sys-

tem with X-by-Wire technique. The X-by-Wire technique comes from Fly-by-Wire on

the airplane, where “W” refers to a specific electronic control system, such as Break-by-

Wire and Steer-by-Wire. In such systems, they utilize electronic control units (ECUs)

as controllers instead of mechanical components. These controllers process data detected

from sensors and transmit results (electronic control signals) to actuators, which perform

control operations. Between the sensors, controllers and actuators, the data are trans-

mitted by buses. The X-by-Wire technique greatly simplifies the structure of the vehicle

and improves the real time and flexibility. To meet security, comfort and entertainment

requirements, electronic control systems become more and more diverse in an vehicle, and

they constitute an in-vehicle networking (IVN) system. The IVN system is a real-time

distributed system consisting of multiple subsystems, each of which employs different

communication protocols to realize data transmission according to its requirements. The

controller area network (CAN), local interconnect network (LIN), FlexRay, media ori-

ented systems transport (MOST) and other protocols are applied in IVN systems. CAN

is a field-bus with a wide range of application areas, which has good fault tolerant and

is often used in powertrain system and body control system of the vehicle. FlexRay is

a high-speed, fixable and reliable communication protocol aimed at IVN systems. It is

applicable to control systems with high requirements on real-time, security and reliability.

LIN is a simple low-speed bus as a complement to other buses. It is suitable for control-

ling seats, air-condition, lights and so on. MOST was developed for the in-car multimedia

system with high bandwidth, and is used in navigation, television, CD player and other

1

entertainment systems. These subsystems, which use different protocols, connect to a

central gateway to transfer data. Since the IVN system is a complex multi-protocol com-

munication system, which is universally used in practical cars, and directly related to life

security, it is extremely important to verify the reliability and safety of the IVN system.

There are two main aspects to check the IVN system, software (operation systems) and

hardware (communication protocols). The software and hardware are interdependent and

interactional, and have to satisfy their standards, such as software standard: AUTOSAR

and OSEK/VDX, hardware standard: CAN and FlexRay. In automotive industry, using

an integrated platform is the most common test method, combining software and hard-

ware. For example, DaimlerChrysler laboratory developed a tool including software and

hardware architectures to flexibly construct and test IVN systems [1]; T. Demmeler et

al. proposed a virtual integration platform to simulate and estimate the performance of

IVN communication models [2]; H.Moon et al. implemented a heating ventilation and

air-condition control system based on AUTOSAR architecture and tested it using MAT-

LAB and SIMULINK [3]. There are other studies that are directly implemented an IVN

system on integrated components and simulate and test electronic signal on hardware.

For example, G. Feng et al. implemented a CAN system with electronic nodes and tested

the system [4]; F. Baronti et al. had designed and implemented a FlexRay protocol com-

ponent to verify fault tolerance of IVN systems [5]. Some studies only test and analyze

the system itself. For instance, S. Anssi et al. focused on analyzing scheduling capability

of AUTOSAR system [6]. Although these studies can be used to analyze and test IVN

systems concretely and intuitively, a completed set of test cases is difficult to design for

checking properties of the system. Also, it is hard to precisely check concurrent behaviors

and logic errors in the system design phase.

Model checking is another effective method on verification of safety-critical systems.

This method is exhaustively and automatically to check properties by searching all states

of the system. The properties can be specified in temporal logic and verified precisely.

There are many works on checking communication protocols [7, 8, 9]. They modeled

protocols and verified properties from their specifications, such as the fault-tolerance on

the FlexRay physical layer, the start-up process of FlexRay, and the error handling and

fault-tolerance of timed-triggered CAN. For the software, some works [10, 11, 12, 13] aimed

at verifying that implementations of the system is consistent with software standards. J.

Chen et al. designed a model based on OSEK/VDX operating system and verified that

the model meets OSEK specification by SPIN, and generated test cases using the model

[11]. L. Fang et al. proposed a formal model of AUTOSAR multicore real-time operating

system and developed a test case generator and a test program generator to complete

2

system testing [13]. Y. Huang et al. implemented a formal model of OSEK/VDX OS

with CSP language and verified the model using PAT [12]. In addition, some studies

focus on interactive behaviors between ECUs in a single protocol [14, 15]. L.Waszniowski

et al. established a whole CAN system model with OSEK/VDK operating system and

showed a case study to verify timed properties of the system [14]. C.Pan et al. showed a

CAN protocol model to verify some primary properties using UPPAAL model checker, and

considered an application model with a scheduling algorithm to fix some properties that

are unsatisfied [15]. However, an IVN system is extremely complicated, which contains

multiple protocols, several gateways, and many applications. It is difficult to directly

model the complete IVN system and efficiently verify properties. Most of researches take

into account one part of the IVN system, and few studies can consider a complete IVN

system architecture with multiple protocols. Moreover, the capability of verification is

usually limited because the complexity of the system cause the state space explosion.

Communication among multiple protocols is inevitable and the amount of data will be

more and more, specially in an intelligent vehicle. For instance, driver assistance systems

and automated driving systems need to monitor the vehicle situation in real time and

deal with events by controlling the corresponding node in time. Such systems capture

and analyze data from each subsystem that may use different communication protocols,

such as between the body control subsystem with CAN and the chassis control subsystem

with FlexRay [5]. Usually, every protocol has special communication mechanism and

frame format, and we check properties of each subsystem separately, for example [14, 15]

mentioned earlier. However, the IVN system is a whole in which subsystems with different

protocol may influence each other, the checking results of the whole IVN system may differ

from those separately checked.

There is a simple communication system with CAN and FlexRay for clarifying above

problem. This system consists of three nodes, N1 follows FlexRay protocol to transmit

messages, N2 follows CAN protocol to transmit messages and G is a gateway connecting

N1and N2. The topology of the system is shown in Fig. 1.1 (a). CAN protocol specifies

that messages are transmitted to CAN bus in turn according to a static priority algorithm,

and FlexRay protocol specifies that messages are transmitted to fixed time slots of a

communication cycle, or like CAN protocol based on the message priority. N1 repeatedly

sends two messages, m1 and m2, to G, where the m1 has higher priority than the m2, and

these messages will be forwarded to N2 through CAN bus. The communication cycle of

FlexRay has two slots, m1 is assigned to slot 1 and m2 is assigned to slot 2, and each slot is

3 time units. Since the transmission rate of CAN is slower than FlexRay, we assume that

it takes 5 time units to transmit m1 and m2. In real-time systems, it is important to verify

3

GN1
CANFlexRay

N3

(a) The structure of the system.

N1 to G (FlexRay)

0 6 12 18
m1

t
m2 m1m2m1

0

G to N3 (CAN)

5 10 15
m1

t
m2 m1 m2

20

(b) Transmission time for FlexRay and CAN.

N1 to G (FlexRay)

0 6 12 18
m1

0

G to N3 (CAN)

m2 m1m2m1

3 13 18
t

m1 m2

0 1 2 3 4

Waiting array

m1
8

m2 m1 m1
23

lost

t
m2

(c) Transmission time for the whole system.

Figure 1.1: Message response times.

timed properties such as the message transmission time satisfying a time constraint. If we

examine FlexRay part and CAN part of the system separately, we will get the transmission

time of the messages shown in Fig. 1.1 (b). In the FlexRay part, m1 and m2 are sent in

the fixed time slots and they alternately reaches G node. The transmission times of these

messages are same, 3 time units. In the CAN part, referring to the transmission result of

the FlexRay part, m1 and m2 are transmitted in turn and the transmission times of these

messages are 5 time units. As for the message transmission times in the whole system,

we can combine the two results and it is 8 time units.

When we observe the whole system in a time line, the transmission time of the messages

is shown in Fig. 1.1 (c). As the messages are sent from N1 to N2, the transmission time

from N1 to G under FlexRay will affect the transmission time from G to N2 by CAN.

From N1 to G, the transmission time is same as Fig. 1.1 (b). After the message reached

G node, there is a waiting array to store received messages in the G node, and the G

node will forward messages to CAN network. When the first m1 is received and stored in

the array in accordance with its priority, the time is 3. Instantly, G sends the message

to CAN bus, and it will be received at t=8. While t=8, the first m2 was already waiting

in the array. Hence, the m2 is transmitted immediately, and at t=13, the message will

be obtained by N2. At this moment, the FlexRay part of the system has finished the

second communication cycle, and the second m1 and m2 existed in the array. Since the

priority of m1 is the highest one, the G node sends the second m1 to N2 first. But when

the transmission of the message ends in CAN, that is t=18, the third communication

cycle also ends. The second m2 that was waiting to be sent has been overwritten by

4

the new message. In the whole system, the G node periodically receives the m1 and m2

according to the 6-time-unit communication cycle of FlexRay. All m1 can be successfully

sent to N2 because of the higher priority, but some m2 that wait more than 6-time-unit

in the array will be lost. Additionally, the transmission time of every m1 is different, for

example, the first m1 took 8-time-unit and the second m1 took 12-time-unit from N1 to

N2. If there is a timed property that demands the transmission time for all messages is

less than 10-time-unit, the property is unsatisfied in considering multiple protocols. As

a result, the checking result of the timed property of the IVN system will be affected by

different communication mechanisms. Hence, the timed properties of the communication

between multiple protocols should be taken into account.

Furthermore, there are safety-critical events that happen with a probability in the IVN

system and the probabilities are calculated by some studies [16, 17]. The probability of

events is utilized to check reliability of the system. For instance, [18] analyzes the de-

pendability of safety-relevant systems using failure mode and effects analysis. These prob-

abilistic events are crucial to estimate real-time of the IVN system. Nevertheless, classical

model checking method does qualitative verification of properties, and such probabilistic

behaviors can not described. Statistical model checking does quantitative verification,

and describe behaviors with probabilities, but it does not guarantee precise results.

Thus, this research was stimulated to propose a framework for modeling and verify-

ing IVN systems during the design phases. We concentrate on the transmission time of

messages between CAN and FlexRay subsystems, as these are widely used in the auto-

motive industry and check timed properties from both the quality and quantity using

model checking techniques. To analyze the timed property, we describe the modeling and

verification of IVN system design models using the UPPAAL platform.

1.2 Objective and Approach

The objective of this work is to provide an approach to verifying the timed property of

the IVN system in the presence of CAN and FlexRay in the design phase. There are

three challenges to achieving the objective: 1) it is vital to find a proper abstraction for

modeling IVN systems; 2) a reusable framework is required to model the various topologies

that arise from multiple protocols; 3) the IVN system design model should be checked by

qualitative verification and quantitative verification. Afterwards, we analyze and propose

solutions to each difficulty.

• A real IVN system needs to meet both software and hardware standards, such as

communication protocols and operating system standards we mentioned in the last

5

section. These standards are varied, and explain in detail with regard to applica-

tion, scheduling mode, hardware implementation, communication mechanism and

so on. Modeling every detail of such a complex system would make it impossible to

verify the functionality because of the state space explosion problem. Thence, it is

necessary to abstract the IVN system to make the state space as small as possible.

However, a model that is too abstract may not be able to verify the timed prop-

erties of the system accurately. For this reason, there must be a trade-off between

accuracy and abstraction. Although several studies have discussed the modeling of

the CAN and FlexRay protocols separately [10, 9], there has been little research on

IVN systems operating both. System in which different kinds of nodes co-exist will

operate under multiple protocols, which make the abstraction non-trivial. Thus,

to overcome this issue, we take up a two-staged strategy to derive abstractions for

both the architecture and function of the system.

– IVN systems may have several subsystems with manifold applications and

topologies by designer. These subsystems are connected together via gate-

ways and communicate with each others. In the subsystem, not all nodes and

data participate the communication with other subsystems. Hence, we ab-

stract a subsystem as an environment node, ignoring its topology and internal

communication, to simplify the system architecture.

– Nodes in the IVN system are specified by communication protocols and OS

standards respectively. The CAN and FlexRay protocol specifications contain

a large of details about implementations on hardware, which are not connected

verification of design models of IVN systems. Besides, we assume that com-

munication in the IVN system is error-free. Therefore, when constructing the

system model, abstractions are applied to remove the low level behaviors as well

as functions related to hardwares not needed for verification of design models.

The layer structure of the nodes is in accordance with the ISO model, where

the application layer is described by the OS standards. This layer is used to

implement data processing and control functions of IVN systems designed by

users. Since we have abstracted multiple nodes in the subsystem into one, this

node performs the task of sending messages to other systems. We ignore task

executions in the application layer, and abstract a take to generate messages

that need to be transmitted. Based on the layered structure of nodes described

in the protocol specifications, we propose an abstracted structure for CAN and

FlexRay nodes.

6

• Because of the diversity of the IVN system, whether it is the topology or applica-

tion, a model does not seem to fit all situations. Hence, a reusable framework is

required to model various topologies that arise from multiple protocols. Based on

the similarity of the abstracted node structure, we propose a framework to model

IVN systems. The framework is composed of application layer, object layer, trans-

fer layer and configuration based on UPPAAL. The object layer, transfer layer and

configuration are reusable for building system design models with varying topologies

by modifying application and parameters in the configuration. Using the UPPAAL

platform, we implement a design model to evaluate that the framework is validated

by checking the communication behavior against the protocol specifications. Using

the framework, we establish a series of design models with three typical topolo-

gies: central, backbone, and daisy chain. The applicability and reusability of the

framework over these topologies was appraised by comparing the checking results

of response time and source codes in UPPAAL.

• IVN systems are distributed embedded systems, which usually have stochastically

behaviors, such as inputs, message delays and failures [19]. The behaviors of each

ECU in the IVN system are independent and may be executed with a probability. If

such behaviors of the complex IVN system are only tested for statistical analysis, it is

hard to provide an accurate result. Although model checking technique can exhaus-

tively and automatically check the systems with high accuracy, state space problem

may limits efficiency and capability for verifying such complex systems. Therefore,

we consider statistical model checking to verify the IVN systems with the probabil-

ity behaviors. Fortunately, UPPAAL model checker supports both model checking

and statistical model checking. We construct design models based on the framework

in the UPPAAL, and do quantitative verification using statistical model checking

through changing little part of the IVN system model. The application module

in the framework can be replaced by task model with probability behaviors. The

reachability and response time of messages are checked by quantitative verification,

and the results are satisfied with a degree of confidence. The probability density

distribution of the response time is used to analyze communication efficiency.

1.3 Contribution

This work proposed an approach that verifies communication behaviors of IVN systems

with multiple protocols. The two-stage abstraction transforms an extremely complex IVN

system into a verifiable model. CAN and FlexRay are real protocols using in the auto-

7

motive industry. We have modeled the two protocols and verified IVN systems with both

CAN and FlexRay based on the abstraction. The framework provides a way to construct

IVN system design models, timed model checking to communication, and time behaviors

of IVN system designs operating both CAN and FlexRay protocols. The modules of the

framework are applicable and reusable so that it is easier to model and verify different

IVN system designs with little effort. To the best of our knowledge, this is the first at-

tempt on model checking in which communication behavior of IVN system design with

multiple protocols. Moreover, the framework can be reused to check probability behaviors

by modifying the application models.

1.4 Outline of This Thesis

The remainder of this thesis is organized as follows. In chapter 2, we discuss the back-

ground to this work. The abstraction strategy and the framework are then proposed in

chapter 3. Chapter 4 shows how to model an IVN system design using the framework.

The qualitative verification and quantitative verification are shown in Chapter 5, and we

evaluate the framework. Chapter 6 gives a concise review of related work, before chapter

7 concludes this thesis and outlines ideas for future work.

8

Chapter 2

Preliminaries

2.1 Model Checking

Model checking [20] is an exhaustive and automatic verification technique for finite state

concurrent systems. It has been successfully used in may fields, such as computer hard-

ware/software design, communication protocols, industry, etc. The process of model

checking has three steps, modeling, specification, and verification, as shown in Fig. 2.1.

Firstly, a design is described abstractly as a formal model (i.e., finite-state transition

graph). Then, a specification is given by logical formalisms (i.e., temporal logic), which

indicates all properties that the design should satisfy. Finally, the properties are automat-

ically verified, and the results show whether the design model is satisfied. If a property

is unsatisfied, a counterexample is provided to help designer for finding errors.

Formally, model checking problem can be stated by M,s ⊧ f , where M is a Kripke

structure, s is all states of M and f is a formula of temporal logic [21]. E. M. Clarke and

E. A. Emerson introduced a polynomial algorithm to verify whether the Kripke structure

M satisfies a formula of computation tree logic (CTL). The Kripke structure is a type of

state-transition graph to represent behaviors of a system, which depicts all states of the

system, state transition and conditions of changing states, as defined in the book [20].

Definition 1 (Kripke structure) Let AP be a non-empty set of atomic propositions.

A Kripkestructure M over AP is a four tuple M = (S,S0,R,L), where

• S is a finite set of states;

• S0 ∈ S is a set of initial states;

• R ⊆ S × S is a transition relation that must be hold for every state s ∈ S there is a

9

Property ƒ

Model S

Model

checking

Yes

ƒ is satisfied.

No

Counter-example

Figure 2.1: Model checking method

state s′ ∈ S such that R(s, s′);

• L ∶ S → 2AP is a function that labels each state with the set of atomic propositions

true in that state.

Properties of the Kripke structure are expressed by temporal logic that comprises atomic

propositions and boolean connectives. Computation Tree Logic (CTL) is an efficient for-

malism for describing all of possible transitions between states in a system. A formula

(property) that conforms to CTL consists of path quantifiers and temporal operators.

The path quantifiers are A (for all paths) and E (there exists a path). The temporal

operators are X (next time), F (eventually), G (always), U (until) and R (release).

Definition 2 (Syntax)) The syntax of CTL over atomic propositions AP with p ∈ AP
is given below,

ψ ∶∶= true∣false∣p

∣ψ ∧ ψ∣ψ ∨ ψ∣¬ψ

∣AXψ∣AFψ∣AGψ∣ψAUψ∣ψARψ

∣EXψ∣EFψ∣EGψ∣ψEUψ∣ψERψ

Definition 3 (Semantics)) Let M be a Kripke structure, s be a state in M and psi be

an CTL formula. Then the satisfaction relation M,s ⊧ ψ is defined as follows.

• M,s ⊧ true

10

• M,s ⊧ false

• (M,s ⊧ p) iff (p ∈ L(s))

• (M,s ⊧ ¬ψ) iff (M,s ⊭ ψ)

• (M,s ⊧ ψ ∧ ϕ) iff ((M,s ⊧ ψ)) ∧ (M,s ⊧ ϕ))

• (M,s ⊧ ψ ∪ ϕ) iff ((M,s ⊧ ψ)) ∪ (M,s ⊧ ϕ))

• (M,s ⊧ AXψ) iff (∀π such that π0 = s,M,π1 ⊧ ψ), for all paths that start with s,
next time ψ can be satisfied.

• (M,s ⊧ AFψ) iff (∀π such that π0 = s,∃i ⩾ 0 such that M,πi ⊧ ψ), for all paths

that start with s, eventually ψ can be satisfied.

• (M,s ⊧ AGψ) iff (∀π such that π0 = s,∀i ⩾ 0M,πi ⊧ ψ), for all paths that start

with s, forever ψ can be satisfied.

• (M,s ⊧ ψAUϕ) iff (∀π such that π0 = s,∃i ⩾ 0 such that (∀0 ≤ j < i(M,πj ⊧
ψ)) ∧ (M,πi ⊧ ϕ)), for all paths that start with s, ψ is satisfied until ϕ can be

satisfied.

• (M,s ⊧ ψARϕ) iff (∀π such that π0 = s,∃i ⩾ 0 if (∀0 ≤ j < i(M,πj ⊭ ψ)), then
(M,πi ⊧ ϕ)), for all paths that start with s, if ψ is not satisfied then ϕ will be

satisfied.

• (M,s ⊧ EXψ) iff (∃π such that π0 = s,M,π1 ⊧ ψ), there exists a path that starts

with s, next time ψ can be satisfied.

• (M,s ⊧ EFψ) iff (∃π such that π0 = s,∃i ⩾ 0 such that M,πi ⊧ ψ), there exists a

path that starts with s, eventually ψ can be satisfied.

• (M,s ⊧ EGψ) iff (∃π such that π0 = s,∀i ⩾ 0M,πi ⊧ ψ), there exists a path that

starts with s, forever ψ can be satisfied.

• (M,s ⊧ ψEUϕ) iff (∃π such that π0 = s,∃i ⩾ 0 such that (∀0 ≤ j < i(M,πj ⊧
ψ)) ∧ (M,πi ⊧ ϕ)), there exists a path that starts with s, ψ is satisfied until ϕ can

be satisfied.

• (M,s ⊧ ψERϕ) iff (∃π such that π0 = s,∃i ⩾ 0 if (∀0 ≤ j < i(M,πj ⊭ ψ)), then
(M,πi ⊧ ϕ)), there exists a path that starts with s, if ψ is not satisfied then ϕ will

be satisfied.

11

Model checking technique has many advantages over testing and other formal methods.

Compared to testing technique, model checking uses temporal logic to describe system

properties as a specification, specially, the continuous properties. The property can be

verified exhaustively, but testing technique is hard to construct a complete set of test

cases for verifying if the system satisfies the property. On the other hand, model checking

offers counterexamples to trace the execution path of the system, when a property is

not satisfied. The counterexample also can be used to detect a bug of the system as a

test case. Compared to other formal method, like theorem proving, model checking is

easier to verify if a system property is satisfied. Because model checking only needs a

system description and automatically checks properties. Proving method needs to cost a

lot of time to prove manually. In addition, model checking can be used in system design

phase, since it does not need a complete specification of the system. The system can be

abstracted based on objective properties.

Due to the fact that model checking is based on the exhaustive searching of the system’s

state space, the state space explosion problem is difficult to eliminate for verifying a

complex system [22]. With the development of model checking, there are many new

methods to improve the efficiency of verification. Symbolic model checking is possible to

verify systems with more than 10120 states [23], which is using a symbolic representation

to express state transition graphs. The symbolic representation is proposed by McMillan

[24] based on ordered binary decision diagrams (OBDDs) [25]. It assigns boolean values

to the set of state variables, and describes transition relations using boolean formulas.

McMillan also have developed SMV specification language for the description of finite

state concurrent systems [24]. There are some model checker support SMV language as

input to verify systems, such as NuSMV and Cadence SMV.

There is an effective way to reduce the number of states is partial order reduction tech-

nique for asynchronous systems [26, 27]. The main idea of reducing the size of state space

is to select a subset of the paths that can interleave independently executed transitions

[22]. Bounded model checking (BMC) is another way to reduce state space, which is

widely applied to verify sequential software and concurrent software based on SAT or

SMT technique. BMC verifies systems by searching execution paths within a bound k,

and SAT and SMT solver can handle propositional satisfiability problems with a large

number of variables [28].

Statistical model checking (SMC) is an innovative approach proposed as an alternative

to avoid the exhaustive exploration of the state-space of the model [19]. SMC techniques

is a trade-off between testing an formal verification. The main idea of SMC is to perform

simulations of a system for finitely many runs, and give a statistical result whether the

12

system satisfies properties with some degree of confidence. This method effectively reduces

time and memory to be used. Of course, in contrast to classical model checking, SMC

does not guarantee a correct result with 100% confidence. SMC is applied to interactive,

distributed and embedded systems, such as CSMA/CD protocol, wireless network systems

and distributed adaptive real-time systems. There are many SMC tools, such as PRISM,

PRASMA-LAB, Yemen, MRMC, COSMOS, SMC-UPPAAL.

2.2 Timed Automata

Automata theory [29] is used to describe and analyze behaviors or computations of hard-

wares and softwares. Automata are a abstracted mathematical models of systems, which

have a close relationship with Kripke structures. A finite automaton has a finite set of

states, a set of initial states, a set of final states, a finite labels on transitions instead of

the labeling function on states, and at most one transition between any two states. But,

neither automata nor Kripke structures can accurately describe continuous time of sys-

tems. Properties related time are essential for real-time systems, such as response times,

which affects the security and reliability.

To cope with this problem, timed automata was proposed by Alur, Courcoubetis and

Dill [30], which is an extension of automata with a finite set of real-valued clocks. A

timed automaton can precisely state system behaviors with clock constraints. The clock

constraint on a state indicates a scope of time-lapse; the clock constraint on a transition

indicates a time condition at which the transition occurs or reset the clock. The definition

of clock constraints and timed automata are given below [31, 32]:

Definition (Clock Constraints) Let X be a set of clock variables, the set Φ(X) of
clock constraints ψ is defined by

ψ ∶= x < c∣x < c∣x ≤ c∣x ⩾ ∣ψ1 ∧ ψ2, where x ⊆X and c ∈ C.
Definition (Timed Automata) A timed automaton is a tuple A = (L, l0,X,Σ, I, T),
where

• L is a finite set of locations,

• l0 ∈ L is a set of initial locations,

• X is a finite set of clocks,

• Σ is a finite set of labels,

13

• I ∶ L→ Φ(X) is a mapping to assign clock constrains to locations,

• T ⊆ L×Σ× 2X ×Φ(X)×L is a set of transitions. A transition < l, a,ψ, λ, l′ > is from
location l to location l′ labeled with a. ψ is a clock constraint over X that specifies

when the transition is enabled. λ ⊆ X is a set of clocks that are reset when the

transition is executed.

Definition (Semantics of TA) Let A = (L, l0,X,Σ, I, T) be a timed automaton. The

semantics of A is defined by a transition system T (A) =< Q,Q0,Σ,→>, where

• Q is a pair (l, v), l ∈ L is a location and v ∶X → R+ is a clock assignment,

• q0 is a set of initial states, {(l, v)∣l ∈ l0 ∧ ∀x ∈X[v(x) = 0]}.

In the transition system T (A), there are two types transitions are delay transitions and

action transitions defined as follows:

• A delay transition is written as (l, v) d→ (l, v + d), where d ∈ R+, if ∀d′ ∶ 0 ⩽ d′ ⩽ d⇒
u + d′ ∈ I(l).

• A action transition is written as (l, v) a→ (l′, v′), where a ∈ Σ, if there exists t =<
l, a,ψ, λ, l′ > ∈ T , such that v ∈ ψ, u′ = [λ ∶= 0] v, and v′ ∈ I(l′).

The timed automata formally defines real time systems with strict clock constraints.

There are some tools based on the timed automata theory, such as UPPAAL, RED,

PAT, MRMC and so on. UPPAAL model checker has a user-friendly interface to model,

simulate and verify a design model described in a network timed automaton. Moreover it

also supports statistical model checking for verifying a probabilistic timed model. In order

to improve the efficiency and capability of classical model checking, we choose UPPAAL

model checker as our tool to check IVN system design model.

2.3 UPPAAL

UPPAAL [33, 34] is an explicit model checking tool with a nice interface developed by

Uppsala University and Aalborg University. It is based on timed automata theory for

modeling, simulating and verifying real-time systems. UPPAAL serves modeling lan-

guage to describe system behaviors as a network of timed automata, and specification

language to express system properties. It is efficient and practical to verify system prop-

erties by exhaustively exploring state space of the system. It has been applied successfully

14

in case studies ranging from communication protocols to multimedia applications. Since

UPPAAL first came out in 1995 [35], it has been extented for special problems, such

as UPPAAL-TIGA, UPPAAL-CORA, UPPAAL-SMV and UPPAAL-TRON. In this re-

search, we employ original UPPAAL to do classical model checking, and UPPAAL-SMC

to do statistical model checking.

2.3.1 Modeling Language

UPPAAL provides both graphical and textual formats for modeling systems. The graph-

ical format is a state transition graph based on timed automata. The textual format

provides a basic programming language for timed automata [34]. To enrich expressions of

the state transition graph, there are four kinds of labels for a transition in UPPAAL [33].

• Select: a select label is expressed in <variableName>:<type>, which assigns a non-

deterministic value under the type for the variable. For example, msg: msgID says

that a message identifier is selected from a specific range of msgID.

• Guard: a guard label is a boolean expression about clocks, integer variables and

constants. If and only if the expression is true, transition can be executed. For

instance, a label x > 5 is a clock constraint between two locations l and l′.

• Synchronization: a synchronization label is in the form of exp! or exp?. They

have to appear in pair in a network of timed automata, which are evaluate to a

channel and serve for synchronization between timed automata. Only when exp!

was happened in an automaton, the corresponding transition with exp? will be

performed in another automaton.

• Update: a update label allows reset clocks, integer variables, and constants and

executes function to assign them.

These labels accurately describe transition relations between locations. UPPAAL also

provides three kinds of locations that present time-delays [33].

• Normal location: a normal location allows time lapse and it may or may not have

an invariant label that is a clock constraint. If there is no expression for a clock

in the normal location, the value of the clock is unknowable. If there is a clock

constraint in the normal location, the value of the clock has to satisfy the constraint

in the location.

15

• Urgent location: there is no time-lapse in the urgent location, that is, all clocks

are frozen. Similarly, the location adds a clock constraint x<=0.

• Committed location: A committed location does not have time lapse, and has to

have a transition to leave this location.

2.3.2 Specification Language

Model checkers are used to verify if a formalized model of a system meets the specification

of the system. The specification language in UPPAAL is called query language, which is

a subset of timed computation tree logic (TCTL) [36]. The query language can describe

both states and paths of the model. Properties of the system are written in the query

language to verify satisfiability of the system model. There are five kinds of temporal

properties provided as follows, where p and q are properties.

• Possibly: E < > p

The property is true iff there is a transition path s0 → s1 → ... → sn in a timed

transition system, where s0 is the initial state and sn satisfies p. That is, there is a

path that satisfies the property p in a certain state.

• Invariantly: A [] p

The property is true iff all reachable states satisfy p in a transition system, which

is equivalent to E < > not p.

• Potentially always: E [] p

The property is true iff there is a transition path s0 → s1 → ... → si → ... where p is

satisfied for all state si.

• Eventually: A < > p

The property is true iff all possible paths eventually reach a state satisfying p, which

is equivalent to not E[] not p.

• Leads to: p → q

The property means whenever p holds eventually q will hold as well, which is equiv-

alent to A[](p implies A<>q).

Deadlocks is also a important property for real-time systems. In a deadlock state,

there is no outgoing transitions neither from itself or its delay successors.

16

2.4 UPPAAL-SMC

2.4.1 Modeling Language

The UPPAAL-SMC is an extension of UPPAAL based on a stochastic interpretation and

priced timed automata (PTA) [37, 38]. The stochastic interpretation as an alternative

describes non-deterministic behaviors of systems using probabilistic choices. The time-

delays for the non-deterministic behavior to occur are defined by probability distributions.

There are two kinds of probability distributions are provided in UPPAAL-SMC, including

uniform distributions and exponential distributions.

• Probabilistic choices: it means that a location has multiple transitions to next

location, which transitions are non-deterministic according to probabilities. The

probabilities are stated by a label Probability weight on branch transitions.

• Uniform distributions: it means that the time-delay accords with a uniform

distribution in a location with a time-bounded delay. The time-bounded is described

by clock constraints in the label Guard.

• Exponential distributions: it is a rate parameter of exponential density func-

tion, which is set on a location without time-bounded delays by a label Rate of

exponential. The rate indicates that the time-delay in a location conforms to a

exponential distribution with the rate designed by users.

2.4.2 Specification Language

The specification language in UPPAAL-SMC is based on weighted metric temporal logic

(WMTL) [39]. UPPAAL-SMC provides five queries for verifying probabilistic properties

[40], where p and q are expression of properties, pro is a probability, N indicates the

number of simulations to be performed, and B is a time bound for the simulation.

• Statistical evaluation: Pr[<=N](< >|[] p) This query estimates the probabil-

ity of the state property.

• Hypothesis testing: Pr[<=N](< >|[] p) <=|>= pro

This query states whether the probability of the state property is satisfied within a

certain probability pro.

• Statistical comparison: Pr[<=N](< >|[] p) <=|>= Pr[<=N](< >|[] q)

This query is to compare the probabilities of property p and q.

17

• Expected value: E[<= N;B] (min|max: p)

This query is to evaluate expected value of the maximal or the minimal value of a

property p.

• Simulations: simulate M[<=N]{p,q}

This query is used to simulate a system in M times and compute trajectories of

specified properties over time.

2.5 In-vehicle Networking System

IVN systems is a kind of special internal communication networks by connecting inside

components of an vehicle. The communication network requires software and hardware

that comply with certain standards. Software is standardized by founders, such as AU-

TOSAR and OSEK/VDX. AUTOSAR and OSEK/VDX were introduced to a variety of

products, which founded by German automotive industry, OMS, AUDI, BMW, Volkswa-

gen, etc. On the hardware side, the major standards is LIN, CAN, FlexRay, MOST, and

Ethernet has also started to enter automotive fields. The transmission medium of LIN,

CAN, FlexRay, and Ethernet is copper wires and twisted pair wires is used except LIN.

MOST uses optical fibers as transmission medium, that are not susceptible to electro-

magnetic impact, but expensive and fragile. CAN has the longest history in the global

automotive industry, especially in power systems. LIN is a low cost and speed solution

to control simple devices, such as doors, windows, seats and so on. FlexRay is designed

for safety-critical systems [41], faster and more reliable than CAN. MOST is mainly used

in entertainment system. Ethernet is used for vehicle diagnostics in the garage.

The IVN system has strict requirements on real-time, safety and reliability. Also, vehicle

producers have to consider cost, applicability and so on. As a result, a mixed network

system can flexibly meet the requirements of various control system in an automobile.

In this work, we mainly regard CAN and FlexRay protocol. The CAN protocol is the

most widely used, and suitable for soft real-time system, such as engine management,

anti-lock brakes, and cruise control. The FlexRay protocol is a deterministic and fault-

tolerant protocol for safety-critical systems. Moreover, these two protocols have different

communication mechanisms. Above all, some basic information of CAN and FlexRay are

listed in Table 2.1. Then we will introduce the two protocols and their communication

modes by two examples respectively.

18

Table 2.1: CAN and FlexRay comparison

No. Item CAN FlexRay

1 Max. transfer rate 1 Mbit/s 10 Mbit/s

2 No. of channel 1 channel 2 or 1 channel

3 Network topology Bus Mix. of bus and star

4 Architecture
Multi-master

up to 40 nodes

Multi-master

up to 64 nodes

5 Communication mechanism CSMA/CA TDMA/FTDMA

6 Message identification Identifier Time slot

7 Data fileds 8 bytes 254 bytes

8 Application Soft real-time Hard real-time

9 Example Engine, Anti-lock break Powertrain, Chassis

2.5.1 Controller Area Network

The CAN protocol [42] is an event-triggered control network, developed by Bosch in the

early 1980s. It provides efficient and secure support for data communication in distributed

real-time control systems [43]. Its application domain ranges from high-speed networks

to low-cost multiplex wiring. There is a series of CAN bus communication protocol, such

as CAN-A, CAN-B, TTCAN and CAN-FD. They are suitable for different systems and

applications. Such protocols only define the two lowest layers, data link layer and physical

layer of the OSI model. In order to use CAN protocol, the higher layer, application layer,

also need to be standardized, such as SAE J1939, CANopen and DeviceNet. Besides, the

CAN protocol offers error detections and error handlings to guarantee the reliability and

safety of communications. Therefore, it is not only widely used in automotive industry,

but also automatic control, mechanical industry, aircraft industry, etc..

In the automotive industry, CAN is used for mainstream powertrain communication

systems with bitrates up to 1 Mbit/s and low-cost body control systems [44]. CAN

systems usually use bus topology to connect each node through single channel. The

number of nodes is up to 22 in a CAN system. The CAN protocol adopts multi-master

broadcasting method to transfer messages and synchronizes time between each node. That

is, CAN nodes broadcast their messages to all connected nodes concurrently, and each

receiving node may independently processes the messages. The CAN uses a carrier sense

multiple access/collision detection (CSMA/CD) access control method to avoid multiple

nodes accessing bus in the same time. CAN frames have an identifier denoting its priority

19

tx

m1 m2 m3

(b) Transmission time on CAN bus

m3

m1

Priority

(highest)

Node1

m2

Priority

Node2

CAN bus

(a) A CAN system

2

1

0
(highest)

2

1

0

Figure 2.2: Example of CAN message transmission.

and a data field of 0–8 bytes, and all the frames participate arbitration based on a fixed

priority scheduling algorithm. The frame with the highest priority is sent once the bus is

free. Other frames wait for the next arbitration period.

Fig. 2.2 shows an example of the message transmission scheme in CAN. A CAN system

has two nodes, Node1 and Node2, as shown in Fig. 2.2 (a). At time x, CAN bus is free,

and the CAN system has three message ready for transmission. There are two messages,

m1 and m3, in transceiver buffers of the Node1, and a message m2 in a transceiver buffer of

the Node2. Assume that there is no new messages to participate in the arbitration during

the message transmission. The arbitration process determines that m1 has the highest

priority, and so this message is immediately sent to the bus first. Once m1 has been sent,

no other message is stored in the buffer. In the next arbitration period, m2 has the highest

priority and is sent to the bus. At last, m3 is arbitrated successfully and sent to the bus.

2.5.2 FlexRay

FlexRay has been especially developed by the FlexRay consortium since 2000 for safety

related applications in the vehicle industry [45]. It is applied in real-time applications and

as a replacement of CAN when higher data rates are required. FlexRay supports X-by-

Wire applications and has been used in safety-critical system, such as steer-by-wire and

brake-by-wire [46, 47, 48]. FlexRay is a high-speed, flexible communication protocol, and

offers excellent fault-tolerance computing. It has two communication channels with a data

rate of 10 Mbit/s. FlexRay data frames contain fields of 0–254 bytes. Furthermore, the

communication scheme of FlexRay is time triggered to ensure a defined communication

time and clock synchronization for all nodes. A FlexRay system consists of several master

nodes and two communication channels for providing reliable communication. To reduce

cost using only one channel can be sufficient. FlexRay networks use a star, a bus or a

20

m1 m2 m3 NIT m4 NIT

Static segment Dynamic segment NIT

Communication cycle

Static segment Dynamic segment NIT

Communication cycle

Slot number 1 2 3 4 1 2 3 4

(a) A FlexRay system

Node1

Slot No. Message

1 m1
2
3 m3
4

FlexRay bus

Node2

Slot No. Message

1
2 m2
3
4 m4

(b) Transmission time on FlexRay bus

Figure 2.3: Example of FlexRay message transmission.

mixed topology for constructing IVN systems.

The communication of FlexRay not only supports static time division multiple access

(TDMA) scheme, but also a dynamic mini-slotting-based scheme based on communica-

tion cycles. In TDMA networks, each message is transmitted in a certain time slot. That

is, messages are able to access bus during their own time slots. So message transmission

is predictable and determinable. However, the bus bandwidth cannot be used effectively.

The dynamic mini-slotting-based scheme allocates time slots dynamically. If any trans-

mission happens within a mini-slot, the time slot will be expanded until it meets the

required mini-slot of the message. Thus, the utilization ratio of the bus is increased. In

FlexRay networking systems, message transmission takes place in periodic communication

cycles, each of which involves a static segment and a dynamic segment. The static segment

employs TDMA scheme, which is divided into static slots. A static message is assigned

to a fixed static slot. The dynamic segment employs the dynamic mini-slotting-based

scheme, which is divided into mini-slots. Dynamic messages are transmitted according to

their priority, and take several mini-slots. Those unused mini-slots will serve as network

idle time (NIT) in the communication cycle.

Fig. 2.3 demonstrates a FlexRay system, which has two nodes, and there are two

communication cycles for representing FlexRay message transmission. Each cycle has

21

Reusability

!42

FE1

E3

CAN

CAN

FlexRay

E2

F1 F2

E2

FlexRay

E1
CAN

F3

E3

(b) Backbone(a) Central

E1 E2 E3F1 F2

FlexRay

CAN

FlexRay

(c) Daisy chain

• Different topologies

• We implemented three typical topologies using the framework, and
checked response time in three cases.

Figure 2.4: Three topologies of IVN systems.

four slots, two static slots slot1 and slot2 and two dynamic slot slot3 and textttslot4.

The message identifier is set to the slot number for convenience. In the Node1, message

m1 is assigned to static slot slot1 and message m3 is assigned to dynamic slot slot3.

In the Node2, message m2 is assigned to static slot slot2 and message m4 is assigned

to dynamic slot slot4. Assume that there is no other message transmitted during the

two communication cycle. m1 and m2 should be sent in slot1 and slot2 within the first

communication cycle. Although m1 and m2 is not sent in the second cycle, the time interval

of slot1 and slot2 still elapse with no transmission. m3 and m4 should be sent in slot3

and slot4, and the length of these dynamic slots relys on the length of the message.

After m3 has transmitted in the first communication cycle, there is no enough mini-slots

for transmitting m4. So the m4 was not sent in the first cycle, and slot4 occupies one

mini-slot. If the maximum number of slots is reached, there is still some mini-slots, the

NIT will start, which is no transmissions until the end of that communication cycle. The

remaining m4 will wait for the second communication cycle and it will be sent in the

slot4.

2.5.3 Topologies of IVN systems

IVN systems have varied and complicated topologies, in which subsystems with different

protocols are connected by gateways. We considered three typical topologies based on

gateways, central, backbone and daisy chain [8]. They are introduced in the following

(see Fig. 2.4):

22

• The central topology only has a single gateway, and nodes/subnetworks connect

through the gateway. All messages that need to be transmitted need to be routed

through the gateway. If too many messages are blocked in the gateway, the gateway

may become congested, a lot of network delay or even data loss will be caused.

• The backbone topology is that multiple gateways connected by a bus, following a

single protocol, and each gateway connects with some nodes following other pro-

tocols, as a subnetwork. All transmissions between different subnetworks have to

be forwarded twice by two gateways. The advantage of this topology is that the

transmission time is not affected by the number of nodes, but it is related to the

amount of messages on the gateway bus.

• The daisy chain topology consists of several gateways and nodes/subnetworks in

an alternating chain. The response time is a function of the distance between

environments. The number of messages also influences the response time, as many

messages may cause network congestion.

23

Chapter 3

Abstractions of IVN Systems

An IVN system is not only composed of multiple nodes, but each node also needs to

conform to corresponding communication protocol specification and operating system

standards. Furthermore, these specifications and standards have a number of parts that

are irrelevant in terms of verifying the communication behavior of IVN design models.

The verification of properties is particularly difficult with state space problem. Hence, it

is necessary to make an appropriate abstraction for IVN systems. We give a two-staged

abstraction, abstracting the architecture of the system and the composition of protocol

specifications.

3.1 Abstracting the Architecture of IVN Systems

A practical IVN system is composed of many nodes, buses and gateways as shown in the

upper part of Fig. 3.2. There are two kinds of nodes and buses, and the blue square and

blue line represent a CAN node and a CAN bus, and the green square and green line

represent a FlexRay node and a FlexRay bus. The red square represents a gateway. We

define every component of the system for abstracting the architecture of IVN systems as

follows:

• Nodes: a node is an ECU, which is used for data processing, and sending-receiving

data.

– CAN nodes: a CAN node is a node that sends and receives data according to

the CAN protocol.

– FlexRay nodes: a FlexRay node is a node that sends and receives data accord-

ing to the FlexRay protocol.

24

• Buses: a bus is used to connect nodes and provides communication standards for

transmitting data.

– CAN buses: a CAN bus is used to connect CAN nodes and provides CAN

protocol for transmitting CAN messages.

– FlexRay buses: a FlexRay bus is used to connect FlexRay nodes and provides

FlexRay protocol for transmitting FlexRay messages.

• Subnetworks: a subnetwork is composed of one or more nodes connected together

by a kind of bus, which conform to the same communication standard as the bus.

– CAN subnetworks: a CAN subnetwork is composed of one or more CAN nodes

connected by CAN buses.

– FlexRay subnetworks: a FlexRay subnetwork is composed of one or more

FlexRay nodes connected by FlexRay buses.

• Gateways: a gateway is used to connect multiple subnetworks and supports CAN

buses and FlexRay buses for message transmission. Gateways can be connected

together in a bus.

An IVN system has several subnetworks with different protocols, and they communicate

with others through gateways. The subnetwork is composed of multiple nodes connected

in a topology, such as point to point topology, star topology and hybrid topology, as

shown in Fig. 3.1. These subnetwork are combined by at least one gateway in an IVN

system.

Within a subnetwork, there is also message transmission between nodes and such mes-

sages can be verified with a single protocol, but this work focuses on the communication

between the subnetworks using heterogenous protocols. Therefore, the first stage abstrac-

tion is to simplify the architecture of IVN systems. The subnetwork is replaced by an

environment with its original communication protocol. We ignore the topology of the

subnetwork and internal communications, and focus on its communications with external

subnetworks. Environments have two types, CAN environments and FlexRay environ-

ments. Every environment holds one or more tasks and is connected to gateways by CAN

bus or FlexRay bus. In addition, we keep the same gateway topology of the IVN system,

as we describe in subsection 2.4.3.

For abstracting the architecture of an IVN system, first, we need to find all gateways in

the IVN system, and then separate the system from the gateways. There are subnetworks

25

G

G

G

G

N N

NN

NN

(a) Bus topology. (b) Point to point topology.

(c) Star topology. (d) Hybrid topology.

N N N

N

N

N

N N N

Figure 3.1: Subnetwork topologies

connected the gateways through a bus, or between gateways. These subnetworks are ab-

stracted as corresponding environments, and then these environments are connected to

gateways which the original subnetworks was connected by corresponding buses. Since

the gateway is not the focus of our research, we consider forwarders instead of gateways

for forwarding messages between environments. The buses are communication standards

according to protocol specifications, therefore, we define bus protocols in the abstracted

IVN system. We ignore the physical connections between nodes and this work is cen-

tered on communication rules based on protocol specifications. By the abstraction, the

architechture of the IVN system is shown in the bottom of the Fig. 3.2 (b). The blue

squares and green squares with E are CAN environments and FlexRay environments.

They are connected to the corresponding forwarders as the above gateways. The blue

and green dotted lines represent CAN protocol and FlexRay protocol. An abstracted

IVN system will consist of the following components.

• Environments: an environment is an abstracted subnetwork, which is responsible for

sending messages from the original subnetwork to other subnetworks and receiving

messages from other subnetworks to it.

– CAN environments: a CAN environment is an abstracted CAN subnetwork

that has tasks run on an ECU to send or receive CAN messages to other

environments.

26

– FlexRay environments: a FlexRay environment is an abstracted FlexRay sub-

network that has tasks run on ECU to send or receive FlexRay message to

other environments.

• Forwarder: a forwarder connects multiple environments by bus protocols accord-

ing to the original topology. It supports forwarding messages between CAN en-

vironments and FlexRay environments. The forwarder is a task that implements

interpreting and scheduling frames between different protocols.

• Bus protocols: a bus protocol carries out transmitting behaviors based on protocol

specifications.

– CAN bus protocol: CAN bus protocol is used to connect CAN environments

and forwarders, and responsible for transmitting CAN messages. The CAN bus

protocol is corresponding with the layer structure of ISO/OSI model defined

by CAN specification, including the object layer, transfer layer, and physical

layer. These layers are described in the previous section 3.1.1.

– FlexRay bus protocol: FlexRay bus protocol is used to connect FlexRay envi-

ronments and forwarders, and responsible for transmitting FlexRay messages.

The FlexRay bus protocol is corresponding with the FlexRay protocol spec-

ification. Although FlexRay specification does not explicitly provide a layer

structure model, this model is introduced in some related studies [?, 49]. We

will introduce the FlexRay bus protocol by referring to the layer structure

model in section 3.1.2.

Although we have simplified the system structure and reduced the number of nodes,

the communication standards in the system are still complex. So we did the next stage

of abstracting communication protocols.

3.2 Abstracting the Composition of Protocol Speci-

fications

The abstract result of an IVN system has CAN environments and FlexRay environments.

Although these environments are abstraction of subsystems, their communication behav-

iors still need to conform to protocol specifications. The CAN specification and FlexRay

specification respectively describe the communication behaviors in details [42, 45]. How-

ever, a lot of details will result in an enormous number of states for the system, and make

27

G G

N N

G

N N

N

N

NN N NN

N N N

N

F F E

E

EF

E E

E

FlexRay node

CAN node

Gateway

FlexRay bus

CAN bus

N

N

G

E

E

F

FlexRay environment

CAN environment

Forwarder

FlexRay protocol

CAN protocol

(a) The architecture of an IVN system.

(b) The abstracted architecture of an IVN system.

Figure 3.2: Abstraction for the architecture of IVN systems.

it difficult to check. Whereas if we simplify the system too much, it is hard to verify

properties of the system availably. Therefore, an proper abstraction of the specifications

is significant for checking IVN systems. We will briefly introduce the overview of CAN

and FlexRay specification, and give an abstracted composition of protocol specifications

in this section.

3.2.1 Overview of Protocol Specifications

The CAN and FlexRay specifications state the layer structure of nodes based on ISO/OSI

model, and elaborate on each layer.

CAN Specification

The CAN specification defines physical layer and data link layer of ISO/OSI model, where

the data link layer consists of objective layer and transfer layer [42]. Fig. 3.3 (a) shows

the layered structure of the CAN protocol and functions in each layer.

• The Application layer was not defined in the CAN specification, but is standardized

by founders, such as AUTOSAR and OSEK/VDX. This layer performs specific tasks

to realize control functions.

• The Object layer provides logical link control of the data link layer. The principal

function of the Object layer is to filter messages and handle the message status.

28

Application layer

Object layer
• Message filtering
• Message and status handling

Transfer layer
• Error handling

• Fault confinement
• Error signaling

• Message validation
• Message framing
• Frame checking
• Acknowledgement
• Arbitration
• Transfer rate and timing

Physical layer
• Signal level and bit representation
• Transmission medium

Application layer

Presentation layer
• Message filtering
• Message and status handling

Transfer layer
• Error handling

• Fault confinement
• Error signaling

• Message validation
• Message framing
• Frame checking
• Communication cycle
• Synchronization
• Transfer rate and timing

Physical layer
• Fault confinement
• Error detection and signaling
• Error confinement in time domain
• Signal level and bit representation
• Transmission medium

Application layer
• Message generation
• Message reading

Object layer
• Message filtering
• Message and status handling

Transfer layer
• Message validation
• Message framing
• Frame checking
• Communication schemes
• Synchronization
• Transfer rate and timing

(a) CAN protocol. (b) FlexRay protocol.

 (c) Common structure of nodes.

Figure 3.3: Layered structures of the CAN protocol and FlexRay protocol.

• The Transfer layer is the core of the CAN protocol, performing media access control

(MAC) of the data link layer. It controls the process of messages access to bus

and ensures the correctness of message transmissions. There is an error handling

mechanism to detect errors in the bit levels and handle them appropriately, such as

shutting down defective nodes and retransmitting messages. In addition, this layer

is responsible for clock synchronization. It checks and distinguishes messages, then

determines which message is to be sent through the arbitration process.

• The Physical layer defines behaviors related to how signals are transmitted in the

physical medium.

FlexRay Specification

FlexRay specification gives explanations of communication mechanism in specification

and description language (SDL) [45]. The layer structure of the FlexRay protocol is

defined as shown in Fig. 3.4. The FlexRay consists of a Controller Host Interface (CHI),

a Communication Controller (CC) and a Bus Driver. The CC is divided to six parts as

follows:

29

frame and symbol

processing

media access

control

clock

synchronization

startup

macrotick

generation

clock

synchronization

processing

protocol

operation

control

controller

host interface

coding / decoding

processes

channel A

frame and symbol

processing

channel A

media access

control

channel A

clock

synchronization

startup channel A

to channel interface from channel interface

to / from host

media

access

control

channel B

coding / decoding

processes

channel B

frame and

symbol

processing

channel B

clock

synchronization

startup

channel B

ECU

CHI

CC

Bus Driver

Figure 3.4: Architecture of the FlexRay protocol.

• Protocol operation control (POC) controls all states of the node, and shares its states

to the host through CHI. The POC performs the host commands and manages the

CC.

• Media access control (MAC) controls communication cycle and transmit frames

corresponding to two communication mechanisms, TDMA and dynamic mini-slot

based TDMA.

• Frame and symbol processing (FSP) takes charge of checking the correctness of

frames and symbols, when frames and symbols are received during a special slots.

• Macrotick generation (MTG) provides counters of the number of communication

cycles and macroticks, and applies offset values and correction values.

• Clock synchronization processing (CSP) synchronizes the clocks of every node by

sending a synchronization frame. The CSP detects deviation values of clocks be-

tween each node, and compute the offset of each slot and the rate correction values.

• Clock synchronization startup processing performs the initialization and starts MTG

30

and CSP processes.

Although FlexRay specification does not explicitly present a layer structure of ISO/OSI

model, the structure is introduced in some related studies [49]. The layered structure of

the FlexRay protocol is similar to the CAN protocol, as shown in Fig. 3.3 (b). The

Application layer is also not given specific functions, which contains programs developed

by the application developers. The Presentation layer is in charge of message filtering

and status handling. The Transfer layer defines the communication cycle and transfer

rate and timing, and realizes clock synchronization. It validates messages and frames and

has an error handling mechanism. The Physical layer not only defines signal transmission

in the physical circuit, but also detects errors in the time domain.

According to the architecture in the FlexRay specification and the layer structure in

the related studies, we give out their correspondence as follows:

• The Application layer has tasks that run on a real-time kernel, as the ECU in the

FlexRay specification.

• The Object layer functions are similar to the CHI in the FlexRay specification. It

stores messages and controls interaction between the ECU and CC instead of the

CHI.

• The Transfer layer carries out communication behaviors and is responsible for han-

dling errors and clock synchronization, corresponding to the CC.

• The Physical layer takes charge of representing frames on signal level, and handling

errors that occur on hardware, as the Bus Driver in FlexRay specification.

3.2.2 The Composition of protocol specifications

The CAN specification and FlexRay specification not only provide the layer structure,

but also describe the specific functions in each layer in detail, such as frame format,

transmission process, error handling, clock synchronization and so on, which contains a

lot of information about how to implement the protocols on hardware. However, the

purpose of our research is to verify the IVN system in design phase. For verifying the

system at design phase, behaviors associated with the physical layer is not necessary, so

the underlying implementation of the system is not involved in the system design model.

Therefore, we abstract the protocol specifications to remove hardware related contents

in each layer, and ignore the Physical layer. On the other hand, since this research

aims to verify reachability and timed property of message transmission between different

31

Application

Interface

Transfer

Application layer
• User-developed applications

Interface layer
• Message filtering
• Message and status handling

Communication control layer
• Message validation
• Message framing
• Frame checking
• Transmission schemes

• CAN transmission scheme
• FlexRay transmission scheme

• Transfer rate and timing

Medium layer
• Transmission medium

• CAN Medium
• FlexRay Medium

Figure 3.5: The common structure of the CAN specification and FlexRay specification.

protocols without corrupted frames and error signals, error detection and error handling

of the specifications do not work in the node. So we do not consider the error handling

function in the Transfer layer. In Fig. 3.3, we have highlighted the functions we care

about in red font, leaving out the functions in black font.

Moreover, comparing the layer structure of the CAN and FlexRay protocol, except for

a few differences in the Transfer layer, the Object layer of the CAN and the Presenta-

tion layer of the FlexRay have same functions. We can know that they have the same

layer structure, and each layer has similar functions. Therefore, we propose a common

structure for CAN protocol and FlexRay protocol that consists of the Interface layer,

Communication control layer and Physical layer as shown in Fig. 3.5.

• Application layer : the specifications of the CAN and FlexRay do not define concrete

functions of the Application layer, because the Application layer executes diverse

tasks developed by users on an ECU, as the environments we abstracted.

• Interface layer : the specifications of CAN and FlexRay have the same functions in

the Object layer and Presentation layer, which is filtering messages and handling

messages and status. Furthermore, they connect the Application layer and Transfer

layer, and are important interface for exchanging data between nodes. Hence, we

use an Interface layer to keep the original functionality.

32

• Communication control layer : CAN protocol and FlexRay protocol adopt com-

pletely different ways to transfer messages, CAN protocol is based on event-driven

and FlexRay protocol is based on time-driven. The Tranfer layer of CAN and

FlexRay perform transmission behaviors to control communication between nodes.

To uniformly describe the composition of CAN and FlexRay environments, we define

a Communication control layer instead of the Tranfer layer of CAN and FlexRay.

This layer retains the same functionalities and abstracts a transmission scheme to

express the unique functions of CAN and FlexRay environments, so the layer keeps

communication schemes defined by the specifications, message validation, frame

checking and transfer rate and timing. If there is a CAN bus, the Communication

control layer will adopt the CAN transmission scheme to communicate. If it is a

FlexRay bus, the Communication control layer will adopt the FlexRay transmission

scheme to communicate.

• Medium layer : though we ignore all functions in Physical layer, it still needs a

transmission bus to represent the transmission of messages over hardware. So we

abstract the bus to store the frame transmitted on hardware. If there is a CAN bus,

the Medium layer will be a CAN medium. If it is a FlexRay bus, the Medium layer

will be a FlexRay medium.

In the common structure of CAN and FlexRay protocols, the Communication control

layer is the core of IVN systems and the most important part of our IVN system design

model. A large chunk of the specifications of CAN and FlexRay is devoted to their

Transfer layer, and these descriptions are mixed with a lot of hardware implementation

and error handling that the abstraction of the specifications becomes much more difficult.

We carefully read the protocol specifications and manually build communication control

models for CAN and FlexRay. We will introduce how to pick up needful information to

build abstracted models for the Communication control layer in next section.

3.3 Communication Control Models

Because of the differences of transmission schemes, we can only establish two independent

models for each CAN protocol and FlexRay protocol. However, the description of the

transfer layers is mixed with a lot of signal processing and implementation on the hardware

in the CAN specification and FlexRay specification. We abstracted the communication

protocols based on fault-free communication, mentioned the second abstraction stage.

The communication control models should meet our verification requirements and be as

33

Application

CAN bus

Arbiter

Transceiver

CAN
communication

controller

Interface

FlexRay Interface CAN Interface

Gateway

FlexRay
Communication

Controller

CAN
Communication

Controller

Arbitration

Transceiver

Interface

CAN bus

Figure 3.6: Structure of the CAN communication controller.

brief as possible. The CAN and FlexRay models in UPPAAL will be explained as the

following sections.

3.3.1 CAN Communication Control Model

The CAN system adopts multi-master broadcast access to transmit messages. Any node

may send a message when the bus is free. The node, which has the message with the

highest priority, obtains the right to access the bus. To ensure that the message being

transmitted has the highest priority, there is bitwise arbitration using the identifier of

messages. The identifier has 11 bits, which indicates the priority from 0–10 (ID-0 is the

highest priority.). During the arbitration, all nodes requesting to send a message have to

compare their identifiers bit by bit. The message with highest priority gains the bus. In

our model, we use an integer instead of message identifier because the expression of bit

level is ignored.

The CAN model mainly realizes the CSMA/CD mechanism, that is a message ar-

bitration process. We implement two automata to represent CAN protocol model, an

Arbitration automaton and a Transceiver automaton. The relation of the two automata

is shown in Fig. 3.6. The Arbitration monitors CAN Interface in real time, and deter-

mines which message can be transmitted. The Transceiver is responsible for delivering

the corresponding message to the CAN transmission medium, and stores the message to

the CAN Interface when the transmission ends.

The Arbitration automaton is shown in Fig. 3.7. It monitors whether a CAN task

send a transmission request in real-time. If the Arbitration supervises a request, a syn-

chronization channel transmissionRequest, it will scan buffers from the highest priority

identifier (index=1) to the lowest message priority (index=maxPriority). A message

with higher priority wins the arbitration process. The arbitration result is synchronized

34

Figure 3.7: Arbitration automaton.

Figure 3.8: Transceiver automaton.

to the Transceiver by the channel arbSuccess. The Transceiver automaton leaves the

location waitforTransmission, as shown in Fig. 3.8. The Arbitration waits in the loca-

tion msgTrans for the message transmission time given by a value msgLength. When the

message transmission is completed, the Transceiver synchronizes with the Arbitration us-

ing the channel transEnd. The Transceiver stores the message to the CAN Interface and

resets the buffer CANMsgForSend[index] by the function receive(), and clears the CAN

bus by resetBusCAN(). Then the Arbitration will restart arbitration from the highest

priority identifier. The channel received is used to synchronize with a gateway model or

a receiver model.

35

FlexRay
communication

controller

NIT

DynamicMAC

StaticMAC

POC

FSP

FlexRay bus

Application

Interface

NIT

DynamicMAC

StaticMACPOC

FSP

Interface

FlexRay bus

Figure 3.9: Structure of the FlexRay communication controller.

3.3.2 FlexRay Communication Control Model

The FlexRay specification defines two types of communication schemes within a commu-

nication cycle, the static TDMA and dynamic minislot-based TDMA. The communication

cycle contains of static segment and dynamic segment to transmit static messages and

dynamic messages. As shown in Fig. 3.4, the FlexRay communication controller contains

six parts, where the CSP and clock synchronization startup processing are responsible for

synchronization between nodes, the MTG is in charge of counting the number of cycles,

slots and macroticks, and provides the offset and rate. We abstract the protocol specifi-

cation under assuming fault-free, so all nodes are synchronous and correct. Consequently,

we use a global clock to synchronism all nodes in the FlexRay system. Also, we create

some variables instead of the MTG. The FlexRay MAC is much more complicated than

CAN, since it adopts two communication schemes, static MAC and dynamic MAC, and

perform the communication cycle. As a result, the FlexRay communication controller is

abstracted into five automata, as shown in Fig. 3.9. Each automaton will be introduced

according to FlexRay specification.

Protocol Operation Control

The POC controls protocol operation following host commands from ECUs, and manages

status of nodes, which has 6 basic states. When applications in the ECU are executed, the

states of nodes have to be changed by the POC. The protocol operation control process

is shown in Fig. 3.10.

• In the Default config state, POC waits for distinct commands from ECU, and en-

36

Default

config

wakeup

halt

Ready

config

startup
Normal

active

Normal

passive

Figure 3.10: Overview of protocol operation control.

sures initialization data of the communication controller, such as the communication

cycle and data rate.

• In the Config state, POC executes initialization of the communication controller.

When the initialization is completed, the POC moves to Read state.

• The Ready state indicates that the communication mechanism has been created for

starting data transmission. In the Ready state, the POC waits for commands from

the CHI, and enters to Wakeup, Startup or Config state.

• In the Wakeup state, the POC tries to send a wakeup signal to other nodes in the

cluster for activating their communication controller.

• In the Startup state, the POC performs the initial synchronization of all nodes.

• After the startup process, the POC enters the Normal Active state. In the Normal

Active state, there is no error at this node, or the node has few errors but it can

maintain normal data transmission.

37

Figure 3.11: POC automaton.

• The Normal Passive state indicates that access collisions occurs because of deviation

of synchronization so that frames cannot be transmitted.

• If there is a rigorous error, or some errors that keep coming up, the POC moves to

the Halt state. If errors are fixed, the POC back to the Normal Active state.

In the FlexRay system, a node is initialized according to system configuration firstly.

Some nodes in power-saving mode can be awakened by a wakeup signal. Prior to data

transmission, all nodes have to be synchronized through sending a synchronous frame in

the communication cycle. Next, the nodes start frame transmission in the Normal Active

state. The frame transmission process is mainly performed by MAC and FSP.

We establish the POC automation in the Normal Active state for starting transmis-

sion, as shown in Fig. 3.11. Because, this work is aimed to verify timed properties of

communication, and the processes of the system launching is ingnored. We define some

channels to synchronize clock between nodes in UPPAAL.

In the Normal Active status, the node is ready to transmit frames during communica-

tion cycle. The POC is going to start communication cycle, which immediately leaves

the initial location startUp with a update (commStatus.cycleCounter:=1) to a urgent

location. The POC checks whether the value of the cycle counter is less than or equal to

the maximum number of cycles. If the constraint is satisfied, the POC uses the channel

cycleStart to StaticMAC and start a communication cycle. Then, the POC waits for

the cycle end in the location waitforCycleEnd until it detects a synchronization channel

cycleEnd. It will recheck the value of the cycle counter. If the value is less than the max-

imum value of the cycle counter, the POC will update the value plus one and reset the

clock x for starting next communication cycle. If the value is equal to maxCycleCounter,

the POC will return to the initial state, and reset the clock.

38

Communication cycle Communication cycle

Static segment Dynamic segment Network idle time

Static slot Dynamic slot

Action ponit Action ponit

Communication
cycle level

Arbitration
grid level

Macrotick level

Microtick level

Figure 3.12: Communication cycle of FlexRay model

3.3.3 Media Access Control

The MAC manages channel access and competition between nodes in the cluster. The

FlexRay protocol realizes the MAC based on the TDMA scheme, and its communication

takes place in a period communication cycle. The communication cycle is divided into

four hierarchies, communication level, arbitration grid level, macrotick level and microtick

level, as shown in Fig. 3.12.

• In the communication cycle level, a cycle is composed of static segment, dynamic

segment, symbol window and NIT.

– The static segment uses TDMA to access FlexRay bus based on time-triggered,

and is composed of static slots. The length of the static segment is fixed.

– The dynamic segment uses the minislot-based TDMA to transmit message,

and it is comprised of a fixed quantity of minislots. The length of the dynamic

segment is dynamically variable corresponding to dynamic frames transmitted.

– The symbol window is used to synchronize communication cycle between nodes

by sending a symbol in the communication cycle. The length of symbol win-

dow is configurable by macroticks. If the symbol window is not required, it

is possible to configure zero maroticks. In this research, the IVN system is

39

assumed to be synchronous, so the symbol window is unnecessary and it does

not influence the timed property of the IVN system.

– The NIT is a period of free time, which contains all the macroticks which are

not utilized in the previous three segments.

• The arbitration grid level identifies the time interval for the message transmission,

and specifies which message is being transmitted. It is critical for MAC process.

The static segment is made up of static slots of the same length, and the dynamic

segment is made up of mini-slots with smaller length.

– The static slots have same length and they are signed by numbers in ascending

order from the beginning of a communication cycle. These static slots are

assigned to different nodes that are in the same cluster. The allocation of the

static slots is unchangeable during system running. The assigned static slots

only transmit messages from specific nodes. If there is no data assigned in a

static slot, the FlexRay bus will remain idle until the next static slot comes.

– Dynamic slots are allocated to transmit dynamic messages in the FlexRay

system. The time duration of dynamic slots is determined by the length of

message being transmitted, and is composed of minislots. When all of nodes

have received the message, next slot can be started. If there is no messages to

be sent in a dynamic slot, all nodes have to wait a mini-slot. If the remaining

minislots in the dynamic segment are not enough for transmitting next mes-

sage, the message will wait for next communication cycle. When the dynamic

segment ends, remaining minislots will be NIT.

• The macrotick is composed of several microticks, and multiple macroticks constitute

a static slot, or a mini-slot. Each static slot and mini-slot have an action point to

be offset.

• The microtick is the minimum time unit and is used to guarantee the overall clock

synchronization. The length of microtick is determined by clocks of the FlexRay

communication controller.

We consider the timing hierarchy from the communication cycle level to the macrotick

level in FlexRay model. The communication cycle is segmented into some slots with their

identifier in order, and the slots are allocated to nodes. Therefore, a frame of the node

has to be transmitted during the corresponding slot with the same identifier. The MAC

controls each segment of the communication cycle and the static segment and the dynamic

40

segment employ different communication schemes. Fig. 3.13 shows the MAC process in

specification and description language (SDL).

standby

MAC control on A

(zMacMode)

zMacMode ?STANDBY

wait for CAS action point

set (tCASActionPoint);

transmit symbol on A

(CAS_MTS)

STARTUPFRAMECAS

else

tCASActionPoint

STATIC_SEGMENT_A

DYNAMIC_SEGMENT_A

SYMBOL_WINDOW_A

NIT_A

pExternalSync ?

zFirstTTESlot := true;

true

false

TT-E time gateway sink beha-

vior (optional)

Figure 3.13: Media access process

After the POC executed the startup, the MAC receives a STANDBY command from the

POC and waits a zMacMode signal. If the zMacMode indicates STANDY, the MAC will reset

parameters related to communication cycle, such as action point of slots, the length of slots

and minislots, and return to the STANDBY. The zMacMode is equal to STARTUPFRAMECAS

which indicates that the collision avoidance action point need to be reset, and the node

will send a frame on channels. The MAC inspects whether the node is synchronous with

other nodes. If the zMacMode is else, the MAC will skip the collision avoidance operation

and check clock synchronization. The pExternalSync indicates that the node is externally

41

synchronized. If it is true, the zFirstTTESlot will be set as true. If it is false, the MAC

will jump to execute the communication cycle repeatly, including static segment, dynamic

segment, symbol window and NIT.

Before performing the communication cycle, the MAC generates the consistency of

parameters and clock synchronization. These operations can be realized by the Configu-

ration module and synchronization channels in UPPAAL. Thus, the POC model directly

starts a communication cycle from the static segment.

Static Media Access Control

cycle start

(vCycleCounter)

static segment start on A

(vCycleCounter, vSlotCounter)

transmit frame on A

(STATFRAME, vTF)

tActionPoint

tSlotBoundary

vSlotCounter ?

else

 > gNumberOfStaticSlots

slot boundary on A

(vSlotCounter)

STATIC_SEGMENT_A

ASSEMBLE_

STATIC_FRAME_A

action point on A

frame vTF to transmit
nothing to

transmit

zTransmitStatFrame := true;

zTransmitStatFrame ?

true

set (tActionPoint);

set (tSlotBoundary);

zTransmitStatFrame := false;

vSlotCounter := 1;

’update vSlotCounter on A in CHI’;

wait for the action point

vSlotCounter := vSlotCounter + 1;

’update vSlotCounter on A in CHI’;

wait for the cycle start

false

wait for the static slot

boundary

Figure 3.14: Media access in static segment

In the static segment, the MAC uses static cyclic scheduling (SCS) to transmit static

42

messages. Transmitting a static message is depended on the schedule table which is

defined by the Configuration. Fig. 3.14 shows media access control in the static segment

by SDL.

At first, the StaticMAC waits for the communication cycle start. While the POC

starts the communication cycle, the cycle counter starts counting. Meantime, the value

of the slot counter is updated to 1, and the first static slot is started. The StaticMAC

informs the bus that the values of the cycle counter and slot counter, and sets the action

point of slots and the length of slot corresponding to the configuration, and then updates

zTransmitStatFrame to false. If there is a data need to be sent, it will be assembled to

a FlexRay frame, and the StaticMAC will go to wait for the action point. Then, the

StaticMAC checks zTransmitStatFrame. If the value of zTransmitStatFrame is true, the

frame will be transmitted. Otherwise the StaticMAC will turn to wait for the current

static slot ending. At the edge of this slot, the slot counter will be increased. Finally, the

StaticMAC checks the value of the slot counter. If the value is less than the maximum

value of the static slot number, the StaticMAC goes back to start next slot; if it is greater,

the static segment ends and dynamic segment should be started.

The StaticMAC automaton represents how the FlexRay model transmitted messages

in the static segment (see Fig. 3.15). When the POC starts a communication cy-

cle, the MAC performs the static segment. The StaticMAC leaves the initial loca-

tion waitforCycleStart and slot counter starts counting from 1. In the static seg-

ment, there are some static slots with the same length and action point. The location

waitforActionPoint with a time constraint (x<=slotActionPoint) is waiting for offset

of clock synchronization. After the action point, the StaticMAC tries to send messages

in the location sendMsg. If there is a message waiting for transmission in this slot, the

StaticMAC checks the validity of the message, transmits it as a frame in the slot with the

same identifier as the message using the function transmit(), and update clock x and

busStatus as TRANS. Then, the StaticMAC enters location waitforTransmissionEnd.

When the frame transmission finished, that is x==busFlexRay.length, the bus status

will be changed to CHIRP. If no messages are waiting for transmission, the StaticMAC

goes to another location waitforStaticSlotBoundary to finish this slot. When the clock

x is equal to staticSlotLength, the bus status will be labeled as IDLE. While the slot

ends, the StaticMAC inspects the value of the slot counter. If the slot counter is less than

the maximum number of static slots, commStatus.slotCounter<numberOfStaticSlots,

the slot counter plus one, and next static slot starts. When the slotCounter reaches the

maximum number of static slots, the static segment is completed and the MAC executes

to the dynamic segment or goes to the NIT segment.

43

Figure 3.15: StaticMAC automaton.

Dynamic Media Access Control

In the dynamic segment, the MAC uses fixed priority scheduling (FPS) to transmit dy-

namic messages. The dynamic message has an identifier to denote its priority. Fig. 3.16

shows media access in the dynamic segment by SDL.

The process of the dynamic segment is more complicated than the static segment.

Firstly, the MAC checks if any minislots are assigned for the communication cycle. If the

number of minislots is zero, there is no dynamic segment; if not, the dynamic segment

will be started and hold the slot counter. At the beginning of dynamic slots, the action

point of mimislots has to be compared with the action point of slots. Fig. 3.17 shows the

action point in two cases. If the duration of offset in the minislots is longer than that

in the slots, the action point of minislots should be set to the action point of the first

dynamic slot. Otherwise, the duration of offset in the first dynamic slot is equal to the

offset time of the slots plus the offset time of the minislots. Note that this is only for the

first dynamic slot. In other cases, the action point of dynamic slots is equal to the action

point of the minislots. Then, the MAC updates parameters about communication, such

as the current number of minislots. The DYBN SEG LOOP A starts each dynamic slot.

At the end of the dynamic segment, the data in the CHI will be updated.

The dynamic segment loop controls transmissions of each dynamic slot and this process

is introduced in Fig. 3.18. Before the transmission begins, the MAC checks to see if there

is enough minislots left for transmission, or if there is any slot counters desynchronized

to cause the transmission is not allowed in this dynamic slot.

If a transmission is allowed, the DynamicMAC assembles the dynamic frame and trans-

mits the frame. If the frame is empty and the bus is idle, this node waits for the trans-

mission of other nodes until the end of the mini-slot. If there is no transmission in this

44

gNumberOfMinislots ? = 0

dynamic segment start

on A (vSlotCounter)

gdActionPointOffset ?

set

(tDynamicSegmentOffset);

> 0

> gdMinislotActionPointOffset

else

DYNAMIC_SEGMENT_A

DYN_SEG_LOOP_A

’update vLastDynTxSlot

on A in CHI’;

’update vDynResync-

Attempt on A in CHI’;

set (tMinislotActionPoint);

set (tMinislot);

*

-

tDynamicSegmentOffset

set (tMinislotActionPoint);

set (tMinislot);

zMinislot := 1;

vLastDynTxSlot := 0;

zMinislotCE := 1;

zNoTxSlot:= false;

zActiveBits := 0;

vDynResyncAttempt := false;

Figure 3.16: Media access in dynamic segment

dynamic slot for all nodes in the cluster, the dynamic slot will be finished with the end

of the mini-slot. If there is a CE start signal on the channel, that is, there is a node that

has a frame to send in this dynamic slot. All the other nodes in the cluster will wait for

the end of its transmission and update the value of parameters.

While waiting for the frame transmission to end, if a detection trailing sequence

(DTS) signal is received by a node, the node will lock the end of the dynamic slot for

avoiding potential noise affect the length of the dynamic slot. If a potential idle start

signal is received before a CHIRP signal, it means that the frame transmission ends in the

current mini-slot, and the mini-slot is the last one of the dynamic slot. During the frame

transmission, the value of mini-slot counter has to be synchronized. If the current mini-

slot is the last of the dynamic slot and there is no more message to be transmitted, the

value of the mini-slot counter should increment as well as the value of the slot counter,

and the MAC exits the dynamic segment loop and is going to wait for the end of the

dynamic segment. When the value of the slot counter is needed to increment, if the value

is over the maximum number of slots, the loop will be exited, if not, the loop will be

continued and goes back to wait for the end of this slot.

When a CHIRP signal is detected by the MAC, the nodes go into wait for the end of the

45

gdActionPointOffset

macrotick

minislot

gdMinislot

gdMinislotActionPointOffset

minislot

action point

first dynamic slotlast static slot

static segment static segmentdynamic segment dynamic segment

(a)

gdActionPointOffset

macrotick

minislot

gdMinislot

gdMinislotActionPointOffset

minislot

action point

first dynamic slotlast static slot

static segment static segmentdynamic segment dynamic segment

dynamic seg-

ment offset

(b)

Figure 3.17: (a) action point a (b) action point b

dynamic slot. If a CE start signal appears on the bus, generally, it indicates there is a

fault that caused by noise. The nodes arrange the new transmission and correct the value

of the mini-slot and slot counters. Under normal communication, no CE start signal is

received at that waiting state. While the present value of the mini-slot counter is equal

to the last mini-slot number of the dynamic slot, the dynamic slot is end and the value of

the slot counter is increased. If the frame threshold is longer than the length of the frame,

a new slot will be added with the length of one or two mini-slots and the DynamicMAC

resynchronizes between nodes. Then, the DynamicMAC exits the loop with the maximum

number of slot, or continues the loop and sets the mini-slot action point again.

After the StaticMAC, theDynamicMAC automaton starts with a channel dynamicStart,

as shown in Fig. 3.19, if the dynamic segment was defined, the number of mini-slots is

greater than 0. The DynamicMAC has two counter, the slot counter will keep counting

from the maxStaticSlots plus 1, and the mimi-slot counter starts from 0. According to

the SDL description, the DynamicMAC compares slot action point and mini-slot action

point first, and the bigger one will be the dynamic slot action point. The DynamicMAC

waits for time to pass at the location waitforSlotActionPoint until the clock x is equal

to dynamicSlotActionPoint, and starts next mini-slot. Note that the remaining time

duration of the first mini-slot of each dynamic slot, will be complemented in the frame

transmission process, the location waitforTansmissionEnd. Before frame transmitting,

the DynamicMAC also checks whether there is a message waiting to be transmitted

in this dynamic slot, and whether there is enough mini-slots for this message. If the

46

ASSEMBLE_

DYNAMIC_FRAME_A

false

set (tMinislotActionPoint);

wait for the end

of the minislot

wait for the end

of activity

CE start on A

CHIRP on A

tMinislot

tMinislot

zMinislot := zMinislot + 1;

set (tMinislot);

zMinislot ?

else

else

zMinislot := zMinislot + 1;

set (tMinislot);

true

nothing to

transmit

frame vTF to transmit

 = gNumberOf-

Minislots

= gNumberOf-

Minislots

DYN_SEG_LOOP_A

zMinislot >= gNumberOfMinislots –

gdDynamicSlotIdlePhase

or

zMinislot > pLatestTx

or

zNoTxSlot = true ?

zChannelIdle? true

false

wait for the end

of the dynamic slot

tMinislot

zMinislot ?

zMinislot := zMinislot + 1;

set (tMinislot);

else

zChannelIdle := true;

false

CE start on A

zChannelIdle := false;

zChannelIdle := false;

zMinislotCE := zMinislot;

zEndMinislot := zMinislot;

zDTSReceived := false;

zActiveBits := 1;

zFrameThreshold := false;

zIncSlotCounter := false;

TRANSMIT_

DYNAMIC_FRAME_A

potential idle start on A

zFrameThreshold := true;

zEndMinislot := zMinislot +

gdDynamicSlotIdlePhase;

zActiveBits =

cFrameThreshold ?
true

zEndMinislot := zMinislot;

false

DTS received on A

zNoTxSlot := false;

 >= zEndMinislot

zMinislot ?

= gNumberOf-

Minislots

= zMinislotCE

= zMinislotCE + 1

zNoTxSlot := true;

vDynResyncAttempt := true;

false

zMinislot ?

vSlotCounter :=

vSlotCounter + 1;

zNoTxSlot := true;

vDynResyncAttempt := true;

else

zFrameThreshold ? true

true

zDTSReceived := true;

zMinislot ?

 else

zDTSReceived := true;

zFrameThreshold := true;

zIncSlotCounter := false;

false
zMinislot = zEndMinislot

and zDTSReceived = true ?

zDTSReceived ?

false

true

true

zActiveBits := 1;

zIncSlotCounter := true;

zIncSlotCounter ?

false
true

zIncSlotCounter := false;

zMinislotCE := zMinislot - 1;

INCREASE_

SLOT_COUNTER_A

continue loop

INCREASE_

SLOT_COUNTER_A

continue loop

zMinislot = zMinislotCE +1

and

zFrameThreshold = false ?

exit

loop

exit loop

wait for the end of

the dynamic segment

wait for the end of

the dynamic segment

tMinislot

zMinislot := zMinislot + 1;

set (tMinislot);

zMinislot ?

else

 = gNumberOf-

Minislots

Figure 3.18: Media access in dynamic segment arbitration

constraint is satisfied, the bus status will be changed to TRANS, and the DynamicMAC

transmits the message to bus using the function transmit() and moves to the location

waitforTransmissionEnd. When the transmission is complete, The DynamicMAC will

recalculate the number of mini-slots and update the mini-slot counter according to the

value of the current clock x. At the same time, the bus status is updated to CHIRP. When

the clock x satisfies this dynamic slot boundary the dynamic slot ends and the bus be-

comes idle status (busStatus=IDLE). If there is no messages waiting to be transmitted in

this dynamic slot, or there is no enough mini-slots for this message, the length of the dy-

namic slot is a mini-slot. The DynamicMAC goes to the location waitforMinislotEnd,

and it leaves this location when the clock x is equal to minislotLength as well as the

47

Figure 3.19: Dynamic MAC automaton

bus status becomes IDLE.

While a dynamic slot is finished, the DynamicMAC examines the values of the slot

counter and minislot counter.

• If the value of the slot counter is less than the maximum number of slots, the

DynamicMAC will perform next dynamic slot from setting the dynamic action

point. But there is no more mini-slots for frame transmission, that is the value of

the mini-slot counter is maxMinislotCounter, the DynamicMAC will starts NIT

segment and reset the mini-slot counter.

• If the value of the slot counter is equal to the maxSlotCounter and mini-slots

have just been used up (commStatus.minislotCounter==maxMinislotCounter),

the dynamic segment ends and the MAC performs the NIT segment. If there

are still some mini-slots (commStatus.minislotCounter < maxMinislotCounter),

DynamicMAC will consume these mini-slots and then starts the NIT segment.

Network Idle Time

The NIT is a segment of network idle time after the static and dynamic segments, which

contains all macroticks that are not used in the previous. If there is no remaining

macroticks, the NIT still has two macroticks at least. Fig. 3.20 shows the processing

48

FlexRay Protocol Specification

Version 3.0.1 October 2010

Chapter 5: Media Access Control

Page 147 of 341

Figure 5-26: Media access in the symbol window [MAC_A].

5.3.5 Network idle time
Macro NIT in Figure 5-27 depicts the behavior at the start of the network idle time.

Figure 5-27: Network idle time [MAC_A].

false

zMacMode ?

transmit symbol on A
(WUDOP)

ALL

else

wait for the end of
the symbol window

tSymbolWindow

gdSymbolWindow ? = 0

> 0

symbol window start
on A (vSlotCounter)

SYMBOL_WINDOW_A

wait for the symbol window
action point

tSymbolActionPoint

transmit symbol on A
(CAS_MTS)

truevTransmitMTS_A ?

false

vSlotCounter := 0;
set (tSymbolActionPoint);
set (tSymbolWindow);
’update vSlotCounter on A in CHI’;
'import vTransmitMTS_A from CHI';
'import vTransmitWUDOP_A from CHI';

vTransmitWUDOP_A ?

true

NIT start on A
(vSlotCounter)

vSlotCounter := 0;
’update vSlotCounter on A in CHI’;

NIT_A

Figure 3.20: Architecture of the IVN system design.

Figure 3.21: NIT automaton

of NIT in SDL. During the NIT, all of nodes in the cluster need to reset the value of the

slot counter to zero, and elapse the surplus time in the communication cycle. When the

NIT ends, the POC will start next communication cycle from the static segment.

The NIT automaton is shown in Fig. 3.21. The NIT is started with a channel NITStart

from DynamicMAC, while the value of the slot counter is reseted to 0. Since the Dynam-

icMAC already spent the remaining mini-slots in the communication cycle, the NIT only

keeps the minimum length of the NIT segment. When the NIT ends (x<=NITLength), the

NIT will communicate with the POC using the channel cycleEnd, In other words, the

current communication cycle ends and the POC turns into next communication cycle.

3.3.4 Frame and Symbol Processing

The FSP is used to receive messages during each slot. As soon as a transmission begins,

the bus state is identified as active. While the transmission finishes, the slot ends, the

bus state is updated to idle. The FSP monitors the state of the bus in real time and

executes receiving function. Fig. 3.22 shows the state transition of FSP. In the standby,

the execution of the FSP is halted. If there is a CE start signal detected, the FSP starts

frame decoding and then goes to wait a CHIRP signal. The CHIRP denotes that the

frame has been completely transmitted and the bus idle recognition point is marked.

When the FSP detects a CHIRP signal, it will wait for the end of the transmission. The

receiving process starts by detecting aCE start signal and ends by detecting a CHIRP

signal. The frame decoding process does not affect the time of receiving message. So, we

49

standby

wait for

CE start

decoding

in progress

wait for

CHIRP

wait for

transmission

end

Figure 3.22: Overview of frame and symbol processing

Figure 3.23: FSP automaton

abstract other three states to present the frame reception as shown in Fig. 3.23.

In the initial location waitforCEstart, the FSP is waiting for a tramsmission. When

the bus status becomes to TRANS, there is a message transmitting. Then, the FSP is

waiting for the bus status changed to CHIRP. When the message transmission finished,

the FSP executes the function receive() to store the message to FlexRay interface, and

checks whether the indentifier of the message is matched with the current slot number.

The FSP will notify receivers that the message has been received by channel forward,

and reset FlexRay bus. When the current slot ends (busStatus==IDLE), the FSP turns

into the initial location and waits next message transmission.

This chapter presented a strategy to abstract IVN systems. The first stage is to abstract

50

the architecture of IVN systems and simplify the topology of the system. The second stage

is to abstract the composition of the protocol specifications and identify the necessary

functions from the specifications of CAN and FlexRay. We illustrated the abstraction

and construction process of two communication control models in UPPAAL. We will

abbreviate these two models as CAN model and FlexRay model. They will be the core

of the IVN system model, and each bus will contain a protocol model for communication.

That is the two models are reusable in every IVN system model. Based on this and the

layer structure of the specifications, we will present a framework to construct IVN system

models.

51

Chapter 4

A Framework for Modeling IVN

Systems

In this chapter, we will propose a framework to model IVN systems in UPPAAL, and

explain how to use the framework to model an IVN system in the design phase. Firstly,

a UML class diagram is provided to show the relations between each modules in the

framework, and the functions and parameters of these modules. Since some modules are

composed of multiple automata, we use a component diagram to represent the relationship

between automata. The Communication controller of the framework, which consists of

the CAN model and FlexRay model, is introduced in pervious chapter. Then we give the

relevant Configuration, Interface, Medium, Environment and Gateway modules. At last,

we will show how to use the framework to construct an IVN system design model and

discuss the reusability of the framework.

4.1 A Framework in UPPAAL

Abstracted IVN systems may employ different numbers of environments, these environ-

ments may use different types of buses to connect gateways in various topologies. The

diversity of IVN systems means that we need a reusable framework to model and ver-

ify communication behaviors with both CAN and FlexRay protocols. Referring to the

protocol structure we presented in the previous chapter, we propose a reusable frame-

work, including the UPPAAL engine, Transmission medium, Communication controller,

Interface, Environment, Forwarder and Configuration modules, as shown in Fig. 4.1.

• The UPPAAL module is the foundation on which the other parts are built. We

model the other modules, and simulate and check IVN system design models in the

52

Application Gateway

Configuration

UPPAAL

Protocol

……P1 P2 P3

Interface

Environment Forwarder

C
onfiguration

UPPAAL

Communication Controller

FlexRay

Interface

CAN

Application layer

Object layer

Transfer layer

Foundation

Medium Physical layer

Figure 4.1: The framework.

UPPAAL.

• The Medium module simulates message transmission over physical wires as the

Physical layer of the specifications.

• The Communication controller holds CAN model and FlexRay model describing

communication behaviors based on the Transfer layer of the specifications.

• The Interface module is including buffers designated for specific messages, and op-

erates as a communication bridge between the Application layer and Transfer layer.

This module represents the Object layer in the CAN specification and the Presen-

tation layer in the FlexRay specification.

• The Environment module is task models that write/read message to/from the In-

terface, as the Application layer of the specifications.

• The Forwarder module also belongs to the Application layer and is a special task to

communicate between different protocols. It executes frame-forwarding processes,

representing an essential component to convert protocols.

• The Configuration module contains parameters related to the other modules. In the

proposed framework, the Bus, Communication controller, Interface, and Configu-

ration modules are fixed and reusable in terms of the environments and gateways;

the Environment and forwarder modules are changeable in terms of sending and

forwarding messages in different ways.

The framework can be used to construct a design model of an IVN system. We use

a class diagram of the framework to display the relationships between modules, and all

53

<<Fixed>>

FlexRayCommunicationController

+ FRProID: Integer

- cycleCounter: Integer

- slotCounter: Integer

- minislotCounter: Integer

- isValidFrame: Bool

+ POC: automaton

 + DynamicMAC: automaton

 + StaticMAC: automaton

 + NIT: automaton

 + FSP: automaton

<<Fixed>>

CANCommunicationController

+ CANProID: Integer

- index: Integer

+ Arbitration: automaton

+ Transceiver: automaton

<<Fixed>>

Interface

+ CANInterface: CANBuffer[]

+ FRInterface: FRBuffer[]

<<Fixed>>

Configuration

+ numberofCANEnv: Integer

+ numberofFREnv: Integer

+ numberofGateway: Integer

+ numberofCANMsg: Integer

+ numberofFRMsg: Integer

+ numberofCANPro: Integer

+ numberofFRPro: Integer

+ maxLengthofCANMsg: Integer

+ maxLengthofFRMsg: Integer

+ numberofCycle: Integer

+ numberofSlot: Integer

+ numberofStaticSlot: Integer

+ numberofMinislot: Integer

+ staticSlotLength: Integer

+ minislotLength: Integer

+ NITLength: Integer

+ slotActionPoint: Integer

+ minislotActionPoint: Integer

<<Changeable>>

Environment

+ CANEnv: automaton

+ FREnv automation

<<Changeable>>

Forwarder

+ ForwardController: automaton

FRInterface

CANInterface

CANEnvironment

+ CANMsgID: Integer

+ CANMsgLen: Integer

+ CANEnvName: String

+ Con: Integer

+ Dest: Integer

- writeCANMsg(): void

- readCANMsg(): void

ForwardController

+ ForwarderName:String

- uploadCANMsg(): void

- forwardCANMsg(): void

- uploadFRMsg(): void

- forwardFRMsg(): void

- uploadLongFRMsg(): void

- forwardLongFRMsg(): void

For IVN design systems,

context Configuration inv: numberofCANEnv >= 1

context Configuration inv: numberofCANPro >= 1

context Configuration inv: numberofFREnv >= 1

context Configuration inv: numberofFRPro >= 1

context Configuration inv: numberofForwarder >= 1

For FlexRay environments,

context Configuration inv: numberofFRMsg >= 2 and <= numberofSlot

context Configuration inv: maxLengthofFRMsg <= 128 byte

context Configuration inv: numberofCycle <= 63

context Configuration inv: numberofSlot <= 2047

context Configuration inv: numberofStaticSlot <= 1023

context Configuration inv: lengthofStaticSlot >= 3 MT and <= 664 MT

context Configuration inv: numberofMinislot <= 7988

context Configuration inv: lengthofMinislot <= 2 MT and <= 63 MT

context Configuration inv: lengthofNIT >= 2 MT and <= 15978 MT

context Configuration inv: slotActionPoint >=1 MT and <= 63 MT

context Configuration inv: minislotActionPoint >=1 MT and <= 31 MT

For CAN environments,

context Configuration inv: numberofCANMsg <= 2032

context Configuration inv: maxLengthofCANMsg <= 8 byte

access access

access access

1

1..n

1

1..n

1..n

1..n

Use

Use

Use

Use

1

1

FREnvironment

+ FRMsgID: Integer

+ FRMsgLen: Integer

+ FREnvName: String

+ Con: Integer

+ Dest: Integer

- writeFRMsg(): void

- readFRMsg(): void

<<Fixed>>

Medium

+ CANMedium: CANBuffer[]

+ FRMedium: FRBuffer[]
CANMedium

FRMedium

1
1..n

1

1..n

access access

Use

Figure 4.2: The class diagram of the framework in UML.

attributes and operations, as shown in Fig. 4.2. To reflect the feature of the modules, we

define two special stereotypes, <<Changeable>> and <<Fixed>>. The <<Changeable>>

means that the class can be changed according to the system design. The <<Fixed>>

means that the class is fixed and reusable in terms of modeling different IVN systems.

We will describe the UML class diagram according to the modules of the framework.

• The Environment class:

– The Environment class is presented by a <<Changeable>> class. Generally,

54

each node may has different tasks to perform various operations and processing

on data in the IVN system. Although we can ignore the concrete functional-

ities of applications in ECUs, the possible tasks are still infinite. Thus, the

Environment model could be changed by designers.

– The Environment class is aggregated by CANEnv and FREnv classes.Since

an IVN system consists of CAN environments and FlexRay environments that

need to conform to the bus protocols to send messages, we give two subclasses

for CAN environments and FlexRay environments. The CANEnv and FREnv

are described by automata in UPPAAL.

– Although the CANEnv and FREnv can perform various operations and pro-

cessing on data, it will eventually need to send and receive messages. Thus,

sending and receiving messages are essential functions for an environment. The

CANEnv and FREnv contains two primary functions for delivering and read-

ing messages, such as the writeCANMsg() and readCANMsg() in the CANEnv.

To send a message, the writing function writes the message to a corresponding

buffer in the Interface as a frame, and then the Protocol controls its trans-

mission. To receive a message, the reading function reads the message from

the Interface. Also, each environment need to set the identifier, length of mes-

sages it sends (e.g. CANMsgID and CANMsgLen)), the identifier of the bus to

which it is connected (e.g. ConBus), the identifier of the bus the message needs

to reach (e.g. DestBus) and its own name (e.g. CANEnvName) in the system.

Note that CANMsgID and FRMsgID can not be the same. Because the CAN

message/FlexRay message will be sent to the FlexRay bus/ CAN bus.

• The Forwarder class:

– The Forwarder module is also a <<Changeable>> class, and can be realized

by a ForwardController automaton depending on the IVN system design. The

main function of the ForwardController is to forward messages between the

CAN and FlexRay. In reality, gateways have different features, such as schedul-

ing algorithms, which may affect the time property of the IVN system. Thus,

the Forwarder module can be changed by different automata.

– The process of forwarding messages is executed by two functions for each pro-

tocol. The uploading functions, uploadCANMsg() and uploadFRMsg(), read

a message from the Interface and upload the message to a temporary buffer.

The forwarding functions, forwardCANMsg() and forwardFRMsg(), transform

55

the format of the message and relay the frame to a corresponding buffer in

the Interface. In particular, since the payload length of CAN frame is less

than that of FlexRay frame, if the length of FlexRay message is greater than

the maximum length of CAN message, a uploadLongFRMsg() function will di-

vide it into several CAN messages. Subsequently, these CAN messages will be

released in order by the forwardLongFRMsg() function. .

• The Interface class:

Interface module is defined by a Interface class with <<Fixed>>, and aggregates the

CANInterface class and FRInterface class. The Interface provides buffers for storing

messages exchanged between the Application layer and Transfer layer. Although

CAN messages and FlexRay messages have different frame format, not all data

fields of the frame are necessary in our model, for example, cyclic redundancy check

(CRC) field is used to guarantee the correctness of the frame. Because our model is

an abstraction for an error-free communication system, the data field with regard

to error checking is ignored. An abstracted frame format is proposed for both

CAN messages and FlexRay messages, including frame identifier, payload length,

environment identifier and destination identifier. Based on the frame formats, the

CANInterface and FRInterface are constructed by the buffers. We define two types

of buffers, sending buffers for putting in messages that need to be sent and receiving

buffers for storing received message.

• The CAN class and FlexRay class:

The Communication Controller is the kernel for transmitting messages, and per-

forms communication behaviors following specifications. We separately define the

CAN class and FlexRay class as <<Fixed>>, because they have their own special

communication mechanism. We build fixed CAN and FlexRay models in UPPAAL,

and these can be reused to construct different IVN systems.

– The CAN class has two attributes, CANBusID and index. The CANBusID is a

unique identifier for a bus. The index is a variable in automaton Arbitration.

The CAN model is composed of two automata, Arbitration and Transceiver.

The CAN communication controller transfers messages based on the static pri-

ority scheduling algorithm. The Arbitration monitors the sending CANBuffer[]

in real time, and reads a message with the highest priority. The Transceiver is

responsible for delivering the message to CANMedium, and stores the message

to the corresponding receiving CANInterface when the transmission ends.

56

– The FlexRay class has some attributes. The FRBusID is a unique identifier for

a bus. Others are used to automata. The FlexRay model transmits messages

in determinable time slots of communication cycle, which has several automata

to serve communication cycles refer to the FlexRay specification. The protocol

operation controller (POC) monitors the beginning and ending of a communi-

cation cycle, and counts the number of communication cycles. The StaticMAC,

DynamicMAC, and NIT simulate the communication cycle and arbitrate mes-

sages. The FSP monitors the bus state and transmit or receive messages from

the FRInterface. Here, all automata are synchronous to ensure the consistency

of communication cycle.

• The Medium class:

The Medium class is <<Fixed>>, and defines two kinds of hardware wires, CAN-

Medium class and FRMedium class. They are represented by two buffers that

correspond to frame structures. The CANMedium is a buffer with the CAN frame

format, and the FRMedium is a buffer with the FlexRay frame format.

• Configuration class:

The Configuration class holds all parameters in the Environmnet, Forwarder, In-

terface, CAN, FlexRay and Medium. We describe them and give their range of

values, as listed in Table 4.1. To build an IVN system model, we need to specify

the number of CAN and FlexRay environments, buses and forwarders, and then

set up each message and bus protocol. No.1 to 5 describe components of an IVN

system; No.6 to 16 describe FlexRay messages and communication cycle of FlexRay

environments; No.17 and 18 clarify CAN messages. These parameters are described

using the object constraint language following the protocol specifications and con-

straints, as shown in Fig. 4.2. We use the macrotick (MT) (the smallest time unit in

the communication cycle) to represent the execution time of messages on the bus.

Setting Configuration is necessary to model an IVN system design model.

As the class diagram described, some modules are created in the form of automata in

UPPAAL. We drew a component diagram against Fig. 4.2 to show relationships between

automata, as shown in Fig. 4.3.

• The Environment has two types of task automata, CANEnv and FREnv. They

deliver/receive messages to/from interfaces the Interface provided. The CANEnv

is only allowed to access CANInterface, and the FREnv is only allowed to access

57

Table 4.1: Parameters in the Configuration

No. Name Description Range

1 numberofCANEnv Number of CAN environments >= 1

2 numberofFREnv Number of FlexRay environments >= 1

3 numberofForwarder Number of gateways >= 1

4 numberofCANBus Number of CAN buses >= 1

5 numberofFRBus Number of FlexRay buses >= 1

6 numberofFRMsg Number of FlexRay messages 1 - 2047

7 maxLengthofFRMsg
Maximum payload length of

FlexRay messages
0 - 254 bytes

8 numberofCycle
Number of cycles

in a given cluster
7-63

9 numberofSlot
Number of slots

in a communication cycle
2 - 2047

10 numberofStaticSlot
Number of static slots

in the static segment
2 - 1023

11 lengthofStaticSlot Duration of a static slot 3 - 664 MT

12 numberofMinislot
Number of minislots

in the dynamic segment
0 - 7988

13 lengthofMinislot Duration of a minislot 2 - 63 MT

14 lengthofNIT Duration of the network idle time 2 - 15978 MT

15 slotActionPoint

Number of macroticks

the action point is offset from

the beginning of a slot

1 - 63 MT

16 minislotActionpoint

Number of macroticks

the minislot action point is offset

from the beginning of a minislot

1 - 31 MT

17 numberofCANMsg Number of CAN messages 0 - 2032

18 maxLengthofCANMsg
Maximum payload length of

a CAN frame
0 - 8 bytes

58

<<component>>
<< f i x ed>>

FlexRayCommunicationController

<<component>>
<<changeable>>
Environment

<<component>>
<<changeable>>

Forwarder

<<component>>
<<automaton>>
CANEnvironment

<<component>>
<<automaton>>
FREnvironment

<<component>>
<<automaton>>
ForwardControl ler

<<component>>
<<automaton>>

POC

<<component>>
<<automaton>>

StaticMAC

<<component>>
<<automaton>>
DynamicMAC

<<component>>
<<automaton>>

NIT

<<component>>
<<automaton>>

FSP

<<component>>
<< f i x ed>>

CANCommunicationController

<<component>>
<<automaton>>

Arbi t ra t ion

<<component>>
<< f i x ed>>
Interface

<<component>>
<<automaton>>
Transceiver

<<component>>
<< f i x ed>>
Medium

CANInterface FRInterface

cycleStart

DynamicStart

NITStart

cycleEnd

ArbSuc

CANMedium FRMedium

Figure 4.3: The component diagram.

FRInterface. The two types of task automata are independent and work for different

environments.

• The Forwarder class is implemented by a ForwardController automaton to forward

messages between CAN environments and FlexRay environments, so it can access

the two types of interfaces, the CANInterface and FRInterface. In addition to re-

ceiving and delivering messages, the automaton needs to translate messages between

CAN environments and FlexRay environments. Thus, the Forwarder class provides

several essential operations to accomplish its functions.

59

• The Interface class is defined by two types of buffers, CANBuffer[] and FRBuffer[],

there is no automata. Several CANBuffer[] with different identifiers make up the

CANInterface, as well as several FRBuffer[] with different identifiers make up the

FRInterface. The Interface class provide the two interfaces for exchanging messages

between the Application or Forwarder, and the Communication controller.

• The Communication Controller has two separate protocol classes, CAN and FlexRay.

We have covered their model in the previous chapter. The CAN model and FlexRay

model are composed of several automata, as listed in the class diagram. The com-

ponent diagram shows how the automata are related to each other.

– In the CAN class, the Arbitration examines messages in the CANInterface

when the CAN bus is free, and notifies the Transceiver which message had

won the arbitration by a synchronizing channel ArbSuc that is defined in UP-

PAAL. Then the Transceiver accesses the CANInterface to get the message and

transmits it to the CANMedium. When the transmission finished, the message

will be stored in the CANInterface again by the Transceiver, and waits to be

received or forwarded.

– In the FlexRay class, four automata, POC, StaticMAC, DynamicMAC and

NIT, achieve the period communication cycle. They synchronize through four

channels, cycleStart, DynamicStart, NITStart and cycleEnd. During the

communication cycle, the StaticMAC and DynamicMAC inspect whether any

messages need to be transmitted in the FRInterface at the beginning of each

time slot. If there is, they will change the state of the FlexRay bus, and the

FSP plays the Transceiver of the CAN model to access the FRInterface and

transmits it to the FRMedium. When the transmission finished, the message

will be stored in the FRInterface again by the FSP, and waits to be received

or forwarded. If no messages need to be sent, they will wait for next time slot.

• The Medium class uses two buffers to provide two interfaces, a CANMedium and

a FRMedium. They represent psychical connections between environments and

gateways.

In this section, we introduced the framework itself and presented the class diagram and

the component diagram to explain the composition of each module in the framework and

the relationship between them. Next, following the framework, we will show how modules

are implemented in the UPPAAL, except the Communication Controller module.

60

4.2 Configuration Module

An IVN system model is established based on the system design. The Configuration

describes the necessary information for the system, which contains all of parameters in

the IVN system model. These parameters are set according to the abstracted system

design, such as the number of CAN and FlexRay environments, messages and buses. We

have listed the parameters we need in the class diagram (Fig. 4.2), but how they relate to

each automaton. We use a hierarchy diagram to represent them, as show in Fig. 4.4. To

describe the abstracted design model of an IVN system, we divide parameters into three

categories, stating the components of the system, setting environments in the system,

and clarifying CAN protocol and FlexRay protocol. They correspond to each layer of the

hierarchy diagram, respectively.

• Components of the abstracted systems

To construct an IVN system model, we need to state the number of environments,

buses and gateways and how they are connected. In Fig. 4.4, the second layer has

three parts that corresponds to the compositions of the system. Since environments

and buses can meet different protocol standards, we divide environments into CAN

environments and FlexRay environments, and divide buses into CAN buses and

FlexRay buses, as the third layer of the hierarchy diagram.

– For CAN environments and FlexRay environments, we declare the number of

them (numberofCANEnv and numberofFREnv).

– For CAN buses and FlexRay buses, we declare the number of them (numberofCANBus

and numberofFRBus).

– The Forwarder declares the number of forwarders (numberofForwarder).

These parameters state the number of components in the system and do not repre-

sent the topology of the system. The topology depends on the setting of variables

in specific automata, such as CANTask, FRTask and ForwardController.

• Environments of the abstracted system

To setting buses, first we need to specify the total number of CAN messages and

FlexRay messages in the system (numberofCANMsg and numberofFRMsg), and the

maximum length of them (maxLengthofCANMsg and maxLengthofFRMsg). These

parameters are crucial, since they are related to the Interface module and Com-

munication controller module. In addition, CANTask and FRTask are used to

61

C
on

fig
ur

at
io

n

+n
um

be
ro

fC
AN

En
v

: I
nt

eg
er

+m
ax

Le
ng

th
of

C
A

N
M

sg
 :

In
te

ge
r

+n
um

be
ro

fC
A

N
M

sg
 :

In
te

ge
r

C
A

N
E

nv
iro

nm
en

t
+n

um
be

ro
fF

R
En

v
: I

nt
eg

er
+m

ax
Le

ng
th

of
FR

M
sg

 :
In

te
ge

r
+n

um
be

ro
fF

R
M

sg
 :

In
te

ge
r

Fl
ex

R
ay

E
nv

iro
nm

en
t

C
A

N
Ta

sk
FR

Ta
sk

A
rb

it
ra

ti
on

Tr
an

sc
ei

ve
r

+n
um

be
ro

fF
or

w
ar

de
r

: I
nt

eg
er

Fo
rw

ar
de

r

+n
um

be
ro

fC
yc

le
 :

In
te

ge
r

PO
C

FS
P

+l
en

gt
ho

fN
IT

 :
In

te
ge

r
N

IT

C
A

N
In

te
rf

ac
e

+n
um

be
ro

fM
in

is
lo

t :
 In

te
ge

r
+l

en
gt

ho
fM

in
is

lo
t :

 In
te

ge
r

+m
in

is
lo

tA
ct

io
nP

oi
nt

 :
In

te
ge

r

D
yn

am
ic

M
A

C

+n
um

be
ro

fS
ta

tic
S

lo
t :

 In
te

ge
r

+l
en

gt
ho

fS
ta

tic
S

lo
t :

 In
te

ge
r

S
ta

tic
M

A
C

FR
In

te
rf

ac
e

+n
um

be
ro

fC
A

N
P

ro
 :

In
te

ge
r

C
A

N
P

ro
to

co
l

+n
um

be
ro

fF
R

Pr
o

: I
nt

eg
er

Fl
ex

R
ay

P
ro

to
co

l

E
nv

ir
on

m
en

t
B

us
P

ro
to

co
l

+s
lo

tA
ct

io
nP

oi
nt

 :
In

te
ge

r
+n

um
be

ro
fS

lo
t :

 In
te

ge
r

M
A

C

Fo
rw

ar
dC

on
tr

ol
le

r

C
A

N
M

ed
iu

m

FR
M

ed
iu

m

Figure 4.4: The hierarchy diagram of the Configuration.

62

implement environments to release messages to a bus and receive messages from

buses. The numberofCANMsg and numberofFRMsg refers to the number of messages

with different identifiers.

• The CAN protocol and FlexRay protocol in the abstracted system

Between an environment and a forwarder or forwarders, there must be a bus protocol

connecting them. The bus protocol conforms to the CAN protocol or FlexRay

protocol. The protocol models have some necessary parameters that need to be set,

especially FlexRay protocol.

– The CAN protocol model consists of four parts, none of which have additional

parameters. Note that the number of buffers in CANInterface be greater than

the sum of the numberofCANMsg and numberofFRMsg. It is possible for each

protocol to transmit messages from different environments.

– Since the FlexRay protocol model sends messages strictly according to a time

period, we need to explicitly describe the communication cycle, such as numberofCycle,

numberofSlot, lengthofSlot and so on. They are listed in each automaton.

The MAC represents the media access control process in the communication

cycle, including StaticMAC and DynamicMAC. Also, the number of buffers in

FRInterface and the number of slots (numberofSlot) should be greater than

the sum of the numberofCANMsg and numberofFRMsg.

The Configuration module directly affects properties of the IVN system. For example,

the number of messages relates to the number of sending and receiving buffers in the

interface. If the maximum ID of messages is greater than the number of buffers, data

overflow may happen. The length of FlexRay communication cycle influences the response

time. If there have not many messages or the length of the communication cycle is too

long, the networking idle time will become longer. Hence, we have to set parameters

carefully to guarantee reasonability of the system.

4.3 Interface and Medium Module

The Interface contains buffers for exchanging messages between the Environment or

GatewayController and Communication Controller module. The following code fragment

shows frame structures for interfaces and bus mediums in UPPAAL. These buffers use

same data structure defined by protocol frames. Each buffer includes four information, the

length and identifier of messages (id and length), the identifier of a protocol connected

63

to an environment that sent the message (con) and the identifier of a protocol connected

to an environment that receive the message (dest). We set up two kinds of buffers for

CAN and FlexRay, sending buffers (CANMsgForSend[] and FRMsgForSend[]) and receiv-

ing buffers (CANMsgForReceive[] and FRMsgForReceive[]). The sending buffers are

used to store messages that need to be sent, and the receiving buffers are used to receive

messages that have completed transmission. The number of the CAN buffers are defined

by the sum number of CAN messages and FlexRay messages. The CANMedium and

FRMedium are a buffer with the frame structure for simulating physical wire.

1 /∗ CAN In t e r f a c e ∗/
2 typede f s t r u c t

3 {
4 CANMsgID id ;

5 CANMsgLen length ;

6 ProtocolID con ;

7 ProtocolID dest ;

8 } CANFrame ;

9 CANFrame CANMsgForSend [numberofCANMsg+numberofFRMsg+1] ;

10 CANFrame CANMsgForReceive [numberofCANMsg+numberofFRMsg+1] ;

11 CANFrame CANMedium;

12

13 /∗ FlexRay I n t e r f a c e ∗/
14 typede f s t r u c t

15 {
16 FRMsgID id ;

17 FRMsgLength l ength ;

18 ProtocolID con ;

19 ProtocolID dest ;

20 } FRFrame ;

21 FRFrame FRMsgForSend [numberofCANMsg+numberofFRMsg+1] ;

22 FRFrame FRMsgForReceive [numberofCANMsg+numberofFRMsg+1] ;

23 FRFrame FRMedium;

64

4.4 Environmnet Module

Each environment has one or more tasks for sending and receiving in the IVN system.

These tasks serve as the Application layer, which are implemented by CANEnv automata

and FREnv automata. The CANEnv and FREnv automata execute write-read operation.

The following two functions show the write-read operation used in a FREnv automaton.

The function writeFRMsg() writes a message into a sending buffer of the FRInterface cor-

responding id, and the function readFRMsg() reads messages from the receiving buffer

of the FlexRay interface and clears data in the buffer. Similarly, there are two functions,

writeCANMsg() and readCANMsg() are used in CANEnv automata and access CANIn-

terface.

1 void writeFRMsg (FRMsgID id , FRMsgLength length , ProtocolID con ,

2 ProtocolID dest)

3 {
4 FRMsgForSend [id] . id = id ;

5 FRMsgForSend [id] . l ength = length ;

6 FRMsgForSend [id] . con = con ;

7 FRMsgForSend [id] . des t = dest ;

8 }
9

10 void readFRMsg(FRMsgID id)

11 {
12 FRMsgForReceive [id] . id = 0 ;

13 FRMsgForReceive [id] . l ength = 0 ;

14 FRMsgForReceive [id] . con = 0 ;

15 FRMsgForReceive [id] . des t = 0 ;

16 }

The Environment module generates messages and send them to the Interface module.

Since an IVN system may contain a large number of probabilistic events, we propose two

types of Environment automata, ordinary automata and probabilistic automata. These

two types of Environment can all be used to build IVN systems by our framework. Also,

we adopt classical model checking and statistical model checking to verify different types

of Environment in IVN systems.

65

4.4.1 Ordinary Environment Model

The CANEnv and FREnv automata are built with above functions, and shown as follows.

Of course, environment automata are not limited to these types and can be changed by

users.

• For the writing operation, the CANEnv and FREnv may have different time descrip-

tions. Since our target is to verify the timed property of the IVN system, we present

three types of tasks, periodic tasks, cyclic tasks, and sporadic tasks in UPPAAL,

as shown in Fig. 4.5. In these automata, we use select to define the parameters of

messages on the state transition, such as id:int[2,2],length:

int[3,3],con:int[2,2],dest:int[1,1]. There is a difference between the CA-

NEnv and FREnv automata for writing messages. When the CANEnv is writing a

message, it has to synchronize with the Arbitration of CAN model through a channel

transmissionRequest.

– The periodic task writes messages to Interface after a fixed time period (x==

Tcycle).

– The cyclic task writes messages as soon as the specific sending buffer is empty

(FRMsgForSend[id].length==0).

– The sporadic task is executed only once. If and only if the specific sending

buffer in the FlexRay Interface is empty, it writes a message using the function

writeFRMsg(id,length,con,dest).

• For the reading operation, we employ a simple automaton with one state to perform

receiving message, as shown in Fig. 4.6. When the specific receiving buffer in the

FlexRay Interface is not empty, the automaton performs the function readFRMsg(id).

4.4.2 Probabilistic Environment Model

The CAN and FlexRay protocols are deterministic protocols, which has no uncertain

behaviors. But the protocols do not define the application layer of nodes, application

behaviors are stochastic and non-deterministic. To describe such behaviors, we add prob-

ability to the Environment module based on the abstraction. There are two ways to

realize non-determinacy in UPPAAL. One is the non-deterministic choices between mul-

tiple transition paths with probability; the other one is the non-deterministic choices of

time delays in a location defined by probability distributions. UPPAAL provides two

66

(a) The sporadic task

(b) The cyclic task (c) The periodic task

Figure 4.5: Environment automata for writing messages.

Figure 4.6: Environment automaton for reading messages.

probability distributions, exponential distributions with unbounded delays and uniform

distributions with time-bounded delays. We present three kinds of environment models

with the stochastic interpretation.

• Probabilistic choices are installed on transitions of stochastic automata. These

transitions are from a location to multiple locations with different probabilities.

Fig. 4.7 shows an environment automaton with probabilistic choices. Initial location

is a urgent state, which is no time elapsed. From the initial location, there are two

paths to the wait for trans location. Each path has a transition in dotted line

with a weight, and a time delay with a uniform distribution. The distribution of the

overall delay can be obtained by sums of two uniform distribution with weights in

Fig. 4.8. To reach the wait for trans location, one path has a delay time within

3 to 5 with 80% probability; the other path has a delay time within 3 to 10 with

67

Figure 4.7: Environment automaton with probabilistic choices.

Figure 4.8: Distribution of reachability time with probabilistic choices.

20% probability.

• Uniform distributions are set up to stochastic automata by time constraints. Fig. 4.9

shows an environment automaton with an uniform distribution. The wait for trans

location is used to see the reachability within the time-interval [2,4]. The delay of

the transition from the initial state is resolved by an uniform distribution over

[2,4]. Hence, the response time is given by the uniform distribution as illustrated in

Fig. 4.10.

• Exponential distributions are taken place in locations of stochastic automata. The

locations without a time bounded, choose delays according to exponential distribu-

tions with rates supplied by users. Fig. 4.11 shows an environment automaton with

68

Figure 4.9: Environment automaton with uniform distributions.

Figure 4.10: Uniform distribution of reachability time.

Figure 4.11: Environment automaton with exponential distributions.

an exponential distribution. In initial state, 1:2 is a rate for exponential distribu-

tion. After the initial delay, the task will write a message to CAN Interface. The

resulting distribution of the reachability time is given in Fig. 4.12.

69

Figure 4.12: Exponential distribution of reachability time.

4.5 Forwarder Module

The Forwarder model is changeable in the framework, which is in charge of translating

protocols and forwarding messages in the IVN systems. There are many works that

propose scheduling algorithms to improve forwarding efficiency of the gateway. In this

work, we implement a ForwardController automaton with some essential functions, such

as monitoring messages, converting protocols, and forwarding messages.

Firstly, the ForwardController monitors receiving buffers in the CAN and FlexRay In-

terface of the nodes that are connected to it in real time. When a message is received by

a buffer, the ForwardController inspects all receiving buffers to forward messages based

on a scheduling policy. The ForwardController adopts an alternate scheduling for for-

warding CAN and FlexRay messages. Fig. 4.13 shows the fragment of ForwardController

automaton for monitoring Interface. When a message is stored in a receiving buffer, the

automaton gets a synchronization channel from protocol models while leaves the location

idle, and goes to the urgent location monitor interface. The following three transi-

tions from this location indicate the scheduling policy of the gateway. When there are

no messages in the Interface, the automaton returns to the location idle. CRMsgCounter

counts the number of CAN message received, and FRRMsgCounter counts the number of

FlexRay message received.

• There are only FlexRay messages in the Interface. The automaton forwards a

FlexRay message with the smallest identifier number to a CAN environment.

• There are only CAN messages in the Interface. The automaton forwards a FlexRay

70

12

3
Figure 4.13: GatewayController fragment for monitoring the Interface.

Figure 4.14: ForwardController fragment for forwarding messages.

message of the highest priority to a FlexRay environment.

• There are both FlexRay and CAN messages in the Interface. The forward controller

will deal with a CAN message first and then a FlexRay message.

Taking the first transition as an example, Fig. 4.14 is used to introduce the process of

71

forwarding messages. When a FlexRay message arrives in its receiving buffer first, the

constraint, CRMsgCounter==0 and FRRMsgCounter>0 are satisfied. The gateway updates

FRRPointer to 1, that is the gateway will check receiving buffers of FlexRay Interface from

the buffer with the smallest identifier. If the first buffer is no message, FRRPointer will

plus 1 to inspect the next buffer until a buffer has a FlexRay message. If a message was

found, the gateway checks whether the message needs to forward to the other environment,

by comparing the value of con and dest. If their value are same, the gateway will looks

for next message. Before forwarding the message, the length of the message will be

checked by a constraint. If the length meets the configuration of CAN message, this

message is directly copied to a temporary buffer by the function uploadFR() and waits

for forwarding. The gateway checks the sending buffer of CAN Interface corresponding

to the message. If the sending buffer is empty, the gateway transfers the message to the

sending buffer by function forwardFRR(), and sends a signal transmissionRequest to

CAN model. Here we consider a delay for forwarding message in the gateway. After

forwarding a message, the gateway goes back to the urgent location monitor interface.

If the length of the FlexRay message is beyond the configuration of CAN message, this

message will be divided to several messages with the maximum length of CANmessage and

and same configuration by the function upload. These message are stored in temporary

buffers, and will be forwarded one by one to the same sending buffer of CAN Interface

according to the identifier when the sending buffer is empty. As all messages in the

temporary buffers are forwarded, the gateway automaton is back to the urgent location

monitor interface. A whole ForwardController automaton is shown in Fig. 4.15, which

combines the monitoring process and forwarding process.

We have covered the construction of each module in the framework. An abstracted

system can build its model based on this framework and verify the reachability and

response time of messages in UPPAAL. In the next section, we will use an example to

show how to build a system model based on the framework.

4.6 An IVN System Design Model

Before constructing an IVN system design model, we need to abstract the original system

and know the system design precisely, including the architecture of the IVN system,

parameters of the CAN and FlexRay protocols, and the design of the Environment and

Forwarder. Then, each module of the framework can be build in UPPAAL. We will show

how to model an IVN system design using the framework by a system design.

The design system has two environments, a FlexRay environment (FRE1) and a CAN en-

72

vironment (CANE2), which are connected by a FlexRay bus, a gateway (GatewayController)

and a CAN bus. Fig. 4.16 shows the architecture of the system based on the abstraction.

All parts of the system model come from the framework described in section 4.1. The

FRE1 has a message msg1 that needs to be sent to the CANE2. The CANE2 also has a

message msg2 that needs to be sent to the FRE1. The lengths of msg1 and msg2 are 3 and

2. The communication cycle of FlexRay has two static slots and one dynamic slot, and

the slot action point and mini-slot action are same. The msg1 is a static message assigned

to the second static slot in the FlexRay, and with an identifier 2 in the CAN. The msg2 is

with an identifier 1 in the CAN, and is a dynamic message assigned to the dynamic slot

in the FlexRay. The GatewayController performs basic functions to forward messages

between FRE1 and CANE2.

According to the description of the IVN system design, the parameter settings in the

Configuration are listed in Table 4.2, which meet the above description. We build two

automata to achieve the requirements of the two environments, FRE1 and CANE2, as shown

in Fig. 4.17. They are two sporadic tasks which write msg1 and msg2 following their

design. The system design has all types of environments and buses, and messages which

are sent to different environments. Thus, this system design is appropriate to illustrate

the framework. The design model is set up under the framework in UPPAAL.

4.7 Message Transmission

The framework provides a way to model communication behaviors between CAN sub-

network and FlexRay subnetwork and verify timed properties of messages. Hence, the

transmission of messages is also extremely important part of an IVN system model. To

describe transmission process of a message within an IVN system model, we summary the

message transmission under six topologies. Fig. 4.18 shows six possible system topologies,

where E1 and E1 represent a CAN environment or a FlexRay environment, F, F1 and F2

are abstracted gateways, and a CAN bus (CAN) or a FlexRay bus (FlexRay) between for-

warders or an environment and a forwarder. For each case, a CAN message or a FlexRay

message send from E1 to E2, we use sequence diagrams to show the message transmission,

as shown in Fig. 4.19 to Fig. 4.24.

Taking the Case 1 as an example, we explain the message transmission process in

details. There is a FlexRay environment, a forwarder and a CAN environment. We

assume that there is a FlexRay message (FRMsg) from the E1 to the E2. The message as

a actor requests transmission at some point. Firstly, a FREnv write the FRMsg to a buffer

in FRInterface by the function writeFRMsg(). After that, the FRProtocol model will

73

Table 4.2: Configuration of the IVN system design

Name Value

numberofCANEnv

numberofFREnv

numberofForwarder

numberofCANPro

numberofFRPro

numberofCANMsg

maxLengthofCANMsg

numberofFRMsg

maxLengthofFRMsg

numberofCycle

numberofSlot

numberofStaticSlot

numberofMinislot

lengthofStaticSlot

lengthofMinislot

lengthofNIT

slotActionPoint

minislotActionPoint

1

1

1

1

1

2

2

2

3

5

3

2

10

10

2

2

1

1

74

transmit the FRMsg to FlexRay bus at a slot corresponding the FRMsgID. When the slot has

finished, the FRBus model executes receiving function (receiveFRMsg()) and the FRMsg

is stored to FRInterface. Then, the FRMsg will be forwarded to the CAN subnetwork by

the Forwarder and restored to the CANInterface. The CANProtocol model will transmit

the FRMsgID according to its priority, and save to the CANInterface. Eventually, the

FRMsg is read by the CANEnv.

In Case 2, the transmission process from a CAN environment to a FlexRay environment

is similar to Case 1. Case 3 and Case 4 indicate a forwarder centric topology, that is, a

forwarder may connect one or more environment using the same bus protocol. In Case 5

and Case 6, there are two forwarders connected in a bus, and the forwarders have other

environments connected in other buses. If an abstracted IVN model has a more complex

topology, a message needs to go through multiple subnetworks and gateways to reach its

destination node, the transmission of the message might repeat this sequence.

75

Figure 4.15: A ForwardController automaton.

76

FRE1 CANE2

Forwarder

ForwardController

FRInterface

POC

NIT

FSP

StaticMAC

DynamicMAC

FlexRay
communication
controller

FRMedium

Arbitration

Transceiver

CAN
communication
controller

CANInterface

CANMedium

FlexRay environment CAN environment

Figure 4.16: Architecture of the IVN system design.

(a) The sporadic task (b) The cyclic task (c) The periodic task

(a) The FRE1 automaton. (b) The CANE2 automaton.

(c) The periodic task

Figure 4.17: Environment model for the IVN system design.

77

FE1
CANFlexRay

E2

(a) Case1: a FRMsg from E1 to E2

FE1
FlexRayCAN

E2

(b) Case2: a CANMsg from E1 to E2

FE1
FlexRay2FlexRay1

E2

(c) Case3: a FRMsg from E1 to E2

FE1
CAN2CAN1

E2

(d) Case4: a CANMsg from E1 to E2

F1E1
CANFlexRay1

F2

(e) Case5: a FRMsg from E1 to E2

FlexRay2
E2

F1E1
FlexRayCAN1

F2
CAN2

E2

(f) Case6: a CANMsg from E1 to E2

Figure 4.18: Six possible system topologies.

FRMsg

FREnv FRProtocol Forwarder CANProtocol CANEnv

1.1.2.1.2: receiveCANMsg()

1.1.2.1.1: transmitCANMsg()

1.1.2: receiveFRMsg()

1.1.1: transmitFRMsg()

1.1.2.1: forward()

1.1: writeFRMsg()
1: sendRequest

Figure 4.19: The sequence diagram of the Case 1.

78

CANMsg

CANEnv CANProtocol Forwarder FRProtocol FREnv

1: Send request

1.1.2.1.1: transmitFRMsg()

1.1.1: transmitCANMsg()

1.1.2.1.2: receiveFRMsg()

1.1.2.1: forward()
1.1.2: receiveCANMsg()

1.1: writeCANMsg()

Figure 4.20: The sequence diagram of the Case 2.

FRMsg

FREnv1 FRProtocol1 Forwarder FRProtocol2 FREnv2

1.1.2.1.2: receiveFRMsg()

1.1.2.1.1: transmitFRMsg()

1.1.2.1: forward()
1.1.2: receiveFRMsg()

1.1.1: transmitFRMsg()

1.1: writeFRMsg()

1: sendRequest

Figure 4.21: The sequence diagram of the Case 3.

79

CANMsg

CANEnv1 CANProtocol1 Forwarder CANProtocol2 CANEnv2

1.1.2.1.2: receiveCANMsg()

1.1.2.1.1: transmitCANMsg()

1.1.2.1: forward()

1.1.2: receiveCANMsg()

1.1.1: transmitCANMsg()

1.1: writeCANMsg()

1: sendRequest

Figure 4.22: The sequence diagram of the Case 4.

FRMsg

FREnv1 FRProtocol1 Forwarder1 CANProtocol Forwarder2 FRProtocol2 FREnv2

1.1.2.1.2.1.2: receiveFRMsg()

1.1.2.1.2.1.1: transmitFRMsg()

1.1.2.1.2.1: forward()

1.1.2.1.2: receiveCANMsg()

1.1.2.1.1: transmitCANMsg()

1.1.2.1: forward()

1.1.2: receiveFRMsg()

1.1.1: transmitFRMsg()

1.1: writeFRMsg()

1: sendRequest

Figure 4.23: The sequence diagram of the Case 5.

CANMsg

CANEnv1 CANProtocol1 Forwarder1 FRProtocol Forwarder2 CANProtocol2 CANEnv2

1.1.2.1.2.1.2: receiveCANMsg()

1.1.2.1.2.1.1: transmitCANMsg()

1.1.2.1.2.1: forward()

1.1.2.1.2: receiveFRMsg()

1.1.2.1.1: transmitFRMsg()

1.1.2.1: forward()

1.1.2: receiveCANMsg()

1.1.1: transmitCANMsg()

1.1: writeCANMsg()

1: sendRequest

Figure 4.24: The sequence diagram of the Case 6.

80

Chapter 5

Verification and Evaluation

Based on the framework, we implement some IVN system model to verify properties

from two aspects, qualitative verification and quantitative verification. The qualitative

verification is complete and exhaustive to guarantees that the framework satisfies a certain

property absolutely. We check qualitative representation to verify the validity of the

framework and show the reachability and response time of message in an IVN design

model by traditional model checking. To show that the framework is reusable, three

typical topologies of IVN systems are accomplished and their response times are compared.

The quantitative verification is accurate to tackle ubiquitous probabilistic behaviors in the

IVN systems. We construct probabilistic IVN design models and check the reachability

and response time of messages by statistical model checking. The influence of probabilistic

behaviors on system properties is analyzed from quantitative verification results.

5.1 Qualitative Verification

The proposed framework is evaluated in terms of four aspects: 1) a basic but non-trivial

design of IVN system is applied to evaluate the validity of the framework by checking

a train of essential properties with UPPAAL; 2) we check the reachability and response

time of messages in the IVN system; 3) the reusability of the framework is illustrated by

designing three typical IVN system topologies and comparing their timed properties; 4)

the performance of the framework is tested by a design model.

5.1.1 Validity of the IVN System Model

In the framework, the protocol module is vitally critical for transmitting message. Hence,

we firstly check some properties to guarantee the correctness of the CAN and FlexRay

81

model using the system design model.

• Check1: Is the system model deadlock free?

Query1: A[] not deadlock

This query is satisfied. The system model will never be deadlock. The deadlock

freeness is an important property for verifying the credibility of the model.

• Check2: Are the messages transmitted and received in the assigned slots in FlexRay?

Query2: A[] forall(i:int[1,3])(FRMsgForReceive[i].length > 0) imply

(commStatus.slotCounter==i)

This query is satisfied. In this model, we set up three slots in FlexRay communica-

tion cycle. All messages are correctly received in the allocated slots. The msg1 will

be received in slot 2, and the msg2 will be received in slot 3. Thus, the FlexRay

model can control the message sending and receiving processes following the slot

number.

• Check3: Each message transmission monopolize the bus. Does only one buffer

receive the transmitted message in a slot?

Query3: A[] forall(i:int[1,3]) forall (j:int[1,3])

(FRMsgForReceive[i].length>0)&&(FRMsgForReceive[j].length>0)

imply (j=i)

Query4: A[] forall(i:int[1,2]) forall (j:int[1,2])

(CANMsgForReceive[i].length>0)&&(CANMsgForReceive[j].length>0)

imply (j=i)

The two queries are satisfied. It means that only one message will be received by a

buffer of FlexRay or CAN. If two receiving buffers in Interface get messages at the

same time, the identifier of the messages should be same. That is only one message

utilizes bus in a moment of the system.

• Check4: Does the application model output messages successfully?

Query5: E<> forall(i:int [1,3])(FRMsgForSend[i].length>0)

Query6: E<> forall(i:int [1,2])(CANMsgForSend[i].length>0)

The two queries are satisfied. The application model can write messages to Interface.

• Check5: Will the message in the sending buffers be sent?

82

Query7: forall(i:int [1,3])((FRMsgForSend[i].length>0) imply

(FRMsgForSend[i].length==0)

Query8: forall(i:int [1,2])((CANMsgForSend[i].length>0) imply

(CANMsgForSend[i].length==0)

The two queries are satisfied. The CAN and FlexRay models can finish transmissions

for all messages.

We examined the Check1-5 to ensure whether messages were stored in the inter-

face correctly, that is, messages waiting in the sending buffers are transmitted by the

CAN/FlexRay model and the transfer process conforms to the protocol specifications.

The Check1 confirms that the IVN system design model is no deadlock, and can per-

form message transmissions. The Check2 states that, while a receiving buffer contains

a message, the identifier of the message should equal to the current slot number, which

means message transmission occur in a correct slot. The Check3 states that there is only

one message being sent in any time. The Check4 states that the application models can

successfully write messages to the sending buffers of CAN and FlexRay. The Check5

means that all of messages can be transmitted. These queries state that FlexRay model

accords with TDMA communication scheme, and the FlexRay model and CAN model

satisfy protocol specifications regarding normal message transmissions.

Next, the message transmission process was checked, since we have to ensure that these

nodes connection and communication correctly. The transmission processes of the msg1

and msg2 in the CAN and FlexRay environments are monitored by following queries:

• Check6: Can the msg1 be transmitted from E1 to E2?

Query9: E<> (FRMsgForSend[2].length > 0)

Query10: (FRMsgForSend[2].length > 0)-->(FRMsgForSend[2].length == 0)

Query11: (FRMsgForSend[2].length>0)-->(busFlexRay.id == 2 &&

busFlexRay.length > 0)

Query12: (busFlexRay.id == 2&&busFR.length == 0)-->

(FRMsgForReceive[2].length > 0)

Query13: (FRMsgForReceive[2].length > 0)-->

(CANMsgForSend[2].length > 0)

Query14: ((CANMsgForSend[2].length > 0)-->

(CANMsgForSend[2].length == 0)

83

Query15: (CANMsgForSend[2].length > 0)-->

(busCAN.id == 2&&busCAN.length > 0)

Query16: (busCAN.id == 2&&busCAN.length == 0)-->

(CANMsgForReceive[2].length > 0)

• Check7: Can the msg2 be transmitted from E2 to E1?

Query17: E<> (CANMsgForSend[1].length > 0)

Query18: (CANMsgForSend[1].length > 0)-->

(CANMsgForSend[1].length == 0)

Query19: (CANMsgForSend[1].length>0)-->

(busCAN.id == 1&&busCAN.length > 0)

Query20: (busCAN.id == 1&&busCAN.length == 0)-->

(CANMsgForReceive[1].length > 0)

Query21: (CANMsgForReceive[1].length > 0)-->

(FRMsgForSend[3].length > 0)

Query22: (FRMsgForSend[3].length > 0)-->(FRMsgForSend[3].length == 0)

Query23: FRMsgForSend[3].length>0)-->(busFlexRay.id == 3 &&

busFlexRay.length > 0)

Query24: (busFlexRay.id == 3&&busFR.length == 0)-->

(FRMsgForReceive[3].length > 0)

Query 9-16 check the basic functionalities of the framework. The msg1 is written by

the FlexRay task model until it is received by E2. Query9 indicates the message is written

to a FlexRay sending buffer in the Interface. Query10 and Query11 say the message in

the sending buffer is sent to FlexRay bus. Query12 says the message is received by the

corresponding receiving buffers in FlexRay interface. Query13 means that the gateway

forward the message from FlexRay to CAN. Afterwards, the message is transferred to

corresponding sending buffers of the other environment. That is the gateway can forward

message between the FlexRay and CAN environments. Query14 and Query15 indicate

the message can be transmitted to CAN bus by CAN model. Query16 says the message

is received by E2. Similarly, we also check the msg2 that is transmitted from E2 to E1

using Query17–Query24. These queries are satisfied in the IVN system design model.

The Check6 and Check7 verify the process of messages from FlexRay to CAN and from

CAN to FlexRay respectively. We can conclude that the proposed framework is valid for

normal message transmissions under the CAN and FlexRay protocols.

84

(a) The sporadic task

(b) The cyclic task (c) The periodic task

(a) Application model of E1 (b) Application model of E2

Figure 5.1: Observer for checking response time.

5.1.2 Reachability

To verifying safety property of the IVN system, the reachability of messages is considered.

When there are many messages transmitted between a CAN environment and a FlexRay

environment, it is essential to verify whether all messages can be received or if there

is a message lost. Here, we also use the IVN design model but change the application

model. For the system with two messages that need to be sent repeatedly, we used

two cyclic tasks to send msg1 and msg2 in the system design model. The results of

Query29 and Query30 show that msg1 and msg2 cannot always be received, which are not

satisfied. As the priority of msg1 is lower than that of msg2, it cannot be sent in the CAN

environment. Because messages are frequently sending through the gateway, the gateway

becomes congested. So some messages are lost during transmission.

• Check10: Can all messages be received by their destination?

Query29: (observerMsg1.sent --> observerMsg1.received)

Query30: (observerMsg2.sent --> observerMsg2.received)

5.1.3 Response Time

A main feature of the framework is the description of behaviors with timed constraints.

The transmission time of messages can be checked using an observer model that monitors

specific model states. A sender task can release messages repeatedly, and a receiver task

receives messages immediately when the interface detects the presence of data.

From a message waiting in a sending buffer to the message received from a receiving

buffer by the destination node, this process includes the transmission time on buses as

well as the waiting time in the interface, called response time. We can check a train of

85

Figure 5.2: Observer for checking response time.

timed properties to obtain the best-case response time (BCRT) and worst-case response

time (WCRT) of messages.

In the system design model, msg1 is sent from the FlexRay environment E1 and trans-

mitted to the CAN environment E2. We check the response time of msg1 with an observer

model as shown in Fig. 5.2.

The observer model monitors the msg1. Query25–Query28 verify BCRT and WCRT

for msg1.

• Check8: What is the best response time of the msg1?

Query25: E<>(observerMsg1.CANReceiveBuffer && observerMsg1.x<34)

Query26: A[](observerMsg1.CANReceiveBuffer imply observerMsg1.x>=34)

• Check9: What is the worst response time of the msg1?

Query27: E<>(observerMsg1.CANReceiveBuffer && observerMsg1.x>94)

Query28: A[](observerMsg1.CANReceiveBuffer imply observerMsg1.x<=94)

In Check8, Query25 and Query26 indicate the best case response time of msg1. The

Query25 means if there is a response time less than 34 time units. The Query26 means if

all response time of msg1 are greater than or equal to 34 time units. The checking results

are the Query25 is not satisfied, and the other one is satisfied. So 34 is the BCRT of msg1.

In Check9, we obtain the worst case response time of msg1. The Query27 is not satisfied,

that is no response time of msg1 is greater than 94 time units. The Query28 is satisfied,

that is all response time of msg1 is less than or equal to 94 time units. As a result, the

WCRT of msg1 is 94. The values of BCRT and WCRT in a query are determined by trial

86

and error based on the parameters of the IVN system currently, such as message length,

length of cycle of the task and communication, and delay time in gateway.

There is a special case, when the length of msg1 is greater than the maximum length of

CAN message. We considered msg1 to have a length of 9, which is sent from a FlexRay

environment to a CAN environment. In this case, the message is divided into a message

of length 8 and a message of length 1. The BCRT and WCRT is 100 and 160. In the

same way, we can check the BCRT and WCRT of a message using these four queries.

Thus, the framework can check the timed properties with the help of the observer model.

5.2 Quantitative Verification

In the last section, we checked validity, reachability and response time of IVN systems

using classical model checking. However, the performance is limited by complexity. The

system model can only handles with several messages with different identifiers. A practical

IVN system has a large number of messages transmitted, and these messages are sent by

stochastic tasks. The model checking method is not able to perform stochastic behaviors

and checks properties along with state space explosion problem for complicated systems.

Consequently, in this section, we present application models with probability based on the

CAN model of the framework and verify probabilistic properties to improve the previous

results.

5.2.1 Application Model with Probability

In the IVN systems, FlexRay protocol defines a hard real-time communication with a

fixed length communication cycle, and messages are sent in their special time slots. CAN

protocol is a soft real-time communication with a fixed priority scheduling, and timing

of message transmission is undecidable. CAN subsystem will affect response time of the

entire IVN system. Hence, we first consider CAN system as a checking object to do

quantitative verification in this work.

The probabilistic application models are mentioned in section 4.4.2. For constructing a

CAN system model, we also need CAN protocol model and CAN interface as mentioned

in chapter 3. The stochastic model of CAN system can be built by the probabilistic task

automata, Interface and CAN protocol model. Here we make a comparison of models

between model checking and statistical model checking, as shown in Table 5.1. According

to the structure of CAN nodes, each layer has be compared.

• Application model are described by task automata. When we checked the response

87

Table 5.1: Comparison of models between model checking and statistical model checking

Model Model checking Statistical model checking

Application

1) Tasks send messages once.

2) The triggering time is satisfying

a constraint.

1) Tasks send messages repeatedly.

2) The triggering time is based on

a probability distribution.

Interface Same Same

Protocol

1) Arbitration automaton is same.

2) Only a transceiver automaton

deals with all messages.

1) Arbitration automaton is same.

2) Messages with the same identifier

have a transceiver automaton.

Figure 5.3: Transceiver automaton for statistical model checking.

time of messages, task models send each message once, and the timing of writing

messages is satisfying a constraint (CANMsgForSend[id].length == 0).

• Interface model are same in both model checking and statistical model checking.

• For protocol model, the arbitration automaton is no change. The transceiver au-

tomaton will be installed to each message identifier as shown in Fig. 4.11, since the

quantitative verification has to clearly know states of each message. The transceiver

monitors messages from writing to receiving.

88

(a) Task1

(b) Task2

(c) Task3

Figure 5.4: Tasks automata and distributions of reachability time in Design 1.

5.2.2 Reachability and Response Time

In the qualitative verification, we have checked the reachability of messages using two

cyclic tasks, but the results of Query29 and Query30 are not satisfied. There are messages

were not received. Also, the response time (BCRT andWCRT) of message can be obtained

by a series of queries. However, we cannot get more information to analyze the reachability

and response time from the qualitative verification. Using the quantitative verification,

the system can be simulated for finitely many runs, and a statistical result is given if

the property is satisfied with some degree of confidence. Consequently, we implement

two CAN system design models with different probabilities to verify and analyze the

reachability and response time.

• Design 1: This CAN system has three nodes, and each node has a task to write

messages with delays according to an exponential distribution. Fig. 5.4 shows three

task automata and exponential distribution of their arrival to wait for trans. The

rate of exponential distribution is 1, 1:2 and 1:4 for each task, and the expected

value of the exponential density function is 1, 2 and 4. That is, the frequency of

task1, task2 and task3 is 1, 2 and 4 for delivering messages.

89

– Reachability: We check a probability that is a message reaches a state where

it has finished its transmission before 100 time units during the run of the

system. The state indicates the message has been received. Three queries for

each message are verified in SMC-UPPAAL as following:

Query31: Pr[<=100](<>transceiver(1).suc) [0.9998,1]

Query32: Pr[<=100](<>transceiver(2).suc) [0.9998,1]

Query33: Pr[<=100](<>transceiver(3).suc) [0.617107, 0.627107]

The Query31 and Query32 are satisfied with a probability close to 100% , that

means the msg1 and msg2 can be received almost. The msg3 with lower priority,

will wait for arbitration a long time, during the 100 time units msg3 is received

with lower probability.

– Response time: Although the messages can be received within 100 time

units, we have to know what the response time of the messages is and how

many present messages can be received within 10 time units, for a real-time

system. The following three queries check response times of the messages.

Query34: Pr[<=100](<>transceiver(1).suc && transceiver(1).x <=10)

[0.9998,1]

Query35: Pr[<=100](<>transceiver(2).suc && transceiver(2).x <=10)

[0.9998,1]

Query36: Pr[<=100](<>transceiver(3).suc && transceiver(3).x <=10)

[0.190766,0.200766]

According to the results, the response time of almost msg1 and msg2 is less

than or equal 10 time units. Most of msg3 cannot received within 10 time

units. Then, we can check the probability density of the response time and

the average response time of the response time by Fig. 5.5. Based on the

cumulative probability distribution, msg1 and msg2 are received during a short

time interval.

• Design 2: This CAN system has three nodes, and each node has a task to write

messages with delays according to an uniform distribution. Fig. 5.6 shows three

task automata and uniform distribution of their arrival to wait for trans. The

90

Figure 5.5: Probability density distribution of response time in Design 1.

expected value of the uniform density function is 1, 2 and 4, that is, the frequency

of task1, task2 and task3 is 3, 5 and 7 for delivering messages.

– Reachability: Similarly, we check probability of message reachability. There

are three queries for each message are verified in SMC-UPPAAL as following:

Query37: Pr[<=100](<>transceiver(1).suc) [0.9998,1]

Query38: Pr[<=100](<>transceiver(2).suc) [0.9998,1]

Query39: Pr[<=100](<>transceiver(3).suc) [0.995883,0.997883]

The Query37 and Query38 are satisfied with high probability, that means the

msg1 and msg2 can be received mostly. Although the msg3 has the lowest

priority, the probabilistic reachability is better than Design 1.

– Response time: In the same way, the response time has been checked by

following queries.

Query40: Pr[<=100](<>transceiver(1).suc && transceiver(1).x <=10)

[0.9998,1]

91

(a) Task1

(b) Task2

(c) Task3

Figure 5.6: Tasks automata and distributions of reachability time in Design 2.

Query41: Pr[<=100](<>transceiver(2).suc && transceiver(2).x <=10)

[0.9998,1]

Query42: Pr[<=100](<>transceiver(3).suc && transceiver(3).x <=10)

[0,0.00199982]

According to the results, the response time of almost msg1 and msg2 is less than

or equal 10 time units. Few msg3 can received within 10 time units. Then,

we can check the probability density of the response time and the average

response time of the response time by Fig. 5.7. In the cumulative probability

distribution figure, msg1 and msg2 are received during a short time interval as

Design 1, but msg3 has a higher probability to transmit than Design 1.

5.3 Evaluation

In this section, we will evaluate the framework from multiple aspects. Firstly, we will

discuss whether the framework conforms to protocol specification, and checked properties

are credible. Secondly, we estimate the applicability and reusability of the framework. At

92

Figure 5.7: Probability density distribution of response time in Design 2.

last, we show the performance in different verifications.

5.3.1 Validity of the Abstraction

In order to discuss the preservation of the framework, we illustrated it from two aspects:

abstracting the protocol model from protocol specifications and the architecture of IVN

systems.

We abstracted the description of the CAN protocol and FlexRay protocol according to

their specifications. It is extremely important that the CAN protocol model and FlexRay

protocol model perform communication behaviors directly. We checked properties from

protocol specifications that are listed in section 5.1.1. These properties are kept in our

system model, but there are some properties that cannot be verified because of the ab-

straction the specifications. We list as many properties as possible in Table 5.2 and

Table 5.3 from CAN specification and FlexRay specification to evaluate the framework.

In Table 5.2, No.1 to No.11 can be satisfied in our framework, but No.12 to No.13 can

not be checked. No.12 belongs to deal with error message, No.13 relates to remote frames

that are not considered in this work, and No.13 is a set of properties related to physical

93

Table 5.2: Properties in CAN specifications

No. Property Result

1 If and only if a node may send a message in a certain time. Y

2
Messages sent by environments can participate in the arbitration,

if and only if the bus is free.
Y

3 Multiple nodes can participate in the arbitration at the same time. Y

4
After the arbitration begins,

there must be a message that wins the arbitration.
Y

5 If a node is sending a message, the bus state must be busy. Y

6 A message that wins the arbitration has the highest priority. Y

7 While a transmission ends, the bus state becomes to idle. Y

8 Each node in a same cluster can receive same messages. Y

9 Every node has to recognize messages before dealing with messages. Y

10
Every node can only receive messages that

are consistent with the filter setting.
Y

11 The clock of every node is synchronous. Y

12
If a corrupted frame is detected by a node,

the message destroyed and retransmitted.
-

13
If a node send a remote frame,

the node will eventually receive the message requested.
-

14 Error signals can be detected. -

layer. Similarly, Table 5.3 also lists properties that can be verified, and some types that

can not be checked.

The CAN and FlexRay models in UPPAAL are established based on the CAN and

FlexRay specifications. We have mainly extracted the content related to the communi-

cation behaviors in the case that the transmission is correct, as we listed the preserved

properties in the tables. However, those signal-level behaviors, as well as those behaviors

related to error handling, are not considered. Therefore, these related properties cannot

be preserved in our model.

On the other hand, we checked reachability and response time of messages in IVN

system models. These results are based on the abstraction. If we had not simplify

the architecture of IVN systems, the checking results would have been different. We

try to build a group of IVN systems without the architecture abstraction, and check

94

Table 5.3: Properties in FlexRay specifications

No. Property Result

1 Messages sent by nodes according to slot number. Y

2 If and only if a node may send a message in a certain slot. Y

3 All messages transmit in their fixed slot. Y

4 Messages can only be transmitted after an action point in each slot. Y

5
If there is no minislots in the communication cycle,

the cycle has not a dynamic segment.
Y

6
If there are no more slots in a cycle,

no more messages will be transmitted during this cycle.
Y

7
When the last slot ends and there are still minislots,

these minislots have to be consumed to start the next cycle.
Y

8 As soon as a message is transmitted, the bus state is marked as TRANS. Y

9 When a transfer is finished, the bus state is changed to CHIRP. Y

10 If and only if a slot ends, the bus state becomes IDLE. Y

11
In the dynamic segment, if there is no messages

need to be sent, the slot only takes one minislot.
Y

12 If a node is sending a message, the bus state must be busy. Y

13 A message transmits according to the time slot that it defines. Y

14 While a transmission ends, the bus state becomes to idle. Y

15 Each node in a same cluster can receive same messages. Y

16 Every node has to recognize messages before dealing with messages. Y

17
Every node can only receive messages that

are consistent with the filter setting.
Y

18 The clock of every node is synchronous. Y

19
If a corrupted frame is detected by a node,

the message destroyed and retransmitted.
-

20
If a node send a remote frame,

the node will eventually receive the message requested.
-

21 Error signals can be detected, and it identified as an error frame. -

95

reachability and response time of messages in each systems. Now we restore a subnetwork

of an environment with different topologies, as shown in Fig. 5.8. Fig. 5.8 (a) shows an

abstracted IVN system that describe in section 4.6, and the E2 is an abstracted CAN

subsystem. We replace the subsystem E2 with different topologies. In Fig. 5.8 (b), the

subsystem is with bus topology, and N1, N2 and N3 are nodes connected in a CAN bus.

In Fig. 5.8 (c), the subsystem is with star topology, and N2 and N3 connect to N3, and

N3 is connected to the forwarder F. In Fig. 5.8 (d), the subsystem is with point to point

topology, and N1, N2 and N3 are nodes connected by three CAN buses.

In these system, the F directly connects to the N1 of the subnetwork, so we call it a

connection node. Assuming that there is a FlexRay message (FRMsg) sending from E1

to N3, we verify response time of the FRMsg from E1 to the connection node (N1) and

the destination N3 in every architecture. Table 5.8 shows results compared with the

abstracted systems.

• When the subnetwork using a bus topology, the response time of the FRMsg is same

as the abstracted system. The BCRT and WCRT of the message to reach the N1

and N3 are uniform. All nodes can receive the message at the same time, since

these nodes are connected to the F in a CAN bus.

• When the subnetwork using a star topology, the response time of the FRMsg to the

N3 is longer than the abstracted system, because the N1 relays the message again

to the destination node (N3). The BCRT and WCRT, it takes for the message to

reach the N1, is the same as the abstract system.

• When the subnetwork using a point to point topology, the response time of the FRMsg

is more long, because the N1 and N2 relay the message twice to the destination

node N3. But the BCRT and WCRT for reaching the N1 is not changed.

These results suggest that the abstraction of the architecture of the systems can preserve

the timed property until the first node directly connected to the gateway, as subnetworks

are abstracted as environments connected to the original gateway. But the inside of the

subnetwork can not be preserved, we can use single protocol to verify it.

5.3.2 Applicability

In section 2.5.3, we have discussed topologies of IVN systems, and mention three types

based gateway, central, backbone and daisy chain topologies. The response time in these

topologies will be affected by the number of environments and the number of message

96

Table 5.4: Comparison of response times of the FRMsg in different topologies.

Subnetwork
From E1 to N1 From E1 to N3

BCRT WCRT BCRT WCRT

Star topology 34 74 64 104

Bus topology 34 74 34 74

Point to point topology 34 74 94 134

FE1
CAN1FlexRay

N1

N2

CAN2
CAN3

N3

FE1
CAN1FlexRay

N1
CAN3

N2
CAN3

N3

FE1
CANFlexRay

N1

N3

N2FE1
CANFlexRay

E2

(a) An abstracted system. (b) The E2 is a subsystem with bus topology.

(c) The E2 is a subsystem with star topology.

(d) The E2 is a subsystem with point to point topology.

Figure 5.8: Restored architectures of a subsystem.

identifiers. In order to estimate the applicability of the framework, for each of the three

IVN system topologies, we implemented three cases and compared their response time

(see Table 5.5. Note that CAN, FlexRay, and the forwarders and interfaces had the same

parameter settings.

• In Case 1, two environments make up the three topologies. The topologies of Case

1 are shown in Fig. 5.9, and the application model of each topology is shown in

Fig. 5.10.

– The central topology and daisy chain topology have same structure when the

system only has two environments. msg1 (id=2, length=3) is transferred from

97

Gateway Controller

Interface 1

…
Interface 2 Interface 3

FE1
CANFlexRay

E2
F1 F2

E2

FlexRay

E1

CAN1

F3

E3

CAN2 CAN3

FE1
CAN1FlexRay1

E2 F
FlexRay2CAN2

E2

(a) System 1. (b) System 2.

(c) System 3.

Figure 5.9: Topologies in Case1.

Figure 5.10: Task automaton for each E1 of the three IVN systems in Case1.

the FlexRay environment to the CAN environment. Hence, all response times

are the same.

– For the backbone topology, we consider two CAN environments connected by

the FlexRay protocol, so there are two forwarders between the CAN environ-

ments. Since msg1 (id=2, length=3) must be forwarded twice to reach the

destination environment, the response times of msg1 are longer than for other

topologies.

• In Case 2, we add one more environment node into IVN systems on each topology,

as shown in Fig. 5.11. An application model is applied to release messages in each

topology, as shown in Fig. 5.12. Here is a msg1 (id=2, length=3) is sent from E1

to E3.

– For the central and backbone topologies, even though there is one more envi-

ronment than in Case 1, the transmitting process of msg1 is unaffected. The

98

Reusability

!42

FE1

E3

CAN

CAN

FlexRay

E2

F1 F2

E2

FlexRay

E1
CAN

F3

E3

(b) Backbone(a) Central

E1 E2 E3F1 F2

FlexRay

CAN

FlexRay

(c) Daisy chain

• Different topologies

• We implemented three typical topologies using the framework, and
checked response time in three cases.

Figure 5.11: Topologies in Case2 and Case3.

Figure 5.12: Task automaton for each E1 of the three IVN systems in Case2.

BCRT and WCRT values in Case 2 are the same as in Case 1.

– The system model with daisy chain topology has a CAN environment E2 among

E1 and E3, i.e. There are two forwarders to connect these three environments.

As a result, from E1 to E3, the msg1 goes through G1 and G2, the BCRT and

WCRT values are greater than for Case 1.

• In Case 3, the structure is the same as for Case 2 in the Fig. 5.11, but two messages

are transmitted. There are two task models in E1 and E2, as shown in Fig. 5.13.

msg1 (id=1, length=3) is sent from E1 to E3; msg2 (id=2, length=3) is sent from

E2 to E3.

– In the central and daisy chain topologies, msg2 may trigger a forwarding delay

in the forwarder because the bus is occupied by other messages. Therefore,

the WCRT of the system in the central topology and daisy chain topology will

increase, and the BCRT values remain the same as in Case 2.

99

G1E1
CAN

FlexRay

E2
G1 G2

E2

FlexRay

E1
CAN

(b) Backbone(a) Central

E1 E2G1

FlexRay CAN

(c) Daisy chain

(a) Task automaton in E1. (a) Task automaton in E2.

Figure 5.13: Task automata for each E1 and E2 of the three IVN systems in Case3.

Table 5.5: Response time of each topology in the three cases.

Case 1 Case 2 Case 3

Topology BCRT WCRT BCRT WCRT BCRT WCRT

Central 34 74 34 74 34 104

Backbone 65 106 65 106 65 106

Daisy chain 34 74 83 123 83 164

– In the backbone topology, the response time is unchanged. Because msg1 and

msg2 can be transmitted in the same communication cycle of FlexRay part,

the number of message identifiers does not impact of the response time.

Based on these results, we determined the impact of each topology on the message

transmission process. When a lot of environments connect to a central forwarder, WCRT

will be increased due to the efficiency of the gateway. If environments join the forwarder

backbone of FlexRay, the response time will be affected only by the number of communi-

cation cycle. The number of environments between the sender and receiver in the daisy

chain topology, impacts of response time. Since these results are consistent with the

topological characteristics, we conclude that the framework can be applied to implement

abstracted design models of IVN systems with different topologies.

5.3.3 Reusability

We depicted behaviors of each module in chapter 3 and chapter 4. In the framework,

we defined the <<Fixed>> stereotype to describe CAN, FlexRay, Interface, Medium and

Configration module. These module can be reused to build different IVN systems with

little modification. We consider three IVN system with different number of environments,

100

Gateway Controller

Interface 1

…
Interface 2 Interface 3

FE1
CANFlexRay

E2
F1 F2

E2

FlexRay

E1

CAN1

F3

E3

CAN2 CAN3

FE1
CAN1FlexRay1

E2 F
FlexRay2CAN2

E2

(a) System 1 with star topology. (b) System 2 with backbone topology.

(c) System 3 with daisy chain topology.

Figure 5.14: The topologies of three systems.

buses and topologies. These three systems have been introduced before, and theirs ar-

chitectures are shown in Fig. 5.14. We will compare the models of the three system, and

discuss the parts of the model that can be reused and need to be changed.

The System1 has two environments and a forwarder, which is the IVN system design

model described in section 4.6. The System2 has three environments and three forwarders

with backbone topology, which is the system with backbone in the Case3 in section 5.3.2.

The System3 has three environments and two forwarders with daisy chain topology, which

is the system with daisy chain in the Case3 in section 5.3.2. We illustrate reusability by

comparing source codes of the three system models in UPPAAL. Table 5.6 shows the

number of code lines in each systems. First, we divide code of systems into four parts,

Configuration, CAN protocol, FlexRay protocol and Environments and forwarders. Then,

we calculate the amount of code in each part of the systems, and use the System1 as a

benchmark. After that, we compare code of each part between the systems.

• The Configuration segment of the source code is the declaration part for defining

global variables. All systems have 103 lines. There are 8 lines of code in the

System2 and System3 that are different from the System1, accounting for 7.7% of

the Configuration, because we set different numbers of environments, protocols and

forwarders.

• The CAN protocol segment has CANInterface, Arbitration, Transceiver and CAN-

Medium that implement transmission behaviors and connection with environments

and forwarders. In these three systems, they have the same code of the CAN pro-

tocol.

101

Table 5.6: Comparison of source code of the three systems.

Name
Number of

Lines

Lines of source code in UPPAAL

Configuration
CAN

protocol

FlexRay

Protocol

Environments and

forwarders

System1 Lines 103 139 483 138

System2

Lines 103 139 483 257

Different Lines 8 0 0 -

Percentage 7.7% 0% 0% -

System3

Lines 103 139 483 254

Different Lines 8 0 0 -

Percentage 7.7% 0% 0% -

• The FlexRay protocol segment has FRInterface, FRMedium and five automata,

POC, StaticMAC, DynamicMAC, NIT and FSP, which implement transmission

behaviors and connection with environments and forwarders. These three system

have the same code of the FlexRay protocol.

• The Environments and forwarders segment is changeable in the framework. All

systems have different designs, such as different topologies and environment designs.

Therefore, we did not compare the reusability of this segment of the code.

For different IVN systems, we just need to build the Environment module and Forwarder

module based on the system design, and then change parameters of theConfiguration for

setting other modules. In addition, we give a general description of the reusable parts

and changeable parts of each module in the framework.

• Configuration:

– Reusable: This module contains all parameters about other modules. These

parameters describe the composition of an IVN system and set up protocols.

These parameters apply to any abstracted IVN system operating with CAN

and FlexRay. We do not need to change the name of these parameters, and

can not add or subtract them.

– Changeable: Each IVN system is described differently, such as the number of

nodes, message length, protocol setting and so on. Configuration can describe

102

those information by changing the value of the parameters, and the value must

meet constraint of the parameter described in the UML class diagram.

• Environment :

– Reusable: This module presents two operations to write/read message to/from

Interface for each CAN environment and FlexRay environment. These opera-

tions define behaviors of accessing Interface. They are fixed and can be reused

in difference task models.

– Changeable: Environment can describe a variety of functions to process mes-

sages. As we have shown in section 4.4, we can design different mechanisms

for sending messages, such as the sending period, and add other functions to

deal with messages. In addition, the number, identifier, length and destination

of messages can be flexible changed in the task automaton, according with

Configuration.

• Forwarder :

– Reusable: This module models a scheduling algorithm to control message for-

warding between CAN and FlexRay environments. There are four operations

used to interact with Interface in Fig. 4.2. Thus, these operations can not be

changed and can be reused to guarantee message transmissions.

– Changeable: There are many kinds of gateways to handle message forward-

ing. In order to satisfy the diversity of gateways, the forwarding strategy of

Forwarder can be established by users.

• Interface:

– Reusable: This module is defined by CAN frame format and FlexRay frame

format, and provides buffers of the frame format to store messages. The struc-

ture of the buffer is fixed for every node.

– Changeable: The number and length of buffers are described by Configuration

and changed by setting Configuration about messages.

• CAN :

– Reusable: The CAN model is a part of Communication Controller module and

has two automata. These two automata are reusable for any cases.

• FlexRay :

103

– Reusable: The FlexRay model is a part of Protocol module and has five au-

tomata. These automata are reusable for any cases.

5.3.4 Performance

To evaluate the performance of the framework, we use the simple example from section

4.1, to check the deadlock property, which is significant in exhaustively searching the

state space of the system. The checking was conducted using UPPAAL 4.1.14 on a Mac

OSX E1 Capitan machine with an Intel Core i7 3 GHz processor and 16 GB RAM. The

memory usage and CPU times are listed in Table 5.7. We increase the number of message

identifiers transmitted in the system. When the number of message identifiers is three,

the checking result could not be obtained because of the explosion in the state space.

Although we can only verify messages with few different identifiers, the number of the

messages is huge. Since an environment is an abstracted subnetwork, and only performs

tasks that require communication with other subnetworks, we defined a set of messages

with a specific identifier to represent all messages that are sent from an environment

to the other. Moreover, messages with a same identifier are sent repeatedly and model

checking exhaustively checks all situations where messages are sent with different delays.

Therefore, the framework is effective for verifying message communications between sev-

eral environments. If there are many environments and messages, the capability of the

framework is limited.

For qualitative verification, communication behaviors of the framework are verified

corresponding to the CAN and FlexRay specifications. The framework is able to construct

IVN systems with three kinds of topologies. Using the framework, the BCRT and WCRT

of messages are checked in the IVN design models. We also verify the reachability of

messages using two cyclic task models. The advantage of the framework is precise checking

the transmission process and response time of messages, and is reusable for miscellaneous

IVN system designs. However, the performance is insufficient to check a large IVN system

with major message identifiers. Even if the checking results are accurate, there are not

enough information to analyze the properties of the IVN system. For example, there

is how many messages has been received within the BCRT and WCRT, and how many

messages has the response time that is satisfied a certain time. In addition, IVN systems

have a mass of indeterminate behaviors and probabilistic events, such as failures and

control functions. For the purpose of solving such problems, we conceive statistical model

checking for verifying quantitative properties of IVN systems.

To compare the performance of model checking and statistic model checking, we im-

plement a probabilistic application model and a general application model with CAN

104

Table 5.7: Performance of qualitative verification

No. of message identifiers Time (s) Memory (kb)

1 0.181 11,304

2 63.755 604,768

3 Out of memory

Table 5.8: Performance of quantitative verification

Time (s) Memory (kb)

No. of message identifiers MC SMC MC SMC

5 0.17 0.07 92,788 5,988

10 64.71 0.12 369,928 6,524

15 - 0.18 - 7,272

20 - 0.26 - 8,380

protocol. We examine a property in both cases to see if all messages with id=1 could be

received, and compare verification time and memory. As the number of the message iden-

tifiers increase, the traditional model checking becomes more and more difficult to obtain

the result in a short time. Statistical model checking can easily check large amounts of

message identifiers, and the verification time and memory increase linearly and slowly, as

shown in Table 5.8.

For the quantitative verification, we add probabilistic behaviors in the application

model. we have check probability of the reachability and probability density distribution

of the response time using the same framework. Tasks of the application models write

messages to Interface at a probability, and these messages will be received in a statistical

frequency. From the probability density distribution, we can know that response time of

message is concentrated in some intervals. Moreover, SMC is more efficient than tradi-

tional model checking. The advantage of the framework supports qualitative verification

as well as quantitative verification. Whereas the checking results are vague, properties

are satisfied with a probability. Hence, the qualitative verification and quantitative veri-

fication are complementary.

105

Chapter 6

Related Work

6.1 Verification of IVN Systems Based on Integration

Platforms

In automobile industry, integration platforms are one solution for the IVN system design

process [50, 2]. For example, DaimlerChrysler laboratory developed a tool including

software and hardware architectures to flexibly construct and test IVN systems [1]; T.

Demmeler et al. proposed a virtual integration platform to simulate and estimate the

performance of IVN communication models [2]; H.Moon et al. implemented a heating

ventilation and air-condition control system based on AUTOSAR architecture and tested

it using MATLAB and SIMULINK [3]. The systems they examined were detailed and

contained both software and hardware information, but they lacked a complete set of test

cases, and a precise property specification.

There are other studies that are directly implemented an IVN system on integrated

components and simulate and test electronic signal on hardware. For example, G. Feng

et al. implemented a CAN system with electronic nodes and tested the system [4]; F.

Baronti et al. had designed and implemented a FlexRay protocol component to verify

fault tolerance of IVN systems [5]. These studies implemented the IVN system on physical

devices, and then connected to PC for testing based on software platform. This method

requires both software and hardware support, and the testing is based on electrical signals

on hardware. The test effectiveness is directly dependent on test cases. Although these

studies are closer to a real system, they lack completeness and flexibility.

Some studies only test and analyze the system itself. For instance, S. Anssi et al. fo-

cused on analyzing scheduling capability of AUTOSAR system [6]. Although these studies

can be used to analyze and test IVN systems concretely and intuitively, a completed set

106

of test cases is difficult to design for checking properties of the system. Also, it is hard to

precisely check concurrent behaviors and logic errors in the system design phase.

Compared with these studies, although our model has no operating system or physical

protocol, this highly abstract model can reflect the communication behavior of the system

in the system design phase and verify timed properties accurately and completely. Our

proposed framework has the flexibility to build IVN systems with different protocols and

topologies. Other researchers take multi-protocol into account, but they focus on improv-

ing the performance of gateways with CAN, LIN, FlexRay and MOST [49, 46, 51, 52]. The

common idea is providing efficient scheduling algorithms to the gateway. For example,

Kim et al. examines the implementation of a CAN–FlexRay gateway using message-

mapping [46]. In our work, the gateway is used to forward messages, which only has

the most basic function of forwarding messages and a simple scheduling mechanism. Our

focus is on the effect of multiple protocols on timed properties. Although gateways can

affect the communication efficiency of the system, even without gateways, the message

transmission time between multiple protocols is different from a partitioned system, as

mentioned the example in Chapter 1. Thus, our work verified the timed property effec-

tively.

6.2 Model Checking of IVN Systems

Model checking is another effective method on verification of safety-critical systems. This

method is exhaustively and automatically to check properties by searching all states of the

system. The properties can be specified in temporal logic and verified precisely. There are

many works on checking communication protocols [7, 8, 9]. They modeled protocols and

verified properties from their specifications, such as the fault-tolerance on the FlexRay

physical layer, the start-up process of FlexRay, and the error handling and fault-tolerance

of timed-triggered CAN. These work focus on analyzing an verifying the protocol itself.

Our work is to verify the IVN system design with abstracted applications.

For the software, some works [10, 11, 12, 13] aimed at verifying that implementations of

the system is consistent with software standards. J. Chen et al. designed a model based

on OSEK/VDX operating system and verified that the model meets OSEK specification

by SPIN, and generated test cases using the model [11]. L. Fang et al. proposed a

formal model of AUTOSAR multicore real-time operating system and developed a test

case generator and a test program generator to complete system testing [13]. Y. Huang

et al. implemented a formal model of OSEK/VDX OS with CSP language and verified

the model using PAT [12]. They developed formal models of the operating systems and

107

the models are used to generate exhaustive test cases for helping system test. These

studies did not consider communication protocols, but they analyzed task behaviors in

the application layer. We do not take task scheduling in the application model, and

tasks are simplified as a message distributor, which send messages in different cycles and

probabilities.

In addition, some studies focus on interactive behaviors between ECUs in a single

protocol [14, 15]. L.Waszniowski et al. established a whole CAN system model with

OSEK/VDK operating system and showed a case study to verify timed properties of the

system [14]. C.Pan et al. showed a CAN protocol model to verify some primary properties

using UPPAAL model checker, and considered an application model with a scheduling

algorithm to fix some properties that are unsatisfied [15]. Our previous work only modeled

and verified communication behaviors of a FlexRay system [53]. However, an IVN system

is extremely complicated, which contains multiple protocols, several gateways, and many

applications. It is difficult to directly model the complete IVN system and efficiently

verify properties. Moreover, the capability of verification is usually limited because the

complexity of the system cause the state space explosion. To improve the capability and

efficiency, we tried SMC techniques and changed the application model with probability.

6.3 Statistical Model Checking of IVN Systems

For statistical model checking, most works focus on the wireless system network(WSN)

that are non-deterministic systems. They verified LMAC and CSMA/CA protocols, and

analyzed throughout and delay with some probabilities. [40] considered stochastic events

that can occur during the execution of CSMA/CA protocol, such as failures to access the

medium, collisions and messages lose. [54] verified the probability of the clock synchro-

nization of nodes with the different topologies. [55] presented a Timing-sync Protocol

for Sensor Networks(TPSN) model with probability. This work verified the correctness

of the model, and showed the performance of TPSN. [56] presents an arbitrary 5-node

networks and analyze the router requests and entries with SMC-UPPAAL. These works

have verified networks with stochastic protocols. In our work, CAN and FlexRay are

deterministic protocols, and their behaviors are fixed. We used application models with

probability that connect to protocol models, and checked quantitative properties. Our

framework can carries out traditional model checking and statistical model checking in

the same time.

108

Chapter 7

Conclusion and Future Work

7.1 Conclusion

IVN systems are distributed real-time systems, which control driving safety, comfort and

entertainment in a car, even driving assistance and automatic driving. A various of control

systems combine to a IVN system. These control systems employ different communication

protocols, since the cost, requirements, functions and other factors are considered. For

an IVN system without a unified communication protocol, it is extremely complex and it

is hard to precisely verify properties. From the example in section 2.6.2, we can see that

different communication protocols affect data transmission. Furthermore, the IVN system

is complicated and massive, which has a lot of stochastic behaviors. Consequently, in order

to verify the IVN system accurately and effectively, we have presented a framework for

verifying IVN system based on model checking techniques.

This thesis described a framework for modeling and verifying response times of mes-

sages in the IVN system that operate the CAN protocol and FlexRay protocol. The

contribution of this work is describing an appropriate abstraction for modeling IVN sys-

tems and realize the associated framework; the framework is applicable and reusable for

various IVN systems; qualitative verification and quantitative verification are applied to

checking the IVN system design models based on the framework.

• Firstly, the IVN system needs to be abstracted through a two-stage abstraction on

the basis of the protocol specifications of CAN and FlexRay, while preserving the

necessary functionalities of communication.

– An IVN system consists of hundreds of nodes, but not all nodes communicate

with other subsystems in different communication protocols. This work is cen-

tered on the communication between different protocols, and ignores internal

109

communications within a subsystem. Hence, we abstracted the structure of

IVN systems. That is, subsystem connected to a gateway is abstracted into

an environment node. This environment following CAN or FlexRay commu-

nicates with other abstracted nodes through the gateway. We have simplified

the structure of IVN systems and reduced communication traffic.

– Environments are defined by CAN and FlexRay specifications. The specifica-

tions state the layer structure of CAN and FlexRay protocols, and expound

functions of each layer. There are many descriptions related to lower part sys-

tem design, such as encoding/decoding and bit signals on physical layer. This

work is centered on analyze communication and time-related properties in the

case of normal communication. Thus, we neglected the physical layer and fault

handling in each protocol. Then, we showed the abstracted common structure

of the protocols, simplified the functionality within them.

• Secondly, on the basis of the abstraction, we proposed a framework that formal-

ized by a UML class diagram. The framework consists of Environmnet, Forwarder,

Interface, Communication controller, Medium and Configuration modules which is

established in UPPAAL model checker. The Interface, Communication controller,

Medium and Configuration are fixed and reusable for building IVN system design

models, which are constituted corresponding to the abstraction of CAN and FlexRay

specifications. The Interface represents Object layer in ISO model, which is respon-

sible for storing messages that need to be transmitted/received. It is the interface

between Environment or Forwarder, and Communication controller, and the config-

uration of the Environment determines the connection between environments and

protocols. The Communication controller includes two Transfer layers of CAN and

FlexRay protocols. They control transmission process that conforms to communica-

tion schemes defined in the specifications. The Configuration is a set of parameters

that account the composition, messages and protocols of an IVN system. These

parameters can be modified for describing different IVN systems or improving IVN

system designs. The Environment and Forwarder are changeable based on IVN

system designs, because they are not defined by the specifications. They execute

special functions embedded on ECUs, which are the Application layers of nodes in

ISO model. We disregard data processing operations of these tasks and focus on

sending and receiving data. The Environment simulates tasks that write message

to Interface and request it to be send. The Forwarder performs scheduling and

forwarding messages, which are modeled based on the gateway design. Thence, the

framework is capable for modeling IVN design systems by changing Environment,

110

Forwarder, and parameter values of Configuration.

• In the experiments, the framework was shown to verify reachability and timed prop-

erties of message with abstracted IVN system models. In addition, the framework

supports both qualitative verification and quantitative verification.

– Using model checking, we did qualitative verification with deterministic En-

vironment models. We precisely verified the validity of the framework, and

response time and reachability of messages.

– Using statistical model checking, we did quantitative verification with prob-

abilistic Environment models. We checked the reachability of messages that

are satisfied with a confidence degree, and the response time of messages are

shown by probability density distribution plots.

• In the end, the framework has been evaluated from four aspects. At first, we have

discussed the validity of the abstraction. The framework was proposed based on

the two-stage abstraction. In the first stage, we abstracted the architecture of IVN

systems, where subnetworks are abstracted as environments. Thus, we restored the

subnetworks with different topologies and checked the response time of messages.

The results suggest that the abstraction can preserve the timed properties of outside

of subnetworks in the IVN system. In the second stage, we abstracted the CAN and

FlexRay specifications. We listed some properties about transmission schemes that

can be preserved, and the signal-level behaviors and error handling that can not

be preserved in the framework. Then, the framework was applicable and reusable

for different IVN system designs. We implemented IVN systems with three typical

topologies and checked timed properties in the three cases. The checking results

accorded with the characteristic of the topologies; for different IVN system design,

the modules of the framework were unchanged, except for the Environment and

Forwarder modules. Besides, the performance of the framework has been evaluated

by model checking and statistical model checking. Model checking can exhaustively

verify properties and give out precise results, but the capability and efficiency are

limited; statistical model checking has better capability and efficiency, but the prop-

erties are satisfied with some degree of confidence. The framework can be used to

both methods and their verification results can complement each other.

111

7.2 Future Work

We intend to extend the framework to verify IVN systems more practically. There are

several directions for our future works.

• The quantitative verification did not take FlexRay system into account in this time.

It is not sufficient to consider CAN system alone. We will take both CAN and

FlexRay model into IVN systems to do quantitative verification.

• The IVN system is as a safety-critical system. Fault handling is indispensable to

insure safety of the IVN system. We think to add the fault handling function into

our framework, as a part of protocol models.

• If we extend the framework with the fault handling function, the performance of

ordinary model checking will still be limited by state space problem. Besides, such

system errors, message errors and failures in the IVN system, they can be represented

by stochastic events. Thus, we will adopt probabilistic model to describe fault

handling behaviors and verify IVN systems using statistical model checking.

• To enable the framework to verify more IVN systems, commonly used communica-

tion protocols will be abstracted as other protocol model in the framework, such as

LIN, CAN-FD and Ethernet.

112

References

[1] K. Grimm, “Software technology in an automotive company - major challenges,”
25th International Conference on Software Engineering, 2003. Proceedings., vol. 6,
pp. 498–503, 2003.

[2] T. Demmeler and P. Giusto, “A Universal Communication Model for an Automotive
System Integration Platform,” pp. 47–54, 2001.

[3] H. Moon, G. Kim, Y. Kim, S. Shin, K. Kim, and S. Im, “Automation test method
for automotive embedded software based on autosar,” 4th International Conference
on Software Engineering Advances, ICSEA 2009, Includes SEDES 2009: Simposio
para Estudantes de Doutoramento em Engenharia de Software, pp. 158–162, 2009.

[4] G. S. Feng, W. Zhang, S. M. Jia, and H. S. Wu, “CAN bus application in automo-
tive network control,” 2010 International Conference on Measuring Technology and
Mechatronics Automation, ICMTMA 2010, vol. 1, pp. 779–782, 2010.

[5] F. Baronti, E. Petri, S. Saponara, L. Fanucci, R. Roncella, and R. Saletti, “Design and
verification of hardware building blocks for high-speed and fault-tolerant in-vehicle
networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 792–801,
2011.

[6] S. Anssi, S. Tucci-Pergiovanni, S. Kuntz, S. Gérard, and F. Terrier, “Enabling
scheduling analysis for AUTOSAR systems,” Proceedings - 2011 14th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2011, pp. 152–159, 2011.

[7] M. Gerke, R. Ehlers, B. Finkbeiner, and H. Peter, “Model checking the FlexRay
physical layer protocol,” Formal Methods for Industrial . . . , pp. 132–147, 2010.

[8] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Verification of Flexray
Start-Up Mechanism by Timed Automata,” Proceedings of the 7th ACM & IEEE
international conference on Embedded software - EMSOFT ’07, p. 21, 2007.

[9] I. S. I. Saha and S. R. S. Roy, “A Finite State Analysis of Time-Triggered CAN
(TTCAN) Protocol Using Spin,” in Computing: Theory and Applications (IC-
CTA’07), 2007.

113

[10] L. Waszniowski and Z. Hanzálek, “Formal verification of multitasking applications
based on timed automata model,” Real-Time Systems, vol. 38, no. 1, pp. 39–65, 2008.

[11] J. Chen and T. Aoki, “Conformance testing for OSEK/VDX operating system using
model checking,” in Proceedings - Asia-Pacific Software Engineering Conference,
APSEC, pp. 274–281, 2011.

[12] Y. Huang, Y. Zhao, L. Zhu, Q. Li, H. Zhu, and J. Shi, “Modeling and verifying the
code-level OSEK/VDX operating system with CSP,” Proceedings - 5th International
Conference on Theoretical Aspects of Software Engineering, TASE 2011, pp. 142–149,
2011.

[13] L. Fang, T. Kitamura, T. B. N. Do, and H. Ohsaki, “Formal model-based test for
AUTOSAR multicore RTOS,” in Proceedings - IEEE 5th International Conference
on Software Testing, Verification and Validation, ICST 2012, pp. 251–259, 2012.

[14] L. Waszniowski, J. Krákora, and Z. Hanzálek, “Case Study on Distributed and Fault
Tolerant System Modeling Based on Timed Automata,” Journal of Systems and
Software, vol. 82, no. 10, pp. 1678–1694, 2009.

[15] C. Pan, J. Guo, L. Zhu, J. Shi, H. Zhu, and X. Zhou, “Modeling and verification
of CAN bus with application layer using UPPAAL,” Electronic Notes in Theoretical
Computer Science, vol. 309, pp. 31–49, 2014.

[16] W. Granig, D. Hammerschmidt, and H. Zangl, “Calculation of Failure Detection
Probability on Safety Mechanisms of Correlated Sensor Signals According to ISO
26262,” SAE International Journal of Passenger Cars - Electronic and Electrical
Systems, vol. 10, no. 1, 2017.

[17] J. Wang, Y. Wang, C. Bi, J. Weng, and X. Yan, “Modeling the probability of freeway
lane-changing collision occurrence considering intervehicle interaction,” Traffic Injury
Prevention, vol. 17, no. 2, pp. 181–187, 2016.

[18] A. D. Dominguez-Garcia, J. G. Kassakian, and J. E. Schindall, “Reliability evalua-
tion of the power supply of an electrical power net for safety-relevant applications,”
Reliability Engineering and System Safety, vol. 91, no. 5, pp. 505–514, 2006.

[19] G. Agha and K. Palmskog, “A Survey of Statistical Model Checking,” ACM Trans-
actions on Modeling and Computer Simulation, vol. 28, no. 1, pp. 1–39, 2018.

[20] O. G. D. A. Edmund M.Clarke, Jr., “Model Checking,” 2000.

[21] E. M. Clarke, “The Birth of Model Checking BT - link.springer.com,”
Link.Springer.Com, vol. 5000, no. Chapter 1, pp. 1–26, 2008.

[22] I. Romanovsky, “Model-checking real-time concurrent systems,” in Automated Soft-
ware Engineering, 2001. (ASE 2001). Proceedings. 16th Annual International Con-
ference on, p. 439, nov. 2001.

114

[23] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Sym-
bolic Model Checking for Sequential Circuit Verification,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 4,
pp. 401–424, 1994.

[24] K. L. McMillan, Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Kluwer Academic, 1993.

[25] R. Bryant, “Graph based algorithms for {B}oolean function manipulation,” IEEE
Trans. Computers, vol. 358, no. 8, pp. 677–691, 1986.

[26] P. Godefroid and D. Pirottin, “Refining dependencies improves partial-order verifi-
cation methods (extended abstract),” no. 6021, pp. 438–449, 1993.

[27] D. Peled, “Combining partial order reductions with on-the-fly model-checking,” For-
mal Methods in System Design, vol. 8, no. 1, pp. 39–64, 1996.

[28] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded Model
Checking,” Advances in Computers, Academic Press, vol. 58, no. 99, pp. 117–148,
2003.

[29] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Lan-
guages, and Computations. 2006.

[30] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,”
in Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pp. 414–425, 1990.

[31] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, no. 2, pp. 183–235, 1994.

[32] R. Alur, “Timed automata,” Computer Aided Verification, pp. 8–22, 1999.

[33] G. Behrmann, A. David, and K. Larsen, A Tutorial on UPPAAL 4.0, vol. 3185. 2006.

[34] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International Journal
on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152, 1997.

[35] P. Pop, P. Eles, Z. Peng, and W. Yi, “UPPAAL in a nutshell. Int.Journal on Software
Tools for Technology Transfer,” pp. 1(1–2):134–152, October 1997.

[36] D. R Alur, C.Courcoubetis, “Model-checking for realtime systems,” 5th Symposium
on Logic in Computer Science, vol. 126, pp. 414–425, 1990.

[37] A. David, K. G. Larsen, A. Legay, M. Mikŭcionis, and D. B. Poulsen, “UPPAAL
SMC tutorial,” International Journal on Software Tools for Technology Transfer,
vol. 17, no. 4, pp. 397–415, 2015.

115

[38] P. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. Bøgsted Poulsen, A. Legay,
and Z. Wang, “UPPAAL-SMC: Statistical Model Checking for Priced Timed Au-
tomata,” Electronic Proceedings in Theoretical Computer Science, vol. 85, no. Qapl,
pp. 1–16, 2012.

[39] P. Bulychev, A. David, K. Guldstrand Larsen, A. Legay, G. Li, D. Bøgsted Poulsen,
and A. Stainer, “Monitor-based statistical model checking for weighted metric tem-
poral logic,” in Logic for Programming, Artificial Intelligence, and Reasoning. LPAR
2012. Lecture Notes in Computer Science, vol. 7180, pp. 168–182, 2012.

[40] Z. Hmidi, L. Kahloul, S. Benhazrallah, and C. Othmane, “Statistical Model Checking
of CSMA / CA in WSNs,” in VECoS, 2008.

[41] H. Heinecke, “Automotive system design - challenges and potential,” in Design, Au-
tomation and Test in Europe, 2005. Proceedings, pp. 656 – 657 Vol. 1, march 2005.

[42] Bosch, “CAN Specification Version 2.0,” 1991.

[43] K. H. Johansson and T. Martin, “Vehicle Applications of Controller Area Network,”
Sensors Peterborough NH, vol. VI, pp. 741–765, 2005.

[44] H. S. Seo and B. KIM, “Design and Implementation of a UPNP-CAN Gateway for
Automotive Environments,” International Journal of Automotive Technology, vol. 14,
no. 1, pp. 91–99, 2013.

[45] Altran Technologies, “FlexRay Communications System Protocols Specification
V.3.0.1,” 2005.

[46] M.-H. Kim, S. Lee, and K.-C. Lee, “Performance Evaluation of Node-mapping-based
Flexray-CAN Gateway for in-vehicle Networking System,” Intelligent Automation &
Soft Computing, vol. 21, no. 2, pp. 251–263, 2015.

[47] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in Automotive Com-
munication Systems,” Proceedings of the IEEE, vol. 93, pp. 1204 –1223, june 2005.

[48] M. Gerke, R. Ehlers, B. Finkbeiner, and H.-J. Peter, “Model Checking the
Flexray Physical Layer Protocol,” in Formal Methods for Industrial Critical Systems,
pp. 132–147, 2010.

[49] K. Seung-Han, S. Suk-Hyun, K. Jin-Ho, M. Tae-Yoon, S. Chang-Wan, H. Sung-Ho,
and J. Jae Wook, “A Gateway System for an Automotive System: LIN, CAN, and
FlexRay,” in Industrial Informatics (INDIN’08), pp. 967–972, 2008.

[50] A. Sangiovanni-Vincentelli, “Electronic-system design in the automobile industry,”
IEEE Micro, vol. 23, no. 3, pp. 8–18, 2003.

[51] E. G. Schmidt, M. Alkan, K. Schmidt, and U. Karakaya, “Performance evaluation of
FlexRay/CAN networks interconnected by a gateway,” in International Symposium
on Industrial Embedded Systems (SIES), pp. 209–212, 2010.

116

[52] R. Zhao, G. H. Qin, and J. Q. Liu, “Gateway system for CAN and FlexRay in
automotive ECU networks,” International Conference on Information, Networking
and Automation (ICINA 2010), vol. 2, pp. 49–53, 2010.

[53] X. Guo, H.-H. Lin, K. Yatake, and T. Aoki, “An UPPAAL Framework for Model
Checking Automative Systems with FlexRay Protocol,” in Formal Techniques for
Safety-Critical Systems (FTSCS’13), vol. 419, pp. 36–53, 2013.

[54] L. Battisti, D. Macedonio, and M. Merro, “Statistical Model Checking of a Clock
Synchronization Protocol for Sensor Networks,” in International Conference on Fun-
damentals of Software Engineering (FSEN), pp. 168–182, 2013.

[55] F. Zhang, L. Bu, L. Wang, J. Zhao, X. Chen, T. Zhang, and X. Li, “Modeling and
Evaluation of Wireless Sensor Network Protocols by Stochastic Timed Automata,”
Electronic Notes in Theoretical Computer Science, vol. 296, pp. 261–277, 2013.

[56] A. D. Corso, D. Macedonio, and M. Merro, “Statistical Model Checking of Ad Hoc
Routing Protocols in Lossy Grid Networks,” in NASA Formal Methods Symposium,
vol. 9058, pp. 112–126, 2015.

117

