
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Polarity Classification of Imbalanced Microblog

Texts

Author(s) XIANG, YUNMIN

Citation

Issue Date 2019-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/16047

Rights

Description
Supervisor: 白井 清昭, 先端科学技術研究科, 修士(情報

科学)

Master’s Thesis

Polarity Classification of Imbalanced Microblog Texts

1710250 XIANG YUNMIN

Supervisor Kiyoaki Shirai
Main Examiner Kiyoaki Shirai

Examiners Satoshi Tojo
Minh Le Nguyen
Shogo Okada

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

May 2019

Abstract

Sentiment analysis is a process to analyze opinion or emotion in texts. Po-
larity classification is one of the major problems in sentiment analysis. It
is a task to classify a given text into negative, positive, or neutral. Many
researchers have devoted to studies of the polarity classification. Especially,
the polarity classification of texts on microblog such as Twitter is paid much
attention, since users actively express their opinion on social media. How-
ever, most datasets used in past studies are balanced, in which the number
of samples of each class is almost the same. However, the distribution of
the polarity of texts is actually imbalanced in real social media, that is the
number of neutral samples are much more than other classes. Supervised
machine learning usually performs poorly on imbalanced data, since a clas-
sifier tends to judge minority samples as majority class. However, detection
of minority samples (i.e. positive and negative) is important because they
provide useful information for users.

Over-sampling is a technique to train an accurate classifier from an imbal-
anced data. It increases an amount of minority samples so that the distribu-
tion of the classes is well balanced. Among various over-sampling methods,
SMOTE and ADASYN are widely used. Supposing that each sample in a
dataset is represented as a feature vector, SMOTE synthesizes new minority
samples by randomly choosing a vector that is on a line between two exist-
ing minority samples in vector space. ADASYN is an extended version of
SMOTE. It focuses on the fact that the samples nearby the other classes
are difficult to be classified. Therefore, ADASYN generates more synthetic
samples from minority samples near the borderline.

The goal of this research is to train an accurate model that can classify
polarity of a given text in an imbalanced data set. We focus on the polarity
classification of texts in Twitter. We conducted a preliminary survey to
reveal the distribution of the polarity in Twitter, and confirmed that 86% of
tweets were neutral. It means that training a classier from an imbalance data
is an important problem for the polarity classification of tweets. This thesis
proposes several methods to extend SMOTE and ADASYN to improve the
performance of the polarity classification in microblog.

First, a novel over-sampling method called Amount Control Over-sampling
(ACO) is proposed. One of the problems of SMOTE and ADASYN is that
the synthetic samples are artificially generated and not real samples at all.
The excessive number of synthetic samples may lead the poor performance of
the polarity classification. Therefore, we propose ACO to control or optimize

the number of synthetic samples. The basic idea of ACO is to optimize the
balance parameter bal on the development data. It is defined as the propor-
tion of the minority samples to the majority samples in a new (over-sampled)
data set. The balance parameter is optimized on a development data. First,
for a given bal, the training data is balanced by SMOTE or ADASYN. Next,
a classifier is trained on the balanced training data and applied to determine
polarity labels of samples in the development data. The above procedure is
repeated by changing the value of bal. The optimized bal is chosen so that
F1-measure on the development data become the highest.

A polarity word is a word that expresses positive or negative opinions
such as “good” and “bad”. Many studies proved that polarity words were ef-
fective features for the polarity classification. Therefore, we propose an over-
sampling method that considers the importance of polarity words. The core
idea of this method is to generate more samples from those samples that in-
clude polarity words. A weight parameter named wp is defined as the weight
of samples including polarity words. More precisely, wp is a ratio of the num-
ber of synthesized samples generated from a minority sample with polarity
words to that from a sample without polarity words. It is optimized on the
development data. This method is called Polarity Oriented Over-sampling
(POO). In addition, since the computational costs of determining wp by us-
ing trial and error on a development data is high, we propose a method to
automatically determine the parameter wp. We measure the intensity of the
sentiment expressed in a tweet by calculating average of sentiment scores of
the words. We use a sentiment lexicon to get sentiment scores of words. The
higher the intensity of the sentiment of a sample is, the greater the parameter
wp is set. It enable us to synthesize more samples from a minority sample
that expresses strong sentiment. This method is called as Polarity Intensity
Oriented Over-sampling (PIOO).

Support Vector Machine (SVM) is used to train a polarity classifier in
this study. Word embedding is used to obtain a feature vector of a tweet.
A weighted sum of word vectors is defined as a feature vector of a tweet.
Skip-gram is applied to train word embedding.

Several experiments are conducted to evaluate our methods. An imbal-
anced data set is constructed by adding neutral tweets to SemEval 2017 data
set. First, our proposed ACO is evaluated. F1-measure of SMOTE+ACO is
48.74% and 52.79% for the negative and positive classification, which are
11.35 and 6.27 points better than SMOTE, respectively. F1-measure of
ADASYN+ACO is 51.44% and 53.78% for the negative and positive classifi-
cation, which are 11.07 and 10.04 points better than ADASYN, respectively.
These results indicate that ACO, the method to optimize the number of
synthesized samples, is effective. Next, our proposed POO is evaluated. F1-

measure of SMOTE+POO is 54.07% and 57.94% for the negative and positive
classification, which are 5.33 and 5.15 points better than SMOTE+ACO, re-
spectively. F1-measure of ADASYN+POO is 54.93% and 65.03% for the
negative and positive classification, which are 3.49 and 11.25 points better
than ADASYN+ACO, respectively. Therefore, POO can contribute to boost
the performance of the polarity classification. Finally, our proposed PIOO
is evaluated. F1-measure of ADASYN+PIOO is 52.84% and 63.49% for the
negative and positive classification, which are 2.09 and 1.34 points worse
than ADASYN+POO, respectively.

According to the results of our experiments, PIOO could not contribute
to improve the performance. We will explore anther solution to automatically
determine wp with less computational costs than POO in future. We also
notice that several errors are caused by ignoring the semantic features of
sentence. Not only words or word embedding but also semantic relations in
a tweet should be used as features for the polarity classification.

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Associate Pro-
fessor Kiyoaki Shirai, for his constant encouragement and patient guidance
for my research. His scholarly attainments and diligence always inspired me.
Without his support, I could not finish my research on time. It was my hon-
ored to work with him. I also would like to thank Professor Satoshi Tojo and
Associate Professor Minh Le Nguyen for their valuable advice and comments
towards my research.

I also want to express my grateful thanks to all members of Lab Shirai
and Lab Hasegawa. They not only encouraged me when I was stuck but also
gave me inspiration for my study. I also learned a lot about communication
skills from them.

A special thank is to Zhang Yuzhi, my girlfriend. She always believes in
me and supports me. Her gentlest care is one of my motivations to finish my
research. She also helps me in my English. It is my pleasure to meet her.

Finally, I want to give a hug to my family, my mom and my dad. Their
unconditional love and constant supports gave me courage to come to JAIST
for my master degree, so that I could chase my dream in my life. Without
them, I could not beat the pressure I faced.

1

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals . 2
1.3 Outline of thesis . 3

2 Related Work 4
2.1 Sentiment analysis . 4

2.1.1 Lexicon based methods for sentiment analysis 5
2.1.2 Machine learning based methods for sentiment analysis 8

2.2 Over-sampling . 10
2.2.1 SMOTE (Synthetic Minority Oversampling TEchnique) 11
2.2.2 ADASYN(ADAptive SYNthetic Sampling) 12

2.3 Word embedding . 15
2.4 Characteristic of this study . 16

3 Preliminary Survey 17
3.1 Goals of this survey . 17
3.2 Procedure . 18
3.3 Result and discussion . 19

4 Proposed Method 20
4.1 Polarity Classifier . 20
4.2 Modification of SMOTE and ADASYN 21
4.3 Optimization of the number of synthetic samples 24

4.3.1 Motivation . 24
4.3.2 Amount Control Oversampling (ACO) 27

4.4 Oversampling methods considering polarity words 28
4.4.1 SMOTE with Polarity Oriented Over-sampling (POO) 29
4.4.2 ADASYN with Polarity Oriented Oversampling (POO) 29
4.4.3 ADASYN with Polarity Intensity Oriented Oversam-

pling (PIOO) . 31

i

5 Evaluation 36
5.1 Data . 36
5.2 Evaluation metrics . 37
5.3 Evaluation of ACO . 39

5.3.1 Experiment setting . 39
5.3.2 Result and discussion 39

5.4 Evaluation of POO and PIOO 42
5.4.1 Experimental setting 42
5.4.2 Result and discussion 43

5.5 Error analysis . 44

6 Conclusion 47
6.1 Summary . 47
6.2 Future work . 48

ii

List of Figures

2.1 Procedures to generate samples by SMOTE 11
2.2 Example of over-sampling by ADASYN 15

4.1 Scatter plot of original data 26
4.2 Scatter plot of over-sampled data 26
4.3 Flowchart of measuring F1 score on development data in ACO 28

5.1 Statistics of training, development and test data in chart . . . 38
5.2 Results of ACO methods on development data 41

iii

List of Tables

3.1 Distribution of classes for each topic 19
3.2 Proportion of tweets with polarity words 19

5.1 The distribution of imbalanced data set 37
5.2 Statistics of training, development and test data 37
5.3 F1-measure of SMOTE+ACO and ADASYN+ACO on devel-

opment data . 40
5.4 Summary of optimized balance parameter bal 40
5.5 Results of methods with ACO on test data 42
5.6 F1-measure of SMOTE+POO and ADASYN+POO on devel-

opment data . 43
5.7 Comparison of POO and PIOO on development data 44
5.8 Results of methods with POO and PIOO on test data 44
5.9 Example of errors . 46

iv

Chapter 1

Introduction

In this chapter, we first explain a background of our research in Section 1.1.
Motivation and goal of this work is described in Section 1.2. Finally, the
structure of the thesis is given in Section 1.3.

1.1 Background

Sentiment analysis is the process of deriving the attitudes and opinions ex-
pressed in text data. It can be used to categorize subjective statements as
positive, negative, or neutral in order to determine opinions or sentiment
about a topic. It is very useful to help a user to make decision. Potential
customers can know advantages and drawbacks of a product or service be-
fore purchasing or using it by reading reviews from other users. On the other
hand, enterprises can know opinions from users to help them improve the
quality of their products or services.

With the quick development of social media, people can easily express
their feeling or opinions about a product or service. More than 72% of Inter-
net users are active on social media every day, and in such a social network,
anyone generates a lot of data at any places and time. The cross-language,
cross-domain, and cross-border nature of social media communication at-
tracts a large number of users to discuss, analyze, and think about thematic
events, and each user expresses his/her opinions and emotion. This leads to
difficulty in monitoring and analyzing information of users’ opinions manu-
ally because there is a huge amount of opinionated text on the social me-
dia. Therefore, automated opinion mining and summarization systems are
needed. Instead of using manual methods, researchers become more inter-
ested in analyzing opinionated text automatically.

One of the typical problems of sentiment analysis on social media is polar-

1

ity classification. It is a task to classify a given text or sentence into positive,
negative or neutral. More precisely, an opinion toward a target product or
service expressed in a text is classified into three classes. A typical solution of
classification is using machine learning. Many machine learning models are
used in this task, such as Support Vector Machine(SVM), Naive Bayes, ran-
dom forest, and deep neural networks. These methods made great progress
in improving the performance. Most of past studies of machine learning
based polarity classification assume that the data set are balanced, that is,
the number of samples of each class (positive, negative or neutral) is almost
the same. However, in the real-world applications, as several researches indi-
cated, the tweets are usually present a skewed polarity distribution [1] [23].
Namely, the number of neutral samples are much more than the others. This
will lead the poor performance for a machine learning based method. Let
us suppose that 90% of data samples are neutral, while 10% are positive or
negative. A machine learning based method tends to predict an unknown
sample as a majority class, i.e neutral. However, negative samples or positive
samples are usually more valuable for users. That is one of the reasons why
machine learning based methods are not effective in real-world applications.

To improve the performance of machine learning in processing an imbal-
anced data set, over-sampling and under-sampling are commonly used [4].
The core idea of these methods is to increase the number of minority samples
or decrease the numbers of majority samples so that the number of samples
of each class become balanced. In these approaches, how to minimize the
loss of the information and how to prevent from generating too many noisy
(unreliable) samples are important subjects.

1.2 Goals

The goal of this research is to propose a method to train an accurate model
that can classify polarity of a given text from an imbalanced data set. We
applied a synthetic over-sampling strategy for sentiment analysis. As men-
tioned before, an important subject of over-sampling is that how to avoid
generating too many noisy samples. In an over-sampling method, new data
samples of a minority class are automatically synthesized and added to a
data set. However, more data is synthesized, more noisy samples are likely
to be added. There is no doubt that such noisy samples will cause the poor
performance of a machine learning method. Therefore, the first goal of this
research is to find a feasible way to control the number of synthetic samples.

Moreover, many previous studies proved that sentiment words took an
important role in sentiment analysis. A sentiment word, which is also called

2

polarity word, is a word that expresses a sentiment, emotion or polarity of an
author, such as “good”, “excellent”, “bad” and “NG”. A sentiment lexicon,
which is a list of sentiment words with their polarity and polarity scores,
is widely used in both lexicon based methods and machine learning based
methods. Drawing on the idea of considering polarity words in the sentiment
analysis, we will find a feasible solution to incorporate the information of
sentiment words into an over-sampling strategy.

Finally, we will combine the proposed two ideas to one model to for
further improvement. We will also empirically evaluate our proposed models
to prove significance and credibility of them.

1.3 Outline of thesis

The rest of the thesis is organized as follows. Chapter 2 discusses related work
about sentiment analysis and over-sampling strategy. Chapter 3 presents a
preliminary survey about a distribution of polarity classes on real social me-
dia. Chapter 4 explains details of our proposed methods. We presents how
to improve existing over-sampling methods by quantity control of synthetic
samples and considering the effectiveness of polarity words. Chapter 5 re-
ports an evaluation of our proposed methods. Finally, Chapter 6 concludes
this thesis.

3

Chapter 2

Related Work

This chapter consists of 4 sections. In Section 2.1, we take a brief look at
definition of sentiment analysis, then introduce two major approaches for
it. In Section 2.2, we introduce over-sampling, a commonly used technique
for processing imbalanced datasets, and describe two well-known algorithms:
SMOTE (Synthetic Minority Oversampling TEchnique) and ADASYN (ADAp-
tive SYNthetic sampling). In Section 2.3 we describe the word embedding
method used for this study. Finally, in Section 2.4, we clarify characteristic
of this study.

2.1 Sentiment analysis

Sentiment analysis is broadly defined as the computational study of opinions,
sentiments and emotions expressed in texts. Liu et al. claimed that opinions
can be classified into the following two types [15].

• Direct opinion
It is an opinion explictly expressed in a text. It can be represented
as a quintuple (ei; aij; ooijkl;hk; tl) where ei is the name of an entity,
aij is an aspect of ei, ooijkl is the orientation of the opinion about
aspect aij of entity ei, hk is the opinion holder, and tl is the time
when the opinion is expressed by hk. The opinion orientation ooijkl can
be “positive”, “negative” or “neutral”, or be expressed with different
strength/intensity levels.

• Comparative opinion
It expresses a relation of similarities or differences between two or more
objects, and/or preferences in objects of the opinion holder based on
some of the shared features of the objects.

4

In the past studies of sentiment analysis, direct opinions are more considered
than comparative opinions. A goal of sentiment analysis or opinion mining
for direct opinions can be defined as follows.

Given an opinionated document d, discover all opinion quintuples
(ei; aij; ooijkl;hk; tl) in d, and identify all the synonyms and fea-
ture indicators of each feature in d. (quoted from the paper [15])

It should be stressed that the five pieces of information in the quintuple need
to correspond to one another. That is, the opinion ooijkl must be given by
opinion holder hk of object oj at time tl. There are commonly two kind of
methods: lexicon based methods and machine learning based methods.

2.1.1 Lexicon based methods for sentiment analysis

A lexicon based method is a traditional approach to sentiment analysis. It
is based on a sentiment lexicon consisting of positive and negative words.
In a sentiment lexicon, each word that represents emotion usually has a
corresponding positive or negative sentiment value [22]. Researchers have
proposed various ways to create such lexicons, such as automatic approach
and manual approach. Using a sentiment lexicon, polarity of a given sentence
or text is determined by the so-called bag-of-words model [21]. A text is
viewed as a bag containing a bunch of words and phrases, regardless of the
word order and grammar of the original text while keeping the frequency
of the usage of each word and phrase. By looking up a sentiment lexicon,
only sentiment words are picked up from a bag-of-words. For each sentiment
word, positive score or negative score is also retrieved from a lexicon. The
overall positive score and negative score are measured from sentiment scores
of individual words by calculating sum or average. The final result of the
calculation is used to determine an overall polarity for the given text.

Denecke employed SentiWordNet for the multilingual sentiment analysis
task [6]. SentiWordNet is a sentiment lexicon consisting of English words
with three kinds of poralirty oriented scores: positive, negative and neu-
tral scores. The first step was translation. A target document which was
written in a language other than English was translated into English using
standard translating softwares. Then, sentiment-bearing words, such as ad-
jectives, were being searched and picked out. These words then went through
a orientation-judging process in which each of them were paired up with a
certain score indicating whether they were positive, negative, or neutral,
according to SentiWordNet. Finally, the polarity of the document was de-
termined based on the scores of sentiment words. This method was tested
for German movie reviews in Amazon, and then compared to a statistical

5

polarity classifier based on n-grams. The accuracy of the proposed method
reached 54%, which means that the sentiment scores from SentiWordNet
were effective for this task.

Taboada et al. proposed the Semantic Orientation CALculator (SO-
CAL), and applied it to polarity classification task [19]. It used dictionaries of
words annotated with their semantic orientation, i.e. polarity and strength.
SO-CAL analyzed the polarity strength scores of words and determined the
polarity of a text while taking negation and intensification into consideration.
This method achieved a high 78.84% accuracy for polarity classification tasks.

There were also several attempts to combine lexicon-based and machine
learning-based methods. Zhang et al. proposed an augmented dictionary-
based method for sentiment analysis of microblogs, especially Twitter [26].
They introduced sentence type detection as a special step for analysing
tweets. They defined three main sentence types to be detected in tweets:

1) Declarative Sentence: This sentence type is a direct statement of atti-
tude or opinion that an author expresses.

2) Imperative Sentence: This sentence type involves a certain command
or request.

3) Interrogative Sentence: This sentence type is a question.

Since the third type of sentences did not express any opinions and usually
caused classification errors, they employed a pattern matching rules to detect
and remove them from datasets as follows:

“model word + auxiliary verb + . . .”
“. . .+ question mark”
(quoted from the paper [26])

where “model word” is a wh-word that belongs to the word set {what, where,
when, who, how} and an auxiliary verb belongs to the word set {am, is, are,
was, were, do, did, does}.

The initial sentiment lexicon they used was one developed by Ding et
al. [7]. Then, the lexicon was expanded and enriched with numerous Twitter
hashtags that showed an emotional tendency or expressed opinions, such as
“#bestdayever”, “#tasty”, and “#lifesucks”.

With the extended sentiment lexicon, the polarity score of an entity e
was calculated as

score(e) =
∑

wi:wi∈L
⋂

wi∈s

wi · so
dis(wi, e)

(2.1)

6

, where wi was an opinion word, L was the sentiment lexicon, s is the sentence
that contained the entity e, and dis(wi, e) was the distance between entity e
and polarity word wi in the sentence s. wi · so was the semantic orientation
score of wi in L. Equation (2.1) was able to calculate a semantic orientation
score for the entity e so that opinion words that were closer to the entity in the
sentence was weighted more than ones far away from the entity. In addition,
the following heuristic rules were applied for accurate polarity classification.

• Negation rules
Generally speaking, in most cases a negation word or phrase, such as
“no” and “not”, flips the meaning over in a sentence. Their appearance
reverses the opinion or emotional tendency shown by the succeeding
opinion words. Let us consider the example sentence “this cell phone
is not good.” Although “good” is a positive word and is located near
the entity “cell phone”, the negation word “not” turns the polarity of
this sentence from positive to negative.

• But-clause rules
Sentences containing adversative conjunctions also require special at-
tention when being processed and evaluated. Common adversative con-
junctions are “but”, “except that”, “although”, “nevertheless”, and so
on. Opinions expressed before an adversative conjunction is often op-
posite to what is expressed after the adversative conjunction, but either
opinion is more emphasized. If “but” or “nevertheless” is appeared in
the sentence, the opinion expressed after the adversative conjunction is
prior to one before the conjunction. On the other hand, if “although”
or “though” is used, the opinion expressed before the adversative con-
junction is more emphasized. In this way, this rule depends on an
adversative conjunction used in the tweets.

• Decreasing and increasing rules
This set of rules are applied when there exists a word that means a
change of quantity or level in a sentence. Such words often imply
increasing or decreasing, which can have a significant effect on the se-
mantic orientation of the sentence. Let us consider an example sentence
“The medicine I took greatly eased my pain.” Although “pain” is a
negative word, the verb “eased” shows a change of level, a decrease in
pain, which indicates that the writer of this sentence is satisfied with
the effect of the medicine being mentioned.

Because of lexicon-based approach in sentiment analysis tends to give high
precision but low recall, they used texts classified by the above lexicon-based

7

method as a training set and trained a classifier by supervised machine learn-
ing with it. The obtained classifier was used to assign polarity to the entities
in new tweets. The prediction accuracy of their method was 85.4%.

2.1.2 Machine learning based methods for sentiment
analysis

Supervised machine learning is widely applied for sentiment analysis. This
subsection introduces several past studies. Pang and Lee used Naive Bayes,
SVM, and Maximum Entropy to classify the sentiment polarity of a given
movie review [18]. In the Naive Bayes, given a document d, the polarity
class of d is determined as c∗ = arg maxP (c|d). P (c|d) is calcurated by
Bayes’ rule:

P (c|d) =
P (c)P (d|c)

P (d)
(2.2)

In this formula, P (d) does not have any effect upon the selection of c∗,
thus can be ignored. In order to estimate the value for P (d|c), Naive Bayes
decomposes it by assumption that the features are conditionally independent
of c as follows:

PNB =
P (c)(

∏m
i=1 P (fi|c)ni(d))

P (d)
(2.3)

, where fi represents a feature and ni(d) represents the frequency of fi in the
documents d.

Maximum entropy is another machine learning algorithm widely used
in natural language processing. It estimates the conditional probability
PME(c|d) from a training data. Unlike Naive Bayes, features are not sup-
posed to be independent. That is, relations between features are considered
in the probabilistic model. See the paper [2] for details.

Assuming that each data is represented as a feature vector, SVM defines
a hyperplane in the feature space. This hyperplane acts as a separator of
data samples of two different classes, which not only separates the document
vectors of two classes but also sets the margins between the two classes and
the hyperplane as large as possible. In other words, the hyperplane should
be set as a position that is as far away from the two classes as possible. The
separate hyperplane can be determined by solving a constrained optimization
problem. Let cj ∈ {−1, 1} (corresponding to positive and negative), and cj
being the correct class of document dj , the solution (separate hyperplane ~w)
can be obtained as:

~w =
∑
j

αjcj ~dj αj ≥ 0 (2.4)

8

In this formula, αj is obtained by solving a dual optimization problem. ~dj
such that αj is greater than zero are the only document feature vectors
contributing to ~w, so they are called the support vectors. Test instances are
classified by determining which side of ~w’s hyperplane they fall on.

In their experiment of the classification of positive or negative classes,
SVM outperformed Naive Bayes and Maximum Entropy. The result was
relatively high accuracy, i.e. 82.9%. However, this result was obtained from
a balanced data set with 700 positive samples and 700 negative samples.

Followed Pang and Lee’s work, Koppel and Schler tried to solve sentiment
analysis by several machine learning algorithms [13]. They also focused on
neutral samples which were ignored in Pang and Lee’s work. They proved
that for those binary classifiers, for example SVM, if they were trained only
by positive and negative samples, the neutral samples would not simply be
located at somewhere in the boundary of two classes. Therefore, neutral sam-
ples were required to train a classifier that can distinguish positive, negative
or neutral. Therefore, they trained the three binary classifiers as follows.

1) Using positive and negative samples to train the classifier

2) Using positive and neutral samples to train the classifier

3) Using neutral and negative samples to train the classifier

To combine results of three classifiers, they made the following rules:

• If a sample is classified by the first classifier and the second classifier
as positive and the third classifier classified it as neutral, it is finally
classified as positive.

• If a sample is classified by the first classifier and the third classifier as
negative and the second classifier classified it as neutral, it is finally
classified as negative.

• Otherwise a sample is classified as neutral.

This method yielded 74.1% accuracy for one of their data sets. The accuracy
was 85.5% for the other data set. Both results were better than the classi-
fier obtained by negative and positive samples. This article clearly proved
the importance of neutral samples in sentiment analysis. However, nega-
tive samples were mostly included in the data set they used, which may be
inconsistent with a distribution of polarity in the real world.

Gautam et al. also applied SVM and Naive Bayes with a synonym ex-
pansion technique for sentiment analysis task for Twitter [9]. Adjectives

9

were used as features for training the supervised classifiers, since they often
expressed user’s positive and negative opinions. For example, “Beautiful”
is extracted as unigram feature from a tweet “painting Beautiful.” Details
about this step is written in the paper [20]. SVM and Naive Bayes classifiers
were trained using the features extracted from the previous step. When this
initial training and classification process were completed, they used Word-
Net to obtain synonyms of adjectives. In the database WordNet, each ad-
jective is associated with other words. They replaced the adjectives with
their synonyms. Then, they predicted polarity of the replaced sentence. Let
us consider the example sentence “I am happy.” Since “happy” could be
replaced with “glad” or “satisfied” by WordNet, it was classified as positive.
The accuracy of their method on a balanced data set was 89.9%, which was
pretty good.

More recently, deep neural network was introduced to sentiment analysis.
Dos Santos et al. proposed CharSCNN (Character to Sentence Convolutional
Neural Network) and achieved 86.4% sentiment prediction accuracy [8]. The
first layer of the network transformed words into real-valued feature vectors
(embeddings) that captured morphological, syntactic and semantic informa-
tion about the words. These vectors were passed to a word-level embedding
matrix. After that, a convolutional based method was used to transform
the word-level embedding to a character-level embedding. To extract the
sentence-level representations, they used a convolutional layer to compute a
feature vector for a sentence. Finally, the feature vector of the sentence was
processed by two usual neural network layers, which extracted one more ab-
stract level of representation and computed a score for each sentiment label.
This work successfully gave a solution to processing rare or infrequent words
in tweets. However, they did not take attention on an imbalanced dataset in
a real-world application.

2.2 Over-sampling

The difficulty of classification in an imbalanced data is caused by extremely
skew distribution of classes where the number of a majority class is much
greater than a minority class. In such a situation, machine learning classifiers
have the tendency of classifying minority samples as majority class wrongly,
which make it difficult to detect minority samples. Many results of experi-
ments in past studies showed poor performance on imbalanced datasets. Al-
though SVM are believed to be less affected by imbalanced datasets, several
papers reported that the performance of SVM declined significantly [24] [12].
To tackle this problem, there are several solutions to learn from an imbal-

10

anced dataset. Over-sampling is one of them. Its basic idea is to increase
the numnber of samples in minority class to make the dataset become bal-
anced. In this section, we introduce the over-sampling strategy and two
famous methods: SMOTE (Synthetic Minority Oversampling TEchnique)
and ADASYN (ADAptive SYNthetic sampling).

2.2.1 SMOTE (Synthetic Minority Oversampling TEch-
nique)

Chawla et al. proposed an over-sampling method SMOTE by synthesizing a
new minority samples from existing minority samples [3]. Figure 2.1 shows
how SMOTE generates synthetic samples. The squares in this figure repre-
sent the minority samples and circles represent the majority samples. The
left figure shows an original distribution of data samples. The medium fig-
ure shows steps of SMOTE. First, one minority sample is randomly chosen.
Second, its k nearest neighbors of minority samples are retrieved, then one
of them is randomly chosen. Third, a line between a minority sample and its
chosen neighbors is drawn, then a point at somewhere on the line is chosen.
The vector at the point is generated as new minority samples. In other words,
new minority sample is synthesized from two existing minority samples. This
procedure is repeated until the number of new synthesized minority samples
reaches a predefined value. The right figure in Figure 2.1 shows balanced
dataset after over-sampling. Note that minority samples are generated near
the region of the original minority samples. It enables a classifier to discrim-
inate majority and minority samples easier.

Figure 2.1: Procedures to generate samples by SMOTE

The pseudocode of SMOTE is shown in Algorithm 1. n is percentage
of over-sampling, which is supposed to be in integral multiples of 100 (such
as 100, 200 or 300). SMOTE generates the data set where the amount of
minority samples are increased by n%. g is the number of samples to be
synthesized from one original sample. It is determined by the formula at
line 1. Smin at line 2 is a set of original minority samples. Syn is a set

11

Algorithm 1 SMOTE(X,N ,k)

Input: X(original training set), n(percentage of over-sampling), k(number
of nearest neighbors)

Output: X ′ (new training set)
1: g ← int(n/100)
2: Smin ← a set of samples of the minority class in X
3: Syn← φ
4: for each xi ∈ Smin do
5: Ki ← choose k nearest neighbors of xi from Smin

6: for j = 1 to g do
7: ~n← randomly choose a sample from Ki

8:
−−→
diff ← ~n− ~xi

9: gap← random value between [0, 1]

10:
−−→syn← ~xi + gap×

−−→
diff

11: Syn← Syn ∪ {−−→syn}
12: end for
13: end for
14: return X ′ = X ∪ Syn

of synthetic samples to be generated; it is initialized with an empty set at
line 3. For each minority sample xi in Smin, k nearest neighbors of minority
samples are retrieved and collect them in a set Ki at line 5. Then, a new
minority sample is synthesized as follows. A minority neighbor ~n is randomly

chosen from Ki at line 7. The difference vector
−−→
diff is calculated to draw

the line between ~xi and ~n at line 8. A random value between [0, 1] is set as

gap at line 9. A synthetic sample −−→syn is determined by ~xi, gap and
−−→
diff

at line 10. −−→syn stands for a point somewhere on the line between ~xi and ~n.
Then, −−→syn is added to the set Syn at line 11. The procedures from line 7 to
11 are repeated g times, so that the number of synthesized minority samples
becomes g×|Smin|. Finally, a union of original samples and synthetic sample
is returned as a new training set X ′ at line 14.

2.2.2 ADASYN(ADAptive SYNthetic Sampling)

Based on the idea of SMOTE, various over-sampling methods have been in-
troduced later on such as SMOTEBoost, Borderline-SMOTE and ADASYN,
which all have been shown improvement on machine learning on imbalanced
datasets. Han et al. claimed that a classifier was more likely to wrongly
classify samples close to the borderline of different classes [10]. Thus sam-

12

ples near the borderline are more important for training a classifier. Based
on this idea, Borderline-SMOTE was proposed. They classified data sam-
ples into the following three types: 1) all of the k nearest neighbors are
majority samples, 2) at least half of the k nearest neighbors are minority
samples, 3) all of the neighbors are minority samples. Borderline-SMOTE
only generated samples from the second type. However, Borderline-SMOTE
completely ignored the samples of which k nearest neighbors are majority
samples. Inspired by Borderline-SMOTE, ADASYN was proposed by He et
al. [11]. ADASYN was based on the idea of adaptively generating minor-
ity data samples according to their distributions: more synthetic data was
generated for minority class samples that were harder to learn compared to
those minority samples that were easier to learn.

Pseudocode of ADASYN is shown in Algorithm 2. β is a desired balanced
level, which is a value between 0 and 1. β = 1 means to construct a fully
balanced data (the numbers of the majority and minority samples are equal),
while β = 0 means no minority sample is produced. Let Smin and Smaj be
a set of samples of the minority and majority classes in X at line 1 and
2, respectively. gall is the total number of samples to be synthesized. It is
calculated as line 3. For each minority sample xi, its k nearest neighbors
are set as nni at line 5. r[i] is the proportion of majority samples in k
nearest neighbors of xi as shown at line 6. The greater r[i] is, the closer xi
locates near the borderline between the majority and minority classes. r̂[i] is
normalized r[i], which can be calculated as line 9. g[i] is the number of the
minority samples to be synthesized from xi, which is computed as line 10.
Note that g[i] is in proportion to r[i]. It means that more minority samples
are synthesized from xi near the borderline. From line 12 to 22, SMOTE is
applied to generate new samples −−→syn, except that the generation of minority
samples is repeated g[i] times for xi as indicated at line 15. Finally, the union
of the original training data X and synthesized data Syn is made as the new
training data X ′ at line 23.

The key idea of ADASYN is that the density distribution r[i] is employed
to automatically determine the number of synthetic samples to be generated
for each minority sample. r[i] is a measurement of the distribution of weights
for different minority class samples according to their level of difficulty in
learning. When there are more majority samples near a minority sample,
this minority sample is supposed to be harder to be distinguished with the
majority class. Such a minority sample is more weighted in the density
distribution r[i] so that more new minority samples are synthesized. The
resulting data set after being processed by ADASYN will show a balanced
representation of the data distribution. Furthermore, it will also force the
learning algorithm to focus on classification of those difficult samples near the

13

Algorithm 2 ADASN(X,β,k)

Input: X (original training set), β(desired balanced level), k(number of
nearest neighbor)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← (|Smaj| − |Smin|)× β
4: for each xi ∈ Smin do
5: nni ← k nearest neighbors of xi in X

6: r[i]← |nni ∩ Smaj|
k

7: end for
8: for each xi ∈ Smin do

9: r̂[i]← r[i]∑
i r[i]

10: g[i]← int(r̂[i]× gall)
11: end for
12: Syn← φ
13: for each xi ∈ Smin do
14: Ki ← choose k nearest neighbors of xi from Smin

15: for j = 1 to g[i] do
16: ~n← randomly choose a sample from Ki

17:
−−→
diff ← ~n− ~xi

18: gap← random value between [0, 1]

19:
−−→syn← ~xi + gap×

−−→
diff

20: Syn← Syn ∪ {−−→syn}
21: end for
22: end for
23: return X ′ = X ∪ Syn

14

borderline. This is a major difference compared to the SMOTE algorithm,
in which equal numbers of synthetic samples are generated for each minority
data sample.

Figure 2.2 shows comparison of an original data and over-sampled data
by ADASYN. The right one is the over-sampled data set and the blue points
are minority samples. We can see the synthetic samples are mostly located
at the borderline of two classes. This is the major difference with SMOTE,
which the synthetic samples are evenly dispersed inside the minority class as
shown in Figure 2.1.

Figure 2.2: Example of over-sampling by ADASYN

2.3 Word embedding

Word embedding is known as a form of representation of words. To be more
specific, they are distributed representations of words in an n-dimensional
space. The usage of word embedding plays crucial and essential roles in many
NLP tasks. The learned vectors explicitly encode many linguistic regularities
and patterns. For example, vec(“Madrid”) - vec(“Spain”) + vec(“France”)
is closer to vec(“Paris”) than to any other word vectors.

Word2Vec proposed by Mikolov et al. [17] is one of the well-known tools
for learning word embedding. It generates vectors by two different language
models: CBOW and skip-gram. Mikolov et al. observed that the most com-
putation part of NNLM (Neural Network Language Model) is between the
non-linear layer and the softmax layer. A NNLM can be successfully trained
in two steps: first is learning continuous word vectors by a simple model, and
then training these distributed representations by a N-gram model, where the
computational cost is large. Therefore, they removed the non-linear hidden

15

layer and let the projection layer be shared for all words. Furthermore, they
also used the words from future. That is, a word was predicted by sur-
rounding words. As the order of words in the history did not influence the
projection, this model was called CBOW (Continuous Bag-of-Words Model).
On the other hand, unlike CBOW, skip-gram predicted a window or context
words from a single word.

In this thesis, we use word embedding obtained by skip-gram as the input
of the machine learning model.

2.4 Characteristic of this study

Similar to previous studies introduced in Subsection 2.1.2, we also use ma-
chine learning method for polarity classification. Comparing with others’
work, we concentrate more on an imbalanced data set, where the number
of neutral samples is much more than the number of positive or negative
samples. We apply the over-sampling approach introduced in Section 2.2.
Furthermore, we propose novel methods of polarity classification for an im-
balanced data set by modifying existing over-sampling methods, SMOTE
and ADASYN.

16

Chapter 3

Preliminary Survey

3.1 Goals of this survey

As discussed in Chapter 1, nowadays, along with the rapid growth of the
social media, many users are active on it every day. They push their feelings
and experience towards someone, a product or an event. However, among
these texts, only a small part of them describe opinions of users directly.
Most of them just describe what the user did about a specific topic or the
news about a topic. Let us consider the following two tweets.

T1 Watch the new trailer for David Bowie’s ‘Blackstar’, which premieres
next Thursday.

T2 2nd Place again. How could it happen? #MTVSTARS Lady Gaga.

T1 is a tweet about David Bowie, but it just describes that the user watched
the trailer and does not express user’s opinion about David Bowie. T2 is a
news about Lady Gaga. Neither opinion nor emotion is found in it. Accord-
ing to the definition of direct opinion we discussed in Section 2.1, T1 and
T2 are treated as “neutral” samples as they do not show a direct opinion
orientation towards the entity. In a review forum of an e-commercial web-
site, there exists many opinionated sentences toward a product or service.
However, in Twitter, most of tweets seem neutral as T1 and T2. Therefore,
the ratio of the neutral tweets in Twitter should be empirically investigated.

On the other hand, the usage of polarity words in sentiment analysis at-
tracted many researchers’ attention. It can be a powerful feature to improve
the performance of a polarity classifier. We also want to confirm whether
the usage of polarity words in positive and negative tweets is significantly
different with neutral samples.

17

Considering the above, this study conducts preliminary surveys on tweets.
Two objectives of the surveys are:

• We will to investigate the distribution of polarity (positive, negative
and neutral) of the texts in Twitter. We will confirm that the tweets in
the real world are imbalanced, i.e. neutral tweets are the overwhelming
majority class. This survey also helps us to construct a data set to
simulate a real-world data.

• We will to investigate the ratio of the tweets including polarity words
in each polarity class. We will see whether the usage of polarity words
is significantly different among polarity classes.

3.2 Procedure

As for the first objective of this survey, we collect tweets by searching a
keyword with Twitter API. Eight topics are chosen as a keyword, which are
shown in Table 3.1. These topics are different entities, namely the movie &
game (e.g. Harry Potter), electronic product (e.g. iPhone X) and celebrity
(e.g. Morgan Freeman). One hundred tweets are retrieved for each topic.
Thus 800 tweets are retrieved in total. Then, these tweets are manually
classified in terms of their polarity toward a topic, so that we can clearly
see the distribution of polarity classes. Moreover, we can also investigate
whether there is significant difference on class distribution among three kinds
of entities.

As for the second objective of this survey, we used the data from SemEval
2017 task 4C. It is a collection of tweets about topics with polarity labels.
The label indicates that the tweet expresses a positive, negative or neutral
opinion toward a target topic. This data set is an extension work of Se-
mEval 2016 task 4. It includes tweets about various topics, including people
(e.g. Gadafi, Steve Jobs), products (e.g. kindle, android phone), and events
(e.g. Japan earthquake, NHL playoffs). The Polarity labels are annotated
by CrowdFlower or Mechanical Turk (most likely the former). We count the
number of tweets with polarity words and without polarity words, so that we
can see whether the ratio of the tweets with polarity words is significantly
different for the polarity classes. SentiWordNet is used as a sentiment lexicon
in this survey. If a sentence includes at least one polarity word in SentiWord-
Net, we treat it as a tweet with polarity words. If it does not include any
polarity words, we consider it as a tweet without polarity words.

18

3.3 Result and discussion

Table 3.1: Distribution of classes for each topic
Negative Positive Neutral

iPhone X 12 20 68
HUAWEI 7 10 83
SAMSUNG 1 3 96
Morgan Freeman 2 3 95
Gabe Newswell 3 5 92
Star Wars 3 6 91
Monster Hunter : World 2 11 87
Harry Potter 4 7 89
Total 34 65 701

Table 3.1 shows the number of negative, positive and neutral tweets about
8 topics. The last row shows the total number of tweets of all 8 topics.

This table shows that the ratio of neutral tweets is quite high, 86%. On
the other hands, the number of negative samples and positive samples are
extremely small. Note that we did not involve the advertisement in this
data set. It indicates that users usually put what they did or just state
something on the social media, for example, “Bought a Harry Potter Art
Piece today” and “The cast of Harry Potter is announced, 2000”. Among
three kinds of entities, electronic products are mentioned with positive and
negative sentences more than movie & game and celebrity. However, the
proportion of neutral tweets about electronic products is still high, more
than 80%. The results of Table 3.1 will be considered when we construct an
imbalanced data set in the experiment.

Table 3.2: Proportion of tweets with polarity words
Negative Positive Neutral

Number of tweets with polarity words 1933 5815 21749
Number of tweets without polarity words 406 2397 44742
Proportion 82.64% 70.81% 32.71%

Table 3.2 shows the proportion of the tweets with polarity words for each
negative, positive and neutral class. We can see there are 82.64% of negative
samples include polarity words, while 70.81% of positive samples do. Only
32.71% of neutral samples include polarity words. This result indicates that
the polarity words are an important component of negative and positive
tweets.

19

Chapter 4

Proposed Method

In this chapter, we explain details of the proposed methods for polarity clas-
sification on an imbalanced data set. Section 4.1 explains how to train the
polarity classifier. Section 4.2 describes slight modification of SMOTE and
ADASYN. Then, first propose a method to control or optimize the number
of synthesized minority samples in over-sampling approaches. Next, we pro-
pose another over-sampling method that takes polarity words into account
in synthesis of minority samples.

4.1 Polarity Classifier

This section describes the classifier for polarity classification. Similar to the
previous work, supervised machine learning is applied to train a polarity
classifier. Two binary classifiers are trained: one judges whether a given
tweet is positive or not (neutral), the other judges whether a tweet is neg-
ative or not (neutral). For training classifiers, tweets in a training and test
data are represented as feature vectors. As for the extraction of features,
word unigrams, bigrams, parts of speech and sentiment words are widely
used. As for weights of features in a feature vector, information gain (IG),
term frequency-inverse document frequency (TF-IDF), mutual information
(MI), and the Chi-square statistic (CHI) are often used [25]. However, these
statistical features are semantically weak. In addition, these features often
suffer from data sparseness. If most features in a tweet in a test data do not
appear in a training data, it could not be classified correctly. In this study,
word embedding is used to obtain a feature vector for each tweet. Word em-
bedding includes semantic information that cannot be captured by n-gram
features. In addition, vector representation by word embedding less suffers
from data sparseness.

20

A vector of a given tweet is obtained as follows. First, we perform pre-
processing on a tweet. It consists of the following steps.

1. All characters in upper case are converted to lower case.

2. Stopwords are removed by NLTK1 in Python.

3. URLs are replaced with a special token “url”.

4. “@ user id” is replaced with a special token “user mention”.

Next, each word in a tweet is represented by a vector using word embed-
ding. Finally, a vector of a whole tweet is obtained by Equation (4.1).

sentence vector =

∑
i ~vi × wi∑

iw
2
i

(4.1)

~vi is the vector representation of i-th word, which is pre-trained by skip-gram
model. wi is the weight for the i-th word. wi is determined by TF-IDF, as
Corerea et al. mentioned [5].

We trained the vectors of words by using Tensorflow Hub2. Tensorflow
Hub is a library that provides the reusable code of machine learning methods.
English Wikipedia corpus is used to train word embedding. The dimension
of the word vectors is set as 250. This library assigns a zero vector for
out-of-vocabulary words.

Support Vector Machine (SVM) is used to train a classifier. It is a clas-
sical supervised machine learning algorithm and widely used in classification
and regression. We train SVM classifier by sklearn3, which is a powerful
library for implementation of machine learning in Python. The square of the
hinge loss function is chosen as the loss function for training. The penalty
parameter C of the error term is set as 0.5. The kernel of SVM is linear
kernel.

4.2 Modification of SMOTE and ADASYN

Our proposed over-sampling methods are extension of SMOTE and ADASYN.
The number of synthesized samples is given as input in both methods, but
in different ways. In SMOTE, the percentage of over-sampling n is given in
Algorithm 1. On the other hand, in ADASYN, the desired balanced level β
is given in Algorithm 2.

1http://www.nltk.org/
2https://tensorflow.google.cn/hub/
3https://scikit-learn.org/

21

Algorithm 3 SMOTE(X,bal,k)

Input: X(original training set), bal(balance parameter), k(number of near-
est neighbors)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← |Smaj| × bal − |Smin|
4: g ← int(gall/|Smin|)
5: Syn← φ
6: for each xi ∈ Smin do
7: Ki ← choose k nearest neighbors of xi from Smin

8: for j = 1 to g do
9: ~n← randomly choose a sample from Ki

10:
−−→
diff ← ~n− ~xi

11: gap← random value between [0, 1]

12:
−−→syn← ~xi + gap×

−−→
diff

13: Syn← Syn ∪ {−−→syn}
14: end for
15: end for
16: return X ′ = X ∪ Syn

We slightly modify SMOTE and ADASYN so that we can control the
number of synthesized samples in the same way. We introduce a balance
parameter bal that is the proportion of the minority samples to the majority
samples in a new (over-sampled) data set. For example, bal = 1 means that
the new training data contains the equal number of majority and minority
samples, while bal = 0.5 means that the amount of the minority samples
becomes 50% of the majority samples.

Pseudocode of our modified SMOTE and ADASYN are shown in Algo-
rithm 3 and Algorithm 4, respectively.

In the modified SMOTE, g (the number of minority samples to be synthe-
sized from one original sample) is calculated as line 4 in Algorithm 3 instead
of line 1 in Algorithm 1. gall means the total number of minority samples to
be synthesized, which is calculated as line 3 so that the ratio of the number
of minority samples to majority samples becomes bal. Then gall is equally
divided to each minority sample as line 4. Lines from 5 to 16 are exactly
same as the original SMOTE.

In the modified ADASYN, gall (the total number of minority samples to
be synthesized) is calculated as line 3 in Algorithm 4 instead of line 3 in

22

Algorithm 4 ADASYN(X,bal,k)

Input: X (original training set), bal(balance parameter), k(number of near-
est neighbor)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← |Smaj| × bal − |Smin|
4: for each xi ∈ Smin do
5: nni ← k nearest neighbors of xi in X

6: r[i]← |nni ∩ Smaj|
k

7: end for
8: for each xi ∈ Smin do

9: r̂[i]← r[i]∑
i r[i]

10: g[i]← int(r̂[i]× gall)
11: end for
12: Syn← φ
13: for each xi ∈ Smin do
14: Ki ← choose k nearest neighbors of xi from Smin

15: for j = 1 to g[i] do
16: ~n← randomly choose a sample from Ki

17:
−−→
diff ← ~n− ~xi

18: gap← random value between [0, 1]

19:
−−→syn← ~xi + gap×

−−→
diff

20: Syn← Syn ∪ {−−→syn}
21: end for
22: end for
23: return X ′ = X ∪ Syn

23

Algorithm 2. Similarly, gall is determined so that the ratio of the number of
minority samples to majority samples becomes bal. Lines from 4 to 23 are
exactly same as the original ADASYN.

4.3 Optimization of the number of synthetic

samples

4.3.1 Motivation

Our polarity classifier is based on supervised machine learning. However, im-
balance of the polarity classes in a training data is an obstacle for supervised
learning. A classifier trained from imbalance training data tends to misclas-
sify a minority data as a majority data. The data imbalance problem is
particularly serious in polarity classification in tweets. Our preliminary sur-
vey in Chapter 3 showed that neutral tweets appear much more than positive
or negative tweets in a real world. Among existing solutions for imbalance
of the data, over-sampling is the most practical and applicable to a wide
range of applications. As we discussed before, however, over-sampling has
weakness. That is, newly synthesized samples may be inaccurate and noisy,
because they are not real samples at all. Therefore, balancing the ratio of
original samples and synthesized samples is a critical subject.

To see how excessive generation of minority samples influences the po-
larity classification, we visualize the data set before and after over-sampling.
The data set consists of a few positive tweets and a lot of neutral tweets,
which is constructed for our experiment4. We use SMOTE to generate mi-
nority samples on our imbalanced data set. The bal here is set as 1, i.e.
the numbers of majority and minority samples are equal after over-sampling.
Then, we use tSNE (t-distributed stochastic neighbor embedding) [16], a
widely used method for dimension reduction and visualization, to reduce the
dimension of original training set and over-sampled training set, and then
visualize them. Figure 4.1 shows the result of tSNE of original data set,
while Figure 4.2 shows the result of over-sampled data set. Yellow and pur-
ple scatters represent minority and majority samples. In Figure 4.1, we can
roughly see the borderline of classes, and confirm that several minority sam-
ples are mixed in majority samples. These mixed samples are commonly
considered as noisy for an SVM classifier. In Figure 4.2, we can see that data
set becomes balanced, but the number of noisy samples increases. This result
indicates that over-sampling methods can effectively make datasets become

4The details of this data will be explained in Section 5.1.

24

balanced, but it also generates noisy samples. In addition, synthetic samples
are not real samples at all. No one can assure such samples will not cause
classification errors in machine learning. Therefore, it is necessary to control
the number of synthetic samples so that datasets become relatively balanced
while noisy samples are less generated.

25

Figure 4.1: Scatter plot of original data

Figure 4.2: Scatter plot of over-sampled data

26

4.3.2 Amount Control Oversampling (ACO)

We propose a new over-sampling method called Amount Control Over-sampling
(ACO). It is an extension of SMOTE and ADASYN. In SMOTE and ADASYN,
the number of synthesized samples is pre-defined in ad-hoc manner. How-
ever, as discussed in Subsection 4.3.1, adding too many synthesized samples
into an original data set may cause decrease of the classification performance.
In ACO, the number of the synthesized samples are empirically optimized to
prevent from adding too many noisy samples.

Algorithm 5 ACO(Dtrain,Ddev,B)

Input: Dtrain(training data), Ddev(development data), B = {bal1, · · · , baln}
(set of balance parameters)

Output: ˆbal (optimized balance parameter)
1: for i = 1 to |B| do
2: (1) Db

train ← SMOTE(Dtrain, bali, k)
3: (2) Db

train ← ADASYN(Dtrain, bali, k)
4: SVM ← training SVM classifier from Db

train

5: Ldev ← polarity labels of samples in Ddev classified by SVM
6: F1dev[i]← F1 score of Ldev

7: end for
8: ˆbal← bali′ where i′ = arg max F1dev[i]
9: return ˆbal

The basic idea of ACO is to optimize the balance parameter bal on the de-
velopment data. Pseudocode of ACO is shown in Algorithm 5. First, we pre-
pare a training data Dtrain and development data Ddev. We also prepare a list
of balance parameters B. Recall that the balance parameter bal determines
the number of synthesized minority samples in SMOTE and ADASYN. For
each balance parameter bali ∈ B, the training data is balanced by SMOTE
(Algorithm 3) at line 2 or ADASYN (Algorithm 4) at line 3. Note that the
parameter k is predefined. Next, SVM is trained from the balanced train-
ing data Db

train at line 4. Then, it is applied to determine polarity labels of
samples in Ddev at line 5. The F1-measure of predicted polarity labels Ldev

is calculated at line 6. Finally, the optimized balance parameter is chosen
so that F1dev[i] becomes the highest. Figure 4.3 illustrates how to compute
F1dev[i] for a given bali.

27

Figure 4.3: Flowchart of measuring F1 score on development data in ACO

4.4 Oversampling methods considering polar-

ity words

In this section, we will introduce the other proposed model that considers
polarity words in over-sampling. Kousta et al. emphasized the importance
of polarity words in the sentiment analysis [14]. General speaking, both
negative and positive words play more important roles that neutral words in
polarity classification. Inspired by previous work introduced in Section 2.1,
we design a modified version of SMOTE and ADASYN that generates more
synthesized samples including polarity words. In addition, according to the
preliminary survey introduced in Section 3.3, there are more than 70% of
minority (positive or negative) samples include polarity words, while only
30% of neutral samples do. It is a natural idea to increase the importance of

28

those samples including polarity words in classifier learning for improvement
of the performance of polarity classification. Following the above ideas, we
design a modified version of SMOTE and ADASYN that generates more
synthesized samples including polarity words.

4.4.1 SMOTE with Polarity Oriented Over-sampling
(POO)

SMOTE is an algorithm that generates synthetic samples from minority sam-
ples. The numbers of synthesized samples are equal for all original minority
samples. In our extended model, more samples are generated from those
samples with polarity words.

Algorithm 6 shows a pseudocode of the proposed method. A weight
parameter named wp is defined as the weight of samples including polarity
words. The greater the wp is, the more samples are generated from samples
with polarity words. For each minority sample xi, r[i] is set as wp if xi
contains polarity words, otherwise 1, as indicated in lines between 4 and 10.
We use SentiWordNet to judge whether a word in a tweet is a polarity word
or not. r[i] is similar to the density distribution in ADASYN; it controls the
number of synthesized samples from xi. Following procedures are the same
as ADASYN. r[i] is normalized as r̂[i] at line 12, then g[i] is calcurated as line
13. The minority samples are generated g[i] times from xi in lines between
16 and 25.

The parameter wp is optimized using the development data. Among a
set of possible values, the best wp is chosen so that the F1-measure of the
trained classifier on the development data becomes the highest. Note that
wp should be a value greater than 1 to produce more samples containing
polarity words. The detail procedures of the optimization is almost the same
as the procedures shown in Algorithm 5 and Figure 4.3.

Hereafter, Polarity Oriented Over-sampling (POO) stands for the pro-
posed technique that generates more synthesized samples from samples in-
cluding polarity words. SMOTE combined with POO (Algorithm 6) is re-
ferred as SMOTE+POO.

4.4.2 ADASYN with Polarity Oriented Oversampling
(POO)

ADASYN adaptively generates samples so that more synthetic data is gener-
ated from minority samples that are harder to be discriminated from majority
samples, or that locate near a border between minority and majority samples

29

Algorithm 6 SMOTE+POO(X,bal,k,wp)

Input: X(original training set), bal(balance parameter), k(number of near-
est neighbors), wp (weight parameter)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← |Smaj| × bal − |Smin|
4: for each xi ∈ Smin do
5: if xi includes a polarity word then
6: r[i]← wp
7: else
8: r[i]← 1
9: end if

10: end for
11: for each xi ∈ Smin do

12: r̂[i]← r[i]∑
i r[i]

13: g[i]← int(r̂[i]× gall)
14: end for
15: Syn← φ
16: for each xi ∈ Smin do
17: Ki ← choose k nearest neighbors of xi from Smin

18: for j = 1 to g[i] do
19: ~n← randomly choose a sample from Ki

20:
−−→
diff ← ~n− ~xi

21: gap← random value between [0, 1]

22:
−−→syn← ~xi + gap×

−−→
diff

23: Syn← Syn ∪ {−−→syn}
24: end for
25: end for
26: return X ′ = X ∪ Syn

30

in a feature space. The key step of this method is to assign each minority
sample the density distribution in synthetic process as line 6 in Alrorithm 2
or Alrorithm 4. To produce more samples including polarity words, we define
polarity oriented density distribution rp[i] as follows.

rp[i] =

{
wp× r[i], when xi includes polarity words

r[i], when xi does not include polarity words
(4.2)

wp is a parameter that controls how many new samples are synthesized from
the minority sample including polarity words. It should be a value greater
than 1 to produce more samples containing polarity words. We call this
method ADASYN with Polarity Oriented Over-sampling or ADASYN+POO.

A pseudocode of ADASYN+POO is shown in Algorithm 7. The only
difference of this algorithm and the original ADASYN is procedures from
line 7 to 9. We update r[i] by multiplying wp if xi contains a polarity word.
It is equivalent to Equation (4.2). Thus ADASYN+POO is able to not only
generate more synthetic samples near the borderline but also create more
samples from those samples with polarity words. Similar to SMOTE+POO,
the parameter wp is optimized using a development data.

4.4.3 ADASYN with Polarity Intensity Oriented Over-
sampling (PIOO)

Another extension of ADASYN in this study is ADASYN with Polarity In-
tensity Oriented Over-sampling (PIOO). One of the disadvantages of POO
proposed in Subsection 4.4.1 and 4.4.2 is its computational cost. Since the
parameter wp is optimized on the development data, training a classifier and
applying it on the development data are repeated many times. Therefore,
we try to automatically determine the parameter wp without using trial and
error on the development data. More concretely, we propose a method to
determine wp by sentiment scores of polarity words in a tweet.

First, sentiment scores of words in a tweet are calculated using Senti-
WordNet. In SentiWordNet, each word has positive and negative scores.
These scores are values between 0 and 1. They can be zero when a word
does not convey positive or negative emotion. Precisely, sentiment scores are
assigned to not words but senses. Therefore, when a word has two or more
senses, it has different scores in terms of its senses. The sentiment score of a
word wi, SenScore(wi), is calculated by the following steps.

1. Supposing that wi has t senses, denoted as {si1, · · · , sit}. Averages of

31

Algorithm 7 ADASYN+POO(X,bal,k,wp)

Input: X (original training set), bal(balance parameter), k(number of near-
est neighbor), wp (weight parameter)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← |Smaj| × bal − |Smin|
4: for each xi ∈ Smin do
5: nni ← k nearest neighbors of xi in X

6: r[i]← |nni ∩ Smaj|
k

7: if xi includes a polarity word then
8: r[i]← wp× r[i]
9: end if

10: end for
11: for each xi ∈ Smin do

12: r̂[i]← r[i]∑
i r[i]

13: g[i]← int(r̂[i]× gall)
14: end for
15: Syn← φ
16: for each xi ∈ Smin do
17: Ki ← choose k nearest neighbors of xi from Smin

18: for j = 1 to g[i] do
19: ~n← randomly choose a sample from Ki

20:
−−→
diff ← ~n− ~xi

21: gap← random value between [0, 1]

22:
−−→syn← ~xi + gap×

−−→
diff

23: Syn← Syn ∪ {−−→syn}
24: end for
25: end for
26: return X ′ = X ∪ Syn

32

positive and negative scores of senses are calculated as follows.

Scorepos(wi) =

∑t
j=1 SWNpos(sij)

t
(4.3)

Scoreneg(wi) =

∑t
j=1 SWNneg(sij)

t
(4.4)

SWNpos(sij) and SWNneg(sij) are the positive and negative score of
sense sij in SentiWordNet, respectively.

2. A sentiment score of a word wi is given by Equation (4.5).

SenScore(wi)=

0 if Scorepos(wi)=Scoreneg(wi)=0
Scorepos(wi) + 1 if Scorepos(wi) ≥ Scoreneg(wi)
Scoreneg(wi) + 1 if Scorepos(wi) < Scoreneg(wi)

(4.5)
Basically, SenScore(wi) is defined as the higher value between av-
erages of positive and negative scores. In addition, in order to be
SenScore(wi) greater than 1, the score is added by 1. We will explain
the reason why SenScore(wi) should be greater than 1 later.

For each data sample (tweet) xi, a sentiment score s[i] is calculated as
Equation (4.6).

s[i] =

∑
wi∈PW (xi)

SenScore(wi)

|PW (xi)|
(4.6)

PW (xi) stands for a set of polarity words in a tweet xi. Here a polarity word
is defined as a word whose SenScore is greater than 0. That is, s[i] is an av-
erage score of sentiment scores of polarity words in a tweet. Roughly saying,
s[i] evaluates intensity of sentiment of xi. Note that s[i] should be greater
than one to give importance to samples with polarity words in generation of
minority samples. That is the reason why we make SenScore(wi) become
greater than 1 in Equation (4.5). Then, we calculate the polarity oriented
density distribution rp[i] for each minority samples as follows.

rp[i] =

{
s[i]× r[i], when xi includes polarity words

r[i], when xi does not include polarity words
(4.7)

Note that wp in Equation (4.2) is replaced with s[i]. The basic idea is to
synthesize more samples from a minority sample that expresses sentiment
strongly. Furthermore, the number of the synthesized samples is proportion
to the intensity of the sentiment of xi. Note that s[i] should be greater

33

than one to give importance to samples with polarity words in generation of
minority samples. That is the reason why we make SenScore(wi) become
greater than 1 in Equation (4.5).

A pseudocode of ASASYN+PIOO is shown in Algorithm 8. Only differ-
ence between ADASYN+PIOO and ADASYN+POO is procedures in lines
between 7 and 10. They represent the update of r[i] that is equivalent to
Equation (4.7).

34

Algorithm 8 ADASN+PIOO(X,bal,k,wp)

Input: X (original training set), bal(balance parameter), k(number of near-
est neighbor), wp (weight parameter)

Output: X ′ (new training set)
1: Smin ← a set of samples of the minority class in X
2: Smaj ← a set of samples of the majority class in X
3: gall ← |Smaj| × bal − |Smin|
4: for each xi ∈ Smin do
5: nni ← k nearest neighbors of xi in X

6: r[i]← |nni ∩ Smaj|
k

7: if xi includes a polarity word then

8: s[i] =

∑
wi∈SW (xi)

SenScore(wi)

|SW (xi)|
9: r[i]← s[i]× r[i]

10: end if
11: end for
12: for each xi ∈ Smin do

13: r̂[i]← r[i]∑
i r[i]

14: g[i]← int(r̂[i]× gall)
15: end for
16: Syn← φ
17: for each xi ∈ Smin do
18: Ki ← choose k nearest neighbors of xi from Smin

19: for j = 1 to g[i] do
20: ~n← randomly choose a sample from Ki

21:
−−→
diff ← ~n− ~xi

22: gap← random value between [0, 1]

23:
−−→syn← ~xi + gap×

−−→
diff

24: Syn← Syn ∪ {−−→syn}
25: end for
26: end for
27: return X ′ = X ∪ Syn

35

Chapter 5

Evaluation

This chapter reports results of experiments to evaluate our proposed meth-
ods. First, we present data sets and evaluation metric. Then, we present
the performance of SMOTE and ADASYN with ACO proposed in Section
4.3, and compare them with baselines. Next, we show the performance of
POO and PIOO proposed in Section 4.4, and compare them with baselines.
Finally, we perform error analysis to reveal advantages and disadvantages of
the proposed methods.

5.1 Data

A benchmark data set of SemEval 2017 is used in the experiment. It is a
collection of tweets about several topics with manually annotated with their
polarity. Polarity of each tweet is represented as 5-scale labels from 1 (very
negative) to 5 (very positive). In this experiment, we define three classes,
negative, positive and neutral, as classification labels. Thus we convert 1
or 2 to “negative”, 3 to “neutral” and 4 or 5 to “positive”. The data set
consists of 2,339 negative samples, 8,212 positive samples and 10,081 neutral
samples. However, our preliminary survey showed that 86% tweets were
neutral in Twitter. To make the distribution of the polarity labels of the
data set become close to the actual distribution, we collect neutral tweets to
the data set by the following procedures.

1. We retrieve tweets via Twitter API by searching the key words of topics
in SemEval 2017.

2. We classify the retrieved tweet by AYLIEN1, which is a web tool-kit
for polarity classification. Only tweets classified as neutral are kept,

1https://aylien.com/text-api/sentiment-analysis/

36

Table 5.1: The distribution of imbalanced data set

class number of samples proportion
Negative 2339 3.03%
Positive 8212 10.66%
Neutral 66491 86.31%

Table 5.2: Statistics of training, development and test data

Negative Positive Neutral
training 1637 (2.1%) 5748 (7.7%) 46534 (60.2%)
development 468 (0.6%) 1642 (2.2%) 13298 (17.2%)
test 234 (0.3%) 822 (1.1%) 6649 (8.6%)
total 2339 (3%) 8212 (11%) 66491 (86%)

otherwise discarded.

3. We add neutral tweets to the data set until the proportion of neutral
tweets reaches 86%.

Finally, the data set consisting of 77,042 tweets is constructed. The num-
bers of samples in three classes are shown in Table 5.1. The data set is
divided into the training, development and test data. We use 70% as the
training data, 20% as the development data and 10% as the test data. It is
randomly divided so that the distribution of polarity labels are the same in
three data. The detail statistics of the data sets are shown in Table 5.2. A
graphical representation of statistics is shown in Figure 5.1.

5.2 Evaluation metrics

In this experiment, we train two binary classifiers. The first classifier judges
whether a tweet is positive or not. To train and evaluate it, the negative and
neutral tweets are merged into “not positive” tweets as majority samples,
while the positive tweets are remained as minority samples. The second
classifier judges whether a tweet is negative or not. Similarly, positive and
neutral tweets are merged into “not negative” tweets as majority samples to
train and evaluate this classifier.

The precision, recall, and F1-measure are used as evaluation criteria.
They are the commonly used criteria for a classification task. More pre-
cisely, the task of polarity classification is regarded as retrieval of positive or

37

Figure 5.1: Statistics of training, development and test data in chart

negative tweets, and precision, recall and F1-measure are measured to eval-
uate how accurately we can extract positive or negative tweets from a tweet
collection. Precision, recall, F1-measure are defined as in the Equation (5.1),
(5.2) and (5.3), respectively.

Precision =
|G ∩ P |
|P |

(5.1)

Recall =
|G ∩ P |
|G|

(5.2)

F1-measure =
2× Precision× Recall

Precision + Recall
(5.3)

In these equations, P is a set of tweets predicted as positive (or negative) by
a system, G is a set of tweets whose gold labels are positive (or negative), and
G∩P is a set of tweets correctly predicted by a system. Note that precision,
recall and F1-measure are separately measured for the positive and negative
classification.

38

5.3 Evaluation of ACO

5.3.1 Experiment setting

This section evaluates our method of Amount Control Over-Sampling (ACO)
described in Section 4.3. In this experiment, the following methods are com-
pared.

• Baseline
It is a method to train a classifier from the original training data. That
is, no over-sampling technique is applied.

• SMOTE
The original SMOTE. We synthesize minority samples so that the num-
bers of the minority and majority samples are the same.

• ADASYN
The original ADASYN. We synthesize minority samples so that the
numbers of the minority and majority samples are the same.

• SMOTE+ACO
SMOTE with ACO. The number of the synthesized minority samples
is optimized on the development data.

• ADASYN+ACO
ADASYN with ACO. The number of the synthesized minority samples
is optimized on the development data.

In ACO, we change the balance parameter bal from 20% to 100% by a step
of 10%. Since the proportion of the minority samples in the data set is 16%,
we set the range of bal between 20% and 100%. The parameter of the nearest
neighbors, i.e. k, is set as 7 in all methods except for the baseline.

5.3.2 Result and discussion

Table 5.3 shows the F1-measure of SMOTE+ACO and ADASYN+ACO with
different balance parameters bal on the development data. It was found that
the F1-measure drastically changed for the parameter bal. It indicates that
the optimization of the number of synthesized samples is important. In
SMOTE, the classifier achieved the best performance when the amount of
the minority samples was 40% of the majority samples for the negative class,
while 60% was the best for the positive class. In ADASYN, 50% and 60%
of bal were the best for the negative and positive classes, respectively. In

39

Table 5.3: F1-measure of SMOTE+ACO and ADASYN+ACO on develop-
ment data

bal
SMOTE+ACO ADASYN+ACO

Negative Positive Negative Positive

20% 38.42% 47.71% 39.76% 47.24%
30% 46.71% 50.72% 48.72% 49.37%
40% 49.46% 51.17% 49.67% 49.87%
50% 48.37% 51.89% 50.92% 52.72%
60% 44.39% 53.42% 48.37% 54.97%
70% 39.64% 50.37% 44.72% 51.08%
80% 36.44% 48.44% 41.87% 47.65%
90% 36.04% 49.07% 39.44% 47.62%
100% 35.74% 46.79% 37.21% 44.72%

Table 5.4: Summary of optimized balance parameter bal
Method Negative Positive
SMOTE+ACO 40% 60%
ADASYN+ACO 50% 60%

addition, it was found that ADASYN mostly outperformed SMOTE. The
optimized parameters are summarized in Table 5.4.

Figure 5.2 shows the change of precision, recall and F1-measure for dif-
ferent values of the balance parameter bal. The graphs in the first row show
the results of SMOTE+ACO for negative and positive classification, while
the graphs in the second row show the results of ADASYN+ACO for nega-
tive and positive classification, respectively. We can see that the recall was
almost stable, while precision changed a lot. It indicated that the number of
correctly predicted samples in the development set was almost the same, but
the number of wrongly predicted tweets changed drastically. We guess the
number of false positive (errors such that neutral tweets are wrongly clas-
sified as positive (or negative)) is much influenced by the proportion of the
minority samples in the training data. Note that the best F1-measure was
obtained when the precision was the highest.

Table 5.5 shows precision(P), recall(R) and F1-measure(F) of five meth-
ods on the test data. Note that the optimized balance parameter in Table
5.4 is used for training SMOTE+ACO and ADASYN+ACO.

The baseline performed poorly, especially for the negative classification.
This was because that many minority samples were misclassified as the ma-

40

Figure 5.2: Results of ACO methods on development data

jority class due to the heavy imbalance of the data. Recall that the number
of the negative tweets is smaller than the positive tweets in Table 5.1. That is
the reason why the performance of the baseline for the negative classification
was much worse than the positive classification. Two original over-sampling
strategy SMOTE and ADASYN outperformed the baseline, which indicated
that over-sampling was also effective for the classification on the imbalance
data set of this experiment. ADASYN outperformed SMOTE for the negative
classification, while SMOTE was better than ADASYN for positive classifica-
tion. SMOTE+ACO outperformed SMOTE by 11.35 points in the negative
classification and 6.27 points in the positive classification. ADASYN+ACO
outperformed ADASYN by 11.07 points in the negative classification and
10.04 points in the positive classification. These results proved that ACO
could significantly improve the performance of these two over-sampling ap-
proaches.

41

Table 5.5: Results of methods with ACO on test data

Negative Positive
P R F P R F

Baseline 18.86% 70.12% 29.73% 30.64% 70.37% 42.71%
SMOTE 25.29% 71.70% 37.39% 34.37% 71.55% 46.52%
SMOTE+ACO 37.63% 69.17% 48.74% 42.97% 70.98% 52.79%
ADASYN 27.88% 73.15% 40.37% 31.36% 73.35% 43.74%
ADASYN+ACO 40.03% 70.16% 51.44% 44.61% 67.78% 53.78%

5.4 Evaluation of POO and PIOO

5.4.1 Experimental setting

This section evaluates our over-sampling methods considering polarity words,
which are described in Section 4.4. In this experiment, the following methods
are compared.

• SMOTE+ACO
SMOTE with ACO. Following the results in Section 5.3, the balance
parameter bal is chosen as 40% for the negative classification and 60%
for the positive classification.

• ADASYN+ACO
ADASYN with ACO. Following the results in Section 5.3, the balance
parameter bal is chosen as 50% for the negative classification and 60%
for the positive classification.

• SMOTE+POO
SMOTE with POO. The weight parameter wp is optimized on the
development data. For fair comparison, the balance parameter is set
as same as SMOTE+ACO.

• ADASYN+POO
ADASYN with POO. The weight parameter wp is optimized on the
development data. For fair comparison, the balance parameter is set
as same as ADASYN+ACO.

• ADASYN+PIOO
ADASYN with PIOO. The balance parameter is set as same as
ADASYN+ACO.

42

Table 5.6: F1-measure of SMOTE+POO and ADASYN+POO on develop-
ment data

wp
SMOTE+POO ADASYN+POO

Negative Positive Negative Positive

1 49.46% 53.42% 50.92% 54.97%
2 50.32% 54.48% 51.37% 57.79%
3 53.42% 56.72% 51.77% 59.72%
4 52.45% 58.94% 55.72% 65.21%
5 51.38% 57.47% 48.37% 54.97%
6 49.72% 56.87% 54.92% 64.38%
7 47.73% 54.82% 54.38% 64.73%

In the methods with POO, in order to decide the best polarity weight
parameter wp, we tested different values as wp. More precisely, wp is set as
an integer between 1 to 7. Recall that the higher wp is, more samples are
synthesized from the samples including polarity words. When wp is 1, it is
the same method as SMOTE+ACO or ADASYN+ACO. The parameter of
the nearest neighbors, i.e. k, is set as 7 in all five methods.

5.4.2 Result and discussion

Table 5.6 shows F1-measure of SMOTE+POO and ADASYN+POO with
different weight parameters wp on the development data. It was found that
F1-measure was improved when wp was set as values greater than 1. It
indicates that the idea to generate more new samples from the minority
sample containing polarity words effective to improve the performance of
the polarity classification. As for SMOTE+POO, the best parameter wp
was 3 and 4 for the negative and positive classification, respectively. As for
ADASYN+POO, the best performance was obtained when wp was equal to 5
for both negative and positive classification. Comparing the best classifiers,
ADASYN+POO outperformed SMOTE+POO by 2.3 points for the negative
classification and 6.27 points for the positive classification.

Table 5.7 shows F1-measure of SMOTE+POO, ADASYN+POO and
ADASYN+PIOO on the development data. It was found that ADASYN+PIOO
did not outperform ADASYN+POO, which was out of our expectation. We
guess the reason as follows. Tweets with a high sentiment score may be
located far away from the borderline between the majority and minority
classes. Since PIOO generates more samples from samples with a high senti-
ment score, newly synthesized samples may also be far from the borderline.

43

Table 5.7: Comparison of POO and PIOO on development data
Method Negative Positive
SMOTE+POO 53.42% 58.97%
ADASYN+POO 55.72% 65.21%
ADASYN+PIOO 53.37% 63.07%

Table 5.8: Results of methods with POO and PIOO on test data

Negative Positive
P R F P R F

SMOTE+ACO 37.63% 69.17% 48.74% 42.97% 70.98% 52.79%
SMOTE+POO 44.66% 68.51% 54.07% 47.52% 74.21% 57.94%
ADASYN+ACO 40.03% 70.16% 51.44% 44.61% 67.78% 53.78%
ADASYN+POO 43.14% 75.59% 54.93% 60.37% 70.47% 65.03%

ADASYN+PIOO 40.96% 74.43% 52.84% 56.76% 72.55% 63.69%

It is inconsistent with the core idea of ADASYN: more samples are supposed
to be generated nearby the borderline.

Table 5.8 shows precision(P), recall(R) and F1-measure(F) of several
methods on the test data. SMOTE+POO and ADASYN+POO outper-
formed SMOTE+ACO and ADASYN+ACO, respectively. It indicates that
considering polarity words in the over-sampling is an effective approach for
the polarity classification on the imbalance data. On the other hand, the per-
formance of ADASYN+PIOO was worse than ADASYN+POO. Although
the advantage of ADASYN+PIOO is to require less computational cost for
training, it was not so effective to improve the performance of the polarity
classification. It seems better to empirically determine the weight parameter
wp using development data (as in POO) than to determine it by intensity of
sentiment scores of a tweet (as in PIOO).

5.5 Error analysis

We conducted an error analysis of SMOTE+POO, ADASYN+POO, and
ADASYN+PIOO. Table 5.9 shows examples of errors. Tweets, gold polar-
ity, and polarity labels predicted by three proposed methods as well as the
baseline are shown in this table.

Many errors were caused by negation in the sentence. For example, the
tweet T1 includes a negation word “not”. Although its gold polarity was
“positive”, all four methods classified it as “negative”. This is because “not”

44

was ignored by removal of stopwords in preprocessing. According to the
negation rules proposed by Zhang et al. [26], the negation word such as “no”
and “not” usually reverse the sentiment polarity. However, negation is often
not considered in our proposed methods.

Similar to negation, tweets with adversative conjunctions, such as “de-
spite” and “but” are usually classified incorrectly. For example, in the tweet
T2, “but” and “don’t” were removed because they were stopwords. The
removal of them might cause misclassification of the polarity of this tweet.

Another typical error was caused by out-of-vocabulary words. For exam-
ple, in the tweet T3, the user wanted to express a negative opinion towards
Scott Walker. Since “AWFULLLL” was an out-of-vocabulary word, no word
vector was obtained by training word embedding. In our implementation, a
zero vector was assinged to out-of-vocabulary words. It is obviously differ-
ent with the vector of “awful”. Therefore, the classifier is hard to judge the
polarity of tweets including out-of-vocabulary words. Using a character-level
embedding may improve the performance for such tweets.

The performance of the methods with POO and PIOO is unsatisfactory
for tweets that do not include polarity words. For example, three methods
with POO or PIOO as well as the baseline wrongly classified the tweet T4
as neutral. Although T4 did not contain polarity words, it expressed the
positive opinion towards Star Wars. The methods with POO and PIOO
produce more samples including polarity words, but it may be not good to
classify tweets without polarity words.

45

Table 5.9: Example of errors

Tweet Method Polarity
T1 Between College football, Big

Brother, and Impractical Jokers
tomorrow night I’m not gonna be
able to leave the TV

(Gold) positive
Baseline negative
SMOTE+POO negative
ADASYN+POO negative
ADASYN+PIOO negative

T2 yes. it may have ruined my social
life, but I don’t regret finding out
about Shawn one bit

(Gold) positive
Baseline neutral
SMOTE+POO negative
ADASYN+POO negative
ADASYN+PIOO negative

T3 Scott Walker is GOD AWFULLLLL! (Gold) negative
Baseline positive
SMOTE+POO neutral
ADASYN+POO neutral
ADASYN+PIOO neutral

T4 Today is Star Wars day, may the
force be with us

(Gold) positive
Baseline neutral
SMOTE+POO neutral
ADASYN+POO neutral
ADASYN+PIOO neutral

46

Chapter 6

Conclusion

6.1 Summary

This thesis focused on polarity classification of texts in microblog, where
the polarity distribution was highly skewed, i.e. most of tweets were neu-
tral. To tackle the problem of imbalance of polarity, over-sampling approach
was mainly investigated. Since the synthesized samples might become in-
accurate and noisy samples in a vector space, we considered that control of
an amount of synthesized samples was necessary. We proposed a technique
called Amount Control Over-sampling (ACO) as an extension of two existing
over-sampling methods SMOTE and ADASYN. It empirically optimized the
number of synthesized minority samples using development data. In addi-
tion, we proposed another extension of the over-sampling methods that was
specialized to the polarity classification. The basic idea was to synthesize
more new samples from a sample that contained polarity words. Since po-
larity words play an important role in the polarity classification in general,
producing more samples including the polarity words was expected to con-
tribute the improvement of the performance. Following the above motivation,
two methods, Polarity Oriented Over-sampling (POO) and Polarity Inten-
sity Oriented Over-sampling (PIOO), were proposed. In POO, the weight
parameter wp, which was the ratio of the number of synthesized samples from
tweets with polarity words to that from tweets without polarity words, was
empirically optimized on development data. On the other hand, in PIOO, wp
is determined based on intensity of sentiment of tweets. That is, the greater
sentiment scores of polarity words of a tweet were, more samples were gener-
ated from that tweet. The intrinsic difference between POO and PIOO was
that wp was determined by trial and error in POO, which required much
computational cost, while wp was determined using a sentiment lexicon with

47

less computational cost in PIOO. In this thesis, POO was combined with
SMOTE and ADASYN, while PIOO was combined with ADASYN.

For evaluation, we constructed the imbalanced data set where the ratio
of the neutral tweets was set following the results of the preliminary survey
on polarity distribution on Twitter. Using this data set, several experiments
were carried out to compare our proposed methods with the baseline, original
SMOTE, and original ADASYN. It was confirmed that ACO can improve
the F1-measure of the polarity classification on the imbalanced data set.
SMOTE+ACO could improve the F1-measure by 10 or 19 points from the
baseline and 6 or 11 points from SMOTE. Similarly, ADASYN+ACO could
improve the F1-measure by 11 or 22 points from the baseline and 10 or 11
points from ADASYN. In addition, POO could achieve further improvement.
F1-measture of SMOTE+POO was better by 5 points than SMOTE+ACO,
while F1-measutre of ADASYN+POO was better by 3 or 11 points than
ADASYN+ACO. On the other hand, the effectiveness of PIOO was not
confirmed, since ADASYN+PIOO was worse than ADASYN+POO. The
best F1-measure was achieved by ADASYN+POO, that was 65.03%.

Furthermore, our proposed ACO, POO and PIOO can be applicable with
arbitrary classifiers, not only SVM used in this thesis but also any other ma-
chine learning algorithms. In addition, ACO is general and can be applicable
for not only the polarity classification but also other classification tasks.

6.2 Future work

We noticed that several errors were caused by ignoring the semantic features
of a sentence. Not only words or word embedding but also semantic rela-
tions in a tweet should be used as features for the polarity classification.
In our experiment, PIOO could not contribute to improve the performance.
Instead of considering intensity of sentiment of tweets, we explore a way to
automatically determine the weight parameter wp with less computational
costs than POO. Another important future work is to extend our method for
multi-class classification, since the current methods were only applicable for
binary classification. It enables us to classify a tweet into negative, positive
or neutral by a single system.

48

Bibliography

[1] Julien Ah-Pine and Edmundo-Pavel Soriano-Morales. A study of syn-
thetic oversampling for twitter imbalanced sentiment analysis. In Work-
shop on Interactions between Data Mining and Natural Language Pro-
cessing (DMNLP 2016), 2016.

[2] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A
maximum entropy approach to natural language processing. Computa-
tional linguistics, 22(1):39–71, 1996.

[3] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[4] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special
issue on learning from imbalanced data sets. ACM Sigkdd Explorations
Newsletter, 6(1):1–6, 2004.

[5] Edilson A Corrêa Jr, Vanessa Queiroz Marinho, and Leandro Borges dos
Santos. Nilc-usp at semeval-2017 task 4: A multi-view ensemble for
twitter sentiment analysis. arXiv preprint arXiv:1704.02263, 2017.

[6] Kerstin Denecke. Using sentiwordnet for multilingual sentiment analy-
sis. In 2008 IEEE 24th International Conference on Data Engineering
Workshop, pages 507–512. IEEE, 2008.

[7] Xiaowen Ding, Bing Liu, and Philip S Yu. A holistic lexicon-based
approach to opinion mining. In Proceedings of the 2008 international
conference on web search and data mining, pages 231–240. ACM, 2008.

[8] Cicero Dos Santos and Maira Gatti. Deep convolutional neural net-
works for sentiment analysis of short texts. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics:
Technical Papers, pages 69–78, 2014.

49

[9] Geetika Gautam and Divakar Yadav. Sentiment analysis of twitter
data using machine learning approaches and semantic analysis. In 2014
Seventh International Conference on Contemporary Computing (IC3),
pages 437–442. IEEE, 2014.

[10] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a
new over-sampling method in imbalanced data sets learning. In Inter-
national conference on intelligent computing, pages 878–887. Springer,
2005.

[11] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn:
Adaptive synthetic sampling approach for imbalanced learning. In 2008
IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), pages 1322–1328. IEEE, 2008.

[12] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem:
A systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[13] Moshe Koppel and Jonathan Schler. The importance of neutral examples
for learning sentiment. Computational Intelligence, 22(2):100–109, 2006.

[14] Stavroula-Thaleia Kousta, David P Vinson, and Gabriella Vigliocco.
Emotion words, regardless of polarity, have a processing advantage over
neutral words. Cognition, 112(3):473–481, 2009.

[15] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies, 5(1):1–167, 2012.

[16] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their com-
positionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[18] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?:
sentiment classification using machine learning techniques. In Proceed-
ings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 79–86. Association for Computational Lin-
guistics, 2002.

[19] Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and
Manfred Stede. Lexicon-based methods for sentiment analysis. Compu-
tational linguistics, 37(2):267–307, 2011.

50

[20] Christoph Tillmann. A unigram orientation model for statistical ma-
chine translation. In Proceedings of HLT-NAACL 2004: Short Papers,
pages 101–104. Association for Computational Linguistics, 2004.

[21] Richard M Tong. An operational system for detecting and tracking
opinions in on-line discussion. In Working Notes of the ACM SIGIR
2001 Workshop on Operational Text Classification, volume 1, 2001.

[22] Peter D Turney. Thumbs up or thumbs down?: semantic orientation
applied to unsupervised classification of reviews. In Proceedings of the
40th annual meeting on association for computational linguistics, pages
417–424. Association for Computational Linguistics, 2002.

[23] Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, and Amit P
Sheth. Harnessing twitter” big data” for automatic emotion identifica-
tion. In 2012 International Conference on Privacy, Security, Risk and
Trust and 2012 International Confernece on Social Computing, pages
587–592. IEEE, 2012.

[24] Gang Wu and Edward Y Chang. Class-boundary alignment for im-
balanced dataset learning. In ICML 2003 workshop on learning from
imbalanced data sets II, Washington, DC, pages 49–56, 2003.

[25] Ruifeng Xu, Tao Chen, Yunqing Xia, Qin Lu, Bin Liu, and Xuan Wang.
Word embedding composition for data imbalances in sentiment and emo-
tion classification. Cognitive Computation, 7(2):226–240, 2015.

[26] Lei Zhang, Riddhiman Ghosh, Mohamed Dekhil, Meichun Hsu, and Bing
Liu. Combining lexicon-based and learning-based methods for twitter
sentiment analysis. HP Laboratories, Technical Report HPL-2011, 89,
2011.

51

