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Abstract

Representing texts into vector space is revolutionary to Natural Language Processing,
which brings the ability to apply deep learning, the very popular and very powerful
machine learning technique, on texts which was previously infeasible. Remarkable
works have been done on this topic, namely, word2vec, GloVe, doc2vec, deepwalk,
and dependency-based word embeddings. Theirs models represent texts into vector
space which enabling the computability or compatibility of texts with well-known deep
learning models which were previously only applicable for digital data such as im-
ages, speeches, etc. word2vec/GloVe models context distribution of each word via the
concept of surround context when a word is used in various text sequences. dependency-
based word embedding is another work that builds the surround context by traversing
through the dependency tree of a sentence, hence, takes care about positionally distant
dependencies.

While it is convenient to have word vectors, it is usually not straightforward to
compose a document vector from its word vectors. Based on specific tasks, document
vectors are learned with certain algorithms or deep learning architecture specialized
for the said tasks. doc2vec leverages this problem by introducing document-context
presence into each word-context and learning the vector representations altogether.
However, the implementation does not cover internal structures of the document. Be-
sides, deepwalk is another work on context-based vector representation by learning
node vectors of a given graph. Similar to dependency-based word embedding, deepwalk
focuses on building the surround contexts of each node by performing random walks
through the node.

Document structures can contain relationships including (but not limited to) hierar-
chy (sections, paragraphs, sentences), discourse (relationships between text-pairs such
as agreement, contradiction, or equivalence), and cross-references, though, the previous
works only cover a part or none of structural properties of documents.

We aim to build document embedding frameworks that can capture the dependencies
within a document in multiple levels of hierarchy: words, sentences, and so on. We
develop several methods for capturing those dependencies including context expansion
on document hierarchy, pq-gram on dependency trees, rhetorical structure, and multi-
level contextual features for encoded summarization.

We applied our methods successfully on tasks related to sentence pair modeling and
information retrieval.

Keywords: Deep Learning, Representation Learning, Information Retrieval,
Legal Domain, Case Law.
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Chapter 1

Introduction

1.1 Research Direction
Representing texts into vector space is revolutionary to Natural Language Processing,
which brings the ability to apply deep learning, the very popular and very powerful
machine learning technique, on texts which was previously infeasible. Remarkable
works have been done on this topic, namely, word2vec, GloVe, doc2vec, deepwalk, and
dependency-tree-based word embeddings. Theirs models represent texts into vector
space which enabling the computability or compatibility of texts with well-known deep
learning models which were previously only applicable for digital data such as images,
speeches, and so on.

While it is convenient to have word vectors, it is usually not straightforward to
compose a document vector from its word vectors. Based on specific tasks, document
vectors are learned with certain algorithms or deep learning architecture specialized
for the said tasks. doc2vec leverages this problem by introducing document-context
presence into each word-context and learning the vector representations altogether.
However, the implementation does not cover internal structures of the document. Be-
sides, deepwalk is another work on context-based vector representation by learning node
vectors of a given graph. Similar to dependency-tree-based word embeddings, deepwalk
focuses on building the surround contexts of each node by performing random walks
through the nodes of a dependency tree.

We are interested in two parts of representation learning: input information and
target embedding. For example, word2vec learns word representation with the input
is contextual information bounded by a fixed window size and the target is to predict
words in a given context. In our study, input contains document structure information
such as document hierarchy, discourse relations, and references on top of the common
sequential structure representing temporal nature of comprehending texts. The target
of the representation learning is, then, defined to direct the representation to certain
vector space embedding the semantics/properties of the target. In our study, the
target can be either common, for example context prediction in word2vec, or task
specific, for example text-pair modeling, and summarization. The representation can
be learned and used directly in the originated task or be adapted to other tasks, for
example, doc2vec is learned to predict document contexts and can be applied to measure
document similarity and predict document relevance.

1



1.1.1 Structural Encoding
Document structures can contain relationships including (but not limited to) hierarchy
(sections, paragraphs, sentences), discourse (relationships between text-pairs such as
agreement, contradiction, or equivalence), and cross-references, though, the previous
works only cover a part or none of structural properties of documents. We aim to
build document embedding frameworks that can capture the dependencies within a
document in multiple levels of hierarchy: words, sentences, and so on. We develop
several methods for capturing those dependencies including context expansion on doc-
ument hierarchy, pq-gram on dependency trees, and multi-level contextual features for
encoded summarization.

Sentence encoding is one important step in common deep neural architecture based
text modeling, which maps a lexical sentence into its embedding in computational real-
value space. The sentence embeddings, based on tasks or learning problems, contain
useful information for identifying themselves. Sentence embeddings are usually built
from their content word embeddings with certain composition, for instance, sequential
composition and tree composition.

Sequential composition captures the temporal structure of the sentence, the natu-
ral way of speaking/writing/listening/reading a sentence. This composition, however,
does not explicitly capture syntactic constraints of how to compose the meaning of
the sentence, thus minor sequence modification may lead to major shift in sentence
embedding.

Tree composition captures explicit word/phrase relationship, for instance, syntactic
trees, and dependency trees. The composition contains high level semantic dependency
which is not trivial to neural networks even with the ability of automatically feature
learning, where the unsupervised parsers are nowhere near supervised parsers [1, 2].
Hence, tree composition provides more information of how to interpret the sentence to
learning models which do not know how to do so from initialization.

In unsupervised learning fashion, we present a method to represent a given docu-
ment’s paragraphs, sentences, words and itself into a vector space where contextual
similarity can be measured. The method learns the vector representing a given text
(documents, paragraphs, sentences, words) with its context expanded from its child
contexts and its references. For example, the context of a paragraph is expanded to
include the contexts of its sentences. Similarity can be measured at different context
levels, and then supports text comparison at variant scope. As a case study, we con-
ducted experiments on COLIEE 2017 dataset with external large text corpus. The
results showed the effect of context expansion and common knowledge inclusion to
retrieval. Since this is an unsupervised learning method, performance still has room
for improvement though current result is not yet competitive to the state of the art.

In supervised learning fashion, we present our sentence encoding approach that uses
local contexts constructed from pq-gram representations of a sentence’s dependency
tree. The context localization scope can be adjusted through parameters p, the depen-
dency depth, and q, the dependency width, which allows controlling context-sensitivity.
We show competitive results of using our sentence encoding approach for sentence-pair
modeling tasks.

Aside from the composition approach, we can further build an intermediate com-
position step: local contexts. Local contexts are the surrounding words of a target
word, where the meaning of the target word can be made clearer or less ambiguous.
In other words, the composition process disambiguates each word before composing it

2



into sentence embeddings. The local contexts can be formed by extracting n-grams
(in sequential composition), or head-children subtrees (tree composition). Besides, a
sentence with a chosen composition structure, can be decomposed into a set of local
contexts, which results in more relaxed representation which is less sensitive to word
change and may benefit the task regarding similarity/relatedness.

We propose to represent a sentence as pq-grams of its dependency tree. This rep-
resents sentence local contexts with parameters p, the dependency depth, and q, the
dependency width. Our approach utilizes tree composition but not with head-children
fashion. In the head-children fashion, local contexts contain one head (target word)
and all its children, whereas, our approach produces local contexts with ancestors of
the target word and only a limited number of its children, described as parameters
(p, q).

We apply the encoding approach to sentence-pair modeling tasks including recog-
nizing textual entailment and measuring relatedness. We adapt convolutional neural
networks (CNNs), which are successfully used in text modeling [3, 4, 5], to encode pq-
gram representation into latent space. Then, we apply various sentence-pair encoding
composition algorithms, namely, basic pooling, global comparison, local comparison
with pq-alignment. The inclusion of multi-pq alignment, where we compute alignment
of pq-gram encodings from different (p, q) values, shows good results in textual entail-
ment and text relatedness tasks.

Sequential and tree composition approaches are used interchangeably or combined
together in sentence encoding. In sequential composition approach , common archi-
tecture are based on long short-term memories (LSTMs) [6], and CNNs [3, 4]. LSTMs
process a sentence from the beginning to the end where each word is encoded from
its initial embedding and current temporal state composed from the previous words.
Bidirectional-LSTMs (biLSTMs) process the sentence from both directions, then, pro-
duces richer representation. CNNs process a sentence by applying their shared filters
to each n-gram region. In tree composition approach, LSTMs and CNNs are designed
to operate over trees. Tree-LSTMs process a sentence’s tree from leafs to root [7, 6, 8].
Tree-CNNs process a sentence’s tree by applying their shared filters to each sub-tree
consisting of one head word and its children [5].

We approach sentence encoding in a way that allows capturing clear semantic of the
local contexts/regions of a sentence. Our approach benefits the tasks, for example,
sentence-pair modeling tasks such as textual entailment and text relatedness, whose
focus is on some parts of the sentences with various degrees of reception. One way that
we can represent the reception degree is using CNNs with multiple window sizes which
capture local context at multiple levels of granularity. The CNNs on the sequential
representation of a sentence, however, also capture n-gram regions with unclear se-
mantic. We sought out the method to not only capture local contexts but also capture
regions with clear semantic. We, then, look at the dependency tree of a sentence, which
represents the syntactic/semantic relations of each word-pair. Besides, the sub-trees
(which are also dependency trees) of the dependency tree represent a clear semantic.
Furthermore, a node is added to or removed from a dependency tree, the specificness
of the semantic represented by that tree is, then, increased/reduced. This is where we
adopt pq-gram model as a method for representing local contexts with clear seman-
tic from dependency trees and multiple pq values for multiple granularity. We then
use CNNs to encode pq-grams into latent space where pq-grams can be compared and
aggregated to later provide sentence-pair relationship for tackling the sentence-pair

3



1. Farmington police had to help control 
traffic recently

2. When hundreds of people lined up to be 
among the first applying for jobs at the 
yet-to-open Marriott Hotel.

3. The hotel’s help-wanted announcement 
– for 300 openings – was a rare 
opportunity for many unemployed.

4. The people waiting in the line carried a 
message, a refutation, of claims that the 
jobless could be employed if only they 
shoed enough moxie.

5. Every rule has exceptions,

6. But the tragic and too-common tableaux 
of hundreds of even thousands of people 
snake-lining up for any task with a 
paycheck illustrates a lack of jobs,

7. Not laziness.

Figure 1.1.1: An example of parsing a text into rhetorical structure, copied from [9].

modeling tasks.

1.1.2 Rhetorical Information in Legal Case Documents
While sentence encoding relates to capturing internal sentence information, discourse
analysis relates to capturing sentence inter-relationship, a higher level in the document
hierarchy. On one hand, discourse analysis has high-impact applications in Natural
Language Processing, for instances, text summarization, sentiment analysis, question
answering. The output structures of the analysis contain high-level relationship of
between discourses and so provides valuable information to such the tasks. On the other
hand, deep learning has been shown effective towards Natural Language Processing
tasks including discourse analysis. Recent studies reveal challenging problems regarding
text-level discourse parsing, implicit discourse relations, etc. Further investigation
on linguistic features combined with auto-generated features from appropriate deep
learning architectures may help improve the efficiency of discourse paring models. The
discourse structure can be used to compose the graph structure of a document and then
benefits the learning of the encoded representation. Moreover, the applicability of deep
learning to discourse parsing can help the learning of the encoded representation by
providing not only the final discourse structure but also the parameters of the parsing
model.

We follow the idea of rhetorical structure theory [9]. The ultimate goal is to build a
system for automatic discourse structure parsing given a text block, which will result
in a rhetorical structure graph illustrated in Fig. 1.1.1. We approach this challenge
in two steps. The first step is to recognizing the potential rhetorical role or status of
each sentence in a text block. The second step is to link the sentences with the known
potential rhetorical role into the rhetorical structure graph. In this thesis, we tackle
the first step by constructing a sentence rhetorical role recognition system, then, we
further incorporate this system into a legal case retrieval system. Hachey et al. [10]
describe a task of determining the rhetorical status of each sentence in a given docu-
ment from a corpus of judgments of the UK House of Lords. The corpus is annotated
with rhetorical statuses described in Table 3.1.1 with 7 types: FACT, PROCEED-
INGS, BACKGROUND, FRAMING, DISPOSAL, TEXTUAL, and OTHER. Success-
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Table 1.1.1: Example of rhetorical status annotated sentences in the corpus used by
Hachey et al.

Rhetorical Status Sentence
TEXTUAL LORD NICHOLLS OF BIRKENHEAD
TEXTUAL My Lords ,
... ...
FRAMING This has long been axiomatic in this area of

the law .
FRAMING The matters the court may take into account

are bounded only by the need for them to be
relevant , that is , they must be such that ,
to a greater or lesser extent , they will assist
the court in deciding which course is in the
child ’s best interests .

DISPOSAL I can see no reason of legal policy why , in
principle , any other limitation should be
placed on the matters the judge may take
into account when making this decision .

FRAMING If authority is needed for this conclusion I
need refer only to the wide , all embracing
language of Lord MacDermott in J v C [ 1970
] AC 668 , 710 - 711 .

BACKGROUND Section 1 of the Guardianship of Infants
Act 1925 required the court , in proceed-
ings where the upbringing of an infant was in
question , to regard the welfare of the infant
’ as the first and paramount consideration ’ .

... ...

fully identifying those statuses can help automatic information processing systems to
comprehend or organize information in a court document more effectively. As shown
in Table 1.1.1, with the rhetorical statuses, a system can identify the main statement
in this segment is the DISPOSAL sentence supported by the surrounding FRAMING
and BACKGROUND sentences.

1.1.3 Encoded Summarization & Legal Case Retrieval
Automatic legal document processing systems can speed up significantly the work of
experts, which, otherwise, requires significant time and efforts. One crucial kind of
such systems, automatic information retrieval whose systems, in place of experts, pro-
cess over enormous amount of documents, for example, legal case reports, which are
accumulated rapidly over time (the number of filings in the U.S. district courts for civil
cases and criminal defendants is 344,787 in 2017 1).

We study the legal case retrieval task which involves reading a new case, and then
extracting cases supporting the decision of the new case. A case document contains a
large volume of contents as the case may last days or even years. This one problem

1http://www.uscourts.gov/statistics-reports/judicial-business-2017
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challenges the construction of an effective automatic legal case retrieval system. One
approach is to identify the gist of the documents, specifically, catchphrases for legal
case documents. “Catchphrases have an indicative function rather than informative,
they present all the legal point considered instead that just summarizing the key points
of a decision” [11]. Catchphrases give a quick impression on what the case is about:
“the function of catchwords is to give a summary classification of the matters dealt
with in a case. [...] Their purpose is to tell the researcher whether there is likely to be
anything in the case relevant to the research topic” [12]. On one hand, catchphrases
help lawyers/researchers quickly grasp the points of a case, without having to read the
entire document, which saves significant time and effort for finding/studying relevant
cases. On the other hand, catchphrases help improves the performance of automatic
case retrieval systems.

Despite of the benefits, catchphrases are not always available in legal case docu-
ments, and are drafted by legal experts, which requires huge efforts when considering
the enormous number of legal case documents. It is, therefore, crucial to build au-
tomatic catchphrase generation systems for both old documents not having drafted
catchphrases and new documents.

Approaches for generating catchphrases are based on phrase scoring derived from
common model for retrieval: lexical matching with term frequency-inverse document
frequency [13, 11, 14]. The approaches are bounded by the limit of lexical matching,
and corpus-wide statistical information. The limit of lexical matching can be lifted
by moving to distributed vector space, for instance, distributed word embeddings in
which common models are Word2Vec [15] and GloVe [16]. Corpus-wide statistical
information has limit capability to identify catchphrases which are not really specific
to some document but commonly used in several others.

We present our work on developing a legal case summarization system and on top of
its core component - phrase scoring framework, building a legal case retrieval system.

First, we build a learning model to extract catchphrases for new documents with the
knowledge from previously seen documents and the expert drafted catchphrases thereof.
Our system utilizes deep neural networks which have been widely used in natural
language processing [17] to learn the direct relationship between gold catchphrases
and document phrases. This results in our phrase scoring framework which is used to
identify important phrases from a given legal case document.

On top of the phrase scoring framework, we develop our legal case document repre-
sentation method which summarizes the document into continuous vector space. The
representation is used for constructing case relevance ranking model, the core compo-
nent of the retrieval system.

We also explore the benefits of employing various types of similarity measurement
belonging to lexical similarity (keyword matching) and semantic similarity (meaning
matching).

On one hand, the lexical similarity and semantic similarity differ from each other and
can potentially complement each other as well. The lexical similarity is obtained with
approaches where the texts are compared by the direct surface forms with probably
some transformations such as stemming, lemmatization, stopword removal, etc. High
lexical similarity can present high matching, but low lexical similarity does not say
much.

On the other hand, semantic similarity can provide the measurement where the sur-
face forms are mismatched, for example, by paraphrasing. Semantic similarity can
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be learned in unsupervised fashion where common approaches are using statistical
methods and benefits from huge available corpora (e.g. Wikipedia, GoogleNews, etc.)
[18, 19, 15, 16]. Those methods treat a document as bag/sequence of words equally.
Other information in the documents such as important words or phrases, or the docu-
ment hierarchy when considered may provide significant information.

1.2 Contributions
The main contributions of this dissertation are:

• A study of using structural information for encoding structured documents into
vector spaces. The study shows the effectiveness of exploiting the present struc-
tures of a document for obtaining useful information for constructing its repre-
sentation. One of the most important structures is document hierarchy which
we base on through out the dissertation.

• Encoded summarization: summary oriented document encoding which can be
used for document similarity measure. The developed method represents a doc-
ument into a vector space where the summary properties of the document is
embedded in the way such that key contents of the document make significant
impact on locating the document in the vector space.

• Results of various document encoding methods for building legal case retrieval
systems. We have achieved potential results with our approach for building the
systems. Compared to methods on a related task, we currently achieve state-of-
the-art performance. The top performance is obtained by one of our systems that
combines several aspects to model query case-candidate case relationship includ-
ing lexical matching from coarse-grain to fine-grain, and encoded summarization
with structural encoding, and rhetorical information.

1.3 Dissertation Outline
We have introduced our research direction in this Chapter. In the following chapters,
we dwell into the details of the implementations of our methods. In Chapter 2, we
present our approach for encoding structure information of a document. There, we show
our study of using document hierarchy, sentence internal dependency and rhetorical
analysis with deep neural networks. In Chapter 4, we present our approach for encoding
the gist of a document into a vector space. In Chapter 5, we present the application
of our document encoding methods for building legal case retrieval systems. Finally,
Chapter 6 concludes with the summary of our findings throughout the dissertation and
potential future directions of our research.
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Chapter 2

Structural Encoding

2.1 Introduction
Structural encoding refers to the approach of explicitly accounting the present struc-
tures of input texts to provide vector encoding of such texts. In this chapter, we present
our study on the benefits of using structural information namely document hierarchy,
sentence dependency tree.

2.2 Similarity with Document Components Vector
Representations by Context Expansion from
Document Structures

We present a method to represent a given document’s paragraphs, sentences, words and
itself into a vector space where contextual similarity can be measured. The method
learns the vector representing a given text (documents, paragraphs, sentences, words)
with its context expanded from its child contexts and its references. For example, the
context of a paragraph is expanded to include the contexts of its sentences. Similarity
can be measured at different context levels, and then supports text comparison at
variant scope. As a case study, we conducted experiments on COLIEE 2017 dataset
with external large text corpus. The results showed the effect of context expansion
and common knowledge inclusion to retrieval. Since this is an unsupervised learning
method, performance still has room for improvement though current result is not yet
competitive to the state of the art.

2.2.1 Context Expansion from Document Structures
We present a method to represent a given document’s paragraphs, sentences, words and
itself into a vector space where contextual similarity can be measured. The method
learns the vector representing a given text (documents, paragraphs, sentences, words)
with its context expanded from its child contexts and its references. For example, the
context of a paragraph is expanded to include the contexts of its sentences. Similarity
can be measured at different context levels, and then supports text comparison at
variant scope. As a case study, we conducted experiments on COLIEE 2017 dataset
with external large text corpus. The results showed the effect of context expansion
and common knowledge inclusion to retrieval. Since this is an unsupervised learning
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method, performance still has room for improvement though current result is not yet
competitive to the state of the art.

Document Similarity is a problem involving the task of measuring the similarity of
a given pair of documents. Similarity measurement can be lexical similarity (keyword
matching), semantic similarity (meaning matching). Document Similarity can be used
as an important factor to determine the relevance of such pair of documents.

Similarity can be learned in supervised or unsupervised fashions. In supervised
fashion, training data is required. In some special domains where labeled data is
limited and expensive to make, trained models suffer from over-fitting, then couldn’t
learn the regularity of a given task from such data. In unsupervised fashion, common
approaches are using statistical methods and benefits from huge available copora (e.g.
Wikipedia, GoogleNews, etc.) [18, 19, 15, 16]. While the structural information of
documents can be available, those methods have not yet take full advantage of the
information.

We propose an approach to learn vector representations of a document’s components
(words, sentences, paragraphs) so as to measure similarity, with the following main
points:

• Presenting a method to learn vector representations for document components
which are hierarchically structured and contains cross-references among the com-
ponents.

• Unsupervised method.

• Including common knowledge from general text into the learning procedure.

• Showing experimental results in legal information retrieval task on COLIEE 2017
dataset which has the above properties.

Representing texts into vector space is revolutionary to Natural Language Process-
ing, which brings the ability to apply deep learning, the very popular and very power-
ful machine learning technique, on texts which was previously infeasible. Remarkable
works have been done on this topic, namely, word2vec [15], GloVe [16], doc2vec [18],
deepwalk [20], and dependency-based word embeddings [19]. Theirs models represent
texts into vector space which enabling the computability or compatibility of texts with
well-known deep learning models which were previously only applicable for digital
data such as images, speeches, etc. word2vec/GloVe models context distribution of
each word via the concept of surround context when a word is used in various text se-
quences. dependency-based word embeddings is another work that builds the surround
context by traversing through the dependency tree of a sentence, hence, takes care
about positionally distant dependencies.

While it is convenient to have word vectors, it is usually not straight forward to com-
pose a sentence vector from its word vectors. Based on specific tasks, sentence vectors
are learned with certain algorithms or deep learning architecture specialized for the
said tasks. doc2vec leverages this problem by introducing document-context presence
into each word-context and learning the vector representations altogether. However,
the implementation does not cover internal structures of the document. Besides, deep-
walk is another work on context-based vector representation by learning node vectors
of a given graph. Similar to dependency-based word embeddings, deepwalk focuses on
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building the surround contexts of each node by performing random walks through the
node.

Document structures can contain relationships including (but not limited to) hierar-
chy (sections, paragraphs, sentences), discourse (relationships between text-pairs such
as agreement, contradiction, or equivalence), and cross-references, though, the previous
works only cover a part or none of structural properties of documents.

Document hierarchy is a way of organizing document in a structured format where
multiple level of text components are presented hierarchically, for instances, from lower
to higher levels: sentences, paragraphs, articles, subsections, sections, and so on (Figure
2.2.1). In the document hierarchy, the higher level presents the broader scope with more
general context; the lower level presents the narrower scope with more specific context.
Especially, in legal text, this presents the scopes of law.

Figure 2.2.1: Hierarchy in Japanese Civil Code

Cross-referencing is a method with which a text refers to some text by placing a
named entity pointing to that referred text. Instead of redefining terms or including
repeated texts, cross-references make documents highly organized. This creates links
between different locations inside a document and connects contexts which are on
different branches in the hierarchy. However, this causes methods that assumes non-
dependency when segmenting texts to suffer from missing information.

2.2.1.1 Context

The meaning or sense of words can only be inferred when using in certain context. Cap-
turing or extracting contexts from texts is significant to learning word representations,
and moreover, text representations.

2.2.1.2 Context Extraction

To extract contexts from an input sentence, the system travels from root to each leaf
of the sentence’s dependency tree (Fig. 2.2.3). It results in the number of extracted
contexts being the number of root-leaf paths. Sincere the root repeatedly appears in

(Rescission of Ruling for Commencement of Guardianship)
Article 10
When the cause set forth in Article 7 ceases to exist ...

Figure 2.2.2: An example of cross-references in Japanese Civil Code where Article 10
refers to Article 7.
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(Possession by Agents)
Article 181
Possessory rights may be acquired by an agent.

Extracted contexts:

• acquired → may

• acquired → be

• acquired → rights→ possessory

• acquired → agent→ by

• acquired → agent→ an
Figure 2.2.3: Contexts extracted from a dependency graph of a sentence.

all extracted contexts, it impacts significantly to the representation learning of these
contexts. The idea of using dependency tree for context extraction is inspired from [19],
where we relax dependency types to lessen the impact of strict syntactic and focus more
on term presence. Dependency trees can capture positionally distant dependencies with-
out introducing probably irrelevant contexts. Especially in a complex legal sentence,
two terms having quite a long distance can be in direct dependency which is presented
in the sentence’s dependency tree.

2.2.1.3 Context Expansion

Context expansion is the process of extracting contexts for high level components, for
instances, sentences, paragraphs, subsections, sections, etc. With document hierarchy,
a higher level component has its contexts expanded by including its child components’
contexts (Fig. 2.2.4). With cross-references, the component has its contexts expanded
by including the referred components’ contexts (Fig. 2.2.5).

Figure 2.2.4: Context expansion with document hierarchy. Higher level components’
context collections are expanded to included lower level components’ contexts.
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Figure 2.2.5: Context expansion with cross-references. Article 10 Paragraph 1 context
collection is expanded to include referred Articled 7 contexts.

2.2.2 Document Components Vector Representations
We adopt Paragraph Vector - A Distributed Memory Model (PV-DM) [18], also known
as doc2vec (Figure 2.2.6), for training vector representations for document components.
From the extracted contexts in Section 4.1, sub-sampled contexts are generated with a
specified window size (the number of words in a sub-sample context) which include the
document component identity and sampled words. The vectors are trained in order to
maximizing the probability of a word appearing in the correct context and minimizing
the probability in the wrong context.

Figure 2.2.6: doc2vec model architecture

2.2.3 Experiments on Statute Law Retrieval Task
2.2.3.1 Dataset

In accordance with measure the effectiveness of our method, we conducted experiments
on COLIEE 2017 dataset [21], a dataset for legal information retrieval task. The task is
that given a juridical question, retrieve relevant civil articles from about 1,000 articles in
Japanese Civil Code. The training set contains 580 examples including questions with
their relevant articles.
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To provide external contexts from common world knowledge, we include 1-billion-
word-dataset [22] into training vector representations. The data has been widely used
for language model benchmarking and monolingual language model training in machine
translation tasks.

Dependency structures of sentences are parsed by Stanford Core NLP tool [23].
The representation training setup is configured with window size of 5 for context sub-

sampling and vector size of 100.
Comparing with dependency tree based approach, word sequence based approach was

employed with the above same setting.

2.2.3.2 Retrieval

For this task, relevant scores are determined by cosine similarity of each document com-
ponent vector pairs as follows.

RelScore(Q,A) = max
q∈Q,a∈A

cosine(vq, va) (2.1)

where Q−A is a question-article pair, q, a are components of question Q and answer A
respectively, and vq, va are corresponding component vectors. The highest scored article
is then selected.

2.2.3.3 Evaluation Metric

Performance for the task was evaluated using precision, recall and F-score (F1) defined
in [21].

Table 2.2.1: Experimental results of statute law retrieval task

Models Precison Recall F1
iLis7-1 (state-of-the-art) 0.734 0.554 0.632
This work
cross-reference external corpus dependency tree based contexts

No No 0.397 0.282 0.330
Yes No 0.346 0.245 0.287
No Yes 0.487 0.345 0.404
Yes Yes 0.513 0.364 0.426

cross-reference external corpus word sequence based contexts
No No 0.064 0.046 0.053
Yes No 0.026 0.018 0.021
No Yes 0.268 0.191 0.223
Yes Yes 0.256 0.181 0.213

Experimental results (Table 2.2.1) show the effect of this method on legal information
retrieval task. Performance increases when including common corpus into training vec-
tor representations, and further with cross-references in the cases of using dependency
tree structures to construct contexts. Besides, dependency tree based contexts show
advantage over word sequence based contexts.
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2.2.4 Summary
We have presented an approach of learning vector representation of document compo-
nents via context expansion with document hierarchy and cross-references and apply
the method to legal information retrieval task. Results show that dependency trees
show potential of better representing local contexts which are used to learn text vec-
tors for similarity measure. In this section, dependency trees are used in unsupervised
learning fashion though, in the next section, we present the use of dependency trees in
supervised learning fashion where the contribution of dependency-tree based contexts
are discussed.

2.3 Encoding Local Contexts of Sentences with
Convolutions on pq-Gram Representations of
Dependency Trees

We present our sentence encoding approach that uses local contexts constructed from
pq-gram representations of a sentence’s dependency tree. The context localization scope
can be adjusted through parameters p, the dependency depth, and q, the dependency
width, which allows controlling context-sensitivity. We show competitive results of us-
ing our sentence encoding approach for sentence-pair modeling tasks.

Sentence encoding is one important step in common deep neural architecture based
text modeling, which maps a lexical sentence into its embedding in computational real-
value space. The sentence embeddings, based on tasks or learning problems, contain
useful information for identifying themselves. Sentence embeddings are usually built
from their content word embeddings with certain composition, for instance, sequential
composition and tree composition.

Sequential composition captures the temporal structure of the sentence, the natural
way of speaking/writing/listening/reading a sentence. This composition, however, does
not explicitly capture syntactic constraints of how to compose the meaning of the sen-
tence, thus minor sequence modification may lead to major shift in sentence embedding.

Tree composition captures explicit word/phrase relationship, for instance, syntactic
trees, and dependency trees. The composition contains high level semantic dependency
which is not trivial to neural networks even with the ability of automatically feature
learning, where the unsupervised parsers are nowhere near supervised parsers [1, 2].
Hence, tree composition provides more information of how to interpret the sentence to
learning models which do not know how to do so from initialization.

Aside from the composition approach, we can further build an intermediate compo-
sition step: local contexts. Local contexts are the surrounding words of a target word,
where the meaning of the target word can be made clearer or less ambiguous. In other
words, the composition process disambiguates each word before composing it into sen-
tence embeddings. The local contexts can be formed by extracting n-grams (in sequen-
tial composition), or head-children subtrees (tree composition). Besides, a sentence with
a chosen composition structure, can be decomposed into a set of local contexts, which
results in more relaxed representation which is less sensitive to word change and may
benefit the task regarding similarity/relatedness.

We propose to represent a sentence as pq-grams of its dependency tree. This rep-
resents sentence local contexts with parameters p, the dependency depth, and q, the
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dependency width. Our approach utilizes tree composition but not with head-children
fashion. In the head-children fashion, local contexts contain one head (target word) and
all its children, whereas, our approach produces local contexts with ancestors of the tar-
get word and only a limited number of its children, described as parameters (p, q).

We apply the encoding approach to sentence-pair modeling tasks including recogniz-
ing textual entailment and measuring relatedness. We adapt convolutional neural net-
works (CNNs), which are successfully used in text modeling [3, 4, 5], to encode pq-gram
representation into latent space. Then, we apply various sentence-pair encoding com-
position algorithms, namely, basic pooling, global comparison, local comparison with
pq-alignment. The inclusion of multi-pq alignment, where we compute alignment of pq-
gram encodings from different (p, q) values, shows good results in textual entailment
and text relatedness tasks.

Sequential and tree composition approaches are used interchangeably or combined
together in sentence encoding. In sequential composition approach , common architec-
ture are based on long short-term memories (LSTMs) [6], and CNNs [3, 4]. LSTMs
process a sentence from the beginning to the end where each word is encoded from
its initial embedding and current temporal state composed from the previous words.
Bidirectional-LSTMs (biLSTMs) process the sentence from both directions, then, pro-
duces richer representation. CNNs process a sentence by applying their shared filters
to each n-gram region. In tree composition approach, LSTMs and CNNs are designed
to operate over trees. Tree-LSTMs process a sentence’s tree from leafs to root [7, 6, 8].
Tree-CNNs process a sentence’s tree by applying their shared filters to each sub-tree
consisting of one head word and its children [5].

We approach sentence encoding in a way that allows capturing clear semantic of the
local contexts/regions of a sentence. Our approach benefits the tasks, for example,
sentence-pair modeling tasks such as textual entailment and text relatedness, whose
focus is on some parts of the sentences with various degrees of reception. One way that
we can represent the reception degree is using CNNs with multiple window sizes which
capture local context at multiple levels of granularity. The CNNs on the sequential rep-
resentation of a sentence, however, also capture n-gram regions with unclear semantic.
We sought out the method to not only capture local contexts but also capture regions
with clear semantic. We, then, look at the dependency tree of a sentence, which repre-
sents the syntactic/semantic relations of each word-pair. Besides, the sub-trees (which
are also dependency trees) of the dependency tree represent a clear semantic. Further-
more, a node is added to or removed from a dependency tree, the specificness of the
semantic represented by that tree is, then, increased/reduced. This is where we adopt
pq-gram model as a method for representing local contexts with clear semantic from de-
pendency trees and multiple pq values for multiple granularity. We then use CNNs to
encode pq-grams into latent space where pq-grams can be compared and aggregated to
later provide sentence-pair relationship for tackling the sentence-pair modeling tasks.

2.3.1 Local Contexts of Sentences from pq-Gram Representa-
tions of Dependency Trees

The dependency tree of a sentence represents the syntactic/semantic relations of each
and every word-pair (Fig. 2.3.1). The relations not only define the semantic composition
of the sentence but also exists in other sentences. While a sub-tree of the dependency
tree represents a clear semantics, that semantics can also be found in other sentences.
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In other words, a sub-tree of the dependency tree can be seen as a local context, and a
sentence is composed from local contexts.

pq-Gram model is the method of representing an ordered tree for approximately
matching hierarchical data[24]. Given an ordered tree, a pq-gram is one subtree where
contiguous q nodes share the same set of p contiguously connected ancestors. In the
case of dependency trees, in which the siblings are unordered, we restrict the order
to be word-order. Each pq-gram of a dependency tree represents a local context with
dependency depth p and dependency width q. With small p, q, the pq-grams more
commonly exists in other sentences, the semantics are broader. As p, q increase, the
existence becomes less common, the semantics are, thus, narrower.

We define a pq-gram local context as:
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ordered by word-order. wa
1 is the anchor node of the pq-gram. The pq-gram representa-

tion of the sentence (dependency tree) is defined as the sequence of all pq-grams ordered
by the anchor nodes and siblings (Fig. 2.3.1).

2.3.2 Encoding Local pq-Gram Contexts with Convolutional
Operations

We employ CNNs for mapping pq-grams into latent space with the following convolu-
tional operation:

ci = ReLU(Wc
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]
+ bc) (2.3)

where, v(·) : 7→ Rd: word embedding vector lookup map, [·] ∈ Rd(p+q): concatenated
embedding vector, Wc ∈ Rk×d(p+q): convolution kernel matrix with k filters, bc ∈ Rk:
bias vector, ci: encoding vector of the ith pq-gram, C = [c1, c2, ..., cN ] ∈ Rk×N : en-
coding matrix of a sentence, N : total number of pq-grams, ReLU : rectified linear unit
activation.

2.3.3 Experiments on Text-Pair Modeling Tasks
A sentence-pair modeling task is, given a sentence-pair consisting of two sentence
namely a and b, to predict/measure the relationship of a and b. Instances of the tasks
are entailment (entailment, contradiction, and neutral), and relatedness. Entailment
tasks can be treated as multi-class classification, and relatedness tasks can be treated
as scoring regression.

The relatedness and entailment of a sentence-pair (a, b) is shown through the exam-
ples (from SICK dataset[25]) in Tables 2.3.1, and 2.3.2.

We build on top of pq-encoding module with different sentence encoding composition
described as the following 3 architectures (Fig.2.3.2):

• Encoding-Base-Prediction: this model encodes input pq-grams, performs pooling
to obtain sentence encodings, concatenates the encodings, feeds them to predic-
tion module, and finally outputs the class/score.
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Figure 2.3.1: Example of the pq-gram representation of a dependency tree of sentence
”the cat sat on the red mat”, with (p, q) = (2, 2). Dummy nodes (*) are for border
padding.
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Table 2.3.1: Example sentence pairs in relatedness task (on a 5-point rating scale).

Relatedness
score

Example

1.6
a: A man is jumping into an
empty pool

b: There is no biker jumping in
the air

2.9
a: Two children are lying in the
snow and are making snow angels

b: Two angels are making snow on
the lying children

3.6
a: The young boys are playing
outdoors and the man is smiling
nearby

b: There is no boy playing out-
doors and there is no man smiling

4.9
a: A person in a black jacket is do-
ing tricks on a motorbike

b: A man in a black jacket is doing
tricks on a motorbike

Table 2.3.2: Example sentence pairs in entailment task.

Entailment label Example

entailment
a: Two teams are competing in a
football match

b: Two groups of people are play-
ing football

contradiction
a: The brown horse is near a red
barrel at the rodeo

b: The brown horse is far from a
red barrel at the rodeo

neutral
a: A man in a black jacket is doing
tricks on a motorbike

b: A person is riding the bicycle
on one wheel
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• Encoding-GlobalComparison-Prediction: this model operates similar to ”Encoding-
Base-Prediction” except that instead of only feeding the concatenated sentence
encodings, it feeds additionally the sentence encodings comparison to the predic-
tion module.

• Encoding-LocalComparison-Prediction: this model operates differently from the
other two. Before compute the sentence encodings, it aligns the pq-gram encoding,
which models sentence-pair association in the form of soft alignment among pq-
grams.

We now describe each module in our architectures.

2.3.3.1 Encoding

Given a sentence pair, we apply convolution operations (Section 2.3.1) to obtain two
encoding matrices Ca and Cb corresponding to sentences a and b respectively.

We can, then, obtain the global sentence encoding sa, sb ∈ R2k by pooling as:

s = [max{C}; avg{C}] (2.4)

where max, average (avg) are operated over the whole sequence for each dimension of
vectors cai , cbj. The max pooling confirms the existence of patterns. In case of pq-gram
encoding, it checks if the kernel W c matches any pq-gram of a given sentence and reports
the highest matching values. The average pooling, differently, captures the repetition
of such patterns as how much the kernel W c matches all of the pq-grams.

In the base architecture, the encodings are concatenated to obtain the feature vector
z ∈ R4k:

z = [sa; sb] (2.5)
which is forwarded to the prediction module.

2.3.3.2 Sentence-Pair Comparison

The sentence-pair comparison can be done at two different levels: global and local.
Global comparison associates the composed encoding of the sentences (sentence level
encoding via pooling) which have no information of individual sentence components.
Local comparison looks at every encoded pq-gram of sentence a and b, and produces
the association among them.

Global comparison: Sentence encoding comparison
Differing from the base architecture, after pooling operation in Eq. 2.4, we compute

the similarity and dissimilarity of the sentence encodings via element wise multiplication
(. ◦ .) and subtraction (.− .) to obtain the feature vector z ∈ R8k:

z = [sa; sb; sa ◦ sb; sa − sb] (2.6)

This is seen as comparing the encoding features produced by the same convolution
filter on each sentence of the pair. Two similar pq-grams found in each of the pair would
result in high multiplication and low subtraction.

Local comparison: pq-gram encoding alignment
Soft aligning each pq-gram of sentence a with all pq-grams of sentence b and vice versa.

ei,j = ⟨cai , cbj⟩ (2.7)
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Figure 2.3.2: Sentence-pair modeling pipelines in our approach.
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Soft alignment normalized weights:

ēai,j =
exp(ei,j)∑
j exp(ei,j)

ēbi,j =
exp(ei,j)∑
i exp(ei,j)

(2.8)

Soft alignment for pq-gram ith of sentence a, and pq-gram jth of sentence b:

c̄ai =
∑
j

ēai,jc
b
j c̄bj =

∑
i

ēbi,jc
a
i (2.9)

The alignment features c̄ai is seen as the composition of pq-grams in sentence b those
are compatible with pq-gram ith of sentence a, and vice versa.

Then we compose the encoding of each pq-gram consisting of convolutional features,
alignment features, similarity and dissimilarity between them as:

ĉi = [ci; ĉi; ci ◦ c̄i; ci − c̄i] (2.10)

At this step, we can perform multi-pq alignment: aligning pq-grams having different
(p, q) values. Multi-pq alignment allows us to compare local contexts with similar se-
mantics but different lexical granularity.

Feature aggregation to produce sentence encoding with three steps: transformation,
temporal reading, and pooling.

Transformation:
c̃i = ReLU(Wdĉi + bd) (2.11)

Temporal reading with bidirectional LSTM:

ċi = [
−−−−→
LSTM(c̃i);

←−−−−
LSTM(c̃i)] (2.12)

Pooling:
s = [max{ċi}; avg{ċi}] (2.13)

where max and average (avg) are the same operators as in Eq. 2.4.
Finally, the feature vector z = [sa; sb] is obtained.

2.3.3.3 Prediction

Multilayer Perceptron with one hidden layer and one output layer, receives the input
feature vector z and output corresponding label depending on the given task.

h = tanh(Whz+ bh) (2.14)

y = f(Woh+ bo) (2.15)
where f is softmax if the task is recognizing textual entailment, linear if the task is

relatedness.
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2.3.4 Experimental Settings
2.3.4.1 Datasets

• SNLI [26]: a natural language inference dataset which contains over 550K train,
10K development, and 10K test examples built on image captions. Given an image
caption, three hypothesis sentences which are, in turn, entailed by, contradicted
to, neutral with the caption, are generated.

• SICK [25, 27]: a sentence-pair dataset with about 10K pairs split into 4.5K train,
0.5K development, 5K test examples. The dataset is built from image and video
descriptions, contains sentences that describe the same picture or video, thus, are
lean on named entities and rich in generic terms. The process of creating the
dataset encourages the development of approaches focusing on building composi-
tional semantics step to understand sentence-pair relations. The dataset contains
annotated labels for two tasks: recognizing textual entailment task (SICK-E), and
relatedness task (SICK-R).

Table 2.3.3: Information of sentences’ dependency trees for average tree depth, average
number of children per tree node.

Datasets Tree Depth #Children/Node
SNLI

premise 4.6 2.3
hypothesis 3.5 2.0

SICK
premise 3.7 2.2
hypothesis 3.6 2.2

2.3.4.2 Model Settings

Our model hyper-parameters are described in table 2.3.4. We configure pq parameters
as:

• We select up to p = 2 ancestors where the one ancestor is the direct parent to q
siblings, and the other ancestor is the direct parent of the prior ancestor, so the
pq window is anchored by one node where the other nodes are directly connected.

• We select up to q = 2 siblings as the average number of children per tree node in
Table 2.3.3.
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Table 2.3.4: pq-CNN model settings

Parameter Information

pq (p, q) ∈ {1, 2} × {1, 2} (4 options of single pq). Multi-pq
setting combines all 4 options.

Word embedding Pre-trained GloVe [16] with size of 300

Wc number of filters k = 300

Wd output size of 300

LSTMs output size of 300 (total size of 600 for bidirectional
LSTM)

Wh output size of 300

Wo output size of number of classes (recognizing textual en-
tailment), 1 for relatedness.

We optimize our model parameters θ by minimizing categorical cross-entropy loss:

L(y∗,y|θ) = −
∑
⟨y∗

i, log(yi)⟩ (2.16)

for recognizing textual entailment task, and mean square error for relatedness task

L(y∗,y|θ) =
∑
||y∗

i − yi||22 (2.17)

where y∗
i, yi are gold label and prediction respectively to training examples i, using

Adam optimizer with initial learning rate of 0.0004 and gradient clipping with max norm
of 10.0.

We evaluate the model performance by accuracy on recognizing textual entailment
tasks, Pearson correlation + mean square error for relatedness tasks.

2.3.5 Experimental Results
At first, we observe that the performance difference with and without encoding com-
parison of our approach is larger than TBCNN [5] on SNLI dataset (Table 2.3.5). In
our approach, the accuracy increases 6.7% when using global comparison and 11.7%
when using local comparison on multi-pq representation. In TBCNN, however, the in-
crement is 2.8%. Our approach achieves similar results as TBCNN with sentence en-
coding comparison but much lower without the comparison. We suspect this is because
of the amount of local information provided by pq-grams. In TBCNN, the number of
intermediary (subtree) encodings are O(n) where n is the number of nodes, where in our
approach, it is O(nc), where c is the number of children per node. Besides, in TBCNN,
the encodings are more specific to the sentence than ours, which is by the nature of pq-
grams. Thus, the upper stream modules have to work with larger search space in our
cases. The comparisons reduce the search space by producing the direct related fea-
tures: comparing signal from the same filter over two sentences in global comparison;
aligning related pq-grams in local comparison.

We also observe that using multi-pq-gram can yield better results than single pq-gram.
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Table 2.3.5: Experimental results on text pair modeling related tasks. acc. : accuracy
(%), r: pearson correlation, mse: mean square error. ESIM*: re-implemented.

SNLI SICK-E SICK-R

Model acc.% acc.% r mse
BiLSTM [28] 81.5 - - -
ESIM [6] 88.6 - - -
ESIM [28] 86.7 - - -
ESIM* 87.0 73.7 0.716 0.502
TBCNN [5] w/o encoding comparison 79.3 - - -
TBCNN [5] w/ encoding comparison 82.1 - - -
ECNU [27] - 83.6 0.828 0.325
Illinois-LH [27] - 84.6 0.799 0.369
pq-grams base (w/o sentence-pair com-
parison)
(p, q) = (1, 1) 73.9 62.2 0.248 0.977
(p, q) = (1, 2) 73.3 62.4 0.217 0.976
(p, q) = (2, 1) 73.1 60.7 0.265 0.969
(p, q) = (2, 2) 72.8 61.2 0.237 0.964
multi-pq 74.6 61.3 0.269 0.967
pq-grams w/ global comparison
(p, q) = (1, 1) 81.8 81.9 0.780 0.401
(p, q) = (1, 2) 81.6 82.2 0.797 0.373
(p, q) = (2, 1) 80.2 82.0 0.792 0.383
(p, q) = (2, 2) 79.4 81.5 0.799 0.370
multi-pq 81.3 83.7 0.812 0.347
pq-grams w/ local comparison
(p, q) = (1, 1) 85.9 81.7 0.802 0.366
(p, q) = (1, 2) 85.8 75.6 0.805 0.361
(p, q) = (2, 1) 84.3 78.6 0.790 0.388
(p, q) = (2, 2) 85.0 75.8 0.789 0.387
multi-pq 86.3 81.1 0.824 0.331
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Using the similar attention mechanism (phrase-by-phrase attention in ESIM, pq-
alignment in ours), our approach performs comparatively with ESIM in SNLI and
MultiNLI datasets and outperforms them in SICK dataset. We also achieve compara-
ble performance with top competitors in SemEval2014[27].

2.3.6 Summary
We have presented our approach for encoding sentences with convolutional operations
on pq-gram representations of dependency trees, and our application on sentence-pair
modeling. The representations are flexible with adjusting pq values while keeping the
semantic dependency from dependency trees. Besides, the representations provide more
local information in the form of intermediary encodings than n-gram and subtree (con-
taining all children) representations by the average number of children per node, which,
however, may require feature comparison/alignment to reduce search space. Our ap-
proach achieve competitive performance with related methods using tree composition
in sentence encoding.

2.4 Chapter Summary
In this chapter, we have been going through several structures existing in documents and
our approaches to model these structures in certain tasks. The structures are shown to
be useful in analyzing texts. The possibility of using the structures in neural networks
create the potential of building a robust document encoding model from neural net-
works for document processing tasks. As the next step, we will introduce our approach
of exploiting the structures for tackling legal case retrieval task which is described in
Chapter 5.
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Chapter 3

Rhetorical Information Analysis in
Legal Case Documents

3.1 Introduction
Discourse analysis has high-impact applications in natural language processing, for
instances, text summarization [29, 30], sentiment analysis [31], and question answer-
ing [32]. The output structures of the analysis contain high-level relationship of between
discourses and so provides valuable information to such the tasks. Figure 3.1.1 shows
an example of rhetorical structure of a text analyzed according to the rhetorical struc-
ture theory by Mann et al. [9], where the sentences 5-7 are evident for claiming the
statement in sentence 4.

Despite of a wide range of applications and the necessity for automatic court docu-
ment processing, automatic rhetorical structure analysis has not been well noticed in
legal domain.

Hachey et al. [10] describe a task of determining the rhetorical status of each sentence
in a given document from a corpus of judgments of the UK House of Lords. The corpus is
annotated with rhetorical statuses described in Table 3.1.1 with 7 types: FACT, PRO-
CEEDINGS, BACKGROUND, FRAMING, DISPOSAL, TEXTUAL, and OTHER.
Successfully identifying those statuses can help automatic information processing sys-
tems to comprehend or organize information in a court document more effectively.
As shown in Table 3.1.2, with the rhetorical statuses, a system can identify the main
statement in this segment is the DISPOSAL sentence supported by the surrounding
FRAMING and BACKGROUND sentences.

Hachey et al. tackled this task with a variety of linguistic features. They perform POS
tagging, Lemmatization, Named entity recognition, Chunking and clause identification
and extract features of location, thematic words, sentence length, quotation, entities,
and cue phrases. They, then, train classification models with the learning algorithms of
decision tree, naive bayes, winnow, support vector machine.

In this paper, we describe our approach for solving the task by applying well-known
deep neural networks. Deep learning has been shown effective towards natural language
processing tasks including discourse analysis. We have achieved promising results for the
task, which suggests the applicability of artificial neural module embedding rhetorical
information for other tasks, for example, summarization and information retrieval.
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Table 3.1.1: Description of rhetorical statuses [10]. The second column indicates the
frequency of each rhetorical status presented in the data published by Hachey et al..

Label Freq. Description
FACT 862 (8.5%) The sentence recounts the events or circum-

stances which gave rise to legal proceedings.
E.g. On analysis the package was found to
contain 152 milligrams of heroin at 100% pu-
rity.

PROCEEDINGS 2434 (24%) The sentence describes legal proceedings
taken in the lower courts.
E.g. After hearing much evidence, Her
Honour Judge Sander, sitting at Plymouth
County Court, made findings of fact on 1
November 2000.

BACKGROUND 2813 (27.5%) The sentence is a direct quotation or citation
of source of law material.
E.g. Article 5 provides in paragraph 1 that a
group of producers may apply for registration
. . .

FRAMING 2309 (23%) The sentence is part of the law lord’s argu-
mentation.
E.g. In my opinion, however, the present case
cannot be brought within the principle ap-
plied by the majority in the Wells case.

DISPOSAL 935 (9%) A sentence which either credits or discredits
a claim or previous ruling.
E.g. I would allow the appeal and restore the
order of the Divisional Court.

TEXTUAL 768 (7.5%) A sentence which has to do with the structure
of the document or with things unrelated to
a case.
E.g. First, I should refer to the facts that
have given rise to this litigation.

OTHER 48 (0.5%) A sentence which does not fit any of the above
categories.
E.g. Here, as a matter of legal policy, the po-
sition seems to me straightforward.
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1. Farmington police had to help control 
traffic recently

2. When hundreds of people lined up to be 
among the first applying for jobs at the 
yet-to-open Marriott Hotel.

3. The hotel’s help-wanted announcement 
– for 300 openings – was a rare 
opportunity for many unemployed.

4. The people waiting in the line carried a 
message, a refutation, of claims that the 
jobless could be employed if only they 
shoed enough moxie.

5. Every rule has exceptions,

6. But the tragic and too-common tableaux 
of hundreds of even thousands of people 
snake-lining up for any task with a 
paycheck illustrates a lack of jobs,

7. Not laziness.

Figure 3.1.1: An example of parsing a text into rhetorical structure by Mann et al. [9].

Table 3.1.2: Example of rhetorical status annotated sentences in the corpus used by
Hachey et al.

Rhetorical Status Sentence
TEXTUAL LORD NICHOLLS OF BIRKENHEAD
TEXTUAL My Lords ,
... ...
FRAMING This has long been axiomatic in this area of

the law .
FRAMING The matters the court may take into account

are bounded only by the need for them to be
relevant , that is , they must be such that , to
a greater or lesser extent , they will assist the
court in deciding which course is in the child
’s best interests .

DISPOSAL I can see no reason of legal policy why , in
principle , any other limitation should be
placed on the matters the judge may take into
account when making this decision .

FRAMING If authority is needed for this conclusion I
need refer only to the wide , all embracing
language of Lord MacDermott in J v C [ 1970
] AC 668 , 710 - 711 .

BACKGROUND Section 1 of the Guardianship of Infants
Act 1925 required the court , in proceed-
ings where the upbringing of an infant was in
question , to regard the welfare of the infant
’ as the first and paramount consideration ’ .

... ...
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3.2 Method
3.2.1 Problem Formulation
We treat the task of recognizing rhetorical statuses of the sentences in a court docu-
ment as sequential labeling problem. We assume that the rhetorical role of a sentence
not only depends on the contents it conveys but also the relation with other sentences.
To model the dependency among sentences, we take the most simple approach: apply-
ing inter-sentence relationship modeling and inter-status relationship modeling. For the
inter-sentence relationship modeling, we use a recurrent neural network described later
in Section 3.2.2. For the inter-status relationship, we utilize conditional random field
(CRF) [33] as the algorithm for capturing such dependency. Hence, the problem to
solve is formulated as follows.

Given a document D which contains a list of sentences S = {s1, s2, ..., sN}, the system
should predict the rhetorical roles of the sentences as a list R = {r1, r2, ..., rN}, where
the system is trained to maximizing likelihood by minimizing the negative log likelihood
given a training dataset D = {(R,S)}:

L(D,λ) = −
∑

(R,S)∈D

log (P (R|S, λ)) (3.1)

where

P (R|S, λ) = 1

Z(S)
exp

 |S|∑
i=1

f(S, i, ri−1, ri, λ)

 (3.2)

where

Z(S) =
∑
R′

exp

 |S|∑
i=1

f(S, i, r′i−1, r
′
i, λ)

 (3.3)

where λ is the set of parameters to be optimized, and f is the rhetorical status score
or label score of sentences S given labels R, which is computed by combining rhetorical
status transition scores and sentence features from a deep neural network described in
the later section. The computation of the label scores is also described in[34], which is:

f(S, i, ri−1, ri, λ) = Ari−1,ri + F (S, i, ri, λF ) (3.4)
where F (S, i, ri, λF ) is the score of sentence i labeled with status ri, and is output by
the deep neural network, the set of parameters λ is {Ai,j} ∪ λF . In this work, we use
F (.) as a linear function:

F (S, i, ri, λF ) = ⟨wri , ŝi⟩+ bri (3.5)
where ŝi is the encoding vector of sentence i output by the later described text encoding.

We also study the removal of the dependency modeling. With inter-sentence relation-
ship modeling, we remove the recurrent neural network. With inter-status relationship
modeling, we replace the CRF with a commonly used fully-connected neural layer with
softmax activation.

Fully-Connected(S) = softmax(WŜ + b) (3.6)

where Ŝ is the encoding matrix of sentences S output by the later described text encod-
ing.
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3.2.2 Text Encoding Mechanisms
We employ two well-known techniques for text encoding, namely, Bidirectional Long
Short-term Memory (BiLSTM) [35, 36] and Convolutional Neural Network (CNN) [37].
The BiLSTM is also used to model the inter-sentence relationship.

• BiLSTM captures the temporal information from both left-to-right and right-to-
left directions of a sequence. LSTM provides its mechanism to gate information
flow through each step during encoding the text sequence. Given a sequence X =
(x1, ...,xt, ...,xN), each step t of the sequence is encoded using an LSTM as follows.

ft = sigmoid(Wfxt +Ufht−1 + bf ) (3.7)

it = sigmoid(Wixt +Uiht−1 + bi) (3.8)

ot = sigmoid(Woxt +Uoht−1 + bo) (3.9)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt +Ucht−1 + bc) (3.10)

ht = ot ◦ sigmoid(ct) (3.11)
Thus, we get the encoding ht of the step t of the sequence. Finally, we collect all
the encodings (ht):

LSTM(X = (x1,x2, ...,xN)) = (h1,h2, ...,hN) (3.12)

A BiLSTM is, straightforwards, composed of two LSTM layers running in two
directions: left-to-right and right-to-left.

BiLSTM(X) = [
−−−−→
LSTM(X);

←−−−−
LSTM(X)] (3.13)

• CNN captures the local information in a predefined local region of a sequence.
Given a sequence X = (x1, ...,xN), a local region Xt−l:t+r = (xt−l, ...,xt+r) is
encoded using a CNN as follows.

ht = ReLU(WXt−l:t+r + b) (3.14)

For steps t such that 1 ≤ t < l+ 1 or N ≥ t > N − r, we use dummy zero-tokens
xd = 0 for out-of-bound steps. Finally, we collect all the encodings (xt):

CNN(X = (x1,x2, ...,xN)) = (h1,h2, ...,hN) (3.15)

3.2.3 Rhetorical Status Classification Models
The system is built upon a deep neural network, as shown in Figure 3.2.1, consisting of
the following layers:

• Word Embedding: maps a word into a continuous vector space. We employ
GloVe [16] which models contextual similarity among words. In other words, if
two words are used in common contexts frequently, they are near each other in
the vector space.
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Figure 3.2.1: Rhetorical Status Classification Models. We can place CNN or BiLSTM
into the intra-sentence encoding layer, and use either fully-connected or CRF for the
classifying layer.

• Intra-Sentence Encoding: we can encode the local information of a sentence in
two ways:

– BiLSTM: encoding the temporal information of the word sequence in both
left-to-right and right-to-left directions.

– CNN: applies convolutional operations on contiguous word gram within a
limited window size, which captures the local contexts in a sentence.

• Pooling: pools out the most salient features, and transforms the variable length
representation of a sentence into a fixed vector. For this layer, we apply max-over-
time pooling as described by Kim et al.[37]. We apply the operation on the feature
matrix X of a sentence, which is an array of vectors xi each for word i.

pooling(X = (x1, ...,xN)) =

 max(x11, ..., xN1)
...
max(x1d, ..., xNd)

 (3.16)

where xi ∈ Rd. We, then, receive a fixed vector ∈ Rd representing the one sen-
tence.

•  Inter-Sentence Encoding with BiLSTM: constraints the temporal dependency
of the input sentence sequence. With bi-direction, information from the beginning
and the end of the sequence can be taken into account by the decision time.

• Classifying: given the input sentence sequence represented by the above neural
layers, we employ two options (Figure 3.2.1 (a) and (b)) for classifying layer:
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– CRF: predicts sequentially dependent labels. The use of CRF on top of BiL-
STM has shown effectiveness in natural language processing tasks, especially
sequential tagging tasks [34, 38]. While BiLSTM binds one sentence with
others with temporal order, thus puts dependency to the features of each
sentence, CRF puts another dependency for the output rhetorical statuses.
In other words, using BiLSTM + CRF, we can obtain two layers of depen-
dency in both features and outputs.

– Fully-Connected (FC): predicts labels independently. Even though the pre-
diction of the rhetorical status of one sentence does not directly depend on
the predicted statuses of other sentences, the prediction of one sentence is
still affected by the information from other sentences when we use FC on top
of inter-sentence encoding which binds one sentence with others in tempo-
ral order. Complete independent prediction is done when the inter-sentence
encoding is removed.

3.3 Experiments
3.3.1 Experimental Settings
The dataset used in our experiments is also used by Hachey et al. [10], and is a collection
of 47 judgments of the House of Lord1 from 2001 to 2003. As also described by Hachey
et al., each judgment shows decision as the opinions of the Law Lords, which often starts
with a statement of how the case came before the court, and sometimes will move to a
recapitulation of the facts, on to discuss one or more points of law and then offer a ruling.
The dataset contains 10,169 sentences annotated by 2 annotators with agreement of 0.83
kappa co-efficient.

For the deep neural model, we use the following setting:

• Embedding layer: GloVe embeddings with vector size of 300 2,

• Encoding layers: we set the CNN local region parameters l = 2, r = 2 (used in
Eq. 3.14), and tune the hidden size of CNN layer from the set {300, 500, 1000}.
Similarly, we also tune the hidden size of BiLSTM layers from the set {300, 500, 1000}
for each of BiLSTM of intra-sentence encoding and inter-sentence encoding layers.
We also experiment with the removal of the inter-sentence encoding layer to con-
firm the importance of inter-sentence relationship for recognizing rhetorical sta-
tuses.

• Classifying layer: two choices are considered, Fully-Connected and CRF, for
checking if inter-status can be captured by CRF.

We perform 10-fold cross-validation and evaluate the models with micro-averaged F-
score (also used by Hachey et al.).

1https://www.parliament.uk/business/lords/
2Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 300d vectors,

https://nlp.stanford.edu/projects/glove/
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Table 3.3.1: Micro-averaged F-score results. BiLSTM(1000)-BiLSTM(1000)-FC: model
using BiLSTM as intra and inter sentence encoding layers with hidden sizes of 1000, and
Fully-Connected as classifying layer.

Method F-score (%)
Hachey et al. [10]
C4.5 59.7
NB 51.7
Winnow 41.4
SVM 60.6
Our model
BiLSTM(1000)-BiLSTM(1000)-FC 68.6

3.3.2 Experimental Results
Among all of our experimented settings, the model (BiLSTM(1000)-BiLSTM(1000)-
FC) using BiLSTM with hidden size of 1000 for both intra and inter sentence encoding
layers, and Fully-Connected as classifying layer yields the best performance with F-score
of 68.6% (Figure 3.3.1). As shown in Table 3.3.1, our approach outperforms the models
built with linguistic-features (Hachey et al. performed POS tagging, Lemmatization,
Named entity recognition, Chunking and clause identification and extract features of
location, thematic words, sentence length, quotation, entities, and cue phrases). We,
though, have not yet incorporate any linguistic information other than word embedding
which provide statistical features of contextual similarity, and the amount of training
data is quite insufficient for training deep learning models.

The removal of inter-sentence encoding layer reduces performance substantially.
This suggests the importance of capturing inter-sentence relationship for predicting the
rhetorical status of a sentence.

In a majority of the experiments, regarding the use of classifying layer, models with
Fully-Connected outperform models with CRF. Since CRF does not show significant
contribution to the performance of the models, we hypothesize that CRF is not suit-
able for capturing the inter-status relationship between rhetorical statuses of an input
document. Besides, when we remove the inter-sentence encoding layer, CRF equipped
models achieve marginally better results than Fully-Connected equipped models. When
inter-sentence relationship is not captured in the lower layer, CRF could capture some
kind of dependency, but possibly too weak.

For the intra-sentence encoding, BiLSTM shows better performance than CNN. It
shows that temporal encoding by BiLSTM provides more useful information for detect-
ing rhetorical statuses than local context encoding by CNN.
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Table 3.3.2: Performance of BiLSTM(1000)-BiLSTM(1000)-FC for each rhetorical sta-
tus.

Rhetorical Status Prec(%) Rec(%) F-score(%)
FACT 73.9 66.1 68.0
PROCEEDINGS 65.9 68.7 67.1
BACKGROUND 68.1 72.8 69.9
FRAMING 61.7 66.8 63.9
DISPOSAL 73.0 46.9 56.9
TEXTUAL 84.8 78.4 81.4
OTHER 10.0 3.8 5.5

While looking at the performance of our approach for each rhetorical status shown
in Table 3.3.2, even though the dataset is limited, and the distribution of labels is quite
imbalance, we get satisfactory performance across all rhetorical statuses. The TEX-
TUAL status gets the highest performance of 81.4% F-score despite of being the second
lowest-frequency class (7.5% of sentences), while the OTHER status gets 5.5% F-score
with being the lowest-frequency class (0.5% of sentences).

3.4 Summary
We have presented our approach for building rhetorical status recognition systems
for processing court documents using deep learning models. We solve the recognition
task as sequential labeling problem. We have observed the inter-sentence relation-
ship captured by BiLSTM contributes significantly to improve performance. However,
inter(-rhetorical)-status relationship is not effectively captured by CRF. The curent best
model is BiLSTM-BiLSTM-FC, where we use BiLSTMs for intra and inter sentence en-
coding layers, and Fully-Connected as classifying layer. We have achieved encouraging
results since, we have not yet utilized any linguistic features, but only statistical features
by deep neural network from a considerably insufficient dataset. With the performance
in F-score of 68.6%, we still have room for improvement, especially, with incorporating
already designed linguistic features. The applicability of deep neural network to this
task sets the step for incorporating rhetorical information into more sophisticated deep
learning models of tasks such as summarization, information retrieval.
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Chapter 4

Document Encoding via
Summarization

4.1 Introduction
In human perspective, summarization means producing a concise text block for quick
comprehension given a document which would, otherwise, require much more effort. In
machine perspective, the above is also true in the regard of reducing computation cost
though, summarization also means showing to machines how to weight the contents ac-
cording to some pre-defined orientation, for example, human drafted summaries. Con-
tent weighting instead of content removal is preferable when the computation cost is
negligible compared to information loss. This is also the direction of this chapter, pro-
viding a method for weighting document contents based on some pre-defined orienta-
tion, and then map documents into a vector space which embeds such orientation.

The method is applied to legal case retrieval task. The legal case retrieval task in-
volves reading a new case, and then extracting cases supporting the decision of the new
case. Automatic legal document processing systems can speed up significantly the work
of experts, which, otherwise, requires significant time and efforts. The systems, in place
of experts, process over enormous amount of documents, for example, legal case reports,
which are accumulated rapidly over time (the number of filings in the U.S. district courts
for civil cases and criminal defendants is 344,787 in 2017 1).

A case document contains a large volume of contents as the case may last days or
even years. This one problem challenges the construction of an effective automatic legal
case retrieval system. One approach is to identify the gist of the documents, specifically,
catchphrases for legal case documents. “Catchphrases have an indicative function rather
than informative, they present all the legal point considered instead that just summa-
rizing the key points of a decision” [11]. Catchphrases give a quick impression on what
the case is about: “the function of catchwords is to give a summary classification of the
matters dealt with in a case. [...] Their purpose is to tell the researcher whether there
is likely to be anything in the case relevant to the research topic” [12]. On one hand,
catchphrases help lawyers/researchers quickly grasp the points of a case, without having
to read the entire document, which saves significant time and effort for finding/studying
relevant cases. On the other hand, catchphrases help improves the performance of au-
tomatic case retrieval systems.

Despite of the benefits, catchphrases are not always available in legal case documents,
1http://www.uscourts.gov/statistics-reports/judicial-business-2017
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and are drafted by legal experts, which requires huge efforts when considering the enor-
mous number of legal case documents. It is, therefore, crucial to build automatic catch-
phrase generation systems for both old documents not having drafted catchphrases and
new documents. Developing such systems, however, is challenging as the complexity of
catchphrases shown in Table 4.1.1.

Approaches for generating catchphrases are based on phrase scoring derived from
common model for retrieval: lexical matching with term frequency-inverse document
frequency [13, 11, 14]. The approaches are bounded by the limit of lexical matching,
and corpus-wide statistical information. The limit of lexical matching can be lifted by
moving to distributed vector space, for instance, distributed word embeddings in which
common models are Word2Vec [15] and GloVe [16]. Corpus-wide statistical informa-
tion has limit capability to identify catchphrases which are not really specific to some
document but commonly used in several others.

We present our work on developing a legal case summarization system and on top of
its core component - phrase scoring framework, building a legal case retrieval system.

First, we build a learning model to extract catchphrases for new documents with the
knowledge from previously seen documents and the expert drafted catchphrases thereof.
Our system utilizes deep neural networks which have been widely used in natural lan-
guage processing [17] to learn the direct relationship between gold catchphrases and
document phrases. This results in our phrase scoring framework which is used to iden-
tify important phrases from a given legal case document.

On top of the phrase scoring framework, we develop our legal case document repre-
sentation method which summarizes the document into continuous vector space. The
representation is used for constructing case relevance ranking model, the core compo-
nent of the retrieval system.

4.2 Summarization with Phrase Scoring Frame-
work

We present our method of automatic summarization via phrase scoring with multi-level
contextual features by deep neural networks. As case study, we build a system extract-
ing catchphrases from legal case documents.

4.2.1 Phrase Scoring Framework
In this phase, we present our scoring model and how to train it using documents and
their corresponding drafted summary.

4.2.1.1 Constructing our scoring model architecture

We score each phrase in a document based on its contexts: its words, enclosing sen-
tence, and document. Our approach takes advantage of the core property of word em-
bedding techniques by Google word2vec, GloVe, etc.: contextual similarity, the simi-
larity of two words is measured as the amount of common contexts where they appear.
Besides, the constructed context representation is multi-level contextual where the hi-
erarchical structure presents.
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Table 4.1.1: Example of catchphrases found in legal case reports[13].

COSTS - proper approach to admiralty and commercial litigation - goods trans-
ported under bill of lading incorporating Himalaya clause - shipper and con-
signee sued ship owner and stevedore for damage to cargo - stevedore successful
in obtaining consent orders on motion dismissing proceedings against it based
on Himalaya clause - stevedore not furnishing critical evidence or information
until after motion filed - whether stevedore should have its costs - importance
of parties cooperating to identify the real issues in dispute - duty to resolve un-
contentious issues at an early stage of litigation - stevedore awarded 75% of its
costs of the proceedings
CORPORATIONS - winding up - court-appointed liquidators - entry into
agreement - able to subsist more than three months - no prior approval under
s 477(2B) of Corporations Act 2001 (Cth) - application to extend “period” for
approval under s 1322(4)(d) - no relevant period - s 1322(4)(d) not applicable
- power of Court under s 479(3) to direct liquidator - liquidator directed to act
on agreement as though approved - implied incidental powers of Court - prior
to approve agreement - power under s 1322(4)(a) to declare entry into agree-
ment and agreement not invalid - COURTS AND JUDGES - Federal Court -
implied incidental power - inherent jurisdiction
MIGRATION - partner visa - appellant sought to prove domestic violence by
the provision of statutory declarations made under State legislation - “statu-
tory declaration” defined by the Migration Regulations 1994 (Cth) to mean a
declaration “under” the Statutory Declarations Act 1959 (Cth) in Div 1.5 - con-
trary intention in reg 1.21 as to the inclusion of State declarations under s 27
of the Acts Interpretation Act - statutory declaration made under State legis-
lation is not a statutory declaration “under” the Commonwealth Act - appeal
dismissed
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We adapt convolutional neural networks (CNNs), which are successfully used in text
modeling [37, 4, 39, 40], to encode each local context into latent feature space. Specif-
ically, document phrase (summary phrase) features are captured by applying convolu-
tional operations with window size l covering l words.

Given a document, we denote wsi
j as word jth of sentence ith. The features of an n-

gram phrase pj = {wj, wj+1, ..., wj+l−1} of a sentence are captured using convolutional
neural layer as follows:

fpj = ReLU (Wc [v(wj);v(wj+1); ...;v(wj+l−1)]) (4.1)
where, v(·) : 7→ Rd: word embedding vector lookup map, l: corresponding to the window
size containing l contiguous words, [·] ∈ Rdl: concatenated embedding vector, Wc ∈
Rc×dl: convolution kernel matrix with c filters, fpj ∈ Rc: phrase feature vector, ReLU :
rectified linear unit activation.

Sentence (catchphrase) features are, then, captured by applying max pooling over the
whole sentence (catchphrase).

fsi = max-poolingj(fpsij ) (4.2)

fci = max-poolingj(fpcij ) (4.3)

where max-pooling are operated over each dimension of vectors fpsi,j (fpci,j).
Document features are captured by applying max pooling over the document (not

including summary). With the same max-pooling operation as above, we compute doc-
ument features as:

fd = max-poolingi(fsi) (4.4)
The document features depend on only the document sentence, thereby, independent

from the gold summary which are obviously not available for new documents.
Finally, we apply a multilayer perceptron (MLP) with one hidden and one output

layer
MLP (x) = sigmoid(W2 tanh(W1 x+ b1) + b2) (4.5)

to compute the score of each phrase psij (pcij ) as

PS(ps, s, d) = MLP
([

fpsij ; fsi ; fd

])
(4.6)

PS(pc, c, d) = MLP
([

fpcij ; fci ; fd

])
(4.7)

where the hidden layer computes the phrase representative features respecting to its
local use, its enclosing sentence, and its document. The word representative features
are feed to the output layer to compute word score (ranging from 0.0 to 1.0).
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Figure 4.2.1: Phrase scoring framework

4.2.1.2 Training our scoring model

Main objective: given a document, summary phrases are “expected” to have higher score
than document phrases.

First, we denote mean E and standard deviation std of word scores P for each docu-
ment d in the following equations, which we will use to describe our objective as set of
constraints, then formulated into loss function to be optimized.

Ec = E[PS(pc, c, d)] where pc ∈ c, c ∈ d (4.8)

stdc = std[PS(pc, c, d)] where pc ∈ c, c ∈ d (4.9)
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Es = E[PS(ps, s, d)] where ps ∈ s, s ∈ d (4.10)

stds = std[PS(ps, s, d)] where ps ∈ s, s ∈ d (4.11)

Ec,d′ = E[PS(pc, c, d
′)] where pc ∈ c, c ̸∈ d′ (4.12)

Where p, c, s, d stand for phrase, summary sentence, document sentence, and the whole
document respectively. c ̸∈ d′ means c is not a summary of document d′.

The main objective is realized by comparing the mean scores of summary phrases and
document phrases:

(o1) The mean score of summary phrases is higher than the mean score of document
phrases: Ec > Es.

(o2) The mean score of summary phrases is lower than document phrases when com-
paring a summary with a document that the summary does not belong to: Ec,d′ <
Es′ . This is the negative constraint as opposed to the constraint o1.

The above two constraints are straightforward as the positive and negative factors of
the objective. However, the comparison of the mean values does not guarantee to obtain
to good scoring model as the score boundaries are not considered yet.

(o3) The maximum score of summary phrases is higher than the maximum score of doc-
ument phrases. It is expected that there exists concise summary phrases which is
typical and representative for the document but could not found in the document.
Such summary phrases should get higher scores than document phrases. The es-
timation E + std is used for representing max instead of hard max, whereby the
constraint is realized as (Ec + stdc) > (Es + stds).

(o4) The minimum score of summary phrases is higher than the mean score of doc-
ument phrases. Once again, to emphasize the importance of summary phrases,
all summary phrases should get higher score than the average score of document
phrases. The estimation E−std is used for representing min instead of hard min,
whereby the constraint is realized as (Ec − stdc) > Es.

We also add the following additional constraint to keep the scores from collapsing,
which acts as regularization.

(o5) Scores should not have small variance: stdc ̸≈ 0, stds ̸≈ 0.

The loss function, hence, is composed from the constraints (o1-5) as follows.

L =
∑
d

max(0,m− (a1(Ec − Es)

+a2(
1

|{d′}|
∑
d′ ̸=d

Es′ − Ec,d′)

+b1((Ec + stdc)− (Es + stds))

+b2((Ec − stdc)− Es)

−b3(stdc)− b4(stds)

))

(4.13)
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Note that rather imposing hard constraints, we compose the loss function with soft
constraints. This means that some constraints may not be strictly satisfied after the
training process. However, the violations of such constraints still incur certain losses
and benefit the learning process.

4.2.2 Legal Case Summarization
4.2.2.1 Summary Generation by Phrase Concatenation

We generate a summary given a document by selecting and joining document phrases
scored by the phrase scoring model. The process is as follows.

1. Rank document phrases by they phrasal scores.

2. Select phrases with scores from high to low.

3. Join overlapping phrases into a longer phrase.

4. Stop when the summary length exceeds length-threshold t.

The result summary is a list of phrases. The shortest phrases contains l words (l is the
window size of the convolutional neural layer). The longest phrases are the sentences
themselves.

We trained the phrase scoring model with settings shown in Table 4.2.1. We use two
sets of loss coefficients: (i) the parameters used for COLIEE 2018 submission, (ii) the
parameters used for COLIEE 2019 submission. While the parameter set (i) is copied
from [41], the parameter set (ii) is obtained by random searching around the set (i) for
better retrieval performance on COLIEE 2018 dataset.

We report the empirical evaluation of the phrase scoring model applied to case sum-
marization. A predicted summary of a given case is composed according to Section 4.2.2.
We evaluate the predicted summary with length-threshold t values from 10% to 50%
of document length. The evaluation is performed with ROUGE metrics including:
ROUGE-1, ROUGE-2, ROUGE-SU. Results of the evaluation are shown in 4.2.2.

Table 4.2.1: Phrase scoring model parameters. We use two sets of loss coefficients: (i)
the parameters used for COLIEE 2018 submission, (ii) the parameters used for COLIEE
2019 submission. While the parameter set (i) is copied from [41], the parameter set (ii)
is obtained by random searching around the set (i) for better retrieval performance on
COLIEE 2018 dataset.

Parameter Description
Embeddings (vector size d) GloVe [16] d = 300
CNN filters c 300
CNN window size l 5
MLP hidden size 300
Optimizer Adam[42]
Learning rate 0.0001
Gradient clipping max norm 5.0
Loss coefficients (a1, a2, b1, b2, b3, b4) (i) (1.0, 1.0, 0.5, 0.1, 0.01, 0.02)

(ii) (1.0, 1.7, 0.3, 0.7, 0, 0)
Size of negative set |{d′}| 2
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Table 4.2.2: Legal case summarization performance measured in ROUGE scores on
dataset from COLIEE 2018 case law retrieval task. The phrase scoring model is trained
with loss coefficients (i).

Length
Thresh-
old t

ROUGE-1 ROUGE-2 ROUGE-SU6

Pre Rec F1 Pre Rec F1 Pre Rec F1
10% 0.482 0.409 0.405 0.186 0.152 0.152 0.258 0.199 0.167
20% 0.377 0.592 0.424 0.155 0.244 0.174 0.169 0.388 0.184
30% 0.304 0.687 0.390 0.135 0.311 0.174 0.116 0.511 0.155
40% 0.253 0.745 0.352 0.121 0.364 0.169 0.084 0.592 0.125
50% 0.216 0.784 0.318 0.109 0.407 0.162 0.063 0.651 0.100

The phrase score statistics are shown in Fig. 4.2.2 and Fig. 4.2.3. Most of the sample
cases, positive summaries have higher mean scores than document contents, and docu-
ment contents have higher mean scores than negative summaries.

We measure the score distribution but over all data. Similar to per document, positive
summaries have higher mean scores than document contents, and document contents
have higher mean scores than negative summaries. High-score document contents are
selected from top 50 highest phrases for each document. The phrases in high-score doc-
ument contents affects much to the composition of document vectors, and could also be
selected for summarizing documents.

Figure 4.2.2: Visualization of score distribution (95% confidence) per document show-
ing the comparison among scores of a document’s contents with its summary (positive
summary) and other random document’s summary (negative summary). Most of the
sample cases, positive summaries have higher mean scores than document contents, and
document contents have higher mean scores than negative summaries.
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Figure 4.2.3: Visualization of score distribution over all data. Positive summaries have
higher mean scores than document contents, and document contents have higher mean
scores than negative summaries. High-score document contents are selected from top
50 highest phrases for each document. The phrases in high-score document contents
affects much to the composition of document vectors, and could also be selected for
summarizing documents.

4.2.2.2 Summary Generation by Sentence Selection

We evaluate on the dataset provided by Hachey et al. [10], which is a collection of 47
judgments of the House of Lord2 (HOLJ) from 2001 to 2003. We compare the results of
sentence selection with the methods of Hachey et al. [10] and Kim et al. [43].

• Hachey et al.: develop a sentence classification method using models trained on
several labor linguistic features: cue phrase, location, entities, sentence length,
quotations, and thematic words.

• Kim et al.: develop a graph-based algorithm which selects sentences towards the
conclusion/decision of the case. The sentences are connected based on the em-
bedding probability, the probability that a sentence is embedded in another.

Given a document d = s, we select top t sentences with highest scores computed
by Equation 4.14. As we compute the sentence score as sum of its phrase scores, this
obviously favors the long sentences with many high score phrases.

Since there are only 47 documents in HOLJ corpus, the phrase scoring model is
trained on COLIEE 2018 corpus which is a collection of case documents from a database
of predominantly Federal Court of Canada case laws, provided by Compass Law.

Score(s) =
∑
p∈s

PS(p, s, d) where s ∈ d (4.14)

2https://www.parliament.uk/business/lords/
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Table 4.2.3: Sentence selection results by selection F-score

Top t Sentences Pre Rec F1
10% 0.197 0.136 0.155
20% 0.182 0.245 0.201
30% 0.168 0.344 0.219
40% 0.168 0.460 0.240
50% 0.171 0.579 0.258
Hachey et al. 0.317 0.307 0.312
Kim et al. 0.313 0.364 0.337

Table 4.2.4: Sentence selection results by ROUGE scores

Top t
Sen-
tences

ROUGE-1 ROUGE-2 ROUGE-SU6

Pre Rec F1 Pre Rec F1 Pre Rec F1
10% 0.523 0.715 0.583 0.313 0.424 0.347 0.302 0.530 0.342
20% 0.365 0.846 0.494 0.258 0.592 0.348 0.155 0.739 0.236
30% 0.289 0.896 0.424 0.221 0.685 0.325 0.097 0.824 0.164
40% 0.247 0.931 0.380 0.205 0.770 0.315 0.071 0.882 0.126
50% 0.220 0.957 0.350 0.194 0.838 0.307 0.056 0.928 0.103

Even though, using the phrase scoring model, we can select sentences with high over-
lap with the gold sentences (Table 4.2.4), the accuracy of selecting the labeled sentences
is low (Table 4.2.3). This is understandable since our phrase scoring model focuses on
evaluating the importance of phrases, and is not directly learned to score sentences. Be-
sides, there are two factors our phrase scoring model does not have during inference: 91)
any explicit linguistic features other than word embedding, (2) statistical information:
term frequency-inverse document frequency. Furthermore, the phrase scoring model is
trained on a different corpus. The common of the training corpus (COLIEE 2018) with
the test corpus (HOLJ) is essentially captured through the use of word embedding.

4.3 Encoded Summarization
We present our approach to obtain document representation in continuous vector space
in which the summary properties of the document are embedded, which we call encoded
summarization. The “encoded summarization” utilizes the phrase scoring framework
with two main factors: output phrase scores and internal multi-level contextual features.
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Figure 4.3.1: Encoded Summarization composition
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4.3.1 Encoded Summarization Model
We present our method of composing document vectors from the phrase scoring model.

Given a document, we obtain its phrase scores and internal representations at three
levels: phrase level, sentence level and document level. Then, we compose the document
vector as:

g(d) =

∑
i,j P

(
psij , si, d

)
×
[
fd; fsi ; fpsij

]
∑

i,j P
(
psij , si, d

) (4.15)

Given a document, the composition weights the document contents based on their
scores obtained from the phrase scoring framework. Important contents should have
high contribution or affection to the final document vector. The component represen-
tations are multi-level contextual features which are the internal representations of the
phrase scoring model. These internal representations contain the features which are
learned to be used as base for scoring the surface contents. By using the multi-level
contexts, the final document vector embeds the weighted multi-level contextual infor-
mation including phrase level and sentence level contexts.

This composition resembles summarization where we weight the document internal
representations by its summary. Thus, we call this composition encoded summarization.

4.3.2 Experiments on Legal Case Retrieval Task
We describe the application of the Encoded Summarization method to building legal
case retrieval systems in Chapter 5.

4.4 Chapter Summary
We have introduced encoded summarization: encoding document based on the contents
we deem important via the phrase scoring mechanism. The experiments show the effec-
tiveness of the phrase scoring mechanism, the core of encoded summarization, in mod-
eling the target which, in this context, is the draft summary of each given legal case
document. In the next chapter, we will present our approach of building legal case re-
trieval systems based on the study of structural encoding in Chapter 2 and document
encoding target developed in this chapter.
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Chapter 5

Legal Case Retrieval Systems

5.1 Introduction
In this chapter, we showcase our retrieval systems built from various implementations
of structural encoding and encoded summarization methods.

We also explore the benefits of employing various types of similarity measurement
belonging to lexical similarity (keyword matching) and semantic similarity (meaning
matching).

On one hand, the lexical similarity and semantic similarity differ from each other and
can potentially complement each other as well. The lexical similarity is obtained with
approaches where the texts are compared by the direct surface forms with probably some
transformations such as stemming, lemmatization, stopword removal, etc. High lexical
similarity can present high matching, but low lexical similarity does not say much.

On the other hand, semantic similarity can provide the measurement where the sur-
face forms are mismatched, for example, by paraphrasing. Semantic similarity can be
learned in unsupervised fashion where common approaches are using statistical meth-
ods and benefits from huge available corpora (e.g. Wikipedia, GoogleNews, etc.) [18,
19, 15, 16]. Those methods treat a document as bag/sequence of words equally. Other
information in the documents such as important words or phrases, or the document hi-
erarchy when considered may provide significant information.

Phrase Scoring Model(s)

Encoded 
Summarization

Lexical Features

Deep Learning FeaturesA Legal 
Case

Relevant 
Legal 
Cases

Legal Case Database

Figure 5.1.1: Legal Case Retrieval System Architecture
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SUMMARY:
A human rights complaint alleged the federal government’s under-
funding of welfare services for on-reserve First Nations children re-
sulted in a lower level of services for those children than for other Cana-
dian children whose welfare services were provincially funded. /* ... */
The Federal Court held that, while the Tribunal had the power to de-
cide this issue in advance of a full hearing on the merits, the process
followed was not fair. /* ... */
Administrative Law - Topic 547
The hearing and decision - Decisions of the tribunal - Reasons for de-
cision - When required - [See second Civil Rights - Topic 7046].
Administrative Law - Topic 2608
Natural justice - Evidence and proof - Extraneous or irrelevant con-
siderations - [See first Civil Rights - Topic 7046].
/* ... */
PARAGRAPHS:
[1] Mactavish, J. : The Government of Canada funds child welfare
services for First Nations children living on reserves. The provinces
fund child welfare services for all other Aboriginal and non-Aboriginal
children.
[2] The First Nations Child and Family Caring Society and the Assem-
bly of First Nations filed a human rights complaint with the Canadian
Human Rights Commission in which they allege that the Government
of Canada under-funds child welfare services for on-reserve First Na-
tions children. /* ... */
/* ... */
[254] In my view, the ordinary meaning of the phrase “differentiate
adversely in relation to any individual” on a prohibited ground of
discrimination is to treat someone differently than you might other-
wise have done because of the individual’s membership in a protected
group. /* ... */
/* ... */
[395] As a result, the three applications for judicial review are granted.
/* ... */
[396] THIS COURT ORDERS AND ADJUDGES that /* ... */

Figure 5.1.2: Illustration of a legal case document from Federal Court of Canada.
“/* ... */”: omitted contents. Other information about citing cases, noticed cases, no-
tices statutes, etc. are omitted.

In the next sections, we present our method for building legal case retrieval systems
by exploring the benefits from combining lexical features and deep learning features
generated with neural networks. Our experiments show that lexical features and deep
learning features complement each other to improve the retrieval system performance.
Furthermore, our experimental results suggest the importance of case summarization in
different aspects: using provided summaries and performing encoded summarization.

5.2 Lexical Features
We estimate the lexical features by performing lexical matching between a query and
a candidate case in different types of measure formulas and comparison aspects. The
lexical similarity is obtained with approaches where the texts are compared by the direct
surface forms with probably some transformations such as stemming, lemmatization,
stopword removal, etc. High lexical similarity can present high matching, but low lexical
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similarity does not say much.
We estimate the lexical features by performing lexical matching between a query and

a candidate case in different types of n-grams, skip-grams, longest common subsequence
to measure various degrees of lexical similarity.

• N-gram matching: measuring n-gram overlapping between a query and a candi-
date case. We employ unigram and bigram models.

• Skip-bigram matching: measuring the co-occurrence of all word pairs in their sen-
tence order. This allows the same non-continuous word pairs could be found in
both query and candidate.

• We also employ the unigram+skip-gram model which balances the unigram
matching and skip-gram matching.

• Longest common subsequence: measuring the strictly ordered overlapping scat-
tering over the texts. We employ two variants: standard version and distance-
weighted version. The distance-weighted version favors subsequences with shorter
distances among words.

For each matching formula, we compute the matching scores by 3 different factors:

• Recall: normalized by query, measuring the percentage of the query contents
found in the candidate.

• Precision: normalized by candidate, measuring the percentage of the candidate
contents found in the query.

• F-measure: harmony score of the previous two.

F -measure =
2× precision× recall

precision+ recall

For the computation of lexical matching features, we used publicly available ROUGE
library1.

To have more precise comparison between a query and a candidate, we apply the
following 4 matching options:

• Summary-Summary: we compute the matching of the query’s summary with the
candidate’s summary. This matching represents the comparison of the highlights
between the query and the candidate.

• Paragraphs-Summary: we compute the matching of the query’s paragraphs with
the candidate’s summary. This matching represents the ratio of the candidate
summary mentioning relevant details.

• Summary-Paragraphs: we compute the matching of the query’s summary with the
candidate’s paragraphs. This matching represents the ratio of the query’s high-
lights mentioned in the candidate’s details.

1https://github.com/andersjo/pyrouge
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• Paragraphs-Paragraphs: we compute the matching of the query’s paragraphs with
the candidate’s paragraphs. This matching represents the ratio of the query’s de-
tails also occurred in the candidate’s details.

For COLIEE 2019 dataset, since most of the candidate cases do not have a summary,
we perform summary generation in two ways: using the lead sentence of each paragraph
and the generated summary described in Section 4.2.2. This results in 6 matching op-
tions for COLIEE 2019 dataset.

The coding for lexical features is in the form of q-c described as follows.

• q is a subset of query components including its expert summary (s) and para-
graphs (p).

• c is a subset of candidate components including its expert summary (s) and para-
graphs (p). As the case of COLIEE 2019 dataset, we use the lead sentences (l)
and the generated summary (e) instead of unavailable expert summary (s).

• Each component of q is compared with each component of c.

For example, the lexical method sp-sp (q=sp, c=sp) means we perform 4 matching op-
tions: Summary-Summary, Summary-Paragraphs, Paragraphs-Summary, Paragraphs-
Paragraphs, and the lexical method s-p (q=s, c=p) means we only perform Summary-
Paragraphs matching. We use this naming for presenting lexical features’ impact anal-
ysis in our experiments.

For the computation of lexical matching features, we used publicly available ROUGE
library2.

In total, we collect lexical features from 6 matching formulas and 3 matching factors
and 4 matching options, which results in 72 lexical features for measuring lexical match-
ing between a query and each of its candidates. For COLIEE 2019 dataset, since most
of the candidate cases do not have a summary, we perform summary generation in two
ways: using the lead sentence of each paragraph and the generated summary described
in Section 4.2.2. with the two additional matching options, we obtain 108 lexical fea-
tures for COLIEE 2019 dataset.

5.3 Deep Learning Features
Semantic similarity can provide the measurement where the surface forms are mis-
matched, for example, by paraphrasing. Semantic similarity can be learned in unsuper-
vised fashion where common approaches are using statistical methods and benefits from
huge available. We utilize common methods for encoding documents based on word-
embedding and doc2vec. Furthermore, we propose to use summaries and lead sentences
as objectives to encode documents into continuous vector space.

We utilizes several approaches for encoding documents into continuous vector space
as follows.

• word-embedding: From word vectors, we apply three kinds of vector compositions
for producing document vectors: max-pooling, average-pooling, hierarchical-
pooling. The word vectors can be obtained from word embedding models, for
example, Google word2vec [15] or GloVe [16].

2https://github.com/andersjo/pyrouge
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Figure 5.3.1: word2vec model architecture

• doc2vec[18]: This is a method for mapping text blocks into vector space. The
method considers texts as sequences of tokens regardless of presented structures.

• Encoded summarization: We apply our method described in Section 4.3 with var-
ious implementations including:

– Local contexts via seqential n-gram
– Local contexts via tree pq-gram
– Rhetoric information embedding
– Phrase scoring with gold summaries
– Phrase scoring with lead sentences

5.3.1 word-embedding and doc2vec Based Models
5.3.1.1 word-embeddings (WordEmb):

We employ simple document vector composition from the content word vectors. We
devise 3 composition methods: average-pooling, max-pooling and hierarchical max-
pooling.

Average-pooling: average of word vectors of all words w of document d.

g(d) =

∑
w WordEmb(w)

|{w}|
(5.1)

This very simple composition averages out the document content equally among all
words which results in keeping values of dimensions having mostly either low or high
values and moderate values of high variant dimensions. In other words, common repre-
sentative dimensions of the composition have either high or low values.

Max-pooling: maximum over each dimension of word vectors of all words w of doc-
ument d.

g(d) = max-poolingw(WordEmb(w)) (5.2)
This composition, different from average-pooling, takes out the highest value for each
dimension, which represents the highest existence of such dimension among all words.

Hierarchical-pooling: In addition to capturing averaging and maxing features from
word to document, intermediate sentence level is considered to add sentence boundary
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dependent features. Sentence features fsi are captured by applying max pooling over
the whole sentence.

fsi = max-poolingj(WordEmb(wsi
j )) (5.3)

where max-pooling are operated over each dimension of vectors WordEmb(wsi
j ). With

the same max-pooling operation as above, we compute document-level features as:

fd = max-poolingw(WordEmb(w)) (5.4)

The document vector is finally composed of word-level, sentence-level and document-
level features.

g(d) =

[
fd ;

∑
i fsi
|{si}|

;

∑
w WordEmb(w)

|{w}|

]
(5.5)

This composition includes the same information as average-pooling and max-pooling
through word-level and document-level features, then further expands with sentence-
level pooling which is dependent on sentence boundary.

5.3.1.2 doc2vec:

We utilize doc2vec model to estimate the document vectors g(d). The doc2vec vector of
a document embeds information to predict each of its words given each word’s surround
contexts (as illustrated in Figure 5.3.2). Thus, doc2vec vectors embed content predictive
features of documents.

g(d) = doc2vec(d) (5.6)

Figure 5.3.2: doc2vec model architecture

5.3.2 Encoded Summarization (EncSum):
We apply the composition described in Section 4.3 to encode a legal case document into
a vector space from which we can compare the similarity between a case query and a
case candidate.

In COLIEE 2018, when dealing with this task, Tran et al. [44] observed several ob-
stacles. First, the candidate cases are ≈5.7K-token long in average (Table 5.3.1). This
poses the problem of understanding the reason of selecting the cases as supporting cases.
They, then, chose another approach which is comparing the summaries of each query
and its candidate cases. They, however, found that the summary of the query is not
necessarily lexically similar to the summary of the candidate cases. Moreover, some
candidate cases do not have summary at all. They obtained the summary for each and
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every candidate cases, and furthermore, the summary should be comparable with the
summary of the corresponding query. They came up with the idea of encoding the en-
tire document into vector space embedding the properties of summarization, and called
it encoded summarization. They realized the approach successfully for COLIEE 2018,
and achieved the state of the art.

Table 5.3.1: Statistics of candidate case documents in COLIEE 2018 training data.

Property Max Avg.
#words/doc 85,551 5,690
#paragraphs/doc 1,117 43
#lead-sentences-words/doc 35,942 1,187
#summary-words/doc 8,827 589

Table 5.3.2: Statistics of candidate case documents in COLIEE 2019 training data. (*)
Only count documents having an expert summary.

Property Max Avg.
#words/doc 9,666 2,665
#paragraphs/doc 119 22
#summary-words/doc* 3,085 242

In COLIEE 2019, we observed the similar and different challenges. First, the can-
didate cases are ≈2.7K-token long in average (Table 5.3.2). The difficulty of reading
too long texts still emerges. We may pursue the idea that using summary as the main
source of information. However, the dataset of COLIEE 2019 is different from the one
of COLIEE 2018. While in COLIEE 2018, most of the candidate cases have a summary,
in COLIEE 2019, more than ≈47K in a total of 57K candidate cases are confirmed to
have no summary (indicated with the note “This case is unedited, therefore contains
no summary”). This means that summarization over candidate case requires additional
effort so that we can compare a query’s summary with a candidate’s summary.

We apply various implementations of the method with various text encoding meth-
ods and learning targets. The encoding methods are: sequential n-gram context encod-
ing, tree pq-gram context encoding, rhetoric embedding. The learning targets are gold
summaries and lead sentences. The base model is implemented with n-gram and gold
summaries without rhetoric embedding.
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5.3.2.1 Sequential n-Gram Context Encoding

Sequential n-gram context encoding treats the input texts as a set of n contiguous words.
This method assumes the temporal property of text which is read sequentially, but ig-
nores any latent structures of the text.
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Figure 5.3.3: Encoded Summarization composition with n-gram local contexts
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5.3.2.2 Dependency Tree pq-Gram Context Encoding

Tree pq-gram context encoding as mentioned in Section 2.3 demonstrates the method of
capturing syntactic dependency of words in a sentence. pq-gram are more explicit than
n-grams in term of expressing a local context since pq-grams are more interpretable than
n-grams to human. Furthermore, a pq-gram context can contain words that are located
discontiguously.
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Figure 5.3.4: Encoded Summarization composition with pq-gram local contexts
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5.3.2.3 Sentence Rhetorical Embedding

The importance of a phrase can be assessed with the rhetorical status of the enclosing
sentence. Not only the phrase contains similar contexts found in the summary but also
the phrase is used in the document sentence having the same rhetorical status as the
summary sentence contains such contexts.

We add rhetoric information to a phrase as an embedding vector of prediction proba-
bility of the phrase’s enclosing sentence using the rhetoric classification system in Chap-
ter 3.
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Figure 5.3.5: Encoded Summarization composition with rhetorical embedding
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5.3.2.4 Phrase Scoring with Gold Summaries

This is straightforward as we use expert drafted summaries as the target for training
phrase scoring models.

5.3.2.5 Phrase Scoring with Lead Sentences

We think of alternative solutions for obtaining phrase scoring models when gold sum-
maries are not available. One is to use lead sentences as a kind of heuristic summaries.

Lead sentences are usually topic sentences stating the points to be discussed in the
rest of the containing paragraphs, which makes lead sentences potential for perform-
ing content condensation. With this in mind, we apply various text encoding methods
on the lead sentences to obtain a representation for the corresponding document. Fur-
thermore, we build a document encoding model based on the phrase scoring framework
guided by lead sentences. This method has the advantage of applicability to any docu-
ments, thus, can be used to obtain one kind of document embeddings with the property
of lead sentences.

Legal case documents usually contain huge amount of contents. As in Table 5.3.1, a
legal case document contains 5.6K words and 45 paragraphs in average, and could goes
over 80K words and 1K paragraphs. This challenges the efficiency of not only human
experts but also automatic retrieval systems. Editor summarization condensates con-
tents by ≈90% which results in ≈10% key contents. The ≈10% key contents, however,
require legal experts, thus, are not always available.

Lead sentences can be used to summarize topics discussed throughout the documents.
For each paragraph, lead sentences are usually important sentences stating the points
to be discussed by the later sentences. Lead sentences may contain more key informa-
tion than summary. While the summary only contains decisive points, lead sentences
include almost every points discussed throughout the case, which cover ≈20% of docu-
ment contents (Table 5.3.1). However, some keywords drafted by editors are noted down
in the summary and may not be available in the case details as we measured that 87%
of summary content words are found in paragraphs. In Table 5.3.3, ROUGE-1 scores
show that there is less than half of content words shared between lead sentences and
summary where 30.5% words in the lead sentences appear in the summary and 49.6%
words in the summary appear in the lead sentences. By using lead sentences instead of
editor drafted summaries, we take into account some trade-offs:

• Missing out the 50.4% of summary contents with editor drafted keywords.

• Gaining 69.5% of lead sentence contents not in the summary.

• Ease of obtaining lead sentences versus not always available manually drafted
summary.

• Still achieving the purpose of content condensation for building a legal case re-
trieval system.
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Table 5.3.3: Overlapping between lead sentences and summaries of legal case documents
from COLIEE2018 training data. Stopword removal and stemming are performed be-
fore computing ROUGE scores. “Lead in Sum”: how much of lead sentences’ contents
appear in summary. The otherwise is for “Sum in Lead”.

Measure Lead in Sum Sum in Lead
ROUGE-1 0.305 0.496
ROUGE-2 0.115 0.185
ROUGE-L 0.283 0.460
ROUGE-W 0.164 0.132
ROUGE-S 0.107 0.272
ROUGE-SU 0.108 0.275

5.3.3 Query-Candidate Relevance Vector
The relevance vector consists of the features indicating the relevance of a candidate given
a query. We compose this vector from lexical features and deep learning features.

The lexical features are computed by lexical matching which by themselves present
the relevance measurement.

For the deep learning features which are encoded information in continuous vector
space, by comparing each dimension independently, we can estimate the compatibility
of a query and a candidate over the dimension. Thus, we compute the relevance features
from deep learning features as the element-wise product of query vector and candidate
vector. First, we obtain query vector g(q) and candidate vector g(c) for each of the 5
above document vector compositions (Equations 4.15, 5.1, 5.2, 5.5, and 5.6). Then, we
compute the relevance vector of query q and candidate c by the following element-wise
product.

h(q, c) = g(q) ◦ g(c) (5.7)
The combination of lexical features and deep learning features is presented in the

query-candidate relevance vector as the concatenation of lexical matching features and
the element-wise product of deep learning feature vectors of the query and the candidate.

relevance-vector(q, c) = [lexical-features(q, c);h(q, c)] (5.8)

5.4 The Retrieval Systems
From the lexical features and deep learning features, we can customize our own legal
case retrieval system. We present our experiments with the following customization:

• Lexical: the retrieval system build from only lexical features (Section 5.2).

• WordEmb-Avg-pooling: average pooling of word embeddings (Equation 5.1).

• WordEmb-Max-pooling: max pooling of word embeddings (Equation 5.2).

• WordEmb-Hierarchical-pooling: hierarchical pooling of word embeddings (Equa-
tion 5.5).

• doc2vec: vanilla doc2vec model (Equation 5.6).

60



• EncSum: base Encoded Summarization whose phrase scoring model is trained
with n-gram context encoding.

• EncSum-p=#,q=#: Encoded Summarization whose phrase scoring model is
trained with pq-gram context encoding.

• EncSum-rhetoric-emb: Encoded Summarization whose phrase scoring model is
trained with incorporation of sentence rhetorical information.

• EncSum-lead: Encoded Summarization whose phrase scoring model is trained
with lead sentences instead of gold summaries.

• Lexical+###: combination of lexical with the above deep learning features. We
will show in the experiments that the combination yield potential improvement.

• Voting: Combining potential models. The voting method could benefit form these
models’ divergence in modeling query-candidate relationship.

5.5 Experiments on Legal Case Retrieval Task
In the data used in our experiments, the legal cases are sampled from a database of pre-
dominantly Federal Court of Canada case laws, provided by Compass Law. The data
are provided by COLIEE competition [45] held in two years 2018 and 2019. In each of
both the datasets, the data contain 285 queries, each query is attached with 200 candi-
date cases. Each candidate case is presented as a raw text document file which describes
the details of the case. While a summary is presented in the query case, the candidate
cases may not have summary section.

We formulate the task as bipartite ranking problem and devise the learning to rank-
ing method to solve it. We utilize pair-wise ranking strategy: pairing each noticed case
with an irrelevant case from the candidate list. We adopt Linear-SVM as the learning
algorithm for solving the optimization problem. The input of the learning-to-rank al-
gorithm is the query-candidate relevance vectors obtained from Equation 5.8 in Section
5.3.3. After obtaining the scored candidates as a ranked list, we proceed to select top k
highest scored candidates as the predicted noticed cases.

The phrase scoring model was trained on only COLIEE 2018 dataset, and adopted to
generate encoded summarization vectors for case documents, and text summaries for the
candidate cases in COLIEE 2019 dataset. For generating the text summaries, the sum-
mary length threshold t (Section 4.2.2) is set to t = 20% document-length. As shown in
Tables 5.3.1 and 5.3.2, the average length of summaries is ≈ 10% document-length for
COLIEE 2018 dataset, and ≈ 9% document-length for COLIEE 2019 dataset. Thus,
with a threshold t = 20% document-length, we could expect to cover potential infor-
mation with good recall rate (≈ 70%) while keeping an acceptable summary length.
The parameter setting of the base phrase scoring model is described in Table 2.3.4. For
the rhetorical embedding, we use the model CNN(1000)-BiLSTM(1000)-FC from Chap-
ter 3.

We evaluated our approach by performing leave-one-out validation where we tested
on each and every query from the provided 285 queries and the rest as training data.

We reported our system’s validation results with the following metrics:

• MAP: Mean average precision.
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• P, R, F1: Precision, Recall, f-measure whose values are averaged by query. This
is straightforward as we average the results of all folds in the leave-one-out vali-
dation.

The results in validation phase, test phase and compared with other COLIEE
participants (Tables 5.5.1, 5.5.2, 5.5.9, 5.5.10, 5.5.11, and 5.5.12) show that Lex-
ical+EncSum, the combination of lexical features with encoded summarization,
achieves the best performance.

5.5.1 Validation Results
5.5.1.1 Overall

The validation results of COLIEE 2018 (Table 5.5.1) and COLIEE 2019 (Table 5.5.2)
show that lexical features and deep learning features complement each other really well.
The highest performance with either lexical or deep learning features is lower than the
lowest performance of the combination. The improvement by the combination hints the
existence of important information captured by deep learning features but not captured
by lexical features.

WordEmb-Hierarchical-pooling performs better than WordEmb-Max-pooling and
WordEmb-Avg-pooling. The hierarchical pooling consists of WordEmb-Max-pooling,
WordEmb-Avg-pooling features and further sentence-level pooling which regards the
sentence information boundary.

As shown in Table 5.5.1, when limiting the document to only the summary part than
the whole content, most of the models using WordEmb or doc2vec perform better, except
doc2vec without lexical features. This suggests the important of summarization in legal
case retrieval task.

The suggestion strongly presents in the results of the models using encoded summa-
rization. The models with encoded summarization features outperforms other latent
feature generation candidates including WordEmb, doc2vec on either the summary part
or the whole document. Furthermore, the improvement of the encoded summarization
suggests that this feature type not only embeds the summary properties of the document
but also carries selectively important information from the document content.

The above points also suggests that the summary of a case contains important in-
formation but may not contain all relevant information for case retrieval. This is in-
tuitively seen as that the whole case may discuss various legal points besides the main
points. Since the encoded summarization weights the case content based on the sum-
mary which contains the main points of the case, the other various legal points which
are potentially related to the main points may be captured. Hence, the selectively car-
ried information by the encoded summarization could be the related points to the main
points of the case.
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Table 5.5.1: Validation results on COLIEE 2018 dataset. We select top 10 highest scored
candidates when measuring precision, recall and f-measure. “(summary)” indicates that
the corresponding encoding method is applied only on the summary part of the docu-
ment.

Model MAP P R F1
Lexical 0.530 0.420 0.520 0.398
WordEmb-Avg-pooling 0.452 0.386 0.440 0.356
WordEmb-Max-pooling 0.325 0.306 0.326 0.275
WordEmb-Hierarchical-pooling 0.528 0.434 0.481 0.400
doc2vec 0.552 0.438 0.533 0.415
WordEmb-Avg-pooling (summary) 0.515 0.444 0.499 0.410
WordEmb-Max-pooling (summary) 0.400 0.370 0.362 0.324
WordEmb-Hierarchical-pooling (summary) 0.619 0.503 0.570 0.469
doc2vec (summary) 0.422 0.367 0.407 0.334
EncSum(i) 0.659 0.510 0.584 0.478
EncSum(ii) 0.690 0.529 0.608 0.494
EncSum-p = 1, q = 3 (ii) 0.626 0.500 0.576 0.466
EncSum-rhetoric-emb (ii) 0.650 0.498 0.588 0.470
EncSum-lead (ii) 0.541 0.450 0.511 0.417
Lexical+WordEmb-Avg-pooling 0.686 0.522 0.653 0.502
Lexical+WordEmb-Max-pooling 0.687 0.515 0.642 0.494
Lexical+WordEmb-Hierarchical-pooling 0.772 0.565 0.705 0.545
Lexical+doc2vec 0.684 0.518 0.644 0.496
Lexical+WordEmb-Avg-pooling (summary) 0.688 0.528 0.646 0.505
Lexical+WordEmb-Max-pooling (summary) 0.711 0.544 0.677 0.524
Lexical+WordEmb-Hierarchical-pooling (summary) 0.783 0.579 0.725 0.560
Lexical+doc2vec(summary) 0.704 0.539 0.675 0.520
Lexical+EncSum(i) 0.849 0.601 0.761 0.583
Lexical+EncSum(ii) 0.888 0.623 0.788 0.607
Lexical+EncSum-p = 1, q = 3 (ii) 0.842 0.602 0.762 0.584
Lexical+EncSum-rhetoric-emb (ii) 0.854 0.606 0.768 0.588
Lexical+EncSum-lead (ii) 0.794 0.591 0.744 0.572
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Table 5.5.2: Validation results on COLIEE 2019 dataset. We select top 5 highest scored
candidates when measuring precision, recall and f-measure.

Model MAP P R F1
Lexical 0.715 0.495 0.641 0.485
WordEmb-Avg-pooling 0.218 0.177 0.210 0.161
WordEmb-Max-pooling 0.270 0.223 0.260 0.206
WordEmb-Hierarchical-pooling 0.417 0.331 0.405 0.311
doc2vec 0.567 0.404 0.540 0.398
EncSum(i) 0.542 0.430 0.516 0.402
EncSum(ii) 0.576 0.436 0.534 0.410
Lexical+WordEmb-Avg-pooling 0.733 0.508 0.658 0.496
Lexical+WordEmb-Max-pooling 0.750 0.526 0.679 0.513
Lexical+WordEmb-Hierarchical-pooling 0.782 0.549 0.704 0.534
Lexical+doc2vec 0.725 0.493 0.638 0.482
Lexical+EncSum(i) 0.792 0.552 0.700 0.533
Lexical+EncSum(ii) 0.833 0.579 0.724 0.557

The encoded summarization (EncSum) approach alone achieves MAP of 0.576 and
F1 of 0.410 on COLIEE 2019 dataset, lower performance than the best lexical combi-
nation (MAP: 0.715, F1: 0.485). The effect is different from the observation in COLIEE
2018 dataset where the performance of encoded summarization (MAP of 0.690 and F1
of 0.494) is higher than lexical matching approach (MAP:0.530 F1:0.398). Since the en-
coded summarization model is trained on only COLIEE 2018 dataset, some summary
phenomena in COLIEE 2019 dataset may not be well captured.

The combination of encoded summarization and lexical features does improve perfor-
mance significantly. The improvement by the combination of show that, even though
the encoded summarization may not perform well alone, it still provides useful informa-
tion for identifying relevant cases.

5.5.1.2 Lexical Features’ Impact

The coding for lexical features is in the form of q-c, where q is a subset of query com-
ponents including:

• summary (s), and

• paragraphs (p),

and, c is a subset of candidate components including:

• paragraphs (p)

• lead sentences (l)

• generated summary (e) (described in Section 4.2.2).

For example, the lexical method sp-ple (q=sp, c=ple) means we perform all 6 matching
options, and the lexical method s-p (q=s, c=p) means we only compare the summary
of a query with the paragraphs of a candidate.
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Table 5.5.3: Lexical feature impact analysis by validation results on COLIEE 2018
dataset. We select top 10 highest scored candidates when measuring precision, recall
and f-measure.

Lexical Combination MAP P R F1
s-s 0.372 0.331 0.378 0.302
s-p 0.482 0.386 0.486 0.367
p-s 0.435 0.356 0.434 0.331
p-p 0.469 0.372 0.463 0.355
sp-s 0.458 0.371 0.450 0.346
sp-p 0.510 0.403 0.506 0.384
sp-sp 0.530 0.420 0.520 0.398

Table 5.5.4: Lexical feature impact analysis by validation results on COLIEE 2019
dataset. We select top 5 highest scored candidates when measuring precision, recall
and f-measure.

Lexical Combination MAP P R F1
s-p 0.690 0.484 0.620 0.470
s-l 0.589 0.420 0.528 0.405
s-e 0.561 0.401 0.517 0.390
p-p 0.680 0.476 0.601 0.461
p-l 0.619 0.443 0.563 0.429
p-e 0.588 0.413 0.534 0.402
sp-p 0.712 0.490 0.635 0.480
sp-l 0.634 0.448 0.570 0.435
sp-e 0.602 0.429 0.553 0.416
sp-pl 0.713 0.493 0.639 0.483
sp-pe 0.709 0.485 0.633 0.476
sp-ple 0.715 0.495 0.641 0.485

The validation results (Tables 5.5.3, and 5.5.4) of lexical features with various com-
binations (from the 4 matching options for COLIEE 2018 and 6 matching options for
COLIEE 2019) described in Section 5.2 show that the combination of lexical match-
ing options does have positive effect to improve the performance on both COLIEE 2018
and COLIEE 2019 datasets. On one hand, it is meaningful to have expert summaries for
lexical matching as in COLIEE 2018, and on the other hand, pseudo/generated sum-
maries could also help boost retrieval performance in COLIEE 2019 where candidate
summaries are not available.
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5.5.1.3 Various Implementations of Phrase Scoring Models

Table 5.5.5: Validation results of EncSum variants on COLIEE 2018 dataset. We select
top 10 highest scored candidates when measuring precision, recall and f-measure.

Model MAP P R F1
EncSum(ii) 0.690 0.529 0.608 0.494
EncSum-p = 1, q = 3 (ii) 0.626 0.500 0.576 0.466
EncSum-rhetoric-emb (ii) 0.650 0.498 0.588 0.470
EncSum-lead (ii) 0.541 0.450 0.511 0.417
Lexical+EncSum(ii) 0.888 0.623 0.788 0.607
Lexical+EncSum-p = 1, q = 3 (ii) 0.842 0.602 0.762 0.584
Lexical+EncSum-rhetoric-emb (ii) 0.854 0.606 0.768 0.588
Lexical+EncSum-lead (ii) 0.794 0.591 0.744 0.572

Table 5.5.6: Validation results of pq-gram based models on COLIEE 2018 dataset. We
select top 10 highest scored candidates when measuring precision, recall and f-measure.
“(summary)” indicates that the corresponding encoding method is applied only on the
summary part of the document.

Model MAP P R F1
EncSum-p = 1, q = 1 (ii) 0.462 0.403 0.418 0.358
EncSum-p = 1, q = 2 (ii) 0.595 0.486 0.547 0.450
EncSum-p = 1, q = 3 (ii) 0.626 0.500 0.576 0.466
EncSum-p = 2, q = 2 (ii) 0.574 0.476 0.529 0.439
EncSum-p = 3, q = 1 (ii) 0.587 0.482 0.540 0.446
Lexical+EncSum-p = 1, q = 1 (ii) 0.646 0.495 0.627 0.477
Lexical+EncSum-p = 1, q = 2 (ii) 0.814 0.596 0.752 0.578
Lexical+EncSum-p = 1, q = 3 (ii) 0.842 0.602 0.762 0.584
Lexical+EncSum-p = 2, q = 2 (ii) 0.816 0.598 0.753 0.579
Lexical+EncSum-p = 3, q = 1 (ii) 0.817 0.596 0.752 0.577

pq-Gram Based Models. Performances vary among different pq values. The best
performance belongs to pq = (1, 3). The performances are comparable among models
with pq in (1, 2), (2, 2), (3, 1). The worst performance belongs to pq = (1, 1).

Lead Sentences Based Model. Our approach of utilizing lead sentences into build-
ing legal case retrieval system has achieved promising results. Despite of inferior per-
formance to drafted summary based models, the use of lead sentences has the benefits
of: 1) not requiring editor drafted summary, and 2) still embodying the gist of a docu-
ment. The performance improvement when applying various text encoding on the editor
drafted summaries showcases the benefits of using summary for retrieving relevant case
documents. However, the summary of a case is not always available as editor drafted
summary can require significant effort depending on the duration of the case which can
be days or years whereas extracting lead sentences is trivial. On the other hand, lead
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sentences are usually topic sentences which embody the gist of a document. Since lead
sentences are not only used as one way to obtain a summary for a given document,
but this method is also a strong baseline in related works on automatic document sum-
marization, it suggests the possibility of applying automatic document summarization
systems to obtain document summaries as the prior step to the retrieval systems.

Per Query Performance Difference. When comparing performance per query
by the leave one out validation, though the overall results of using either pq-gram,
rhetorical information or lead sentences are inferior to the base setting: n-gram, with
gold summaries, without rhetorical information, performance differences are clearly
observed (Figures 5.5.1,5.5.2, and 5.5.3). There are quite a number of cases where pq-
gram, rhetorical information and lead sentences show superior performances. Among
these variations, the model using rhetorical information shows the most significant dif-
ference. This suggests that case retrieval systems can be improved when the differences
are modeled appropriately.
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Figure 5.5.1: Performance (MAP) difference of the model using n-gram versus the model
using pq-gram. n = 5, p = 1, q = 3.
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Figure 5.5.2: Performance (MAP) difference of the base model versus the model with
rhetorical embedding
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Figure 5.5.3: Performance (MAP) difference of the model trained with gold summaries
versus the model trained with lead sentences
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5.5.1.4 Voting

One way to resolve the difference modeled by each implementation of EncSum is voting.
We devise a simple voting mechanism where scores output by each model are normalized
with a min-max normalization based formula (Equation 5.9).

normalize(scores) =
scores−max(scores)

max(scores)−mint(scores)
(5.9)

where mint(scores) returns the score of the candidate at rank t. When t is the size of
the candidate list, the normalized scores are in range [-1,0]. By subtracting the scores
with a value of max(scores), we equalize the rank 1 candidate of each model.

We achieve best performance voting from three models: Base, pq-Gram and w/Rhetoric-
Emb (Table 5.5.7).

Table 5.5.7: Validation results of voting on EncSum models on COLIEE 2018 dataset.
We select top 10 highest scored candidates when measuring precision, recall and f-
measure. We select mint where t ∈ {10, 20, ..., 200} for score normalization (Equa-
tion 5.9). All models include lexical features, and are selected from models listed in
Table 5.5.5. ”||”: voter separator.

Model MAP P R F1
Base 0.888 0.623 0.788 0.607
pq-Gram 0.842 0.602 0.762 0.584
w/Rhetoric-Emb 0.854 0.606 0.768 0.588
mint=10

Base||w/Rhetoric-Emb 0.893 0.627 0.794 0.612
Base||pq-Gram 0.894 0.628 0.797 0.612
w/Rhetoric-Emb||pq-Gram 0.889 0.624 0.792 0.609
Base||w/Rhetoric-Emb||pq-Gram 0.906 0.635 0.807 0.621
mint=200

Base||w/Rhetoric-Emb 0.898 0.631 0.800 0.615
Base||pq-Gram 0.893 0.628 0.796 0.612
w/Rhetoric-Emb||pq-Gram 0.890 0.625 0.792 0.609
Base||w/Rhetoric-Emb||pq-Gram 0.906 0.635 0.806 0.620
Average over mint

Base||w/Rhetoric-Emb 0.896 0.629 0.797 0.613
±0.0026 ±0.0019 ±0.0030 ±0.0018

Base||pq-Gram 0.894 0.628 0.797 0.613
±0.0008 ±0.0005 ±0.0015 ±0.0005

w/Rhetoric-Emb||pq-Gram 0.890 0.625 0.793 0.609
±0.0013 ±0.0007 ±0.0008 ±0.0007

Base||w/Rhetoric-Emb||pq-Gram 0.905 0.635 0.807 0.620
±0.0015 ±0.0005 ±0.0006 ±0.0005
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Figure 5.5.4: Performance by score threshold.

5.5.1.5 Score-Threshold-Based Selection

From all the validation results, we see that while our method of selection of predicted
supporting cases, which is based on top k of ranked candidates, is simple, but it has a
limitation: the value of k does not make use of scores returned by ranking models.

We present another selection strategy, namely, score-threshold-based selection. On
the normalized scores by Equation 5.9 with mint=200, we select only the candidates
whose scores are greater than a threshold s. The results of different values of s is shown
in Figure 5.5.4. We achieve best F1 of 0.712 when s = −0.27 with the voting of three
models: Base, pq-Gram and w/Rhetoric-Emb, compared to the best of using top-k se-
lection by a large margin of ∆F1= +0.092.

Table 5.5.8: Performance in f-measure by score threshold. Score normalization (Eq.5.9)
is computed with mint=200.

Score Threshold
Model -0.25 -0.26 -0.27 -0.28 -0.29 -0.30
Base 0.654 0.655 0.659 0.660 0.666 0.669
pq-Gram 0.626 0.630 0.634 0.637 0.641 0.636
w/Rhetoric-Emb 0.622 0.632 0.637 0.638 0.638 0.638
Base||pq-Gram 0.685 0.691 0.696 0.698 0.697 0.698
Base||w/Rhetoric-Emb 0.673 0.683 0.689 0.690 0.693 0.696
w/Rhetoric-Emb||pq-Gram 0.678 0.684 0.685 0.689 0.691 0.685
Base||w/Rhetoric-Emb||pq-Gram 0.697 0.708 0.712 0.710 0.711 0.710
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5.5.2 Test Results

Table 5.5.9: Results on test data of COLIEE 2018. We select top 10 highest scored can-
didates when measuring precision, recall and F-measure. “(summary)” indicates that
the corresponding encoding method is applied only on the summary part of the docu-
ment.

Model P R F1
Lexical 0.458 0.429 0.443
WordEmb-Avg-pooling 0.417 0.391 0.404
WordEmb-Max-pooling 0.331 0.310 0.320
WordEmb-Hierarchical-pooling 0.493 0.463 0.477
doc2vec 0.466 0.437 0.451
WordEmb-Avg-pooling (summary) 0.490 0.459 0.474
WordEmb-Max-pooling (summary) 0.432 0.405 0.418
WordEmb-Hierarchical-pooling (summary) 0.585 0.548 0.566
doc2vec(summary) 0.444 0.417 0.430
EncSum(i) 0.598 0.561 0.579
EncSum(ii) 0.608 0.571 0.589
EncSum-p = 1, q = 3 (ii) 0.578 0.542 0.559
EncSum-rhetoric-emb (ii) 0.600 0.563 0.581
EncSum-lead (ii) 0.493 0.463 0.477
Lexical+WordEmb-Avg-pooling 0.569 0.534 0.551
Lexical+WordEmb-Max-pooling 0.566 0.531 0.548
Lexical+WordEmb-Hierarchical-pooling 0.607 0.569 0.587
Lexical+doc2vec 0.571 0.536 0.553
Lexical+WordEmb-Avg-pooling (summary) 0.578 0.542 0.559
Lexical+WordEmb-Max-pooling (summary) 0.598 0.561 0.579
Lexical+WordEmb-Hierarchical-pooling (summary) 0.637 0.598 0.617
Lexical+doc2vec (summary) 0.622 0.583 0.602
Lexical+EncSum(i) 0.676 0.634 0.655
Lexical+EncSum(ii) (Base) 0.690 0.647 0.668
Lexical+EncSum-p = 1, q = 3 (ii) (pq-Gram) 0.692 0.649 0.669
Lexical+EncSum-rhetoric-emb (ii) (w/Rhetoric-Emb) 0.681 0.639 0.660
Lexical+EncSum-lead (ii) 0.610 0.572 0.591
Base||pq-Gram 0.717 0.780 0.687
Base||w/Rhetoric-Emb 0.715 0.783 0.686
w/Rhetoric-Emb||pq-Gram 0.712 0.781 0.683
Base||w/Rhetoric-Emb||pq-Gram 0.720 0.784 0.690
Base (ST) 0.787 0.697 0.689
pq-Gram (ST) 0.778 0.639 0.642
w/Rhetoric-Emb (ST) 0.728 0.728 0.671
Base||pq-Gram (ST) 0.807 0.705 0.692
Base||w/Rhetoric-Emb (ST) 0.763 0.761 0.704
w/Rhetoric-Emb||pq-Gram (ST) 0.826 0.709 0.707
Base||w/Rhetoric-Emb||pq-Gram (ST) 0.841 0.712 0.715
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Table 5.5.10: Results on test data of COLIEE 2019. We select top 5 highest scored
candidates when measuring precision, recall and f-measure.

Model P R F1
Lexical 0.485 0.448 0.466
WordEmb-Avg-pooling 0.157 0.145 0.151
WordEmb-Max-pooling 0.239 0.221 0.230
WordEmb-Hierarchical-pooling 0.334 0.309 0.321
doc2vec 0.403 0.373 0.387
EncSum(i) 0.413 0.382 0.397
EncSum(ii) 0.426 0.394 0.409
Lexical+WordEmb-Avg-pooling 0.489 0.452 0.469
Lexical+WordEmb-Max-pooling 0.541 0.500 0.520
Lexical+WordEmb-Hierarchical-pooling 0.590 0.545 0.567
Lexical+doc2vec 0.475 0.439 0.457
Lexical+EncSum(i) 0.544 0.503 0.523
Lexical+EncSum(ii) 0.600 0.555 0.576

Table 5.5.11: Participants’ results on test data of COLIEE 2018. We participated in
the competition under the name ”JNLP”. ”JNLP-k=10” is our best system utilizing
the combination of lexical and encoded summarization[44] using the base parameters.

Model P R F1
HUKB1 0.497 0.308 0.381
HUKB2 0.405 0.304 0.347
JNLP-r=2.5 0.546 0.655 0.596
JNLP-k=10 0.676 0.634 0.655
Smartlaw 0.287 0.431 0.345
UA 0.372 0.323 0.346
UA-postproc 0.348 0.404 0.374
UA-smote 0.354 0.393 0.372
UBIRLED-1 0.133 0.623 0.219
UBIRLED-2 0.196 0.720 0.308
UBIRLED-3 0.561 0.102 0.172
UL 0.564 0.302 0.393
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Table 5.5.12: Participants’ results on test data of COLIEE 2019. We participated in the
competition under the name ”JNLP”. ”JNLP.task_1.p” is our best system utilizing the
combination of lexical and encoded summarization using the pre-trained phrase scoring
model.

Team Run name P R F1
CACJ submit_task1_CACJ01 0.212 0.585 0.311
CLArg CLarg 0.927 0.306 0.460
HUKB task1.HUKB 0.702 0.400 0.510
IITP task1.IITPBM25 0.626 0.385 0.477
IITP task1.IITPd2v 0.465 0.346 0.397
IITP task1.IITPdocBM 0.637 0.388 0.482
ILPS BERT_Score_0.946 0.681 0.433 0.530
ILPS BERT_Score_0.96 0.819 0.342 0.483
ILPS BM25_Rank_6 0.467 0.518 0.491
JNLP JNLP.task_1.p 0.593 0.549 0.570
JNLP JNLP.task_1.pl 0.600 0.555 0.576
JNLP JNLP.task_1.ple 0.600 0.555 0.576
UA UA_0.52 0.351 0.336 0.344
UA UA_0.54 0.364 0.324 0.343
UA UA_0.57 0.356 0.333 0.344
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5.6 Summary
We have presented our approach for modeling document summary into continuous vec-
tor space. We showed that our approach has positive signs in building an effective legal
case retrieval system. The results show the importance of exploiting the summary for
solving legal case retrieval task. Furthermore, the improvement by the encoded sum-
marization suggests that this feature type not only embeds the summary properties of
the given case but also carries selectively important information from the case content
which could be potentially related legal points to the main points of the case. Fur-
thermore, the combination of lexical features and deep learning features generated with
neural networks yields positive results for solving the legal case retrieval task. The ex-
perimental results show that lexical features and deep learning features complement
each other pretty well. The highest performance with either lexical or deep learning
features is lower than the lowest performance of the combination. The improvement of
the combination hints the existence of deep learning features not captured by lexical
approach. We have also showed that the phrase scoring model trained from COLIEE
2018 dataset can provide useful features for representing documents in COLIEE 2019
dataset. There are several directions for improving the performance of legal case re-
trieval systems. One is that we can use the documents having a summary in COLIEE
2019 dataset for fine-tuning the phrase scoring model. Besides, the lexical matching
has not yet considered the statistical information of terms in the corpus, which can be
modeled by term frequency-inverse document frequency for example. Including such in-
formation may improve the matching by recognizing the statistically typical words for
each document.
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Chapter 6

Conclusion

We have presented our approaches for exploiting structural information of documents to
develop document encoding methods for measuring document similarity and predicting
document relevance, which are implemented to build legal case retrieval systems. In
summary, we have developed our methods for:

• Learning vector representation of document components via context expansion
with document hierarchy and cross-references and apply the method to legal in-
formation retrieval task. The application is still simple as it only compares vectors
one by one. To continue, we will focus on more structural properties of documents
which are not yet fully exploited in this work, for instance, the comparison of vec-
tor representations in hierarchical fashion.

• Encoding sentences with convolutional operations on pq-gram representations of
dependency trees, and our application on sentence-pair modeling. The representa-
tions are flexible with adjusting pq values while keeping the semantic dependency
from dependency trees. Besides, the representations provide more local informa-
tion in the form of intermediary encodings than n-gram and subtree (containing
all children) representations by the average number of children per node, which,
however, may require feature comparison/alignment to reduce search space. Our
approach achieve competitive performance with related methods using tree com-
position in sentence encoding.

• Rhetorical status recognition, the first step of our goal to obtain the discourse
analysis, using deep learning for feature extraction and conditional random field
for solving the recognition task as sequential labeling problem. We have achieved
encouraging results since, we have not yet utilized any linguistic features, but
only statistical features by deep neural network from a considerably insufficient
dataset. The applicability of deep neural network to this task sets the step for in-
corporating rhetorical information into more sophisticated deep learning models
of tasks such as summarization, information retrieval.

• Modeling document summary into continuous vector space. We showed that our
approach has positive signs in building an effective legal case retrieval system.
The results show the importance of exploiting the summary for solving legal case
retrieval task. Furthermore, the improvement by the encoded summarization sug-
gests that this feature type not only embeds the summary properties of the given
case but also carries selectively important information from the case content which
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could be potentially related legal points to the main points of the case. Further-
more, the combination of lexical features and deep learning features generated
with neural networks yields positive results for solving the legal case retrieval task.
The experimental results show that lexical features and deep learning features
complement each other pretty well. The highest performance with either lexical
or deep learning features is lower than the lowest performance of the combination.
The improvement of the combination hints the existence of deep learning features
not captured by lexical approach. We have also showed that the phrase scoring
model trained from one dataset can provide useful features for representing doc-
uments in other dataset, which shows the generalization of our method. Besides,
the result difference in how document relevance is modeled by each implementa-
tion of encoded summarization shows the potential of achieving a better legal case
retrieval system.

In this work, we have studied several known and human defined structures of docu-
ments. For future direction, we would like to study the other kinds of structures: auto-
discovery of structures from data. For example, unsupervised dependency tree parsing,
one instance of grammar induction, which have still been being developed[46, 47, 48, 49].
Another example is multi-head attention mechanism which learns word relations au-
tomatically from corpus without human intervention[50]. The attention mechanism is
implemented in BERT[51], which have achieved the state of the art performance in a
number of natural language processing tasks.
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