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Abstract

We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction en-

ergy between two adenine(A)-thymine(T) base-pairs in B-DNA (AA:TT), for which reference

data is available obtained from a complete basis set estimate of CCSD(T) (coupled-cluster

with singles, doubles, and perturbative triples). We consider four set of nodal surfaces ob-

tained from self-consistent field calculations, and examine how the different nodal surfaces

affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking en-

ergies. We find that the DMC potential energy curves using the different nodes look similar to

each other as a whole. We also benchmark the performance of various QC methods, including

Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density

functional theory (DFT). The DMC and recently developed DFT results of the stacking energy

reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give

unsatisfactory results.

KEYWORDS: Quantum Chemistry, Diffusion Monte Carlo, Density-Functional Theory, Dis-

persion.

Introduction

Noncovalent interactions are ubiquitous and play a fundamental role in biochemistry. It is widely

recognized from a theoretical viewpoint that a major challenge in current quantum chemistry (QC)

is to properly reproduce various types of noncovalent interactions in biomolecules.1–5 Among

them hydrogen (H-) bonding and stacking are of key importance. The H-bonding interaction can

be described (more or less) qualitatively in terms of density functional theory (DFT) with con-

ventional exchange-correlation (XC) functionals and even Hartree-Fock (HF) theory2,3 because

they can treat exchange repulsions and electrostatic forces. On the other hand, it is well known

that both HF and standard DFT fail to describe the stacking interaction4,5 due to their lack of dis-

persion interactions resulting from dynamical electron correlation effects at intermediate binding

regions (“medium-range" electron correlation6). Hence a proper description of the stacking in
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biomolecules requires higher levels of theory which capture the correlation effects.

DFT is the most commonly-used theoretical approach in QC because of its excellent balance

between computational costs and accuracy.7 Typical choices of approximate XC functionals are

local density approximation (LDA),8 generalized gradient approximation (GGA)9–11 and its exten-

sion (meta-GGA),12 and hybrid functionals.13,14 Despite their success in applications to covalent

systems, it has been shown that they are incapable of reproducing the dispersion interaction.7

To overcome this pathology, numerous efforts have been made to develope new XC functionals:

dispersion-corrected DFT (DFT-D),15–18 a series of hybrid meta-GGA functionals developed by

Truhlar and his coworkes,19–21 long-range corrected DFT (LC-DFT),22,23 DFT combined with

symmetry-adapted perturbation theory (DFT-SAPT),28 and so on. Although they usually agree

reasonably well with experiments or high-level ab initio wave-function theory (WFT) methods,7

it is hard to estimate their accuracy for new or untested systems. High-level treatment of the cor-

relation based on WFT is needed as a reference for calibration to assess the performance of the

functionals as well as to further develop new approximate DFT approaches.

Among correlated WFT approaches, second-order Møller-Plesset perturbation theory (MP2)29

is the cheapest approximation to dynamical electron correlation at a computational cost of N5,

where N is the number of electrons in a system. It is well known, however, that MP2 generally

tends to overbind dispersion interactions involving aromatic molecules (when large basis sets are

employed).30 This failure can be empirically improved by using MP2.5 or more general MP2.X,31

though it involves a heavier computational cost. At present, coupled-cluster with single and double

excitations including noniterative triples (CCSD(T))29 is accepted to provide a more accurate in-

termolecular interactions, and hence is often called the “gold standard of QC”. However, CCSD(T)

is only applicable to small-sized noncovalent systems because it has a scaling behavior of N7.

In the WFT approaches, an alternative is available for treating correlated wave functions, based

on quantum Monte Carlo (QMC).32,33 One of the most accurate and practical QMC methods is

fixed-node diffusion Monte Carlo (DMC).32,33 Within the constraint condition of a given fermion

nodal hypersurface (fixed-node approximation), an imaginary-time evolution in DMC (stochastic
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projection) usually yields a highly accurate energy comparable to CCSD(T). Furthermore, DMC

has a more favorable scaling behavior of N3−4 with the system size32,33 , compared to CCSD(T),

albeit with a large prefactor. This means that the DMC calculations are very CPU-time inten-

sive. But recent advances in massively parallel computers mitigate this issue because of an ideal

parallelizability of DMC.34

Thus DMC has been applied to some realistic noncovalent systems, and has successfully de-

scribed their interactions.35–41 In particular, Korth et al.39 employed the S22 molecular set42 for

benchmarking the DMC performance. Their DMC results were in very good agreement with the

best known reference values obtained from CCSD(T)/CBS (a complete basis set (CBS) estimate

of CCSD(T)). Although the S22 set is well established for benchmarking ab initio approaches,

it contains only simple biomolecular complexes, e.g., the H-bonded Watson-Crick adenine(A)-

thymine(T) base and dispersion-dominated A-T stacking pair. Although DMC has been applied

to some noncovalent solids40,41 due to its moderate computational cost, it has yet to be applied to

larger and more complicated biomolecular systems.

In this paper we intend to benchmark the performance of DMC on describing more realistic

noncovalent biomolecular systems. In particular, we examine effects of the fixed-node approxi-

mation in DMC. To this end, we chose as a benchmark system one of ten unique combinations of

B-DNA base-pair steps, 5’-AA-3’//5’-TT-3’ (hereafter abbreviated as AA:TT for simplicity). A

reference data obtained from CCSD(T)/CBS with partitioning approximations43 is available for

the AA:TT stacking energy as well as its optimized molecular geometry, as shown in Fig. 1. In

this study we focus on the vertical stacking interaction between the two Watson-Crick AT base

pairs, which most significantly contributes to the stacking stability. We have performed DMC with

several trial nodes to evaluate the stacking energies and potential curves, and then assessed their re-

liability, comparing with the reference data available. To plot the energy curve, we took interlayer

distances of 2.7−10.0 Å. In addition, we calibrate the performance of various QC approaches on

their description of the AA:TT stacking interaction, comparing with the reference as well as our

DMC results.
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Adenine (A)

Adenine (A)

Thymine (T)

Thymine (T)

d : interlayer distance between the two AT pairs

Figure 1: Molecular geometry of the 5’-AA-3’//5’-TT-3’ (AA:TT) base pairs in B-DNA. An inter-
layer distance (d) between the two hydrogen-bonded Watson-Crick adenine(A)-thymine(T) base
pairs is variable, and all the other parameters are fixed as being the same as those in Ref.:43 helical
and propeller twist angles of 36◦ and 0◦, respectively. The H, C, N, and O atoms are represented
by sky blue, yellow, gray, and red colored balls, respectively.

Computational methods

Here we briefly describe our computational techniques for treating the target system. More detailed

information about the standard theory is easily available in the literature.32,33 In this study, all the

QMC calculations were performed using the CASINO code,32 while all the QC calculations were

done using the Gaussian 09 code.45

For the C, N, and O atoms in the molecule, we replaced their two inner-core electrons (He

core) with Burkatzki-Filippi-Dolg pseudopotentials (BFD-PPs).44 The BFD-PP was also used for

the H atom instead of its bare Coulomb interaction. As is common in DMC applications, Slater-

Jastrow wave functions32,33 were chosen as our trial nodes. The single-determinant parts were

individually obtained from self-consistent field (SCF) calculations (HF or DFT). We considered

the LDA (SVWN8), GGA (PBE9), and hybrid (B3LYP11,13,14) functionals for DFT. Hereafter

we use the notation ‘DMC/SCF’ for DMC calculations with the SCF trial node. The one-body

orbitals entering the determinant were expanded in terms of a VTZ basis set accompanied with the

BFD-PPs.44 We adopted a form of the Jastrow functions46 implemented in the CASINO code,47

including one-body, two-body (with the electron-electron cusps48), and three-body terms. Their
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adjustable parameters were optimized by the variance minimization procedure.49 Starting with

the above trial nodes, DMC simulations were performed using random walkers with branching

processes. In our DMC simulations, a target population of 1280 random walkers was used, and a

time step was set to be 0.01 a.u., so that the time-step bias is less than chemical accuracy. To obtain

converged results, we accumulated the numerical results over 105 steps after 500 equilibration

steps. The T-move scheme50 was used to evaluate the BFD-PP.

We also benchmark the performance of 18 functionals implemented in the Gaussian 09 code:45

LDA (SVWN8); GGA (PBE,9 PW91,10 BLYP11); meta-GGA (TPSS12); hybrid (B3LYP;11,13,14

PBE0;24 mPW1PW91;25 B97-126); hybrid-meta-GGA (M05,19 M05-2X,20 M06,21 M06-2X21);

LC-DFT (CAM-B3LYP,22 LC-ωPBE,23 ωB9727); DFT-D (B97-D,17 and ωB97X-D18). We con-

sidered WFT approaches including HF and MP2 as well. Although the BFD-PPs and the accom-

panying basis sets were developed for QMC, they can be used for other QC calculations as well.44

We also examined the basis set dependence of potential energy curves (PECs), taking VTZ and

VDZ with SVWN. We confirmed that the maximum energy deviation was enough small, 1.7 and

2.2±1.8 kcal/mol for SVWN and DMC/SVWN, respectively. Thus all our QC calculations were

performed using the BDF-PPs with the VTZ basis.

Results and Discussion

Potential energy curves

We now report our QC and DMC results of the potential energy curves (PECs) of the AA:TT

molecule. Figure 2 shows the PECs obtained from (a) SCF (HF, SVWN, PBE, B3LYP) and MP2

calculations and (b) DMC with the four SCF trial nodes. For comparison CCSD(T)/CBS reference

energies43 at d = 3.2, 3.3, and 3.4 Å are also plotted in both the figures.

As shown in Fig. 2 (a), the AA:TT stacking interactions are not satisfactory described by the

HF, GGA (PBE), and B3LYP calculations. This suggests that taking into account not only correla-

tion itself but also a subtle balance of exchange and correlation is necessary for an appropriate de-
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Figure 2: Potential energy curves obtained from various methods: (a) SCF (HF, DFT) and MP2
calculations and (b) DMC calculations with the SCF trial nodes. The energy at each d is shifted
by the corresponding energy at d = 10.0 Å. In both the figures, CCSD(T)/CBS reference energies
evaluated by Sponer et al.43 are also shown for comparison.

scription of the stacking. In contrast, LDA reproduces the stacking, and its stacking energy (−14.1

kcal/mol at d = 3.2 Å) agrees with the CCSD(T)/CBS value (−13.1 kcal/mol at d = 3.2 Å),43

even though LDA, by construction, cannot describe dispersion either. This artifact in LDA has

been reported in some noncovalent systems, e.g., graphitic systems.51 By nature, MP2 describes

the dynamical correlations, but overbinds significantly (−21.4 kcal/mol at d = 3.2 Å), compared

to the CCSD(T)/CBS energy. It is well known that MP2 overestimates dispersion interactions

involving aromatic groups when using large basis sets.30

On the other hand, we see from Fig. 2 (b) that the DMC PECs with the four different nodes

(HF, SVWN, PBE, B3LYP) look similar to each other as a whole. The dependence of the DMC
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PECs on the XC functionals is weakened by the DMC projection. This does not straightforwardly

mean that the SCF nodes have a similar structure. In fact, a proper cancellation of fixed-node errors

occurs between the stacked and separated systems, leading to the similarity in PECs between two

DMC methods.
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Figure 3: DMC total energy curves with the SCF trial nodes to see the fixed-node variational
principles (see text). All the energies are shifted by +330 hartree.

To see in more detail how our trial nodes are different from each other, we plot the DMC total

energies versus interlayer distances in Fig. 3. Note that the variational principle with respect to

(fixed) trial nodes holds for the DMC total energy,32,33 i.e., trial nodes with lower energies are

closer to the exact solution. We find that the HF node gives the highest energy, while the B3LYP

does the lowest one; the difference between them is ∼ 0.05 hartree. This trend has been also found

for some transition-metal systems.52,53

It is found from Fig. 3 that the PBE node gives a shorter distance (d ∼ 3.2 Å), while the

other three nodes (HF, SVWN, and B3LYP) longer distances (d ∼ 3.5 Å). These are reasonably

good in agreement with the average distance observed in actual DNA structures (3.3 ∼ 3.4 Å).43

The DMC stacking energies around their equilibrium distances using the SVWN, PBE, B3LYP,

and HF nodes were estimated to be −13.1 ± 0.9, −12.3 ± 0.9, −12.8 ± 0.9, and −13.8 ± 0.9

kcal/mol, respectively. They are also in reasonably good agreement with the reference value of

−13.1 kcal/mol.43 Overall the DMC projection gives a similar shape of the PECs, even starting
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with the different trial nodes.

Benchmark of various methods
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Figure 4: AA:TT stacking energies obtained from various methods (see text for the exact descrip-
tion of methods employed). A dashed line is drawn to hold the reference energy value at eye
level.

Figure 4 summarizes the AA:TT stacking energies evaluated by various methods, compared

with the reference energy value obtained from the CCSD(T)/CBS.43 They were individually com-

puted with a CCSD(T)/CBS-optimized geometry (fixed d = 3.2 Å)43 except a DFT-SAPT re-

sult by Fiethen et al.55 for comparative purpose. For DMC, we consider only the B3LYP node

(DMC/B3LYP). Negative values of the stacking energy indicate that the dispersion is more or less

captured, whereas positive values highlight challenges for describing the dispersion, or electron

correlation. Apart from LDA, failures to reproduce the stacking (giving a positive sign) are found

in all the conventional functionals including GGA, meta-GGA, hybrid functionals, all of which

are appropriate for describing covalent systems. In contrast, most of the dispersion-corrected XC

functionals were successful in capturing the stacking (giving a negative sign). In more detail, the
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findings are as follows (numerical values of the stacking energies in units of kcal/mol are given in

parentheses):

(1) The DFT-D methods, B97-D and ωB97X-D, give the correct sign, but slightly overbind

(−15.8 and −15.1) compared to the reference value (−13.1). Although DFT-D methods usually

show a good performance for most noncovalent systems, the overbinding in DFT-D has been re-

ported in some cases.54

(2) The series of the hybrid-meta-GGA functionals, M05, M05-2X, M06, and M06-2X, suc-

cessfully reproduces the stacking interaction, as expected. Among them M06-2X (−11.8) has the

best agreement with the reference.

(3) The LC functional, ωB97, is found to predict the stacking properly (−10.8). Perhaps

surprisingly, the other two LC functionals, CAM-B3LYP and LC-ωPBE, fail to give the correct

sign. This implies that a proper treatment of “medium-range" correlation6 is crucial. Furthermore,

we find that when expanding upon three functionals, BLYP, B3LYP, and CAM-B3LYP, the more

sophisticated treatment of the exchange term yields a better result. We suggest therefore that both

the exchange and correlation should be taken into account in a balanced way.

As we mentioned before, HF completely fails to describe the stacking, whereas MP2 gives

the correct sign, but significantly overbinds (−21.4). In contrast, DFT-SAPT gives a good result

(−11.39),55 compared to the reference. The DMC/B3LYP result (−10.4±0.9) reasonably agrees

with M06-2X, ωB97, and DFT-SAPT as well as the reference, though it is not the best variationally

optimized value.

We note that the reference geometry employed in Fig. 4 is not necessarily optimum for the

other methods (DMC, SCF, and MP2). For instance, the PBE functional gives an unbound state

at the reference geometry, but it gives a shallow bound state (−2.5 kcal/mol) at a larger interlayer

distance (d = 4.0 Å), as shown in Fig. 2 (a). In addition we note that Fig. 4 does not include BSSE

(basis set superposition error) correction.29 It is expected to correct the binding weaker and not

to strongly depend on the choice of XC functionals. To estimate the magnitude we evaluated the

BSSE energy using counterpoise methods29 applied to LC-ωPBE and M06-2X. It is found from
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Fig. 5 (a) that the counterpoise correction (CPC) gets the interaction weaker at every distance for

both LC-ωPBE and M06-2X. The correction strongly depends on the interlayer distances, but not

on the XC functionals employed, as shown in Fig. 5 (b); LC-ωPBE and M06-2X estimate the

BSSE correction at the reference geometry to be 3.4 and 3.5 kcal/mol, respectively.
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Figure 5: (a) Potential energy curves obtained from LC-ωPBE and M06-2X with or without the
counterpoise correction (CPC). (b) BSSE energies obtained from LC-ωPBE and M06-2X.

Concluding remarks

In conclusion, we have applied DMC to the AA:TT molecule in order to calculate its stacking

energy and potential energy curve (PEC). We explored the effect of different trial nodes (HF, LDA,

GGA, and B3LYP) on the DMC evaluation of the PECs. It is found that the DMC projection
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significantly reduces the node dependence, and the resulting PECs look similar to each other.

In addition, we benchmarked various QC calculations based on DFT as well as WFT. In DFT,

conventional semilocal and hybrid functionals fail to reproduce the stacking, whereas most of the

recently developed functionals predict it properly, except for two LC functionals, indicating that a

balanced inclusion of exchange and correlation is necessary for a proper description of the stacking.

In WFT, HF and MP2 give unsatisfactory results, while DMC with the variationally best B3LYP

node yields a stacking energy comparable to the CCSD(T)/CBS reference value.

Finally we shall remark computational issues. Our DMC calculations were feasible on our 32-

core PC clusters. On the other hand, we attempted Grimme’s double-hybrid functional (B2PLYP)56

and CCSD(T) calculations using the VDZ basis set, but they won’t run even on supercomputers

(e.g., SGI Altix UV1000). In comparison with such high-level QC approaches, DMC can be an

alternative to give an accurate reference energy for medium to large-sized noncovalent systems to

which high-level approaches are not generally applicable.
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(5) Riley, K. E.; Pitoňák, M.; Jurečka, P.; Hobza, P. Stabilization and Structure Calculations

for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and

Density Functional Theories. Chem. Rev. 2010, 110, 5023-5063.

(6) Zhao, Y.; Truhlar, D. G. Density Functionals for Noncovalent Interaction Energies of Biolog-

ical Importance. J. Chem. Theory Comput. 2007, 3, 289-300.
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(31) Riley, K. E.; Platts, J. A.; Řezáč, J.; Hobza, P. MP2.X: A Generalized MP2.5 Method that

Produces Improved Binding Energies with Smaller Basis Sets. Phys. Chem. Chem. Phys.

2011, 13, 21121-21125.

(32) Needs, R. J.; Towler, M. D.; Drummond, N. D.; Lopez Rìos, P. Continuum Variational and

Diffusion Quantum Monte Carlo Calculations. J. Phys.: Condens. Matter 2010, 22, 023201.

(33) Austin, B. M.; Zubarev, D. Y.; Lester, W. A. Jr. Quantum Monte Carlo and Related Approach.

Chem. Rev. 2012, 112, 263-288.

(34) Gillan, M. J.; Towler, M. D.; Alfè, D. Petascale Computing Opens New Vistas for Quantum

Monte Carlo. Psi-k Highlight of the Month (Feburary 2011).

(35) Benedek, N. A.; Snook, I. K.; Towler, M. D.; Needs, R. J. Quantum Monte Carlo Calculations

of the Dissociation Energy of the Water Dimer. J. Chem. Phys. 2006, 125, 104302:1-5.

(36) Gurtubay, I. G.; Needs, R. J. Dissociation Energy of the Water Dimer from Quantum Monte

Carlo Calculations. J. Chem. Phys. 2007, 127, 124306:1-8.

(37) Sorrela, S.; Casula, M.; Rocca, D. Weak Binding between Two Aromatic Rings: Feeling

the van der Waals Attraction by Quantum Monte Carlo Methods. J. Chem. Phys. 2007, 127,

014105:1-12.

(38) Ma, J.; Alfè, D.; Michaelides, A.; Wang, E. The Water-Benzene Interaction: Insight from

Electronic Structure Theories. J. Chem. Phys. 2009, 130, 154303:1-6.

16



(39) Korth, M.; Lüchow, A.; Grimme, S. Toward the Exact Solution of the Electronic Schrödinger

Equation for Noncovalent Molecular Interactions: Worldwide Distributed Quantum Monte

Carlo Calculations. J. Phys. Chem. A 2008, 112, 2104-2109.

(40) Drummond, N. D.; Needs, R. J. Quantum Monte Carlo, Density Functional Theory, and Pair

Potential Studies of Solid Neon. Phys. Rev. B 2006, 73, 024107:1-8.

(41) Hongo, K.; Watson, W. A.; Sánchez-Carrera, R. S.; Iitaka, T.; Aspuru-Guzik, A. Failure of

Conventional Density Functionals for the Prediction of Molecular Crystal Polymorphism: A

Quantum Monte Carlo Study. J. Phys. Chem. Lett. 2010, 1, 1789-1794.
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