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1 Introduction

Calibrating the strength of Ramsey’s theorem is one of the central topics in the study of

reverse mathematics. Our target is infinite Ramsey’s theorem on N. Within the second-

order arithmetic, we consider Ramsey’s theorem for n-tuples and k-colors (RTn
k) which

asserts that every k-coloring of [N]n admits an infinite homogeneous subset, and we write

RTn for the statement ∀kRTn
k .

The strength of Ramsey’s theorem was precisely analyzed by means of computabil-

ity theoretic methods, which led the comparison of Ramsey’s theorem with the big five

systems in the setting of reverse mathematics. In [15], Jockusch showed that there ex-

ists a computable coloring for [N]3 whose homogeneous set always computes the halting

problem. This idea together with a standard proof of Ramsey’s theorem is formalized

by Simpson [24] within the second-order arithmetic, namely, if n ≥ 3, Ramsey’s theo-

rem for n-tuples is equivalent to ACA0. The status of Ramsey’s theorem for pairs was

open for a long time, until Seetapun [23] proved that RT2
2 is strictly weaker than ACA0

over RCA0. On the relation between WKL0 and RT2
2, Jockusch [15] showed that WKL0

does not imply RT2
2. The converse direction was very difficult, but finally, Liu [19] showed

that RCA0 + RT2
2 does not imply WKL0 by a clever forcing method. Furthermore, there

are numerous studies on Ramsey’s theorem for pairs and related combinatorial principles

mainly from the view point of computability theory. See Hirschfeldt [12] for a gentle

introduction to the reverse mathematics studies for Ramsey’s theorem.

In this manuscript, we mainly focus on the proof-theoretic strength of Ramsey’s theo-

rem for pairs. There are long series of studies on this topic by various people and various

methods. In [14], Hirst showed that RT2
2 implies the Σ0

2-bounding principle (BΣ0
2), and
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RT2 implies BΣ0
3 over RCA0. On the other hand, Cholak, Jockusch and Slaman [6] showed

that WKL0 + RT2
2 + IΣ0

2 is a Π1
1-conservative extension of IΣ0

2, and WKL0 + RT2 + IΣ0
3 is

a Π1
1-conservative extension of IΣ0

3. Thus, the first-order strength of RT2
2 is in between

BΣ0
2 and IΣ0

2, and the first-order strength of RT2 is in between BΣ0
3 and IΣ0

3. After this

work, many advanced studies are done to investigate the first-order strength of Ramsey’s

theorem and related combinatorial principles. One of the most important methods for

these studies is adapting computability-theoretic techniques for combinatorial principles

in nonstandard models of arithmetic. By this method, Chong, Slaman and Yang [9, 8]

analyzed slightly weaker but important combinatorial principles ADS, CAC and SRT2
2

(see e.g., [12] for these principles), and finally they showed that RT2
2 does not imply IΣ0

2

over RCA0 in [7]. More recently, Chong, Kreuzer and Yang [unpublished] showed that

WKL0 + SRT2
2 + WF(ωω) is Π0

3-conservative over RCA0 + WF(ωω), where WF(ωω) asserts

the well-foundedness of ωω.

Another important approach is calibration of the proof-theoretic strength of variations

of the Paris-Harrington principle which is deduced from infinite Ramsey’s theorem by

using the idea of the ordinal analysis. One of the most important result of this line is a

sharp upper bounds for the Paris-Harrington principle by Ketonen and Solovay [16]. More

recently, Bovykin/Weiermann [5] showed that indicators defined by Paris’s density notion

can approach the proof-theoretic strength of various versions of Ramsey’s theorem, and

by a similar method, the author [28] showed that RTn
k + WKL∗0 is fairly weak and is a

Π0
2-conservative extension of RCA∗

0, where RCA∗
0 is RCA0 with only Σ0

0-induction and the

exponentiation. There are many more studies from this view point, e.g., by Kotlarski,

Weiermann, et al. [26, 18, 4].

Here, we will overview the recent results on the exact strength of RT2
2 and RT2, namely,

RT2
2+WKL0 is a Π0

3-conservative extension of RCA0, and RT2+WKL0 is a Π1
1-conservative

extension of RCA0+BΣ0
3. The main tool for the former result is Paris’s density notion plus

the ordinal analysis, while the latter result is derived by computability-theoretic arguments

in nonstandard models.

2 The proof-theoretic strength of RT2
2

In this section, we see the proof-theoretic strength of Ramsey’s theorem for pairs and two

colors (RT2
2) based on [21]. A formula φ is said to be Π̃0

n if it is of the form φ ≡ ∀Xθ
where θ is Π0

n. The main theorem of this section is the following.

Theorem 2.1 (Patey/Yokoyama). WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0.

Recall that RCA0 + RT2
2 implies BΣ0

2 and RCA0 + BΣ0
2 is Π̃0

3-conservative over IΣ0
1. Thus,

the theorem says that IΣ0
1 is the exact Π̃0

3-part of WKL0 + RT2
2. This answers the long-

standing open question of determining the Π0
2-consequences of RT2

2 posed e.g., in Seetapun
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and Slaman [23, Question 4.4] Cholak, Jockusch and Slaman [6, Question 13.2]. Indeed,

one can see that RT2
2 does not imply the totality of Ackermann function nor the consistency

of IΣ0
1. Moreover, one can formalize the proof of this theorem within PRA, which means

that WKL0 + RT2
2 is equiconsitent with PRA over PRA.

Now, we overview the idea of the proof. The first step to this theorem is the indicator

argument with the density notion introduced by Kirby and Paris [17, 20]

Definition 2.1 (RCA0). • A finite set X ⊆ N is said to be 0-dense if |X| > minX.

• A finite set X is said to be m+ 1-dense if for any P : [X]2 → 2, there exists Y ⊆ X

which is m-dense and P -homogeneous.

Note that “X is m-dense” can be expressed by a Σ0
0-formula. Let mPH2

2 be the

assertion “for any infinite set X ⊆ N, there exists a finite set F ⊆ X such that X is m-

dense.” The following theorem is a generalization of the theorem by Bovykin/Weiermann

in [5].

Theorem 2.2. WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0 + {mPH2
2 | m ∈ ω}.

Thus, what we need for the main theorem is proving mPH2
2 within RCA0 for any m ∈ ω.

For this, we will decompose the density notion by α-largeness notion with ordinals α < ωω.

(Here, we use the symbols ω,ω2, . . . for the internal ordinals.)

Definition 2.2 (RCA0, see [11] for the general definition). Let α < ωω.

• If α = 0, then any set is said to be α-large.

• If α = β + 1, then X is said to be α-large if X \ {minX} is β-large.

• If α = β+ωn+1, then X is said to be α-large if X \{minX} is (β+ωn ·minX)-large.

Now we will work on finite combinatorics for Ramsey’s theorem based on α-largeness

notion. For a given n ∈ ω, we want to find large enough m ∈ ω so that for any ωm-large

set X ⊆ N and for any coloring P : [X]2 → 2, there exists Y ⊆ X which is P -homogeneous

and ωn-large. For this, the key notions are “transitivity” and “grouping”.

Definition 2.3 (RCA0). Let α, β < ωω. Let X ⊆ N and let P : [X]2 → 2.

• A set Y ⊆ X is said to be transitive for P if for any x, y, z ∈ Y such that x < y < z,

P (x, y) = P (y, z) → P (x, y) = P (x, z). If X is transitive for P , then P is said to be

a transitive coloring on X.

• A sequence of finite sets ⟨Fi ⊆ X | i < l⟩ is said to be an (α, β)-grouping for P if

– ∀i < j < l Fi < Fj ,
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– ∀i < l Fi is α-large,

– for any H ⊆fin N, if H ∩ Fi ̸= ∅ for any i < l, then H is β-large, and,

– ∀i < j < l ∃c < 2∀x ∈ Fi,∀y ∈ Fj P (x, y) = c.

By transitivity, one can decompose the construction of a homogeneous set into two

parts, i.e., first find a large enough transitive subset for a given coloring, and then find a

homogeneous set for transitive coloring. The idea of this decomposition is essentially due

to Bovykin/Weiermann[5] and Hirschfeldt/Shore[13]. In fact, finding a large homogeneous

set for a transitive coloring is much easier than the general case since two homogeneous set

can be combined easily by transitivity. On the other hand, constructing a large enough

transitive set for a given coloring is harder. For this, we use the idea of grouping. A

grouping for P is a family of finite sets such that for any pair of sets from the family,

the color between them is fixed. If a family of transitive set forms a grouping, then one

can combine them as follows: if a family of finite sets ⟨Fi ⊆ X | i < l⟩ is a grouping for

P : [X]2 → 2 such that each of Fi is transitive for P and there is a unified color c < 2

such that the color between Fi and Fj is c for any i < j < l, then the union
∪

i<l Fi is

transitive for P . By these considerations, we have the following combinatorics.

Lemma 2.3 (RCA0). Let n ∈ ω. Let X ⊆fin N and minX > 3. Then we have the

following.

1. Ketonen/Solovey[16, Section 6], see also Pelupessy[22]: if X is ωn+4-large, then any

coloring P : [X]2 → n has an ω-large homogeneous set.

2. If X is ω2n+6-large, then any transitive coloring P : [X]2 → 2 has an ωn-large

homogeneous set.

3. ⟨Fi ⊆ X | i < l⟩ is a (ωn,ω)-grouping for P : [X]2 → 2 such that each of Fi is

transitive for P and there is a unified color c < 2 such that the color between Fi

and Fj is c for any i < j < l, then the union
∪

i<l Fi is transitive for P which is

ωn+1-large.

The last piece of the proof is the bound for grouping.

Theorem 2.4. For any n, k ∈ ω, there exists m ∈ ω such that RCA0 proves the following:

if X ⊆fin N is ωm-large and minX > 3, then, for any coloring P : [X]2 → 2, there

exists an (ωn,ωk)-grouping for P .

In [21], this theorem is proved by considering the infinite version of grouping. Indeed,

the existence of a large enough finite set which admits finite grouping for any coloring is an

easy consequence of the infinite grouping principle, and the infinite grouping principle is
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Π̃0
3-conservative over RCA0, which is shown by a variant of Mathias forcing introduced by

Cholak/Jockusch/Slaman[6] and the resplendency argument by Barwise/Schlipf[2]. Re-

cently, the theorem is reproved with a more direct method by Ko lodziejczyk, Wong and

the author.

Proof of Theorem 2.1. By Theorem 2.2, we only need to show that RCA0 proves that any

infinite set contains m-dense finite set for each m ∈ ω.

In what follows, we only consider finite sets with their minimum greater than 3. We

first show by induction that for any n ∈ ω, there exists m ∈ ω such that RCA0 proves that

if a finite set X ⊆ N is ωm-large, then any coloring on X has an ωn-large transitive set.

For the case n = 1, m = 6 is enough by Lemma 2.3.1. Assume now n > 1 and any coloring

on an ωm0-large finite set has an ωn−1-large transitive set. By Theorem 2.4, take m ∈ ω

so that RCA0 proves any coloring on an ωm-large finite set has an (ωm0 ,ω6)-grouping. Let

X ⊆ N be ωm-large, P be a coloring on X, and ⟨Fi ⊆ X | i < l⟩ be an (ωm0 ,ω6)-grouping

for P . Since each Fi is ωm0-large, there exists Hi ⊆ Fi such that Hi is an ωm−1-large

transitive set for P . On the other hand, {maxFi | i < l} is ω6-large, thus, there exists

H̃ ⊆ {maxFi | i < l} such that H̃ is ω-large and P is constant on [H̃]2 by Lemma 2.3.1.

Then, by Lemma 2.3.3, H =
∪
{Hi | i < l,maxFi ∈ H̃} is an ωn-large transitive set for

P .

Now we see that for any n ∈ ω, there exists m ∈ ω such that RCA0 proves that if a

finite set X ⊆ N is ωm-large, then any coloring on X has an ωn-large homogeneous set.

This is an easy consequence of the above claim and Lemma 2.3.2. Thus, by induction,

for any n ∈ ω, there exists m ∈ ω such that RCA0 proves that any ωm-large finite set is

n-dense. Finally, one can easily show that any infinite set contains ωm-large finite subset

for each m ∈ ω within RCA0.

3 The proof-theoretic strength of RT2

In this section, we see the proof-theoretic strength of Ramsey’s theorem for pairs and

finitely many colors. Here, we write RT2 for ∀kRT2
k. The full version of the proof for the

following theorem will be available in [25].

Theorem 3.1 (Slaman/Yokoyama). WKL0+RT2 is a Π1
1-conservative extension of RCA0+

BΣ0
3.

Since RCA0 + RT2 implies BΣ0
3, BΣ0

3 is the exact Π1
1-part of WKL0 + RT2. Note that

BΣ0
3 is Π0

4-conservative over IΣ0
2. Thus, the proof-theoretic strength of WKL0 + RT2 is the

same as IΣ0
2. In addition, the proof of this theorem is again formalizable within PRA, and

WKL0 + RT2 is equiconsitent with IΣ0
2 over PRA.
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The first step of the proof is the standard decomposition of RT2 by the cohesiveness

principle.

Theorem 3.2 (Cholak/Jockusch/Slaman[6]). Over RCA0, RT2 is equivalent to COH plus

D2, where,

• COH: for any sequence of sets ⟨Rn ⊆ N | n ∈ N⟩, there exists an infinite set X ⊆ N
such that ∀n(X ⊆∗ Rn ∨X ⊆∗ Rc

n).

• D2: for every ∆0
2-partition

⊔
i<k Ai = N, there exists an infinite set X ⊆ N such that

X ⊆ Ai for some i < k.

For Π1
2-theories, two Π1

1-conservative extensions can be amalgamated, i.e., for given

Π1
2-theories T0, T1, T2, if T1 and T2 are Π1

1-conservative extensions of T0, then T1 + T2 is

also Π1
1-conservative over T0 (see [27]). Thus, we only need to check the conservation for

WKL0, COH and D2 independently. A general conservation theorem for WKL0 and COH

over RCA0 + BΣ0
n are calibrated by Hájek[10] and Belanger[3], respectively.

Theorem 3.3 (Hájek, Belanger). WKL0 + COH + BΣ0
3 is a Π1

1-conservative extension of

RCA0 + BΣ0
3.

To obtain a conservation result for D2, we will use the basis theorem for RT2 from the

computability theoretic view point.

Theorem 3.4 (Cholak/Jockusch/Slaman[6]). For every ∆0
2-partition

⊔
i<k Ai = ω, there

exists an infinite low2 set X ⊆ ω such that X ⊆ Ai for some i < k.

Here, a set X ⊆ ω is said to be low2 if X ′′ = 0′′. If X is low2, then Σ0
3 predicate relative

to X is just Σ0
3, thus X preserves BΣ0

3. Therefore, if the above theorem is formalizable

within RCA0 + BΣ0
3, one can obtain a definable solution for each instance of D2 which

preserves BΣ0
3. This is actually possible, but not directly. Here, we will work within a

nonstandard model (M,S) |= BΣ0
3, and consider a ∆0

2-partition
⊔

i<k Ai = M for some

k ∈M .

The first obstruction is that to construct a low2 set, we essentially use 0′′-primitive

recursion, which requires IΣ0
3, but we only have BΣ0

3. To prove Theorem 3.4, one constructs

an approximation of a solution G0 ⊆ G1 ⊆ . . . , and at each stage, decides one Σ0
2-formula

ψe(G) by using the idea of Mathias forcing. However, because of the lack of IΣ0
3 in M , the

construction stages may not cover the whole M , i.e., {j | Gj exists} would form a proper

Σ0
3-cut of M . To overcome this situation, we can use Shore blocking argument, namely,

we will decide finitely many Σ0
2-formulas up to the use of the previous stage. Then, one

can decide all Σ0
2-formulas before the construction ends.

Another obstruction is an essential use of Σ0
3-least number principle. In the original

construction, one would first try constructing the solution on color 0, and if it fails, then
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try color 1 with using the information from the previous failure, and repeat this process.

However, without IΣ0
3, one cannot repeat this for arbitrary many colors until the construc-

tion works since the number of color may be nonstandard. Thus, we have to construct

possible solutions for all colors simultaneously. Then, BΣ0
3 is just enough to guarantee

that the construction works for at least one color.

Formalizing these ideas, we have the following.

Theorem 3.5. For any (M ;X) |= BΣ0
3 and for every ∆X

2 -partition
⊔

i<k Ai = M , there

exists an unbounded set G ⊆ M which is ∆X
3 -definable in (M ;X) such that G ⊆ Ai for

some i < k, and (M ;X,G) |= BΣ0
3.

Now, starting from a model (M ;X) |= BΣ0
3, one can obtain S ⊆ P(M) with X ∈ S

such that (M,S) |= RCA0 + D2 + BΣ0
3 by using the above theorem repeatedly. Thus, we

have the following.

Corollary 3.6. RCA0 + D2 is a Π1
1-conservative extension of RCA0 + BΣ0

3.

Therefore, by the amalgamation of the conservation theorem mentioned avobe, we have

Theorem 3.1.

4 Further studies

About the proof-theoretic/first-order strength of Ramsey’s theorem for pairs, there are

several more important questions to be considered.

4.1 The first-order part of RT2
2

By Theorem 3.1, we already know that the first-order part of WKL0 + RT2 is BΣ0
3, but we

still don’t know what the first-order part of WKL0 + RT2
2 is.

Question 4.1. Is WKL0 + RT2
2 a Π1

1-conservative extension of RCA0 + BΣ0
2?

Since WKL0 + RT2
2 implies BΣ0

2, BΣ0
2 is the weakest possible system which may be

the first-order part of WKL0 + RT2
2. To prove Π1

1-conservation, we usually consider the

following version of ω-extension property.

Question 4.2. For given (M,S) |= RCA0 +BΣ0
2 and X ∈ S, is there S̄ ⊆ P(M) such that

X ∈ S̄ and (M, S̄) |= WKL0 + RT2
2?

One may assume that (M,S) is a countable recursively saturated model. Unfortunately,

our proof of Theorem 2.1 does not provide any information about the possibility of the

existence of such extension. On the other hand, one can generalize Theorem 2.2 and obtain

a characterization for the Π̃0
4-part of WKL0 + RT2

2.
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Definition 4.3 (RCA0). Let f : N → N such that limx→∞ f(x) = ∞. Then, we define the

notion of f-m-density as follows.

• A finite set X is said to be f -0-dense if |X| > minX.

• A finite set X is said to be f -m + 1-dense if for any coloring P : [X]2 → 2, there

exists a P -homogeneous set Y ⊆ X such that Y is f -m-dense and for any x ∈
[minY,maxY ], f(x) > minX.

As same as the usual density notion, “X is f -m-dense” can be expressed by a Σ0
0

formula. Let mPH2
2
+ be the assertion “for any f : N → N such that limx→∞ f(x) = ∞,

and for any infinite set X ⊆ N, there exists a finite set F ⊆ X such that F is f -m-dense.”

Then we have a modification of Theorem 2.2 as follows.

Theorem 4.1. WKL0 + RT2
2 is a Π̃0

4-conservative extension of RCA0 + BΣ0
2 + {mPH2

2
+ |

m ∈ ω}.

Question 4.4. Is mPH2
2
+ provable within RCA0 + BΣ0

2 for any m ∈ ω?

If the answer is positive, then we know that WKL0 + RT2
2 is Π̃0

4-conservative over RCA0 +

BΣ0
2.

4.2 Feasibility of the conservation results

Our conservation results are proved by model theoretic arguments. Unfortunately, that

doesn’t mean any feasibility of the conservation. For example, if we have a proof for a

Π̃0
3-sentence ψ from WKL0 + RT2

2, then can we find a proof for ψ from RCA0 in a feasible

way? Formally, we can ask the following.

Question 4.5. Is there a polynomial proof transformation for the Π̃0
3-conservation be-

tween RCA0 and WKL0 + RT2
2?

Question 4.6. Is there a polynomial proof transformation for the Π1
1-conservation be-

tween RCA0 + BΣ0
3 and WKL0 + RT2?

For the latter case, it is actually not so difficult to find a polynomial proof transforma-

tion. By the proof of Theorem 3.5, there is a canonical way to construct a ∆0
3-definable

solution for RT2 which preserves BΣ0
3 within RCA0 + BΣ0

3. Thus, one can always use the

solution for RT2 within RCA0 + BΣ0
3 as if RT2 is available, and WKL is also available

within RCA0 + BΣ0
3 in a similar way (see [10]). This idea provides a direct interpretation

of RT2 within RCA0 + BΣ0
3.

For Question 4.5, the situation is more complicated. Our proof of Theorem 2.1 depends

on the indicator argument, which essentially uses a nonstandard model and its initial seg-

ment which is not definable in the ground model, but in general, the use of nonstandard
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models may bring some conservation result with a super-exponential speed-up. Recently,

Ko lodziejczyk, Wong and the author studied this question and obtained a reformulation of

the indicator argument by means of forcing. Generally speaking, if a model construction

for a conservation theorem is provided by forcing, then one would often obtain a poly-

nomial proof transformation as in Avigad[1]. In our case, a canonical polynomial proof

transformation for the conservation between RCA0 and WKL0 +RT2
2 is available by a com-

bination of forcing for the indicator argument plus quantitative proof for Theorem 2.4.

Consequently, feasible versions of the conservation results are available in both cases.
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