
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 証明数を用いたゲーム木探索の新たなパラダイム

Author(s) 張, 嵩

Citation

Issue Date 2019-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16064

Rights

Description Supervisor：飯田　弘之, 先端科学技術研究科, 博士

Doctoral Dissertation

A New Paradigm of Game Tree Search
Using Proof Numbers

by

Zhang Song

Supervisor: Professor Dr. Hiroyuki Iida

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science

June, 2019

Supervised by

Prof.Dr.Hiroyuki Iida

Reviewed by

Prof. Shun-Chin Hsu

Prof.Dr.Tsan-Sheng Hsu

Dr.Kiyoaki Shirai

Dr.Minh Le Nguyen

Dr.Kokolo Ikeda

i

Abstract

Conspiracy number and proof number are two game-independent heuristics in a game-

tree search. The conspiracy number is proposed in Conspiracy Number Search (CNS)

which is a MIN/MAX tree search algorithm, trying to guarantee the accuracy of the

MIN/MAX value of a root node. It shows the scale of “stability” of the root value.

The proof number is inspired by the concept of conspiracy number, and applied in an

AND/OR tree to show the scale of “difficulty” for proving a node. It is first proposed

in Proof-Number Search (PN-search) which is one of the most powerful algorithms for

solving games and complex endgame positions. The Monte-Carlo evaluation is another

promising domain-independent heuristic which focuses on the analysis based on random

sampling of the search space. The Monte-Carlo evaluation does not reply on any prior

knowledge of human and has made significant achievements in complex games such as

Go.

In this thesis, we select the conspiracy number search, the proof number search and

the Monte-Carlo tree search as three example search algorithms with domain-independent

heuristics to study its relations and differences, and finally propose a new perspective of

the game tree search with domain-independent heuristics. The relations and differences

of the three search algorithms mentioned can be summarized as follows. The Monte-

Carlo tree search uses Monte-Carlo evaluations for the leaf nodes to indicate the most

promising node for expansion. In other words, the Monte-Carlo evaluation can be regarded

as a detector to obtain the information beneath the leaf nodes to forecast the promising

search direction in advance. In contrast, the conspiracy number search and the proof

number search tend to use the indicators corresponding to the structure or the shape of the

search tree that has already been expanded. Therefore, it can be regarded as forecasting

the promising search direction according to the information above the leaf nodes. As a

natural induction of such understanding of the game tree search using domain-independent

heuristics, we may get some improvements by combining the conspiracy number or the

proof number idea with the Monte-Carlo evaluation into a search algorithm, which can be

ii

considered as a combination of “the information above leaf nodes” and “the information

beneath the leaf nodes”.

Our research focuses on applying or refining domain-independent heuristics such as

the conspiracy number, the proof number and the Monte-Carlo evaluation to achieve such

three purposes: (1) enhancing current search algorithm. For this purpose, we proposed

the so-called Deep df-pn search algorithm to improve df-pn which is a depth-first ver-

sion of PN-search by forcing a deeper search with a parameter. The experiments with

Connect6 show a good performance of Deep df-pn. (2) Analyzing and visualizing game

progress patterns for better understanding of games and master thinking way, such as

showing the analysis of the game progress for learners in Chinese Chess tutorial system.

For this purpose, we proposed the so-called Single Conspiracy Number method for long

term position evaluation in Chinese Chess and obtained good results. (3) Studying the

relations and differences between the conspiracy number, proof number and the Monte-

Carlo evaluation and combining “the information above leaf nodes” and “the information

beneath the leaf nodes” to propose a new search algorithm with domain-independent

heuristics named probability-based proof number search. A series of experiments show

that probability-based proof number search outperforms other famous search algorithms

for solving games and endgame positions.

Keyword: combinatorial game, domain-independent heuristic, game solver, Monte-

Carlo evaluation, game progress pattern

iii

Acknowledgments

Firstly, I would like to express my special thanks of gratitude to my supervisor professor

Hiroyuki Iida who is not only a outstanding scientist in computer science but also a

grand master in Japanese Shogi. Under his supervision, I have obtained so much passion

and interest in the study of games and artificial intelligence. During my PhD work,

professor Iida not only gave me gold opportunities to communicate with other outstanding

professors and researchers in the world, but also supported me a lot in my daily life

whenever I had problem. I have learned so much from him, and I appreciate him so

much.

Secondly, thanks professor Jaap ven den Herik who hosted me in Leiden University

for my minor research and helped me so much on our research papers. Also thanks Matej

Gruid and Victor Allis who encouraged me and gave me a lot of good advice on my

research when I was in Leiden University.

Thirdly, thanks professor Kokolo Ikeda and secretary Setsuko Asakura for the kind

help to my study and daily life in Iida lab. Thanks the committee members of my

PhD defense: professor Tsan-Sheng Hsu, professor Kiyoaki Shirai and professor Minh Le

Nguyen for their excellent work. Also thanks my postgraduate supervisor professor Deng

Ansheng for his invitations to Dalian Maritime University. Thanks all the students in

Iida lab: Mr Zuo Long, Dr Xiong Shuo, Mr Zhai He, Mr Ye Aoshuang and so on. Thanks

all the staff of JAIST.

Next, I will thank my parents who gave me good education and great support in my

life. They not only raised me up but also taught me how to be a better man. I love them.

Special Thanks to Ms Xue Yawen, my girl friend. She came to JAIST two years before

me and waited for me until I enrolled. Without her, I would not start my PhD study and

enjoy my life so much. She is the source of my confidence, courage and happiness. Thank

you so much. You are my forever lover, best friend and soul mate. I love you.

Finally, thanks China Scholarship Council for the financial support of my PhD work.

iv

Today is not easy. Tomorrow may be more difficult. But the day after tomorrow will

be fantastic. Keep going and enjoy!

v

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 5

1.3 Structure of the Thesis . 5

2 Literature Review 9

2.1 Using the Information above the Leaf Nodes 9

2.1.1 Introduction . 9

2.1.2 Conspiracy Number Search . 10

2.1.3 Proof Number Search . 11

2.1.4 Df-pn . 14

2.1.5 The Seesaw Effect . 16

2.1.6 Deep Proof Number Search . 17

2.2 Using the Information beneath the Leaf Nodes 29

2.2.1 Introduction . 29

2.2.2 Monte-Carlo Tree Search . 29

2.2.3 Monte-Carlo Tree Search Solver . 32

2.3 Combining the Information above and beneath the Leaf Nodes 34

2.3.1 Introduction . 34

2.3.2 Monte-Carlo Proof Number Search 34

2.4 Chapter Conclusion . 36

vi

3 Deep df-pn 37

3.1 Introduction . 37

3.2 Basic Idea of Deep df-pn . 39

3.3 Deep df-pn in Connect6 . 42

3.3.1 Connect6 . 42

3.3.2 Relevance-zone-oriented Deep df-pn 44

3.3.3 Experimental Design . 48

3.3.4 Results and Discussion . 49

3.3.5 Comparison . 50

3.3.6 Finding optimized parameters . 51

3.4 Chapter Conclusion . 54

4 Single Conspiracy Number 56

4.1 Introduction . 56

4.2 Basic Idea of Single Conspiracy Number 58

4.3 Experiments and Discussion . 60

4.3.1 Experimental Design . 61

4.3.2 Tactical Positions . 61

4.3.3 Drawn Positions . 66

4.3.4 Opening Positions . 68

4.4 Chapter Conclusion . 70

5 Probability-based Proof Number Search 71

5.1 Introduction . 71

5.2 Probability-based Proof Number Search 73

5.2.1 Main Concept . 73

5.2.2 Probability-based Proof Number 74

5.2.3 Algorithm . 75

5.3 Benchmarks . 75

5.3.1 Monte-Carlo Proof Number Search 76

5.3.2 Monte-Carlo Tree Search Solver . 78

5.4 Experiments . 82

vii

5.5 Chapter Conclusion . 85

6 Conclusion 88

Appendix 90

Bibliography 95

Publications 101

viii

List of Figures

2-1 An example of MIN/MAX tree [40] . 11

2-2 An example of conspiracy numbers (the left column of the number list of

a node is the evaluation value, and the right column of the number list of

a node is its corresponded conspiracy number) [40] 12

2-3 An example of the expansion and updating process in the conspiracy num-

ber search (the left column of the number list of a node is the evaluation

value, and the right column of the number list of a node is its corresponded

conspiracy number) [40] . 13

2-4 An example of the seesaw effect: (a) An example game tree (b) Expanding

the most-proving node [19] . 17

2-5 An example of a suitable tree for an Othello end-game position. This game

tree has a uniform depth of 4, and the terminal nodes are reached at game

end. [19] . 18

2-6 The variation in Othello: The number of # of Iterations and # of Nodes.

R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R > 0.0 is

DeepPN. Lower is better. [19] . 23

2-7 The reduction rate in Othello: The number of # of Iterations and # of

Nodes. R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R >

0.0 is DeepPN. Lower is better. [19] . 24

2-8 # of Iterations in Othello: The changes of Reducing and Increasing Cases

for # of Iterations and # of Nodes [19] . 25

2-9 # of Nodes in Othello: The changes of Reducing and Increasing Cases for

of Iterations and # of Nodes [19] . 26

ix

2-10 The variation in Hex: The changes of Reducing and Increasing Cases for

of Iterations and # of Nodes [19] . 27

2-11 The reduction rate in Hex: # of Iterations and # of Nodes for Hex(4).

R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R > 0.0 is

DeepPN. Lower is better. [19] . 27

2-12 Hex: The detail of Fig 2-11. This figure is zoomed 1.0 ≤ R ≤ 0.9. The

lower is better. [19] . 28

2-13 One iteration of the general MCTS approach [7] 31

3-1 Relationship between PN-search, df-pn, DeepPN and Deep df-pn 39

3-2 An example of the seesaw effect: (a) An example game tree (b) Expanding

the most-proving node [19] . 41

3-3 An example of (a) relevance zone Z and (b) relevance zone Z ′ [55] 43

3-4 Example position 1 of Connect6 (Black is to move and Black wins) 45

3-5 Example position 2 of Connect6 (Black is to move and Black wins) 45

3-6 Deep df-pn and df-pn compared in node number (including repeatedly

traversed nodes) with various values of parameter E and D for position 1

(Df-pn when D = 1) . 46

3-7 Deep df-pn and df-pn compared in seesaw effect number with various values

of parameter E and D for position 1 (Df-pn when D = 1) 46

3-8 Deep df-pn and df-pn compared in node number (including repeatedly

traversed nodes) with various values of parameter E and D for position 2

(Df-pn when D = 1) . 47

3-9 Deep df-pn and df-pn compared in seesaw effect number with various values

of parameter E and D for position 2 (Df-pn when D = 1) 47

3-10 Node number (including repeatedly traversed nodes) of 1 + ϵ trick with

various values of parameter ϵ for position 1 51

3-11 Seesaw effect number of 1 + ϵ trick with various values of parameter ϵ for

position 1 . 52

3-12 Node number (including repeatedly traversed nodes) of 1 + ϵ trick with

various values of parameter ϵ for position 2 52

x

3-13 Seesaw effect number of 1 + ϵ trick with various values of parameter ϵ for

position 2 . 53

4-1 An example of tactical position where Red is to move (Red wins) 61

4-2 Red’s MIN/MAX value and SCN in position P0 with different search depth

(T = 600) . 62

4-3 Black’s MIN/MAX value and SCN in position P1 with different search

depth (T = 600) . 62

4-4 Histogram of RSCNred and RSCNblack (T = 600) 65

4-5 Histogram of V lred and V lblack . 65

4-6 Histogram of RSCN in winning positions, losing positions and drawn po-

sitions (T = 600) . 67

4-7 Histogram of V l in winning positions, losing positions and drawn positions 67

4-8 Relationship between high possibility, low possibility and normal possi-

bility of changing the MIN/MAX values of positions not less than the

threshold T in advance of the opponent scaled by RSCN 67

4-9 RSCNs for different handicap openings with T = 200 68

4-10 RSCNs for different handicap openings with T = 600 68

5-1 Two examples of updating PN by MIN rule in MCPN-search (the square

represents the OR node). 77

5-2 Two examples of updating PPN by OR rule in PPN-search (the square

represents the OR node). Notice that PPN = 1 − PN. 78

5-3 Two examples of updating PN by SUM rule in MCPN-search (the circle

represents the AND node). 78

5-4 Two examples of updating PPN by AND rule in PPN-search (the circle

represents the AND node). Notice that PPN = 1 − PN. 79

5-5 Two examples of updating simulation values by taking the average in the

UCT solver or the pure MCTS solver (the square represents the OR node). 82

5-6 Two examples of updating PPN by OR rule in PPN-search (the square

represents the OR node). 82

5-7 Comparison of average search time for a P-game tree with 2 branches and

20 layers. 84

xi

5-8 Comparison of average numbers of iterations for a P-game tree with 2

branches and 20 layers. 85

5-9 Comparison of the error rate of selected moves for each iteration on P-game

trees with 2 branches and 20 layers. 85

5-10 Comparison of average search time for a P-game tree with 8 branches and

8 layers. 86

5-11 Comparison of average numbers of iterations for a P-game tree with 8

branches and 8 layers. 86

5-12 Comparison of the error rate of selected moves for each iteration on P-game

trees with 8 branches and 8 layers. 87

6-1 Example position 3 of Connect6 (Black is to move and Black wins) 90

6-2 Example position 4 of Connect6 (Black is to move and Black wins) 90

6-3 Example position 5 of Connect6 (Black is to move and Black wins) 91

6-4 Example position 6 of Connect6 (Black is to move and Black wins) 91

6-5 Example position 7 of Connect6 (White is to move and White wins) 91

6-6 Example position 8 of Connect6 (White is to move and White wins) 91

xii

List of Tables

3.1 Different behaviors by changing parameters 42

3.2 Deep df-pn and 1 + ϵ trick compared in the best case (The number in the

bracket represents the reduction percentage compared with df-pn) 53

3.3 Experimental data of Deep df-pn using hill-climbing method (The number

in the bracket represents the difference between Deep df-pn using hill-

climbing method and Deep df-pn in the best case) 54

xiii

Chapter 1

Introduction

1.1 Background

Games are classified by the following properties: (1) Zero-sum: Whether the reward to all

players sums to zero (in the two-player case, whether players are in strict competition with

each other). (2) Information: Whether the state of the game is fully or partially observable

to the players. (3) Determinism: Whether chance factors play a part (also known as

completeness, i.e. uncertainty over rewards). (4) Sequential: Whether actions are applied

sequentially or simultaneously. (5) Discrete: Whether actions are discrete or applied

in real-time [7]. Games that are zero-sum, perfect information, deterministic, discrete

and sequential are described as combinatorial games. Combinatorial games [5] includes

one-player combinatorial puzzles such as Sudoku [31] [17], and no-player automata, such

as Conway’s Game of Life [16], but largely confined to two-player games that have a

position in which the players take turns changing in defined ways or moves to achieve a

defined winning condition, such as chess [22], checkers [42], and Go [33]. Combinatorial

games are of interest in artificial intelligence, particularly for automated planning and

scheduling [14]. By refining practical search algorithms such as the alpha–beta pruning

search [27], we can implement a strong AI in such type of games. Many studies [39]

[27] [43] show that based on such search framework, the strength of AI highly depends

on the quality of the heuristic. To obtain reliable heuristic information of games, one

possible way is to use expert’s knowledge, usually in the form of scoring game positions.

We call such heuristic as domain-dependent heuristic, because such heuristic is limited

1

to work on a certain game and hard to be generalized into other domains. Sometimes,

domain-dependent heuristics are not reliable and even cannot be obtained especially in

some complex games such as Go. In such case, the domain-independent heuristic is

more advanced as it is obtained automatically in a more general way. In this thesis,

we will review three typical domain-independent heuristics: Monte-Carlo evaluation [12],

conspiracy number [32] and proof number [2]. We discuss the connections and differences

of these heuristics in order to give a new perspective of the game tree search with domain-

independent heuristics. Based on such new perspective, several enhancements on the

search algorithms corresponding to the domain-independent heuristics are achieved, and

new applications of the domain-independent heuristics are proposed. Finally, the ultimate

purpose is to combine the advantages of these domain-independent heuristics and propose

a new advanced search algorithm: probability-based proof number search. We conduct

experiments to evaluate the performance of the probability-based proof number search

and obtain significant results in the end. The success of probability-based proof number

search not only makes breakthrough in real applications, but also theoretically proves our

understanding on the new perspective of game tree search in this thesis.

Starting from Deep Blue [9] defeating the Chess world champion in 1997, search al-

gorithms in combinatorial games have been significantly developed from a brute-force

large-scale search [30] to a very selective heuristic search. The search efficiency is signifi-

cantly improved by both using the high-quality domain-dependent heuristic and extremely

cutting off of the brunches of the game tree. While after AlphaGo [44] defeating the Go

world champion in 2017, a new generation of the game tree search has been started. The

Monte-Carlo tree search (MCTS) and its variants based on domain-independent sampling

and simulations become more and more successful than other conventional approaches.

The focus of Monte Carlo tree search is on the analysis of the most promising moves, ex-

panding the search tree based on random sampling of the search space. The application

of Monte-Carlo tree search in games is based on many playouts. In each playout, the

game is played out to the very end by selecting moves at random. The final game result

of each playout is then used to weight the nodes in the game tree so that better nodes

are more likely to be chosen in future playouts. Different from the domain-dependent

heuristic, such playout does not reply on any prior knowledge of human. Using such

2

domain-independent heuristic in a search algorithm combined with large-scale parallel

computing and deep neural network, computer can master different games beyond hu-

man experts [46] [45]. In other words, the success of Monte-Carlo tree search in Go can

be considered to be a success of domain-independent heuristics in the game tree search.

In fact, before Monte-Carlo tree search, there have been some successful game tree

search algorithms using the domain-independent heuristics, such as conspiracy number

search (CNS) [32] and proof number search (PN-search) [2]. The core idea of conspiracy

number search is using a vector of conspiracy numbers to indicate the likelihood of the

root taking on a particular value. More precisely, the conspiracy number is the minimum

number of leaf nodes in the tree that must change their score (by being searched deeper)

to result in the root taking on that new value [52]. For each iteration in the search pro-

cess, the conspiracy number search always expands the most promising nodes indicated

by the conspiracy numbers to make the game tree grow from an “unstable” state to a

“stable” state in an expectantly fastest way. Different from the Monte-Carlo tree search,

the conspiracy number search can be considered to be a search algorithm using both the

domain-dependent heuristic (the scores of leaf nodes) and the domain-independent heuris-

tic (the conspiracy number). Moreover, the conspiracy number is obtained, not based on

the sampling or the simulations of the game, but based on the structure or the shape

of a game tree that has already been expanded. The conspiracy number evaluates the

“stability” of the root score, indicating a proper ending state of a search. Such theoret-

ical concept is very promising, but suffers from a low efficiency and slow convergence in

practical implementations, because it takes too much time and storage to compute and

record the vector of conspiracy numbers for each node.

To incorporate the conspiracy number idea into a real application, the proof number

search (PN-search) is proposed as a game solver searching on an AND/OR tree. Other

than using the vector of conspiracy numbers, PN-search simplifies the conspiracy numbers

into two numbers: a proof number (pn) and a disproof number (dn), showing the scale of

difficulty in proving and disproving a node, respectively. More precisely, for all unsolved

nodes (leaf nodes), the proof number and disproof number are 1. For a winning node,

the proof number and disproof number are 0 and infinity, respectively. For a non-winning

node, it is the reverse. For internal nodes, the proof number and disproof number are back

3

propagated from its children following MIN/SUM rules: at OR nodes, the proof number

equals the minimum proof number of its children, and the disproof number equals the

summation of the disproof numbers of its children. It is the reverse for AND nodes. For

each iteration, going from the root to a leaf node, PN-search selects either the child with

the minimum proof number at OR nodes, or the child with the minimum disproof number

at AND nodes. Finally, it regards the leaf node arrived at as the most proving node for

expansion. Without scoring the game positions, the proof number search completely uses

the domain-independent heuristic based on the structure of an AND/OR tree. It becomes

one of most successful search algorithms for solving games and endgame positions.

In this thesis, we select the conspiracy number search, the proof number search and

the Monte-Carlo tree search as three example search algorithms with domain-independent

heuristics to study the relations and the differences between the conspiracy number, the

proof number and the Monte-Carlo evaluation. Based on the discussion, we will find a

new perspective of the game tree search with domain-independent heuristics. According

to the introduction above, the Monte-Carlo tree search uses Monte-Carlo evaluations as

domain-independent heuristics for the leaf nodes to indicate the promising search node

for expansion. In other words, the Monte-Carlo evaluation can be regarded as a kind

of detector to obtain the information beneath the leaf nodes to forecast the promising

search direction in advance. In contrast, the conspiracy number and the proof number

are indicators based on the structure or the shape of the search tree that has already been

expanded. In other words, the conspiracy number and the proof number forecast the

promising search direction by using the information above the leaf nodes. As a natural

induction of such understanding of game tree search with domain-independent heuris-

tics, there should be potential improvements by combining the conspiracy number or the

proof number idea with the Monte-Carlo evaluation in the search algorithm. It can be

considered as a combination of using the “information above the leaf nodes” and the “in-

formation beneath the leaf nodes”. A typical search algorithm among this category is the

Monte-Carlo proof number search, using Monte-Carlo evaluations for the leaf nodes and

proof number search rules to expand the search tree. However, the Monte-Carlo proof

number search is not a good combination of the Monte-Carlo evaluation and the proof

number search, because Monte-Carlo evaluation leads to real numbers but the proof num-

4

ber search updating rules are proposed for integer numbers, which causes the information

loss. Based on such theoretical consideration, we propose a new search algorithm named

probability-based proof number search (PPN-search). We conduct experiments to ver-

ify the effectiveness of the probability-based proof number search. Experimental results

show that probability-based proof number search outperforms other existing approaches

in solving games or endgame positions. The success of probability-based proof number

search not only makes breakthrough in real applications, but also theoretically prove our

new perspective on the game tree search with domain-independent heuristics.

1.2 Research Questions

Our research focuses on applying and refining domain-independent heuristics, such as the

conspiracy number, the proof number and the Monte-Carlo evaluation, to achieve such

three goals: (1) Enhancing current search algorithm. For this purpose, we propose the

so-called Deep df-pn search algorithm to improve df-pn, an efficient variant of the proof

number search by forcing a deeper search with a parameter. It shows a good performance

in solving positions of Connect6. (2) Analyzing and visualizing game progress patterns

for better understanding of games and master’s thinking way. For this purpose, We

propose the so-called single conspiracy number method for long term position evaluations

in Chinese Chess and obtain good results. (3) Based on the theory of “the information

above the leaf nodes” and “the information beneath the leaf nodes”, we propose a new

advanced search algorithm for solving games and endgame positions named probability-

based proof number search to improve the efficiency of the original one. We conduct a

series of experiments to confirm that the probability-based proof number search is more

efficient than other search algorithms for solving games, such as the proof number search,

the Monte-Carlo proof number search, the UCT solver and the pure MCTS solver.

1.3 Structure of the Thesis

The dissertation includes 6 chapters: introduction, literature review, Deep df-pn, single

conspiracy number, probability-based proof number search, and conclusion. In this disser-

tation, one grand argument is proposed, then several new findings and further discussions

5

are incorporated to support this argument.

Chapter 1. Introduction. We select the conspiracy number search, the proof number

search and the Monte-Carlo tree search as three example search algorithms with domain-

independent heuristics to introduce the development of game-independent heuristics. Base

on the introduction, we propose such argument: conspiracy number and proof number are

two game-independent heuristics using “the information above leaf nodes” corresponding

to the structure or the shape of the part of the search tree that has already been expanded

to indicate the most promising node for expansion, while Monte-Carlo tree search method

“the information beneath the leaf nodes” obtained by simulations to indicate the most

promising node for expansion. There are high similarity and closed connection between

the conspiracy number, the proof number and the Monte-Carlo evaluation. Therefore,

we could get potential improvements by combining the conspiracy number or the proof

number idea with Monte-Carlo evaluation. This can be regarded as the combination of

‘the information above leaf nodes” and “the information beneath the leaf nodes”.

Chapter 2. Literature Review. In this chapter, we introduce related works before

our study. We classify the game-independent heuristics into three categories: “using

the information above the leaf nodes”, “using the information beneath the leaf nodes”

and “combining the information above and beneath the leaf nodes”. The “using the

information above the leaf nodes” category includes the conspiracy number search, the

proof number search, df-pn and Deep proof number search. The “using the information

beneath the leaf nodes” category includes the Monte-Carlo tree search and the Monte-

Carlo tree search solver which is a variant of Monte-Carlo tree search for solving endgame

positions. The “combining the information above and beneath the leaf nodes” includes

the Monte-Carlo proof number search which is a variant of proof number search combining

with Monte-Carlo evaluations.

Chapter 3. Deep df-pn. Depth-first proof-number search (df-pn) is a powerful variant

of proof number search algorithms, widely used for AND/OR tree search or solving games.

However, df-pn suffers from the seesaw effect, which strongly hampers the efficiency in

some situations. In this chapter, we propose a new depth-first proof number algorithm

called Deep depth-first proof-number search (Deep df-pn) to reduce the seesaw effect

in df-pn. The difference between Deep df-pn and df-pn lies in the proof number or

6

disproof number of unsolved nodes. It is 1 in df-pn, while it is a function of depth with

two parameters in Deep df-pn. By adjusting the value of the parameters, Deep df-pn

changes its behavior from searching broadly to searching deeply. The chapter shows

that the adjustment is able to reduce the seesaw effect convincingly. For evaluating the

performance of Deep df-pn in the domain of Connect6, we implemented a relevance-zone-

oriented Deep df-pn that worked quite efficiently. The experimental results indicate that

improving efficiency by the same adjustment technique is also possible in other domains.

Chapter 4. Single Conspiracy Number. Single Conspiracy Number (SCN) is a vari-

ant concept of conspiracy number and proof number which indicates the difficulty of a

root node changing its MIN/MAX value to a certain score. It makes up the drawbacks

of conspiracy number on computing complexity and storage cost, which can be easily

applied into different search frameworks. This chapter explores the potential usage of

SCN as a long-term position evaluation to understand in-depth game progress patterns.

Chinese Chess is chosen as a test bed for this study, whereas a strong open source AI

engine ‘Xiangqi Wizard’ is used. It is implemented with alpha-beta search and modified

to produce SCNs during the search process. Experiments are conducted on different types

of positions including tactical positions, drawn positions and opening positions. The ex-

perimental results show that SCN is more consistent and accurate for long-term position

evaluation than the conventional way using evaluation function values only. One applica-

tion of SCN is the Chess tutorial system. Besides the evaluation function, SCN provides

another scalar axis showing the changes of the game progress. It helps the users obtain

more information about the game. Using SCN together with evaluation function values

enables us to better understand game progress patterns.

Chapter 5. Probability-based Proof Number Search. Probability-based proof num-

ber search (PPN-search) is a game tree search algorithm improved from proof number

search (PN-search) [2], with applications in solving games or endgame positions. PPN-

search uses one indicator named “probability-based proof number” (PPN) to indicate the

“probability” of proving a node. The PPN of a leaf node is derived from Monte-Carlo

evaluations. The PPN of an internal node is back propagated from its children following

AND/OR probability rules. For each iteration, PPN-search selects the child with the

maximum PPN at OR nodes and minimum PPN at AND nodes. This holds from the

7

root to a leaf. The resultant node is considered to be the most proving node for expan-

sion. In this chapter, we investigate the performance of PPN-search on P-game trees

[28] and compare our results with those from other game solvers such as MCPN-search

[38], PN-search, UCT solver, and the pure MCTS solver [54]. The experimental results

show that (1) PPN-search takes less time and fewer iterations to converge to the correct

solution on average, and (2) the error rate of selecting a correct solution decreases faster

and more smoothly as the iteration number increases.

Chapter 6. Conclusion and Future Works. We summarize all the introductions and

discussions above, and make a conclusion. In addition, several possible future works are

presented.

8

Chapter 2

Literature Review

In this chapter, we introduce related works before our study. We classify the game-

independent heuristics into three categories: “using the information above the leaf nodes”,

“using the information beneath the leaf nodes” and “combining the information above

and beneath the leaf nodes”. The “using the information above the leaf nodes” category

stands for the class of search algorithms using domain-independent heuristics based on the

structure or the shape of the search tree that has already been expanded, including the

conspiracy number search, the proof number search, df-pn and Deep proof number search.

“using the information beneath the leaf nodes” category stands for the class of search

algorithms using domain-independent heuristics based on the Monte-Carlo evaluation,

including the Monte-Carlo tree search and the Monte-Carlo tree search solver. For the

“combining the information above and beneath the leaf nodes”, we introduce a typical

approach: the Monte-Carlo proof number search as a benchmark.

2.1 Using the Information above the Leaf Nodes

2.1.1 Introduction

In this section, we select the conspiracy number search, the proof number search and

its variants as example search algorithms with domain-independent heuristics using the

information above the leaf nodes. All the mentioned search algorithms use the conspiracy

number or the proof number as a kind of indicators based on the structure or the shape of

the search tree that has already been expanded. In other words, the conspiracy number

9

and the proof number forecast the promising search direction by using the information

above the leaf nodes. Here, We also introduce the seesaw effect that highly hampers the

efficiency of the original proof number search. Then the Deep proof number search is

introduced to solve this problem.

2.1.2 Conspiracy Number Search

Conspiracy Number Search (CNS) [32] is a MIN/MAX tree search algorithm, trying to

guarantee the accuracy of the MIN/MAX value of a root node. The likelihood of the root

taking on a particular value is reflected in that value’s associated conspiracy number. The

conspiracy number is the minimum number of leaf nodes in the tree that must change

their score (by being searched deeper) to result in the root taking on that new value [41].

The tree is grown in a way that restricts the set of likely root values. The formalism of

the conspiracy number is given below [41].

When n is a leaf node, if the evaluation of n is v, then the conspiracy number associated

with v is 0 and for all other values is 1. If that leaf node is terminal (its value is absolute),

then the alternative values can be viewed as requiring ∞ conspirators.

When n is an internal node, consider breaking the set of conspiracy numbers into two

groups: the numbers required to increase a node’s value (↑ needed) and those to decrease

it (↓ needed). Values below the MIN/MAX score in ↑ needed and above the MIN/MAX

score in ↓ needed are assigned 0. ↑ needed and ↓ needed of an interior node’s children

can be combined to form the parent’s conspiracy numbers, CN , using the following rules

(with v being a value and m being the MIN/MAX value):

(a) If v = m,

CN(v) = 0.

(b) For a MAX node:

CN(v) =
∑

all children i
↓ neededi(v), for all v < m.

CN(v) = Min

all children i
↑ neededi(v), for all v > m.

10

(c) For a MIN node:

CN(v) = Min

all children i
↓ neededi(v), for all v < m.

CN(v) =
∑

all children i
↑ neededi(v), for all v > m.

Fig. 2-1, Fig. 2-2 and Fig. 2-3 show an example of computing, expansion and

updating conspiracy numbers for a MIN/MAX tree. For each iteration, the conspiracy

number search always selects the leaf node corresponding to the minimum conspiracy

number of the root to eliminate the unstable element in the tree. The conspiracy number

is a very promising concept of the domain-independent heuristic, but suffers from a low

efficiency in real applications. There are mainly two reasons: (1) it takes too much time

and storage to compute and record the conspiracy numbers (2) the algorithm converges

slowly, sometimes even cannot converge. As a result, the conspiracy number becomes a

good theoretical benchmark to be improved.

Figure 2-1: An example of MIN/MAX tree [40]

2.1.3 Proof Number Search

To incorporate the conspiracy number idea into a real application, the proof number

search (PN-search) is proposed as a game solver searching on an AND/OR tree. Proof-

Number Search (PN-search) [2] is a native best-first algorithm, using proof numbers and

disproof numbers, always expanding one of the most-proving nodes. All nodes have proof

and disproof numbers, they are stored to indicate which frontier node will be expanded,

and updated after expanding. A proof (disproof) number shows the scale of difficulty in

11

Figure 2-2: An example of conspiracy numbers (the left column of the number list of a
node is the evaluation value, and the right column of the number list of a node is its
corresponded conspiracy number) [40]

proving (disproving) a node. The expanded node is called the most-proving node, which

is the most efficient one for proving (disproving) the root. By exploiting the search proce-

dure, two characteristics of the search tree are established [50]: (1) the shape (determined

by the branching factor of every internal node), and (2) the values of the leaves (in the

end they deliver the game theoretic value). Basically, unenhanced PN-Search is an unin-

formed search method that does not require any game-specific knowledge beyond its rules

[25]. The formalism is given below.

Let n.pn and n.dn be the proof number and disproof number of a node n, respectively.

When n is a terminal node

(a) If n is a win for the attacker:

n.pn = 0

n.dn = ∞

(b) If n is a loss for the attacker:

n.pn = ∞

n.dn = 0

12

Figure 2-3: An example of the expansion and updating process in the conspiracy number
search (the left column of the number list of a node is the evaluation value, and the right
column of the number list of a node is its corresponded conspiracy number) [40]

(c) If the value of n is unknown:

n.pn = 1

n.dn = 1

When n is an internal node

(a) If n is an OR node:

n.pn = Min
nc∈children of n

nc.pn

n.dn =
∑

nc∈children of n

nc.dn

(b) When n is an AND node

13

n.pn =
∑

nc∈children of n

nc.pn

n.dn = Min
nc∈children of n

nc.dn

A most-proving node is a leaf node that is selected by tracing nodes from the root

node in the following way.

• For each OR node, trace the child with the minimum proof number.

• For each AND node, trace the child with the minimum disproof number.

Note that Allis et al. [2] defined the most-proving node as the left-most one, if there

is arbitrariness.

2.1.4 Df-pn

Although PN-search is an ideal AND/OR-tree search algorithm, it still has at least two

problems. We mention two of them. The first one is that PN-search uses a large amount

of memory space because it is a best-first algorithm. The second one is that the algorithm

is not efficient as hoped for because of the frequently updating of the proof and disproof

numbers. To solve the problems, Nagai [34] proposed a depth-first like algorithm using

both proof number and disproof number. He called it df-pn (depth-first proof-number

search). The procedure of df-pn can be characterized as (1) selecting the most-proving

node, (2) updating the thresholds of proof number or disproof number in a transposition

table, and (3) applying multiple iterative deepening until the ending condition is satisfied.

Although df-pn is a depth-first like search, it has a same behavior as PN-search. The

equivalence between PN-search and df-pn is proved in [34].

In df-pn, proof number and disproof number are renamed as follows.

n.ϕ =

 n.pn
(

n is an OR node
)

n.dn
(

n is an AND node
)

n.δ =

 n.dn
(

n is an OR node
)

n.pn
(

n is an AND node
)

14

Moreover, each node n has two thresholds: one for the proof number thpn and the other

for the disproof number thdn. Similarly, thpn and thdn are renamed as follows.

n.thϕ =

 n.thpn

(
n is an OR node

)
n.thdn

(
n is an AND node

)

n.thδ =

 n.thdn

(
n is an OR node

)
n.thpn

(
n is an AND node

)
Df-pn expands the same frontier node as PN-search in a depth-first manner guided by

a pair of thresholds (thpn, thdn), which indicates whether the most-proving node exists in

the current subtree [21]. The procedure is described below [34].

Procedure Df-pn

For the root node r, assign values for r.thϕ and r.thδ as follows.

r.thϕ = ∞

r.thδ = ∞

Step 1. At each node n, the search process continues to search below n until n.ϕ ≥

n.thϕ or n.δ ≥ n.thδ is satisfied (we call it ending condition).

Step 2. At each node n, select the child nc with minimum δ and the child n2 with

second minimum δ. (If there is another child with minimum δ, that is n2.) Search below

nc with assigning

nc.thϕ = n.thδ + nc.ϕ−
∑

nchild.ϕ

nc.thδ = min (n.thϕ, n2.δ + 1)

Repeat this process until the ending condition holds.

Step 3. If the ending condition is satisfied, the search process returns to the parent

node of n. If n is the root node, then the search is totally over.

15

2.1.5 The Seesaw Effect

PN-search and df-pn are highly efficient in solving games. However, both are facing the

drawback named as seesaw effect [18]. It can be best characterized as frequently going

back to the ancestor nodes for selecting the most-proving node. Pawlewicz and Lew [36],

and Kishimoto et al. [26] [24] showed one such weak point of df-pn. The weak point has

been named the seesaw effect by Hashimoto [18].

To explain it precisely, we show, in Fig. 2-4, an example where the root node has two

subtrees. The size of both subtrees is almost the same. Assume that the proof number

of subtree L is larger than the proof number of subtree R. In this case, PN-search or

df-pn will continue search in subtree R, which means that the most-proving node is in

subtree R. After PN-search or df-pn has expanded the most-proving node, the shape of

the game tree will change as shown in Fig. 2-4(b). By expanding the most-proving node,

the proof number of subtree R becomes larger than the proof number of subtree L. So

PN-search or df-pn changes its searching direction from subtree R to subtree L. In turn,

when the search expands the most-proving node in subtree L, then the proof number of

subtree L becomes larger than the one in subtree R. Thus, the search changes its focus

from subtree L to subtree R. This change keeps going back and forth, which looks like a

seesaw. Therefore, it is named as seesaw effect.

The seesaw effect happens when the two trees are almost equal in size. If the seesaw

effect occurs frequently, the performance of PN-search and df-pn deteriorates significantly

and cannot reach the required search depth. In games which need to reach a large fixed

search depth, the seesaw effect works strongly against efficiency.

The seesaw effect is mostly caused by two issues: the shape of game tree and the

way of searching. Concerning the shape of game tree, there are two characteristics: (1)

a tendency of the newly generated children to keep the size equal and (2) the fact that

many nodes with equal values exist deep down in a game tree. If the structure of each

node remains almost the same (cf. characteristic 1), then the seesaw effect may occur

easily. For characteristic 2, it is common in games such as Othello and Hex to search a

large fixed number of moves before settling. This is also the case in connect-type games

such as Gomoku and Connect6 which have a sudden death in the game tree. Therefore, it

is necessary to design a new search algorithm to reduce the seesaw effect in these games.

16

PN = 999PN = 1000

L R L R

Most-Proving Node

PN = 1001PN = 1000

(a) (b)

Figure 2-4: An example of the seesaw effect: (a) An example game tree (b) Expanding
the most-proving node [19]

2.1.6 Deep Proof Number Search

This section is updated and abridged from the following publication.

• Ishitobi, T. (2016). Deep Proof-Number Search and Aesthetics of Mating Problems.

JAIST Press.

In this section, we introduce a new search algorithm based on proof numbers named

Deep Proof-Number Search (DeepPN). DeepPN is a variant of the original PN-search.

Each node in the search tree has two indicators: the proof number and the disproof

number. Additionally, for DeepPN, each node is assigned a so-called deep value. The

deep values are determined and updated by the terminal node analogously to the proof

and disproof numbers. DeepPN has been designed to: (1) combine the best-first and

the depth-first search, and (2) to try and solve the problem of the seesaw effect. For

evaluating the performance of DeepPN, we use endgame positions of Othello and Hex.

The Basic Idea of DeepPN

In the original PN-search, the most-proving node is defined as follows [2].

Definition 1. For any AND/OR tree T, a most-proving node of T is a frontier node of

T, which by obtaining the value true reduces T’s proof number by 1, while by obtaining

the value false reduces T’s disproof number by 1.

This definition implies that the most-proving node sometimes exists in a plural form

in a tree, i.e., there are many fully equivalent most-proving nodes. For example, if the

17

OR node AND node

Game End

2,3

2,1

1,1 1,1

2,2

2,2

2,1 2,1

1,1 1,1 1,1 1,1

Figure 2-5: An example of a suitable tree for an Othello end-game position. This game
tree has a uniform depth of 4, and the terminal nodes are reached at game end. [19]

child nodes have the same proof or disproof number then both subtrees have each a most-

proving node. The situation that the child nodes has the same proof (disproof) number

in an OR (AND) node is called a tie-break situation. Now, we have the question about

which most-proving node is the best for calculating the game-theoretical value. PN-search

chooses the leftmost node with the smallest proof (disproof) number, also in a tie-break

situation. In particular, the proof and disproof number do not take other information

into account, and therefore PN-search cannot choose a more favorable most-proving node

in a tie-break situation.

Determining the best most-proving node in a tie-break situation is a difficult task,

because the answer depends on many aspects of the game. However, when focusing on

games which build up a suitable tree, we may develop some solutions. In a suitable tree,

the “best” most-proving node is indicated by its depth number. See the example given in

Fig 2-5.

This game tree is from the Othello [8]. The end of the game is shown by “Game End”

in Fig 2-5. All level-two nodes are most-proving nodes, because the proof numbers of

child nodes under the root node are the same (i.e., 2). So, we have a tie-break situation.

Now, in the next search step, PN-search will focus on the most-proving node that exists in

left side as produced by the original PN-search algorithm. However, if the search focuses

18

immediately on the most-proving node of the right side, then the search will be more

efficient, because the nodes on the left side do not reach the game end and their value

cannot be found yet. In contrast, nodes that exist at the right side reach the game end,

and if we try to expand these nodes, then the game value of each node is known. In this

example, we follow the idea that a most-proving node in the deepest tree of a suitable

game tree, is the best.

To test this idea, we performed a small experiment. We prepared an original PN-

search and a modified PN-search. In a tie-break situation, PN-search focuses on a most-

proving node that exists in the leftmost node, and the modified PN-search focuses on the

deepest most-proving node. For checking performance, we prepared 100 Othello endgame

positions. The performance of the modified PN-search is better than the results of the

original PN-search (about 10% reduction). These results suggest that the deepest most-

proving node works advantageously for finding the game-theoretical value.

In addition, the example of Fig 2-5 shows the essence of the seesaw effect. If the

game end exists and has a depth of more than 4, then the search for a proof number goes

back and forth between the two subtrees. Even if the game end is of depth 4, then the

search that focuses on the right subtree will change its focus on the left subtree. But,

when modifying PN-search, the small seesaw effect is suppressed. This phenomenon of

modifying PN-search suggests a new heuristic. The search depth of nodes can be used

for solving the seesaw effect in a suitable game tree. In fact, this is what 1 + ϵ trick [36]

in effect tries to accomplish, to stay deep in a suitable game tree. For more detail of 1

+ ϵ trick, see section 3.3.4 in chapter 3. Now, let us try to think of a new technique.

For instance, consider the moves that the modified PN-search plays when finding the

deepest most proving node. We noticed that these moves combined best-first with depth-

first behavior. The modified PN-search works in a best-first manner, and in a tie-break

situation, PN-search work depth-first for the most-proving nodes. Depending on how

often tie-breaks occur, the algorithm works more frequently best-first than depth-first.

The resulting improvement, when measured in number of iterations and nodes leads to a

small result. Thus, we will design a new algorithm that can change the ratio of best-first

manner and depth-first manner. Its description is an follows. This system is named Deep

Proof-Number Search (DeepPN). Here, n.ϕ means proof number in OR node and disproof

19

number in AND node. In contrast, n.δ means proof number in AND node and disproof

number in OR node.

1. The proof number and disproof number of node n are now calculated as follows.

n.ϕ =

 n.pn (n is an OR node)

n.dn (n is an AND node)

n.δ =

 n.dn (n is an OR node)

n.pn (n is an AND node)

2. When n is a terminal node

(a) When n is proved (disproved) and n is an OR (AND) node, i.e., OR wins

n.ϕ = 0

n.δ = ∞

(b) When n is disproved (proved) and n is an AND (OR) node, i.e., OR does not win

n.ϕ = ∞,

n.δ = 0

(c) When n is unsolved, i.e., its value is unknown

n.ϕ = 1,

n.δ = 1

(d) When n is terminal node, then n has deep value

n.deep =
1

n.depth
(2.1)

3. When n is an internal node

20

(a) The proof and disproof number are defined as follows

n.ϕ = min
nc∈children of n

nc.δ

n.δ =
∑

nc∈children of n

nc.ϕ

(b) The deep values, DPN(n) and n.deep are defined as follows.

n.deep = nc.deep where nc = arg min
ni∈unsolved children

DPN(ni) (2.2)

DPN(n) = (1− 1

n.δ + 1
)R + n.deep(1−R) (0.0 ≤ R ≤ 1.0) (2.3)

The proof and disproof number are the same as in the original PN-search. The im-

provement is the new term, i.e., the concept of the deep value. The deep value in a

terminal node is calculated by formula (2.1). The deep value is designed to decrease

inversely with depth. In an internal node, calculating the deep value has only a limited

complexity. First, we define a function named DPN (see formula 2.3). DPN has two

features: (a) n.δ is normalized and designed to become larger according to the growth of

n.δ and (b) a fixed parameter R is chosen. R has a value between 0.0 and 1.0. If R is 1.0

then DeepPN works the same as PN-search, and if R is 0.0 then DeepPN works the same

as a primitive depth-first search. Therefore, the normalized δ fulfills the role of best-first

guide and the deep acts as a depth-first guide. This means that by changing the value of

R, the ratio of best-first and depth-first search of DeepPN can be adjusted. Second, in

an internal node, the deep value is updated by its child nodes using formula (2.2). The

deep value of node n is decided by a child node nc which has smallest DPN(nc). A point

to notice is that the updating value is only deep, not DPN(nc). Additionally, when nc is

solved, then the deep value of nc is ignored in arg min.

In DeepPN, an expanding node in each iteration is chosen as follows.

select_expanding_node(n) := arg min
nc∈children of n except solved

DPN(nc) (2.4)

21

This sequence is repeated until the terminal node is reached. That terminal node is

the node that is to be expanded. If R = 1.0, then this expanding node is the most-proving

node.

Performance with Othello

For measuring the performance of DeepPN, we prepared a solver using the DeepPN al-

gorithm and Othello endgame positions. We configured a primitive DeepPN algorithm

for investigating the effect of DeepPN only, without any supportive mechanisms such

as transposition tables and ϵ-thresholds. We prepared 1000 Othello endgame positions.

They are constructed as follows. The positions are taken from the 8 x 8 board. We play

44 legal moves at random from the begin position. This implies that 48 squares from the

64 are covered. So, the depth of the full tree to the end is 16.

In all our experiments DeepPN is applied to these 1000 endgame positions. Our focus

is the behavior of R (see formula (2.3)). For R = 1.0, DeepPN works the same as PN-

search and shows the same results. For R = 0.0, DeepPN works the same as a primitive

depth-first search. When R is between 1.0 to 0.0, then DeepPN behaves as a mix between

best-first and depth-first. We changed R from 1.0 to 0.0 by increments of 0.05. We focus

on the values of two concepts, viz. the number of iterations and the number of nodes. The

number of iterations is given by counting the number of traces of finding the most-proving

node from the root node. This value indicates an approximate execution time unaffected

by the specifications of a computer. The number of nodes is an indication of the total

number of nodes that are expanded by the search. This value is an approximation of the

size of memory needed for solving. We show the results in Fig 2-6 and 2-7.

Figure 2-6 shows the variation of (1) the number of iterations and (2) the number of

nodes. Each point is as mean value calculated from the results of 1000 Othello endgame

positions. R = 1.0 shows the results of PN-search, and this value is the base for com-

parison. As R goes to 0.8, the number of iterations and nodes decrease almost by half.

From R = 0.8 to 0.6, the number of iterations stops decreasing, but the number of nodes

decreases slowly. From R = 0.6 to 0.4, the decrease stops, and the number of iterations

starts increasing again slowly. In R = 0.35, both numbers increase rapidly. We see that

for R of around 0.4, the balance between depth-first and best-first behavior appears to be

22

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000
#
 o

f
It
e
ra

ti
o
n
s

#
 o

f
N

o
d
e
s

R

of Iterations

of Nodes

Figure 2-6: The variation in Othello: The number of # of Iterations and # of Nodes.
R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R > 0.0 is DeepPN. Lower
is better. [19]

optimal. We surmise that DeepPN is stuck in one subtree and cannot get away since the

algorithm is too strongly depth-first. For R = 0.35 to 0.2, the number of iterations and

nodes is decreasing. Around R = 0.2, the balance was broken again, and is decreasing

towards 0.1. Finally, DeepPN performs worse when R approaches 0.0 closely. In R = 0.0,

almost no Othello end game position can be solved, and this value is omitted from Fig

2-6.

In Figure 2-6, the scale of the number of iterations and nodes are different. To ease our

understanding, Figure 2-7 shows the amount of the reduction rate. This reduction rate is

normalized by the result of PN-search, i.e., the reduction rate of R = 1.0 is 100%. Each

point is the mean value of the reduction rate calculated by the results of 1000 Othello

endgame positions. The results of 2-7 show almost the same characteristics as 2-6. There

is a different point where the number of iterations decreases after R = 0.8 and the number

of nodes decreases after R = 0.6. In Figure 2-7, the number of iterations decreased about

50% in R = 0.4 and the number of nodes decreased about 35% in R = 0.4. Thus, DeepPN

reduced the number of iterations (≈ time) to half and the number of nodes (≈ space) to

one-third. In R = 0.05, the number of iterations increased to over 100%, which is not

shown.

23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

d
u

c
ti
o

n
 [

%
]

R

of Iterations
of Nodes

Figure 2-7: The reduction rate in Othello: The number of # of Iterations and # of Nodes.
R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R > 0.0 is DeepPN. Lower
is better. [19]

Finally, we show two graphs about the changes in reducing and increasing cases in

Othello endgame positions in Fig 2-8 and 2-9. Please note that in Fig 2-8 and 2-9 we

showed the number of iterations and number of nodes.

The plots for reducing cases give the number of Othello endgame positions which

are solved efficiently compared to PN-search, i.e., the reduction rate is under 100%. In

contrast, the plots for increasing cases give the number of Othello endgame positions that

have a reduction rate over 100%. The vertical axis shows the number of Othello endgame

positions. Figure 2-8 shows the number of iterations by which the reducing cases decrease

slowly from R = 0.95 to 0.4. Likewise, for number of nodes the graph decreases slowly

from R = 0.95 to 0.4. Around R = 0.4, the trend is broken, and the number of increasing

cases increases rapidly. From R = 0.35 to 0.2 and from 0.15 to 0.1, the number of cases

does not change much. This result indicates that the reason of decreasing from R = 0.35

to 0.2 is shown in Fig 2-6 and 2-7. As the number of cases is not changed, the decreasing

number of iterations and nodes of the Othello end game positions are caused by reducing

cases. In brief, some Othello end positions can be handled efficiently as R is reduced.

But, for some Othello end game positions a changing R causes an increase. Therefore,

Othello end game positions can be categorized in relation to R. The first group belongs to

24

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 o

f
c
a

s
e

s

R

of Reducing Cases
of Increasing Cases

Figure 2-8: # of Iterations in Othello: The changes of Reducing and Increasing Cases for
of Iterations and # of Nodes [19]

R = 0.95 to 0.05. This group does not react to changes in R, they do not switch between

the reducing case and increasing case. We can see this group clearly from R = 0.95 to

0.40. The second group belongs to R = 0.35 to 0.2. This group fitted from R = 0.95

to 0.4, and they could not keep efficiency work after R = 0.4. The third group belongs

to R = 0.15 to 0.1, and the characteristics of this group are the same as for the second

group. In either group, the cases are not efficiently close to R = 0.0.

The question remains when DeepPN works most efficiently in the Othello endgame

position for 16-ply. The answer depends on the group of Othello endgame positions.

However, if we have to choose the best R, then a value of around 0.65 is a good compromise

for most cases.

Performance with Hex

For measuring the performance of DeepPN, we also prepared a solver for Hex [3]. As

for the experiments of Othello, we created a primitive DeepPN algorithm for checking

the effect of DeepPN only. The Hex program is a simple program that does not have

any other mechanisms such as an evaluation function. Our Hex program uses a 4 x 4

board (called Hex(4)), and tries to solve that board using DeepPN. Our focus is on the

behavior of R (see formula 2.3). Concerning the characteristics of R, please see section

25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 o

f
c
a

s
e

s

R

of Reducing Cases
of Increasing Cases

Figure 2-9: # of Nodes in Othello: The changes of Reducing and Increasing Cases for #
of Iterations and # of Nodes [19]

2.1.6 or 2.1.6. We changed R from 0.0 to 1.0 by 0.5, and tried to solve Hex(4) 10 times

in each R. The legal moves of Hex are sorted randomly in every configuration, viz. there

is the possibility that each result is different. The results in each R are calculated by the

average of the 10 experiments. Next we focused on two concepts: (1) number of iterations

and (2) number of nodes. About the characteristics of both values, please see the section

2.1.6. The experimental data are given in Fig 2-10 and 2-11.

Figure 2-10 shows the changes in the number of iterations and nodes. We can see

that the results of DeepPN decrease (improve) in some positions compared by PN-search.

This is not the case for R = 0.0, because we cannot solve Hex(4) for this R when we limit

ourselves to 500 million nodes. For ease of understanding, we prepare another graph in

Fig 2-11. There we show the reduction rates normalized by the result of PN-search, i.e.,

the result of PN-search has 100% reduction rate.

Figure 2-11 shows that the number of iterations and nodes is reduced by a 30% re-

duction rate between R = 0.95 and R = 0.5. The result has two downward curves: from

R = 1.0 to 0.7 and from R = 0.7 to R = 0.0. The first curve starts from R = 1.0 and

decreases toward 0.95. After R = 0.95, the results start to increase and grow to over 100%

after 0.85. The second curve starts from R = 0.7 and the results starts to decrease again.

At around R = 0.5, the results reach about 50%. Finally, the results are increasing again

26

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000
#
 o

f
It
e
ra

ti
o
n
s

#
 o

f
N

o
d
e
s

R

of Iterations

of Nodes

Figure 2-10: The variation in Hex: The changes of Reducing and Increasing Cases for #
of Iterations and # of Nodes [19]

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

d
u

c
ti
o

n
 [

%
]

R

of Iterations
of Nodes

Figure 2-11: The reduction rate in Hex: # of Iterations and # of Nodes for Hex(4).
R = 1.0 is PN-search, R = 0.0 is depth-first search, and 1.0 > R > 0.0 is DeepPN. Lower
is better. [19]

toward R = 0.0, like Othello.

For understanding the details of how DeepPN works around R = 0.95, we tried to

change R by 0.1 between from 1.0 to 0.9. The results are shown in Fig 2-12.

By looking at the results, we can see that DeepPN works almost twice as good as

PN-search from R = 0.99 to 0.95. Form R = 0.95 to 0.90, we have a small curve like

27

 0

 20

 40

 60

 80

 100

 120

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
e

d
u

c
ti
o

n
 [

%
]

R

of Iterations
of Nodes

Figure 2-12: Hex: The detail of Fig 2-11. This figure is zoomed 1.0 ≤ R ≤ 0.9. The lower
is better. [19]

figure 2-11.

In Hex(4), the optimum value of R is around R = 0.95 (and perhaps R = 0.5). We

can see that depth-first does not work so well for Hex(4) as it does for Othello, although

there is an improvement over pure best-first.

Discussion

DeepPN works efficiently in 16-ply Othello endgame positions, and in Hex(4). It can

reduce the number of iterations and nodes almost by half compared to PN-search. It

must be noted that the optimum balance of R is different in each game and for each size

of game tree. We can see that for both games a certain amount of depth-first behavior

is beneficial, but the changes are not the same. The precise relation is a topic of future

work.

Both in Othello endgame positions and in Hex(4), we encountered positions that

showed increasing (worse) results. We suspect that a reason for this problem may be (1)

the holding problem and (2) the length of the shortest correct path. Concerning (1), the

depth-first search can remain stuck in one subtree (holding on to the subtree). If this

holding subtree cannot find the game-theoretical value, then the number of iterations and

nodes become meaningless. When DeepPN employed a strong depth-first manner, then

28

we found many increasing results in Othello endgame positions. Also, in Hex(4), DeepPN

cannot work efficiently around R = 0.0. Finding an optimal R is a topic of future work.

Concerning (2), the problem is related to (1). In Othello, the shortest correct path is

almost the same for each position, because Othello has a fixed number of depth to the

end. However, in Hex(4), the shortest winning path may exist before a depth of 16. If

we happen to find a balance between depth and best-first, then DeepPN will change the

subtree it focuses on time. For example, when R = 0.95, then DeepPN quickly finds the

shortest path. But after R = 0.95, DeepPN misses that path and arrives in regions that

are more deeply in the trees. Finding a good value of R in Hex is more difficult than in

Othello.

2.2 Using the Information beneath the Leaf Nodes

2.2.1 Introduction

In this section, we select Monte-Carlo tree search (MCTS) and Monte-Carlo tree search

solver (MCTS solver) as example search algorithms with domain-independent heuristics

using the information beneath the leaf nodes. The Monte-Carlo tree search and solver use

Monte-Carlo evaluations as domain-independent heuristics for the leaf nodes to indicate

the promising search node for expansion. In other words, the Monte-Carlo evaluation can

be regarded as a kind of detector to obtain the information beneath the leaf nodes to

forecast the promising search direction in advance.

2.2.2 Monte-Carlo Tree Search

The Monte-Carlo method is a statistical physics used to obtain approximations to in-

tractable integrals. The basic idea of Monte-Carlo method is to define a domain of

possible inputs, generate inputs randomly from a probability distribution over the do-

main, perform a deterministic computation on the inputs and aggregate the results. The

Monte-Carlo method is first applied to solve deterministic problems using a probabilistic

analog. Abramson [1] demonstrated that this sampling might be useful to approximate

the game-theoretic value of a move. The notation is adopted by Gelly and Silver that the

Q-value of an action is simply the expected reward of that action:

29

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Ii(s, a)zi

where N(s, a) is the number of times action a has been selected from state s, N(s) is

the number of times a game has been played out through state s, zi is the result of the

ith simulation played out from s, and Ii(s, a) is 1 if action a was selected from state s on

the ith play-out from state s or 0 otherwise.

Monte-Carlo evaluation provides a new approach to get game heuristic without human

knowledge. An intuitive application of Monte-Carlo evaluation in combinatorial games is

to obtain the heuristic value for the MIN/MAX tree. This method is known as the Monte-

Carlo planning with MIN/MAX value updating. However, the framework is not proved or

verified to be more efficient than other alternatives. To challenge such intuition, Coulom

[15] proposes a new framework of Monte-Carlo tree search. Instead of backing-up the min-

max value close to the root, and the average value at some depth, a more general backup

operator is defined that progressively changes from averaging to MIN/MAX value as the

number of simulations grows. More concretely, for each iteration, Coulom’s Monte-Carlo

tree search only takes one simulation and expands one node. Then the information of the

leaf node can be back propogated frequently to the root by taking the average of all the

branches. As a result, this type of Monte-Carlo tree search converges faster to MIN/MAX

value than the Monte-Carlo planning with MIN/MAX value updating. Based on such

framework, Kocsis et al. [29] propose the UCT, a MCTS variant applying bandit [4] ideas

to guide Monte-Carlo planning. UCT is based on the UCB1 formula derived by Auer,

Cesa-Bianchi, and Fischer [4] and the provably convergent AMS (Adaptive Multi-stage

Sampling) algorithm first applied to multi-stage decision making models (specifically,

Markov Decision Processes) by Chang, Fu, Hu, and Marcus [10]. Kocsis et al. recommend

to choose in each node of the game tree the move for which has the highest UCT value.

In [29], Kocsis et al. compare the performance of the UCT, the pure Monte-Carlo tree

search, Monte-Carlo planning with MIN/MAX value update and alpha-beta search in P-

game trees [47]. Experimental results show that in several domains, UCT is significantly

more efficient than its alternatives.

After reviewing the development of the Monte-Carlo tree search, Chaslot et al. [11]

finally put forward Monte-Carlo Tree Search as a novel, unified framework to game AI.

30

The basic framework of the Monte-Carlo tree search involves iteratively building a search

tree until some predefined computational budget (typically a time, memory or iteration

constraint) is reached, at which point the search is halted and the best performing root

action returned. Each node in the search tree represents a state of the domain, and

directed links to child nodes represent actions leading to subsequent states [7]. Generally,

the basic algorithm of the Monte-Carlo tree search includes four steps: (see also Fig 2-13)

Figure 2-13: One iteration of the general MCTS approach [7]

(1) Selection: Selection picks a child to be searched based on the previously gained

information. For pure MCTS when going from the root to a leaf node, the child with

the largest simulation value will be selected. For UCT, an enhanced version of MCTS, it

controls the balance between exploitation and exploration by selecting the child with the

largest UCT (Upper Confidence Bounds applied to Trees) value:

vi +
√

C×lnnp

ni
,

where vi is the simulation value of the node i, ni is the visit count of child i, and np

is the visit count of current node p. C is a coefficient parameter, which has to be tuned

experimentally. Winands et al. also consider other strategies to optimize the selection

based on UCT, such as progressive bias (PB). But in this paper, to make it easy to follow,

we only apply the UCT strategy.

(2) Expansion: Expansion is the strategic task that decides whether nodes will be

added to the tree. In this paper, we expand one node for each iteration.

31

(3) Simulation: The simulation step begins when we enter a position that is not a part

of the tree yet. Moves are selected in self-play until the end of the game. This task might

consist of playing plain random moves.

(4) Backpropagation: Backpropagation is the procedure that propagates the result of

a simulated game back from the leaf node, through the previously traversed node, all the

way up to the root. A usual strategy of UCT or pure MCTS is taking the average of the

results of all simulated games made through this node.

2.2.3 Monte-Carlo Tree Search Solver

Monte-Carlo Tree Search (MCTS) [13] is a best-first search guided by the results of

Monte-Carlo simulations. In the last few years, MCTS has advanced the field of computer

Go substantially. Although MCTS equipped with the UCT (Upper Confidence Bounds

applied to Trees) formula which enables the evaluations to converge to the game-theoretic

value, it is still not able to prove the game theoretic value of the search tree. This is even

more true for sudden-death games, such as Chess. In this case, some endgame solvers

(i.e., PN-search) are traditionally preferred above MCTS. To transform MCTS to a good

game solver, Winands et al. introduced an MCTS variant called MCTS solver [54], which

has been designed to prove the game-theoretical value of a node in a search tree. The

MCTS solver includes the following four strategic steps.

(1) Selection: Selection picks a child to be searched based on the previously gained

information. For pure MCTS when going from the root to a leaf node, the child with

the largest simulation value will be selected. For UCT, an enhanced version of MCTS, it

controls the balance between exploitation and exploration by selecting the child with the

largest UCT value:

vi +
√

C×lnnp

ni
,

where vi is the simulation value of the node i, ni is the visit count of child i, and np

is the visit count of current node p. C is a coefficient parameter, which has to be tuned

experimentally. Winands et al. also consider other strategies to optimize the selection

based on UCT, such as progressive bias (PB). But in this paper, to make it easy to follow,

we only apply the UCT strategy. To transform UCT and pure MCTS to a solver, a node

32

is assumed to have the game-theoretical value ∞ or −∞ that corresponds to a proved

win or not win, respectively. In this paper, we consider all the drawn games as proved to

be not win games to make the experimental results more easy to interpret. When a child

is a proven win, the node itself is a proven win, and no selection has to take place. But

when one or more children are proven to be not a win, it is tempted to discard them in

the selection phase. In this paper, to make it easy to compare, i.e., we do not consider the

proved win or the proved not win node in the play-out step, because such technique can

similarly be applied into PPN-search and MCPN-search. Moreover, for the final selection

of the winning move at the root, often, it is the child with the highest visit count, or with

the highest value, or a combination of the two. In the UCT solver or in the pure MCTS

solver, the strategy is to select the child of the root with maximum quantity v+ A√
n
, where

A is a parameter (here, set to 1), v is the node’s simulation value, and n is the node’s

visit count.

(2) Play-out: The play-out step begins when we enter a position that is not a part of

the tree yet. Moves are selected in self-play until the end of the game. This task might

consist of playing plain random moves.

(3) Expansion: Expansion is the strategic task that decides whether nodes will be

added to the tree. In this paper, we expand one node for each iteration.

(4) Backpropagation: Backpropagation is the procedure that propagates the result

of a simulated game back from the leaf node, through the previously traversed node, all

the way up to the root. A usual strategy of UCT or pure MCTS is taking the average

of the results of all simulated games made through this node. For the UCT solver and

the pure MCTS solver (in addition to backpropagating the values 1,0,−1) the search also

propagates the game-theoretical values ∞ or −∞. The search assigns ∞ or −∞ to a

won or lost terminal position for the player to move in the tree, respectively. Propagating

the values back in the tree is performed similar to negamax in the context of MIN/MAX

searching in such a way that we do not need to distinguish between MIN and MAX nodes.

33

2.3 Combining the Information above and beneath

the Leaf Nodes

2.3.1 Introduction

Based on the perspective of the domain-independent heuristic with “the information above

the leaf nodes” and “the information beneath the leaf nodes”, a natural induction is

that there should be potential improvements by combining the conspiracy number or the

proof number idea with the Monte-Carlo evaluation in the search algorithm. It can be

considered as a combination of using “the information above the leaf nodes” and “the

information beneath the leaf nodes”. For this aspect, we introduce the Monte-Carlo proof

number search. In chapter 5, we will give a new contribution named probability-based

proof number search (PPNS) to this aspect, which is proved to be more efficient than the

Monte-Carlo proof number search.

2.3.2 Monte-Carlo Proof Number Search

Monte-Carlo proof number search (MCPN-search) [38] is an enhanced proof number search

by adding the flexible Monte-Carlo evaluation to the leaf nodes. It has exactly the same

rules as PN-search except that the proof number and the disproof number of unsolved

nodes are derived from Monte-Carlo simulations. This method makes MCPN-search more

efficient than PN-search especially in balanced tree games. The formalism is presented as

follows.

Let n.pn be the proof number of a node n and n.dn be the disproof number of n.

There are three types of nodes to be discussed below.

(1) Assume n is a terminal node

(a) If n is a winning node,

n.pn = 0.

n.dn = ∞.

(b) If n is not a winning node,

n.pn = ∞.

34

n.dn = 0.

(2) Assume n is a leaf node (not terminal), and R is the winning rate computed by

applying several playouts from this node. Take θ as a small positive number smaller than

1 and closed to 0.

(a) If R ∈ (0, 1),

n.pn = 1−R.

n.dn = R.

(b) If R = 1,

n.pn = θ.

n.dn = R− θ.

(c) If R = 0,

n.pn = θ.

n.dn = R− θ.

(3) Assume n is an internal node, using AND/OR probability rules of independent

events.

(a) If n is an OR node:

n.pn = Min
nc∈children of n

nc.pn

n.dn =
∑

nc∈children of n

nc.dn

(b) When n is an AND node

n.pn =
∑

nc∈children of n

nc.pn

n.dn = Min
nc∈children of n

nc.dn

35

The similar to PN-search, the MCPN-search search also includes the following four

steps.

(1) Selection: for all nodes from the root to a leaf node, do select the child with the

minimum proof number at OR nodes and the child with the minimum disproof number

at AND nodes, while regarding it as the most proving node for expansion.

(2) Expansion: expanding the most proving node.

(3) Play-out: The play-out step begins when we enter a position that is not a part of

the tree yet. Moves are selected in a randomly self-play mode until the end of the game.

After several play-outs, the proof number and the disproof number of the expanded nodes

are derived from Monte-Carlo evaluations.

(4) Backpropagation: updating the proof number and disproof number from the ex-

tended nodes to the root, while following the MIN/SUM rules given above.

2.4 Chapter Conclusion

In this chapter, we introduced related works before our study. We classified the game-

independent heuristics into three categories: “using the information above the leaf nodes”,

“using the information beneath the leaf nodes” and “combining the information above and

beneath the leaf nodes”. In the rest of the thesis, we will improve these previous studies

respectively.

36

Chapter 3

Deep df-pn

This chapter is an updated and abridged version of the following publication.

• Zhang S., Iida H., van den Herik H.J. (2017) Deep df-pn and Its Efficient Imple-

mentations. In: Winands M., van den Herik H., Kosters W. (eds) Advances in

Computer Games. ACG 2017. Lecture Notes in Computer Science, vol 10664.

3.1 Introduction

Proof-Number Search (PN-search) [2] is one of the most powerful algorithms for solving

games and complex endgame positions. PN-search focuses on AND/OR tree and tries to

establish the game theoretical value in a best-first manner. Each node in PN-search has

a proof number (pn) and disproof number (dn). This idea was inspired by the concept

of conspiracy numbers, the number of children that need to change their value to make

a node change its value [32]. A proof (disproof) number shows the scale of difficulty in

proving (disproving) a node. PN-search expands the most-proving node, which is the

most efficient one for proving (disproving) the root.

Although PN-search is an effective AND/OR-tree search algorithm, it still has some

problems. We mention two of them. The first one is that PN-search uses a large amount

of memory space because it is a best-first algorithm. The second one is that the algorithm

is not efficient as hoped for because of the frequently updating of the proof and disproof

numbers. So, Nagai [34] proposed a depth-first algorithm using both proof number and

disproof number based on PN-search, which is called depth-first proof-number search (df-

37

pn). The procedure of df-pn can be characterized as (1) selecting the most-proving node,

(2) updating thresholds of proof number or disproof number in a transposition table, and

(3) multiple iterative deepening until the ending condition is satisfied. Nagai proved the

equivalence between PN-search and df-pn [34]. He noticed that df-pn always selects the

most-proving node as PN-search does in the searching path. Moreover, its depth-first

manner and the use of a transposition table give df-pn two clear advantages: (1) df-pn

saves more storage, and (2) it is more efficient than PN-search.

Yet, both PN-search and df-pn suffer from the seesaw effect which can be characterized

as frequently going back to the ancestor nodes for selecting the most-proving node, as

described in [36] [26] [24]. They showed that the seesaw effect works strongly against the

efficiency in some situations. In Ishitobi et al. [20], the seesaw effect was discussed in

relation to PN-search. The authors arrived at a DeepPN search. However, DeepPN has

in turn still at least two drawbacks: (1) it suffers from a big cost of storage as PN-search,

and (2) DeepPN spends much time on updating the proof and disproof number, which

makes DeepPN actually not an efficient algorithm. This chapter proposes a Deep depth-

first proof-number search algorithm (Deep df-pn) to reduce the seesaw effect in df-pn.

The difference between Deep df-pn and df-pn lies in the proof number or disproof number

of unsolved nodes. In df-pn the proof number or disproof number of unsolved nodes is

1, while in Deep df-pn it is a function of depth with two parameters. By adjusting the

value of parameters, Deep df-pn changes its behavior from searching broadly to searching

deeply. It will be proved in this chapter that doing so will be able to reduce the seesaw

effect convincingly.

To evaluate the performance of Deep df-pn, we implement a relevance-zone-oriented

Deep df-pn to make it work efficiently in the domain of Connect6 [56]. The concept of

relevance zone in Connect6 is introduced by Wu and Lin [55]. It is a zone of the board

in which the defender has to place at least one of the two stones, otherwise the attacker

will simply win by playing a VCDT (victory by continuous double threat) strategy. Such

a zone indicates which moves are necessary for the defender to play. It helps to cut down

the branch size of the proof tree. With a relevance zone, Deep df-pn can solve positions

of Connect6 efficiently. Experimental results show its good performance in improving the

search efficiency.

38

Figure 3-1: Relationship between PN-search, df-pn, DeepPN and Deep df-pn

The remainder of the chapter is as follows. Definitions of Deep df-pn and its character-

istics are presented in Section 3.2. In Section 3.3, we introduce the relevance-zone-oriented

Deep df-pn for Connect6. Then, we conduct experiments to show its better performance

in reducing the seesaw effect in Section 4.3. Finally, concluding remarks are given in

Section 5.5.

3.2 Basic Idea of Deep df-pn

In this section, we propose a new proof-number algorithm based on df-pn to cover the

shortage of DeepPN (see section 1), named as Deep Depth-First Proof-Number Search or

Deep df-pn in short. It not only extends the improvements of df-pn on (1) saving storage

and (2) efficiency, but also (3) reduces the seesaw effect. Fig. 3-1 shows the relationship

between PN-search, df-pn, DeepPN, and Deep df-pn.

Similar to DeepPN, the proof number and disproof number of unsolved nodes are

adjusted in Deep df-pn by a function of depth with two parameters. By adjusting the

values of the two parameters, Deep df-pn can change its behavior from searching broadly

to searching deeply (and vice versa). Definitions of Deep df-pn are given below.

In Deep df-pn, the proof number and disproof number of node n are calculated as

given in section 2.1.6 (here repeated for readability).

39

n.ϕ =

 n.pn
(

n is an OR node
)

n.dn
(

n is an AND node
)

n.δ =

 n.dn
(

n is an OR node
)

n.pn
(

n is an AND node
)

When n is a leaf node, there are three cases.

(a) When n is proved (disproved) and n is an OR (AND) node, i.e., OR wins

n.ϕ = 0

n.δ = ∞

(b) When n is proved (disproved) and n is an AND (OR) node, i.e., OR does not win

n.ϕ = ∞

n.δ = 0

(c) When the value of n is unknown

n.ϕ = Ddfpn (n.depth)

n.δ = Ddfpn (n.depth)

When n is an internal node, the proof and disproof number are defined as follows

n.ϕ = Min
nc∈children of n

nc.δ

n.δ =
∑

nc∈children of n

nc.ϕ

Definition 2. Ddfpn (x) is a function from N to N, which

Ddfpn (x) =


ED−x (D > x ∧ E > 0)

1 (D ≤ x ∧ E > 0)

0 (E = 0)

where E and D are parameters on N, E denotes a threshold of branch size and D denotes

a threshold of depth.

40

The complete algorithm of Deep df-pn is presented in the appendix. Table 3.1 shows

the behavior of Deep df-pn with different values of E and D. When E = 0, Deep df-pn

is a depth-first search. When E > 1 and D > 1, Deep df-pn is an intermediate search

procedure between depth-first search and df-pn. For other cases, Deep df-pn is the same

as df-pn. Deep df-pn focuses on changing the search behavior of df-pn. The procedure of

selecting the most proving node in df-pn is controlled by the thresholds of proof number

and disproof number. So changing the search behavior of df-pn can be implemented by

two methods: (1) changing the thresholds of proof number and disproof number (such as

1 + ϵ trick [36]); (2) changing the proof number and disproof number of unsolved nodes.

Deep df-pn implements the method (2). If E or D becomes smaller, Deep df-pn tends

to search more broadly usually with more seesaw effect. If E or D becomes larger, Deep

df-pn tends to search more deeply usually with less seesaw effect. Below we will prove

that Deep df-pn helps reduce the seesaw effect in df-pn.

PN = 999PN = 1000

L R L R

Most-Proving Node

PN = 1001PN = 1000

(a) (b)

Figure 3-2: An example of the seesaw effect: (a) An example game tree (b) Expanding
the most-proving node [19]

Theorem 1. Deep df-pn outperforms df-pn in reducing the seesaw effect.

Proof Assume that node n is a most-proving node in a seesaw effect (see Fig. 3-2(b)).

Without loss of generality, n is an AND node in subtree L. According to the feature of

the seesaw effect, after expanding n, its proof number becomes larger, which makes the

proof number of subtree L larger. Then df-pn changes its focus on subtree R and the

seesaw effect happens.

From the definitions of Deep df-pn, the proof number of n is given by: Ddfpn (n.depth).

After expanding n, its proof number is given by

41

∑
children of n

Ddfpn (n.depth+ 1) = E
′ ·Ddfpn (n.depth+ 1) .

where E
′ denotes the number of children of n. If E ′ ≤ E and n.depth + 1 < D, then we

have E
′ ·Ddfpn (n.depth+ 1) = E

′ ·ED−(n.depth+1) and E
′ ·ED−(n.depth+1) ≤ ED−depth. So

we obtain the following inequation

∑
children of n

Ddfpn (n.depth+ 1) ≤ Ddfpn (n.depth) .

Therefore, Deep df-pn continues focusing on subtree L and the seesaw effect does not oc-

cur. For a certain proof trees of which the maximum branching factor is larger than E, the

degree of reducing the seesaw effect increases as the value of E increases. As a result, Deep

df-pn outperforms df-pn in reducing the seesaw effect. □

Table 3.1: Different behaviors by changing parameters
E = 0 E = 1 E > 1

D = 0 Depth-first Df-pn Df-pn
D = 1 Depth-first Df-pn Df-pn
D > 1 Depth-first Df-pn Intermediate

3.3 Deep df-pn in Connect6

In this section, we implement a relevance-zone-oriented Deep df-pn and make Deep df-pn

work efficiently in Connect6. We first introduce the game of Connect6, then introduce

the concept of relevance zone. Finally, we present the structure of relevance-zone-oriented

Deep df-pn.

3.3.1 Connect6

Connect6 is a two-player strategy game similar to Gomoku. It is first introduced by Wu

and Huang [56] as a member of the connect games family. The game of Connect6 is played

as follows. Black (first player) places one stone on the board for its first move. Then both

42

(a) relevance zone Z (b) relevance zone Z ′

Figure 3-3: An example of (a) relevance zone Z and (b) relevance zone Z ′ [55]

players alternatively place two stones on the board at their turn. The player who first

obtains six or more stones in a row (horizontally, vertically or diagonally) wins the game.

Connect6 is usually played on a (19× 19) Go board. Both the state-space and game-tree

complexities are much higher than those in Gomoku and Renju. The reason is that two

stones per move results in an increase of branching factor by a factor of half of the board

size. Based on the standard used in [51], the state-space complexity of Connect6 is 10172,

the same as that in Go. If a larger board is used, the complexity is much higher. So

finding a way to cut down the branching size of the proof tree is important for solving

positions of Connect6.

As Wu and Huang mentioned in [56], threats are the key to winning Connect6. A

player A has t and only t threats, if and only if t is the smallest number of stones that

the opponent B needs to place to prevent B from losing the game on the next move. A

move is called a single-threat move if the player who makes the move has one and only

one threat after the move; it is a double-threat move if the player who made the move has

two and only two threats after the move, a triple-threat move if precisely three threats

exist, and a non-threat move if none threat exists. In [56], Wu and Huang showed a

type of winning strategy by making continuously double-threat moves and ending with a

triple-or-more-threat move or connecting up to six in all variations. This is called victory

by continuous double-threat-or-more moves (VCDT). Therefore, using a VCDT solver is

43

a key method to reduce the complexity of solving a position of Connect6.

3.3.2 Relevance-zone-oriented Deep df-pn

The implementations of a relevance-zone-oriented Deep df-pn (i.e., a Deep df-pn procedure

and a VCDT solver) is used to find winning strategies and to derive a relevance zone for

Deep df-pn to cut down the branch size. According to the description in [55], the relevance

zone is a zone of the board in which the defender has to place at least one of the two

stones, otherwise the attacker will simply win by playing a VCDT strategy. Such a zone

indicates which moves are necessary for the defender to play. It helps to cut down the

branch size of the proof tree. The relation between Deep df-pn and the relevance zone is

as follows. When Deep df-pn generates new moves for the defender, it first generates a

null move which means that the defender places no stone for this move. Then the VCDT

solver is started for the attacker. If a winning strategy is found, the VCDT solver derives

a relevance zone Z (it is a zone where defense is necessary). Subsequently, the defender

places one stone on each square s in Z to generate seminull moves. For each seminull

move, the VCDT solver starts to derive a relevance zone Z ′ corresponding to this seminull

move. As a result, all the necessary moves of the defender are generated by setting one

stone on square s in Z and another on one square in Z ′ corresponding to the seminull

move at s. The size of generated defender moves is far smaller than the one without

relevance zone. Fig 3-3 shows an example of relevance zone Z and Z ′. For the next step,

the VCDT solver starts to analyze the best move for each new position derived from these

defender moves. If VCDT solver finds a winning strategy, then it returns a win to Deep

df-pn. If not, Deep df-pn is continued recursively.

In this section we chose Connect6 as a benchmark to evaluate the performance of

Deep df-pn. We first present the experimental design, then we show and discuss the

experimental results. Next, we compare the performance of Deep df-pn and 1 + ϵ trick

[36]. Finally, we propose a method to find the relatively optimized parameters of Deep

df-pn.

44

Figure 3-4: Example position 1 of Connect6 (Black is to move and Black wins)

Figure 3-5: Example position 2 of Connect6 (Black is to move and Black wins)

45

Figure 3-6: Deep df-pn and df-pn compared in node number (including repeatedly tra-
versed nodes) with various values of parameter E and D for position 1 (Df-pn when
D = 1)

Figure 3-7: Deep df-pn and df-pn compared in seesaw effect number with various values
of parameter E and D for position 1 (Df-pn when D = 1)

46

Figure 3-8: Deep df-pn and df-pn compared in node number (including repeatedly tra-
versed nodes) with various values of parameter E and D for position 2 (Df-pn when
D = 1)

Figure 3-9: Deep df-pn and df-pn compared in seesaw effect number with various values
of parameter E and D for position 2 (Df-pn when D = 1)

47

3.3.3 Experimental Design

To solve the positions of Connect6, we use relevance-zone-oriented Deep df-pn. Each

time Deep df-pn generates the defender’s moves, the VCDT solver generates relevance

zones to indicate the necessary moves which the defender has to set on the board. Here,

we remark that each time Deep df-pn generates the attacker’s moves, it only generates

the top 5 evaluated moves (according to some heuristic values) to reduce the complexity.

Moreover, we did not recycle the child nodes after Deep df-pn has returned to its parent to

reserve the winning path. Actually, these nodes can be recycled when Deep df-pn returns

to its parent and are generated again for next time, if the cost of storage is considered. The

VCDT solver is implemented with the techniques of iterative deepening and transposition

table to control the time. It can search up to a depth of 25 where the longest winning

path is 13 moves.

In this chapter, we first investigate 2 positions: position 1 (see Fig. 3-4) and position 2

(see Fig. 3-5). We use Deep df-pn to solve these positions with various values of parameter

E and D (D is from 1 to 15 with a step length 1, and E is from 1 to 20 with a step length

1. Totally we can get 300 results). Then we get a series of changing curves of the node

number (see Fig. 3-6 and Fig. 3-8) and the seesaw effect number (see Fig. 3-8 and Fig. 3-9)

for parameter E and D. In this chapter, the node number equals VCDT node number +

Deep df-pn node number. It includes repeatedly traversed nodes. And the seesaw effect

number is initialized as 0 and increased by 1 when a node in Deep df-pn is traversed

again. To obtain these curves efficiently, we set a threshold to the node number (500000

for position 1 and 160000 for position 2). When the node number of solving a position is

already larger than the threshold, the solver will shut down to reduce the time cost, then

we use the value of the threshold to replace the exact node numbers and use blank points

to replace the exact seesaw effect numbers in the curves. The pattern of the search time

is almost the same as the node number, so we do not show it in this chapter.

Moreover, we select other 6 positions (see Appendix) which can be solved by df-pn

and apply Deep df-pn to them. Among all the positions (together 8 positions), 4 positions

(see Fig. 3-4, Fig. 3-5, Fig. 6-1, and Fig. 6-4) are four-moves opening (Black has 2 moves

and White has 2 moves), and Fig. 6-2 is a special opening, in which White sets two useless

stones for its first move and Black is proved to win. We apply Deep df-pn with the best

48

selected E and D (E is selected out from 1 to 20, and D is selected out from 1 to 15) for

each position, and present the experimental results of the 8 positions in Table 3.2 (column

“Deep df-pn”).

All the experiments are implemented on the computer with Windows 10 x64 system

and Core i7-4790 CPU.

3.3.4 Results and Discussion

The first position of analysis is Fig. 3-4 (Black is to move and Black wins). If E = 0,

Deep df-pn is a depth-first search which takes far more time than the original df-pn 1. So

we do not present it in this chapter. If E > 0 and D > 0, a series of changing curves

for each value of parameter E and D can be obtained as shown in Fig. 3-6, and Fig. 3-7

with respect to the node number, and the seesaw effect, respectively. According to the

curves, if D = 1 or E = 1, Deep df-pn is the same as df-pn. As E and D increase within

a boundary, the node number and the seesaw effect number decrease, because Deep df-pn

is forced to search deeper and obtains the solution faster. If E or D becomes too large,

Deep df-pn is forced to search too deep. As a result, it takes more cost and causes more

seesaw effect in the search process. When E and D are well chosen, Deep df-pn can get

an optimal performance for a certain position. The second position of investigation is

Fig. 3-5 (Black is to move and Black wins). It has a similar result as above. The changing

curves obtained from Fig. 3-5 are presented in Fig. 3-8 and Fig. 3-9.

We also conduct experiments on other 6 positions (see Appendix) and present the

experimental results of all the positions (together 8 positions) in Table 3.2 (column “Deep

df-pn”). The experimental data is generated by Deep df-pn solver with the best selected

parameter E and D (E is selected out from 1 to 20, and D is selected out from 1 to

15) for each position. According to the table, we can conclude that Deep df-pn with the

best selected parameters is more efficient than original df-pn, because it reduces the node

number and the seesaw effect number significantly.
1In this section, Deep df-pn is actually a relevance-zone-oriented Deep df-pn and the original df-pn is

a relevance-zone-oriented df-pn for the application in Connect6.

49

3.3.5 Comparison

There is other techniques also trying to solve the seesaw effect, such as 1 + ϵ trick [36].

The algorithm of 1 + ϵ trick is almost the same as original df-pn. The only difference is

the way of calculating the threshold nc.thδ, which is presented below.

nc.thϕ = n.thδ + nc.δ −
∑

nchild.ϕ

nc.thδ = min(n.thϕ, ⌈n2.δ(1 + ϵ)⌉)

ϵ is a real number bigger than zero. If ϵ increases, 1+ ϵ trick searches deeper and usually

has less seesaw effect. If ϵ equals a very small number, 1 + ϵ trick works the same as the

df-pn.

To compare the performance, we implement a 1 + ϵ trick solver and conduct experi-

ments on position 1 (see Fig. 3-4) and position 2 (see Fig. 3-5). The experimental results

of position 1 are presented in Fig. 3-10 and Fig. 3-11. And the experimental results of

position 2 are presented in Fig. 3-12 and Fig. 3-13. These figures show the changing

curves of the node number and the seesaw effect number for various values of parame-

ter ϵ. Here, ϵ is from 0.05 to 15 with a step length 0.05 (totally 300 items). To obtain

these curves efficiently, we set a threshold to the node number (500000 for Fig. 3-4 and

160000 for Fig. 3-5). When the node number of solving a position is already larger than

the threshold, the solver will shut down to reduce the time cost, and then we use the

threshold value to replace the exact node numbers and use blank points to replace the

exact seesaw effect numbers in the curves. According to the figures, the curves of 1 + ϵ

trick are not so consistent as Deep df-pn’s, so it is more likely affected by the noise effect.

The noise effect can be concluded as hugely jumping up or down of solving time caused

by slightly changing parameters of the modification which forces df-pn to stay longer in

a subtree to avoid frequently switching to another branch. Considering that ϵ is a real

number with an infinitesimal scale, it is more difficult for 1 + ϵ trick to find an optimal

parameter ϵ in practice, while it is easy for Deep df-pn to find the optimal parameters by

a hill-climbing method (see subsection 3.3.6).

To compare Deep df-pn with 1 + ϵ trick more precisely, we collect experimental data

on all the 8 positions (see Appendix). For each position, we select the best case (case with

the least node number) of both two methods by adjusting the parameters and present

50

them in Table 3.2. The results show that Deep df-pn has a better performance (less node

number and less seesaw effect number) than 1 + ϵ trick on average.

Figure 3-10: Node number (including repeatedly traversed nodes) of 1 + ϵ trick with
various values of parameter ϵ for position 1

3.3.6 Finding optimized parameters

For finding the optimized parameters E and D of Deep df-pn, the hill-climbing method, a

kind of local search for finding optimal solutions, is used. Although hill-climbing does not

necessarily guarantee to find the best possible solution, it is efficient and allows Deep df-pn

to obtain a relatively better performance than the original df-pn. To avoid the noise effect

which makes hill-climbing stop too early, this method is implemented to ignore some local

optimums. Here, we set the node(E,D) as the target function for minimizing the value

of the function. The parameters E and D are input and the node number is output. The

node number is computed in real time by the relevance-zone-oriented Deep df-pn solver.

To control the time, we set a node number threshold N to the solver. When the node

number is already larger than the threshold N , the solver will shut down and the target

function will return ∞ representing that current values of parameters are not optimal

and will not be considered. Relevant details of the method are presented in Algorithm 1.

The procedure isNotF lat() returns false, if the value of node(E,D) does not change after

several times iteration. And we call these continuous points (E,D) with a same value of

51

Figure 3-11: Seesaw effect number of 1 + ϵ trick with various values of parameter ϵ for
position 1

Figure 3-12: Node number (including repeatedly traversed nodes) of 1 + ϵ trick with
various values of parameter ϵ for position 2

52

Figure 3-13: Seesaw effect number of 1 + ϵ trick with various values of parameter ϵ for
position 2

Table 3.2: Deep df-pn and 1 + ϵ trick compared in the best case (The number in the
bracket represents the reduction percentage compared with df-pn)

Position
Deep df-pn 1 + ϵ trick

Node number Seesaw effect E, D Node number Seesaw effect ϵ

1 5568 (96.5%) 122 (97.3%) 17, 4 5633 (96.4%) 28 (99.4%) 2.85

2 45300 (33.7%) 101 (84.6%) 7, 6 38948 (43.0%) 2 (99.7%) 4.05

3 21157 (0.7%) 1 (95.2%) 5, 4 21309 (0%) 21 (0%) 0.05

4 99073 (17.1%) 128 (79.3%) 8, 6 95472 (20.2%) 372 (39.9%) 0.25

5 163 (99.8%) 0 (100%) 18, 2 82777 (5.7%) 936 (6.1%) 0.05

6 47213 (8.6%) 185 (35.8%) 14, 4 46255 (10.4%) 252 (12.5%) 0.15

7 74061 (45.9%) 582 (50.2%) 7, 4 143609 (-4.9%) 1158 (0.9%) 0.05

8 203188 (13.1%) 670 (38.1%) 5, 4 187198 (20.0%) 786 (27.4%) 0.25

average 61965.4 (43.5%) 223.6 (80.8%) 77650.1 (29.2%) 444.4 (61.9%)

53

Table 3.3: Experimental data of Deep df-pn using hill-climbing method (The number in
the bracket represents the difference between Deep df-pn using hill-climbing method and
Deep df-pn in the best case)

Position Node number Seesaw effect E, D iteration time (s)

1 10529 (4961) 392 (270) 7, 4 159.7

2 45300 (0) 101 (0) 7, 6 208.6

3 21157 (0) 1 (0) 5, 4 66.4

4 107194 (8121) 912 (784) 6, 4 349.2

5 163 (0) 0 (0) 18, 2 346.5

6 50325 (3112) 268 (83) 3, 4 86.6

7 74061 (0) 582 (0) 7, 4 286.0

8 203188 (0) 670 (0) 5, 4 372.3

average 63989.6 (2024.3) 365.8 (142.1) 234.4

node(E,D) as a “flat”.

The experimental results of the 8 positions are presented in Table 3.3. According to

the table, by using hill-climbing method, Deep df-pn can get the same performance (the

difference is 0) as its best case for most of the positions. On average, the difference from

the best case is small (about 3.3%: 2024.3/(63989.6 − 2024.3)) and the iteration time is

also acceptable.

3.4 Chapter Conclusion

In this chapter, we proposed a new proof-number algorithm called Deep Depth-First

Proof-Number Search (Deep df-pn) to improve df-pn by reducing the seesaw effect. Deep

df-pn is a natural extension of Deep Proof-Number Search (DeepPN) and df-pn. The

relation between PN-search, df-pn, DeepPN and Deep df-pn was discussed. The main

difference between Deep df-pn and df-pn is the proof number or disproof number of

unsolved nodes. It is 1 in df-pn, while it is a function of depth with two parameters in

Deep df-pn. By adjusting the values of the parameters, Deep df-pn changes its behavior

from searching broadly to searching deeply which has been proved to be able to reduce the

54

Algorithm 1 Hill-climbing method
1: E = 2; D = 2;
2: while isNotF lat() do
3: if node(E + 1, D) ≤ node(E,D + 1) then
4: E ′ = E + 1; D′ = D;
5: else
6: E ′ = E; D′ = D + 1;
7: end if
8: if node(E ′, D′) > node(E,D) && node(E ′ + 1, D′) > node(E ′, D′)

&& node(E ′, D′ + 1) > node(E ′, D′) then
9: return E, D;

10: end if
11: N = node(E ′, D′); E = E ′; D = D′;
12: end while
13: return the minimum E and D on the flat;

seesaw effect. For evaluating the performance of Deep df-pn, we implemented a relevance-

zone-oriented Deep df-pn to make it work efficiently in the domain of Connect6. The

experimental results show a convincing effectiveness (see Table 3.2) in search efficiency,

provided that the parameters E and D are well chosen.

In this chapter, Connect6 was chosen as a benchmark to evaluate the performance

of Deep df-pn. Connect6 is a game with an unbalanced game tree (with a lot of sudden

deaths). Our first recommendation is that further investigations will be made using other

types of games with a balanced game tree (fix-depth tree or nearly fix-depth tree), such as

Othello and Hex. Our second recommendation is that the procedure to find the optimal

values of the parameters E and D is further analyzed and improved.

55

Chapter 4

Single Conspiracy Number

This chapter is an updated and abridged version of the following publications.

• Zhang Song, Hiroyuki Iida. (2017). Using Single Conspiracy Number to Analyze

Game Progress Patterns. International Conference on Computer, Information and

Telecommunication Systems (CITS).IEEE. Dalian, China. July. 2017.

• Zhang Song, Hiroyuki Iida. (2018). Using Single Conspiracy Number for Long Term

Position Evaluation. ICGA Journal 40(3): 269-280.

4.1 Introduction

Conspiracy Number Search (CNS) is a MIN/MAX tree search algorithm to selectively

expand nodes in the tree until a specified degree of confidence is achieved in the root [32].

The likelihood of the root taking on a particular value is reflected in that value’s associated

conspiracy number. The conspiracy number is the minimum number of leaf nodes in the

tree that must change their score (by being searched deeper) to result in the root taking

on that new value. CNS has been incorporated to create a strong program but suffers

from low search efficiency because of its slow convergence and expensive cost of computing

conspiracy numbers [41]. However, conspiracy number is still a promising indicator for

measuring the “stability”. Some variants inspired by CNS have been proposed to use

such concept as a game-independent heuristic. The most successful one among them is

Proof-Number Search.

56

Proof-Number Search (PNS) is one of the most efficient algorithms for solving games

and complex endgame positions, inspired by the concept of conspiracy numbers [2]. PNS

focuses on AND/OR tree and tries to establish the game theoretical value in a best-first

manner. Each node in PNS has a proof number (pn) and disproof number (dn). A

proof (disproof) number shows the scale of difficulty in proving (disproving) a node. PNS

expands the most-proving node, which is the most efficient one for proving (disproving)

the root. Compared with CNS, PNS is more successful in practical use, because it reduces

the size of conspiracy numbers into two factors: proof number and disproof number, which

improves search efficiency.

Recently, conspiracy number is gaining new grounds, such as using conspiracy number

to identify critical positions for applying a speculative play [23] and using conspiracy

number to improve move selection [53]. More recently a notion of Single Conspiracy

Number (SCN) was proposed [57] [48], by which game progress patterns were analyzed.

SCN was defined as an intermediate of conspiracy number and proof number, which

indicates the difficulty of a root node changing its MIN/MAX value to a certain score

decided by a threshold.

In this study, we propose a more rigorous approach to analyze game progress patterns

by using SCN. AI engine ‘Xiangqi Wizard’ is modified to implement alpha-beta search

to produce SCNs during the search process, and performance experiments are conducted

on different positions of Chinese Chess. Experimental results show that the SCN is

more consistent and accurate on long-term evaluation than conventional approach using

evaluation function (MIN/MAX) values. One application of SCN is the Chess tutorial

system. Besides the evaluation function, SCN provides another scalar axis showing the the

changes of the game progress. It helps the users get more information about the game.

Using SCNs together with evaluation function values enables us to better understand

game progress patterns.

The structure of the chapter is as follows. In Section 4.2, we introduce the single

conspiracy number and the method to analyze game progress patterns. We then con-

duct experiments on Chinese Chess in Section 4.3 and concluding remarks are given in

Section 5.5

57

4.2 Basic Idea of Single Conspiracy Number

PNS is successful in practical use for reducing the size of conspiracy numbers into two

factors: proof number and disproof number. Inspired by this idea, a notion of SCN is

proposed as a factor combining the features of proof number and conspiracy number [57]

[48].

SCN shows the difficulty of a node getting a value not less than T , where T is a

threshold of legal MIN/MAX values. When T equals the maximum legal MIN/MAX

value, the SCN is equivalent with the proof number. When T equals the minimum legal

MIN/MAX value, the SCN is 0 because there is no difficulty for a node to get a value

not less than the minimum. When T is between the maximum and the minimum legal

MIN/MAX value, the SCN indicates the difficulty of a position getting a score not less

than T .

Compared with the conventional evaluation way using MIN/MAX values, SCN is

somehow more game-independent and expected to obtain more information on game

progress patterns while showing the potential change of the MIN/MAX values. There-

fore, SCN would be a good supplement to evaluation function values for analyzing game

progress patterns. The formalism is presented below.

Let n.scn be the SCN of a node n andm be the MIN/MAX value of n. T is a threshold

of legal MIN/MAX values.

When n is a terminal node

(a) If m ≥ T ,

n.scn = 0.

(b) If m < T ,

n.scn = ∞.

When n is a leaf node (not terminal)

(a) If m ≥ T ,

n.scn = 0.

(b) If m < T ,

58

n.scn = 1.

When n is an internal node

(a) If n is a MAX node:

n.scn = Min
nc∈children of n

nc.scn

(b) When n is a MIN node

n.scn =
∑

nc∈children of n

nc.scn

To apply the SCN, we modified the AI engine implemented with alpha-beta search

following above rules (regarding pruned nodes as leaf nodes). While the engine is running

(playing Chinese Chess with itself), SCNs are produced and collected. Compared with

conspiracy numbers, SCN has two advantages: (1) SCN has only one factor, not being a

range of number, which saves the storage and computing time. So a computer can search

deeply to keep the strength of the AI engine and get more accurate data. (2) To get SCNs

with different thresholds, we can simply run the AI engine for many times with different

thresholds or run in parallel, because SCNs with different thresholds are independent.

Usually, evaluation function values are used to analyze game progress patterns. One

who gets a higher score on a position is supposed to have an advantage and is more likely

to win in the end. Such evaluation function is designed based on the human experience of

playing the game under consideration. For example, in Chinese Chess, rook has a higher

score than knight, and pieces on critical positions have higher score than on normal

positions. These experience sometimes can give an accurate analysis of game progress

patterns, but sometime it is too static and does not work well, especially in some complex

positions, which will be discussed in the next section. In this chapter, we propose a

more rigorous method to analyze game progress patterns by using SCN. The formalism

is presented below.

Let P0, P1, ..., Pk be the position sequence in a game. Each P2i (i ∈ N and i ≤ k)

is a position where Red is to move and each P2i+1 is a position where Black is to move.

For each Pi, run the engine with threshold T . Then we will get SCN of the root node of

position Pi denoted as ri.scn. We define Relative Single Conspiracy Number (say RSCN)

59

as below.

If Pi is a position where Red is to move,

RSCNi =



ri.scn− ri+1.scn i < k

∞ i = k

If Pi is a position where Black is to move,

RSCNi = ri.scn− ri−1.scn

In this chapter, RSCNi is used to scale the possibility of a player to get a MIN/MAX

value not less than the threshold T in advance of the opponent in position Pi. Notice

that smaller RSCNi corresponds to a higher possibility. Assume that Pi is a position

where Red is to move. If i = k, then RSCNi is ∞, which means that the possibility is

the lowest because Red loses (does not need to make a move) in position Pk. In the next

section, performance experiments are conducted on Chinese Chess to examine if RSCN

gives more consistent and accurate information on game progress pattern than evaluation

function values.

4.3 Experiments and Discussion

In this section, self-play experiments using a Chinese Chess program are performed to

evaluate our proposed idea with SCN, and the results are discussed. This study is an

initial work of applying SCN to analyze game progress patterns. So we start the work

from simple positions with clear outcome to find the potential relations between SCN and

game progress. Based on these work, we propose a hypothesis and show some evidence.

Future work will focus on more complex and general situations.

60

4.3.1 Experimental Design

To examine the effectiveness of using SCNs, self-play experiments are conducted on Xi-

angqi Wizard (Light version) which is a famous AI engine of Chinese Chess where alpha-

beta search and iterative deepening are mainly incorporated. The score distribution is

from -10000 to 10000. It is sparser from 600 to 1000 than from 0 to 600. And it is sym-

metric for the score smaller than 0. For the experiments, the original engine is modified to

produce SCNs. Particularly, the principal variation search [37] and transportation table

are removed because they prune too many branches which make SCNs always equal to 1.

We run the modified AI engine for self-play experiments on three different types of test

positions: (1) tactical positions, (2) drawn positions, and (3) opening positions. All of

these positions are the positions where Red is to move. Below we show the detail of these

experiments and its results are discussed.

Figure 4-1: An example of tactical position where Red is to move (Red wins)

4.3.2 Tactical Positions

In Chinese Chess, there are endgame problems called tactical positions. These positions

are usually not taken from real games, but are specially composed as puzzles. In tactical

positions, Red is threatened by Black. To survive, Red has to checkmate the opponent

until the winning, or it loses the game. There are two reasons to select tactical positions

61

Figure 4-2: Red’s MIN/MAX value and SCN in position P0 with different search depth
(T = 600)

Figure 4-3: Black’s MIN/MAX value and SCN in position P1 with different search depth
(T = 600)

62

as a test position: (1) in these positions, Red absolutely has more advantages than Black

as it can make continuous checkmates until Red wins; (2) starting from a tactical position,

each subsequent position where Red is to move is still a tactical position, so RSCNs and

MIN/MAX values of all the subsequent positions are almost symmetric. Therefore, it is

possible to obtain the average RSCN denoted as RSCNred to reduce the noise. The same

way is applied to Black, so we denote the average RSCN as RSCNblack.

Fig. 4-1 shows an example of tactical position. Suppose that this position is P0 and the

subsequent positions starting from P0 are P1, P2..., Pk. After running the AI engine with

iterative deepening for one move for each player (set T = 600 which is relatively closed to

the maximum of legal evaluation values), Fig. 4-2 and Fig. 4-3 come out. Fig. 4-2 shows

the curves of Red’s MIN/MAX values and SCNs in position P0 with different search

depth. Fig. 4-3 shows the curves of Black’s MIN/MAX values and SCNs in position P1

with different search depth. After continuously running the engine until the end of game,

two series of curves corresponding with positions P2i and positions P2i+1 respectively are

obtained.

To compute RSCNi in position Pi where Red is to move, we first compute the linear

regression function of the SCN curves of position Pi and position Pi+1, denoted as f̂i(d)

and f̂i+1(d) where variable d stands for the search depth (if the SCN in the curves is

infinity, it is abandoned to keep the consistency. If the total search depth is smaller than

4, the curve is abandoned). Then let ri.scn = f̂i(10) and ri+1.scn = f̂i+1(10). According

to the definition of RSCN , we have

RSCNi =



f̂i(10)− f̂i+1(10) i < k

∞ i = k

Similarly, for RSCNi in position Pi where Black is to move, we have

RSCNi = f̂i(10)− f̂i−1(10).

63

Finally, following above methods, sequence RSCN0, RSCN2, ..., RSCN2i for Red and

sequence RSCN1, RSCN3, ..., RSCN2i+1 for Black are obtained. As discussed above,

RSCN in each sequence are almost symmetric. Therefore, it is possible to get the average

of RSCN denoted as RSCNred and RSCNblack to reduce the noise. The formalism is as

below.

RSCNred =

∑kr
i=0RSCN2i

kr
,

RSCNblack =

∑kb
i=1RSCN2i+1

kb
,

where kr is the number of RSCN2i and kb is the number of RSCN2i+1 in the sequence.

To compare the result with MIN/MAX values, we also compute the linear regression

function ĝi(d) of the MIN/MAX value curves (if the MIN/MAX value in the curves is

infinity, it is abandoned to keep the consistency. If the total search depth is smaller than

4, the curve is abandoned). The formalism is as below.

For position Pi,

V li = ĝi(10).

Then compute V lred and V lblack as below.

V lred =

∑kr
i=0 V l2i
kr

,

V lblack =

∑kb
i=1 V l2i+1

kb
,

where kr is the number of V l2i and kb is the number of V l2i+1 in the sequence.

Totally, 96 tactical positions are tested. Finally, we get 192 RSCNs and V ls. The

histograms of RSCN and V l are presented in Fig. 4-4 and Fig. 4-5. According to the

figures, Red’s RSCN is smaller than Black’s RSCN , which means that Red has higher

possibility to get a MIN/MAX value not less than T = 600 in advance of Black. Here, 600

is relatively a large number which is closed to the maximum among all legal MIN/MAX

values. In such case, the SCN is similar to the proof number which is supposed to have

better performance in endgame positions. As a result, RSCN in Fig. 4-4 shows that Red

64

has much bigger advantages than Black, which is in accordance with what we discussed

above: in tactical positions, Red has absolutely more advantages than Black, because it

can make continuous checkmate until Red’s wins. Moreover, there is a clear boundary

between Red and Black in the histogram of RSCN , while there is not in the histogram of

V l. Above all, we can conclude that SCN can distinguish winning positions from losing

positions better than evaluation function values.

Figure 4-4: Histogram of RSCNred and RSCNblack (T = 600)

Figure 4-5: Histogram of V lred and V lblack

65

4.3.3 Drawn Positions

To investigate the performance of RSCN on analyzing drawn positions, we compose

96 drawn positions by removing all the rooks, knights, cannons and pawns from the

board. Note that other pieces on the board cannot make checkmate. It is clear that both

players have approximate advantages and game progress patterns are very stable in these

positions. Moreover, starting from a drawn position, each subsequent position is still

a drawn position, so RSCNs and MIN/MAX values of all the subsequent positions are

almost symmetric. Therefore, we apply the same method introduced in the last subsection

into drawn positions. We collect RSCNs and MIN/MAX values and compare with those

in tactical positions. The results are presented in Fig. 4-6 and Fig. 4-7.

According to the figures, RSCNs from draw positions [-36.2, 36.2] are ranged between

RSCNs from winning positions [-1021.3, -53.7] and losing positions [53.7, 1021.3]. More-

over, there are clear boundaries between winning positions, losing positions and drawn

positions in the histogram of RSCN , whereas there is not in the histogram of V l. Thus,

we observe that SCN can distinguish winning positions, losing positions and drawn posi-

tions better than evaluation function values.

Based on the observation we made, we propose a hypothesis in the following way. For

a given threshold T ,

• if RSCN ∈ [−1021.3,−53.7], then the MIN/MAX value of the position has a high

possibility to change its score not less than T in advance of the opponent;

• if RSCN ∈ [53.7, 1021.3], then the MIN/MAX value of the position has a low

possibility to change its score not less than T in advance of the opponent;

• if RSCN ∈ [−36.2, 36.2], then the MIN/MAX value of the position has a normal

possibility to change its score not less than T in advance of the opponent.

Fig. 4-8 shows the relationships between high possibility, low possibility and normal

possibility of changing the MIN/MAX values of positions not less than the threshold T

in advance of the opponent scaled by RSCN . We show a preliminary verification of this

hypothesis in the next subsection and further investigations will be made in the future.

66

Figure 4-6: Histogram of RSCN in winning positions, losing positions and drawn posi-
tions (T = 600)

Figure 4-7: Histogram of V l in winning positions, losing positions and drawn positions

Figure 4-8: Relationship between high possibility, low possibility and normal possibility
of changing the MIN/MAX values of positions not less than the threshold T in advance
of the opponent scaled by RSCN

67

Figure 4-9: RSCNs for different handicap openings with T = 200

Figure 4-10: RSCNs for different handicap openings with T = 600

4.3.4 Opening Positions

In this study, opening positions are taken from handicap games. The reason why we select

handicap opening positions is that the handicap openings are simpler and its outcome

is clearer than normal openings and middle games. In Chinese Chess, handicap game is

played in such a way that some pieces are removed from the stronger’s side as handicap(s)

before the game starts. The handicap pieces are usually rooks, cannons and knights. To

68

keep the balance, there are some protections for the handicap player. For example, if a

player gives a knight handicap, its middle pawn cannot be captured unless the pawn has

been moved. The MIN/MAX values of positions in a handicap game depend on the value

of the handicapped pieces. Commonly, the MIN/MAX values of rook-handicap positions

are much lower than knight-handicap positions because rook is much more important than

knight in Chinese Chess. To analyze these positions, we apply RSCN with threshold

T = 200 corresponding to the short term advantage and T = 600 corresponding to the

long term advantage respectively in 6 handicap openings and a normal opening. At each

position of the opening considered, AI engine is run for two moves for each player to

compute RSCNs because the SCNs and MIN/MAX values of the root nodes are almost

symmetric in the first two moves for both players. The results are presented in Fig. 4-10

and Fig. 4-9.

According to the figures and the hypothesis proposed in the previous subsection, when

the threshold is 200, only RSCN of the double-rook-handicap opening is in the range

of low possibility, which means that the handicap player is hard to get a MIN/MAX

value not less than 200 in advance of the opponent. RSCNs of the one-rook-handicap

opening and the double-cannon-handicap openings are in the range of normal possibility,

but closed to the boundary, still showing a considerable disadvantage. Other handicap

opening positions are all in the range of [-36.2, 36.2], which means that these opening

positions are all not so disadvantageous for the handicap player, compared with other

handicap opening positions on 200 score level.

It is important to notice that RSCN of the no-handicap opening is smaller than zero,

which is in accordance with the fact that first player takes some advantages. Moreover,

RSCNs of knight-handicap opening positions are also smaller than zero, which means

that knight-handicap takes advantages for the handicap player reversely. It seems strange,

but understandable in Chinese Chess. This is because in Chinese Chess knight-handicap

openings are very special. Without the knight, the rook of the handicap player has more

freedom and can start an immediate attack. There are many discussions about the tactics

of knight-handicap opening in Chinese Chess.

When the threshold is 600, RSCNs of all the openings are in the range of normal

possibility, which means that these handicap openings are not so disadvantageous for the

69

handicap player to get a MIN/MAX value not less than 600 in advance of the opponent. So

the handicap player still has chances to accumulate long-term benefits. By setting different

thresholds, SCN can evaluate the positions on different levels in such a way that small

thresholds correspond to the short term advantage and big thresholds corresponding to the

long term advantage. This process seems like scanning the game tree repeatedly to obtain

more information than MIN/MAX values which mainly concern about static evaluation

such as piece material and king safety. As a result, SCN is more consistent and accurate on

long-term position evaluation than conventional evaluation functions (MIN/MAX values),

and using single conspiracy number together with evaluation function enables us to better

understand game progress patterns.

4.4 Chapter Conclusion

Single Conspiracy Number (SCN) is a variant concept of conspiracy number and proof

number which indicates the difficulty of a root node changing its MIN/MAX value to a

certain score. It makes up the drawbacks of conspiracy number on computing complexity,

and can be easily applied into different search frameworks.

In this chapter, we used Relative Single Conspiracy Number RSCN , a product of

SCN as a kind of position score to analyze game progress patterns in Chinese Chess.

We modified AI engine ‘Xiangqi Wizard‘ implemented with alpha-beta search to pro-

duce SCNs during the search process, and self-play experiments using Chinese Chess AI

are conducted on tactical positions, drawn positions and opening positions. The exper-

imental results show that SCN is more consistent and accurate on long-term position

evaluation than conventional evaluation functions (MIN/MAX values), and using SCN

together with evaluation function enables us to better understand game progress patterns.

Thus, we proposed a hypothesis about the relationships between the high possibility, the

low possibility, and the normal possibility scaled by RSCN . We have given a preliminary

verification of this hypothesis in Section 4.3.4. In future works, further experiments on

more complex positions in Chinese Chess and other domains will be conducted to verify

this hypothesis. Then such concept can be applied into some Chess tutorial system to

help users get more information about the game.

70

Chapter 5

Probability-based Proof Number

Search

This chapter is an updated and abridged version of the following publication.

• Z. Song, J. van den Herik, H. Iida. (2019). Probability based Proof Number Search.

11th International Conference on Agent and Artificial Intelligence (ICAART). Prague,

February. 2019.

5.1 Introduction

Proof number search (PN-search) [2] is a search algorithm and is one of the most successful

approaches for solving games or endgame positions. In PN-search, each node in a search

tree incorporates two indicators called proof number and disproof number, respectively,

indicating the “difficulty” of proving and disproving a game position corresponding with

this node. For all unsolved nodes (leaf nodes), the proof number and disproof number

are 1. For a winning node, the proof number and disproof number are 0 and infinity,

respectively. For a non-winning node, it is the reverse. For internal nodes, the proof

number and disproof number are back propagated from its children following MIN/SUM

rules: at OR nodes, the proof number equals the minimum proof number of its children,

and the disproof number equals the summation of the disproof numbers of its children.

It is the reverse for AND nodes. For each iteration, going from the root to a leaf node,

PN-search selects either the child with the minimum proof number at OR nodes, or the

71

child with the minimum disproof number at AND nodes. Finally, it regards the leaf node

arrived at as the most proving node to expand.

PN-search is an advanced approach for proving the game-theoretic value, especially

for sudden-death games that may abruptly end by the creation of one of a prespecified set

of patterns such as they occur in Gomoku and Chess. PN-search works so well because

the two games mentioned usually have an unbalanced game tree with various branching

factors. Obviously, the proof number and disproof number are highly instrumental when

the branching factor varies. As a result, the proof number and disproof number can give

distinguishable information to indicate the shortest path of proving or disproving a node.

For games with a balanced tree and with an almost fixed depth and an almost fixed

branching factor such as Hex and Go, the PN-search is quite weak, because the proof

numbers and disproof numbers are too similar to give distinguishable information.

To solve this obstacle, some PN-search variants were proposed with the idea of using

a parameter to enforce a deeper search, such as Deep PN-search [20] and Deep df-pn

[57]. Another possible solution is to utilize the heuristic information of the leaf node,

such as df-pn* [34]. In the last few years, the Monte-Carlo tree search (MCTS) [13] has

become quite successful on balanced tree games such as Go. Hence, using Monte-Carlo

evaluations to obtain the proof number and disproof number of the leaf nodes is a new

promising method to improve PN-search. One pointer in this direction is the Monte-

Carlo proof number search (MCPN-search) [38]. MCPN-search has exactly the same

rules as PN-search except that the proof number and the disproof number of unsolved

nodes are derived from Monte-Carlo simulations. This method makes MCPN-search more

efficient than PN-search especially in balanced tree games. However, there still is a new

obstacle in MCPN-search: using the same backpropagation rules (MIN/SUM rules) as PN-

search does not work well with Monte-Carlo evaluations, as the Monte-Carlo evaluation

leads to a convergent real number while the MIN/SUM rules are proposed for discrete

integer numbers. Hence, the Monte-Carlo evaluations will cause an information loss in

the backpropagation step.

In this chapter, we propose a new application of Monte-Carlo proof number search

named probability-based proof number search (PPN-search). The idea originates from the

concept “searching with probabilities” [35]. The core idea is that the probability of proving

72

a node is computed from the probabilities of proving its children while following the

AND/OR rules of probability events. The combined operation is based on the hypothesis

that proving each of the children of a node is an independent event. In Palay (1983), this

idea is applied on B* search [6] without using Monte-Carlo evaluations. In this chapter,

we adopt the idea together with Monte-Carlo evaluations on PN-search and propose a

new search algorithm called probability based proof number search (PPN-search). To

show the efficiency of PPN-search, we conduct experiments on P-game trees [29] which

are randomly constructed game trees with a fixed depth and a fixed branching factor,

normally used to simulate balanced game trees, such as the ones occurring in Hex and

Go. We compare the performance of PPN-search, MCPN-search, PN-search and other

Monte-Carlo based game solvers such as the UCT solver and the pure MCTS solver

[54]. The experimental results show that PPN-search outperforms other existing solvers

by taking less time and fewer iterations to converge to the correct solution on average.

Moreover, the error rate of the selected moves decreases faster and more smoothly as the

number of iterations increases.

The rest of the chapter is organized as follows. In Section 5.2, the formalism and the

algorithm of PPN-search are presented. In Section 5.3, two benchmarks about Monte-

Carlo based game solvers are introduced and the relations between PPN-search and these

game solvers are discussed. We conduct experiments and discuss the results in Section

5.4. Finally, we conclude in Section 5.5.

5.2 Probability-based Proof Number Search

In this section, we present the formalism (Subsection 5.2.2) and the algorithm (Subsection

5.2.3) of probability based proof number (PPN-search).

5.2.1 Main Concept

In PPN-search, only one indicator is incorporated in each node. The indicator is the

probability. It indicates the probability of proving a node. The PPN of a leaf node is

derived from Monte-Carlo simulations. For each iteration, for all nodes from the root to

a leaf node, PPN-search selects the child with the maximum PPN at OR nodes and the

73

child with the minimum PPN at AND nodes. The resultant node is regarded as the most

proving node for expansion. When new nodes are available, PPNs are back propagated

to the root while following the AND/OR probability rules.

Similar to the proof number, the PPN is highly relevant with the branching factor be-

cause of the probability rules. So the PPN contains the information of the tree structure

above the leaf nodes. Moreover, the Monte-Carlo simulations give the PPN more infor-

mation beneath the leaf nodes. As a result, PPN becomes such a domain independent

heuristic combining the information above and beneath the leaf nodes.

5.2.2 Probability-based Proof Number

Let n.ppn be the PPN of a node n. There are three types of nodes to be discussed below.

(1) Assume n is a terminal node

(a) If n is a winning node,

n.ppn = 1.

(b) If n is not a winning node,

n.ppn = 0.

(2) Assume n is a leaf node (not terminal), and R is the winning rate computed by

applying several playouts from this node. Take θ as a small positive number smaller than

1 and closed to 0 to avoid overestimating the node.

(a) If R ∈ (0, 1),

n.ppn = R.

(b) If R = 1,

n.ppn = R− θ.

(c) If R = 0,

n.ppn = R + θ.

74

(3) Assume n is an internal node, using AND/OR probability rules of independent

events.

(a) If n is an OR node,

n.ppn = 1−
∏

nc∈children of n

1− nc.ppn (5.1)

(b) If n is an AND node,

n.ppn =
∏

nc∈children of n

nc.ppn (5.2)

5.2.3 Algorithm

The PPN-search includes the following four steps.

(1) Selection: for all nodes from the root to a leaf node, do select the child with the

maximum PPN at OR nodes and the child with the minimum PPN at AND nodes, while

regarding it as the most proving node for expansion.

(2) Expansion: expanding the most proving node.

(3) Play-out: The play-out step begins when we enter a position that is not a part of

the tree yet. Moves are selected in a randomly self-play mode until the end of the game.

After several play-outs, the PPNs of the expanded nodes are derived from Monte-Carlo

evaluations.

(4) Backpropagation: updating the PPNs from the extended nodes to the root, while

following the AND/OR probability rules given above.

5.3 Benchmarks

In this section, two benchmarks of the type Monte-Carlo based game solver are introduced

(see Subsection 5.3.1 and Subsection 5.3.2). Moreover, the relations between PPN-search

and these two benchmarks are discussed.

75

5.3.1 Monte-Carlo Proof Number Search

Monte-Carlo proof number search (MCPN-search) [38] is an enhanced proof number

search by adding the flexible Monte-Carlo evaluation to the leaf nodes. We discuss three

differences between MCPN-search and PPN-search.

(1) MCPN-search uses two indicators: proof number (PN) and disproof number (DN).

The PN (DN) of a leaf node equals the non-winning (winning) rate derived from Monte-

Carlo simulations. In contrast, PPN-search uses only one indicator PPN. The PPN of a

leaf node equals the winning rate derived from Monte-Carlo simulations.

(2) MCPN-search when going from the root to a leaf node, selects the child with the

minimum PN (DN) taking into consideration whether the current node is an OR (AND)

node, just as the original PN-search. In contrast, PPN-search when going from the root

to a leaf node, solely selects the child with the maximum PPN at OR nodes and the child

with the minimum PPN at AND nodes.

(3) MCPN-search backpropagates PN and DN by following MIN/SUM rules as the

original PN-search. In contrast, PPN-search backpropagates PPN by following the AND/OR

probability rules of independent events.

Compared with PPN-search, an important obstacle of MCPN-search is that using

the same updating rules (MIN/SUM rules) as the PN-search does not go along well with

Monte-Carlo evaluations, as the Monte-Carlo evaluation leads to a convergent real number

whereas the MIN/SUM rules are proposed for discrete integer numbers. It will cause an

information loss in the backpropagation step. For example, Figure 5-1 shows two trees

((a) and (b)) in MCPN-search where the root is an OR node. According to the MIN rule

of MCPN-search, the PN of the root equals the minimum PN of its children (being 0.2).

However, tree (a) and tree (b) obtain the same PN for the root, which means that both

trees have the same “difficulty” to be proved. Yet, if we investigate the PN distribution of

the leaves, tree (a) is more promising to be proved because all leaves have relatively small

PNs (0.2, 0.2 and 0.3). This is especially true if the PN of the leaf node is derived from

Monte-Carlo evaluations which are usually slightly different. In other words, actually all

branches have an influence on the root in a game tree even though the root is an OR

node, especially when the proof number or disproof number indicators of leaf nodes are

derived from Monte-Carlo evaluations. For PPN-search, such an obstacle will not occur.

76

In comparison with MCPN-search, we simply change the PNs of the leaves in Figure

5-1 to PPNs by the following operation: let PPN = 1 - PN, which corresponds to the

definitions of PPN and PN. Then use the OR rule (Eq.(5.1)) to update the PPN. As is

shown in Figure 5-2, tree (a) has larger PPN than tree (b), which implies that tree (a) is

more promising to be proved than tree (b). This conclusion is fitting to our intuition.

Figure 5-3 and Figure 5-4 show such phenomenon for the SUM rule of MCPN-search.

Here, the root is an AND node and the PN of the root equals the summation of the PNs of

its children. As a result, tree (a) and tree (b) obtain the same PN which implies that both

trees have the same “difficulty” to be proved. However, there is one leaf in tree (b) with a

very big PN 0.8 which means that this leaf is very likely to be disproved, whereas all the

leaves in tree (a) have relatively smaller and more similar PNs. As is known, for an AND

node, if there exists one child that is disproved, the node will be disproved. Therefore,

the SUM rule loses some information during the backpropagation process. PPN-search is

able to solve this obstacle by changing the SUM rule to the AND rule (Eq.(5.2)). As is

shown in Figure 5-4, tree (a) obtains a larger PPN than tree (b), which implies that tree

(a) is more promising to be proved, which corresponds to our intuition.

Figure 5-1: Two examples of updating PN by MIN rule in MCPN-search (the square
represents the OR node).

77

Figure 5-2: Two examples of updating PPN by OR rule in PPN-search (the square rep-
resents the OR node). Notice that PPN = 1 − PN.

Figure 5-3: Two examples of updating PN by SUM rule in MCPN-search (the circle
represents the AND node).

5.3.2 Monte-Carlo Tree Search Solver

Monte-Carlo Tree Search (MCTS) [13] is a best-first search guided by the results of

Monte-Carlo simulations. In the last few years, MCTS has advanced the field of computer

Go substantially. Although MCTS equipped with the UCT (Upper Confidence Bounds

applied to Trees) formula which enables the evaluations to converge to the game-theoretic

78

Figure 5-4: Two examples of updating PPN by AND rule in PPN-search (the circle
represents the AND node). Notice that PPN = 1 − PN.

value, it is still not able to prove the game theoretic value of the search tree. This is even

more true for sudden-death games, such as Chess. In this case, some endgame solvers

(i.e., PN-search) are traditionally preferred above MCTS. To transform MCTS to a good

game solver, Winands et al. introduced an MCTS variant called MCTS solver [54], which

has been designed to prove the game-theoretical value of a node in a search tree. The

MCTS solver includes the following four strategic steps.

(1) Selection: Selection picks a child to be searched based on the previously gained

information. For pure MCTS when going from the root to a leaf node, the child with

the largest simulation value will be selected. For UCT, an enhanced version of MCTS, it

controls the balance between exploitation and exploration by selecting the child with the

largest UCT value:

vi +
√

C×lnnp

ni
,

where vi is the simulation value of the node i, ni is the visit count of child i, and np

is the visit count of current node p. C is a coefficient parameter, which has to be tuned

experimentally. Winands et al. also consider other strategies to optimize the selection

based on UCT, such as progressive bias (PB). But in this chapter, to make it easy to

follow, we only apply the UCT strategy. To transform UCT and pure MCTS to a solver,

79

a node is assumed to have the game-theoretical value ∞ or −∞ that corresponds to a

proved win or not win, respectively. In this chapter, we consider all the drawn games

as proved to be not win games to make the experimental results more easy to interpret.

When a child is a proven win, the node itself is a proven win, and no selection has to take

place. But when one or more children are proven to be not a win, it is tempted to discard

them in the selection phase. In this chapter, to make it easy to compare, i.e., we do not

consider the proved win or the proved not win node in the play-out step, because such

technique can similarly be applied into PPN-search and MCPN-search. Moreover, for the

final selection of the winning move at the root, often, it is the child with the highest visit

count, or with the highest value, or a combination of the two. In the UCT solver or in the

pure MCTS solver, the strategy is to select the child of the root with maximum quantity

v + A√
n
, where A is a parameter (here, set to 1), v is the node’s simulation value, and n

is the node’s visit count.

(2) Play-out: The play-out step begins when we enter a position that is not a part of

the tree yet. Moves are selected in self-play until the end of the game. This task might

consist of playing plain random moves.

(3) Expansion: Expansion is the strategic task that decides whether nodes will be

added to the tree. In this chapter, we expand one node for each iteration.

(4) Backpropagation: Backpropagation is the procedure that propagates the result of

a simulated game back from the leaf node, through the previously traversed node, all the

way up to the root. A usual strategy of UCT or pure MCTS is taking the average of

the results of all simulated games made through this node. For the UCT solver and the

pure MCTS solver (in addition to back propagating the values 1,0,−1) the search also

propagates the game-theoretical values ∞ or −∞. The search assigns ∞ or −∞ to a

won or lost terminal position for the player to move in the tree, respectively. Propagating

the values back in the tree is performed similar to negamax in the context of MIN/MAX

searching in such a way that we do not need to distinguish between MIN and MAX nodes.

Compared with PPN-search, the main difference between the pure MCTS solver and

PPN-search is the backpropagation strategy. For a pure MCTS solver, the backpropa-

gation strategy of a node is taking the average of the simulation results of its children.

In contrast, PPN-search follows the AND/OR probability rules presented in Eq.(5.1) and

80

Eq.(5.2). Actually, both backpropagation strategies have been discussed in an early pa-

per of MCTS [15] that points out the weakness of AND/OR probability backpropagation

rules for MCTS. Compared with taking the average, it is noted that they have to assume

some degree of independence between probability distributions. This assumption of in-

dependence is wrong in the case of Monte-Carlo evaluation because the move with the

highest value is more likely to be overestimated than other moves. Moreover, a refutation

of a move is likely to refute simultaneously other moves of a node. Such statement [15]

is true for MCTS when it is used to find an approximate best move in a game AI, but

is not appropriate when MCTS is used to solve a game or a game position. There are

two reasons: (1) To solve a game or a game position, the search algorithm has to go

deeply until to the terminal nodes to completely prove the game-theoretic value. So it is

not necessary for a search algorithm to avoid overestimating the move with the highest

value. In contrast, what really matters for a search algorithm is the speed to approach

the terminal nodes. (2) To solve a game or a game position, we need to search on an

AND/OR tree to find the solution. Therefore, the AND/OR probability backpropagation

rules are more suitable than taking the average. For example, Figure 5-5 shows two trees

in an UCT solver or pure MCTS solver where the root is an OR node. Assuming that

all the children have the same visit count, for updating the simulation value of the root,

we take the average of the simulation value of its children. Then both trees obtain the

same simulation value, which implies that both trees have the same possibility to win.

However, to prove a game, things are different. As the root is an OR node, it will be

proved as long as there exists one child that can be proved. In Figure 5-5, tree (b) has a

child with a very large winning rate 0.9, while all children in tree (a) have relatively small

winning rate, so tree (b) is absolutely more likely to be proved than tree (a). If we use

AND/OR probability rules to update these simulation values, it is clear that as is shown

in Figure 5-6 tree (b) obtains larger PPN values than tree (a), which means that tree (b)

is more likely to be proved. And this is surely more fitting to our intuition. It is similar

for the AND rule of PPN-search. Therefore, it is difficult to prove a game-theoretic value

of search tree. In summary, PPN-search with AND/OR backpropagation rules is more

suitable than the UCT solver and the pure MCTS solver.

81

Figure 5-5: Two examples of updating simulation values by taking the average in the
UCT solver or the pure MCTS solver (the square represents the OR node).

Figure 5-6: Two examples of updating PPN by OR rule in PPN-search (the square rep-
resents the OR node).

5.4 Experiments

To examine the effectiveness of PPN-Search, we conducted two series of experiments on

P-game trees. The P-game tree [29] is a MIN/MAX tree where a randomly chosen value

is assigned to each move. The value of a leaf node is given by the sum of the move values

along the path. If the sum is positive, the result is a win for MAX, if negative it is a

82

win for MIN, and it is draw if the sum is 0. In all experiments, for the moves of MAX

the value was chosen uniformly from the interval [0,127] and for MIN from the interval

[−127,0].

In series 1, we construct 200 P-game trees randomly, with 2 branches and 20 layers,

and apply five distinct types of search: PPN-search, PN-search, MCPN-search, the UCT

solver, and the pure MCTS solver to prove (winning) or disprove (non-winning) these

game trees. For each expanded leaf node, we set 10 playouts to compute the winning

rate for the following four types of search PPN-search, MCPN-search, the UCT solver,

and the pure MCTS solver (further investigation shows that the number of playouts does

not influence the experimental results). Here we report experimental results as shown

in Figure 5-7, Figure 5-8, and Figure 5-9. Figure 5-7 shows the average search time

for proving or disproving a P-game tree with 2 branches and 20 layers for all five types

of search PPN-search, PN-search, MCPN-search, the UCT solver, and the pure MCTS

solver, respectively. Figure 5-8 shows the average number of iterations for proving or

disproving a P-game tree with 2 branches and 20 layers for all five types of search. Figure

5-9 shows the error rate of selecting a correct solution by PPN-search, PN-search, MCPN-

search, the UCT solver, and the pure MCTS solver for each iteration on P-game trees

with 2 branches and 20 layers. More concretely, the error rate equals the number of wrong

moves selected by the search among 200 tests divided by the testing times 200. Notice

that the UCT solver or the MCTS solver expands 1 node per iteration while others expand

2 nodes. So, we regard 2 iterations of the UCT solver or the MCTS solver as 1 iteration,

and present it in the figures.

In series 2, we construct 200 P-game trees randomly, with 200 trees with 8 branches

and 8 layers, and apply five distinct types of search (the same ones as in series 1). Figure

5-10, Figure 5-11, and Figure 5-12 show the analogous experimental results on P-game

trees with 8 branches and 8 layers. Notice that the UCT solver or the MCTS solver

expands 1 node per iteration while others expand 8 nodes. So, we regard 8 iterations of

the UCT solver or the MCTS solver as 1 iteration, and present it in the figures. According

to the figures, compared with the four types (PN-search, MCPN-search, the UCT solver,

and the pure MCTS solver), our PPN-search outperforms the others while averagely

taking less time and fewer iterations to prove or disprove a game tree. Furthermore,

83

compared with the three types (PN-search, MCPN-search and the pure MCTS solver),

our PPN-search converges faster to the correct solution, and the error rate of selected

moves decreases more smoothly as the number of iterations increases. For MCPN-search,

it takes more time and more iterations than PPN-search to converge to the correct solution

on average, and the error rate waves as the number of iterations increases, because of its

inconsistent backpropagation rules. As for the pure MCTS solver according to the figures,

the performance is better than the PN-search, and competitive with MCPN-search, but

worse than PPN-search. The UCT solver converges faster to the correct solution than the

other types of search, but averagely takes more time and more iterations to solve a P-game

tree than PPN-search, MCPN-search, and the pure MCTS solver. Here, we tested the

UCT solver with different parameters but only show one of them with parameter
√
2 in

the figures. Actually, all these UCT solvers averagely take more time and more iterations

to solve a P-game tree than PPN-search, MCPN-search, and the pure MCTS solver. One

possible reason is that in P-games trees, the game trees are so well balanced that the

exploration strategy of UCT may not be advantageous to enforce a deep search to solve a

game tree fast. In other words, UCT is a good search algorithm to find the approximate

best move for a game AI, but the UCT solver is not a good search algorithm to solve a

game.

Figure 5-7: Comparison of average search time for a P-game tree with 2 branches and 20
layers.

84

Figure 5-8: Comparison of average numbers of iterations for a P-game tree with 2 branches
and 20 layers.

Figure 5-9: Comparison of the error rate of selected moves for each iteration on P-game
trees with 2 branches and 20 layers.

5.5 Chapter Conclusion

PPN-search is a promising variant of proof number search based on Monte-Carlo simula-

tions and probability backpropagation rules. It only uses one indicator PPN to indicate

the “probability” of proving a game position, and back propagates PPNs by AND/OR

probability rules of independent events. Compared with PN-search, MCPN-search, the

85

Figure 5-10: Comparison of average search time for a P-game tree with 8 branches and 8
layers.

Figure 5-11: Comparison of average numbers of iterations for a P-game tree with 8
branches and 8 layers.

UCT solver, and the pure MCTS solver, PPN-search outperforms them while taking less

time and fewer iterations to prove or disprove a game tree on average. Moreover, the error

rate of the selected moves decreases faster and more smoothly as the number of iterations

increases.

Further works may include (1) applying PPN-search into real games with large-size

86

Figure 5-12: Comparison of the error rate of selected moves for each iteration on P-game
trees with 8 branches and 8 layers.

balanced game trees and unbalanced game trees, respectively, to further investigate its

performance; (2) proposing probability-based conspiracy number search (PCN-search) by

incorporating the notion of the single conspiracy number [49].

87

Chapter 6

Conclusion

Conspiracy number and proof number are two game-independent heuristics in a game-tree

search. The conspiracy number is proposed in Conspiracy Number Search (CNS) which

is a MIN/MAX tree search algorithm, trying to guarantee the accuracy of the MIN/MAX

value of a root node. It shows the scale of “stability” of the root value. The proof number

is inspired by the concept of conspiracy number, and applied in an AND/OR tree to

show the scale of “difficulty” for proving a node. It is first proposed in Proof-Number

Search (PN-search) which is one of the most powerful algorithms for solving games and

complex endgame positions. The Monte Carlo evaluation is another promising domain-

independent heuristic which focuses on the analysis based on random sampling of the

search space. The Monte Carlo evaluation does not reply on any prior knowledge of

human and has made significant achievements in complex games such as Go.

In this thesis, we selected the conspiracy number search, the proof number search and

the Monte-Carlo tree search as three example search algorithms with domain-independent

heuristics to study its relations and differences, and finally gave a new perspective of the

game tree search with domain-independent heuristics. The relations and differences of the

three search algorithms mentioned can be summarized as follows. The Monte-Carlo tree

search uses Monte-Carlo evaluations for the leaf nodes to indicate the most promising node

for expansion. In other words, the Monte-Carlo evaluation can be regarded as a detector to

obtain the information beneath the leaf nodes to forecast the promising search direction

in advance. In contrast, the conspiracy number search and the proof number search

tend to use the indicators corresponding to the structure or the shape of the part of the

88

search tree that has already been expanded. Therefore, it can be regarded as forecasting

the promising search direction according to the information above the leaf nodes. As a

natural induction of such understanding of the game tree search using domain-independent

heuristics, we may get some improvements by combining the conspiracy number or the

proof number idea with the Monte-Carlo evaluation into a search algorithm, which can be

considered as a combination of “the information above leaf nodes” and “the information

beneath the leaf nodes”. To prove such hypothesis, we proposed a new search algorithm

named probability-based proof number search (PPN-search) using both the proof number

idea and Monte-Carlo evaluation. Experimental results showed that probability-based

proof number search outperforms other famous approaches.

In this thesis, we applied and refined domain-independent heuristic such as the con-

spiracy number, the proof number and the Monte-Carlo evaluation to achieve such three

goals: (1) enhancing current search algorithm. For this purpose, we proposed the Deep

df-pn search algorithm to improve df-pn which is a depth-first version of PN-search by

forcing a deep search with a parameter. The experiments performed in Connect6 show

a good performance of Deep df-pn. (2) Analyzing and visualizing game progress pat-

terns for better understanding games and master thinking way. For this purpose, We

proposed the single conspiracy number method for long term position evaluation in Chi-

nese Chess and got good results. (3) Studying the relations and differences between the

conspiracy number, proof number and the Monte-Carlo evaluation and combining “the

information above leaf nodes” and “the information beneath the leaf nodes” to propose

a new search algorithm with domain-independent heuristics. For this purpose, we pro-

posed the probability-based proof number search. A series of experiments showed that

probability-based proof number search outperforms other famous search algorithms for

solving games and endgame positions.

89

Appendix

Figure 6-1: Example position 3 of
Connect6 (Black is to move and
Black wins)

Figure 6-2: Example position 4 of
Connect6 (Black is to move and
Black wins)

90

Figure 6-3: Example position 5 of
Connect6 (Black is to move and
Black wins)

Figure 6-4: Example position 6 of
Connect6 (Black is to move and
Black wins)

Figure 6-5: Example position 7 of
Connect6 (White is to move and
White wins)

Figure 6-6: Example position 8 of
Connect6 (White is to move and
White wins)

91

Algorithm 2 Deep df-pn (part I)
1: // At the root
2: procedure Deepdfpn(r)
3: r.ϕ = ∞; r.δ = ∞;
4: MID(r);
5: end procedure
6: // Exploring node n
7: procedure MID(n)
8: // 1. Look up transposition table
9: LookUpTranspositionTable(n,ϕ,δ);

10: if n.ϕ ≤ ϕ || n.δ ≤ δ then
11: n.ϕ = ϕ; n.δ = δ;
12: return ;
13: end if
14: // 2. Generation of legal moves
15: if n is a terminal node then
16: if (n is an AND node && Eval(n) = true) ||
17: (n is an OR node && Eval(n) = false) then
18: n.ϕ = ∞; n.δ = 0;
19: else
20: n.ϕ = 0; n.δ = ∞;
21: end if
22: PutInTranspositonTable(n,n.ϕ,n.δ);
23: return ;
24: end if
25: GenerateLegalMoves();
26: // 3. Avoidance of cycle by using transposition table
27: PutInTranspositonTable(n,ϕ,δ);
28: // 4. Multiple Iterative Deepening
29: while 1 do
30: // Stop searching if ϕ or δ is above or equal to
31: its threshold
32: if n.ϕ ≤ ∆Min(n) || n.δ ≤ ΦSum(n) then
33: n.ϕ = ∆Min(n); n.δ = ΦSum(n);
34: PutInTranspositonTable(n,ϕ,δ);
35: return ;
36: end if
37: nc = SelectChild(n,ϕc,δc,δ2);
38: nϕ = nδ + ϕc − ΦSum(n);
39: nδ = min(n.ϕ, δ2 + 1);
40: MID(nc);
41: end while
42: end procedure
43: // Record into the transposition table
44: procedure Putintranspostiontable(n,ϕ,δ)
45: Table[n].ϕ = ϕ; Table[n].δ = δ;
46: end procedure

92

Algorithm 3 Deep df-pn (part II)
47: // Look up the transposition table
48: procedure Lookuptranspostiontable(n,&ϕ,&δ)
49: if n is already recorded then
50: ϕ =Table[n].ϕ; δ =Table[n].δ;
51: else
52: // In df-pn ϕ = 1, δ = 1
53: if E = 0 then
54: ϕ = 0; δ = 0;
55: else if D ≤ n.depth then
56: ϕ = 1; δ = 1;
57: else
58: ϕ = ED−n.depth; δ = ED−n.depth;
59: end if
60: end if
61: end procedure
62: // Selection of the child
63: procedure Selectchild(n,&ϕc,&δc,&δ2)
64: δc = ∞; δ2 = ∞;
65: for each child node nchild do
66: LookUpTranspositionTable(nchild,ϕ,δ);
67: if δ < δc then
68: nbest = nchild;
69: δ2 = δc; ϕc = ϕ; δc = δ;
70: else if δ < δ2 then
71: δ2 = δ;
72: end if
73: if ϕ = ∞ then
74: return nbest;
75: end if
76: end for
77: return nbest;
78: end procedure
79: // Calculate the minimum δ among all the children
80: procedure ∆Min(n)
81: min = ∞
82: for each child node nchild do
83: LookUpTranspositionTable(nchild,ϕ,δ);
84: min = min(min, δ);
85: end for
86: end procedure

93

Algorithm 4 Deep df-pn (part III)
1: // Calculate the summation of ϕ among all the children
2: procedure ΦSum(n)
3: sum = 0
4: for each child node nchild do
5: LookUpTranspositionTable(nchild,ϕ,δ);
6: sum = sum+ ϕ;
7: end for
8: return sum;
9: end procedure

94

Bibliography

[1] Bruce Abramson. Expected-outcome: A general model of static evaluation. IEEE

transactions on pattern analysis and machine intelligence, 12(2):182–193, 1990.

[2] L.Victor Allis, Maarten van der Meulen, and H.Jaap van den Herik. Proof-number

search. Artificial Intelligence, 66(1):91 – 124, 1994.

[3] Vadim V Anshelevich. A hierarchical approach to computer Hex. Artificial Intelli-

gence, 134(1-2):101–120, 2002.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-

tiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[5] József Beck and József Beck. Combinatorial games: tic-tac-toe theory, volume 114.

Cambridge University Press, 2008.

[6] Hans Berliner. The B* tree search algorithm: A best-first proof procedure. In

Readings in Artificial Intelligence, pages 79–87. Elsevier, 1981.

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions

on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[8] Michael Buro. The evolution of strong Othello programs. In Entertainment Com-

puting, pages 81–88. Springer, 2003.

[9] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial

intelligence, 134(1-2):57–83, 2002.

95

[10] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adap-

tive sampling algorithm for solving Markov decision processes. Operations Research,

53(1):126–139, 2005.

[11] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-Carlo

Tree Search: A New Framework for Game AI. In AIIDE, 2008.

[12] Guillaume M JB Chaslot, Mark HM Winands, H JAAP VAN DEN HERIK,

Jos WHM Uiterwijk, and Bruno Bouzy. Progressive strategies for Monte-Carlo tree

search. New Mathematics and Natural Computation, 4(03):343–357, 2008.

[13] Guillaume Maurice Jean-Bernard Chaslot Chaslot. Monte-Carlo Tree Search. PhD

thesis, Maastricht University, 2010.

[14] Gabriella Cortellessa, Alfonso Emilio Gerevini, Daniele Magazzeni, and Ivan Serina.

Automated planning and scheduling. Intelligenza Artificiale, 8(1):55–56, 2014.

[15] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.

In International conference on computers and games, pages 72–83. Springer, 2006.

[16] Martin Gardner. Mathematical games: The fantastic combinations of John Conway’s

new solitaire game “life”. Scientific American, 223(4):120–123, 1970.

[17] Zong Woo Geem. Harmony search algorithm for solving sudoku. In International

Conference on Knowledge-Based and Intelligent Information and Engineering Sys-

tems, pages 371–378. Springer, 2007.

[18] Junichi Hashimoto. A study on domain-independent heuristics in game-tree search.

PhD thesis, JAIST, 2011.

[19] Taichi Ishitobi. Deep Proof-Number Search and Aesthetics of Mating Problems. JAIST

Press PhD thesis, 2016.

[20] Taichi Ishitobi, Aske Plaat, Hiroyuki Iida, and Jaap van den Herik. Reducing the

Seesaw Effect with Deep Proof-Number Search. In Aske Plaat, Jaap van den Herik,

and Walter Kosters, editors, Advances in Computer Games, pages 185–197, Cham,

2015. Springer International Publishing.

96

[21] Tomoyuki Kaneko. Parallel Depth First Proof Number Search. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,

Georgia, USA, July 11-15, 2010, 2010.

[22] Garry Kasparov. The chess master and the computer. The New York Review of

Books, 57(2):16–19, 2010.

[23] Mohd Nor Akmal Khalid, E. Mei Ang, Umi Kalsom Yusof, Hiroyuki Iida, and Taichi

Ishitobi. Identifying Critical Positions Based on Conspiracy Numbers. In Béatrice

Duval, Jaap van den Herik, Stephane Loiseau, and Joaquim Filipe, editors, Agents

and Artificial Intelligence, pages 100–127, Cham, 2015. Springer International Pub-

lishing.

[24] Akihiro Kishimoto. Correct and Efficient Search Algorithms in the Presence of Rep-

etitions. University of Alberta, 2011.

[25] Akihiro Kishimoto, Mark H. Minands, Martin Müller, and Jahn-Takeshi Saito.

Game-Tree Search Using Proof Numbers: THE FIRST TWENTY YEARS, 2012.

[26] Akihiro Kishimoto and Martin Müller. Search Versus Knowledge for Solving Life and

Death Problems in Go. In Proceedings of the 20th National Conference on Artificial

Intelligence - Volume 3, AAAI’05, pages 1374–1379. AAAI Press, 2005.

[27] Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial

intelligence, 6(4):293–326, 1975.

[28] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-carlo Planning. In Pro-

ceedings of the 17th European Conference on Machine Learning, ECML’06, pages

282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[29] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Euro-

pean conference on machine learning, pages 282–293. Springer, 2006.

[30] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial intelligence, 27(1):97–109, 1985.

[31] Inês Lynce and Joël Ouaknine. Sudoku as a SAT Problem. In ISAIM, 2006.

97

[32] David Allen McAllester. Conspiracy numbers for min-max search. Artificial Intelli-

gence, 35(3):287 – 310, 1988.

[33] Martin Müller. Computer go. Artificial Intelligence, 134(1-2):145–179, 2002.

[34] Ayumu Nagai. Df-pn algorithm for searching AND/OR trees and its applications.

PhD thesis, University of Tokyo, 2002.

[35] Andrew J Palay. Searching with probabilities. Technical report, Carnegie-mellon

Univ Pittsburgh Pa Dept of Computer Science, 1983.

[36] Jakub Pawlewicz and Łukasz Lew. Improving Depth-First PN-Search: 1+ ϵ Trick.

In H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers,

editors, Computers and Games, pages 160–171, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[37] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin. Best-first fixed-depth

minimax algorithms. Artificial Intelligence, 87(1):255 – 293, 1996.

[38] Jahn-Takeshi Saito, Guillaume Chaslot, Jos W. H. M. Uiterwijk, and H. Jaap van den

Herik. Monte-Carlo Proof-Number Search for Computer Go. In H. Jaap van den

Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers, editors, Computers and

Games, pages 50–61, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[39] Jonathan Schaeffer. The history heuristic and alpha-beta search enhancements

in practice. IEEE transactions on pattern analysis and machine intelligence,

11(11):1203–1212, 1989.

[40] Jonathan Schaeffer. Conspiracy numbers. Artificial Intelligence, 43(1):67–84, 1990.

[41] Jonathan Schaeffer. Conspiracy numbers. Artificial Intelligence, 43(1):67 – 84, 1990.

[42] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin

Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. science,

317(5844):1518–1522, 2007.

98

[43] Jonathan Schaeffer and Aske Plaat. New advances in alpha-beta searching. In

Proceedings of the 1996 ACM 24th annual conference on Computer science, pages

124–130. ACM, 1996.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. Mastering the game of Go with deep neural networks and tree

search. nature, 529(7587):484, 2016.

[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. Mastering chess and shogi by self-play with a general reinforcement learning

algorithm. arXiv preprint arXiv:1712.01815, 2017.

[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.

Mastering the game of Go without human knowledge. Nature, 550(7676):354, 2017.

[47] Stephen JJ Smith and Dana S Nau. An analysis of forward pruning. In AAAI, pages

1386–1391, 1994.

[48] Zhang Song and Hiroyuki Iida. Using single Conspiracy Number to analyze game

progress patterns. In Computer, Information and Telecommunication Systems

(CITS), 2017 International Conference on, pages 219–222. IEEE, 2017.

[49] Zhang Song and Hiroyuki Iida. Using Single Conspiracy Number for Long Term

Position Evaluation (forthcoming). 2019.

[50] H. Jaap van den Herik and Mark H. M. Winands. Proof-Number Search and Its

Variants, pages 91–118. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[51] H.Jaap van den Herik, Jos W.H.M. Uiterwijk, and Jack van Rijswijck. Games solved:

Now and in the future. Artificial Intelligence, 134(1):277 – 311, 2002.

[52] Jaap Van den Herik, Jos WHM Uiterwijk, and Jack Van Rijswijck. Games solved:

Now and in the future. Artificial Intelligence, 134(1):277–311, 2002.

99

[53] Quang Vu, Taichi Ishitobi, Jean-Christophe Terrillon, and Hiroyuki Iida. Using

Conspiracy Numbers for Improving Move Selectionin Minimax Game-Tree Search.

pages 400–406. SCITEPRESS, 2016.

[54] Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-Carlo Tree

Search Solver. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M.

Winands, editors, Computers and Games, pages 25–36, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg.

[55] I. Wu and P. Lin. Relevance-Zone-Oriented Proof Search for Connect6. IEEE Trans-

actions on Computational Intelligence and AI in Games, 2(3):191–207, Sept 2010.

[56] I-Chen Wu and Dei-Yen Huang. A New Family of k-in-a-Row Games. In H. Jaap

van den Herik, Shun-Chin Hsu, Tsan-sheng Hsu, and H. H. L. M. (Jeroen) Donkers,

editors, Advances in Computer Games, pages 180–194, Berlin, Heidelberg, 2006.

Springer Berlin Heidelberg.

[57] Song Zhang, Hiroyuki Iida, and H. Jaap van den Herik. Deep df-pn and Its Efficient

Implementations. In Mark H.M. Winands, H. Jaap van den Herik, and Walter A.

Kosters, editors, Advances in Computer Games, pages 73–89, Cham, 2017. Springer

International Publishing.

100

Publications

International Conference (refereed)

[1] Z. Song, H. Iida. (2017). Using Single Conspiracy Number to Analyze Game

Progress Patterns. International Conference on Computer, Information and Telecom-

munication Systems (CITS). IEEE. Dalian, China. July. 2017

[2] Z. Song, J. van den Herik, H. Iida. (2019). Probability based Proof Number Search.

11th International Conference on Agent and Artificial Intelligence (ICAART). Prague,

February. 2019.

[3] S. Busala, Z. Song, H. Iida, M. N. A. Khalid, U. K. Yusof. (2019). Single Conspiracy

Number Analysis in Checkers. 11th International Conference on Agent and Artificial

Intelligence (ICAART). Prague, February. 2019.

Book Chapter (refereed)

[4] Z. Song, H. Iida, and H. J. van den Herik. (2017). Deep df-pn and Its Efficient

Implementations. Advances in Computer Games. Springer, Cham, 2017.

Journal (refereed)

[5] Z. Song, H. Iida. (2018). Using Single Conspiracy Number for Long Term Position

Evaluation. ICGA Journal 40(3): 269-280.

101

Others

[6] Z. Song, H. Iida, and J. van den Herik. (2016). Deep df-pn and its Application

to Connect6. Game Programming Workshop (GPW). Hakone, Japan. November.

2016

102

