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ORIGINAL PAPER

Neural Evidence of the Cerebellum as a State Predictor

Hirokazu Tanaka1 & Takahiro Ishikawa2 & Shinji Kakei2

# The Author(s) 2019

Abstract
We here provide neural evidence that the cerebellar circuit can predict future inputs from present outputs, a hallmark of an internal
forward model. Recent computational studies hypothesize that the cerebellum performs state prediction known as a forward
model. To test the forward-model hypothesis, we analyzed activities of 94 mossy fibers (inputs to the cerebellar cortex), 83
Purkinje cells (output from the cerebellar cortex to dentate nucleus), and 73 dentate nucleus cells (cerebellar output) in the
cerebro-cerebellum, all recorded from a monkey performing step-tracking movements of the right wrist. We found that the firing
rates of one population could be reconstructed as a weighted linear sum of those of preceding populations. We then went on to
investigate if the current outputs of the cerebellum (dentate cells) could predict the future inputs of the cerebellum (mossy fibers).
The firing rates of mossy fibers at time t + t1 could be well reconstructed from as a weighted sum of firing rates of dentate cells at
time t, thereby proving that the dentate activities contained predictive information about the future inputs. The average goodness-
of-fit (R2) decreased moderately from 0.89 to 0.86 when t1 was increased from 20 to 100 ms, hence indicating that the prediction
is able to compensate the latency of sensory feedback. The linear equations derived from the firing rates resembled those of a
predictor known as Kalman filter composed of prediction and filtering steps. In summary, our analysis of cerebellar activities
supports the forward-model hypothesis of the cerebellum.

Keywords Motor control . Internal forwardmodel .Mossy fiber . Purkinje cell . Dentate cell . Kalman filter

Introduction

The cerebellum plays a critical role in the control and coordi-
nation of body movements, adaptation to novel environments,
and acquisition of new motor skills. Evidence from clinical
observations and psychophysical experiments indicates that
impairments of the cerebellum lead to motor ataxia character-
ized by incoordination and dysmetria in multijoint move-
ments. Clinical evidence pioneered by the seminal work of
Holmes suggests that impairments in the cerebellum could
lead to symptoms characterized by lack of coordination across
multiple degrees of freedom in motor control, collectively
known as cerebellar ataxia [1]. The cerebellum also plays an

essential role both in adapting to external perturbations such
as visual rotation or external force fields and in acquiring a
new skill [2–6]. The cerebellum is one of the central nervous
systemwhose anatomical structure, cytoarchitecture, and elec-
trophysiological properties have been thoroughly studied.
Despite the plethora of clinical and psychophysical evidence,
the precise mechanisms by which the cerebellum coordinates
body movements are not yet understood.

Recent computational studies suggest that the cerebellum
predicts current and future states of the body by solving the
dynamics with given efference copy of motor commands,
known as the computation of an internal forward model
[7–10]. Sensory feedback signals from the periphery have
certain delays in reaching the central nervous system, on the
orders of a few tens to 100 ms. Therefore, the brain always
receives the Bpast^ state of the body. It is known in engineer-
ing and mechanics that feedback control based on time-
delayed state can behave in an oscillatory and often unstable
way if the delay is on the order of time constants of system
dynamics. Fortunately, physical laws that govern body move-
ments allow the brain to predict a current state from a previous
state and an efference copy of motor command, essentially by
solving the Newtonian mechanics. This predictive mechanism
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allows stable and dexterous control of body movements.
Although the cerebellum has been suggested as a locus of
forward-model computation from psychophysical, neuroim-
aging, and stimulation studies [11–13], the neural mechanism
of how the cerebellum performs predictive computation has
not yet been understood [10].

We therefore set out to determine the computation in the
cerebellar circuit in a monkey during wrist step-tracking
movements and provide neural evidence that current outputs
of the cerebellar circuit contain predictive information about
future inputs, a hallmark of an internal forward model. We
analyzed firing rates of mossy fibers (MFs) (inputs to the
cerebellar cortex), Purkinje cells (PCs) (outputs from the cer-
ebellar cortex to the dentate nucleus (DN)), and dentate cells
(DCs) (output of the cerebellum) of a monkey performing
step-tracking wrist movements. Unlike the cerebral cortex in
which multiple inputs and multiple outputs are related in a
highly complex way, the cerebellar MF input and DN output
are well defined and basically organized in a characteristic
feedforward manner. By exploiting the feedforward structure,
firing rates of one population were reconstructed from those of
other populations that innervate to the target population. Also,
we investigated if firing rates of cerebellar output (i.e., DCs) at
time t contained information that was predictive for future
inputs to the cerebellar cortex (i.e., MFs) at time t + t1. Our
analyses targeted to test the forward-model hypothesis of the
cerebellum.

Methods

Behavioral Task and Electrophysiological Recording

We used firing rates of the cerebellar cells reported in our
previous publications. Here, a brief description about the be-
havioral task and the electrophysiological recording is provid-
ed, and for a full account, please refer to the previous publi-
cations [14, 15]. All surgical and experimental protocols were
approved by the Animal Care and Use Committee of Tokyo
Metropolitan Institute of Medical Science. A male macaque
monkey participated in a step-tracking movement task of the
right wrist. The monkey gripped a manipulandum that mea-
sured the wrist movements and controlled a cursor on a com-
puter screen with the manipulandum toward one of eight tar-
gets that were uniformly located on a circle of radius of 8°,
corresponding to a wrist movement of 20°. An initial posture
of the wrist was either pronated or supinated, so there were 16
experimental conditions (eight movement directions × two
initial postures).

During the step-tracking movement task, neural activities
of MFs, PCs, and DCs were recorded. Their anatomical loca-
tions and physiological characteristics allowed us to identify
these cells with confidence. Spike data were sorted on the

timing of movement onsets and binned into firing rates of a
time window of 20 ms averaged over 10 to 20 trials for one
condition. The dataset included 94 MFs, 83 PCs, and 73 DCs
from monkey 1. PCs were identified by the coexistence of
simple and complex spikes, and MFs were identified by the
occurrence of a short positive–negative potential followed by
a longer negative afterwave [14, 15]. DCs were identified, in
addition to anatomical separation from the cerebellar cortex,
by the characteristic of large negative–positive spike wave-
forms [14]. Note that only simple spikes were analyzed for
PCs because the monkey had been trained for the task for
years and no apparent improvement in task performance oc-
curred during the recordings. These cells were recorded on
different experimental sessions or days, so the firing rates
but not spikes were analyzed in this study.

Characterization of Firing Rates: Spatiotemporal
Separability Index and Distributions

We here examine the spatiotemporal pattern of activities of
single neurons. Specifically, we introduce first an index of
spatiotemporal separability and then examine its distributions

for the different neuron groups. Let MFp;di tð Þ denote the firing
rates at t-th time bin in [− 1 s, + 1 s] recorded from i-th MF for

direction d and posture p. Similarly, PCp;d
i tð Þ and DCp;d

i tð Þ are
defined for PCs and DCs, respectively. We first characterize
the spatiotemporal patterns of activities ofMFs, PCs, and DCs
and introduce an index that quantifies how spatiotemporally
separable the activities are. If a cell has stationary directional
tuning, the firing rates are spatiotemporally separable as a
product of a function of movement direction and a function
of time (Fig. 1a). If directional tuning of a cell is not stationary
but rather exhibits time-varying preferred direction, the firing
rates are spatiotemporally nonseparable. For a given posture,
the firing rates of i-th neuron are summarized into a matrix
form as R ∈ℝD × T, where D is the number of movement di-
rections, T is the number of time windows of recording, and
D ≪ T. To level off the difference in firing rates, each row of
the matrix R is normalized to zero mean and unit variance. R
may be decomposed into a factorial form as

R ¼ UΣV⊤ ¼ ∑
D

d¼1
σdudv

⊤
d ð1Þ

Here σdf gDd¼1 are singular values of a descending order,
σ1 ≥⋯≥ σD. {ud} and {vd} are D-dimensional and T-dimen-
sional orthonormal vectors characterizing directional tuning
and temporal profile of firing rates, respectively. If directional
tuning is invariant during experimental duration, then R is
expressed as a rank-one matrix (i.e., R ¼ σ1u1v⊤1 ). On the
other hand, if directional tuning varies during movement
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duration, then R cannot be a rank-one matrix and contains
multiple rank-one matrices. Therefore, how well R is recon-
structed by a rank-one matrix is a candidate measure for char-
acterizing properties of firing rates. Once the firing-rate matrix
is decomposed into a sum of rank-one matrices, the degree of
spatiotemporal separability is quantified by an index (spatio-
temporal separability index, STSI),

STSI ¼ σ2
1

∑D
d¼1σ

2
d

ð2Þ

STSI takes a value ranging from 0 to 1; STSI is 1 if R is
spatiotemporally separable, whereas STSI takes a smaller val-
ue if R contains multiple rank-one matrices. This index was
computed for each cell.

To further characterize the firing rates, we also examined
distributions of firing rates of the three populations. For each
population, a histogram was constructed by counting the fre-
quency of firing rates in all time bins of cells in that population
both for pronated and supinated postures. These histograms
were fitted with Gaussian, Gamma, Rayleigh, and inverse

a

b

Fig. 1 a Distribution of the spatiotemporal separability index (STSI)
computed for mossy fibers (MFs) (red), Purkinje cells (PCs) (blue), and
dentate cells (DCs) (green). Three colored vertical lines depict the median
values of the three cell populations. b Probability densities of firing rates

ofMFs (left), PCs (middle), andDCs (right). The densities are binned into
50 bins. Dashed lines overlapped with the histograms represent best-fit
Gamma distributions
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Gaussian distributions using a maximum likelihood method,
and the values of Akaike information criterion (AIC) were
computed for these distributions.

Linear Reconstruction of Firing Rates of PCs

We then attempted to reconstruct the firing rate as a weighted
sum of those of preceding layers by exploiting the connectivity
of the cerebellum (Fig. 1 inset). Namely, PCs receive inputs from
MFs through granule cells and inhibitory interneurons (stellate
cells and basket cells), and that DCs receive inhibitory and ex-
citatory inputs from PCs and collaterals of MFs, respectively.

An activity of i-th PC of time t was reconstructed as a
weighted sum of those of MFs at the same time as

cPC p;d

i tð Þ ¼ ∑
j¼1

NMF

wMF→PC
ij MF

p;d

i tð Þ ð3Þ

Here we used a notation that hatted firing rates were
estimates whereas nonhatted variables were experimentally
observed ones. wMF→PCð Þij ¼ wMF→PC

ij is the NPC × NMF

weight matrix, that is, for each PC, there are NMF adjust-
able weights. Note that these weights cannot be interpreted
directly as synaptic strengths between MFs and PCs be-
cause they are indirectly connected via granule cells as
well as inhibitory interneurons. The weights should rather
be interpreted not as anatomical but functional connections
between MFs and PCs. The weights are assumed to be
either positive or negative, reflecting the anatomical fact
that, between MFs and PCs, there are excitatory (granule
cells) and inhibitory interactions (Fig. 1 inset). The weight
matrix was optimized so as to minimize a squared error
between actual firing rate PCi(t) and reconstructed firing

rates P̂Ci tð Þ averaged over experimental duration and
movement directions as

1

2
∑
d

∑
−1≤ t ≤1

PC
p;d

i tð Þ−cPC p;d

i tð Þ
� �2

ð4Þ

The optimization was performed for the two postures
separately so that we investigated how the weights trained
for one posture generalized to the other posture. Note that
the reconstructed firing rates of a PC in one condition (i.e.,
movement direction and posture) used those of MFs in the
same condition. For optimizing the weights, the entire ex-
perimental duration [− 1 s, + 1 s] was used. The fitting to
the data was evaluated by computing the coefficient of
determination (R2) in a time window of [− 0.2 s, + 0.5 s]
because task-related modulation of firing rates occurred
mainly in this time window.

Linear Reconstruction of Firing Rates of DCs

It is known from the cerebellar anatomy that DCs receive
excitatory inputs from MFs and inhibitory inputs from PCs,
respectively. As in the case for PCs, firing rates of a DC were
reconstructed as a weighted sum of those of MFs and PCs,

cDCp;d

i tð Þ ¼ ∑
j¼1

NMF

wMF→DC
ij MF

p;d

j tð Þ þ ∑
k¼1

NPC

wPC→DC
ik PC

p;d

k tð Þð5Þ

Collaterals of MFs send excitatory inputs and PCs send

inhibitory inputs to DCs, so wMF→DC
ij

n o
and wPC→DC

ik

� �
were

assumed to be nonnegative and nonpositive, respectively. For
each DC, the linear model contained NMF +NPC weights, and

the squared error between DCi(t) and D̂Ci tð Þ was minimized
under the nonnegative and nonpositive constraints. These
weights were optimized using a standard quadratic program-
ming algorithm.

Additionally, to investigate how the MF and PC firings
contributed to the reconstruction of DC firings, we attempted
to reconstruct the DC firings using only the MF firings as in

cDCp;d

i tð Þ ¼ wMF→DC
i þ ∑

j¼1

NMF

wMF→DC
ij MF

p;d

j tð Þ ð6Þ

or using only the PC firings as in.

cDCp;d

i tð Þ ¼ wPC→DC
i þ ∑

k¼1

NPC

wPC→DC
ik PC

p;d

k tð Þ ð7Þ

To explain spontaneous activities of DCs, the constant
terms (wMF→DC

i in Eq. (6) and wPC→DC
i in Eq. (7)) were in-

cluded. Values of the goodness-of-fit using both MF and PC
firings (Eq. (5)), MF firings only (Eq. (6)), or PC firings only
(Eq. (7)) were compared.

Statistical Tests of Linear Reconstruction

To test statistical significance of linear reconstructions of PCs,
two tests were performed. First, we assessed the goodness-of-
fit of the linear model to the data by comparing other models.
This was a model comparison within a posture. Two standard
nonlinear models (a threshold model and a quadratic model)
were fit to the data. One was a linear-threshold model where
the MF firing rates are thresholded by zeroing the activity
equal to or smaller than a threshold as

cPCi tð Þ ¼ ∑
j¼1

NMF

wMF→PC
ij MF j tð Þ−θ j

� �
þ ð8Þ

Here θj denotes an activity threshold of j-th MF. The linear-
threshold model is often used for modeling nonlinear amplifi-
cation, multiplicative gain modulation, and winner-takes-all
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selection [16]. In our context, the thresholding operation may
be regarded as a nonlinear processing of granule cells between
MFs and PCs. The other was a quadratic model which is
analogous to an energy model of complex cells in the visual
cortex [17]:

cPCi tð Þ ¼ ∑
j¼1

NMF

wMF→PC
ij MF j tð Þ

þ ∑
j¼1

NMF

vMF→PC
ij MF j tð Þ−θ j

� �2
þ ð9Þ

This model has been used for modeling the properties of
complex cells whose responses are orientation selective but
not phase selective. The above models are instantaneous, i.e.,
the firing rate of a PC at time t is reconstructed with that of a
MF at the same time t. In addition, we also considered a finite-
impulse-response (FIR) model of order 1 defined as

cPCp;d

i tð Þ ¼ ∑
j¼1

NMF

w 0ð Þ MF→PC
ij MFp;d

i tð Þ þ ∑
j¼1

NMF

w 1ð Þ MF→PC
ij MFp;d

i t−1ð Þ

ð10Þ

The second term may be interpreted as a reverberation in
the recurrent circuit composed of MFs, granule cells, and
Golgi cells, so this FIR model is the simplest example of the
adaptive filter model.

For a single PC cell, the linear, the threshold, and the qua-
dratic models contain NMF, 2NMF, and 3NMF adjustable pa-
rameters, respectively. For each cell, the three models were
compared according to the AIC. In the same way, the linear
reconstruction model of DCs was tested with a linear-
threshold model,

cDCp;d

i tð Þ ¼ ∑
j¼1

NMF

wMF→DC
ij MFp;d

j tð Þ−θ j

h i
þ ∑

k¼1

NPC

wPC→DC
ik PCp;d

k tð Þ−φk

h i
ð11Þ

and a quadratic model,

cDCp;d

i tð Þ ¼ ∑
j¼1

NMF

wMF→DC
ij MFp;d

j tð Þ þ ∑
j¼1

NMF

w
−MF→DC
ij MFp;d

j tð Þ−θ j

h i2
þ ∑

k¼1

NPC

wPC→DC
ik PCp;d

k tð Þ þ ∑
k¼1

NPC

w
−PC→DC
ik PCp;d

k tð Þ−φk

h i2
ð12Þ

The linear, linear-threshold, and quadratic models contain
NMF +NPC, 2NMF + 2NPC, and 3NMF + 3NPC parameters, re-

spectively. As in Eq. (9), wMF→DC
ij

n o
and wPC→DC

ik

� �
were

constrained to be nonnegative and nonpositive, respectively,
and other parameters were unconstrained. These models were
also compared according to the AICs.

Second, how the reconstruction of linear and other models
learned at one posture generalized to those at the other posture.
Here, we expected that a reconstruction model that appropri-
ately describes the firing rates should reconstruct not only at a
trained posture but also at an untrained posture. Hence, this
was a model comparison across the two postures. The degree
of generalization was evaluated for the four models of PC
firing-rate fitting and for the three models of DC firing-rate
fitting. Specifically, for one target cell, the weights optimized
at one posture were used for a linear reconstruction at the other
posture, and the goodness-of-fit between the linear reconstruc-
tion and the data was computed at the untrained posture. The
goodness-of-fit of multiple models was statistically compared
by one-way ANOVA.

Statistical Comparison of MF–PC and MF–DC
Projections

MFs project both to PCs via granule cells and parallel fibers
and to DCs. Correspondingly, the linear equations we consider

include the two terms wMF→PC
ij

n o
in Eq. (3) and wMF→DC

ij

n o
in Eq. (5), which represent functional projections from MFs
and PCs and from MFs to DCs, respectively. Each projection

was characterized by a column of wMF→PC
ij

n o
or wMF→DC

ij

n o
,

which we refer to a projection vector. Similarity of projections
was quantified by computing a correlation coefficient between
two projection vectors. Specifically, we asked whether the two
functional projections statistically differed. Correlation coeffi-
cients of all possible pairs of MF–PC projection vectors and
MF–DC projection vectors were computed, and their average
served as an index of similarity between the two projections.
Note that theMF–PC projection vectors took either positive or
negative values while the MF–DC projection vectors were
nonnegative. Absolute values of the MF–PC projection vec-
tors were used for the computation of correlation coefficients
because only the magnitudes of projections were of our inter-
est. To assess the statistical significance of the average of
correlation coefficients, a resampling test was performed
based on a null hypothesis that there was no statistical differ-
ence betweenMF–PC andMF–DCprojections. Specifically, a
bootstrap distribution of correlation coefficients was comput-
ed by randomly permuting the labels of projection vectors for
100,000 times. The probability of observing the average of
correlation coefficients was assessed in terms of the bootstrap
distribution.

Linear Predictions of Future MF Activities
from Current DC Activities

To test the forward-model hypothesis, we then explored to
investigate whether the current outputs from the cerebellum
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(i.e., DCs) could predict the future inputs to the cerebellum
(i.e., MFs). Specifically, the firing rates of eachMF at time t +
t1 were reconstructed as a weighted sum of the firing rates of
DCs at time t, as

cMFi t þ t1ð Þ ¼ ∑
j¼1

NDC

wDC→MF
ij DC j tð Þ ð13Þ

This linear prediction model contained NDC weights for
one MF. As in the linear reconstruction cases, the squared
error between the predicted and the actual firing rates was
minimized to compute the optimal values of the weights.

The weights wDC→MF
ij

n o
cannot be interpreted as functional

connectivity from DCs to MFs, as there are no anatomically
direct connections between DCs and MFs. Rather, the linear
prediction model was introduced to test if the current DC
activity contained predictive information about the future
MF activity. t1 is a parameter of time advance and was varied
from 0 to 200 ms in steps of 20 ms (the window of time bins).
The goodness-of-fit of the linear model was evaluated in a
time window of [− 200 ms, 500 ms].

One may suspect that the linear prediction in Eq. (13) is
possible if the terms of the right-hand side span a wide variety
of waveforms, as in the case of Fourier expansion whereby
any time series can be fit with a set of sinusoidal waveforms.
To assess the fit statistically and to exclude that possibility, a
bootstrap test was performed by shuffling the movement di-
rections of DCs on the right-hand side of Eq. (13), while the
movement directions of MFs on the left-hand side were fixed
to those used experimentally. Randomizing the movement
directions on the right-hand side maintained the diversity of
waveforms but eliminated directional relationship between
both sides of Eq. (13). The bootstrap test was designed based
on a null hypothesis that any time series of the same degree of
similarity could predict the future inputs to the cerebellum.
With one sequence of shuffled targets, the goodness-of-fit
was computed for all MFs and then averaged. This was re-
peated for 10,000 times to produce a bootstrap distribution of
goodness-of-fit, and then the probability of the experimental
goodness-of-fit was computed. This bootstrap test was per-
formed with t1 ranging from 20 to 100 ms in step of 20 ms
for the two postures, separately.

Sparse Linear Analyses

Finally, to further investigate what connectivity structure
underlies the linear reconstruction and prediction described
above, a sparse linear analysis was performed. Specifically,
we aimed to discover how many nonzero weights sufficed
to reconstruct or predict neural firing patterns of a target
cell. In addition to the squared errors between actual and

reconstructed firing rates, sparsity imposing terms were
incorporated. Specifically, an L1 norm of a weight vector
(i.e., a sum of absolute values of weight coefficients) was
used by minimizing the following cost functions,

1

2T
∑

−1≤ t ≤1
PCi tð Þ− ∑

j¼1

NMF

wMF→PC
ij MF j tð Þ

( )2

þ λ ∑
j¼1

NMF

jwMF→PC
ij j

ð14Þ
1

2T
∑

−1≤ t ≤1
DCi tð Þ− ∑

j¼1

NMF

wMF→DC
ij MF j tð Þ− ∑

k¼1

NDC

wPC→DC
ik PCk tð Þ

( )2

þλ ∑
j¼1

NMF

wMF→DC
ij − ∑

j¼1

NMF

wMF→PC
ij

 !
ð15Þ

1

2T
∑

−1≤ t ≤1
MFi t þ t1ð Þ− ∑

j¼1

NDC

wDC→MF
ij DC j tð Þ

( )2

þ λ ∑
j¼1

NDC

jwDC→MF
ij j

ð16Þ

Here T denotes the length of data. Note that Eqs. (14) and
(16) are the cost functions used in a standard sparse linear
analysis known as LASSO [18]. Equation (15) slightly differs
from LASSO because of the nonnegative constraint of MF→
DC weights and the nonpositive constraint of PC→DC
weights. The time advance parameter t1 in Eq. (16) was fixed
to 40 ms in this sparse analysis. The parameter λ determines
the tradeoff between the squared error and the sparseness and
must be optimized for individual target cells. For each target
cell, we varied λ in a range from 0.05 to 5 and chose the value
that exhibited the smallest generalization error for test data in
tenfold cross validation. The weight coefficients computed
with the optimized λ were assessed in two ways: the propor-
tion of nonzero weights and the proportion of significantly
contributing weights. Here, the significantly contributing
weights were defined by counting the number of weights
whose cumulative sum exceeded 90% of the sum of total
weights.

Results

First, statistical characteristics of firing rates of the three pop-
ulations were computed and compared (see BCharacterization
of Firing Rates: Spatiotemporal Separability Index and
Distributions^ in the BMethods^ section). Then, the firing
rates of PCs and DCs were reconstructed with linear weighted
models of MF and PC firing rates (see BLinear Reconstruction
of Firing Rates of PCs^ and BLinear Reconstruction of Firing
Rates of DCs^ in the BMethods^ section). The reconstructions
of the linear models were statistically compared to those of
nonlinear and FIR models by computing AICs within a single
posture and the degree of generalization across two postures
(see BStatistical Test of Linear Reconstruction^). Finally, the
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forward-model hypothesis was tested by applying a linear-
weighted model that predicted the MF activity at time t + t1
from the DC activity at time t (see BLinear Prediction of Future
MFActivities from Current DC Activities^ in the BMethods^
section).

Characterization of Firing Rates

The STSI, defined in Eq. (2), was introduced to assess the
complexity of spatiotemporal patterns of firing rates of a given
neuron (see BCharacterization of Firing Rates: Spatiotemporal
Separability Index and Distributions^ in the BMethods^ sec-
tion). STSI exhibited clearly separable values for MFs and
PCs (Fig. 1a). Our previous papers reported that task-related
activities recorded from MFs showed a unimodal and
directionally tuned phasic modulation around movement on-
set that was analogous to those observed in activities of the
primary motor cortex (M1) [19–21], and that simple-spike
activities of PCs showed dynamic and time-varying direction-
al tuning before and after movement onset [14, 15]. Consistent
with these observations, STSIs ofMFs were significantly larg-
er than STSIs of PCs (unpaired t test, p < 0.01). The popula-
tion of MFs had the largest value (median 0.63 ± 0.14 SD),
followed by the population of DCs (median 0.48 ± 0.15 SD),
and the population of PCs had the smallest values (median
0.38 ± 0.15 SD). There was a statistically significant differ-
ence between STSIs of the three populations as determined
by one-way ANOVA (F(2, 497) = 95.3, p = 9.18 × 10−36). A
Tukey post hoc test revealed that the STSIs of MFs were
statistically significantly larger than those of PCs (p = 9.6 ×
10−10) and those of DCs (p = 9.6 × 10−10) and that the STSIs
of DCs were statistically larger than those of PCs (p = 2.7 ×
10−5). Therefore, the firing rates of MFs exhibited spatiotem-
porally separable and simple characteristics, the firing rates of
PCs exhibited spatiotemporally nonseparable and complex
characteristics, and the firing rates of DCs exhibited charac-
teristics intermediate between MFs and PCs.

The distributions of firing rates were computed for the
three populations, respectively (Fig. 1b). They were
unimodal (MF: mean 21.1 ± 17.6 SD; PC: mean 48.2 ±
22.7; DC: mean 38.6 ± 22.7). These distributions were
fitted with Gaussian, Gamma, Rayleigh, and inverse
Gaussian distributions, which were compared according
to the values of AICs. We found that the Gamma distribu-
tion provided the smallest values of AICs for the MF
(1.26 × 106 (Gaussian), 1.18 × 106 (Gamma), 1.25 × 106

(Rayleigh), 5.5 × 106 (inverse Gaussian)), PC (1.201 ×
106 (Gaussian), 1.191 × 106 (Gamma), 1.194 × 106

(Rayleigh), 1.216 × 106 (inverse Gaussian)), and DC firing
rates (1.045 × 106 (Gaussian), 1.023 × 106 (Gamma),
1.025 × 106 (Rayleigh), 1.052 × 106 (inverse Gaussian)).
A Gamma distribution has a property that a sum of two
independent random variables from a Gamma distribution

obeys also a Gamma distribution. Actual neural activities
are correlated to each other, so the fact that the firing rates
were all distributed as Gamma distributions does not nec-
essarily support simple summation from one population to
another, but rather imply some simple transformations
among the populations.

The two analyses above found that the three populations
had distinct degrees of spatiotemporal complexity as quanti-
fied in terms of STSIs, while the firing rates were all Gamma
distributed. These results, taken together, led us to a hypothe-
sis that the transformation from one population to another
might be linear, so we went on to test the hypothesis by line-
arly fitting the firing rates of one population with those of
preceding populations.

Linear Reconstruction of Firing Rates of PCs and DCs

Based on the results of STSI and distributions of firing
rates, we inferred that the firing rates of PCs and DCs
might consist of weighted sum of the firing rates of input
populations. We here attempted to reconstruct the firing
rates of PCs as weighted sums of those of MFs using a
linear model (3) (see BLinear Reconstruction of Firing
Rates of PCs^ in the BMethods^ section). The weight
parameters were optimized so that the squared error be-
tween actual firing rate PCi(t) and reconstructed firing

rates P̂Ci tð Þ (Eq. (4)) was minimized separately for the
pronated and supinated postures. The results of the two
postures were similar; we present the results of the
pronated posture below. Figure 2 illustrates time series
and contour plots of the firing rates of two representative
PCs that exhibited the highest R2 values between the orig-
inal and reconstructed firing rates. In one PC (Fig. 2a),
firing rates underwent a suppression just before the move-
ment onset and an increase after the movement onset
around movement directions 1 and 8, therefore exhibiting
the reversal of its preferred direction. The reconstructed
firing rates captured the reversal of preferred direction. In
another PC (Fig. 2b), there was a uniform suppression of
firing rates over the movement direction before the move-
ment onset, followed by the emergence of directional
tuning around directions 4 and 5 after the movement on-
set. As a population, the linear reconstruction model ex-
plained the original firing rates of PCs, as evidenced by
R2 values for the pronated posture (mean 0.95 ± 0.023
SD) and the supinated posture (mean 0.96 ± 0.023 SD).

To further examine the hypothesis, we then proceeded to
reconstruct the firing rates of DCs as linear weighted sums of
MFs and PCs using Eq. (5) (see BLinear Reconstruction of
Firing Rates of DCs^ in the BMethods^ section). The firing
rates of DCs were reconstructed as weighted sum of excitato-
ry (nonnegative) inputs from MFs and inhibitory
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(nonpositive) inputs from PCs (Eq. (5)). Figure 3 depicts two
representative DCs that exhibited the highest R2 values be-
tween the original and reconstructed firing rates. As in the PC

case, the firing rates of DCs were well reconstructed as linear
sums of MFs and DCs. As a population, the median values of
R2 of linear model were 0.94 ± 0.048 SD for the pronated

a

b

original linear model

original linear model

Fig. 2 Two representative examples of linear reconstructions of PCs. a
Original and reconstructed firing rates of a representative PC (#52). Eight
upper panels compare time series of the original (black) and the
reconstructed (red) firing rates for each movement direction. R2 is 0.961

for this PC. Two lower panels provide the same firing rates of the original
(left) and the reconstructed (right) firing rates in contour plots. b Original
and reconstructed firing rates of another representative PC (#56),
presented in the same format of a. R2 is 0.964 for this PC
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posture and 0.93 ± 0.0420 SD for the supinated posture. For a
comparison, the DC firing rates were reconstructed using
only the MF or PC firings minimizing Eq. (6) or (7), respec-
tively. The median values of R2 using only MFs were 0.92 ±
0.069 (pronated) and 0.91 ± 0.067 (supinated), and the

median values of R2 using only MFs were 0.91 ± 0.060
(pronated) and 0.91 ± 0.050 (supinated). There was a statisti-
cally significant difference between the R2 values of the linear
reconstructions using MF + PC, MF only, or PC only as de-
termined by one-way ANOVA (F(2, 216) = 5.02, p = 7.4 ×

a

b

original linear model

original linear model

Fig. 3 Two representative examples of linear reconstructions of DCs: a DC cell #48 (R2 value 0.95) and b DC cell #55 (R2 value 0.96), in the same
format of Fig. 2
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10−3 (pronated); F(2, 216) = 6.82, p = 1.3 × 10−3 (pronated)).
ATukey post hoc test revealed that the R2 values of MF + PC
reconstructions were significantly better than those of MF
reconstructions or those of PC reconstructions (p = 0.047 for
MF only and p = 0.008 for PC only (pronated), p = 0.0098 for
MF only and p = 0.0018 for PC only (supinated)).

Comparison of AIC for Multiple Models of PCs and DCs

The quality of linear reconstruction indicated that the firing
rates of MFs and PCs contributed linearly and instantaneously
to those of PCs and DCs. Previous models of the cerebellum,
on the contrary, suggest nonlinear or noninstantaneous
models; the perceptron model assumes thresholding nonline-
arity, and the adaptive filter model assumes finite impulse
responses that depend on not only current inputs but also
previous inputs. To verify whether the linear reconstruction
sufficed or not, two simple nonlinear reconstruction models
(a threshold model (8) and a quadratic model (9)) and an FIR
model of order 1 (10) were fitted to the firing rates of PCs (see
BStatistical Test of Linear Reconstruction^). The results of the
two postures were similar; the results of the pronated posture
are shown here. A typical PC reconstruction was presented in
the format of time series (Fig. 4a) and contour plots (Fig. 4b).
A visual inspection suggested that the reconstruction of the
threshold model was indistinguishable from that of the linear
model and that the reconstructions of quadratic model and FIR
model were marginally better. The values of AIC are summa-
rized in Fig. 4c and Table 1. As a population, AIC took the
smallest value for the linear model and the second smallest
value for the FIR model. For individual PCs, the values of
AIC were minimum for the linear model for a majority of
PCs (77 for pro and 71 for sup) and for the FIR model for a
minority of PCs (6 for pro and 12 for sup). The thresholding
model or the quadratic model was not selected for any PCs.
Therefore, the linear model best captured the relationship be-
tween firing rates of MFs and PCs.

Similarly, for DC firing-rate fitting, the linear model fitting
was statistically compared with those of two nonlinear models
(the thresholding model (11) and the quadratic model (12)).
The linear and nonlinear models were fitted to the firing rates
of DCs, and AIC was computed for all DCs. A typical DC
reconstruction was presented in the format of time series
(Fig. 5a) and contour plots (Fig. 5b). The three models recon-
structed the original activities at almost the same quality. The
values of AIC are summarized in Fig. 5c and Table 2. The
comparison of AIC indicated that the linear model could ex-
plain the DC firings most parsimoniously for all the DCs.
Again, the linear model best described the firing rates of
DCs with firing rates of MFs and PCs. In summary, the linear
reconstruction model was selected for both reconstructions of
PC and DC firing rates.

Generalization Across Postures of Fitted Models
of PCs and DCs

The AIC test was performed to select the most parsimonious
modelwithin a posture.We then proceeded to ask which mod-
el best generalized firing-rate fitting across two postures (see
BStatistical Test of Linear Reconstruction^). Specifically, the
weights trained in one posture were used to reconstruct the
firing rates in the other posture that were not used for training.
The degrees of generalization were summarized in box plots
of Fig. 6a: (left panel) from supinated to pronated posture, and
(right panel) from pronated to supinated posture, and Table 3.
The goodness-of-fit was almost equal for the linear, threshold,
and FIR models. In contrast, the goodness-of-fit was signifi-
cantly worse for the quadratic model than those for the other
models, indicating that the quadratic model overfit to the
trained posture and did not generalize properly to the un-
trained posture. There was a statistically significant difference
between the four models as determined by one-way ANOVA
(F(3, 328) = 19.8, p = 7.57 × 10−12 (trained in pro and tested in
sup); F(3, 328) = 20.9, p = 2.1 × 10−12 (trained in sup and test-
ed in pro)). ATukey post hoc test revealed that the goodness-
of-fit of the quadratic model was significantly worse than the
three models (p = 3.6 × 10−9 for the linear model, p = 5.1 ×
10−9 for the thresholding model, and p = 1.3 × 10−7 for the
FIR model (trained in pro and tested in sup); p = 3.8 × 10−9

for the linear model, p = 3.8 × 10−9 for the thresholdingmodel,
and p = 1.4 × 10−7 for the FIR model (trained in sup and tested
in pro)). There was no significant difference between the lin-
ear, thresholding, and FIR models. In summary, the linear,
thresholding, and FIR models generalized from one posture
to another almost equally, whereas the generalization of the
quadratic model was significantly worse than those of the
other models.

Next, we investigated how the weights trained in one pos-
ture reconstructed the DC activities in another posture, as
summarized in Fig. 6b (left panel) from supinated to pronated
posture, and (right panel) from pronated to supinated posture
and Table 4. The goodness-of-fit was almost equal for the
three models. There was no statistically significant difference
between the three models as determined by one-way ANOVA
(F(2, 246) = 0.10, p = 0.90 (trained in pro and tested in sup);
F(2,246) = 2.5 × 10−3, p = 0.9975 (trained in sup and tested in
pro)). Therefore, the degree of generalization from one pos-
ture to another was not different between the three models.

Statistical Comparison of MF–PC and MF–DC
Projections

In the linear equations derived from the experimental firing
rates, there are two distinct projections from the MFs: from
MFs to PCs (wMF→ PC in (3)) and from MFs to DCs (wMF→

DC in (5)) (see BStatistical Comparison of MF–PC and MF–
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original linear threholding quadra�c FIRa

b

c pronated supinated

Fig. 4 Comparison of Akaike information criterion (AIC) between the
linear, threshold, quadratic, and FIR models for PC cell fitting. A typical
example of model fitting to the firing rates of a PC (#52) shown in a time
series and b contour plots. In a, the firing rates of the original, linear,
threshold, quadratic, and FIR models are shown with black, red, blue,

green, and cyan lines, respectively. c Box plots of the goodness-of-fit for
the four models at the pronated (left) and supinated (right) postures. On
each box, the central mark is the median, and the edges of the box are the
25th and 75th percentiles, respectively
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DC Projections^ in the BMethods^ section). We asked wheth-
er a common population of MFs projected both to PCs and
DCs or separate populations of MFs projected to PCs and
DCs. The average of correlation coefficients between MF–
PC and MF–DC projection vectors was 0.060. We assessed
a statistical significance of this value of correlation by a re-
sampling test with a null hypothesis that there was no statisti-
cal difference between the two types of projections. A 99%
confidence interval was [0.1027, 0.1089], and the average
value of experimental correlation coefficients was significant-
ly small (p < 10−5). Therefore, the null hypothesis was
rejected, and PCs and DCs did not receive projections from
the same population of MFs.

Linear Predictions of Future Inputs from Current
Outputs

Finally, we tested the forward-mode hypothesis of the
cerebellum by predicting future inputs to the cerebellum
(MFs) at time t + t1 from current outputs from the cerebel-
lum (DCs) at time t (see BLinear Prediction of Future MF
Activities from Current DC Activities^). The time ad-
vance t1 was varied from 20 to 200 ms in steps of
20 ms, and the reconstructions with t1 = 40 ms (Fig. 7)
and t1 = 80 ms (Fig. 8) were presented. When t1 = 40 ms,
spatiotemporal patterns of firing rates of MFs were cap-
tured by linear predictions without any noticeable delay.
When t1 = 80 ms, although fitting to peaks and troughs
becomes less accurate, the overall patterns of firing rates
were preserved. In fact, the goodness-of-fit decreased
moderately when t1 was increased from 20 to 200 ms
(Fig. 9). One may suspect that any time series of similar
complexity could predict the future input reasonably, so
we proceeded on to test whether the performance of the
linear prediction was a statistical change or not. Statistical
significance of the goodness-of-fit was assessed by a
bootstrap test based on a null hypothesis that any time
series of similar complexity could predict the future MF
activities. A bootstrap distribution of goodness-of-fit was
constructed by shuffling the movement directions of DCs
on the right-hand side of Eq. (13) for 10,000 times.
Intuitively, DC activities with shuffled movement direc-
tions were of the same complexity of those with the ex-
perimental directions but did not retain movement-

specific information. We found that the goodness-of-fit
of the original data was significantly better than those of
the shuffled data for t1 ranging from 20 to 100 ms for
both the pronated (p < 5 × 10−3 for all t1 ranging from 20
to 100 ms, Bonferroni corrected) and supinated (p < 5 ×
10−3 for all t1 ranging from 20 to 100 ms, Bonferroni
corrected) postures. Therefore, the current output from
the cerebellum contained predictive information about
the future input to the cerebellum.

Weight Distributions of Linear Reconstruction
and Prediction Models

Finally, we computed the distributions of weights of the
linear reconstruction models of PCs (3) and DCs (5) and
the linear prediction model of MFs (13). For the MF→ PC
connectivity, the weights exhibited an exponential distri-
bution rather than a Gaussian (Fig. 10a), indicating that a
relatively few MFs contributed dominantly to the recon-
struction of each PC. For the MF→DC connectivity, most
of the weights from MFs to DCs were zero reflecting the
nonnegative constraint, and nonzero weights were distrib-
uted exponentially (Fig. 10b, left panel). Similarly, most of
the weights from PCs to DCs were zero reflecting the
nonpositive constraint, and nonzero weights were distrib-
uted exponentially (Fig. 10b, right panel). Therefore, rela-
tively small number of MFs and PCs contributed to the
reconstruction of firing rates of each DC. Finally, for the
linear prediction model from DCs to MFs, the weights
were again distributed exponentially (Fig. 10c), although
there appeared outliers at large values of weights on both
positive and negative ends. In summary, the weight distri-
butions were all exponential but not Gaussian, indicating
some structured projections between the separate popula-
tions in the cerebellar circuits.

Motivated by these exponential distributions of the weights,
we further investigated the characteristics of the weights that
enabled the linear reconstruction and prediction (see BSparse
Linear Analyses^). Specifically, we imposed explicitly sparse-
ness on weights and performed sparse linear analyses that min-
imized the cost functions composed of a sum of squared error
and a sparsity term as in Eqs. (14), (15), and (16). Therewere two
findings. Approximately 60–80% of the input cells had nonzero
weights, and about one third of input cells exhibited significantly

Table 1 Summary of AIC
statistics for PC firing-rate fitting Linear model Thresholding model Quadratic model FIR model

Median (STD)
for pro posture

6.05 × 103

(3.19 × 102)
6.22 × 103

(3.23 × 102)
6.27 × 103

(3.23 × 102)
6.11 × 103

(3.23 × 102)

Median (STD)
for sup posture

6.10 × 103

(2.99 × 102)
6.26 × 103

(3.02 × 102)
6.27 × 103

(2.97 × 102)
6.14 × 103

(2.97 × 102)
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original linear threholding quadra�ca

b

c pronated supinated

Fig. 5 Comparison of AIC between the linear, threshold, and
quadratic models for DC cell fitting. A typical example of model
fitting to the firing rates of a DC (#33) shown in time series (a) and
contour plots (b). In a, the firing rates of the original, linear,

threshold, and quadratic models are shown with black, red, blue,
and green lines, respectively. c Box plots of the goodness-of-fit
for the three models at the pronated (left) and supinated (right)
postures
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large weights (Table 5). This analysis revealed that, within our
dataset, only a few dozens of input cells contributedmainly to the
linear reconstruction and prediction of a target cell.

Discussion

There are three main findings in this study. First, the distributions
of firing rates of the three populations were all Gamma distribut-
ed, and they exhibited various degrees of spatiotemporal com-
plexity. This indicated that the activities of the three populations
represented functionally distinct roles in computation within the
cerebellar circuit. Second, the firing rates of PCs are

reconstructed linearly as a weighted sum of the firing rates of
MFs, and the firing rates of DCs are reconstructed linearly as a
weighted sum of the firing rates of MFs and PCs. Finally, the
firing rates ofDCs at time t linearly predict the firing rates ofMFs
at time t + t1, so the current output from the cerebellum contains
predictive information about the future input to the cerebellum.
These findings reveal the linear computation from one popula-
tion to another and support the forward-model hypothesis of the
cerebellum. It is worth mentioning that no nonlinearity that is
expected from the perceptron model or dependence on previous
inputs that is expected from the adaptive filter model was neces-
sary to explain our data. Our results provide a strikingly simple
picture of linear transformations for the cerebellar computation.

Table 2 Summary of AIC
statistics for DC firing-rate fitting Linear model Thresholding model Quadratic model

Median (STD) for pro posture 6.18 × 103 (4.01 × 102) 6.67 × 103 (4.01 × 102) 6.97 × 103 (3.98 × 102)

Median (STD) for sup posture 6.18 × 103 (3.62 × 102) 6.65 × 103 (3.63 × 102) 6.97 × 103 (3.59 × 102)

a

b

PC: Pronated (tested) PC: Supinated (tested)

DC: Pronated (tested) DC: Supinated (tested)

Fig. 6 Generalization from fitting
at one posture to another posture
of multiple models. aBox plots of
goodness-of-fit (left) trained in
supinated posture and tested in
pronated posture and (right)
trained in pronated posture and
tested in supinated posture for
PCs. b Box plots of goodness-of-
fit (left) trained in supinated
posture and tested in pronated
posture and (right) trained in
pronated posture and tested in
supinated posture for DCs
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In the following, we branch out to discuss our findings in con-
sideration of previous studies and speculate implications for the
computation of internal models in the cerebellum.

We should remark that all the results in this study were
obtained from one animal and could have reflected an idio-
syncrasy of that animal, so the conclusion in this study must
be confirmed with another animal in a future study.

Previous Electrophysiological Studies

There are two kinds of internal models hypothesized for motor
control: a forward model that performs a state prediction from
a current estimate and an efference copy, and an inverse model
that transforms a desired goal of movement into the necessary
motor commands [22]. There has long been a controversy
over whether the cerebellum functions as a forward model or
an inverse model. Previous single-unit recording studies of PC
activities during hand movements provided controversial re-
sults for the internal-model hypothesis of the cerebellum [23,
24]. These studies examined the correlation between activities
of PCs and movement kinematics and/or dynamics. The un-
derlying assumption was that kinematic and dynamic repre-
sentations of PCs relate to forward and inverse models, re-
spectively. As kinematic variables (e.g., hand trajectory) and
dynamic variables (e.g., muscle activities) are highly correlat-
ed under unperturbed conditions, one approach is to make a
monkey perform the same movement trajectory with different
loads on the hand to dissociate dynamics from kinematics (
[25, 26]. The monkey compensated the varying load in order
to keep the same hand path, thereby dissociating the dynamics
from the kinematics. For instance, Pasalar et al. [23] recorded
simple-spike activities of task-related PCs while monkeys per-
formed a circular manual tracking task under varying viscous
and elastic loads. The simple-spike firing rates and spatial
tuning did not change significantly under various load condi-
tions, which supported a kinematic representation of arm
movements in the cerebellar cortex. Their results appeared to

be compatible with the forward-model hypothesis of the cer-
ebellum, which predicts movement kinematics.

Similarly, Yamamoto et al. [24] recorded simple-spike ac-
tivities of PCs while monkeys performed elbow extension or
flexion movements under assistive or resistive forces. In con-
trast with the findings of Pasalar et al., the simple-spike activ-
ities did change according to the load condition and correlated
with the change in muscle activities, thereby seemingly con-
sistent with the inverse-model hypothesis. Although the two
studies examined PC firing rates in similar experiments, their
conclusions were opposite to each other. Other studies de-
scribed simple-spike activities correlated with eye-movement
dynamics [27] or cursor-movement kinematics [28].
Therefore, to date, these single-unit–recording studies seem
inconclusive about whether the cerebellum plays a role of an
internal forward model or inverse model.

These studies rely on an assumption that kinematic and
dynamic representations of PCs relate to forward and inverse
models, respectively. This assumption, however, does not
hold because an internal forward model should include dy-
namical variables such as efference copies of motor control
signals. Also, disentangling predicted state signals, sensory
feedback signals from the periphery, and motor commands
is rather difficult because these signals resemble each other
[8]. Therefore, a mere correlative comparison of PC activities
with one or other behavioral parameters would not lead to
conclusive evidence for either of forward or inverse models.

State Prediction as a Prerequisite for a ForwardModel

To resolve the limitation of the single-unit studies that correlated
firing rates of one cell population and behavioral measures, we
believe it essential to analyze network-level computation across
multiple cell populations, as suggested byWolpert andMiall [8].
The current study was designed to circumvent the
abovementioned difficulty of disentanglingmultiple representa-
tions and targeted the transformation through the cerebellum

Table 3 Summary of degrees of generalization across two postures for PC firing-rate fitting

Linear model Thresholding model Quadratic model FIR model

Fig. 6a, PC: pronated (trained in supinated)
Median (SD)

0.82 (0.18) 0.82 (0.17) 0.61 (0.34) 0.78 (0.17)

Figure 6a, PC: supinated (trained in pronated)
Median (SD)

0.83 (0.19) 0.83 (0.12) 0.66 (0.37) 0.78 (0.20)

Table 4 Summary of degrees of
generalization across two
postures for PC firing-rate fitting

Linear model Thresholding model Quadratic model

Fig. 6b, DC: pronated (trained in supinated)

Median (SD)

0.81 (0.29) 0.82 (0.29) 0.81 (0.29)

Fig. 6b, DC: supinated (trained in pronated)

Median (SD)

0.80 (0.29) 0.78 (0.29) 0.80 (0.29)
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fromMF (input to the cerebellum) to DC (output from the cere-
bellum) via PC (output from the cerebellar cortex to the cerebel-
lar nuclei), revealing the linear computation from one cell popu-
lation to another. Furthermore, we found that the current output
of the cerebellum predicts the future inputs to the cerebellum, a
distinctive feature of an internal forward model. These findings

could not have been achieved with the analysis of correlation
between activities of one cell population and behavioral
measures.

A critical test of the forward-model hypothesis of the cer-
ebellum is whether the prediction performed in the cerebellum
can offset delayed sensory feedback. Delays in sensory

a

b

original linear model

original linear model

Fig. 7 Two representative examples of linear predictions ofMFs (#16 in a (R2 value 0.91) and #37 in b (R2 value 0.93)) at time t + t1 fromDCs at time t.
Here t1 was set to 40 ms. In each panel, the original activities and the predicted activities were compared in terms of time series and contour plots
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feedback can differ from one sensory modality to another;
proprioceptive feedback takes of the order of 50 ms from
muscle spindles to the somatosensory and motor cortices,
and visual feedback takes about 50 ms from the retina to the
primary visual cortex and 100 ms to the higher visual cortices
[29]. These delays can deteriorate the performance of rapid

movements of the order of a few hundred milliseconds
employed in this study. Our analysis revealed that the current
DC activity contained predictive information about the future
MF activity for a range of time advance. Therefore, our result
supports that the cerebellum is capable of compensating the
sensory delays of the order of 100 ms, supporting the forward-

a

b

original linear model

original linear model

Fig. 8 Two representative examples of linear predictions of MFs at time t + t1 from DCs at time t. These are the same MFs (#16 in a (R2 value 0.85) and
#37 in b (R2 value 0.89)) presented in Fig. 7. Here t1 was set to 80 ms
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model hypothesis. A previous electrophysiological study re-
ported that activity of postcentral neurons changed on the

average of about 60 ms before the onset of agonist elbow
muscles in voluntary elbow movements [30]. The early onset
of activity of postcentral neurons is within the timescale of
prediction in the cerebellum found in this study.

Morphological and physiological evidence accumulated
over decades suggests that a region of the cerebro-
cerebellum that forms a closed-loop circuit with M1 appears
to satisfy the basic requirements for a forward model that
generates a prediction of the outcome of a motor command
[31]. First, this region of the cerebro-cerebellum receives a
putative efference copy as well as a strong somatosensory
input [14, 15], and these inputs are presumed to be integrated
in the cerebellar cortex. Second, the activities of PCs in this
region lag behind those ofM1 neurons, while they precede the
movement onset [15]. The timing of activity is compatible
with the idea that it works as a forward model that predicts
an outcome of the motor command. As a result, the output of
this region of the cerebro-cerebellummay helpM1 to generate
a suitable motor command for the next moment depending on
the predicted consequence before a feedback signal is avail-
able for the current motor command. We note that there are in
general two input pathways to the MFs: one from the cerebral
cortex through the pons and another from the peripheral sen-
sory organs. Our single-unit recording did not allow to iden-
tify the origin ofMFs and thus to discuss what information the
MF activities encoded.

a b

c d

Fig. 10 Distributions of weights of linear reconstruction models: a
MF→ PC connectivity, b PC→DC, and c MF→DC connectivity.
Note that the PC→DC weights are nonpositive, and the MF→DC
weights are nonnegative. The signs of PC→DC weights were flipped
for a visual presentation. d DC→MF weights of linear prediction model

trained with the time-advance parameter t1 = 40 ms. These distributions
were normalized as probability density functions and were plotted in
linear (left) and logarithmic (right) scales. Dashed lines indicate
exponential distributions best fitted to the experimental distributions

Fig. 9 Goodness-of-fit of linear predictions with an increasing time
advance t1 ranging from 0 to 200 ms with an interval of 20 ms. Error
bars indicate standard deviations at each time advance. The goodness-of-
fit was computed separately for the two postures: pronated (black solid
line) and supinated (red dashed line)
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Our analyses assume the feedforward anatomical struc-
ture of the cerebellar circuit, but it is known that the cere-
bellar circuit contains recurrent anatomical connections
that form a closed-loop circuit within the cerebellum, such
as those composed of Golgi and granule cells and those
composed of Purkinje and basket cells. Among these re-
current connections, the most relevant to this study is the
nucleocortical projections from the cerebellar nuclei to the
granular layer as MFs [32]. A recent study reported that
excitatory output cells in the interposed nucleus provide
efference copy signals via MFs to the cerebellar cortical
zones and that an eye-blink conditioning training increased
the local density of nucleocortical MF terminals [33]. One
may suspect, therefore, that the linear prediction from DCs
to MFs reported in this study could be attributed to the
nucleocortical recurrent connections. We note, however,
that this nucleocortical projection per se does not explain
the longer time scale of linear prediction up to 100 ms
reported in this study. Also, the nucleocortical pathway
comprises only approximately 5% of the total of cerebellar
MF inputs [34]. We hence expect that recurrent connec-
tions in the nucleocortical projections have minor contri-
butions to our results of linear prediction from DCs to
MFs.

Linear Computation in the Cerebellar Circuit

We have shown the linear transformations from MFs to
PCs and from MFs and PCs to DCs explained the observed
firing rates recorded during the wrist movement task. In
addition, the future MF activities were linearly predicted
from the current DC activities. The success of linear
modeling of PC and DC activities was unexpected and
intriguing for the following three reasons. First, a PC re-
ceives parallel fiber inputs of the order of 100,000, while
our dataset from monkey 1 contained only 94 MFs.
Second, these firing rates were recorded at different ses-
sions or even across different recording days separated by
years, so the firing rates of the three populations were of no
direct causal relation. Nonetheless, the computation in the
cerebellar circuit turned out to be linear.

A missing piece in our study is the granule cell activity.
Our results demonstrated that the transformation from
MFs to PCs is linear, implying another linear computation
in the granular layer. Two possibilities of computation in
the granular layer are suggested. The first possibility is
that each granule cell performs linear computation by lin-
early summing up the inputs from MFs. A previous study
reported linear computation from MFs to medium gangli-
on cells in the cerebellum-like structure of electric fish
[35]. They reported that linear weighted sums of sparsely
and randomly mixed MF inputs reconstructed the mem-
brane potentials of granule cells. The reconstructed gran-
ule cell activities exhibited a rich repertoire of temporal
bases, which in turn constitute a negative image of sen-
sory inputs. Their study suggests the linear computation
from MFs to granule cells, in line with our results. It is
interesting to note that, in their study, sparsity of linear
weights was explicitly incorporated into an error function.
In contrast, our results demonstrated that the sparse dis-
tributions of weights emerged spontaneously without a
sparseness term in the cost function. Another possibility
is that each granule cell performs nonlinear computation
of MF inputs and the population of granule cells as a
whole encodes inputs linearly. Recent studies demonstrat-
ed that individual granule cells were more narrowly tuned
to the whisker angle of a rat than EPSC, thereby
exhibiting nonlinear computation of granule cells sharp-
ening their inputs [36], while individual PCs encoded
whisker position linearly [37]. Interestingly, the popula-
tion of narrowly tuned granule cells provides a linear ex-
citatory drive across a range of whisker positions to PCs
[36]. Because our dataset does not contain granule cell
activities, we are not certain which may be the case.

Despite the fact that there are interneurons with recur-
rent connections in the cerebellar circuit, our finding in-
dicates that the computation in the cerebellum is unex-
pectedly linear. We here speculate two possible explana-
tions for the success of our linear modeling. One reason is
that the performance of the monkeys was stable because
they have been trained over years for this wrist movement
task. Therefore, we expect that the response properties of

Table 5 Summary of weight
characteristics obtained in sparse
linear analyses

Proportion of
nonzero weights

Proportion of significantly
contributing weights

PC (pronated) 0.60 (0.14) 0.32 (0.082)

PC (supinated) 0.68 (0.13) 0.36 (0.096)

DC (pronated) 0.82 (0.34) 0.38 (0.26)

DC (supinated) 0.73 (0.354) 0.37 (0.14)

MF (pronated) 0.77 (0.10) 0.35 (0.063)

MF (supinated) 0.81 (0.12) 0.38 (0.067)
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cerebellar cells remained stable across experimental ses-
sions once the monkeys had achieved stable task perfor-
mance. Another reason is that the cells in the dataset were
selected if they showed task-related modulations of firing
rates. Among numerous parallel-fiber inputs to a PC, it is
conceivable that only a fraction of task-related inputs de-
termines the response properties of that PC, as revealed
by the sparse linear analyses. The stability of task perfor-
mance and the selected sampling of task-related cells
could explain the success of our linear modeling.

In line with our findings of linear transformations and
predictions, an increasing number of recent literatures
have reported that firing rates of cerebellar cells encode
movement-related parameters linearly [38]. In the case of
MFs [39, 40], Laurens et al., for example, reported a lin-
ear monotonic relationship between firing rate of MFs and
eye position [39]. Similarly, for PCs [27, 37, 41–47],
Hong et al. found that regularly firing spikes perform
linear encoding of eye movement velocity by firing rate
[43]. Finally, neurons in the cerebellar nuclei [48–51], the
timing, and kinematics of motor output were modulated
by linearly graded disinhibition of neurons in the deep
cerebellar nuclei [49]. Along with these reports of linear
encoding of behavioral parameters in the cerebellar cells,
our findings reinforce the perspective of linear computa-
tion within the cerebellar circuits. Whereas there is evi-
dence for linear encoding in the cerebellum as referenced
above, we note that there is also evidence for nonlinear
coding of saccade onset timings by spikes of PCs that are
related to the period of occasional pauses [43], suggesting
a possibility of multiplexed encoding by cerebellar cells.

Linear Equations and Interpretation as Kalman Filter

The three linear equations derived from the firing rates are
summarized as follows,

cPCi tð Þ ¼ ∑
j¼1

NMF

wMF→PC
ij MF j tð Þ

cDCi tð Þ ¼ ∑
j¼1

NMF

wMF→DC
ij MF j tð Þ þ ∑

k¼1

NPC

wPC→DC
ik PCk tð Þ

cMFi t þ t1ð Þ ¼ ∑
j¼1

NDC

wDC→MF
ij DC j tð Þ

ð17Þ

and as in the schematics (Fig. 11). The activities of PCs are
linear summations of activities of MFs, and the activities of
DCs are linear summations of activities of MFs and PCs.
There are two functional projections from MFs in the linear
equations: one from MFs to PCs and the other from MFs and
DCs. The two projections demonstrated little overlap, indicat-
ing that these two projections might convey functionally dis-
tinct information.

We realized that the chain of linear equations of neuron
activities resembles those of an estimator known as
Kalman filter. If we assume that MFs represent a current
estimate of state and sensory feedback, PCs represent a
prediction of state, and DCs represent a filtered state, then
the linear equations can be interpreted as Kalman filter as
follows. The first equation is a prediction step ((A) in
Fig. 11); a current estimate (MFs) is projected to a pre-
dicted state (PCs). Then the second equation is a filtering

PCs

MFs

DCs

( ) ( )MF PC
PC MFi i

i
t w t→=∑

(A) Predic�ve step

(B) Filtering step
( ) ( )

( )

MF DC

PC DC

DC MF

PC

i i
i

j j
j

t w t

w t

→

→

=

+

∑

∑

(C) Internal-model predic�on

( ) ( )DC MF

1
MF = DCii

i
t t w t→+ =∑

Fig. 11 Summary schematic of
our findings overlaid on the
cerebellar circuit. MF, mossy
fiber (red); PC, Purkinje cell
(green); DC, dentate cell (light
blue). Granule cells (orange) and
inhibitory interneurons (blue) that
are not analyzed in this work are
included to show the basic
structure of the cerebellar neuron
circuitry. Three stages of linear
computation obtained in our
analysis are accompanied with the
three types of computation of
Kalman filter explained in the
main text
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step; a predicted state (PCs) and a sensory feedback
(MFs) are integrated into a filtered state (DCs) ((B) in
Fig. 11). Then, a filtered state (DC) contained predictive
information about the future inputs (MFs) ((C) in Fig. 11).

In the above analogy with the Kalman filter, we have
made an important assumption: PCs and DCs receive in-
formation about current estimate of state and sensory af-
ferent signals through MFs, respectively. Our statistical
test suggests that MF projections to PCs differ from MF
collateral projections to DC in terms of their sources. It is
known for the cerebro-cerebellum that MFs originate from
the pons (which receives direct cortical projections) and
from the brainstem/spinal cord, and that each of the MF
inputs reflects either cortical activities or sensory feedback
signals. Anatomical studies using an anterograde tracer
(HRP-WGA) in cats reported that MFs of cortical origins
via pons consist of the main input to the cerebellar cortex,
whereas collaterals of those MFs poorly project directly to
the dentate nuclei [52, 53]. Therefore, Bthe bulk of infor-
mation of cortical origin reaches the cerebellar nuclei only
after processing in the cerebellar cortex^ (p. 22 of Brodal
et al. [52]). This is consistent with our assumption that DCs
receive a predicted state not from MFs but from PCs.

One critical aspect of Kalman filter is the Kalman gain
which balances a predicted state and an observed state in an
optimal way. In Kalman filter, a filtered state x̂tjt combines a
predicted state x̂tjt−1 and an observed state zt as in

x̂̂tjt ¼ x̂̂tjt−1 þK zt−Cx̂̂tjt−1
� 	 ¼ I−KCð Þx̂̂tjt−1 þKzt ð18Þ

HereK is the Kalman gain andC is the observation matrix.
By comparing the second equation of (17) and Eq. (18), we
speculate that the weights from PC to DC (wPC→DC) and the
weights from MF to DC (wMF→DC) correspond to the matri-
ces I −KC and K in Eq. (18), respectively. While these
weights were assumed to be stable and constant in our analysis
because the task performance of the monkey was unchanged
for years, the analogy predicts an opposing plasticity ofwPC→

DC and wMF→DC, namely, wPC→DC and wMF→DC should
change their strengths in opposite directions when learning
occurs. Although the analogy between the cerebellum and
Kalman filter presented here is a speculation, we believe that
this analogy could serve as a computational proposal that
drives future studies of the cerebellum.

Previous Computational Models of the Cerebellum

There are lines of computational models of the cerebellum
in the literatures. The pioneering and most dominant mod-
el of the cerebellum is the perceptron model of the cere-
bellar cortex by Marr [54] and independently by Albus
[55]. The perceptron model was first inspired by the anal-
ogy of feedforward network structures between the

cerebellar cortex and perceptron. The core hypothesis
was that two independent inputs to a PC (MFs and a
climbing fiber) represent input pattern signals and super-
vised error signals, respectively. Later, the climbing fiber
inputs were found to induce long-term depression in syn-
apses between parallel fibers and a PC in rabbits’ cerebel-
lar slices [56, 57]. The perceptron model contains a non-
linear term to threshold a weighted sum of inputs. On the
contrary, our results have shown that the linear model
sufficed to explain the firing rates of PCs in terms of MFs.

The perceptron model is essentially a static pattern
classifier and not designed to handle time-varying, dy-
namic inputs. Subsequently, the perceptron model was
extended to the adaptive filter model which generates a
dynamic response by summing various temporal basis
patterns [58]. The adaptive filter model considers a recur-
rent circuit among MFs, Golgi cells, and granule cells
which generates resonant temporal patterns with various
phase leads and lags. Therefore, the adaptive filter model
assumes that the activities of PCs result from the interac-
tion among MFs, Golgi cells, and granule cells. There is
supportive evidence of the adaptive filter model [59, 60].
On the contrary, our finding of linear transformation from
MFs to PCs suggests that the recurrent circuit plays a
negligible role in generating temporal bases and rather
that MFs already contain rich temporal repertoire that in
turn drives the activities of PCs. The present study cannot
exclude a possibility that different parts of the cerebellum
may adopt different neural mechanisms for generating
temporal patterns; the adaptive filter model has been test-
ed in the floccus, whereas our data was recorded from the
cerebellar hemisphere.
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