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Abstract

Keywords: infinite string rewriting, recursive path orders
Term rewriting is a well-known computational model which is Turing

equivalent to lambda calculus, and has many applications e.g. automated
theorem proving and functional programming, etc [8]. A significant property
of term rewriting systems, named as convergence consisting of termination
and confluence should be ensured in these fields. Termination ensures the
finiteness of computation steps and confluence guarantees the uniqueness of
result when different computation sequences arise. As a famous undecidable
problem, the word problem will be totally unsolvable without convergence.

String Rewriting and Convergence. This thesis talks about a formal-
ization of string rewrite systems with infinite rules and provides a decidable
technique for termination proving. String rewrite systems are ordered equa-
tions of strings. Convergence means that different rewrite sequences from the
same string can lead to same result finally. We hope that this property holds
for all strings since convergence make it possible to solve word problems.

Word Problems and Solutions. A major purpose of string rewrite sys-
tems is to solve word problems for finitely presented monoids. The word
problem for the equations E is described as follows:

Instance: Two strings u, v and axioms E

Question: Does u = v hold under E?

Although the word problem is undecidable, the problem can still be solved
by finding a convergent system R such that ↔∗

R =↔∗
E holds.

Automated Equational Reasoning. The formal methods to prove equa-
tion equivalence presented by word problems have been under research for
decades. The technique [7] influenced by the standard completion procedure
[6] and the extended version called unfailing completion [1] is used in most
modern automated theorem provers.

However, some results [4, 3, 5, 9] in this field show that a finite convergent
system of given equations does not always exist, which brings us difficulties
when proving that equation equivalence does not hold.



Motivation and Approach. The above consequence gives us the ques-
tion: If we are given an infinite string rewrite system claimed convergent,
does it really have the convergence property?

This thesis uses finite state transducers to formalize these string rewrite
systems which especially have infinite rules to check the confluence property.
Transducers are a kind of abstract machine that recognizes pairs of strings.
We only focus on termination, one of the necessary properties of convergence.
Recursive path orders [2] provide a technique to prove termination. Instead of
comparing the infinite many rules of given string rewrite systems, we develop
a procedure to ensure that the language accepting by a transducer remains
true under this order.

Unfortunately, the problem how to check an arbitrary finite transducer re-
mains open. We develop two restricted classes of finite transducers indicated
as follows.

regular
expression

based
systems

ordered
transducer

based
systems

transducer based string rewrite systems

Each of them can do string rewriting and check termination with the help
of recursive path orders.

Contributions. The main contributions of the thesis are listed as:

• the regular expression based string rewriting,

• the recursive path order over regular expressions,

• the ordered transducer based string rewriting, and

• the recursive path order over ordered transducers.
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Chapter 1

Introduction

Term rewriting is a well-known computational model which is Turing equiva-
lent to lambda calculus, and has many applications e.g. automated theorem
proving and functional programming, etc [11]. A significant property of term
rewriting systems, named as convergence consisting of termination and con-
fluence should be ensured in these fields. Termination ensures the finiteness
of computation steps and confluence guarantees the uniqueness of result when
different computation sequences arise. As a famous undecidable problem, the
word problem will be totally unsolvable without convergence.

This chapter introduces term rewrite systems, whose terms have a spe-
cific structure called strings in an informal way, and show the importance of
convergence by presenting a word problem whose decision procedure involves
infinity, which leads to the motivation of our research.

String Rewriting and Convergence. This thesis primarily discusses a
formalization of string rewrite system with infinite rules and develops a de-
cidable technique for termination proving. String rewrite systems are ordered
equations of strings.

Example 1.1. The following system R is an example of convergent string
rewrite system:

baa→ aba

bba→ bab

The convergence means that different rewrite sequence from the same
string can lead to same result finally. For instance, the string bbaa is com-
puted as follows using different rule:

baba R← bbaa→R baba
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The left part of the above sequence replaces the substring baa with aba using
the first rule, while the right part uses the second rule. Both of them rewrite
to the string baba. We hope that this property can hold for all strings since
convergence makes it possible to solve word problems.

Word Problems and Solutions. A major purpose of string rewrite sys-
tems is to solve word problems for finitely presented monoids. The word
problem for the equations E is described as:

Instance: Two strings u, v and axioms E

Question: Does u = v hold under E?

Although the word problem is undecidable, the problem can still be solved by
finding a convergent system R such that↔∗R =↔∗E holds. Example 1.1 shows
the solution for the axioms {aba = baa, bba = bab}, which is the presentation
of bicyclic monoid [5].

Automated Equational Reasoning. The formal methods to prove equa-
tion equivalence presented by word problems have been studied for decades.
The technique [10] influenced by the standard completion procedure [9] and
the extended version called unfailing completion [1] has been used in most
modern automated theorem provers. However, some results [7, 6, 8, 12] in
this field showed that a finite convergent system of given equations does not
always exist, which makes it difficult to prove that equation equivalence does
not hold.

Turtle Graphics and Equlivance. Turtle graphics is computational vec-
tor graphics which has been used in many related fields. It can be described
as a virtual turtle that only knows its location and direction. It follows some
simple commands to change either its location or its heading. For example,
the commands [go, turn left, go, turn right, go] from the bottom are indicated
in Figure 1.1a while the commands [turn right, go, turn right] are indicated
in Figure 1.1b.

(a) Turtle 1 (b) Turtle 2

Figure 1.1: Two turtle graphics ending in the same state
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Its location can be represented by a point P given by a pair of coordinates
(p1, p2) and its heading direction can be represented by a vector w. A state
of the turtle is denoted by (P,w). We write a as the operation ”go forward”
and b as ”turn left in θ direction”. The states of turtle can be compared.
Figure 1.1 shows ababa = bab when θ = 90◦.

The following system is a convergent system for θ = 120◦:

R120 =


aaa → ε

babn+1ab → abna m, n ∈ N
abmabnab → babmabna


Infinity appears in the rules.

Motivation and Approach. The above consequence shows the question:
If we are given an infinite string rewrite system claimed convergent, does it
really have the convergence property?

This thesis uses finite state transducers to formalize these string rewrite
systems which especially have infinite rules to check the confluence property.
Transducers are a kind of abstract machine that recognizes pairs of strings.
For instance, the following transducer accepts the system R120:

0start

1

2

3

5

4

aaa : ε

bab : a

a : ba

b : b

ab : a

b : b

a : a

b : b

b : a

Figure 1.2: The transducer of R120

We only focus on termination, one of the necessary properties of conver-
gence. Recursive path orders [4] can be used to prove termination. Instead of
comparing the infinite many rules of given string rewrite systems, we develop
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a procedure to ensure that the language accepting by a transducer remains
true under this order.

Unfortunately, the problem how to check an arbitrary finite transducer re-
mains open. We develop two restricted classes of finite transducers indicated
in Figure 1.3.

regular
expression

based
systems

ordered
transducer

based
systems

transducer based string rewrite systems

Figure 1.3: Two classes of transducers

Each of them can do rewriting and check the termination property with
the help of recursive path orders.

Overview. Chapter 2 introduces some basic mathematical notions and no-
tations which will be used to discuss string rewrite systems. We provide two
formalizations of these systems with infinite rules called regular expression
based systems and transducer based systems in Chapter 3 and Chapter 4.
Each of them develops a formal method to check termination by the as-
sistance of recursive path orders. Finally, we conclude the thesis and the
limitations with related work.

Contributions. The main contributions of the thesis are listed as:

• the regular expression based string rewriting,

• the recursive path order over regular expressions,

• the ordered transducer based string rewriting, and

• the recursive path order over ordered transducers.

4



Chapter 2

Preliminaries

This chapter gives some basic definitions used in the field of string rewriting.
We assume here that the reader is familiar with the elementary set theory.

2.1 Relations and Orders

Definition 2.1. A relation R between sets A and B is a function from A
to B if for each element a ∈ A there is exactly one element b ∈ B such that
(a, b) ∈ R.

Definition 2.2. Let R be a relation between sets A,B and let S be a relation
between sets B,C. The composition R ◦ S is the following relation between
A and C:

{(a, c) | (a, b) ∈ R and (b, c) ∈ S for some b ∈ B}

Definition 2.3. Let R be a relation on a set A.

• R is reflexive if (a, a) ∈ R for all a ∈ A.

• R is irreflexive if (a, a) /∈ R for all a ∈ A.

• R is symmetric if (a1, a2) ∈ R implies (a2, a1) ∈ R for all a1, a2 ∈ A.

• R is asymmetric if (a1, a2) ∈ R implies (a2, a1) /∈ R for all a1, a2 ∈ A.

• R is anti-symmetric if (a1, a2) ∈ R and (a2, a1) ∈ R imply a1 = a2 for
all a1, a2 ∈ A.

• R is transitive if (a1, a2) ∈ R and (a2, a3) ∈ R implies (a1, a3) ∈ R for
all a1, a2 ∈ A.
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Definition 2.4. Let→ be a relation on a setA. We define these compositions

• →0 = {(a, a) | a ∈ A}

• ←= {(b, a) | a→ b}

• →i+1 =→i ◦ →

• reflexive closure →= =→ ∪ →0

• symmetric closure ↔=← ∪ →

• transitive closure →+ =
⋃
n>0 →n

• reflexive transitive closure →∗=→0 ∪ →+

Instead of (a, b) ∈ →, we write a→ b for some a, b ∈ A.

Definition 2.5. A relation is a strict order if it is irreflexive, transitive and
asymmetric. We say a strict order > on a set A is a total order if either
a1 > a2 or a2 > a1 holds for all a1, a2 ∈ A.

Definition 2.6. Let > be a strict order on A and let → be a relation on A.
We say → is compatible with > if a > b holds for all a→ b.

Definition 2.7. A relation→ is well-founded if there is no infinite sequence
such that

a1 → a2 → a3 → · · ·
holds. Well-founded relations are also called terminating relations.

2.2 Regular Expressions and Automata

In the field of formal languages, regular expressions are used to describe
possibly infinite sets of strings. Here we give a formal description of these
terminologies and establish notations for string rewrite systems.

Let Σ be a set of symbols. The set Σ∗ denotes the set of all strings over
Σ, including ε which represents the empty string. More formally, the set Σ∗

is the free monoid generated by Σ under the binary operation concatenation
and the identity is the empty string. We omit the details of monoids.

Definition 2.8. The concatenation is a binary operation on strings, defined
by u · v = uv. It can be extended to subsets of Σ∗ ×Σ∗. Given relations →1

and →2 on Σ∗, the concatenation of →1 · →2 is defined as the relation:

{(ux, vy) | u→1 v and x→2 y}

We call a set of strings as a language.
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Definition 2.9. The Kleene closure S∗ of a language S is defined as follows:

S∗ =
⋃
i∈N

Si

with

Si =

{
{ε} if i = 0

{u · v | u ∈ Si−1 and v ∈ S} if i ≥ 1

Definition 2.10. The length |w| of a string w is defined as follows:

|w| =

{
0 if w = ε

1 + |w′| if w = aw′ for some a ∈ Σ

We call the string w′ is a substring of a string w if w = uw′v for some strings
u, v. We denote the set of all substrings of w as Sub(w).

Definition 2.11. Regular expressions are defined by the following BNF:

α ::= ε | a | αα | α∗

We define the language of a regular expression α as follows:

L(α) =


{ε} if α = ε

{a} if α = a with a ∈ Σ

{uv | u ∈ L(α1) and v ∈ L(α2)} if α = α1α2

L(α1)∗ if α = α∗1

Definition 2.12. A non-deterministic finite state automaton A is a tuple
(Q,Σ,∆, 0, F ) where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. ∆ ⊆ {pa→ q | p, q ∈ Q, a ∈ Σ ∪ {ε}} is the transition rules,

4. 0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

The language L(A) accepted by an automaton A is the set:

{u | u ∈ Σ∗ and 0u→∗∆ q for some q ∈ F}

We especially call these automata deterministic finite state automata if their
transition rules set is not only a subset of {pa → q | p, q ∈ Q, a ∈ Σ} but
also a function. We abbreviate each of them as NFA and DFA.

7



The following two theorems related to the membership problem will be
used in the remaining part of this thesis.

Theorem 2.13. For every regular expression α, there is a DFA A such that
L(A) = L(α).

Theorem 2.14. The following problem is decidable:

Instance: A DFA A and a string u.

Question: Does u ∈ L(A) hold?

2.3 String Rewrite Systems

In this section, we introduce string rewrite systems. Throughout this section
we will work on a finite alphabet Σ with symbols and strings u, v ∈ Σ∗.

Definition 2.15. A string rewrite system (SRS) R is a relation on Σ∗ and
each element of R is a rewrite rule.

Definition 2.16. Let R be an SRS. A rewrite step is a pair (u, v) if u = wxw′

and v = wyw′ for a rewrite rule x → y ∈ R. We call v is a reduct of u and
denote the relation of all rewrite steps as →R.

Definition 2.17. Let R be an SRS. We say u is in normal form if there
does not exist string v such that u→R v. The set of all strings which are in
normal form is denoted by NF(R). String v is a normal form of u if u→R v
and v ∈ NF(R).

Example 2.18. Consider the SRS R = {ab → ba}. It is easy to have the
rewrite step aba→R baa and the string baa is in normal form since no string
can be rewritten from the string baa.

2.4 Termination and Recursive Path Orders

Termination is an important property of string rewrite systems. Unfortu-
nately, termination is undecidable. In this section, we recall the definition of
well-founded orders and explain a common technique to check whether the
relation→R induced by a string rewrite system R is terminating. We simply
say R is terminating if →R is terminating.

The basic idea is to prove termination of string rewrite systems is to find
a well-founded order strict on Σ∗. By the property of well-founded orders, it

8



is easy to get that string rewrite system R is terminating if u →R v implies
u > v whenever u, v ∈ Σ∗. Obviously, Since the pairs u, v is sometimes
infinite, we introduce a class of well-founded orders called reduction orders
which allow us just check only these rewrite rules instead of all rewrite steps.

Definition 2.19. A reduction order is a well-founded strict order > on Σ∗

such that for every strings u, v, x, y ∈ Σ∗ if u > v implies xuy > xvy holds.

Definition 2.20. The recursive path order >rpo is the relation on Σ∗ with
respect to a strict order > on Σ is inductively defined as follows: u >rpo v if
one of the following holds:

(1) u 6= v = ε.

(2) u = au′, v = av′ for a symbol a ∈ Σ and some strings u′, v′ ∈ Σ∗, and
u′ >rpo v

′.

(3) u = au′, v = bv′ for some symbols a, b ∈ Σ and strings u′, v′ ∈ Σ∗,
au′ >rpo v

′ and a > b.

(4) u = au′ for a symbol a ∈ Σ and a string u′ ∈ Σ∗, and u′ ≥rpo v.

Recursive path orders are reduction orders. Another one reduction order
called homeomorphic embedding will be used in this thesis.

Definition 2.21. The homeomorphic embedding Demb is the relation on Σ∗

that is inductively defined as follows: u Demb v if one of the following holds:

(1) u = ε = v.

(2) u = au′, v = av′ for a symbol a ∈ Σ and some strings u′, v′ ∈ Σ∗, and
u′ Demb v′.

(3) u = au′ for a symbol a ∈ Σ and a string, u′ Demb v and u′ ∈ Σ∗.

Finally by the following theorem, we develop a method to prove termina-
tion for some particular systems.

Theorem 2.22. An SRS R is terminating if there exists a reduction order
> such that u > v holds for all u→ v ∈ R.

In the next two chapters, we explain how to use recursive path orders as
reduction orders on these string rewrite systems with infinite rules.

9



Chapter 3

Regular Expression based
String Rewrite Systems

This chapter introduces a class of infinite string rewrite systems based on reg-
ular expressions and presents the recursive path order on regular expressions
to check the termination property under this formalization.

3.1 String Rewrite Systems via Regular Ex-

pressions

Recalling regular expressions and their induced languages, we adapt the no-
tion to string rewriting. In such a way, string rewrite systems with infinite
many rules can be represented finitely.

Definition 3.1. A regular expression based string rewrite system (RSRS),
is a set of pairs consisting of regular expressions. Let R be an RSRS. The
induced SRS L(R) is the SRS over Σ with following rules:

L(R) = {u→ v | u ∈ L(α) and v ∈ L(β) for some α→ β ∈ R}

Example 3.2. Consider the RSRS {ab∗ → ba}. We compute L(R) as follows:

L(R) = {(u→ v | u ∈ L(ab∗) and v ∈ L(ba)}
= {a→ ba, ab→ ba, abb→ ba, · · · }

The induced SRS is the system over {a, b} with the following rules:

{abn → ba | n ∈ N}

10



Note that we use Definition 2.11 as the definition of regular expressions
here. The or operation | is not considered here. If (α|β) → γ appears in
some RSRS, it can be easily replaced by {α → γ, β → γ}. Moreover ∅ is
not considered here since L(ε) = ε.

Decidability of the normal form existence should be considered in the first
place since all we have is a set pairs consisting regular expressions. Rewriting
under the induced string rewrite system must be guaranteed.

Theorem 3.3. The following problem is decidable:

Instance: An RSRS R and a string u.

Question: Does u ∈ NF(L(R)) hold?

Proof. To decide if u is already in normal form, we need to check that whether
there exists no pair of α → β ∈ R and a substring u′ ∈ Sub(u) such that
u′ ∈ L(α) holds by the definition of rewrite step. Since the membership
problem of regular languages is decidable by Theorem 2.14, it suffices to
check all pairs in R and all substrings of u. Because that both of R and
Sub(u) are finite, the problem can be decided.

We are also interested in the problem of computing a reduct of some
string u if u is not in normal form.

Proposition 3.4. Let R be a RSRS and let u /∈ NF(L(R)) be a string. The
set consisting all reducts of u with respect to L(R) is computable.

Proof. Since u is not in normal form, there exists a substring u′ such that
u′ ∈ L(α) for some rule α → β ∈ R, i.e. u = w1u

′w2 holds for some strings
w1, w2. Since the language L(β) is computable and Sub(u) is finite, all the
reducts of u is computable.

Example 3.5. Consider the RSRS over {a, b} consisting of:

ab∗ → ba

ab∗ → b

Ths string abba whose substring abb is in L(ab∗). Thus, the string abba is not
in normal form. We can obtain the set of all reducts from L(ba) and L(b) as
follows:

{baa, ba}

11



3.2 Recursive Path Orders

Most termination techniques are based on reduction orders introduced in
Chapter 2.4. When it comes to these systems with infinite rules, checking
all rules is impossible in finite time. However, if we succeed in representing
them in regular expression based systems, the termination property can be
proved by orienting regular expression pairs.

Definition 3.6. Let α be a regular expression. The set P(α) of symbols in
α is defined as follows:

P(α) =


∅ if α = ε

{a} if α = a with a ∈ Σ

P(α1) ∪ P(α2) if α = α1α2

P(α1) if α = α∗1

The string α̂ of α is defined as follows:

α̂ =


ε if α = ε

aα̂1 if α = aα1 with a ∈ Σ

α̂1 if α = γ∗α1

Example 3.7. Consider the regular expression α = (a∗b)∗a. We have
P(α) = {a, b} and α̂ = a. The function P(α) accumulates all the sym-
bols in α and the function α̂ eliminates all Kleene stars in α. Now we prove
the eliminated string is in the language of α.

Lemma 3.8. Let α be a regular expression. The following propositions hold:

(1) α̂ ∈ L(α).

(2) u Demb α̂ for all u ∈ L(α).

Proof. First, we show α̂ ∈ L(α) by structural induction on α. We distinguish
four cases by the definition of α̂:

(a) If α = ε then α̂ = ε ∈ {ε} = L(α) follows.

(b) If α = aα1 then α̂1 ∈ L(α1) follows from the induction hypothesis. Let
u ∈ L(α1). We obtain au ∈ L(α), which yields α̂ = aα̂1 ∈ L(α).

(c) If α = γ∗α1 then α̂ = α̂1. Since α̂1 ∈ L(α1) holds by the induction
hypothesis. The following proposition holds:

α̂1 ∈ L(γ)∗L(α1) = L(γ∗α1)

It entails α̂ ∈ L(α).

12



Therefore, we have α̂ ∈ L(α). Then we show the second proposition by
structural induction on α. Likewise we distinguish three cases:

(a) If α = ε then u can only be ε. Thus, we obtain u Demb α̂ = ε by the
definition of Demb.

(b) If α = aα1 then we know u ∈ L(α) = {au1 | u1 ∈ L(α1)}. Thus
u = au1. From the induction hypothesis, we obtain u1 Demb α̂1, which
yields that u = au1 Demb aα̂ = âα holds by the definition of Demb.
Thus u Demb α̂.

(c) If α = γ∗α1 then let w ∈ L(γ∗) and let u1 ∈ L(α1). Similar arguments
lead to u1 Demb α̂1. Since u = wu1, we obtain wu1 Demb u1 by the
definition of Demb. In addition, u1 Demb α̂1 = α̂. Thus u Demb α̂.

Therefore u Demb α̂ for all u ∈ L(α).

The above lemma shows that the string α̂ is minimum with respect to
Demb in the language of L(α).

For convenience, we define a relation between symbols and alphabets
when none of symbols in the alphabet is greater than the given symbol.

Definition 3.9. Let a ∈ Σ be a symbol, let B ⊆ Σ be a set and let > be a
strict order on Σ. We denote a > B if a > b holds for all b ∈ B.

Lemma 3.10. Let a ∈ Σ be a symbol, let Σ1 be a subset of Σ and let > be a
strict order. If a > Σ1 holds then a >rpo u holds for all u ∈ (Σ1)∗.

Proof. Suppose a > Σ1 and b ∈ Σ1. From Definition 3.9, we obtain a > b.
Let u be an arbitrary string in Σ∗1 then we show a >rpo u by induction on
|u|. If u = ε then a >rpo u is easy to check. We consider the inductive step
by assuming u = bu′, and a >rpo u is directly inferred from the conditions
a >rpo u

′ and a > b. Hence, The above claim holds.

The following basic property is easily proved by the definition of >rpo.

Lemma 3.11. Let u and v be strings. The following propositions hold:

(1) If u >rpo v then uw >rpo v for all string w.

(2) If u >rpo wv then u >rpo w for all string w.

Proof. We first prove (1) by induction on derivation of u >rpo v:

(a) If u 6= v = ε then uw >rpo ε = v is obvious.

13



(b) If u = au′ and v = av′ then u′w >rpo v
′ which follows from the induc-

tion hypothesis. Finally, we obtain uw = au′w >rpo av
′ = v by the

definition of >rpo.

(c) If u = au′, v = bv′ and a > b by a similar argument to (b). We obtain
uw = au′w >rpo bv

′ = v.

(d) If u = au′ and u′ ≥rpo v, the induction hypothesis yields u′w >rpo v.
Thus uw = au′w >rpo v holds by applying the definition of >rpo.

Then we show the second proposition by induction on |u|. If u = ε then it is
trivial. We consider the inductive case if u = au′:

(a) If w = aw′ then u′ >rpo w
′v holds by the definition of >rpo, from which

we obtain u′ >rpo pw. Thus u = au′ >rpo aw
′ = w is derived directly

from the definition of >rpo.

(b) If w = bw′ and a > b then we obtain that u′ >rpo wv holds. The
induction hypothesis yields that u′ >rpo bw

′. Besides that a > b, we
have u >rpo w.

(c) If u′ >rpo w then u′ >rpo w holds directly from the induction hypothesis.
Hence u = au′ >rpo w by the definition of >rpo.

Therefore u >rpo wv implies u >rpo w for all string w.

Another important property between Demb and >rpo is the following
lemma.

Lemma 3.12. Let u, v ∈ Σ∗ be strings. If u Demb v then u ≥rpo v.

Proof. Assume that u Demb v. Considering the three cases in the definition
of Demb, we prove u ≥rpo v by induction on |u|.

(a) If u = ε = v, u ≥rpo v because ≥rpo is reflexive.

(b) If u = au′, v = av′ and u′ Demb v′ then from the induction hypothesis,
we obtain u′ ≥rpo v′. Thus u = au′ ≥rpo av′ = v holds by the definition
of >rpo.

(c) If u = au′ and u′ Demb v, from the induction hypothesis we obtain
u′ ≥rpo v. Thus u = au′ ≥rpo v holds following to the the definition of
>rpo.

Therefore u Demb v implies u ≥rpo v.
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Now the recursive path order on regular expressions can be defined after
introducing above definitions.

Definition 3.13. The recursive path order �rpo on regular expressions is
the binary relation with respect to a strict order > on Σ that is defined as
follows: α �rpo β if one of the following holds:

(1) α̂ 6= β = ε.

(2) α = aα′, β = aβ′ and α′ �rpo β′.

(3) α = aα′, β = bβ′, a > b and α �rpo β′.

(4) α = aα′, β = γ∗β′, a > P(γ) and α �rpo β′.

(5) α = γα′ and α′ �rpo β.

Here a, b are symbols in Σ and α′, β′, γ are regular expressions.

Example 3.14. Consider the strict order a > b. The RSRS {ab → b∗a} is
compatible with the order �rpo as follows:

a > P(b)

b �rpo ε
(1)

ab �rpo a
(2)

ab �rpo b∗a
(4)

Some given RSRS is compatible with �rpo implies that the induced string
rewrite system is compatible with >rpo obviously.

Theorem 3.15. Let α and β be regular expressions. If α �rpo β holds then
u >rpo v for all u ∈ L(α) and v ∈ L(β).

Proof. Let α, β be regular expressions and let u ∈ L(α), v ∈ L(β) be strings.
We distinguish five cases and show u >rpo v by induction on the derivation
of α �rpo β:

(a) If α̂ 6= β = ε then α̂ Demb v. From Lemma 3.12 we know u Demb α̂
which yields α̂ >rpo v because α̂ 6= β.

(b) If α = aα′, β = aβ′ and α′ �rpo β′ then let u′ ∈ L(α′) and let v′ ∈ L(β′).
We obtain u′ >rpo v

′ from the induction hypothesis. By the definition
of >rpo and L(·), we have u = au′ >rpo av

′ = v.

(c) If α = aα′, β = bβ′, a > b and α �rpo β′ then this case is similar to (b).
We conclude that u′ >rpo v

′ holds from the induction hypothesis. Thus,
the definition of >rpo yields u = au′ >rpo bu

′ >rpo bv
′ = v. Hence, the

proof is complete.
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(d) If α = aα′, β = γ∗β′, a > P(γ) and α >rpo β
′ then we have au′ >rpo v

′

for au′ ∈ L(α′) and v′ ∈ L(β′) from the induction hypothesis. It is
easy to show au′ >rpo w where w ∈ L(γ) derived from Lemma 3.10 and
Lemma 3.11. Besides that L(γ) ⊆ (P(γ))∗, we obtain au′ >rpo wv

′.

(e) If α = γα′ and α′ >rpo β then we have u′ >rpo v for u′ ∈ L(α′) from the
induction hypothesis. It is clear that u = wu′ >rpo v for all w ∈ L(γ)
by induction on |w|.

Since we have found an order on regular expressions which is capable to
orient each pair of strings induced by their languages under >rpo. It is easy
to conclude the following corollary with the help of Theorem 2.22.

Corollary 3.16. If an RSRS is compatible with �rpo then the induced SRS
is terminating.

Note that the item (5) in Definition 3.13 also deals with Kleene star in
the left side.

Example 3.17. Let R = {b∗a→ b} be an RSRS. It is obvious that b∗a �rpo b
if a > b. Since R ⊆�rpo then L(R) is terminating by Corollary 3.16.

The converse part of Theorem 3.15 which shows the completeness is
proved by the following lemmas.

Lemma 3.18. Let u be a string and let β be a regular expression. If u >rpo v
for all v ∈ L(β) then u �rpo β.

Proof. Let u be a string and let β be a regular expression. Assuming u >rpo v
for v ∈ L(β), we show u �rpo β by induction on |u| + |β|. The base case is
u = ε and β = ε. This claim obviously holds since the antecedent is false.
Then we consider the inductive step by the structure of β:

(a) If β = bβ′ then we know u >rpo v = bv′ from the assumption where
bv′ ∈ L(β). We distinguish three cases by the definition of >rpo:

(i) If u = bu′ and u′ >rpo v
′ then it gives the condition to use the

induction hypothesis which leads to u′ �rpo β′. Since adding the
same prefix does not matter the order �rpo, we have u �rpo β.

(ii) If u = au′, u >rpo v
′ and a > b then it yields that au′ �rpo β′ from

the induction hypothesis. Besides that a > b, it is easy to know
u �rpo β = bβ holds.
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(iii) If u = au′ and u′ >rpo v then similar arguments show u′ �rpo β,
which makes evident to u = au′ �rpo β by the definition of �rpo.

(b) If β = γ∗β′ and let v ∈ {wv′ | w ∈ L(γ∗) and v′ ∈ L(β′)}. Thus
u >rpo w from Lemma 3.10. We consider the structure of u:

(i) If u = bu′ and u′ >rpo v then from the induction hypothesis we
have u′ �rpo β, which yields that u �rpo β by the definition of
�rpo.

(ii) If u = bu′ and u′ 6>rpo w then we claim b > P(w) for all w and
show it by contradiction. Assuming that there exists a ∈ P(γ)
such that a ≥ b, let w0 ∈ L(γ) be the minimum string containing
b. Since w ∈ L(w∗0) holds, we obtain |bu′|b < |w|a, which leads to
bu′ 6>rpo w. Consider the following fact:

P(γ∗) =
⋃

w∈L(γ∗)

P(w)

We have b > P(γ∗). It remains to show u �rpo β′ to prove u �rpo
γ∗β′. It is easy to obtain u �rpo β′ from the induction hypothesis
just by letting w = ε ∈ L(γ∗). Thus, we have u >rpo v

′.

Therefore u >rpo β holds.

Lemma 3.19. Let α and β be regular expressions. If α̂ �rpo β then α �rpo β.

Proof. We show α �rpo β by structure induction on α and β. If β = ε then

by assuming α̂ �rpo ε, we obtain ε 6= ̂̂α = α̂ from the definition of �rpo. Thus
α �rpo β holds by applying the definition again. Then we distinguish some
cases:

(a) If α = aα1 and β = aβ1 then α̂ = aα̂1 �rpo aβ1 holds. We obtain
α̂1 �rpo β1 by the definition of �rpo, which yields α1 �rpo β from
the induction hypothesis. Hence α �rpo β also holds by applying the
definition again.

(b) If α = aα1 and β = bβ1 then it is easy to obtain a > b and α̂ �rpo β1 by
the definition, which leads to the conclusion that aα1 �rpo β1 from the
induction hypothesis. In the same manner, we can see that α �rpo β.

(c) If α = aα1 and β = γ∗β1 then the proof of aα1 �rpo β1 runs as before.
By combining the condition a > P(γ), the definition of �rpo yields that
α �rpo β.
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(d) If α = γ∗α1, then α̂1 = α̂ �rpo β holds. We have α1 �rpo β from the
induction hypothesis. Thus, the same conclusion can be drawn by the
definition of �rpo.

Therefore α �rpo β holds.

Theorem 3.20. Let α and β be regular expressions. If u >rpo v for all
u ∈ L(α) and v ∈ L(β) then α �rpo β holds.

Proof. By assuming u >rpo v for all v ∈ L(β), we obtain u �rpo β from
Lemma 3.8. Combining Lemma 3.18 and Lemma 3.19, we have α �rpo β.

The following corollary is now a direct consequence of Theorem 3.15 which
shows the soundness and Theorem 3.20 which shows completeness.

Corollary 3.21. Let α and β be regular expressions. The proposition u >rpo

v holds for all u ∈ L(α) and v ∈ L(β) if and only of α �rpo β holds.

Decidability is obvious by combining Corollary 3.16.

Corollary 3.22. The RPO-termination of RSRSs is decidable.

18



Chapter 4

Ordered Transducer based
String Rewrite Systems

In this chapter, we present another restricted transducers called ordered
transducers which can be used to show the terminating property of the in-
duced string rewrite systems with the help of recursive path orders.

4.1 String Rewrite Systems via Transducers

Transducers are finite state abstract machines which accept pairs of strings.
First of all, we show the formal definition of transducers which induce a class
of string rewrite systems with infinite rules.

Definition 4.1. A transducer based string rewrite system (TSRS) is a finite
state transducer T = (Q,Σ,∆, 0, F ), where

1. Q is a finite subset of N called the states,

2. Σ is a finite set called the alphabet,

3. ∆ ⊆ {pu→ vq | p, q ∈ Q and u, v ∈ Σ∗} is the set of transition rules,

4. 0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Let p ∈ Q be a state. The relation derived by T and p is defined as:

R(T, p) = {(u, v) | u, v ∈ Σ∗ and pu→∗∆ qv for some q ∈ F}

If p = 0 then R(T ) with respect to Σ is the induced string rewrite system of
T . We denote R(T, p) as R(p) if T is obvious from the context.
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Example 4.2. Consider the following infinite string rewrite system R:

{ana→ (ba)nb | n ∈ N}

s We build the following TSRS T in Figure 4.1 such that R(T ) = R.

0start 1

a : ba

a : b

Figure 4.1: The TSRS T with R(T ) = R

Building the above TSRS means that we have a finite representation of
infinite string rewrite systems that seem to make automatic process possible.

Now we define the left automaton of some TSRS T to induce the left side
of rules in the SRS R(T ).

Definition 4.3. Let T = (Q,Σ,∆, 0, F ) be a TSRS. The left automaton Al
of T is the automaton (Q,Σ,∆l, 0, F ) with following transitions:

∆l = {pu→ q | pu→ vq ∈ ∆}

Example 4.4 (Continued from Example 4.2). The left automaton Al of T
has the following transitions:

0a→ 0

0a→ 1

Here states 0 is the initial state and 1 is the accept state.

Using the left automaton, we can check whether a normal form exists in
ordinary string rewriting.

Proposition 4.5. The following problem is decidable:

Instance: A TSRS T and a string u.

Question: Does u ∈ NF(R(T )) hold?

Proof. To decide that if u is already in normal form, we need to guarantee
that each substring of u does not match any left rule in R(T ). More precisely,
to ensure that there does not exist u′ ∈ Sub(u) such that u′ ∈ L(Al) holds.
Since the substring set is finite and the membership problem is decidable by
Theorem 2.14, we conclude that the above problem is also decidable.
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Example 4.6 (Continued from Example 4.4). Consider the string aab. Since
the string aa is a substring of aab and aa ∈ L(Al), we obtain that aab is not
in normal form.

We are also interested in the problem of computing a reduct of some
string u if u is not in normal form.

Lemma 4.7. Let T = (Q,Σ,∆, 0, F ) be a TSRS and let Al be the left au-
tomaton of T . If 0u →n

∆l
q for some state q and n ∈ N then 0u →n

∆ vq for
some string v.

Proof. A simple fact from Definition 4.3 says that for all px → q ∈ ∆l,
the proposition px → yq ∈ ∆ must hold for some string y. We show that
0u→n

∆l
q implies 0u→n

∆ vq by induction on n.

• If n = 0, we have u = ε and q = 0. Thus 0ε→0
∆ ε0.

• If n > 0, we suppose that there exists p ∈ Q and strings u1, u2 such
that u = u1u2 and:

0u1 →n−1
∆l

p and pu2 → q ∈ ∆l

The induction hypothesis yields 0u1 →n−1
∆ v1p for some string v1. By

the above fact, we have pu2 →∆ v2q for some string v2. Hence we
obtain:

0u1u2 →n−1
∆ v1pu2 →∆ v1v2q

Therefore 0u→n
∆ vq holds when v = v1v2.

Example 4.8 (Continued from Example 4.6). We know that aa ∈ L(Al)
which yields 0aa→2

∆l
1. From the original TSRS T , we have 0aa→2

∆ bab1.

Proposition 4.9. Let T be a TSRS and let u be a string not in normal form.
The set of all reducts of u with respect to R(T ) is computable.

Proof. Let Al be the left automaton of T . Obviously, there exist a substring
u′ ∈ Sub(u) and an accept state r such that:

u = w1u
′w2 and 0u′ →n

∆l
r

By Lemma 4.27, we know that 0u′ →n
∆ v′r for some string v′. Since the

language L(Al) is computable and Sub(u) is finite, all reducts of u is com-
putable.

Rewriting under the new representation proposed above succeeds. Now
we consider the problem how to check the termination property of the induced
string rewrite system in the next section.
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4.2 Recursive Path Orders

Recursive path orders seem to be not so compatible with transducer based
string rewrite systems to check the termination property of the induced string
rewrite systems. The main reason is that transducers lack the term structure,
which is useful when extending orders. Thus, we develop a technique to
employ recursive path orders iteratively along with state transitions.

In the following, the concept configurations will be introduced to develop
a decidable technique to check the RPO-termination of a restricted class of
TSRS.

Definition 4.10. Let T = (Q,Σ,∆, 0, F ) be a TSRS.

• The set S(p) consisting successor states of p ∈ Q is defined as:

{q | q ∈ Q and up→ qv ∈ ∆ for some u, v ∈ Σ∗}

• A configuration of T is a triple (u, v, p), where u, v ∈ Σ∗ and p ∈ Q.
The set S(u, v, p) consisting successor configurations of (u, v, p) is the
following set:

{(ux, vy, q) | x, y ∈ Σ∗ and qx→ yp ∈ ∆ for some p ∈ Q}

The set of all configurations is denoted by C.

• An extended configuration is a quadruple (o, u, v, p), where o ∈ {s, w}
and (u, v, p) ∈ C. We extend S(u, v, p) to S(o, u, v, p) as follows:

S(o, u, v, p) = {(o, u′, v′, q) | (u′, v′, q) ∈ S(u, v, p)}

Definition 4.11. Let c = (o, u, v, p) be an extended configuration and let
n ∈ N be a number. We denote >w

rpo as >=
rpo and >s

rpo as >rpo. The property
Pn(c) means: For all x→ y ∈ R(p),

If |uxvy| = n then ux >o
rpo vy

Let C, I be extended configuration sets. We just write Pn(C) if Pn(c) holds
for all c ∈ C. More specifically, we denote I 
n C if Pk(I) implies Pn(C) for
all k < n.

We define a procedure to check whether the induced SRS of T is compat-
ible with >rpo only by the assistance of T .

Definition 4.12. Let T = (Q,Σ,∆, 0, F ) be a TSRS and let > be a strict
total order on Σ. We define the following transformation rules:
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[r1]
{(o, au, av, q)} ] C, I
{(o, u, v, q)} ∪ C, I

[r2]
{(o, au, bv, q)} ] C, I
{(s, au, v, q)} ∪ C, I if a > b

[r3]
{(o, au, bv, q)} ] C, I
{(w, u, bv, q)} ∪ C, I if a < b

[c1]
{(o, ε, v, q)} ] C, I
C ∪ S(o, ε, v, q), I

if q /∈ F ∪ S(q)

[c2]
{(o, u, ε, q)} ] C, I
C ∪ S(o, u, ε, q), I

if q /∈ F ∪ S(q)

[c3]
{(o, u, ε, q)} ] C, I
C ∪ S(o, u, ε, q), I

if q ∈ F − S(q) and u >o
rpo ε

[c4]

{(o, u, ε, q)} ] C, I
C ∪ S(o, u, ε, q), I ∪ {(o, u, ε, q)} if q ∈ S(q)− F and (o, u, ε, q)×

[c5]

{(o, ε, v, q)} ] C, I
C ∪ S(o, ε, v, q), I ∪ {(o, ε, v, q)} if q ∈ S(q)− F and (o, ε, v, q)×

[c6]

{(o, u, ε, q)} ] C, I
C ∪ S(o, u, ε, q), I ∪ {(o, u, ε, q)}

if q ∈ F ∩ S(q), u >o
rpo ε and (o, u, ε, q)×

[d]
{(o, u, v, q)} ] C, I

C, I
if (o, u, v, q)◦
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Here C, I are sets of extended configurations. We denote these rules as `T
or ` if T is obvious from the context. We call an extended configuration
(o, u, v, q) is marked in I if (o, u, v, q) ∈ I. For convenience, (o, u, v, q)◦

means that it is marked and (o, u, v, q)× means that it is not marked.

We want to have that each rule in the induced SRS of some TSRS is
compatible with >rpo after applying Definition 4.12 iteratively.

Example 4.13. Consider the following TSRS T with:

R(T ) = {ana→ (ba)nb | n ∈ N}

We can prove that it is compatible with >rpo by induction on n. Figure 4.2
is the corresponding TSRS.

0start 1

a : ba

a : b

Figure 4.2: TSRS T with R(T ) = R

Let c = (o, u, v, q) be the extended configuration with o = s, u = ε, v = ε
and q = 0. We start the transformation from ({c},∅) as follows:

{c},∅ `c1 {(s, a, ba, 0), (s, a, b, 1)},∅
`r2 {(s, a, a, 0), (s, a, b, 1)},∅
`r1 {(s, ε, ε, 0, ), (s, a, b, 1)},∅
`c4 {(s, a, ba, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r2 {(s, a, a, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r1 {(s, ε, ε, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`d {(s, a, b, 1)}, {(s, ε, ε, 0)}
`r2 {(s, a, ε, 1)}, {(s, ε, ε, 0)}
`c3 ∅, {(s, ε, ε, 0)}

No more transformation rules can be applied and it ends in (∅, I) for some
extended configuration set I.

In the definition of `, the extended configuration which is currently deal-
ing with must be checked whether it is marked or not. Our technique fails
when transformation rules are applied without these side conditions.
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Example 4.14. The induced system indicated in Example 4.13 cannot be
proved terminating since ` does not terminate as follows:

{c},∅ `c1 {(s, a, ba, 0), (s, a, b, 1)},∅
`r2 {(s, a, a, 0), (s, a, b, 1)},∅
`r1 {(s, ε, ε, 0, ), (s, a, b, 1)},∅
`c4 {(s, a, ba, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r2 {(s, a, a, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r1 {(s, ε, ε, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`c1 {(s, a, ba, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r2 {(s, a, a, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
`r1 {(s, ε, ε, 0), (s, a, b, 1)}, {(s, ε, ε, 0)}
` · · ·

We conclude Theorem 4.22 by restricting the class of TSRSs to ensure
soundness.

Definition 4.15. Let T = {Q,Σ,∆, 0, F} be a TSRS and let > be a strict
total order. We group these transition rules in ∆ by some state r ∈ Q as
follows:

• The state relation of T , denoted as ∆ε is the relation:

{p→ q | pu→ vq ∈ ∆}

• The loop rule set induced by r is the set:

∆↔(r) = {pu→ vq ∈ ∆ | p = r = q}

• The left rule set induced by r is the set:

∆←(r) = {pu→ vq ∈ ∆ | q = r and p 6= r}

• The right rule set induced by r is the set:

∆→(r) = {pu→ vq ∈ ∆ | p = r and q 6= r}

We define some properties on r as follows:

• r is called removable if r →∗∆ε
p for no p ∈ F .
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• r is called movable if both left and rule rule set of r are not empty and
∆↔(r) = ∅.

• r is called eliminative if there is a rule pu → vp ∈ ∆↔(r) with p = r
such that u >=

rpo v or v >h u 6= ε.

Definition 4.16. A TSRS T = (Q,Σ,∆, 0, F ) is called ordered if there are
no eliminative, removable or movable states and every px→ yq ∈ ∆ satisfies
p ≤ q and:

• If p < q then x >=
rpo y and

• if p = q then y >rpo x, a = b and |x|a ≥ |y|b.

Here a = max(x) and b = max(y).

Let T be an unordered TSRS. The ordered version of T can be derived
from the following derivation rules.

Definition 4.17. Let T = (Q,Σ,∆, 0, F ) be a TSRS. We define some deriva-
tion rules on ∆ as follows:

1.
∆ ] {pu→ qv}

∆
if q is removable

2.
∆ ] {pu→ pv}

∆
if p is eliminative

3.
∆ ] {pu→ qv}

⊥ if v >rpo u and q ∈ ∆↔

4.
∆ ] {pu→ pv}

⊥ if v >h u or |u|a < |v|b

where a = max(u) and b = max(v)

5.

∆ ]∆←(q) ]∆→(q)

∆ ∪ {pux→ rvy | pu→ vq ∈ ∆←(q) and qx→ yr ∈ ∆→(q)} if q is movable

We denote these derivation rules as ⇒.
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Applying the above derivation rules to some TSRS should not affect our
technique.

Fact 4.18. Let T = (Q,Σ,∆, 0, F ) be a TSRS and let ∆ 6= ⊥ be a tran-
sition set. If ∆ ⇒ ∆′ then propositions R(T ) ⊆>rpo and R(T ′) ⊆>rpo are
equivalent where T ′ = (Q,Σ,∆′, 0, F ).

The example of ⇒ is showed in Example 4.31.

Definition 4.19. Let T = (Q,Σ,∆, 0, F ) and T ◦ = (Q,Σ,∆◦, 0, F ) be
TSRSs. We say that T ◦ is the ordered TSRS of T if ∆ ⇒∗ ∆◦ holds and
∆◦ ∈ NF(⇒)− {⊥}.

Now these transformation rules in Definition 4.12 can be used when we
have the ordered TSRS T ◦ since R(T ) ⊆>rpo if and only if R(T ◦) ⊆>rpo.

Before showing the RPO-termination, we need some lemmas.

Lemma 4.20. Let T ◦ be an ordered TSRS. If C, I `T ◦ C ′, I ′ except for the
rule d then Pn(C ′) implies Pm(C) for all n ∈ N where m ≥ n.

Proof. We prove it holds for each transformation rule except d. Let n ∈ N.

[r1] By assuming the antecedent, we find m ∈ N such that the following
holds:

Pn((o, u, v, q)) =⇒ Pm((o, au, av, q))

Let m = n+2. We take an arbitrary pairs x→ y ∈ R(q). It is sufficient
to show (1) implies (2):

|uxvy| = n =⇒ ux >o
rpo vy (1)

|auxavy| = n+ 2 =⇒ aux >o
rpo avy (2)

Suppose (1) and |auxavy| = n + 2. We conclude |uxvy| = n directly.
Thus ux >o

rpo vy holds. By the definition of >o
rpo, we obtain aux >o

rpo

avy.

[r2] Similar arguments are shared with [r1]. Thus, we just need to show
that if a > b then for some m:

Pn((s, au, v, q)) =⇒ Pm((o, au, bv, q))

Let m = n+1. We take an arbitrary pair x→ y ∈ R(q). It is sufficient
to show (3) implies (4):

|auxvy| = n =⇒ aux >rpo vy (3)

|auxbvy| = n+ 1 =⇒ aux >o
rpo bvy (4)
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Suppose (3) and |auxbvy| = n + 1. We conclude |auxvy| = n. Thus
aux >rpo vy holds. Besides that a > b, it yields aux >rpo bvy by
Definition 2.20. Hence aux >o

rpo bvy.

[r3] Similar to the above proof, we conclude that what we have to show is:
if a < b then there exists m such that:

Pn((w, u, bv, q)) =⇒ Pm((o, au, bv, q))

Let m = n+1. We take an arbitrary pair x→ y ∈ R(q). It is sufficient
to show that (5) implies (6):

|uxbvy| = n =⇒ aux >=
rpo vy (5)

|auxbvy| = n+ 1 =⇒ aux >o
rpo bvy (6)

Suppose (5) and |auxbvy| = n + 1. We conclude |uxbvy| = n. Thus
ux >=

rpo bvy. Besides that a < b, it yields aux >rpo bvy by Defini-
tion 2.20. Hence aux >o

rpo bvy holds.

[cn] Let c = (o, u, v, q) be the configuration that is altered. We show that
there exists m satisfing:

Pn(c) =⇒ Pm(S(c))

Let m = n. To show the above claim we simply prove:

{(u, v)} ·R(p) ⊆>o
rpo =⇒

⋃
(o,x,y,q)∈S(c)

{(ux, vy)} ·R(q) ⊆>o
rpo

Let R1 be {(u, v)} · R(p) and let R2 be the arbitrary union in the
right part. Instead of implication elimination, it is finally concluded
that showing R2 ⊆ R1 is sufficient to prove the original claim. By
calculating:

R1 = {(u, v)} ·R(p)

= {(u, v)} · {u′ → v′ | u′, v′ ∈ Σ∗ and pu′ →∗∆ v′r for some r ∈ F}

According to the definition of S(c), the following holds:

R2 =
⋃

(o,x,y,q)∈S(c)

{(ux, vy)} ·R(q)

= {(u, v)} ·
⋃

(x,y,q)∈S(ε,ε,p)

{(x, y)} ·R(q)
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After the calculation, we show R2 ⊆ R1 as follows:

Suppose (uu′, vv′) ∈ R2. Next, we know that there exists a tuple
(x, y, q) ∈ S(p) such that u′ = xu′1, v

′ = yv′1 and u′1 → v′1 ∈ R(q), which
means:

qu′1 →∗∆ v′1r

By the definition of S(·), we have px → yq ∈ ∆. Combining the
above conditions, it is concluded that there is a state r ∈ F such that
pxu′1 →∗∆ yqu′1r. Thus (uu′, vv′) ∈ R1 holds.

Hence R1 ⊆>o
rpo implies R2 ⊆>o

rpo since R2 ⊆ R1.

Lemma 4.21. Let T be an ordered TSRS and let C0, I0 ` C1, I1 ` · · · be a
sequence. If Cj, Ij ` Cj+1, Ij+1 then Ij+1

′ 
n Cj+1
′ implies Ij 
n Cj for all

n ∈ N.

Proof. By Lemma 4.20, the consequent is obvious for these derivation rules
except dsince no assumption in Pn(I) is used. Now we prove it holds only
when d is applied. Let n ∈ N. Suppose Cj, Ij `d Cj+1, Ij+1, Ij + 1 
n Cj + 1
and P (Ij). Let c = {(o, u, v, q)} = Cj − CJ+1. Thus, we only have to show
P (o, u, v, q) since Ij = Ij+1. Since sequence starts from with C0, I0 and Ij is
not empty, there must exist i < j in the sequence:

C0,∅ `∗ Ci−1, Ii−1 `cn Ci, Ii `∗ Cj, Ij `d Cj+1, Ij+1 `∗ · · ·

The side condition of d reveals us that:
If Ii − Ii−1 = {(o, u, v, q)} then let (x, y) ∈ R(u, v, q). We show x >o

rpo y
by induction on |xy|. Thus x′ >o

rpo y
′ follows from the induction hypothesis

Pk(I) and k < n. It yields x = w1x
′ and y = w2y

′ for some w1, w2 such that
qw1 → w2q ∈ ∆, w1 6= ε and w2 6= ε. Hence |xy| > |x′y′|. Only r1,r2,r3 are
applied in Ci, Ii `∗ Cj, Ij. Subsequently P (Cj) implies P (Ci) by Lemma 4.20.
Thus x >o

rpo y.
Therefore the above lemma holds.

Theorem 4.22. Let T ◦ = (Q,Σ,∆, 0, F ) be an ordered TSRS. The following
holds:

(C,∅) `∗ (∅, I) =⇒ R(T ◦) ⊆>rpo

Here C = {(s, ε, ε, 0)}.

Proof. Suppose that {(s, ε, ε, 0)},∅) `∗ (∅, I) holds. From Lemma 4.21, it
yileds that for all n ∈ N:

I 
n ∅ =⇒ ∅ 
n (s, ε, ε, 0)
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Easy evidence shows that Pn(I) implies Pn(∅) since Pn(∅) is true, Pn(∅)
implies Pn(s, ε, ε, 0). Hence, it yields that R(T ◦) ⊆>rpo by the strict version
s.

Since we find a way to deal with TSRSs, which is capable to orienting
their induced string rewrite system by recursive path orders. It is easy to
conclude the following corollary according to Theorem 2.22.

Corollary 4.23. Let T = (Q,Σ,∆, 0, F ) be an ordered TSRS. The induced
SRS is terminating if {(s, ε, ε, 0)},∅ `∗ ∅, I holds for some I.

Decidability and completeness should also be considered by using the
following lemmas.

Lemma 4.24. Let T ◦ be an ordered TSRS and let C0, I0 `T ◦ C1, I1 `T ◦ · · ·
be a sequence. Given o ∈ {s, w}, a string u and a state p, the following set
is finite:

{v | (o, u, v, p) ∈
⋃

Ii}

Proof. If u is not the empty string then all satisfied v can only be ε according
to the structure of I. We consider the case when u = ε. Suppose that there
exists an infinite sequence:

· · · ` Cj ] {o′, ε, y′, p}, Ij `c6 Ck ∪ {(o′, x, y′y, p)}, Ik ` · · ·

We claim that there exists q ≤ p and i < j such that the following holds:

Ci−1 ] {(o, w, ε, q)}, Ii−1 ` Ci ] {(o, wx, y, p)}, Ii `∗ Cj ] {(o′, ε, y′, p)}, Ij

The proof is simple since if p = 0 then w = ε; If p 6= 0 then we take the q such
that qx0 → y0p ∈ Σ for some x0, y0. By Definition 4.17, we have x0 >

=
rpo y0.

Thus we can take a string w.
Now we prove max(y′) < max(y). It is obvious that max(w) < max(y).

Let a = max(x). We have max(x) = max(y) and |x|a = |y|b by Defini-
tion 4.17. Thus max(y′) < max(y).

Finally, we obtain the direct consequence Ik = Ik ∪{(o′, ε, y, p)} from the
following sequence:

Ck ∪ {(o′, x, y′y, p)}, Ik `∗rn Ck ∪ {(o′, ε, y, p)}, Ik ∪ {(o′, ε, y, p)} ` · · ·

Accordingly the set {v | (o, u, v, p) ∈
⋃
Ii} is finite.

Lemma 4.25. Let T ◦ be an ordered TSRS. The relation `T ◦ terminates.
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Proof. Suppose that there exists an infinite sequence C1, I1 ` C2, I2 ` · · · .
Let `t be the composition of rules r1,r2,r3,c1,c2,c3,and d. Then ` is ter-
minating obviously. Thus the infinite sequence must be

C1, I1 `∗t ◦ `cn C2, I2 `∗t ◦ `cn · · ·

By the fact that I = I ′ holds if C, I `t C ′, I ′, we have |Ii+1 − Ii| = 1 for all
i ∈ N in the above sequence. Then we take the infinite sequence:

c1, c2, c3, · · ·

Here ci = (o, u, v, q) is the first element of Ii+1 − Ii. Since the set {s, w}
where o belongs and Q where q belongs are finite. In addition, the set where
v belongs is finite by Lemma 4.24 and Demb is a well partial order. Thus,
there exists an extend order which is also a well partial order on ci, which
follows from Dickson’s lemma.

There exists i, j ∈ N such that uj Demb ui where (oi, ui, vi, qi) = ci and
(oj, uj, vj, qj) = cj. Let `=`∗t ◦ `cn. Thus, the following infinite sequence
exists:

· · · ` Ci+1, Ii ∪ {(oi, ui, vi, qi)} ` · · · `Cj+1, Ij ∪ {(oj, uj, vj, qj)} ` · · ·

Here ` is applied. On the other hand, none of rule c4, c5, c6 can be ap-
plied by the side condition since uj Demb ui. Now we have a contradiction.
Therefore, the relation `T ◦ is terminating.

Note that the given TSRS must be ordered. By Definition 4.17, we present
a TSRS that is not ordered, which does not follow the above theorem.

Example 4.26. We consider the following TSRS indicated in Figure 4.3.

0start 1

a : b

a : b

Figure 4.3: A TSRS which it not ordered

The above TSRS induces the system {ana → bnb} which is compatible
with >rpo obviously. However, our technique will fail since the above relation
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` is not terminating:

{c},∅ `c1 {(s, a, b, 0), (s, a, b, 1)},∅
`r2 {(s, a, ε, 0), (s, a, b, 1)},∅
`c4 {(s, aa, b, 0, ), (s, a, b, 1)}, {(s, a, ε, 0)}
`r2 {(s, aa, ε, 0), (s, a, b, 1)}, {(s, a, ε, 0)}
`c4 {(s, aaa, b, 0), (s, a, b, 1)}, {(s, a, ε, 0), (s, aa, ε, 0)}
`r2 {(s, aaa, ε, 0), (s, a, b, 1)}, {(s, a, ε, 0), (s, aa, ε, 0)}
` · · ·

Here c = (s, ε, ε, 0).

Lemma 4.27. Let T ◦ be an ordered TSRS and let c = (s, ε, ε, 0) be an
extended configuration. The normal from of (c,∅) with respect to `T ◦is (C, I)
for some I, where

C ⊆ {(s, ε, v, q) | q ∈ F} ∪ {(w, ε, v, q) | q ∈ F and v 6= ε}

Proof. Suppose (C, I) is the normal form of (c,∅). By Theorem 4.22, it is
already in normal form if C = ∅. If C is not empty then we analyze the
elements in C. Let (o, u, v, q) ∈ C.

• If u 6= ε and v 6= ε then r1,r2 or r3 is applied.

• If u 6= ε and v = ε then d, c1,c3 or c5 can be applied.

• If u = ε, v 6= ε and q /∈ F then d,c2 or c6 is applied.

• If u = ε, v = ε and q /∈ F then c2,c3,c5,c6 or d is applied.

• If u = ε, v = ε, q ∈ F and o = w then one rule in c1 or c4 is applied.

The remaining cases are:

• Case 1: u = ε, v 6= ε, q ∈ F and o = w,

• Case 2: u = ε, v 6= ε, q ∈ F and o = s, and

• Case 3: u = ε, v = ε, q ∈ F and o = s.

Hence, Lemma 4.27 holds.

Then we can show the proof of completeness with the help of the termi-
nation property of `.
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Lemma 4.28. If (C, I) ` (C ′, I ′) then Pn(C) implies Pn(C ′) for all n ∈ N.

Proof. Suppose (C, I) ` (C ′, I ′). It follows directly when r1,r2,r3 or d is ap-
plied. Similar arguments are shared with Lemma 4.20 when c1,c2,c3,c4,c5
or c6 is applied.

Theorem 4.29. Let T ◦ = (Q,Σ,∆, 0, F ) be an ordered TSRS. The following
holds:

R(T ◦) ⊆>rpo =⇒ (C,∅) `∗ (∅, I)

Here C = {(s, ε, ε, 0)}.

Proof. Suppose R(T ◦) ⊆>rpo. We prove it by contradiction. Assume that
the normal form of (C,∅) is not (∅, I) for some I. By Lemma 4.27, we have
C 6= ∅ and

C ⊆ {(s, ε, v, q) | q ∈ F} ∪ {(w, ε, v, q) | q ∈ F and v 6= ε} = C∞

On the other hand, we have P (C) by Lemma 4.28 which leads to a contra-
diction since P (C∞) does not hold.

The following corollary is now a direct consequence of Theorem 4.22 that
shows soundness and of Theorem 4.29 that shows completeness.

Corollary 4.30. Let T ◦ = (Q,Σ,∆, 0, F ) be the ordered TSRS of T . The
following two propositions are equivalent.

• For all u→ v ∈ R(T ), u >rpo v holds.

• For some extend configuration set I, ({(s, ε, ε, 0)},∅) `∗T ◦ (∅, I) holds.

The RPO-termination of ordered TSRSs is decidable.

Now the termination property of R120◦ presented in Chapter 1 is easy to
prove using our approach.

Example 4.31. The following system is the induced SRS of T120◦ indicated
in Figure 4.4.

R120 =


aaa → ε

babn+1ab → abna m, n ∈ N
abmabnab → babmabna


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0start

1

2

3

5

4

aaa : ε

cac : a

a : ca

c : c

ac : a

c : c

a : a

c : c

ac : a

Figure 4.4: TSRS T120◦

By Definition 4.17, we compute the ordered TSRS of T120◦ indicated in
Figure 4.5.

0start

1

5

aaa : ε

cacac : aa

aaac : caaa

Figure 4.5: Ordered TSRS T ◦120◦

Let c = (s, ε, ε, 0). We prove that the string rewrite system R120◦ is
terminating as follows:

{c},∅ `T ◦
120◦
{(s, aaac, caaa, 5), (s, cacac, aa, 5), (s, aaa, ε, 5)},∅

`∗T ◦
120◦
{(s, c, ε, 5), (w, c, ε, 5), (s, aaa, ε, 5)},∅

`∗T ◦
120◦

∅,∅
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Chapter 5

Conclusion

We presented two methods to indicate string rewrite systems by finite state
transducers, which are regular expression based string rewrite systems and
ordered transducer based string rewrite systems. Our motivation is to check
termination of string rewrite systems with infinite rules like the congruent
system for turtle graphics equivalence when θ = 120◦. We conclude the thesis
by introducing related work.

5.1 Related Work

Recurrence Terms The research [3] brings us a finite schematization of
infinite terms by recurrence terms. Termination and confluence of the new
finitely presented system are directly related to the infinite ones it denoted.
However, The problem how to check these properties remains open. These
infinite systems represented in our approach can also be represented in re-
currence terms. But our technique provides a decidable way to check termi-
nation.

Instead of showing the detailed definition of recurrence terms, we illus-
trate an infinite system R:

{anb→ b | n ∈ N}

It can be represented by the following TRS R′ based on the f -rooted recur-
rence terms:

f(a, n) : b : x→ b : x

If the above system is given, This system is not capable of rewriting strings
like aab. In order to fill in the gap between f(a, n) : x and a : a : x, one has
to employ the following equations E ′ to convert between recurrence terms
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and terms.

f(a, 0) : x = x

f(a, s(n)) : x = a : f(a, n) : x

Rewriting is now performed as so-called rewriting modulo E ′, which is defined
as follows:

Definition 5.1. Let R be a TRS and let E be a set of equations. The rewrite
relation →R/E is the following relation:

↔∗E · →R · ↔∗E

Automatically matching the string a : a : b : x to the term f(a, n) : x
containing the new function symbol f under E ′ raises the decidable pattern
marching problem under equational systems for recurrence terms, which are
the equational part of our rewrite modulo.

Definition 5.2. Let Σ be an alphabet. The equational system for recurrence
terms over Σ is the following set:{

f(a, 0) : x = x
f(a, s(n)) : x = a : f(a, n) : x a ∈ Σ

}
Here : is right associative.

Decidability of the matching problem is ensured in [3].

Theorem 5.3. The following problem is decidable:

instance: An equational system E for recurrence terms, a term l con-
taining f and a term t containing no f

question: Do p and σ exist such that t|p = lσ and lσ ↔∗E t|p?

And the position p and the substitution σ are computable.

Note that for an arbitrary equational system E, the above problem is
undecidable.

Example 5.4. Consider the term t = a : a : b : x. We have t →R′/E′ b : x
since t|p matches f(a, n) : x when p = ε and σ = {n 7→ s(s(0)), x 7→ b : x}.
Hence

a : a : b : x ↔∗E′ f(a, s(s(0))) : b : x →R′ b : x ↔∗E′ b : x
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By the above theorem, we can decide whether a given string can be con-
verted to f -rooted recurrence term by checking all its subterms. If it is then
a next reduct after the conversion is computable. Just like Example 5.4, the
string a : a : b : x matches f(a, n) : x at the root position. After that,
ordinary rewriting of R′, which is also computable, is performed.

We expect that RPO-termination of →R′/E′ implies RPO-termination of
→R in the above example. However, from a simple proof we have that there
does not exist a simplification order > such that for every terms s, t, u and v

s↔∗E′ t > u↔∗E′ v implies s > v

It means that we cannot use simplification orders to check termination of
these systems involving equational systems for recurrence terms. Moreover,
no reduction order exists such that the above claim holds either.

Besides that, RPO-termination of →R′ does not imply RPO-termination
of →R either. The following is a simple example

Example 5.5. Consider the above system R′ = {f(a, n) : b : x → b : x}. If
a > b then

R′ ⊆>rpo

holds by the definition of Demb. Thus R′ is terminating.
On the other hand, the original system R = {anb → b | n ∈ N} is not

terminating since the following infinite sequence exists

b→R b→R b→R · · ·

Transducers and Rational Relations. Product construction of trans-
ducers was attempted to use during the first stage of this research while
another work [13] shows that the equivalence problem for transducers is un-
decidable. On the other hand, the languages which transducers accept are
rational relations [2]. Moreover we also succeeded in illustrating recursive
path orders in transducers.

5.2 Limitations

The major weakness of our work is that the class of transducers is restricted.
We cannot fully take advantages of transducers to express more string rewrite
systems. Besides that, other termination techniques or simplification orders
should also be considered to enlarge the class. Furthermore, as a technique
to check the termination property, the transducer must be given. Automated
generation from infinite systems to transducers should also be considered.
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As future work, we plan to introduce lexicographical orders over trans-
ducer based systems since their definition is simpler than recursive path or-
ders. Another direction is to enlarge the class of by alerting the states of
transducers in a better manner. Also, we consider the implementation of our
technique.
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