
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Efficient Enumeration of Flat-Foldable Single

Vertex Crease Patterns

Author(s) Ouchi, Koji; Uehara, Ryuhei

Citation
IEICE TRANSACTIONS on Information and Systems,

E102-D(3): 416-422

Issue Date 2019-03-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/16094

Rights

Copyright (C)2019 IEICE. Koji Ouchi and Ryuhei

Uehara, IEICE TRANSACTIONS on Information and

Systems, E102-D(3), 2019, 416-422.

http://www.ieice.org/jpn/trans_online/

Description



416
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

PAPER Special Section on Foundations of Computer Science — Algorithm, Theory of Computation, and their Applications —

Efficient Enumeration of Flat-Foldable Single Vertex Crease
Patterns∗

Koji OUCHI†a), Nonmember and Ryuhei UEHARA†b), Member

SUMMARY We investigate enumeration of distinct flat-foldable crease
patterns under the following assumptions: positive integer n is given; every
pattern is composed of n lines incident to the center of a sheet of paper;
every angle between adjacent lines is equal to 2π/n; every line is assigned
one of “mountain,” “valley,” and “flat (or consequently unfolded)”; crease
patterns are considered to be equivalent if they are equal up to rotation and
reflection. In this natural problem, we can use two well-known theorems
for flat-foldability: the Kawasaki Theorem and the Maekawa Theorem in
computational origami. Unfortunately, however, they are not enough to
characterize all flat-foldable crease patterns. Therefore, so far, we have to
enumerate and check flat-foldability one by one using computer. In this
study, we develop the first algorithm for the above stated problem by com-
bining these results in a nontrivial way and show its analysis of efficiency.
key words: computational origami, enumeration algorithm, flat foldability,
Kawasaki theorem, Maekawa theorem

1. Introduction

Recent origami is a kind of art, and origamists around the
world struggle with their problems; what is the best way to
fold an origami model? One of these problems is the issue
of a unit of angle that appears in the origami model. Some
origamists restrict themselves to use only multiples of 22.5◦,
15◦ or some other specific angle which divides 360◦. A non-
trivial example, which was designed by the first author, is
shown in Fig. 1. It is based on a unit angle of 15◦. Once
origamists fix the unit angle as (360/n)◦ for suitable pos-
itive integer n, their designs are restricted to one between
quite real shapes and abstract shapes, which is the next mat-
ter in art.

When we are given a positive integer n, we face a com-
putational origami problem which is interesting from the
viewpoints of discrete mathematics and algorithms. We con-
sider the simplest origami model; all crease lines are inci-
dent to the single vertex at the center of origami, and each
angle between two creases is a multiple of (360/n)◦. We are
concerned with only flat-foldable crease patterns.

A crease pattern is said to be flat-foldable if and only
if there exists an assignment of mountain and valley to each
crease line so that after folding along the assignment, we

Manuscript received March 20, 2018.
Manuscript revised July 26, 2018.
Manuscript publicized October 31, 2018.
†The authors are with the School of Information Science, Japan

Advanced Institute of Science and Technology, Nomi-shi, 923–
1292 Japan.

∗A preliminary version was presented at WALCOM 2017.
a) E-mail: k-ouchi@jaist.ac.jp
b) E-mail: uehara@jaist.ac.jp

DOI: 10.1587/transinf.2018FCP0004

can have a flat folded sheet of paper without penetrating it-
self. We here note that the ordering of the layers of paper
is not given, and it is not easy to compute it even if the as-
signment is given. When a mountain or valley assignment
to every crease line is given, the flat-foldability can be com-
puted in linear time [1], [2]. In fact, the algorithm also gives
us the ordering of the layers at the same time. However, its
rigorous proof is not so simple, which is the main topic of
Chapter 12 in [2]. Roughly speaking, the algorithm repeat-
edly folds and glues the locally smallest angle in each step.
In other words, we have no mathematical characterization
for this problem, and we have to check one by one.

The problem of computing a folding for a crease pat-
tern that does not contain a specification of whether folds
are mountains or valleys is very different from the case that
a mountain and valley assignment is given. Hull investigated
this problem from the viewpoint of counting [3]. Precisely,
he considered the number of flat-foldable assignments of
mountain and valley to a given crease pattern of n lines
which were incident to the single vertex. In [3], he gave
tight lower and upper bounds. These bounds are given in
two extreme situations; one is given in the case that all n
angles are different, and the other is given in the case that
all n angles are equal to each other. From the viewpoint of
origami design, we are interested in the case between these
two extreme situations. To deal with reasonable situations
between extreme ones, we slightly modify the input of the
problem. The input of our problem is a positive integer n,
and we restrict ourselves to the single vertex folding of unit
angle (360/n)◦. In order to investigate our problem, we as-
sign one of three labels — “mountain,” “valley,” and “flat”
— to each of n creases. When a crease line is labeled “flat,”
this crease line is not folded in the final folded state. In this
way, we can deal with the single vertex crease patterns of
unit angle equal to (360/n)◦, which is more realistic situa-
tion from the viewpoint of origami design.

Our aim is to enumerate all distinct flat-foldable assign-
ments of the three labels to n creases. In other words, our
algorithm eventually enumerates all flat-foldable crease pat-
terns with labels of “mountain” and “valley” of unit angle
(360/n)◦. We consider the sheet of paper is a disk, the ver-
tex is at the center of the disk, and two crease patterns are
considered to be equivalent if they can be equal up to rota-
tion and reflection (i.e., including turning over and exchang-
ing all mountains and valleys). Our algorithm enumerates
all distinct crease patterns under this assumption.

For flat-foldability of a given crease pattern, there

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



OUCHI and UEHARA: EFFICIENT ENUMERATION OF FLAT-FOLDABLE SINGLE VERTEX CREASE PATTERNS
417

Fig. 1 “Maple leaf” designed and folded by the first author (left). Its crease pattern is based on 15◦
unit angle (right).

are two well-known theorems in the area of computational
origami, which are called the Kawasaki Theorem and the
Maekawa Theorem (see [2, Chapter 12] for further details):

Theorem 1 (The Kawasaki Theorem): Let θi be an angle
between the ith and the (i + 1)st crease lines. We as-
sume that either mountain or valley is assigned to each
crease line. A single-vertex crease pattern defined by an-
gles θ1 + θ2 + · · · + θn′ = 360◦ is flat-foldable if and only
if n′ is even and the sum of the odd angles θ2i+1 is equal to
the sum of the even angles θ2i, or equivalently, either sum is
equal to 180◦: θ1+θ3+ · · ·+θn′−1 = θ2+θ4+ · · ·+θn′ = 180◦.

We note that the Kawasaki Theorem gives a necessary and
sufficient condition for flat-foldability, however, mountain-
valley assignments are not given. That is, we have to com-
pute foldable assignments for foldable crease pattern satis-
fying the Kawasaki Theorem. In order to compute a flat-
foldable assignment, we can use the Maekawa Theorem:

Theorem 2 (The Maekawa Theorem): We assume that a
single-vertex crease pattern defined by angles θ1 + θ2 + · · ·+
θn′ = 360◦ is flat-foldable under a mountain and valley as-
signment (that is, no “flat” is assigned). Then the number of
mountains and the number of valleys differ by ±2.

We again note that the Maekawa Theorem is a necessary but
not sufficient condition.

In the last decades, enumeration algorithms have been
well investigated, and many efficient enumeration algo-
rithms have been given, e.g., [4]–[6]. Using techniques that
follow above properties of origami, we construct an enumer-

ation algorithm for flat-foldable crease patterns for given n,
where each angle between two crease lines is a multiple of
(360/n)◦. As far as the authors know, this is the first algo-
rithm for the realistic computational origami problem. As a
result, we succeeded to enumerate flat-foldable crease pat-
terns up to n = 38 in a reasonable time.

2. Preliminaries and Outline of Algorithm

Based on the Kawasaki Theorem and the Maekawa Theo-
rem, for a given n, we can design the outline of our enumer-
ation algorithm as follows:

(1) Assign “crease” or “flat” to each of n crease lines inci-
dent to a single vertex so that the Kawasaki Theorem is
satisfied.

(2) For each “crease”, assign “mountain” or “valley” so that
the Maekawa Theorem is satisfied.

(3) Output the pattern if this crease pattern is flat-foldable.

Essentially, the outline consists of two different kinds of
enumeration problems in phases 1 and 2, and flat-foldability
checking in phase 3. We note that the algorithm reduces
equivalent crease patterns up to rotation and reflection in
each step.

A simple example is given in Fig. 2. For n = 8, we first
generate all possible crease lines in phase 1 which is de-
scribed in a binary string (in the figure, we only show one,
but there are exponentially many). Here “0” and “1” de-
note “crease” and “flat” respectively. Therefore, for a string
00011011, we have four crease lines in the shape in Fig. 2.



418
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

Fig. 2 Simple example for n = 8.

In phase 2, we assign mountain (M) or valley (V) to each
crease line. In phase 3, we check whether each crease pat-
tern with M/V assignments is flat-foldable or not, and output
the pattern if it is flat-foldable.

We have different issue for each phase. Especially in
phases 1 and 2, we have to consider two different problems
of symmetry (to reduce redundant output) and enumeration.

3. Description of Algorithm

Now we describe more details in each phase.

3.1 Phase 1: Assignment of “crease”/“flat”

In phase 1, we are given n crease lines, and we have to assign
“crease” or “flat” to them so that the assignment satisfies
the Kawasaki Theorem. Since the crease pattern cannot be
flat-folded for odd number n, without loss of generality, we
assume that n is even hereafter.

In this phase, we describe “crease” by 0 and “flat” by 1,
and consider a binary string. Then it is easy to see that, be-
fore checking the Kawasaki Theorem, we have to generate
all binary strings over Σ = {0, 1} efficiently reducing equiv-
alent rotations and reflections. To consider this problem, we
introduce the bracelet problem, which is a classic and ba-
sic problem in combinatorics. A bracelet is an equivalence
class of strings, taking all rotations and reversals as equiva-
lent. This is a special case of a necklace whose equivalence
is rotation only. In this paper, let the word bracelet also
denote the lexicographically smallest string of the equiv-
alence class and so does necklace. It is easy to observe
that our problem is now enumeration of binary bracelet of
length n. For bracelets, we have an optimal enumeration
algorithm [7]:

Theorem 3 (Sawada2001): Bracelets of length n can be
enumerated in constant amortized time.

That is, the algorithm in [7] runs in a time proportional to
B(n) which denotes the number of bracelets of length n.

We note that the values of the function B(n) are listed in
the OEIS (The On-line Encyclopedia of Integer Sequences;
http://oeis.org/) as A000029, and it is given as

B(n) =
∑

d divides n

2n/dφ(d)
2n

+ 2n/2−1 + 2n/2−2 (1)

for an even number n, where φ() is Euler’s totient function.

3.2 Phase 1: Satisfying the Kawasaki Theorem

After assigning “crease” or “flat” to each crease, we have
to check whether these crease lines satisfy the Kawasaki
Theorem or not. The Kawasaki Theorem states that the al-
ternating sum of angles should be equal to 0. This notion
corresponds to a kind of necklace in a nontrivial way as fol-
lows. We first observe that each angle θi is k× 360

n
◦

for given
even n. That is, θi consists of k unit angles. Now we regard
θi as the integer k, and we consider θ1, θ3, . . . as “white”,
and θ2, θ4, . . . as “black”. Then the total number of beads
is n, and the Kawasaki Theorem states that the number of
black beads is equal to the number of white beads. Precisely,
each sequence of n′ creases satisfying the Kawasaki Theo-
rem corresponds to a necklace with n beads such that (1) the
necklace consists of n/2 white beads and n/2 black beads,
and (2) the number of runs† of white beads (and hence black
beads) is n′. This notion is investigated as “balanced twills
on n harnesses” in [8] and listed in OEIS as A006840. Then
the number is given as follows:

Theorem 4 (Hoskins and Street 1982): The number of dis-
tinct balanced twills on n = 2k′ harnesses is

B′(2k′) =
1

8k′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
d divides n

d=2e

φ

(
k′

e

) (
2e
e

)

+
∑

d divides k′
φ

(
2k′

d

)
2d

+ 2k′
(
2 �k′/2�
�k′/2�

)
+ k2k′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

We note that Eq. (2) just gives us the numbers for each n, and
no concrete sets of creases. Therefore, we have to enumerate
them by ourselves. A straightforward approach is to insert a
test of the Kawasaki Theorem into Sawada’s algorithm [7].
The test computes

∑n′
i=1(−1)iθi and checks whether the value

is 0 or not. Note that n′ is the number of “creases”, and θi is
the angle between the ith and (i + 1)st creases as defined in
Theorem 1.

Fortunately, the test can be amortized if the straightfor-
ward approach is applied. Sawada’s algorithm is a recursive
function that always determines the letters in a string se-
quentially from smaller index to larger index. That means, if
the algorithm sets “crease” in a recursive call, we can com-
pute the angle between the new “crease” line and the prior
(and adjacent) “crease” line. It takes just constant time if

†A run is a maximal sequence of beads of the same color.



OUCHI and UEHARA: EFFICIENT ENUMERATION OF FLAT-FOLDABLE SINGLE VERTEX CREASE PATTERNS
419

the last index of “crease” line is passed to the recursive call.
The obtained angle is used to calculate

∑m
i=1(−1)iθi where m

is the index of the currently last “crease”. The alternative
sum can be updated in constant time by passing to the next
call the current value and either + or − to be used. When
the recursive call comes to output, the Kawasaki Theorem
holds if the alternative sum including the angle between the
last “crease” and the first “crease” is 0.

Now we have the following theorem:

Theorem 5: For a given even number n, phase 1 can be
done in O(B(n)) time, where B(n) is the number of bracelets
of length n.

Furthermore, we can prune the search tree with the fol-
lowing theorem:

Theorem 6: If a given single vertex crease pattern is flat-
foldable,

∣∣∣∑m
i=1(−1)iθi

∣∣∣ ≤ ∑n′
j=m+1 θ j holds for any integer m

where 1 ≤ m ≤ n′ − 1.

3.3 Phase 2: Assignment of “mountain”/“valley”

In this phase, we inherit a binary string of length n from the
phase 1, which describes “crease” (=0) or “flat” (=1). We
note that the binary string is the lexicographically smallest
one among rotations and reversals. Then we translate it to a
set of other strings that represent the assignments of “moun-
tain” and “valley” and the angles between adjacent creases.
The first step can be described as follows:

(2a) For each adjacent pair of 0s, replace 1s between them
by the number of 1s plus 1. For example, the string
00011011 in Fig. 2 is replaced by 01010303, where the
positive (underlined) numbers describe the number of
unit angles there.

Then we assign mountain (= M) and valley (= V) to
each 0, but here we only consider the assignments that sat-
isfy the Maekawa Theorem. The Maekawa Theorem says
that the number of Ms and the number of Vs should dif-
fer by 2. To avoid symmetry case, we can assume that (the
number of Ms)−(the number of Vs)= 2. Thus the next step
is described as follows:

(2b) For the resulting string over {0, 1, 2, . . . , n − 1}, assign
all possible Ms and Vs to each 0 such that the num-
ber of Ms is 2 larger than the number of Vs. For
example, for the string 01010303, we obtain the set
of strings {V1M1M3M3,M1V1M3M3,M1M1V3M3,
M1M1M3V3}.
For a string s generated by step 2a, which describes an

unassigned crease pattern, we can have equivalent assigned
crease patterns. Precisely, if some rotation(s) or reversal(s)
of s is (are) equal to s, the result of step 2b may contain
equivalent assigned crease patterns. For example, in the
set of strings {V1M1M3M3,M1V1M3M3,M1M1V3M3,
M1M1M3V3}, we can observe that V1M1M3M3 is a

crease pattern which is the mirror image of a crease pat-
tern M1M1V3M3, hence we consider they are equivalent.
(In Fig. 2, after phase 2, the crease pattern at the center has
its mirror image, and it should be omitted.) To avoid such
equivalent patterns, we perform the following:

(2c) For the resulting string s′ over {M,V, 1, 2, . . . , n − 1}
after step 2b, generate the lexicographically smallest
string among rotations and reversals of s′, which we
call s′small, and store all s′small. s′ is discarded if s′small
has been already obtained. Note that M < V < 1 <
2 < · · · .
In this process, we take a caching strategy to detect

duplications; For every s′, we generate and store a repre-
sentative of the bracelet equivalence class to which s′ be-
longs, and we refer to the representatives generated so far
to check whether we have obtained an equivalent of s′ or
not. The string s′small can be one of such representatives
because the lexicographically smallest string is easy to be
generated and unique among rotations and reversals. Be-
cause of the exponential number of strings to be cached,
we use a trie [9], [10] (a.k.a. prefix tree) that is a space-
efficient data structure for storing many strings. The reason
to store s′small is that some assignments can be unique but
not the lexicographically smallest. For example, assume that
preprocessed “crease”/“flat” assignment “010101010202” is
generated by phase 2b, which is the smallest among its
equivalents. Then “V1M1M1M1V2M2” is a distinct crease
pattern on it. However, the equivalent smallest string is
“M1M1M1V2M2V1” which should be generated from dis-
carded “010101020201.”

To generate s′small, we use Booth’s least circular string
algorithm [11]. It is a linear time algorithm to find the small-
est string among rotations of a given string. Note that the al-
gorithm doesn’t care about reversals. Precisely, Booth’s al-
gorithm finds the right index of the lexicographically small-
est string for a given circular string of length n in linear time.
The right index is the start index of a circular string that may
be larger than (or on the “right” side of) the original start in-
dex 0, which is a conventional description in the field of
string algorithms. To deal with both rotation and reversal,
the step 2c can be implemented as follows:

(2c-1) For the resulting string s′ over {M,V, 1, 2, . . . , n − 1}
after step 2b, let s′R is the reverse string of s′. Prepare
an empty trie.

(2c-2) Using Booth’s algorithm, find the right index i of a
circular string s′ such that the string starting from the
index i is the lexicographically smallest string among
all rotations of s′. If i is not the first letter in s′, we
discard this s′ since it is redundant.

(2c-3) Similarly, find the right index j of the lexicograph-
ically smallest string among all rotations of s′R. The
index j gives the smallest string among the equivalents
of reversals.

(2c-4) Select the smaller string as s′small from the result of
(2c-2) and (2c-3): rotation of s′ starting from i and ro-
tation of s′R starting from j. If s′small is already in the



420
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

trie, discard s′. Otherwise append s′small to the trie and
s′ goes to phase 3 to be processed.

This test takes O(n) time because the steps don’t con-
tain loops and recursions, but it runs linear time subrou-
tines just constant times, which are Booth’s algorithm, string
comparison, and operations on a trie. Summarizing, we have
the following theorem:

Theorem 7: For a given crease pattern from phase 1 based
on n unit angles, we can generate all distinct assignments of
mountain and valley that satisfy the Maekawa Theorem in
O(nC(n)) time with space linear in the product of n and the
number of such assignments, where C(n) is

(
n

n/2−1

)
.

Proof. The number of lines in the crease pattern is at most
n, and the number of Ms is 2 larger than the number of Vs.
Thus, the number of strings s′ over {M,V, 1, 2, . . .} of length
at most n with the constraint for the number of Ms and Vs
is at most

(
n

n/2−1

)
. Other management can be done in linear

time, which implies the time complexity in the theorem. The
space complexity is linear in the maximum number of nodes
in the trie used in the algorithm, which can be suppressed by
the product of n and the number of desired assignments.

3.4 Phase 3: Test of Flat-Foldability

In this phase, we check if the resulting string s′ over
{M,V, 1, 2, . . . } is flat-foldable or not. For this problem,
Demaine and O’Rourke give a linear time algorithm [2,
Chap 12] . Therefore, we can perform this phase in linear
time. Roughly, the algorithm is simple; it finds a local min-
imal angle, folds two creases on the boundary of the small
fan-shape, glues it, and repeats until all creases are folded.
However, the proof of the correctness of this algorithm is
not easy; as mentioned at the footnote in [2, page 204] , the
rigorous proof is first done by Demaine and O’Rourke in [2,
Chap 12] .

We obtain the following obvious upper bound of the
number of the outputs in this phase by integration of the
observations in Sects. 3.2 and 3.3:

Theorem 8: For a given even number n, the number of dis-
tinct flat-foldable mountain and valley assignments with unit
angle (360/n)◦ is O

(
B′(n)

(
n

n/2−1

))
where B′(n) is the number

of distinct balanced twills on n harnesses (see Eq. (2)).

3.5 Analysis of Algorithm

The correctness of our algorithm relies on the algorithms
used in each phase as described above. Here we consider
its time complexity and space complexity of computing all
outputs. Our main theorem is the following:

Theorem 9: For a given even number n, all distinct flat-
foldable mountain and valley assignments with unit an-
gle (360/n)◦ can be done in O

(
nB(n)

(
n

n/2−1

))
time with

O
(
n
(

n
n/2−1

))
space, where B(n) is the number of bracelets

of length n (see Eq. (1)).

We note that the order of space complexity may be far from
strict one because the actual required space for the compu-
tation depends on the behavior of the trie used in phase 2.

3.6 Parallel Processing

Our algorithm can be easily parallelized because each out-
put of Phase 1 is consumed by Phase 2 and there is no other
relation between the two phases. We implement the parallel
processing as a master-worker model. The master process
runs Phase 1 and passes the outputs one by one to worker
processes. Each worker process runs Phase 2 and 3 for given
“crease”/“flat” assignment, and outputs the flat-foldable sin-
gle vertex crease patterns.

4. Experimental Results

As shown in Theorem 8, the upper bound of the number
of distinct flat-foldable mountain and valley assignments is
exponential if (360/n)◦ unit angle is introduced. Exact val-
ues for each n are difficult to estimate theoretically. There-
fore, we here show experimental results. The program is
written in C++ using its default STL library. We use 96
nodes (576 cores, 12TB memory) of a supercomputer SGI
UV3000. The computation time is at most 5 days for each n.

4.1 The Number of Crease Patterns

The exact numbers of distinct patterns obtained at each
phase are shown in Table 1 and Fig. 3. As mentioned in
Sect. 3.2, the result of phase 1, which enumerates “crease”/
“flat” assignments satisfying the Kawasaki theorem, coin-
cides with the sequence listed in OEIS as A006840. The
counting results at the other phases are different from any
existing sequences in OEIS, that is, we find totally new se-
quences in this study.

Fig. 3 The number of enumerated patterns. The number of lines in a
pattern is even number from 2 to n.



OUCHI and UEHARA: EFFICIENT ENUMERATION OF FLAT-FOLDABLE SINGLE VERTEX CREASE PATTERNS
421

Table 1 The number of enumerated patterns. The number of lines in a
pattern is even number from 2 to n.

n Phase 1 Phase 2 Phase 3
2 1 1 1
4 2 2 2
6 3 7 6
8 7 27 20

10 13 143 87
12 35 837 420
14 85 5529 2254
16 257 38305 12676
18 765 276441 73819
20 2518 2042990 438795
22 8359 15396071 2649555
24 28968 117761000 16188915
26 101340 912100793 99888892
28 361270 7139581543 621428188
30 1297879 56400579759 3893646748
32 4707969 449129924559 24548337096
34 17179435 3601920245329 155622071065
36 63068876 29069099909934 991375878185
38 232615771 235928559206883 6343073841027
40 861725794 1924593128183050 -
42 3204236779 - -

Table 2 Distribution of the patterns obtained at phase 1.

n #line of each pattern sum
2 4 6 8 10 12 14 16 18 20

4 1 1 2
6 1 1 1 3
8 1 3 2 1 7

10 1 3 6 2 1 13
12 1 6 13 11 3 1 35
14 1 6 26 30 18 3 1 85
16 1 10 46 93 74 28 4 1 257
18 1 10 79 210 275 145 40 4 1 765
20 1 15 124 479 841 716 280 56 5 1 2518

Fig. 4 The rate of solutions against possible patterns at each phase.

4.2 Solution Space

We measure the rate of the number of solutions against that
of possible patterns at each phase (see Table 3 and Fig. 4),
which suggests how difficult the problems are. We can see
that the solution spaces are very sparse at each phase. There

Table 3 #solution/#possible at each phase.

n #Phase1/2n #Phase2/3n #Phase3/3n

4 0.125 0.024691358 0.024691358
6 0.046875 0.009602195 0.008230453
8 0.02734375 0.004115226 0.003048316

10 0.012695313 0.002421718 0.001473353
12 0.008544922 0.001574963 0.000790304
14 0.005187988 0.001155977 0.000471255
16 0.003921509 0.000889847 0.000294471
18 0.002918243 0.000713543 0.000190540
20 0.002401352 0.000585924 0.000125845
22 0.001992941 0.000490617 8.44317E-05
24 0.001726627 0.000416957 5.73202E-05
26 0.001510084 0.000358831 3.92975E-05
28 0.001345836 0.000312088 2.71641E-05
30 0.001208744 0.000273934 1.89112E-05
32 0.001096159 0.000242377 1.32477E-05
34 0.000999975 0.000215979 9.33144E-06
36 0.000917773 0.000193672 6.60501E-06
38 0.000846251 0.000174652 4.69561E-06
40 0.000783735 0.000158303 -
42 0.000728559 - -

are 2n possible “crease”/“flat” assignments at phase 1. Only
about 4.7% is the solution for phase 1 if n = 6. It decreases
significantly and gets less than 1% for n ≥ 12. The rates at
phase 2 and phase 3 are against 3n since we consider “moun-
tain”/“valley”/“flat” assignments at these phases. These two
rates tend to decrease similarly to that of phase 1 and are
much smaller, e.g., 2.5% at phase 2 when n = 6. Such rate
at every phase seems to be exponential to n according to
Fig. 4.

5. Concluding Remarks

We develop the first algorithm for enumerating distinct flat-
foldable single vertex crease patterns. We also experimen-
tally show how many such patterns there are, which is done
the first time as well. Improving the algorithm and investi-
gating further for the counting problems are the future work.
For example, rather than Sawada’s algorithm in Theorem 3,
enumeration of the sequences stated in Theorem 4 may di-
rectly improve the running time of our algorithm drastically.

We also examine the rates in each phase; experi-
mentally, they seem to decrease exponentially. Neverthe-
less, we conjecture that there are exponentially many flat-
foldable crease patterns. Showing theoretical lower and up-
per bounds also remains open.

Acknowledgments

We would like to thank Yota Otachi for his fruitful dis-
cussions and comments. This work is partially supported
by MEXT/JSPS Kakenhi Grant Number 26330009 and
24106004, and JAIST Research Grant 2017 (Houga).

References

[1] M. Bern and B. Hayes, “The complexity of flat origami,” Proc.
7th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp.175–183,
ACM, 1996.



422
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

[2] E.D. Demaine and J. O’Rourke, Geometric Folding Algorithms:
Linkages, Origami, Polyhedra, Cambridge University Press, 2007.

[3] T. Hull, “Counting mountain-valley assignments for flat folds,” Ars
Combinatoria, vol.67, pp.175–187, 2003.

[4] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol.65, no.1-3, pp.21–46, 1996.

[5] M.J. Zaki, “Efficiently mining frequent trees in a forest,” Proc.
Eighth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp.71–80, ACM, 2002.

[6] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient algorithm
for enumerating closed patterns in transaction databases,” Interna-
tional Conference on Discovery Science, Lecture Notes in Computer
Science, vol.3245, pp.16–31, Springer, 2004.

[7] J. Sawada, “Generating bracelets in constant amortized time,” SIAM
J. Comput., vol.31, no.1, pp.259–268, 2001.

[8] W.D. Hoskins and A.P. Street, “Twills on a given number of har-
nesses,” J. Austral. Math. Soc. (Series A), vol.33, no.1, pp.1–15,
1982.

[9] R. De La Briandais, “File searching using variable length
keys,” IRE-AIEE-ACM ’59, Western Joint Computer Conference,
pp.295–298, ACM, 1959.

[10] E. Fredkin, “Trie memory,” Commun. ACM, vol.3, no.9,
pp.490–499, 1960.

[11] K.S. Booth, “Lexicographically least circular substrings,” Informa-
tion Processing Letters, vol.10, no.4-5, pp.240–242, 1980.

Koji Ouchi is a doctoral student in School
of Information Science, Japan Advanced Insti-
tute of Science and Technology (JAIST). He re-
ceived B.E. and M.E. degrees from Hokkaido
University, Japan, in 2010 and 2012, respec-
tively. He was an engineer in SEC Corporation
Ltd. during 2012–2016. He entered JAIST in
2016. His research interests include computa-
tional origami, enumeration algorithms, and ma-
chine learning.

Ryuhei Uehara is a professor in School
of Information Science, Japan Advanced Insti-
tute of Science and Technology (JAIST). He re-
ceived B.E., M.E., and Ph.D. degrees from Uni-
versity of Electro-Communications, Japan, in
1989, 1991, and 1998, respectively. He was a re-
searcher in CANON Inc. during 1991–1993. In
1993, he joined Tokyo Woman’s Christian Uni-
versity as an assistant professor. He was a lec-
turer during 1998–2001, and an associate pro-
fessor during 2001–2004 at Komazawa Univer-

sity. He moved to JAIST in 2004. His research interests include compu-
tational complexity, algorithms and data structures, and graph algorithms.
Especially, he is engrossed in computational origami, games and puzzles
from the viewpoints of theoretical computer science. He is a member of
EATCS, and vice chair of EATCS Japan Chapter.

http://dx.doi.org/10.1017/cbo9780511735172
http://dx.doi.org/10.1016/0166-218x(95)00026-n
http://dx.doi.org/10.1145/775056.775058
http://dx.doi.org/10.1007/978-3-540-30214-8_2
http://dx.doi.org/10.1137/s0097539700377037
http://dx.doi.org/10.1017/s1446788700017547
http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.1016/0020-0190(80)90149-0

