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Abstract

This dissertation investigates several topics belonging to the category of helper-assisted lossy
multiterminal source coding, including multiterminal source coding with a helper, binary chief
executive officer (CEO) problem with a helper, lossy source coding with helpers, lossy communi-
cations with lossy-forwarding (LF), and practical coding design.

Initially, for multiterminal source coding with a helper, we derive an inner bound on the
achievable rate-distortion region, which is then utilized to evaluate the upper bound of the
outage probability over block Rayleigh fading channels. The numerical results demonstrate the
performance improvement and the diversity gain by introducing a helper. Interestingly, the system
with a helper has higher energy efficiency while also reducing the outage probability.

Subsequently, we solve the binary CEO problem with a helper by decomposing it into two steps
as multiterminal source coding and final decision. We derive an outer bound on the achievable rate-
distortion region, and formulate a convex optimization problem to minimize the distortions at the
first step of multiterminal source coding with a helper. For the step of final decision, we investigate
the distortion propagating from the joint decoding results to the final decision.

Moreover, we present an inner bound on the achievable rate-distortion region for lossy source
coding with helpers by the proof of achievability. The theoretical inner bound is verified to be a
generalization of the Wyner-Ziv theorem.

For lossy communications with an LF relay, we determine an inner bound on the achievable
rate-distortion region of lossy source coding with a helper for the first step. Then, we calculate
the upper bound of the outage probability over block Rayleigh fading channels. We also conduct
a series of simulations to compare the outage performance of LF with that of amplify-and-forward
(AF) and decode-and-forward (DF).

Finally, we develop the hybrid majority voting (HMV) code for practical lossy compression.
We theoretically analyze the rate-distortion performance of the HMV code, and prove that it has
superior performance in spite of low complexity. In addition, we find the bit flipping (BF) code
as the complement code of HMV code for successive refinement. By this means, the distortion in
the standalone link can be conspicuously reduced while the refinement link can keep almost the
same performance as before. Furthermore, we conclude the methodology of hybrid codes design
for lossy source coding. We develop the hybrid code based on the Hamming codes as an example,
and also find its syndrome as the complement code for successive refinement.

Keywords: Multiterminal source coding, lossy compression, side information, rate-distortion,
outage probability.
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CHAPTER 1
Introduction

Nowadays, Internet of Things (IoT) becomes the technical basis of smart society [1], where
numerous sensors and/or robots collect data and monitor objects instead of human. In general, the
facilities communicate with each other through wireless channels for mobility and extendibility,
and therefore wireless sensor networks (WSNs) are widely implemented to support IoT [2–5].
Essentially, the fundamental framework of WSNs and IoT is multiterminal source coding, in which
the correlated sources are separately encoded in distributed encoders, while the received codewords
are jointly decoded in a common decoder.

Traditionally, lossless recovery of the information is needed in various communications sce-
narios which require high fidelity and reliability. There are already some research achievements
related to lossless communications in WSNs. Zou et al. [6] proposed a data coding and trans-
mission method, which can losslessly recover the original data despite the data loss occurred
during transmissions, for structural health monitoring by wireless smart sensor network. In [7],
Long and Xiang developed a lossless data compression algorithm based on run-length encoding
and Huffman coding for energy saving in WSNs. Dedeoglu et al. [8] presented a distributed
optimization algorithm for power allocation in lossless data gathering WSNs.

However, in IoT systems, the major task is to make some judgements other than losslessly
reconstruct the source information. Thus, the system is still able to make correct judgements, as
long as the distortions of the source estimates are within a specified degree. Especially in big
data era, large quantities of data packets transmitted through networks result in the significant
power consumption and the bandwidth shortage. If the estimates of the source information are not
necessarily lossless, as exemplified in IoT systems, we can save power and bandwidth by reducing
the transmission rates. Consequently, there is an interesting trade-off between link rates and final
distortions in lossy multiterminal source coding.

To date, the concept of helper has been introduced into diverse communication systems to
make transmissions more robust and reliable [9–12]. Inspired by these research works, we are in-
terested in the performance improvement by introducing helper(s) into the communication system.
Obviously, it can easily be expected that the system can satisfy lower distortion requirements by
adding helper(s). Nevertheless, there might be some problems regarding the resource efficiency,
e.g., how much performance gain we can obtain from the helper, or whether the performance gain
can increase linearly by adding more helpers. To answer these questions, we have to specifically
calculate the performance gains. Therefore, this dissertation aims at the performance analysis and
practical coding design for helper-assisted lossy multiterminal source coding.

1.1 Preliminaries

1.1.1 Multiterminal Source Coding for Direct Transmissions

The general model of multiterminal source coding for direct transmissions is depicted in Fig. 1.1,
where two correlated source sequencesXn

1 andXn
2 are separately encoded into two codewordsM1

1
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Encoder 1
X1

n M1

Joint

decoder

(X1
n
, D1)^

Encoder 2
X2

n
(X2

n
, D2)^

R1

M2

R2

Fig. 1.1. The general model of multiterminal source coding for direct transmissions.

and M2 to satisfy the link rates R1 and R2, respectively. Then, a joint decoder utilizes both M1 and
M2 to construct the estimates X̂n

1 and X̂n
2 , which may deviate from the source sequences Xn

1 and
Xn

2 within the distortion requirements D1 and D2.
For the system shown in Fig. 1.1 with D1 = D2 = 0, i.e., lossless multiterminal source coding,

Slepian and Wolf [13] determined the achievable rate region with two discrete memoryless source
(DMS) for the first time. Surprisingly, even though the distributed encoders do not communicate
with each other, the achievable rate region is still the same as that of joint encoding. Then, Cover
[14] generalized the Slepian-Wolf theorem to the case with arbitrary number of sources. However,
the exact achievable rate-distortion region is still an open question for the system without necessary
requirements of the full source recoveries. The most classical results of lossy multiterminal source
coding problem are the inner and outer bounds on the achievable rate-distortion region derived by
Berger [15] and Tung [16].

Regarding the system with Gaussian sources, Oohama [17] devoted efforts to the inner and
outer bounds on the rate-distortion region for Gaussian multiterminal source coding under squared
distortion measures. Subsequently, Wagner et al. [18] determined the rate-distortion region of
the quadratic Gaussian source coding problem with two sources, and provided the proofs of
achievability and the converse.

1.1.2 The CEO Problem

...

X1

n

X2

n

XL

n

RL

Joint

decoder
X

n

R2

R1

M1

M2

ML

Z1

n

Z2

n

Z L

n

^
X

n

Encoder 1

Encoder 2

Encoder L

Fig. 1.2. The CEO problem.

Fig. 1.2 illustrates another interesting problem in the category of multiterminal source coding,
i.e., the chief executive officer (CEO) problem [19], where a CEO (joint decoder) is interested in a
hidden source X . However, due to severe communication environment in real world, such as long
distance and shadow, direct transmission from the source to the CEO is not available. Therefore,
the CEO has to only rely on some agents (encoders) which can observe the source X , although the
observations Xn

1 , X
n
2 , · · · , Xn

L may also suffer from noises Zn
1 , Z

n
2 , · · · , Zn

L. We spontaneously

2
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want to know how much fidelity X̂n can achieve if the strength of noise and the link rates are
specified.

Chen and Berger focused on a CEO system with two agents in [20], where they developed
a robust distributed coding scheme and proved the optimality in various special cases. In [21],
Oohama presented classical results of the rate-distortion function for the CEO problem with
Gaussian sources and squared distortion measure. The CEO problem with binary sources was
solved by He et al. [22], who presented a lower bound of Hamming distortion for the binary CEO
problem with two sources. Then, the result was further extended to solve the binary CEO problem
with arbitrary number of sources in [23].

1.1.3 Multiterminal Source Coding with Side Information

Encoder 1
X1

n M1

Joint

decoder

(X1
n
, D1)^

Encoder L
XL

n
(XL

n
, DL)^

R1

ML

RL

Encoder L+1
Y1

n ML+1

RL+1

Encoder L+K
YK

n ML+K

RL+K

...

...

...

Fig. 1.3. The general model of multiterminal source coding with side information.

Actually, not all of the sequences sent from encoders need to be reconstructed in practical
communication systems, where some of the transmitters only act as helpers to provide compressed
side information as illustrated in Fig. 1.3. For some case that there is no rate constraint on the
helper link, the joint decoder can directly receive the side information without compression.

There are already a lot of research achievements with respect to multiterminal source coding
with only one source to be recovered. In [24], Ahlswede and Korner determined the rate region
of the lossless source coding problem with a helper. For lossy communication systems, Wyner
and Ziv [25] characterized the rate-distortion function of lossy compression with noncausal side
information only available at the decoder. Sechelea et al. [26] analyzed the lossy compression of
a binary source with correlated side information available at both encoder and decoder in depth.
In [27], Rahman and Wagner showed interest in using a helper to provide side information for
the problem of vector Gaussian source coding, and they identified the corresponding achievable
rate region. Sgarro [28] characterized the achievable rate region for the system where one source
needs to be recovered at different joint decoders with different side information. Timo et al. [29]
derived an upper bound on the rate-distortion function for lossy source coding with various side
information utilized in many decoders.

Another special case is that the helper can also directly observe the source, and hence the
helper can provide side information more efficiently. This concept is referred to as successive
refinement [30], which is widely implemented to satisfying different Quality of Service (QoS)
with diverse users, especially for streaming media. Fig. 1.4 depicts the simplest system mode of
successive refinement. A sequence Xn is encoded into two codewords M1 and M2 at rates R1 and
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n

M1
Decoder 1
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, D1)^

Encoder 2
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M2

R2
Decoder 2

Fig. 1.4. The general model of successive refinement.

R2, respectively. The first link is a standalone link, i.e., the decoder 1 generates a lossy recovery
X̂n

1 to satisfy a distortion requirement D1 only by exploiting M1. In contrast, the second link is
a refinement link where the decoder 2 can jointly utilize M1 and M2 to reconstruct X̂n

2 with a
lower distortion D2. The coding technique for successive refinement has a more generic name,
i.e., multiple description coding (MDC) [31]. Wolf et al. [32] characterized a necessary condition
on the achievable rate-distortion region of MDC for the first time, and the necessary condition was
further investigated for a binary source by Witsenhausen and Wyner in [33]. Then, El Gamal and
Cover [34] derived an inner bound on the achievable rate-distortion region for MDC.

If the system contains only one link of source to be reconstructed and more than one link of
helpers, it is classified into many-help-one problem. For the many-help-one problem with Gaussian
sources, Oohama [35] obtained the rate-distortion region in the case that the helper information are
conditionally independent if the target source is given. Wolf et al. [36] proposed an inner bound
on the rate region of binary many-help-one problem, in which the source has to be recovered
losslessly.

For the case with more than one source to be recovered, Han and Kobayashi studied a
multiterminal source coding problem for losslessly reconstructing many sources with many helpers
in [37], where an inner bound is derived by utilizing a coding scheme based on the joint typical
sequence. In [38], Wyner determined the rate region for the lossless problem with two source links
and one helper link, under the condition that each source link can only separately utilize its own
data and the helper data. Rey Vega et al. in [39] focused on a lossy source coding problem for
three terminals, containing both an encoder and decoder interactively performing encoding and
decoding.

1.1.4 Lossy-Forwarding

Source

Relay

First slot

Second slot

Destination

X
n

Y
n

X
n^

Fig. 1.5. The simplest system model of a lossy relaying system.

Relaying system is an implementation of multiterminal source codding. Recently, lossy-
forwarding (LF) [40] has attracted significant attention of academia and industry, owing to its
great potential in harsh communication environment. As shown in Fig. 1.5, a source broadcasts
the sequence Xn to a destination and a relay at the first time slot. Then, the destination aims to
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recover the source sequence after receiving the assisted information from the relay at the second
time slot. If the capacity constraint on the source-relay (S-R) link is relatively strict, the relay
cannot forward the message correctly. Once errors are detected in the decoded data sequence,
the traditional decode-and-forward (DF) scheme discards the data sequence without forwarding to
the destination. However, from the viewpoint of multiterminal source coding, the relay sequence
containing intra-link errors has correlation with the source sequence as well. By the LF strategy,
the relay still continues to send the error-corrupted sequence Y n to the destination, and hence the
final estimate can be refined with the side information provided from the relay despite the link rate
of relay channel.

So far, a number of scholars have made efforts to investigate LF. Base on the Slepian-Wolf
theorem, Hu and Li [41] proposed the novel LF relaying strategy for the first time, to help the
destination recover data losslessly. In [42], Cheng et al. derived the outage probability for an LF
relaying system with three nodes communicating through block Rayleigh fading channels. Zhou
et al. [43] evaluated the exact outage probability over independent block Rayleigh fading channels
for LF relaying system. As for the practical techniques related to LF, researchers in [44–46]
provided diverse coding schemes based on the turbo code [47]. Brulatout et al. [48] presented a
medium access control (MAC) layer protocol which cooperates with LF techniques in physical
layer. In [49], Wolf et al. designed an optimal power allocation scheme among a source and two
LF relays by taking into account outage probability.

1.1.5 Rayleigh Fading Channel

Rayleigh fading channel is a widely implemented channel model to reflect the effect of radio
signal propagation. The complex channel gain h of a Rayleigh fading channel follows the two-
dimensional Gaussian distribution. For a modulated symbol x(t) sent at the t-th time index, the
received signal is expressed as

x′(t) = h
√
G · x(t) + z(t), (1.1)

where z represents the zero-mean additive white Gaussian noise (AWGN), and G is the geometric
gain due to transmission distance. Let E = E[|x(t)|2] be the transmitting symbol energy, and the
variance of all z be equal to N0/2 per dimension. The average signal-to-noise ratio (SNR) is given
by

γ = G · E[|h|2] · E
N0

. (1.2)

Then, the instantaneous SNR can be calculated by

γ = |h|2 · γ. (1.3)

We can finally obtain the probability density function (pdf ) of instantaneous SNR as

f(γ) =
1

γ
exp(−γ

γ
). (1.4)
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1.1.6 Basic Channel Coding Scheme Throughout the Dissertation

CC ∏ ACC
X
n

(a) Encoder.

CC
-1

∏
-1

ACC
-1

∏

X
n^

(b) Decoder.

Fig. 1.6. The basic channel coding scheme throughout the dissertation.

Without explicit specification, we implement the coding scheme illustrated in Fig. 1.6 as the basic
channel coding scheme throughout this dissertation.

To start with, the sequence Xn is encoded with a convolutional code (CC) as the outer code.
Then, the output of CC is interleaved by Π for the purpose of exploiting the principle of turbo
codes. Finally, an accumulator (ACC) [46] encodes the interleaved sequence as the inner code.

The structure of corresponding decoder is depicted in Fig. 1.6(b), where ACC−1 and CC−1

represent the decoder of ACC and CC, respectively. In decoding process, ACC−1 decodes the
received symbols and output log-likelihood ratio (LLR) for the first step. After deinterleaving by
Π−1, the LLR of outer code is then decoded by CC−1. Moreover, CC−1 also yields the extrinsic
LLR to be utilized as the a priori information for refining the decoding result of ACC−1. By several
rounds of iterative decoding described above, we can further eliminate the negative impact of the
low channel SNR.

1.2 Motivation

1.2.1 The State-of-the-Art

1.2.1.1 Theoretical Framework

Currently, the theoretical framework of multiterminal source coding is highly matured. Numerous
researchers unified and generalized the classical theorems, such as the Slepian-Wolf theorem, the
Berger-Tung bounds, and the Wyner-Ziv theorem. For instance, Wagner and Anantharam [50]
studied a multiterminal source coding problem with one link of uncompressed side information
available. In [51], Jana and Blahut derived the bounds for lossless and lossy multiterminal source
coding systems where lossless and lossy links are mixed.

Regarding the CEO problem, the case with binary sources was solved in [22,23] as mentioned
above. When solving the binary CEO problem, He et al. [22] divided the communication into
a successive encoding/decoding process, i.e., encoding/decoding the multiple sources and then
combining the joint decoding results. In the first step of multiterminal source coding, they derived
an outer bound of the rate-distortion region for binary sources. Then, the outer bound was
extended to the case with arbitrary number of binary sources in [23]. For the final decision of
binary CEO problem, the bit error probability of binary data gathering by soft combining was
analyzed in [52], where many correlated sources have diverse bit-flipping probabilities. In terms
of decoding algorithms for binary CEO problem, Razi and Abedi [53] developed a method to
analyze the convergence of iterative decoding for binary CEO problem. An iterative joint decoding
algorithm was implemented into the WSNs with binary sources according to the model of binary
CEO problem by Haghighat et al. in [54]. He et al. developed a joint decoding algorithm for binary
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CEO problem in [55], where the joint decoder recursively performs soft decoding and updates LLR
by exchanging the mutual information among the data sequences.

Based on the classical rate region of multiterminal source, many scholars also investigated
the outage probability for communications suffering from channel fadings. Laneman et al.
characterized the outage probabilities of amplify-and-forward (AF) and DF relaying strategies
for Rayleigh fading channels in [56], where the relay and source messages can be regarded
as correlated information. Zhou et al. [57] derived the outage probability for the system with
two correlated binary sources communicating through orthogonal multiple access relay channel
(MARC) over block Rayleigh fadings. In [58], Lu et al. analyzed the outage probability of the
MARC system where two correlated sources suffer from block Rayleigh fadings, and the estimate
of source in the relay may contain errors. The popular LF relaying strategy has also been analyzed
in depth with respect to the outage probability. Qian et al. [59] made a comparison of outage
probability under spatially and temporally correlated fading among LF, DF and adaptive decode-
and-forward (ADF). In [60], Qian et al. analyzed the theoretical performance of an LF system
with three nodes suffering from independent block Nakagami-m fading.

1.2.1.2 Practical Coding Techniques

In coding theory, data compression is a classical topic including two fundamental categories, i.e.,
lossless and lossy. The lossless compression has been well studied during the last several decades,
e.g., Shannon coding [61], Huffman coding [62] and Lempel-Ziv coding [63,64]. Regarding lossy
compression for continuous source and multimedia data, there are many technologies, such as
pulse-code modulation (PCM) for continuous source, MPEG audio layer 3 (MP3) for audio [65],
joint photographic experts group (JPEG) [66] for image, and MPEG-4 [67] for video. Even though
the multimedia data is in a digital format, they are basically continuous sources with correlations
between information bits.

Nevertheless, the lossy compression for DMS is not easy, because the distance between the
codewords and the original sequences is considered to be more crucial than the correlations be-
tween symbols. Although the optimal performance can be achieved for sufficiently long sequence
according to Shannon’s lossy source coding theorem [68], we need significantly huge memory to
store the codebook for joint typicality coding. For lossy multiterminal source coding, although
the coding schemes in the Wyner-Ziv theorem and the Berger-Tung inner bound have superior
performance regarding coding rates versus distortions, they are too complex to be implemented
into practical systems. Not only is it difficult to find a theoretically optimal codebook with respect
to a specified distortion, but we also have to find diverse codebooks for different rate or distortion
requirements.

Moreover, another problem for practical lossy source coding is how to refine the estimate of
source if extra information is available. For continuous sources, there are a number of researches
which focus on practical MDC algorithms, e.g., image [69], audio [70] and video [71]. However,
up to our best knowledge, no research aims at establishing the practical coding scheme for
successive refinement with DMS, although the theoretical investigations have reached already
highly matured level.

1.2.2 Beyond the State-of-the-Art
Despite a large number of theoretical achievements in multiterminal source coding, the outage
probability is still unknown for lossy end-to-end multiterminal communications with a helper.
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Obviously, the distortions of recovered observations are determined by the link rates, which are
derived from the instantaneous channel capacities. According to Shannon’s lossy source-channel
separation theorem [61, 68], the distortion occurring in block fading channels can be equivalently
evaluated for the case, where the information sequence is compressed into a codeword with lower
rate by lossy source coding such that the codeword can be losslessly transmitted through fading
channels. In order to conduct the outage probability analysis, it is necessary to determine the
achievable rate-distortion region for multiterminal source coding with a helper. Then, based on
Shannon’s lossy source-channel separation theorem for multiterminal communications [72], the
results of rate-distortion analysis can be further utilized in the derivation of outage probability in
block fading channels.

With regard to the binary CEO problem, we are interested in the performance improvement
provided by a helper. Based on the previous achievements, we establish the framework of the
binary CEO problem with a helper as a successive process with two steps, i.e., multiterminal
source coding with a helper and final decision.

For more than one helper, the achievable rate-distortion region has not been determined yet
for lossy many-help-one problem. We make our contribution to deriving an inner bound on the
achievable rate-distortion region for lossy source coding with multiple helpers.

Subsequently, we consider the implementation of multiterminal source coding in relaying
systems. As stated above, there are already a lot of works related to outage probability analysis
of lossless relaying systems. Nonetheless, the performance analysis has not been finished yet for
the LF relaying systems with lossy reconstructions allowed at the destination, which is concisely
named as lossy LF relaying.

Finally, notice that it is hard to implement the joint typicality coding scheme used in theoretical
analysis to practical systems. Thus, we develop a practical lossy source coding algorithm so-called
hybrid majority voting (HMV) code, which requires relatively low complexity and exhibits good
performance. In addition, we further apply the HMV code to successive refinement, by finding
a complement coding scheme that contains the information of lost part caused in lossy source
coding.

1.3 Notations and Definitions

For the purpose of conciseness in derivations and distinction between similar terminologies, this
section introduces the common definitions used throughout this dissertation.

1.3.1 Random Variables and Sets

The random variables and their realizations are denoted by uppercase and lowercase letters,
respectively. In particular, we use i to denote the link index and t to denote the time index.
Generally, X , Y and M stand for source information, helper information, and encoded codeword,
respectively. U and V represent the compressed information ofX and Y , respectively. Calligraphic
letters X , Y , · · · denote the finite alphabets of a random variable. The superscript of a random
vector and its realization represent the length of the vector.

In particular, we define L = {1, 2, · · · , L}, and S is a subset of L. Furthermore, Sc
represents the complementary set of S. We define Sj as the j-th element of the set S, and
Skj = {Sj, Sj+1, · · · , Sk−1, Sk}. The random variable with a finite alphabet as subscript stands
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for a set of all random variables with index in the finite alphabet, such as XL = {Xi|i ∈ L}. The
cardinality of a set is denoted by | · |.

1.3.2 Functions and Operations

For a function F (·), F−1(·) stands for the corresponding inverse function. The common functions
used throughout this dissertation are defined in the following.

Definition 1.1: The entropy of a random variable X with probability mass function (pmf ) p(x)
is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (1.5)

In particular, Hb(·) denotes the binary entropy function.
Definition 1.2: The mutual information between two random variables X and Y is defined as

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.6)

Definition 1.3: Joint binary entropy function for correlated sources. According to [23], given a
set of crossover probabilities {P} with a common binary source X ∼ Bern(0.5), the joint entropy
fb(·) of the outputs from independent binary symmetric channels (BSCs) is calculated as

fb({P}) = −
2|P|∑
j=1

qj log2(qj), (1.7)

where

qj = 0.5

∏
k∈Aj

pk
∏
k′∈Acj

p̄k′ +
∏
k∈Aj

p̄k
∏
k′∈Acj

pk′

 , (1.8)

with p̄ = 1− p and Aj traversing all the subsets of {1, 2, · · · , |P|}.
In addition, we define the following functions and operations for the convenience in derivation.

We define pow(a, b) = ab, and [R]− = min{1, R}. The operation ∗ denotes the binary convolution
process, i.e., a ∗ b = a(1− b) + b(1− a).

1.3.3 Distortion Measure
The distortion measure d : X ×X 7→ [0,∞) is defined to describe the distortion level between x(t)
and x̂(t) at t-th time index. Particularly, if the source is binary, the distortion level is described by
the Hamming distortion measure as

d(x(t), x̂(t)) =

{
1, if x(t) 6= x̂(t),

0, if x(t) = x̂(t).
(1.9)

For the entire sequence, the average distortion between xni and x̂ni is defined as

d(xn, x̂n) =
1

n

n∑
t=1

d (x(t), x̂(t)) . (1.10)
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1.3.4 Clarification of Terminologies

Table 1.1. THE ATTRIBUTES OF SIMILAR TERMINOLOGIES

Terminology
The way of

collecting information
Information needed

to be recovered
Able to generate

its own information
Sensor actively detect yes no

Agent actively detect not necessarily no

Helper
actively detect

or passively receive
no yes

Relay passively receive no yes

To avoid confusion, Table 1.1 summarizes the major attributes of the similar terminologies used in
this dissertation. Hence, we can distinguish similar terminologies by their different attributes.

1.4 Outline of the Dissertation

The objective of this dissertation is to present the theoretical analyses and coding design for several
typical problems of helper-assisted lossy multiterminal source coding.

Chapter 2 starts from the simplest case of helper-assisted lossy multiterminal source coding,
i.e., only two sources and one helper in the system. To investigate the performance improvement
provided by a helper, initially, we determine an inner bound on the achievable rate-distortion
region for binary sources. Then, we evaluate the system performance through the achievable rate-
distortion region with diverse correlation levels of sources and distortion requirements. Based
on Shannon’s lossy source-channel separation theorem, we further derive the upper bound of the
outage probability of the system over block Rayleigh fading channels. The diversity gain provided
a helper is verified in the numerical results.

Chapter 3 focuses on the case without direct transmission link from the source to the destina-
tion, i.e., the binary CEO problem with a helper. To begin with, we use a successive decoding
scheme to decompose the binary CEO problem with a helper into the multiterminal source coding
and final decision problems. Then, we present an outer bound on the rate-distortion region for
multiterminal source coding with binary sources and a helper. After solving a convex optimization
problem formulated from the derived outer bound, we obtain the final distortion by substituting
the minimized distortions of observation into the distortion propagating function (DPF), which is
derived to bridge the relationship between the joint decoding results and final decision. Finally,
we analyze the trade-off of rate-distortion through theoretical calculation and simulations. We
also have an in-depth discussion on the differences of system performance improvement between
locating a helper and including an additional agent.

Chapter 4 analyzes the performance gain by adding more than one helper for lossy source
coding with one target source. First of all, we perform the theoretical analysis to derive an inner
bound on the achievable rate-distortion region for lossy source coding with helpers. The numerical
results precisely match the Wyner-Ziv theorem when there is only one helper link and no rate
constraint on the helper link. Moreover, a series of simulations are conducted for the performance
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evaluation provided that the link rates are constrained by channel capacities. Although there is an
obvious gap between the theoretical and simulation results, the performance curves show similar
tendencies in terms of the SNR versus bit error rate (BER).

Chapter 5 establishes the theoretical framework towards the utilization of helper in practical
systems, i.e., lossy communications with the aid of LF relaying. For in-depth performance
analysis, the problem is decomposed into two parts as follows: a point-to-point coding problem
in the S-R link, and a lossy source coding problem with a helper in the source-destination (S-D)
and relay-destination (R-D) links. To begin with, we derive an inner bound on the achievable
rate-distortion region of the lossy source coding with a helper. Then, we focus on the analysis of
outage probability over block Rayleigh fading channels. Finally, a practical encoding/decoding
scheme is proposed for the evaluation of system performance by computer simulations. Due
to the suboptimal channel coding and incomplete utilization of joint typicality, the theoretical
performance cannot be achieved in the simulation; however, the tendency of curves in simulations
matches that in theoretical calculation.

Chapter 6 performs practical coding design for lossy compression and successive refinement
with DMS. Inspired by the coding scheme used in the classic rate-distortion theorem, we find
a series of basic majority voting (MV) codes and analyze their rate-distortion performance. We
then present an algorithm to find two component MV codes and apply them to lossy compression,
group by group, to construct the HMV codes. Moreover, we further implement the HMV code to
successive refinement by the means of developing the bit flipping (BF) code as the complement
code. We also evaluate the performance of the HMV code through simulations, the results of which
indicate that the HMV code makes it possible to easily control efficiency and complexity. By
utilizing the HMV code and the BF code for successive refinement, the standalone link can satisfy
lower distortion than puncturing; meanwhile, the refinement link has almost the same performance
as puncturing for relatively large R1. Based on the duality between source coding and channel
coding, we propose the methodology for hybrid codes design, where the Hamming codes are
utilized as an example for designing hybrid codes. We also find that the syndrome of the Hamming
codes can be further used as the complement code for successive refinement.

Chapter 7 summarizes the main results and concludes this dissertation. We also present the
perspective of helper-assisted lossy multiterminal source coding and several directions of future
studies.

1.5 Summary of Contributions

This dissertation is written as a monograph based on four journal papers [73–76] and one confer-
ence paper [77]. The author has taken the main responsibility for deriving theoretical equations,
designing practical coding schemes, developing simulation programs, and writing all the papers.
The co-authors provided guidance, helps, comments and criticism during the research and writing
processing.

The main contributions of this dissertation are summarized as follows:

• We derive an inner bound on the achievable rate-distortion region of lossy multiterminal
source coding problem with two binary sources and a helper. Base on the derived inner
bound and Shannon’s lossy source-channel separation theorem, we further calculate the
upper bound of the outage probabilities over block Rayleigh fading channels. By utilizing
the derived mathematical results, we conduct an in-depth investigation of performance

11



CHAPTER 1. Introduction

improvement by introducing a helper. It is remarkable that a helper can not only enlarge
the achievable rate-distortion region, but also provide diversity gains and reduce the outage
probability.
• For the binary CEO problem with a helper, we derive an outer bound on the rate-distortion

region of multiterminal source coding problem with many agents and a helper for binary
sources. Then, the outer bound is utilized to formulate a convex optimization problem
for minimizing the distortions when reconstructing observations. Moreover, we analyze
the distortion propagating from the estimate of agent sequences to the final decision. By
substituting the solution of the convex optimization problem for minimizing the distortions
in recovered observations, we investigate the trade-off of rate-distortion for the binary CEO
problem with a helper. Besides, we make a comparison of performance improvement
between the system with a helper and that with an additional agent through simulations.
• We present an inner bound on the achievable rate-distortion region of lossy source coding

with helpers for general sources. For the helper information being independent with each
other if the source is given, we further calculate the rate-distortion function for doubly
symmetric binary source (DSBS), and extend the results to joint source-channel coding.
The theoretical results are consistent to the Wyner-Ziv theorem as the special case in the
sense that there is only one full-rate helper in the system.
• For lossy communications with an LF relay, we determine an inner bound on the achievable

rate-distortion region. Based on the derived inner bound on the achievable rate-distortion
region, we investigate the upper bound of the outage probability assuming block Rayleigh
fading channels in the relaying system; knowing the upper bound of the outage probability
allows the system designers to build the communications systems based on the safer side
of specification. The numerical results demonstrate the relationship of outage probability to
average SNR, expected distortion and relay location. Moreover, we make a comparison of
the outage probability among AF, DF and LF through simulations.
• Finally, we develop a practical lossy compression scheme, i.e., the HMV code, and perform

the theoretical rate-distortion analysis for it. We also find the BF code as the complement
code of HMV code for successive refinement. To evaluate the performance of the HMV
and BF codes, we conduct a series of simulations, where the results demonstrate the better
performance of the HMV code than puncturing. Moreover, we propose the methodology of
hybrid codes design for lossy source coding. The hybrid code based on the Hamming codes
is presented as an example; meanwhile, we also find the corresponding complement code
for successive refinement by calculating the syndrome of the Hamming codes.
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CHAPTER 2
Multiterminal Source Coding with a Helper

This chapter starts the performance analysis of helper-assisted lossy multiterminal source coding
from the simplest case, i.e., only two sources and one helper in the system. The main goal is to
analyze the rate-distortion performance of multiterminal source coding with a helper for binary
sources and the outage probability over block Rayleigh fading channels. Notice that the exact
achievable rate-distortion region for lossy multiterminal source coding is still an open problem.
Thus, for the achievable rate-distortion region used in the derivation of outage probability, we only
consider the inner bound, i.e., the lossy recoveries must satisfy the distortion requirements if the
link rates are larger than the inner bound.

2.1 Problem Statement

Encoder 1
X1

n M1

Joint

decoder

(X1
n
, D1)^

Encoder 2
X2

n
(X2

n
, D2)^

Y
n

Encoder H 

R1

M2

R2

MH

RH

Z
n

g(·)

Channels

Fig. 2.1. The model of multiterminal source coding with two binary sources and one helper.

We consider the simplest case of multiterminal source coding with a helper, i.e., there are
only two binary sources in the system as illustrated in Fig. 2.1. There are two independent and
identically distributed (i.i.d.) sequences xn1 = {x1(t)}nt=1 and xn2 = {x2(t)}nt=1, generated by two
correlated DMSs X1 and X2, respectively. At t-th time slot, xi(t) takes values from the binary
alphabet Xi = {0, 1} for i ∈ {1, 2}. Thus, X2 is equivalent to the output of a BSC with input
X1 and crossover probability ρ and vice versa, i.e., X2 = X1 ⊕ Z with Z ∼ Bern(ρ). In this
chapter, we consider the sources Xi ∼ Bern(0.5) for i ∈ {1, 2}. Since the helper information
yn = {y(t)}nt=1 highly depends on the helper structure, we assume without loss of generality that
Y is a function g(·) of X1 and X2.

To begin with, three sequences xn1 , xn2 and yn are independently encoded by encoder 1, encoder
2 and encoder H at coding rates R1, R2 and RH, respectively. The encoding process can be
performed by assigning an index M to each sequence according to the following mapping rules:

ϕi : X n
i 7→ Mi = {1, 2, · · · , 2nRi} for i ∈ {1, 2}, (2.1)

ϕH : Yn 7→ MH = {1, 2, · · · , 2nRH}. (2.2)

Subsequently, the encoding outputs ϕ1(xn1 ), ϕ2(xn2 ) and ϕH(yn) are transmitted to a common
receiver. In contrast to distributed compressions in the encoders, the decoder can jointly construct
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the estimates x̂n1 and x̂n2 from indices ϕ1(xn1 ) and ϕ2(xn2 ) by utilizing the compressed side
information ϕH(yn). The reconstruction process can be implemented by the mapping as follows:

ψ :M1 ×M2 ×MH 7→ X n
1 ×X n

2 . (2.3)

Since the estimate x̂ni may occasionally deviate from the observation xni if the rates are not
large enough, the Hamming distortion measure di : Xi × Xi 7→ {0, 1} is applied to describe the
distortion level between xi and x̂i. For given distortion requirements (D1, D2), the rate-distortion
regionR(D1, D2), consisting of all achievable rate triplets (R1, R2, RH), is defined as

R(D1, D2) =
{

(R1, R2, RH) : (R1, R2, RH) is admissible such that

lim
n→∞

E(di(x
n
i , x̂

n
i )) ≤ Di + ε, for i ∈ {1, 2}, and any ε > 0

}
. (2.4)

In the literature, Berger [15] and Tung [16] determined the inner and outer bounds on the
achievable rate-distortion region for the system with two sources only. Wagner and Anantharam
[50] derived an outer bound on the achievable rate-distortion region for the case with many sources
and one link for uncompressed side information utilization. The main theoretical results in this
chapter are an inner bound on the achievable rate-distortion region, and an upper bound of the
outage probability over block Rayleigh fading channels.

2.2 Rate-Distortion Analysis

2.2.1 Achievable Rate-Distortion Region
First, from [77], the inner bound on the achievable rate-distortion region with general sources is

R1 > I(X1;U1|U2, V,Q), (2.5)
R2 > I(X2;U2|U1, V,Q), (2.6)

R1 +R2 > I(X1, X2;U1, U2|V,Q), (2.7)
RH > I(Y ;V ), (2.8)

for some conditional pmf p(q)p(u1|x1, q)p(u2|x2, q)p(v|y), and functions x̂i(u1, u2, v, q) such that
E(di(Xi, X̂i)) ≤ Di for i ∈ {1, 2}.

Ui and V are auxiliary variables containing the compressed information in Mi and MH for
Xi and Y , respectively; Q is an auxiliary variable resulting from time-sharing between the cases
that one of the coding rates is large enough to independently satisfy the corresponding distortion
requirement. Since Q is an auxiliary variable of time-sharing, we calculate the inner bound with
binary sources for |Q| = 1 for the first step. Then, we equivalently implement the time-sharing
scheme by using a dummy variable.

First, consider

R1 > I(X1;U1|U2, V )

= H(U1|U2, V )−H(U1|X1, U2, V )

= H(U1|U2, V )−H(U1|X1, X2, U2, V )− I(U1;X2|X1, U2, V )

= H(U1|U2, V )−H(U1|X1, X2, U2)− I(U1;X2|X1, U2, V ) (2.9)
= H(U1|U2, V )−H(U1|X1)− I(U1;X2|X1, U2, V ) (2.10)
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2.2 Rate-Distortion Analysis

= H(U1|U2, V )−H(U1|X1)−H(X2|X1, U2, V ) +H(X2|X1, U1, U2, V )

= H(U1|U2, V )−H(U1|X1)−H(X2|X1, U2, V ) +H(X2|X1, U2, V ) (2.11)
= H(U1|U2, V )−H(U1|X1)

= H(U1|U2)− I(U1;V |U2)−H(U1|X1)

= Hb(D1 ∗ ρ ∗D2)− I(U1;V |U2)−Hb(D1), (2.12)

where (2.9-2.11) follow since V → Y → (X1, X2) → U1, U2 → X2 → X1 → U1 and U1 →
X1 → X2 form three Markov chains, respectively, with the first Markov chain resulting from the
fact that Y is a function of X1 and X2. Symmetrically, we have

R2 > Hb(D1 ∗ ρ ∗D2)−Hb(D2)− I(U2;V |U1). (2.13)

Then, consider

R1 +R2 > I(X1, X2;U1, U2|V )

= H(U1, U2|V )−H(U1, U2|X1, X2, V )

= H(U1, U2|V )−H(U1, U2|X1, X2) (2.14)
= H(U1, U2)− I(U1, U2;V )−H(U1, U2|X1, X2)

= H(U1) +H(U2|U1)− I(U1, U2;V )−H(U1|X1, X2)−H(U2|X1, X2, U1)

= H(U1) +H(U2|U1)− I(U1, U2;V )−H(U1|X1)−H(U2|X2) (2.15)
= 1 +Hb(D1 ∗ ρ ∗D2)− I(U1, U2;V )−Hb(D1)−Hb(D2), (2.16)

where (2.14) follows since V → Y → (X1, X2) → (U1, U2) form a Markov chain, and (2.15)
follows since X2 → X1 → U1 and U1 → X1 → X2 → U2 form two Markov chains.

Notice that in (2.12), (2.13) and (2.16), it is hard to calculate I(U1;V |U2), I(U2;V |U1) and
I(U1, U2;V ) without a specific helper structure. We consider the theoretical optimal case in which
the helper sequence contains the mutual information of sources as much as possible. From the
Markov chain U1 → (X1, X2)→ Y → V , we have1

I(U1;V |U2) ≤ I(Y ;V )

≤ [RH]−, (2.17)

and hence

R1 > Hb(D1 ∗ ρ ∗D2)−Hb(D1)− [RH]−. (2.18)

Likewise, we have
R2 > Hb(D1 ∗ ρ ∗D2)−Hb(D2)− [RH]−. (2.19)

Form the Markov chain (U1, U2)→ (X1, X2)→ Y → V , we have

I(U1, U2;V ) ≤ I(Y ;V )

≤ [RH]−, (2.20)

and

R1 +R2 > 1 +Hb(D1 ∗ ρ ∗D2)−Hb(D1)−Hb(D2)− [RH]−. (2.21)

1It should be noticed that (2.17) might not always hold for arbitrary helper structure.
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CHAPTER 2. Multiterminal Source Coding with a Helper

To visually present the inner bound with the time-sharing scheme, the rate-distortion region is
divided into three parts, as follows:
(a) for some 0 ≤ d̃ ≤ D2, {

R1 > Hb(D1 ∗ ρ ∗ d̃)−Hb(D1)− [RH]−,

R2 > 1−Hb(d̃),
(2.22)

(b) for some 0 ≤ d̃ ≤ D1, {
R1 > 1−Hb(d̃),

R2 > Hb(d̃ ∗ ρ ∗D2)−Hb(D2)− [RH]−,
(2.23)

(c) common case,

R1 +R2 > 1 +Hb(D1 ∗ ρ ∗D2)−Hb(D1)−Hb(D2)− [RH]−, (2.24)

where d̃ is a dummy variable. We calculate the rates R1, R2 and R1 + R2 with given D1 and D2,
respectively. Then, we plot the rate-distortion region by combining the three parts shown above,
which is equivalent to the time-sharing concept. It should be noted that the inner bound in (2.22-
2.24) can be derived only if the equality of (2.17) and (2.20) holds, and hence it is not an inner
bound in general.

2.2.2 Performance Evaluation
This section evaluates the system performance with respect to rate-distortion, based on the derived
inner bound in (2.22-2.24). Therefore, the inner bound plotted in the following is not an inner
bound in general, and it is only for the case that (2.17) and (2.20) hold with equality.

0

0 0

0.5

1

0.5 0.5

1.5

1 1

1.51.5

Fig. 2.2. An overall view of the inner bound on the achievable rate-distortion region, with ρ = 0.15
and D1 = D2 = 0.05.
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2.2 Rate-Distortion Analysis

An overall view of the inner bound on the achievable rate-distortion region is provided in
Fig. 2.2, where the crossover probability ρ between sources is set at 0.15 and the desired distortion
pair (D1, D2) is set at (0.05, 0.05). Clearly, the helper can enhance the robustness of transmissions
by expanding the achievable rate-distortion region as RH increases. However, the above part of the
region, i.e., RH ≥ 1, does not change even if the helper rate increases.
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(a) ρ = 0.3, D1 = D2 = 0.05.
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(b) ρ = 0.15, D1 = D2 = 0.05.
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(c) ρ = 0.15, D1 = D2 = 0.005.

Fig. 2.3. The inner bound on the achievable rate-distortion region for given RH.

In order to verify the results by classical theorems, i.e., the Slepian-Wolf theorem and Berger-
Tung inner bound, we plot the inner bound on the achievable rate-distortion region for given values
of RH in Fig. 2.3. Note that the Slepian-Wolf theorem is for lossless multiterminal source coding,
i.e., D1 = D2 = 0. Hence, the inner bound is closer to the Slepian-Wolf region when the required
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CHAPTER 2. Multiterminal Source Coding with a Helper

distortions are smaller, as shown in Fig. 2.3(c); conversely, the constraints on the coding rates
become less strict if more distortions are acceptable. Besides, the inner bound derived in this
chapter perfectly coincides with the Berger-Tung inner bound when RH = 0, in spite of the
distortion requirements and the correlation level between sources. This phenomenon results from
the fact that the system model shown in Fig. 2.1 reduces to the model used in the Berger-Tung
inner bound, if the helper link is removed, i.e., equivalently RH = 0. Consequently, the Berger-
Tung inner bound can be utilized as a baseline for comparison when analyzing the performance
improvement provided by the helper. It is noticeable that the achievable rate-distortion region is
obviously enlarged as the helper rate increases, i.e., the communications become more reliable
after introducing a helper.
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Fig. 2.4. The inner bound on the rate-distortion function for symmetric source links.

We can investigate the trade-off between the coding rates and the desired distortions in depth
from the curve of the rate-distortion, by setting two source links as symmetric links, i.e., R1 = R2

and D1 = D2. As depicted in Fig. 2.4, the derived inner bound with RH = 0 also precisely
matches the Berger-Tung inner bound in terms of the rate-distortion function. For RH > 0, we
can observe significant performance gain provided by a helper. Another interesting observation
is that there are still some distortions when R1 = R2 = 0, even if RH ≥ 1. The reason for
the unavoidable distortion is that H(Xn

1 , X
n
2 ) = H(Xn

1 ) + H(Xn
2 |Xn

1 ) = n + nHb(ρ) > n ≥
H(Y n) for all ρ > 0. Hence, the decoder can losslessly reconstruct X1 and X2 only by the
helper information Y , if and only if the sources are completely correlated. There is also no doubt
that more correlated sources, i.e., ρ is smaller, require lower coding rates for satisfying the same
distortion requirements. However, the gap between the curves with different ρ becomes narrower
as the distortion requirements go larger. Therefore, with the increment of the desired distortions,
the correlations between sources have less effect on the coding rates.
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2.3 Outage Probability Analysis

2.3 Outage Probability Analysis

Now, we start to analyze the outage probability for the system illustrated in Fig. 2.1 suffering from
independent block Rayleigh fadings. The outage event occurs, if at least one of the recovered
sequences cannot satisfy the specified distortion requirement of the source links. According
to Shannon’s lossy source-channel separation theorem, the channel condition can be taken into
account by constraining the source coding rate with channel capacity. It should be emphasized
here that the source and helper sequences are not actually encoded into the codeword M for lossy
compression, although we utilize the framework of lossy distributed multiterminal source coding
problem to equivalently analyze the distortions determined by link rates.

2.3.1 Derivation of Outage Probability

Due to the independent block Rayleigh fading assumption on each link, the channel gains h1,
h2 and hH in the link of X1, X2 and Y independently follow the two-dimensional Gaussian
distribution. Hence, the pdf s of instantaneous SNRs in the three links are

f(γi) =
1

γi
exp(−γi

γi
), for i ∈ {1, 2}, (2.25)

f(γH) =
1

γH
exp(−γH

γH
). (2.26)

For the purpose of simplicity, we assume that the channel state information (CSI) is only available
at the receiver sides, and the effect of shadowing is not taken into account.

According to Shannon’s lossy source-channel separation theorem, the distortion requirements
(D1, D2) can be satisfied if the following inequalities hold:

Ri(Di) ≤ Θi(γi) =
C(γi)

ri
, for i ∈ {1, 2}, (2.27)

RH ≤ ΘH(γH) =
C(γH)

rH

, (2.28)

where C(·) is the Shannon capacity using Gaussian codebook; ri and rH stand for the end-to-
end coding rates. Therefore, if the link rates (R1, R2, RH) supported by (Θ1(γ1),Θ2(γ2),ΘH(γH))
fall outside the achievable rate-distortion region, the distortion requirements (D1, D2) cannot be
satisfied, i.e., outage event occurs.

For a given value ofRH and specified distortion requirements (D1, D2), the shape of achievable
rate-distortion region can be illustrated as Fig. 2.5. In order to calculate the outage probability, we
divide the area of outage into six subareas with corresponding probabilities P1, P2, · · · , P6. Hence,
the outage probability is calculated as

Pout =
6∑

k=1

Pk. (2.29)

Noticed that we use the inner bound on the achievable rate-distortion region here; therefore, the
calculation result is the upper bound of the outage probability.
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Fig. 2.5. Achievable rate-distortion region for calculating outage probability.

First, consider

P1 = Pr{0 ≤ R1 ≤ Hb(D1 ∗ ρ)−Hb(D1)− [RH]−, H(X2) ≤ R2, 0 ≤ RH}
= Pr{0 ≤ Θ1(γ1) ≤ λ1(0), H(X2) ≤ Θ2(γ2), 0 ≤ ΘH(γH)}
= Pr{Θ−1

1 (0) ≤ γ1 ≤ Θ−1
1 [λ1(0)],Θ−1

2 [H(X2)] ≤ γ2,Θ
−1
H (0) ≤ γH}

=

∫ ∞
Θ−1

H (0)

dγH

∫ Θ−1
1 [λ1(0)]

Θ−1
1 (0)

dγ1 ·
∫ ∞

Θ−1
2 [H(X2)]

f(γ2)f(γ1)f(γH)dγ2, (2.30)

where λi(d̃) = max{0, Hb(Di ∗ ρ ∗ d̃) − Hb(Di) − [ΘH(γH)]−} for i ∈ {1, 2}. Notice that
Hb(Di ∗ ρ ∗ d̃) ≤ 1 and Hb(Di) ≥ 0; hence, λi(d̃) = 0 when ΘH(γH) = RH > 1. Therefore, P1

can be further calculated as

P1 =

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
1 [λ1(0)]

Θ−1
1 (0)

dγ1 ·
∫ ∞

Θ−1
2 [H(X2)]

f(γ2)f(γ1)f(γH)dγ2

+

∫ ∞
Θ−1

H (1)

dγH

∫ Θ−1
1 [0]

Θ−1
1 (0)

dγ1 ·
∫ ∞

Θ−1
2 [H(X2)]

f(γ2)f(γ1)f(γH)dγ2

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
1 [λ1(0)]

Θ−1
1 (0)

dγ1 ·
∫ ∞

Θ−1
2 [H(X2)]

f(γ2)f(γ1)f(γH)dγ2 + 0

=
1

γH
· exp

(
−Θ−1

2 [H(X2)]

γ2

)
·
∫ Θ−1

H (1)

Θ−1
H (0)

exp

(
−γH

γH

)
·
[
1− exp

(
−Θ−1

1 [λ1(0)]

γ1

)]
dγH. (2.31)

Next, consider

P2 = Pr{0 ≤ R1 ≤ Hb(D1 ∗ ρ ∗ d̃2)−Hb(D1)− [RH]−, 1−Hb(D2) ≤ R2 < H(X2), 0 ≤ RH}
= Pr{Θ−1

1 (0) ≤ γ1 ≤ Θ−1
1 [λ1(d̃2)],Θ−1

2 [1−Hb(D2)] ≤ γ2 < Θ−1
2 [H(X2)],Θ−1

H (0) ≤ γH}
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=

∫ ∞
Θ−1

H (0)

dγH

∫ Θ−1
2 [H(X2)]

Θ−1
2 [1−Hb(D2)]

dγ2 ·
∫ Θ−1

1 [λ1(d̃2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
2 [H(X2)]

Θ−1
2 [1−Hb(D2)]

dγ2 ·
∫ Θ−1

1 [λ1(d̃2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

+

∫ ∞
Θ−1

H (1)

dγH

∫ Θ−1
2 [H(X2)]

Θ−1
2 [1−Hb(D2)]

dγ2 ·
∫ Θ−1

1 [0]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
2 [H(X2)]

Θ−1
2 [1−Hb(D2)]

dγ2 ·
∫ Θ−1

1 [λ1(d̃2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1 + 0

=
1

γ2γH
·
∫ Θ−1

H (1)

Θ−1
H (0)

dγH

·
∫ Θ−1

2 [H(X2)]

Θ−1
2 [1−Hb(D2)]

exp

(
−γ2

γ2

− γH

γH

)
·

[
1− exp

(
−Θ−1

1 [λ1(d̃2)]

γ1

)]
dγ2, (2.32)

where d̃i = H−1
b (1− [Ri]

−) for i ∈ {1, 2}.
For P3, consider

P3 = Pr{0 ≤ R1 < Hb(D1 ∗ ρ ∗D2)−Hb(D1)− [RH]−, 0 ≤ R2 < 1−Hb(D2), 0 ≤ RH}
= Pr{Θ−1

1 (0) ≤ γ1 < Θ−1
1 [λ1(D2)],Θ−1

2 (0) ≤ γ2 < Θ−1
2 [1−Hb(D2)],Θ−1

H (0) ≤ γH}

=

∫ ∞
Θ−1

H (0)

dγH

∫ Θ−1
2 [1−Hb(D2)]

Θ−1
2 (0)

dγ2

∫ Θ−1
1 [λ1(D2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
2 [1−Hb(D2)]

Θ−1
2 (0)

dγ2 ·
∫ Θ−1

1 [λ1(D2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

+

∫ ∞
Θ−1

H (1)

dγH

∫ Θ−1
2 [1−Hb(D2)]

Θ−1
2 (0)

dγ2 ·
∫ Θ−1

1 [0]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
2 [1−Hb(D2)]

Θ−1
2 (0)

dγ2 ·
∫ Θ−1

1 [λ1(D2)]

Θ−1
1 (0)

f(γ1)f(γ2)f(γH)dγ1 + 0

=
1

γH
·
[
1− exp

(
−Θ−1

2 [1−Hb(D2)]

γ2

)]
·
∫ Θ−1

H (1)

Θ−1
H (0)

exp

(
−γH

γH

)
·
[
1− exp

(
−Θ−1

1 [λ1(D2)]

γ1

)]
dγH. (2.33)

To calculate P4, consider

P4 = Pr{Hb(D1 ∗ ρ ∗D2)−Hb(D1)− [RH]− ≤ R1 < 1−Hb(D1),

0 ≤ R2 ≤ 1 +Hb(D1 ∗ ρ ∗D2)−Hb(D1)−Hb(D2)− [RH]− − [R1]−, 0 ≤ RH}
= Pr{Θ−1

1 [λ1(D2)] ≤ γ1 ≤ Θ−1
1 [1−Hb(D1)],Θ−1

2 (0) ≤ γ2 ≤ Θ−1
2 (µ1),Θ−1

H (0) ≤ γH}

=

∫ ∞
Θ−1

H (0)

dγH

∫ Θ−1
1 [1−Hb(D1)]

Θ−1
1 [λ1(D2)]

dγ1 ·
∫ Θ−1

2 (µ1)

Θ−1
2 (0)

f(γ2)f(γ1)f(γH)dγ2

=

∫ Θ−1
H (1)

Θ−1
H (0)

dγH

∫ Θ−1
1 [1−Hb(D1)]

Θ−1
1 [λ1(D2)]

dγ1 ·
∫ Θ−1

2 (µ1)

Θ−1
2 (0)

f(γ2)f(γ1)f(γH)dγ2
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+

∫ ∞
Θ−1

H (1)

dγH

∫ Θ−1
1 [1−Hb(D1)]

Θ−1
1 [0]

dγ1 ·
∫ Θ−1

2 (µ1)

Θ−1
2 (0)

f(γ2)f(γ1)f(γH)dγ2

=
1

γ1γH
·
∫ Θ−1

H (1)

Θ−1
H (0)

dγH ·
∫ Θ−1

1 [1−Hb(D1)]

Θ−1
1 [λ1(D2)]

exp

(
−γ1

γ1

− γH

γH

)
·
[
1− exp

(
−Θ−1

2 (µ1)

γ2

)]
dγ1

+
1

γ1

· exp

(
−Θ−1

H (1)

γH

)
·
∫ Θ−1

1 [1−Hb(D1)]

Θ−1
1 [0]

exp

(
−γ1

γ1

)
·
[
1− exp

(
−Θ−1

2 (µ′1)

γ2

)]
dγ1, (2.34)

where µi = max{0, 1 + Hb(D1 ∗ ρ ∗ D2) − Hb(D1) − Hb(D2) − [ΘH(γH)]− − [Θi(γi)]
−} and

µ′i = max{0, Hb(D1 ∗ ρ ∗D2)−Hb(D1)−Hb(D2)− [Θi(γi)]
−} for i ∈ {1, 2}.

Similar to the calculation of P2 and P1, we have

P5 =
1

γ1γH
·
∫ Θ−1

H (1)

Θ−1
H (0)

dγH

·
∫ Θ−1

1 [H(X1)]

Θ−1
1 [1−Hb(D1)]

exp

(
−γ1

γ1

− γH

γH

)
·

[
1− exp

(
−Θ−1

2 [λ2(d̃1)]

γ2

)]
dγ1, (2.35)

P6 =
1

γH
· exp

(
−Θ−1

1 [H(X1)]

γ1

)
·
∫ Θ−1

H (1)

Θ−1
H (0)

exp

(
−γH

γH

)
·
[
1− exp

(
−Θ−1

2 [λ2(0)]

γ2

)]
dγH. (2.36)

2.3.2 Numerical Results

Fig. 2.6 depicts the upper bound of the outage probability for lossy communications with two
sources and one helper. For the purpose of plotting the curves in a 2D plane, the average SNRs
are set at different values but change at the same speed for each link, i.e., γ1 = γ2 + 2 = γH − 3.
It should be explained here that the curves for the case without a helper only show first order
diversity, due to the definition of outage event, i.e., the recoveries of the both sources cannot
satisfy the distortion requirements. We can clearly observe from the decay of the curves that with
a helper, second order diversity can be achieved. Therefore, the case with a helper providing the
side information achieves higher diversity order than the case without a helper. Interestingly, the
energy efficiency of the whole system can be improved by introducing a helper. For example, for
two sources without a helper, first order diversity means that the outage probability decreases from
10−1 to 10−2 requires 10 dB increment of per-link average SNR (20 dB in total). However, for two
sources with a helper, second order diversity means that it only requires 5 dB increment of per-link
average SNR (15 dB in total). Consequently, the system with a helper consumes lower sum power
for the same decrement of outage probability. From Fig. 2.6(a) and Fig. 2.6(b), it is found that
the smaller the correlation between the sources, i.e., ρ is larger, the higher the outage probability,
which is consistent to our expected results. In addition, it is noticeable that the system will have
lower outage probability, if the distortion requirements are less strict. Hence, identifying how to
specify the distortion requirements is a valuable and interesting work in the design of practical
systems.
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Fig. 2.6. The upper bound of the outage probability for the sources with different correlation levels.
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Fig. 2.7. The upper bound of the outage probability for diverse average SNRs in the helper link,
with ρ = 0.2 and D1 = D2 = 0.1.

Fig. 2.7 illustrates the upper bound of the outage probability for fixed average SNR in the helper
link, i.e., only γ1 = γ2 + 2. It is obvious that the outage curves are shifted to left by increasing the
average SNR in the helper link. However, the gap between the outage curves becomes narrower
when γH is relatively small. Because the channel capacity of the helper link cannot support lossless
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CHAPTER 2. Multiterminal Source Coding with a Helper

transmission of the helper information if γH < 0 dB, while there is no loss of the helper information
for γH ≥ 0 dB. Besides, notice that the slope of curve in Fig. 2.7 is less steep than that of the case
with one helper in Fig. 2.6. The reason for this observation is because the value of γH is fixed
(does not change along with γ1 and γ2) in Fig. 2.7, and the effect of performance improvement
provided by a helper appears in the form of parallel shifting of outage curves. If we use a dashed
line to connect the points where γ1 = γ2 + 2 = γH − 3 like in Fig. 2.6, we can observe second
order diversity.

2.4 Summary

In this chapter, we have analyzed the performance of lossy multiterminal source coding with a
helper in terms of rate-distortion and outage probability over independent block Rayleigh fading
channels. Based on Shannon’s lossy source-channel separation theorem, we start the performance
analysis from multiterminal source coding with a helper, and then take the channel conditions
into consideration in the derivation of outage probability. For the rate-distortion analysis, we
derive an inner bound on the achievable rate-distortion region for multiterminal source coding
with two binary sources and one helper. The theoretical results demonstrate that a helper can
obviously enlarge the achievable rate-distortion region; moreover, the inner bound derived in
this dissertation coincides with the Berger-Tung inner bound when the helper rate decreases to
0, i.e., the helper link is equivalently removed. Then, we apply the derived inner bound into the
outage probability analysis. In order to briefly calculate the outage probability, the area outside
the achievable rate-distortion region is divided into several subareas. Finally, we investigate the
performance improvement by introducing a helper with respect to the outage probability. The
curves of outage probability indicate that a helper can make the system achieve higher order of
diversity, and improve the energy efficiency for the whole system.
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CHAPTER 3
Binary CEO Problem with a Helper

Chapter 2 validates the performance gain provided by a helper for direct transmissions from the
sources to the destination. In this chapter, we are interested in the performance improvement by
introducing a helper into the system without direct transmission from the source to the destination,
i.e., the binary CEO problem. Inspired by the solutions of the binary CEO problem in [22,23], we
can start the performance analysis of the binary CEO problem with a helper from a multiterminal
source coding problem and then investigate the distortion of final decision. Moreover, we conduct
a series of simulations to compare the performance improvement between locating a helper and
introducing an additional agent.

3.1 Problem Statement
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Fig. 3.1. The binary CEO problem with a helper.

As illustrated in Fig. 3.11, there is a binary sourceX acts as a common source in the binary CEO
problem with a helper. The DMS X generates i.i.d. sequence xn = {x(t)}nt=1 by taking values
from the binary alphabet X = {0, 1} for each time slot. The source X is observed by L agents at
the same time. Due to the influence of noise, the observation xni = {xi(t)}nt=1 may contain errors
zni = {zi(t)}nt=1 for i ∈ L. Hence, the error probability Pr{xi(t) 6= x(t)} = ρi for Zi ∼ Bern(ρi).
Simultaneously, a helper generates the helper sequence yn = {y(t)}nt=1 from the agent sequences
bit by bit, and then transmits the helper sequence to the destination after compressing it. Therefore,
all the Xi and Y can be also regarded as DMS. The sequences xni and yn are encoded at rates Ri

1It should be noted that this dissertation solve the binary CEO problem with a helper by a successive decoding
scheme, i.e., first reconstructing X̂n

L and then making the final decision X̂n. The successive decoding scheme may
not achieve the optimal performance as directly reconstructing X̂n from {M1,M2, · · · ,ML,MH}.
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CHAPTER 3. Binary CEO Problem with a Helper

andRH by encoder i and encoder H, respectively. Encoder i and encoder H assign an index to each
sequence according to the following mapping rules:

ϕi : X n
i 7→ Mi = {1, 2, · · · , 2nRi}, (3.1)

ϕH : Yn 7→ MH = {1, 2, · · · , 2nRH}. (3.2)

Then, the encoder outputs ML and MH are transmitted to a joint decoder. The joint decoder
constructs the estimates x̂nL from indices ML and MH by utilizing the mapping rule, as:

ψ :M1 ×M2 × · · · ×ML ×MH 7→ X n
1 ×X n

2 × · · · × X n
L . (3.3)

Since the estimate x̂ni may occasionally deviate from the observation xni , the Hamming
distortion measure is implemented to describe the distortion level between xi(t) and x̂i(t). For
given distortion values DL, the rate-distortion region R(DL), consisting of all achievable rate
tuple (RL, RH), is defined as

R(DL) = {(RL, RH) : (RL, RH) is admissible such that
lim
n→∞

E(di(x
n
i , x̂

n
i )) ≤ Di + ε, for i ∈ L, and any ε > 0}. (3.4)

Finally, the destination reconstructs the estimate of xn from x̂nL. Obviously, the distortion
between xni and x̂ni will determine the final estimate x̂n. Hence, the final distortion

E

[
1

n

n∑
t=1

d(x(t), x̂(t))

]
≤ D + ε, (3.5)

can be formulated as a function FDP(·) of DL, where FDP(·) is referred to as DPF. The DPF is
defined as D = FDP(DL), which highly depends on the decision rule. It should be emphasized
here that the DPF limits the decoding scheme to successive decoding.

In the literature, He et al. [22] derived an outer bound on the achievable rate-distortion region
for the binary CEO problem with two sources only, and then the outer bound was extended to
the case with arbitrary number of sources in [23]. The major theoretical result in this chapter is
the outer bound on the achievable rate-distortion region for the binary CEO problem with many
sources and one helper.

3.2 The Step of Multiterminal Source Coding

Since distortions will propagate from the decoding results of multiterminal source coding to the
final decision, we should minimize the distortion from the first step of multiterminal source coding.
Therefore, for distortion minimization by convex optimization, we need to derive an outer bound
on the achievable rate-distortion region of multiterminal source coding with a helper.

3.2.1 Outer Bound on the Rate-Distortion Region
From the extended Berger-Tung outer bound [50] with multiple sources and one link of side
information, we can obtain the outer bound for multiterminal source coding with a helper as
presented in the following proposition.

Proposition 3.1: Let (XL, Y ) be a (L + 1)-component DMS and di(xi, x̂i) for i ∈ L be
distortion measures. If a rate tuple (RL, RH) is achievable with distortion tuple DL for distributed
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3.2 The Step of Multiterminal Source Coding

lossy source coding with a helper observing Y , then it must satisfy the inequalities∑
i∈S

Ri ≥ I(XL;US |USc , V ), (3.6)

RH ≥ I(Y ;V ), (3.7)

for some conditional pmf p(uL, v| xL, y), and functions x̂i(uL, v) such that Ui → Xi → Xj ,
Xi → Xj → Uj , and XS → Y → V form Markov chains and E(di(Xi, X̂i)) ≤ Di, where i, j ∈ L
and i 6= j.

It is easy to understand that the constraint of (3.7) results from the rate limit on the helper
instead of uncompressed side information. Now, we start to derive the outer bound for binary
sources. Consider∑

i∈S

Ri ≥ I(XL;US |USc , V )

= H(XL|USc , V )−H(XL|US , USc , V )

= H(XL|USc)− I(XL;V |USc)−H(XL|US , USc) + I(XL;V |US , USc)
= I(XL;US |USc)− I(XL;V |USc) + I(XL;V |US , USc)
= I(XL;US |USc) + I(XS ;V |UL)− I(XS ;V |UL)− I(XL;V |USc)

+ I(XL;V |US , USc). (3.8)

Then, we calculate I(XL;US |USc) + I(XS ;V |UL) and −I(XS ;V |UL) − I(XL;V |USc) + I(XL;
V |US , USc) separately. Consider

I(XL;US |USc) + I(XS ;V |UL)

= I(XS ;US |USc) + I(XSc ;US |USc , XS) + I(XS ;V |UL)

= I(XS ;US |USc) +H(XSc |USc , XS)−H(XSc|US , USc , XS) + I(XS ;V |UL)

= I(XS ;US |USc) +H(XSc |USc , XS)−H(XSc|USc , XS) + I(XS ;V |UL) (3.9)
= I(XS ;US |USc) + I(XS ;V |UL)

= I(XS ;US , USc)− I(XS ;USc) + I(XS ;V |US , USc)
= I(XS ;UL, V )− I(XS ;USc)

≥ I(XS ; X̂S)− I(XS ;USc), (3.10)

where (3.9) follows the fact that Ui → Xi → Xj form a Markov chain for i ∈ S and j ∈ Sc; (3.10)
follows data processing inequality when estimating X̂S from (UL, V ). Notice that I(XS ; X̂S) is the
mutual information required for recovering X̂S , and I(XS ;USc) is the mutual information provided
by the remaining agent links except the helper link. Hence, I(XS ; X̂S) − I(XS ;USc) represents
the link rates required for multiterminal source coding without a helper, and we can further bound
I(XL;US |USc) + I(XS ;V |UL) by applying the result in [23] into (3.10), as

I(XL;US |USc) + I(XS ;V |UL) ≥ fb({ρS , αSc})− fb({αSc})−
∑
i∈S

Hb(Di), (3.11)

where αi = ρi∗H−1
b (1−[Ri]

−), and fb(·) is the joint binary entropy function for correlated sources
defined in Definition 1.3.
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Next, consider

− I(XS ;V |UL)− I(XL;V |USc) + I(XL;V |US , USc)
= −I(XS ;V |UL)−H(V |USc) +H(V |XL, USc) +H(V |US , USc)−H(V |XL, US , USc)
= −I(XS ;V |UL)−H(V |USc) +H(V |XL) +H(V |US , USc)−H(V |XL) (3.12)
= H(V |UL, XS)−H(V |UL)−H(V |USc) +H(V |US , USc)
= −I(V ;US , XS |USc)
= −I(V ;XS |USc), (3.13)

where (3.12) and (3.13) follow since Ui → Xi → V form a Markov chain for i ∈ L. To further
calculate (3.13), consider

I(V ;XS |USc) ≤ I(V ;Y ) (3.14)
≤ [RH]−, (3.15)

where (3.14) follows since XS → Y → V form a Markov chain. Notice that the equality of (3.14)
holds when the helper only utilizeXS to generate the helper information Y . Moreover, the equality
of (3.15) holds when the helper rate is completely exploited for compression. Therefore, (3.15)
might not hold for all cases regardless the specified helper structure. Consequently, there is no
waste of the helper rate if the conditions for the equality of (3.14) and (3.15) are satisfied. In this
case, it is obvious that the structure of the helper is optimal. By assuming that we have an optimal
helper and substituting (3.11), (3.13) and (3.15) into (3.8), we can finally obtain∑

i∈S

Ri ≥ fb({ρS , αSc})− fb({αSc})−
∑
i∈S

Hb(Di)− [RH]−. (3.16)

Remark 1: Since we assume that the structure of the helper is optimal, the constraint on
the helper link, i.e., the inequality (3.7), is satisfied by the helper encoder, which finds a proper
codeword MH to make I(Y ;V ) as large as possible.

Remark 2: If we set RH = 0, i.e., the helper link is equivalently cut off, (3.16) reduces to the
outer bound without a helper in [23].

3.2.2 Distortion Minimization by Convex Optimization

Since the final distortionD is a function ofDL by the successive decoding for givenRL andRH, we
can first minimize the l2-norm of the vector [D1, D2, · · · , DL] by solving a convex optimization
problem [22, 23], which is formulated from the outer bound. Then, we calculate the minimum
distortionD∗ by substituting the solution of the convex optimization problem into DPF. Notice that
for a practical communication system, the channel capacity should also be taken into consideration.
According to Shannon’s lossy source-channel separation theorem [61, 68], the distortion tuple DL
is achievable if the following inequalities hold:

Ri(Di) ≤ Θi(γi) =
C(γi)

ri
, for i ∈ L, (3.17)

RH ≤ ΘH(γH) =
C(γH)

rH

. (3.18)
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By applying the outer bound derived above, we can formulate the convex optimization problem
for the system with an optimal helper as

min
D1,D2,··· ,DL

‖[D1, D2, · · · , DL]‖2

s.t.∑
i∈S

Hb(Di) ≥ fb({ρS , αSc})− fb({αSc})−
∑
i∈S

[Θi(γi)]
− − [ΘH(γH)]−,

0 ≤ Di ≤ 0.5, i ∈ L. (3.19)

After solving the convex optimization problem, we can obtain the minimum value of distortion
D∗i for i ∈ L. Then, we use the estimates X̂n

L with minimum distortionsD∗L to make final decision.

3.3 Final Distortion Analysis

As stated before, the final distortion highly depends on the decision rule, and hence we have to
specify the decision rule for final distortion analysis. In the following, we consider the theoretically
optimal case and a practical case, i.e., MV decision, respectively.

3.3.1 Optimal Decision

To facilitate the derivation, we define βi = ρi ∗Di. For the optimal decision rule, consider

H(X)−Hb(d̃)

≤ I(X; X̂)

≤ I(X; X̂L) (3.20)

= H(X) +H(X̂L)−H(X, X̂L)

≤ H(X) + fb({βL})− fb({0, βL}), (3.21)

where the steps are justified as:
(3.20) the probable information loss in the final decision,
(3.21) X can be regarded as the output of a BSC with itself as the input and the crossover
probability equal to 0.

Consequently, we have

d̃ ≥ H−1
b [fb({0, βL})− fb({βL})]. (3.22)

Obviously, the minimum final distortion D, i.e., the distortion by optimal decision, is given by

D = H−1
b [fb({0, βL})− fb({βL})]. (3.23)

3.3.2 Majority Voting Decision

Since the optimal decision specifies a universal lower bound, here, we consider another practical
decision scheme, i.e., MV. The distortion between Xn and X̂n by MV is the sum probability of
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several events in a Poisson binomial process [52]. We introduce a function to evaluate the distortion
in a Poisson binomial process as follows:

Definition 3.1: Poisson binomial distortion function [52]. The distortion between Xn and X̂n,
which is estimated from X̂n

L by MV, is calculated by D = PB(βL) as

PB(βL) =



L∑
j=L+1

2

Pr(J = j), if L is odd,

1

2
Pr(J =

L

2
) +

L∑
j=L

2
+1

Pr(J = j), if L is even,

(3.24)

where

Pr(J = j) =



L∏
i=1

(1− βi), j = 0,

1

j

j∑
i=1

(−1)(i−1)Pr(J = j − i)η(i), j > 0,

(3.25)

with η(i) =
∑L

k=1( βk
1−βk

)i for 0 ≤ j ≤ L.
By utilizing the Poisson binomial distortion function, we can calculate the distortion D by MV

among X̂L as
D = PB(βL). (3.26)

Remark: If ρi are various among all links, weighted MV should be implemented to generate
more accurate estimate of Xn. The error probability by weighted MV is presented in Appendix
A. In this chapter, we focus on the system with homogeneous agents for simplicity, and the results
can be easily extended to the case with heterogeneous agents according to Appendix A.

In summary, the DPFs for optimal decision and MV are (3.23) and (3.26), respectively. There-
fore, we can obtain the minimum final distortion between Xn and X̂n by substituting the solution
D∗L of the convex optimization problem into DPF as D∗ = FDP(β∗L), where β∗L = {ρi ∗D∗i |i ∈ L}.

3.3.3 Numerical Results
Now, we start investigations on the trade-off of rate-distortion for the binary CEO problem with a
helper through numerical results. A memoryless source X ∼ Bern(0.5) is used in the following.
Initially, we compare the BER performance between MV and optimal decision. By utilizing the
DPF after solving a corresponding convex optimization problem, we can depict the curve of SNR
for each link versus BER as shown in Fig. 3.2. All the crossover probabilities between X and Xi

are set at the same value of 0.01. Moreover, the end-to-end coding rate is set at 1
2
, and the SNR

is set at the same level for all of the agent and helper links. Notice from the results that whether
there is a helper or not, a gap obviously appears between the Poisson binomial (PB) process, i.e.,
MV, and the theoretical lower bound (LB), i.e., optimal decision. The reason for the performance
gap is that it is extremely difficult to completely utilize the mutual information between Xn and
Xn
L. For instance, assuming that there are 2K agents with Xt = X1,t = · · · = XK,t = 0 and

XK+1,t = · · · = X2K,t = 1 at some time index t, it is obvious that there is some mutual information
between Xt and {X1,t, · · · , XK,t}. However, decision error will still occur in the Poisson binomial
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(b) The number of agents is odd.

Fig. 3.2. Comparison of system performance between MV and optimal decision, where ρi = 0.01.

process, resulting in the loss of mutual information between Xt and X̂t. It should be also noticed
that the gap is sensitive to the number of agents, i.e., the gap is smaller when there are odd number
of agents. Because there could be equal number of “0” and “1” at the same bit of the agent
sequences, if the number of agents is even. In this draw case, the bit of final decision by MV is
randomly selected, resulting in more performance loss. Hence, the MV decision can achieve better
performance if odd number of agents are deployed. For the effect of a helper, we find that the
helper can reduce BER at small SNR value range, but keep the same BER floor as the case without
a helper. Because for sufficiently large SNR, there is already no distortion between Xn

i and X̂n
i ,

and the side information Y n generated from Xn
L becomes redundant.
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Fig. 3.3. The trade-off of rate-distortion with a MV helper, where ρi = 0.01 for all agents.
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We further investigate the effect on rate-distortion by introducing a helper with MV decision
in Fig. 3.3. Since the rate allocation scheme is out of the scope in this dissertation, the rate is
evenly allocated to all nodes including agents and helper. Surprisingly, the helper can reduce the
final distortion D before achieving the distortion floor, even though the agent rate decreases by
sharing the sum rate with a helper. This phenomenon indicates that it is possible to improve the
system performance for multiple access channels with the same sum rate by introducing a helper.
However, the curve with a helper will finally converge with the no-helper case at the same distortion
floor. Notice the fact that the curve with a helper is still valuable, although the improvement is very
small.

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

2.4 2.6 2.8

10
-4

10
-2

(a) L = 3.

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

2.4 2.6 2.8

10
-4

10
-2

(b) L = 4.

Fig. 3.4. The trade-off of rate-distortion with diverse number of agents.

Finally, we make a comparison of rate-distortion between MV and optimal decision with
diverse ρi. Fig. 3.4 shows an inclination that the more correlated observations are, i.e., ρi is smaller,
the faster the distortion floor is achieved. Because it is easier to minimize the distortion between
Xn
i and X̂n

i for more correlated observations, owing to more mutual information among the
observations. Moreover, as the correlation among the agent observations increases, the distortion
floor decreases for both MV and optimal decision. We can also find the same phenomenon as
Fig. 3.2 that the gap between MV and optimal decision is smaller for odd number of agents, even
if the number of agents in Fig. 3.4(a) is less than that in Fig. 3.4(b). In addition, since in the
situation where the mutual information is lost less frequently with smaller ρi, the gap between MV
and optimal decision is smaller with more correlated observations.

3.4 Practical Performance Evaluation

3.4.1 Simulation Design

In this section, we evaluate the practical performance of binary CEO problem with a helper through
simulations. As depicted in Fig. 3.5, there are L encoders separately encode the observations Xn

i ,
which is detected from a common source sequence Xn and mixed with the error Zn

i . Simulta-
neously, the encoder H encodes the side information Y n generated from the agent observations.
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Fig. 3.5. Simulation system.

Next, the encoded sequences are sent to a fusion center through AWGN channels after modulation.
The fusion center first demodulates the received signals and then jointly decodes them. Finally, the
estimate of all sequences in the last round of iteration is used to make final decision.

Y
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Fig. 3.6. Generation of helper information by modulo-2 sum.

Regarding the helper sequence Y n, since its optimal structure is still an open problem, we select
two frequently implemented structures in practice as g(·), i.e., the helper information generated by
modulo-2 sum or MV. The g(·) by modulo-2 sum is illustrated in Fig. 3.6, where Xn

i is interleaved
by Πi,1 for the first step; subsequently, Y n is produced by the modulo-2 sum of interleaved Xn

L
bit by bit. By the interleaver Πi,1, the distribution of Y is approximate to Bern(0.5), i.e., Y n can
contain side information as much as possible.

CC ∏i,2 ACC∏i,1
Xi
n

(a) Agent encoder i.

CC ∏H ACC
Y
n

(b) Helper encoder H.

Fig. 3.7. The structure of encoders.

Fig. 3.7 shows the structure of encoders. In order to better exploit the correlation among Xn
L,

the interleaver Πi,1 is used to disperse noises into different bits of Xn
i . For the helper, only one

interleaver ΠH is needed between CC and ACC.
The general structure of joint decoder is depicted in Fig. 3.8. In local iteration, the extrinsic

information is exchanged between ACC−1 and CC−1 via an interleaver Π and its corresponding
deinterleaver Π−1. After several rounds of local iteration, the CC−1 outputs the a posteriori LLR
(LLRp) of information bits. In global iteration, an extrinsic information exchanger updates the a
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priori LLR (LLRa) with the extrinsic LLR (LLRe), which is calculated by (LLRp − LLRa). The
joint decoder alternately executes local iteration and global iteration, until the mutual information
calculated from LLRp

i is large enough or the maximum iteration time is exceeded. Finally, the
estimate of Xn

i is produced by the hard decision of LLRp
i in the last round of local iteration.
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Fig. 3.9. The structure of extrinsic information exchanger.

The extrinsic information exchanger updates the LLRa according to the rules shown in Fig. 3.9.
For the case with helper information generated by modulo-2 sum, the LLRe of all agents and the
helper is first exchanged based on the same principle for the check node of low-density parity-
check (LDPC) codes [78], as

LLRtmp
i = LLRe

i − 2 · arctanh

(∏
j∈W

tanh
−LLRe

j

2
· tanh

−LLRe
H

2

)
, (3.27)

LLRa
H = LLRe

H − 2 · arctanh

(∏
i∈L

tanh
−LLRe

i

2

)
, (3.28)

whereW = L\i, and LLRtmp
i is the temporary result for agents. Then, according to the correlation

model [79], the LLRtmp
i is deinterleaved by Π−1

i,1 and further calculated by the LLR updating
function fc(·) for correlated sources [80]. Finally, Πi,1 interleaves the output of fc(·) again to
provide LLRa

i . The structure of extrinsic information exchanger is much simpler for g(·) being
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3.4 Practical Performance Evaluation

MV. As illustrated in Fig. 3.9(b), fc(·) directly updates all of the LLRe
i after deinterleaving with

the LLRe
H, and then the outputs from fc(·) for agents are interleaved into LLRa

i .

3.4.2 Simulation Results

Table 3.1. BASIC SETTINGS OF SIMULATION PARAMETERS

Parameter Value Parameter Value
Number of blocks 1000 Block length 10000 bits

Distribution of X Bern(0.5) Maximum iteration time 30

Generator polynomial of CC ([3, 2]3)8 Rate of CC 1/2

Type of interleaver random interleaver Modulation method BPSK
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(b) L is odd.

Fig. 3.10. Comparison of simulation results between different structures of helper, where ρi =
0.03.

Fig. 3.10 compares the simulation results between g(·) being modulo-2 sum (M2S) and
MV, where the basic parameter settings are listed in Table 3.1. Since the MV decision rule is
implemented in simulations, we use the limit derived from Poisson binomial as the theoretical
bound. Clearly, the trade-off of rate-distortion in simulations perfectly matches that in theoretical
analysis, i.e., a helper can shift the turbo cliff to left but cannot reduce the BER floor. It should
be highlighted that shifting SNR to left also means eliminating distortions for low SNR level.
Moreover, the helper with g(·) being MV can obviously reduce the SNR threshold more than
the helper which generates its information by modulo-2 sum. The reason for the difference of
performance is that the distortion is included in the helper sequence with modulo-2 sum operation
if there is only one check node. If one of the LLRi is with the opposite sign, all of the other (L−1)
LLRs will get negative helper information. However, such negative helper information cannot be
reversed again as in the LDPC codes, because no other check nodes exist in the system with only
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CHAPTER 3. Binary CEO Problem with a Helper

one helper. Hence, if the SNR is in an extremely low level, the helper with g(·) being modulo-2
sum will lose its effect due to the large distortion of Xi. This problem also results in the reduction
of helper efficiency for large L, i.e., it is difficult to shift the turbo cliff by further increasing L.
Therefore, the system with only one helper for g(·) being modulo-2 sum cannot obtain enough
gains as the LDPC codes with a lot of check nodes. Nevertheless, the helper with its information
generated by MV still can obviously reduce the SNR threshold with larger L. Because not only
can the helper information generated by MV preserve large enough mutual information among XL
for lower error-corrupted probability ρi, but the distortions occurring at the small part of nodes are
also not dominant when exchanging extrinsic information. Besides, the simulation results for both
structures of helper can achieve the bound derived from Poisson binomial process. Hence, we can
draw a conclusion that it is convincible and effective to predict the trade-off of rate-distortion for a
practical system by applying the theoretical results.
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(b) L is odd, and ρi = 0.03.
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(d) L is odd, and ρi = 0.05.

Fig. 3.11. Comparison between one additional agent and a helper.

Finally, we make a comparison between (L+1) agents and a helper for diverse ρi as illustrated
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in Fig. 3.11. Since MV shows a better performance than modulo-2 sum as the helper structure, we
only plot the curves of MV for comparison. It is remarkable in Fig. 3.11(a) and Fig. 3.11(c) that
the system with (L+1) agents can achieve the BER floor of the case with (L+2) agents, when L is
an even number. For example, when L = 2, by adding one more agent, the system can achieve the
same BER floor as L = 4. Because one additional agent provides extra information of X , and this
avoids the draw case that equal number of “0” and “1” appear in the same bit of agent sequences
when L is even. However, the system with a helper has a lower SNR threshold for arbitrary L, due
to the larger mutual information between Y n and Xn

L by MV. Especially when ρi becomes larger
or L is odd, the gap of turbo cliff between (L + 1) agents and a helper is very conspicuous, e.g.,
Fig. 3.11(c) and Fig. 3.11(b) have more obvious gap than the case of Fig. 3.11(a). We can also
find that the system with (L+ 1) agents keeps the same BER floor as one-helper system when L is
odd as shown in Fig. 3.11(b) and Fig. 3.11(d), even though one more agent provides extra mutual
information about X . Consequently, except the additional implementation cost needed, it is better
to add a helper than one more agent for a system with odd number of agents. If the wireless
channels are good enough, one more agent can make the estimate of source more accurate for the
system already having even number of agents. However, in an extremely noisy environment, i.e.,
before achieving BER floor and/or ρi is relatively large, the system performance can benefit more
from a helper than adding an additional agent. For instance, in Fig. 3.11(c) with L = 6 and SNR
less than −6 dB, the curve with a helper has lower BER than the curve with (L + 1) agents. In
addition, there is another noticeable phenomenon that the BER floor is not immediately achieved
for relatively larger ρi and L after turbo cliff appears, e.g., L = 7 with a helper in Fig. 3.11(d).
Because for the bits at the same time index, they need to obtain enough extrinsic information from
each other, so as to decode correctly when SNR is extremely low. Hence, only the bits almost
without corrupting errors can accumulate their extrinsic information and be correctly decoded.
The SNR threshold decreases as the number of agents increases, while larger SNR is required for
large ρi to correctly decode all bits at the same time index. Once the SNR threshold decreases to
the level in which the bits with some corrupting errors decode fail, the BER is not able to achieve
the BER floor as soon as the turbo cliff appears.

3.5 Summary

We have analyzed and evaluated the performance of the binary CEO problem with a helper. To
begin with, we decompose the binary CEO problem with a helper into two sub problems as
multiterminal source coding with a helper and final decision. Subsequently, we derive an outer
bound on the achievable rate-distortion region for the multiterminal source coding step and the
DPF for the final decision step. Based on the derived outer bound, a convex optimization problem
is formulated to minimize the distortion of observations with given agent and helper link rates. By
substituting the minimized distortions into DPF, we investigate the relationship between link rates
and final distortion. Although there is an obvious gap between MV and optimal decision, they show
the same tendency on the trade-off of rate-distortion. Finally, we have risen an encoding/decoding
scheme and design a simulation for practical performance evaluation, so as to compare with the
theoretical results and analyze the trade-off of rate-distortion for the binary CEO problem with
a helper. Both the theoretical and simulation results indicate that a helper can reduce the SNR
threshold, while the BER floor does not change. Moreover, a helper with its structure as MV
has a better performance than an additional agent for the system with odd number of agents or in
extremely noisy communication environment. These significant observations are extremely useful
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for the design of practical systems.
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CHAPTER 4
Lossy Source Coding with Multiple Helpers

Chapter 2 and Chapter 3 have verified that a helper can enhance the system performance. There-
fore, it spontaneously arouses our curiosity about how much the performance can be promoted
by adding more helpers. The major objective of this chapter is to investigate the rate-distortion
performance for lossy source coding with many helpers. We derive an inner bound on the
achievable rate-distortion region for general sources, and then calculate it for binary sources. The
tendency of theoretical results is further confirmed in the performance evaluation by simulations.

4.1 Problem Statement

Encoder 0
X

n M0

Joint

decoder

(X
n
, D)^Encoder 1

Y1
n

R0

M1

R1

Encoder 2
Y2

n M2

R2
...

Encoder L
YL

n ML

RL

Fig. 4.1. The system model of lossy source coding with helpers.

As depicted in Fig. 4.1, there is a target source X and many helpers Yi in the system. Although
the number of helpers may be limited by space and channel resources in practical scenario, we do
not constrain it in theoretical analysis. In total, there are (L + 1) DMS (X, Y1, · · · , YL), with X
and Yi taking values from corresponding finite alphabets X and Yi at each time slot, respectively.
xn = {x(t)}nt=1 and yni = {yi(t)}nt=1 indicate the i.i.d. sequences generated from the sources X
and Yi, respectively. Then, the sequences xn and yni are observed and transmitted to a common
decoder, after compression by encoder 0 and encoder i, respectively. Due to some restrictions in
practice, e.g., the deployment of encoders is distributed and located at different places, the observed
sequences xn and yni have to be encoded into codewords separately. The encoders compress the
sequences xn and yni at rates R0 and Ri, respectively, by assigning an index to each sequence
according to the following mapping rules:

ϕ0 : X n 7→ M0 = {1, 2, · · · , 2nR0}, (4.1)

ϕi : Yni 7→ Mi = {1, 2, · · · , 2nRi}, for i ∈ L. (4.2)

Without loss of generality, we assume that 2nR0 and 2nRi are integer numbers.
Once all of the encoding outputs ϕ0(xn), ϕ1(yn1 ), · · · , ϕL(ynL) are received, the joint decoder

constructs the estimate x̂n of xn by jointly utilizing the received codewords in contrast to the
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distributed compression at the encoders. The reconstruction process is expressed by the mapping
as:

ψ :M0 ×M1 × · · · ×ML 7→ X n. (4.3)

Generally, distortion happens when the estimate x̂n does not fully contain the information of
xn. The distortion measure d : X × X 7→ [0,∞) is defined to describe the degree of distortion
between x and x̂. For given distortion requirement D, the achievable rate-distortion regionR(D),
consisting of all achievable rate tuple of (R0, RL), is defined as

R(D) = {(R0, RL) : (R0, RL) is admissible such that
lim
n→∞

E (d(xn, x̂n)) ≤ D + ε, for any ε > 0}. (4.4)

In the literature, Oohama [35] determined the achievable rate-distortion region for Gaussian
sources. Wolf et al. [36] derived an inner bound on the rate region for lossless case with binary
sources. The main theoretical results in this chapter are the inner bounds on the achievable rate-
distortion region for general sources and binary sources.

4.2 Rate-Distortion Analysis

4.2.1 Inner Bound for General Sources
Initially, we derive an inner bound on the achievable rate-distortion region for lossy source coding
with helpers.

Proposition 4.1: Let (X, YL) be an (L+1)-component DMS and d(x, x̂) be distortion measure.
A rate tuple (R0, RL) is achievable with distortion requirement D for distributed lossy source
coding with more than one helper if

R0 > I(X;U |VL), (4.5)∑
i∈S

Ri > I(YS ;VS |VSc), (4.6)

for some conditional pmf p(u|x) ·
∏L

i=1 p(vi|yi) and function x̂(u, vL) such that E(d(X, X̂)) ≤ D,
with U → X → Yi → Vi and Vi → Yi → X → Yj → Vj forming Markov chains for i, j ∈ L and
i 6= j.

Proof of Proposition 4.1: We use an (L + 1)-dimension distributed compress-bin scheme
for lossy source coding, and analyze the expected distortion of this scheme with respect to rate
constraints. In the following, we assume that ε1 < ε2 < ε3 < ε.

Codebook generation. Fix a conditional pmf p(u|x) ·
∏L

i=1 p(vi|yi) and a function x̂(u, vL)

such that E(d(X, X̂)) ≤ D/(1 + ε). Let R̃0 ≥ R0 and R̃i ≥ Ri for i ∈ L. Randomly and
independently generate 2nR̃0 sequences un(k0) ∼

∏n
t=1 pU(u), k0 ∈ K0 = {1, 2, · · · , 2nR̃0}. Simi-

larly, for i ∈ L, randomly and independently generate 2nR̃i sequences vni (ki) ∼
∏n

t=1 pVi(vi), ki ∈
Ki = {1, 2, · · · , 2nR̃i}. Then, partition the set of indices k0 ∈ K0 into equal-size bins B0(m0) =

{(m0 − 1) · 2n(R̃0−R0) + 1, · · · ,m0 · 2n(R̃0−R0)} for m0 ∈ M0, and also partition the set of
indices ki ∈ Ki into equal-size bins Bi(mi) = {(mi − 1) · 2n(R̃i−Ri) + 1, · · · ,mi · 2n(R̃i−Ri)}
for mi ∈Mi, i ∈ L. This codebook structure is utilized in the encoders and the decoder.

40



4.2 Rate-Distortion Analysis

Encoding. Upon observing xn, encoder 0 finds an index k0 ∈ K0 such that (un(k0), xn) ∈
T (n)
ε1 . If there is more than one such index k0, encoder 0 selects one of them uniformly at random.

If there is no such index k0, encoder 0 selects an index from K0 uniformly at random. Similarly,
for i ∈ L, encoder i finds an index ki ∈ Ki such that (vni (ki), y

n
i ) ∈ T (n)

ε1 . If there is more than
one such index ki, encoder i selects one of them uniformly at random. If there is no such index ki,
encoder i selects an index from Ki uniformly at random. Then, encoder 0 and encoder i send the
indices m0 and mi such that k0 ∈ B0(m0) and ki ∈ Bi(mi), respectively.

Decoding. The decoder finds the unique index tuple (k̂0, k̂L) ∈ B0(m0) × B1(m1) × · · · ×
BL(mL) such that (un(k̂0), vn1 (k̂1), · · · , vnL(k̂L)) ∈ T (n)

ε . If there is such a unique index tuple
(k̂0, k̂L), the reconstruction is computed bit by bit as x̂t(ut(k̂0), v1,t(k̂1), · · · , vL,t(k̂L)); otherwise,
x̂n is set to arbitrary sequence in X n.

Fig. 4.2. An example of the distributed compress-bin scheme with L = 2.

An example of the distributed compress-bin scheme with L = 2 is depicted in Fig. 4.2. Now,
we analyze the expected distortion of the distributed compress-bin scheme. Let (K0, KL) denote
the index tuple for the chosen (Un, V n

L ) tuple, (M0,ML) be the tuple of corresponding bin indices,
and (K̂0, K̂L) be the tuple of decoded indices. Define the “error” event

E = {(Un(K̂0), V n
1 (K̂1), · · · , V n

L (K̂L), Xn, Y n
1 , · · · , Y n

L ) /∈ T (n)
ε }, (4.7)

and consider the following sub-events:

E1 = {(Un(k0), Xn) /∈ T (n)
ε1

for all k0 ∈ K0}, (4.8)

E2 = {(V n
i (ki), Y

n
i ) /∈ T (n)

ε1
for all ki ∈ Ki, i ∈ L}, (4.9)

E3 = {(Un(K0), Xn, Y n
1 ) /∈ T (n)

ε2
}, (4.10)

E4 = {(Un(K0), Xn, V n
1 (K1), Y n

1 ) /∈ T (n)
ε3
}, (4.11)

E5 = {(Un(K0), Xn, V n
1 (K1), Y n

1 , · · · , V n
L (KL), Y n

L ) /∈ T (n)
ε }, (4.12)

E6 = {(V n
1 (k̃1), · · · , V n

L (k̃L)) ∈ T (n)
ε for some

k̃L ∈ B1(M1)× · · · × BL(ML), k̃L 6= KL}, (4.13)

E7 = {(Un(k̃0), V n
1 (K1), · · · , V n

L (KL)) ∈ T (n)
ε for some k̃0 ∈ B0(M0), k̃0 6= K0}. (4.14)
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E1 and E2 represent encoding error events in encoder 0 and encoder i for i ∈ L, respectively.
E5 occurs if joint typicality decoding fails, with E3 and E4 being its sub-events. E6 and E7 mean
that there are more than one decoding result, and hence a decoding error event occurs. Notice
that the “error” event occurs only if (Un(K0), V n

1 (K1), · · · , V n
L (KL), Xn, Y n

1 , · · · , Y n
L ) /∈ T (n)

ε or
(k̃0, k̃L) 6= (K0, KL). By the union of the events bound, we have

Pr(E) ≤ Pr(E1) + Pr(E2) + Pr(Ec1 ∩ E3) + Pr(Ec3 ∩ E4) + Pr(Ec4 ∩ E5)

+ Pr(E6) + Pr(E7). (4.15)

We bound each term as follows. First, by the covering lemma [81], Pr(E1) tends to zero as
n→∞ if

R̃0 > I(X;U) + δ(ε1), (4.16)

and Pr(E2) tends to zero as n→∞ if

R̃i > I(Yi;Vi) + δ(ε1). (4.17)

Since Ec1 = {(Un(K0), Xn) ∈ T (n)
ε1 }, Y n

1 |{Un(K0) = un, Xn = xn} ∼
∏n

t=1 pY1|X(y1,t|xt).
By the conditional typicality lemma [81], Pr(Ec1 ∩ E3) approaches zero as n→∞.

To bound Pr(Ec3 ∩ E4), let (un, xn, yn1 ) ∈ T (n)
ε2 (U,X, Y1), and consider

Pr{V n
1 (K1) = vn1 |Un(K0) = un, Xn = xn, Y n

1 = yn1 }
= Pr{V n

1 (K1) = vn1 |Y n
1 = yn1 }

= p(vn1 |yn1 ). (4.18)

First, notice that by the covering lemma, Pr{V n
1 (K1) ∈ T (n)

ε2 (V1|yn1 )|Y n
1 = yn1 } converges to 1 as

n → ∞, i.e., p(vn1 |yn1 ) satisfies the first condition of the Markov lemma [81]. Then, similar to the
proof of the Berger-Tung inner bound, shown in Lemma 12.3 in [81], p(vn1 |yn1 ) also satisfies the
second condition of the Markov lemma. Hence, according to the Markov lemma, we have

lim
n→∞

Pr{(un, xn, yn1 , V n
1 (K1)) ∈ T (n)

ε3
|Un(K0) = un, Xn = xn, Y n

1 = yn1 } = 1, (4.19)

if (un, xn, yn1 ) ∈ T (n)
ε2 (U,X, Y1) and ε2 < ε3 is sufficiently small. Therefore, Pr(Ec3 ∩ E4) tends to

zero as n → ∞. By recursively utilizing the similar derivation for bounding Pr(E3) and Pr(Ec3 ∩
E4), we can obtain that Pr(Ec4 ∩ E5) tends to zero as n→∞.

To bound Pr(E6), we introduce the following two lemmas:
Lemma 4.1: Joint typicality lemma for multiple random variables. Let (VS , VSc) ∼ p(vS , vSc).

If ṽni ∼
∏n

t=1 pVi(vi,t) for i ∈ S, and ṽni is an arbitrary random sequence for i ∈ Sc, then

Pr{(Ṽ n
S , ṽ

n
Sc) ∈ T (n)

ε (VS , VSc)}

≤ pow

(
2,−n

[ |S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε)
])
. (4.20)

Lemma 4.2: Mutual packing lemma for multiple random variables. Let (VS , VSc) ∼
p(vS , vSc). For i ∈ S, let V n

i (ki) ∼
∏n

t=1 pVi(vi,t), ki ∈ Ki = {1, 2, · · · , 2nri}. For i ∈ Sc,
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let Ṽ n
i be an arbitrarily distributed random sequence. Assume that (V n

i (ki) : i ∈ S, ki ∈ Ki) and
(Ṽ n

i : i ∈ Sc) are independent of each other. Then, δ(ε) exists that tends to zero as ε→ 0 such that

lim
n→∞

Pr{(V n
S1

(kS1), · · · , V n
S|S|

(kS|S|), Ṽ
n
Sc) ∈ T (n)

ε for some ki ∈ Ki, i ∈ S} = 0, (4.21)

if ∑
i∈S

ri <

|S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε). (4.22)

The proofs of Lemma 4.1 and Lemma 4.2 are provided in Appendix B and Appendix C,
respectively.

If R̃i = Ri for i ∈ Sc, notice that (4.17) becomes

Ri > I(Yi;Vi) + δ(ε1), (4.23)

and hence Ri is already large enough for link i. Moreover, since R̃i − Ri = 0, there is only one
index in Bi for i ∈ Sc. Hence, k̃i = Ki for k̃i ∈ Bi. Then, E6 can be simplified as

E6 = {(V n
S1

(k̃S1), · · · , V n
S|S|

(k̃S|S|), V
n
Sc1

(KSc1
), · · · , V n

Sc|Sc|
(KSc|Sc|

)) ∈ T (n)
ε

for some k̃S 6= KS , k̃S ∈ BS1(MS1)× · · · × BS|S|(MS|S|)}. (4.24)

Following a similar argument as Lemma 11.1 in [81] in the proof of the Wyner-Ziv theorem, we
have

Pr(E6) ≤ Pr{(V n
S1

(k̃S1), · · · , V n
S|S|

(k̃S|S|), V
n
Sc1

(KSc1
), · · · , V n

Sc|Sc|
(KSc|Sc|

)) ∈ T (n)
ε

for some k̃S ∈ BS1(1)× · · · × BS|S|(1)}, (4.25)

Pr(E7) ≤ Pr{(Un(k̃0), V n
1 (K1), · · · , V n

L (KL)) ∈ T (n)
ε for some k̃0 ∈ B0(1)}. (4.26)

According to Lemma 4.2 and the packing lemma [81], Pr(E6) and Pr(E7) tend to zero as n→∞,
respectively, if

∑
i∈S

(R̃i −Ri) <

|S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε), (4.27)

R̃0 −R0 < I(U ;VL)− δ(ε). (4.28)

By combining (4.16), (4.17), (4.27) and (4.28), we have shown that Pr(E) tends to zero as n→∞
if

R0 > I(X;U) + δ(ε1)− I(U ;VL) + δ(ε), (4.29)∑
i∈S

Ri >
∑
i∈S

[I(Yi;Vi) + δ(ε1)]−
|S|∑
j=2

I(VSj−1
1

;VSj)− I(VS ;VSc) + δ(ε). (4.30)

We can further calculate (4.29) as

R0 > I(X;U) + δ(ε1)− I(U ;VL) + δ(ε),

= I(X, VL;U)− I(U ;VL) + δ′(ε) (4.31)
= I(X;U |VL) + δ′(ε), (4.32)
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where (4.31) follows since VL → YL → X → U forms a Markov chain, and δ′(ε) = δ(ε1) + δ(ε).
Then, (4.30) can further be reduced to:

∑
i∈S

Ri >
∑
i∈S

[I(Yi;Vi) + δ(ε1)]−
|S|∑
j=2

I(VSj−1
1

;VSj)− I(VS ;VSc) + δ(ε)

= I(YS1 ;VS1) + I(YS2 ;VS2)− I(VS1 ;VS2) +

|S|∑
j=3

[
I(YSj ;VSj)− I(VSj−1

1
;VSj)

]
− I(VS ;VSc) + δ′(ε), (4.33)

where δ′(ε) = |S| · δ(ε1) + δ(ε). Consider

I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj)− I(VSj−1
1

;VSj)

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj)− I(VSj−1
1

;VSj) +H(YSj−1
1
|VSj−1

1
, YSj)

−H(YSj−1
1
|VSj−1

1
, YSj)

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj)− I(VSj−1
1

;VSj) +H(YSj−1
1
|VSj−1

1
, YSj)

−H(YSj−1
1
|VSj−1

1
, YSj , VSj) (4.34)

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj)− I(VSj−1
1

;VSj) + I(YSj−1
1

;VSj |VSj−1
1
, YSj)

= I(YSj−1
1
, YSj ;VSj−1

1
) + I(YSj , VSj−1

1
;VSj)− I(VSj−1

1
;VSj)

+ I(YSj−1
1

;VSj |VSj−1
1
, YSj) (4.35)

= I(YSj1
;VSj−1

1
) + I(YSj ;VSj |VSj−1

1
) + I(YSj−1

1
;VSj |VSj−1

1
, YSj)

= I(YSj1
;VSj−1

1
) + I(YSj−1

1
, YSj ;VSj |VSj−1

1
)

= I(YSj1
;VSj−1

1
) + I(YSj1

;VSj |VSj−1
1

)

= I(YSj1
;VSj−1

1
, VSj)

= I(YSj1
;VSj1

), (4.36)

where (4.34) follows the fact that VSj is a function of YSj , and (4.35) follows that VSj−1
1
→ YSj−1

1
→

YSj → VSj forms a Markov chain. By substituting (4.36) into (4.33) for j = 2, and then recursively
for j = 3, · · · , |S|, we have

∑
i∈S

Ri > I(YS2
1
;VS2

1
) +

|S|∑
j=3

[
I(YSj ;VSj)− I(VSj−1

1
;VSj)

]
− I(VS ;VSc) + δ′(ε)

= I(Y
S
|S|
1

;V
S
|S|
1

)− I(VS ;VSc) + δ′(ε)

= I(YS ;VS)− I(VS ;VSc) + δ′(ε)

= I(YS , VSc ;VS)− I(VS ;VSc) + δ′(ε) (4.37)
= I(YS ;VS |VSc) + δ′(ε), (4.38)

where (4.37) follows the fact that VSc → YSc → YS → VS forms a Markov chain.
Notice that (Un(K0), V n

1 (K1), · · · , V n
L (KL), Xn, Y n

1 , · · · , Y n
L ) ∈ T (n)

ε , when there is no
“error”. Therefore, by the law of total expectation and the typical average lemma [81], the
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4.2 Rate-Distortion Analysis

asymptotic distortion, averaged over the random codebook and encoding, is upper bounded as

lim
n→∞

sup E(d(Xn, X̂n)) ≤ lim
n→∞

sup
[
dmax · Pr(E) + (1 + ε) · E(d(X, X̂)) · Pr(Ec)

]
≤ D, (4.39)

if the inequalities in (4.32) and (4.38) are satisfied. Finally, from the continuity of mutual
information and taking ε→ 0, we complete the proof of Proposition 4.1.

4.2.2 Inner Bound for Binary Sources

Here, we analyze the achievable rate-distortion region for binary sources. Consider a DSBS(ρi)
(X, Yi) with X ∼ Bern(0.5) and Yi ∼ Bern(0.5) for i ∈ L, where ρi = Pr{x 6= yi}, ρi ∈ [0, 1

2
].

The distortion measure is set as the Hamming distortion measure for binary sources.
Now, we calculate the constraints of the achievable rate-distortion region for DSBS. First,

consider

R0(D) > I(X;U |VL)

= H(U |VL)−H(U |VL, X)

= H(U |VL)−H(U |X) (4.40)
= H(U, VL)−H(VL)−Hb(D), (4.41)

where (4.40) follows since VL → X → U forms a Markov chain.

YiX

ρi Hb
-1
(1-[Ri]

-
)

Vi

D

U

Fig. 4.3. The test channels for binary sources.

Since Vi → Yi → X → Yj → Vj forms a Markov chain for i 6= j, i.e., Yi are independent to
each other ifX is given, we can obtain the test channel shown in Fig. 4.3. Then, by Definition 1.3,
we can calculate (4.41) as

R0(D) > fb({D,αL})− fb({αL})−Hb(D), (4.42)

where αi = ρi ∗H−1
b (1− [Ri]

−). Notice that D = 0.5 if R0 = 0 according to (4.42). However, it
is obvious that by decoding only with the compressed side information VL, X̂ still can achieve the
distortion

D′ = H−1
b [H(X|VL)]

= H−1
b [H(X, VL)−H(VL)]

= H−1
b [fb({0, αL})− fb({αL})], (4.43)

where (4.43) holds since X can be regarded as the output of a BSC with itself as input and the
crossover probability ρ0 = 0. Therefore, the optimal performance can be achieved by time-sharing
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CHAPTER 4. Lossy Source Coding with Multiple Helpers

between rate-distortion coding and zero-rate decoding only with the compressed side information.
Consequently, we can obtain the rate-distortion function for DSBS, as

R0(D) =


ω(D), for 0 ≤ D ≤ Dc,

(D −D′) · ω′(Dc), for Dc < D ≤ D′,

0, for D′ < D,

(4.44)

where ω(D) = fb({D,αL}) − fb({αL}) − Hb(D) with ω′(D) being the derivative of ω(D), and
Dc is the solution to the equation ω(Dc) = (Dc −D′) · ω′(Dc).

Finally, we extend the above results of lossy source coding with helpers into joint source-
channel coding based on Shannon’s lossy source-channel separation theorem. Assuming that the
channels are orthogonal, the link rates are constrained by:

R0(D) ≤ Θ0(γ0) =
C(γ0)

r0

, (4.45)

Ri ≤ Θi(γi) =
C(γi)

ri
, for i ∈ L. (4.46)

By combining (4.44) with (4.45) and (4.46), we have

Θ0(γ0) ≥


ω(D), for 0 ≤ D ≤ Dc,

(D −D′) · ω′(Dc), for Dc < D ≤ D′,

0, for D′ < D,

(4.47)

with αi = ρi ∗H−1
b (1− [Θi(γi)]

−) for calculating ω(D) and D′.
Remark: If a distortion requirement is given, we can evaluate whether the SNR of all links can

satisfy the distortion requirement by (4.47). Conversely, if the SNR values of all links are given,
we can utilize (4.47) to calculate the final distortion.

4.2.3 Numerical Results
The relationship between the link rates and the final distortion is illustrated in Fig. 4.4, where we
set all Ri at the same value, i.e., homogeneous helper links, so that the achievable rate-distortion
region is able to be plotted within three dimensions. From the whole view, we can see that the
distortion of X drops from 0.5 as R0 and Ri gradually increase from 0. Moreover, the distortion
decreases faster for larger L and smaller ρi in Fig. 4.4(a) and Fig. 4.4(b), respectively. It is also
remarkable that all surfaces of the rate-distortion function intersect at one same curve in the R0-D
coordinate plane, i.e., Ri = 0. Obviously, the system model is equivalent to independent lossy
source coding if Ri = 0, and hence R0(D) reduces to the classical rate-distortion function, which
is not affected by the number of helpers and the correlations between sources. Another important
phenomenon is that the distortion cannot be entirely eliminated to zero in the Ri-D coordinate
plane. Therefore, the estimate X̂ must be a lossy version of X when there is no information of X
directly available for ρi > 0.

For given Ri, we can obtain the curves shown in Fig. 4.5 by projecting the surfaces of the rate-
distortion function onto the R0-D coordinate plane. Interestingly, the curves of the inner bound
based on Proposition 4.1 perfectly coincide with the curves of the Wyner-Ziv theorem for arbitrary
ρi if there is only one helper without rate constraint. This phenomenon results from the fact that
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(a) ρi = 0.3. (b) L = 3.

Fig. 4.4. The inner bound on the achievable rate-distortion region for homogeneous helper links.
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Fig. 4.5. The inner bound on the rate-distortion function for given Ri = 1.

the theoretical model of the lossy source coding with helpers reduces to the Wyner-Ziv problem
when L = 1 and Ri = 1. In addition, Fig. 4.5(a) demonstrates that the distortion can be reduced
by introducing extra helpers; however, the gap between L and (L + 1) becomes narrower along
with the increment of helpers. Consequently, it is harder to obtain more gains when the number
of helpers is already large enough. In Fig. 4.5(b), we can clearly observe that the curve shift to
the left for small ρi, i.e., the distortion is smaller for more correlated sources. Meanwhile, the gap
between L and (L+1) is wider for the sources with high correlations, and hence it is more efficient
to introduce extra helpers for more correlated sources.
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4.3 Performance Evaluation
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Fig. 4.6. A practical instance of lossy communications with helpers.

In this section, we start to evaluate the practical system performance for lossy communications
with helpers as depicted in Fig. 4.6. There is one target sequence Xn and L helper sequences Y n

i

corrupted by Zn
i with Zi ∼ Bern(ρi). To begin with, encoder 0 and encoder i encode their own

sequence, respectively, and send the codeword through AWGN channels after modulation. The
objective of this simulation is to compare the practical performance with the theoretical bound.
Therefore, in order to make the final distortion as small as possible, the joint decoder starts to
decode and produce estimate X̂n after receiving and demodulating the signals in all the links. If the
aim of a system is to satisfy a specified distortion requirement, the joint decoder may decrease the
latency and complexity by decoding with fewer helper sequences. In other words, after receiving
signals from some links, the joint decoder can first evaluate the SNR of received signals and the
crossover probabilities between X and Yi by the error probability estimation algorithm proposed
in [55]. Then, it calculates the final distortion with already received signals by (4.47). If the
expected final distortion is not larger than the given distortion requirement, the joint decoder starts
decoding process; otherwise, it continues receiving the signals from the remaining links until the
expected final distortion is small enough.

CC ∏0 ACC
X
n

(a) The encoder of the target source.

CC ∏i,2 ACC∏i,1
Yi
n

(b) The encoder of i-th helper.

Fig. 4.7. The structure of encoders.

Since the distributed compress-bin scheme utilized in the theoretical proof requires extremely
huge memory to store the codebook, we design a practical coding scheme for simulation as shown
in Fig. 4.7. An additional interleaver Πi,1 is used to disperse noises into different bits before CC
in the helper link.

As depicted in Fig. 4.8, ACC−1 decodes the inner code, and then CC−1 decodes the outer
code after deinterleaving in Π−1. Next, the extrinsic information is interleaved and subsequently
exchanged to ACC−1 as the a priori information in local iteration. In the global iteration, LLRp

output from CC−1 is updated via an extrinsic information exchanger, which inputs LLRe and
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Fig. 4.8. The structure of the joint decoder.

outputs LLRa. The extrinsic information exchanger calculates LLRe by the LLR updating function
fc(·) for correlated sources [80].

Table 4.1. BASIC SETTINGS OF SIMULATION PARAMETERS

Parameter Value Parameter Value
Number of blocks 1000 Block length 10000 bits

Generator polynomial of CC ([3, 2]3)8 Type of interleaver random interleaver

Modulation method BPSK Maximum iteration time 30
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(a) ρi = 0.01.
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(b) ρi = 0.1.

Fig. 4.9. Simulation results, where SNR is set at the same value for all links.

With the basic parameter settings listed in Table 4.1, the simulation results in Fig. 4.9 show
the similar tendency as the curves of the theoretical bound. Clearly, the SNR threshold becomes
lower as the number of helpers increases; however, the turbo cliff shifts to the left less rapidly
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CHAPTER 4. Lossy Source Coding with Multiple Helpers

for the system with more helper. By the comparison between Fig. 4.9(a) and Fig. 4.9(b), we
can find that the more independent the sources are, the higher SNR threshold is required. The
performance gap between the theoretical and simulation results is due to the following two factors,
i.e., the suboptimal channel coding scheme and incomplete utilization of joint typicality in the
simulation. First, notice that there is an obvious gap between the theoretical and simulation results
even for the case without any helper, because it is hard to achieve the Shannon limit by the relatively
simple channel coding scheme used in the simulation. Besides the loss of performance due to
channel coding, another key factor for the gap between the theoretical and simulation results is the
incomplete utilization of joint typicality in the simulation. For instance, as shown in Fig. 4.9(b),
there is a 2.6 dB gain for the theoretical results between no helper and one helper; however, only
2 dB gain can be achieved in the simulation for the same condition. This observation implies that
the joint typicality is not completely utilized for joint decoding in the simulation as the distributed
compress-bin scheme used in the theoretical analysis.

4.4 Summary

We have analyzed the performance of lossy communications with helpers. Initially, we start from
the theoretical analysis of lossy source coding with helpers. After deriving an inner bound on
the achievable rate-distortion region, we further calculate the rate-distortion function for binary
sources. Subsequently, the results of lossy source coding with a helper is extended to joint source-
channel coding based on Shannon’s lossy source-channel separation theorem. The theoretical
results perfectly match the Wyner-Ziv theorem, if there is only one helper and no rate limit on
it. Finally, we present a distributed encoding and joint decoding scheme to evaluate the practical
performance for an instance of lossy communications with helpers via a series of simulations. The
comparison between the theoretical and simulation results inspires us that the system performance
can be further improved, if there is a better coding scheme which can more efficiently utilizes
the joint typicality of the coded sequences. Moreover, both the theoretical and simulation results
indicate that the additional helper provides even smaller gains as the number of helpers becomes
large.
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CHAPTER 5
Lossy LF Relaying

From Chapter 2 to Chapter 4, we have established the theoretical framework for the performance
analysis of helper-assisted lossy multiterminal source coding. This chapter applies the theoretical
framework to a practical communication system, i.e., lossy communications with LF relaying,
for the analyses of rate-distortion and outage probability. In traditional relaying systems, the
destination requires high fidelity of the recovered information. However, when the channel
condition is not good enough, the destination is probably not able to losslessly reconstruct the
source sequence. Actually, lossy reconstructions within a distortion level are also acceptable as
exemplified in IoT systems. With a specified acceptable distortion requirement, we can reduce the
power consumption or transmission bandwidth by lossy compression than lossless communication.
Thus, the trade-off between the link rates and the expected distortion degree is a very interesting
topic in the big data era, especially for numerous electronic devices, of which power is supplied
by small battery.

5.1 Problem Statement

R2

R1

R0

(X
n
, D  )

!
^

Source

Relay

First slot

Second slot

Destination

X
n

Y
n

Fig. 5.1. The system model of lossy LF relaying.

The system model of lossy LF relaying is depicted in Fig. 5.11. To make equations more
concise, we denote variables for the S-R, S-D and R-D links with subscripts 0, 1 and 2, respectively.
Due to the condition of wireless channels in practical systems, the S-R, S-D and R-D links have to
satisfy the rates R0, R1 and R2, respectively. From the aspect of whole system, the reconstruction
of the source sequence will contain distortion, if the rate triplet (R0, R1, R2), supported by the
channel conditions in the S-R, S-D, and R-D links, respectively, does not satisfy the achievable
rate region of lossless communications.

Notice that it is difficult to directly derive the explicit expression of the distortions resulting
from the rate constraints on wireless channels. Shannon provided a way to equivalently determine
the distortion corresponding to the channel capacity, i.e., compressing the data sequence by lossy

1It is noticed that the S-D link serves as a parallel alternative link at the second time slot. The system reliability
can be further enhanced, if both the source and the relay transmit information by multiple access at the second time
slot. However, for simplicity, this dissertation does not consider the case that the source transmits information twice,
and it is left as the future work.
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source coding to satisfy the channel capacity which is achievable by lossless channel coding2.
Since the source coding and channel coding are separately performed, this idea is referred to as
Shannon’s lossy source-channel separation theorem.

Encoder 1 
X

n M1

Joint 

decoder
Encoder 2 

R1

M2

R2

Y
n

(X
n
, D  )

!
^ First slot

Second slot

Fig. 5.2. The multiterminal source coding problem composed of the S-D and R-D links.

Likewise, to analyze the performance of lossy LF relaying, we can start from the fundamentals
of multiterminal source coding. Since the relay receives data only from the source, the analysis
of the S-R link can be easily handled by Shannon’s lossy source-channel separation theorem for
point-to-point communication. Regarding the remaining S-D and R-D links, we can first consider
a multiterminal source coding problem illustrated in Fig. 5.2, where the encoder of X and the
encoder of Y have to compress the sequences Xn and Y n into codewords M1 and M2 at the rates
R1 and R2, respectively.

By taking values from a finite alphabet X for each time index t, a common DMS X generates
i.i.d. sequence xn = {x(t)}nt=1. The encoder of X encodes the sequence xn by mapping it into an
index as:

ϕ1 : X n 7→ M1 = {1, 2, · · · , 2nR1}. (5.1)

Since the relay sequence yn = {y(t)}nt=1 is an error-corrupted version of xn, yn is also an i.i.d.
sequence with each bits belonging to a finite alphabet Y . Similar to the encoder of X , the encoder
of Y encodes the sequence yn by assigning an index according to the mapping rule:

ϕ2 : Yn 7→ M2 = {1, 2, · · · , 2nR2}. (5.2)

The joint decoder in the destination node starts decoding after receiving the encoder outputs
ϕ1(xn) and ϕ2(yn). Unlike the distributed compression in encoders, the joint decoder constructs
the estimate x̂n from the index ϕ1(xn) with the assistance of the compressed side information
ϕ2(yn). The recovering progress is implemented by the following mapping as:

ψ :M1 ×M2 7→ X n. (5.3)

Due to the possible deviation of x from x̂, the distortion measure dX : X × X 7→ [0, dX,max]
is defined to describe the distortion level between x and its estimate x̂. With a desired distortion
value DX , the rate regionR(DX), consisting of all achievable rate pairs (R1, R2), is defined as

R(DX) = {(R1, R2) : (R1, R2) is admissible such that
lim
n→∞

E[dX(xn, x̂n)] ≤ DX + ε, for any ε > 0}. (5.4)

2By utilizing the duality between source coding and channel coding, the information loss due to channel conditions
can be equivalently analyzed by lossy source coding, followed by lossless transmission through wireless channels.
Eventually, compression is not performed by the encoder, but fading variation may reduce the rate supported by the
channel. However, in theoretical distortion analysis, we can formulate the problem in this way for simplicity and
without loss of generality.
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For the point-to-point communication in the S-R link, the distortion between X and Y depends
on R0. For the cooperative communications in the S-D and R-D links, the distortion DX depends
on R1, R2 and the correlations between X and Y . Therefore, the final distortion DX is eventually
determined by R0, R1 and R2. After determining the achievable rate-distortion regionR(DX) and
the correlations between X and Y , we can obtain the relationship between the final distortion DX

and channel capacities of all three links by utilizing Shannon’s lossy source-channel separation
theorem.

Given a set of channel capacities for three links, we can calculate the expected minimum
distortion based on the derived achievable rate-distortion region. If the expected distortion is
larger than a specified distortion requirement, the communications are not reliable and outage
event occurs. The channel capacities are random variables in fading channels, and hence the outage
event randomly occurs with a probability, which is referred to as the outage probability. With a
specified channel model, we can obtain the distributions of channel capacities and further calculate
the outage probability, i.e., the probability that the instantaneous channel capacities cannot satisfy
the distortion requirement.

In this chapter, the S-R, S-D and R-D links are assumed to suffer from independent block
Rayleigh fading, with the channel gains as h0, h1 and h2, respectively. Therefore, we can obtain
the pdf of instantaneous SNR γi as

f(γi) =
1

γi
exp(−γi

γi
), for i ∈ {0, 1, 2}. (5.5)

For the purpose of simplicity, we assume that the CSI is only available at the receiver sides, and
the effect of shadowing is not taken into account.

In the literature, Ahlswede and Korner [24] determined the achievable rate region of the lossless
source coding with a helper. Zhou et al. [43] presented both the exact and approximate calculations
of outage probability for lossless LF relaying system over independent block Rayleigh fading
channels. The major results in this chapter are the inner bound on the achievable rate-distortion
region and the upper bound of the outage probability for lossy LF relaying.

5.2 Rate-Distortion Analysis

To begin with, we determine an inner bound on the achievable rate-distortion region for lossy
source coding with a helper as provided in the following proposition.

Proposition 5.1: Let (X, Y ) be a 2-component DMS and dX(x, x̂) be a distortion measure. A
rate pair (R1, R2) is achievable with distortion requirement DX for lossy source coding of X with
a helper Y if

R1 > I(X;U |V ), (5.6)
R2 > I(Y ;V ), (5.7)

for some conditional pmf p(u|x)p(v|y) and function x̂(u, v) such that E[dX(X, X̂)] ≤ DX , with
U → X → Y → V forming a Markov chain.

The achievability for Proposition 5.1 can be easily proved by applying Proposition 4.1 with
L = 1.

In order to draw a precise shape of the inner bound on the achievable rate-distortion region,
we need a specified distribution of source. Since digital signals are quite often assumed in LF,
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we start to use binary source as an instance in the following. Consider a binary source X ∼
Bern(0.5), it is easy to find that Y , U and V also follow the Bern(0.5) distribution separately.
For the purpose of deriving the relationship between R0 and the distortion occurring in the S-R
link, we can equivalently calculate the correlations between X and Y based on Shannon’s lossy
source-channel separation theorem. To satisfy the channel capacity by lossy source coding, we
have

R0 > I(X;Y )

= H(X)−H(X|Y )

= 1−Hb(ρ), (5.8)

where ρ represents the crossover probability between X and Y . Likewise, for the R-D link with
the crossover probability ρ′ between Y and V , we have

R2 > I(Y ;V )

= 1−Hb(ρ
′). (5.9)

From (5.6), for the S-D link, we have

R1 > I(X;U |V )

= H(U |V )−H(U |X, V )

= H(U |V )−H(U |X) (5.10)
= Hb(ρ

′ ∗ ρ ∗DX)−Hb(DX), (5.11)

where (5.10) and (5.11) follows since V → Y → X → U forms a Markov chain with the crossover
probabilities ρ′, ρ and DX , respectively.

Consequently, we can obtain the inner bound on the achievable rate-distortion region with
given distortion requirement as

R0 > 1−Hb(ρ),

R1 > Hb(ρ
′ ∗ ρ ∗DX)−Hb(DX),

R2 > 1−Hb(ρ
′).

(5.12)

If the desired distortion is given, we can illustrate the inner bound on the achievable rate-
distortion region as in Fig. 5.3. It is remarkable that arbitrary R0 and R2 are admissible if R1 is not
less than 1−Hb(DX). Obviously, the compressed side information provided by the relay becomes
redundant when R1 is large enough for independent decoding. Hence, the distortion DX can be
easily satisfied by independent decoding for R1 ≥ 1 − Hb(DX) according to the lossy source
coding theorem for point-to-point communication. Fig. 5.3(a) and Fig. 5.3(b) also demonstrate
that the achievable rate-distortion region extends when the desired distortion becomes relatively
large. Moreover, the part of surface is not flat for R0, R1 and R2 all being less than 1. Because R0

or R2 needs more increment to compensate the decrease of R1, due to the distortion propagating
from the S-R link to the R-D link. Another interesting observation is that the achievable rate-
distortion region is symmetric with respect to the plane of R0 = R2. Therefore, the S-R and R-D
links have the same importance for system design, such as in determining power allocation and/or
relay location.
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(a) DX = 0.05, 1−Hb(DX) ≈ 0.7136.
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(b) DX = 0.15, 1−Hb(DX) ≈ 0.3902.

Fig. 5.3. The inner bound on the achievable rate-distortion region for specified DX .

5.3 Outage Probability Analysis

In this section, we derive the upper bound of the outage probability for the lossy LF relaying, based
on the inner bound of the achievable rate-distortion region derived in (5.12).

5.3.1 Outage Event of Lossy LF Relaying

I(X;U) R1

H(Y)

I(X;U|Y)

Achievable
Region

 H(X|Y)

H(X)

R2

A

B

Fig. 5.4. The achievable rate-distortion region for X and Y , where the blue solid line and the red
dashed line stand for lossy and lossless cases, respectively.

Here, we focus on the transmissions of the S-D and R-D links, which directly determine the
occurrence of outage event, i.e., the destination cannot guarantee the reconstruction of X with the
distortion smaller than DX . For the influence of the S-R link, we treat the crossover probability ρ

55



CHAPTER 5. Lossy LF Relaying

between X and Y as a parameter determined by R0. By this means, we can obtain achievable rate-
distortion region for given R0 as illustrated in Fig. 5.4, where the rate pair (R1, R2) is achievable
if (5.6) and (5.7) are satisfied. To facilitate the outage calculation provided later in this chapter, the
unachievable rate region is divided to two sub-regions, A and B, as indicated by{

A , {0 ≤ R1 ≤ I(X;U |Y ), 0 ≤ R2} ,
B , {I(X;U |Y ) ≤ R1 ≤ I(X;U |V ), 0 ≤ R2 ≤ H(Y )} .

(5.13)

To conveniently calculate I(X;U |Y ), we can utilize the result in (5.11) by letting V = Y and
ρ′ = 0. Consequently, we have{

A , {0 ≤ R1 ≤ Hb(ρ ∗DX)−Hb(DX), 0 ≤ R2} ,
B , {Hb(ρ ∗DX)−Hb(DX) ≤ R1 ≤ Hb(ρ

′ ∗ ρ ∗DX)−Hb(DX), 0 ≤ R2 ≤ 1} .
(5.14)

Intuitively, the rate constraint in (5.11) indicates that:

• For H(Y ) ≤ R2, Y can successfully decoded with Y = V , i.e., ρ′ = 0. The transmission
with distortion DX can be supported as long as R1 > Hb(0 ∗ ρ ∗DX)−Hb(DX) = Hb(ρ ∗
DX)−Hb(DX), which reduces to the Wyner-Ziv theorem.
• Even with 0 < R2 < H(Y ), Y can be partially recovered at the destination as V . V

containing errors serves as the compressed side information for recovering X as long as
R1 > Hb(ρ

′ ∗ ρ ∗DX)−Hb(DX).
• In the case R2 = 0 (ρ′ = 0.5), i.e., the R-D link is broken down, the conditions in (5.11)

become to R1 > Hb(0.5 ∗ ρ ∗DX)−Hb(DX) = 1−Hb(DX), which reduces to the classical
rate-distortion function.

Based on the discussion above, (5.11) can be rewritten explicitly as

R1 >


Hb(ρ ∗DX)−Hb(DX), for H(Y ) ≤ R2,

Hb(ρ
′ ∗ ρ ∗DX)−Hb(DX), for 0 < R2 < H(Y ),

1−Hb(DX), for R2 = 0.

(5.15)

With the help of the compressed side information V , the outage event occurs when the rate
pair (R1, R2) falls inside the unachievable regions, i.e., region A and B in Fig. 5.4. The outage
probability Pout can be defined by taking average over all the transmissions, which results in

Pout =Pr {(R1, R2) ∈ A ∪ B}
=Pr {ρ = 0, (R1, R2) ∈ A ∪ B}+ Pr {ρ ∈ (0, 0.5], (R1, R2) ∈ A ∪ B}
=Pr {ρ = 0, (R1, R2) ∈ A}+ Pr {ρ = 0, (R1, R2) ∈ B}

+ Pr {ρ ∈ (0, 0.5], (R1, R2) ∈ A}+ Pr {ρ ∈ (0, 0.5], (R1, R2) ∈ B}
=Pr {ρ = 0, 0 ≤ R1 ≤ Hb(ρ ∗DX)−Hb(DX), 0 ≤ R2}

+ Pr {ρ = 0, Hb(ρ ∗DX)−Hb(DX) ≤ R1 ≤ Hb(ρ
′ ∗ ρ ∗DX)−Hb(DX), 0 ≤ R2 ≤ 1}

+ Pr {0 < ρ ≤ 0.5, 0 ≤ R1 ≤ Hb(ρ ∗DX)−Hb(DX), 0 ≤ R2}
+ Pr {0 < ρ ≤ 0.5, Hb(ρ ∗DX)−Hb(DX) ≤ R1 ≤ Hb(ρ

′ ∗ ρ ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1}
=Pr {ρ = 0, 0 ≤ R1 ≤ 0, 0 ≤ R2}

56



5.3 Outage Probability Analysis

+ Pr {ρ = 0, 0 ≤ R1 ≤ Hb(ρ
′ ∗DX)−Hb(DX), 0 ≤ R2 ≤ 1}

+ Pr {0 < ρ ≤ 0.5, 0 ≤ R1 ≤ Hb(ρ ∗DX)−Hb(DX), 0 ≤ R2}
+ Pr {0 < ρ ≤ 0.5, Hb(ρ ∗DX)−Hb(DX) ≤ R1 ≤ Hb(ρ

′ ∗ ρ ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1}
=P1,A + P1,B + P2,A + P2,B, (5.16)

where P1,A, P1,B, P2,A and P2,B are defined for conciseness. The first subscript 1 and 2 represent
the events ρ = 0 and ρ ∈ (0, 0.5], while the second subscript A and B represent that the rate pair
(R1, R2) falls inside the region A and B, respectively.

5.3.2 Outage Derivation
For calculating the outage probability, first we establish the relationship between γi and Ri for
i ∈ {0, 1, 2}. Since orthogonal transmissions are assumed in the system, from the Shannon’s lossy
source-channel separation theorem, the relationship between the instantaneous channel SNR γi
and its corresponding rate constraint Ri are given by

Ri = Θi(γi) =



C(γ0)

rX
=

En

2rX
log2

(
1 +

2γ0

En

)
, i = 0,

C(γ1)

rX
=

En

2rX
log2

(
1 +

2γ1

En

)
, i = 1,

C(γ2)

rY
=

En

2rY
log2

(
1 +

2γ2

En

)
, i = 2,

(5.17)

where rX and rY represent the channel coding rates for Xn and Y n, respectively; En is the
signaling dimensionality. By combining the results with (5.8), the crossover probability ρ between
X and Y can be expressed with the function of γ0 as

ρ = H−1
b [1−Θ0(γ0)] . (5.18)

With the assumption that each link suffers from statistically independent block Rayleigh fading,
each term of the outage probability expression in (5.16) can be further expressed as

P1,A =Pr {ρ = 0, 0 ≤ R1 ≤ 0, 0 ≤ R2}
=Pr

{
Θ−1

0 (1) ≤ γ0,Θ
−1
1 (0) ≤ γ1 ≤ Θ−1

1 (0),Θ−1
2 (0) ≤ γ2

}
=

∫ ∞
Θ−1

2 (0)

dγ2

∫ Θ−1
1 (0)

Θ−1
1 (0)

dγ1

∫ ∞
Θ−1

0 (1)

f(γ0)f(γ1)f(γ2)dγ0,

=0, (5.19)

P1,B =Pr {ρ = 0, 0 ≤ R1 ≤ Hb(ρ
′ ∗DX)−Hb(DX), 0 ≤ R2 ≤ 1}

=Pr
{

Θ−1
0 (1) ≤ γ0,Θ

−1
1 (0) ≤ γ1 ≤ Θ−1

1 [Hb(ξ(γ2, DX))−Hb(DX)],

Θ−1
2 (0) ≤ γ2 ≤ Θ−1

2 (1)
}

=

∫ Θ−1
2 (1)

Θ−1
2 (0)

dγ2

∫ Θ−1
1 [Hb(ξ(γ2,DX))−Hb(DX)]

Θ−1
1 (0)

dγ1

∫ ∞
Θ−1

0 (1)

f(γ0)f(γ1)f(γ2)dγ0
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=
1

γ2

exp

(
−Θ−1

0 (1)

γ0

)
·
∫ Θ−1

2 (1)

Θ−1
2 (0)

exp

(
−γ2

γ2

)
·
[
1− exp

(
−Θ−1

1 {Hb[ξ(γ2, DX)]−Hb(DX)}
γ1

)]
dγ2, (5.20)

P2,A =Pr {0 < ρ ≤ 0.5, 0 ≤ R1 ≤ Hb(ρ ∗DX)−Hb(DX), 0 ≤ R2}
=Pr

{
Θ−1

0 (0) ≤ γ0 < Θ−1
0 (1),Θ−1

1 (0) ≤ γ1 ≤ Θ−1
1 {Hb [ξ(γ0, DX)]−Hb(DX)},

Θ−1
2 (0) ≤ γ2

}
=

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
1 {Hb[ξ(γ0,DX)]−Hb(DX)}

Θ−1
1 (0)

dγ1

∫ ∞
Θ−1

2 (0)

f(γ2)f(γ1)f(γ0)dγ2

=
1

γ0

exp

(
−Θ−1

2 (0)

γ2

)
·
∫ Θ−1

0 (1)

Θ−1
0 (0)

exp

(
−γ0

γ0

)
·
[
1− exp

(
−Θ−1

1 {Hb [ξ(γ0, DX)]−Hb(DX)}
γ1

)]
dγ0, (5.21)

and

P2,B =Pr {0 < ρ ≤ 0.5, Hb(ρ ∗DX)−Hb(DX) ≤ R1 ≤ Hb(ρ
′ ∗ ρ ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1}
=Pr

{
Θ−1

0 (0) ≤ γ0 < Θ−1
0 (1),

Θ−1
1 {Hb [ξ(γ0, DX)]−Hb(DX)} ≤ γ1 ≤ Θ−1

1 {Hb [ζ(γ2, γ0) ∗DX ]−Hb(DX)},
Θ−1

2 (0) ≤ γ2 ≤ Θ−1
2 (1)

}
=

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
2 (1)

Θ−1
2 (0)

dγ2

∫ Θ−1
1 {Hb[ζ(γ2,γ0)∗DX ]−Hb(DX)}

Θ−1
1 {Hb[ξ(γ0,DX)]−Hb(DX)}

f(γ1)f(γ2)f(γ0)dγ1

=
1

γ0γ2

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
2 (1)

Θ−1
2 (0)

exp

(
−γ0

γ0

− γ2

γ2

)
·
[
exp

(
−Θ−1

1 {Hb [ξ(γ0, DX)]−Hb(DX)}
γ1

)
− exp

(
−Θ−1

1 {Hb [ζ(γ2, γ0) ∗DX ]−Hb(DX)}
γ1

)]
dγ2, (5.22)

where ξ(γi, ρ̃) = H−1
b [1−Θi(γi)] ∗ ρ̃ and ζ(γi, γj) = H−1

b [1−Θi(γi)] ∗H−1
b [1−Θj(γj)]. Since

there is not an explicit expression for the inverse of binary entropy function, it is hard to further
calculate the integral and obtain a precise closed form. Instead, we utilize computer to calculate
the numerical results for analyzing the outage probability.

5.3.3 Numerical Results
The upper bound of the outage probabilities for specified distortion requirement DX is presented
in Fig. 5.5, where average SNR is set at the same value for all three links. Clearly, the lossy LF
relaying achieves lower outage probability with larger accepted distortionDX . It should be noticed
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Fig. 5.5. The upper bound of the outage probability with different distortion level.

that the outage probability equals to zero whenDX = 0.5. This is because thatDX = 0.5 indicates
any distortion can be accepted at the destination, and therefore, there will be no more outage in
this case.
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Fig. 5.6. The upper bound of the outage probability for different relay locations.

The outage curves of the lossy LF relaying are shown in Fig. 5.6 for two different relay location
scenarios. With wi for i ∈ {0, 1, 2} denoting the distance of its corresponding link, we can
empirically calculate Gi = (w1/wi)

3.52 by normalizing G1 to the unity [82], where the exponent
3.52 represents the path loss factor which corresponds to the density of the obstacles of the area.
We set w0 = w1 = w2 in location scenario 1 (Loc 1), while w0 = 0.25w1 and w2 = 0.75w1 in
location scenario 2 (Loc 2). In either the Loc 1 or Loc 2, lower outage probability can be achieved
by allowing distortion at the destination. Moreover, since the distances of the S-R and R-D links
in Loc 2 are both smaller than that in Loc 1, outage events occur with lower probability in Loc 2
than in Loc 1.
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Fig. 5.7. The optimal relay positions of the lossy LF relaying, where γ1 = 5 dB.

Fig. 5.7 shows the impact of the relay location on the outage probability, with γ1 = 5 dB. The
relay is located on the line between the source and the destination. It is found that the lowest outage
probability can be achieved when the relay is located at the midpoint regardless the distortion level.
It is also observed that the outage curves are symmetric with respect to the midpoint of the S-D
link. This is because in the lossy LF relaying, the errors due to the S-R link can be corrected at the
destination, and therefore, the midpoint (w0 = w2) is the optimal point where the contributions of
the S-R and R-D links are balanced. This phenomenon indicates that the S-R and R-D links are of
the same significance for system design, which perfectly matches with the finding in Fig. 5.3.
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Fig. 5.8. The upper bound of the outage probability versus distortion level where γ1 = 5 (dB).

Fig. 5.8 shows the upper bound of the outage probability versus the distortion level DX , with
different relay location scenarios are considered. We set w0 = w1 = w2 in Loc 1, w0 = 0.25w1

and w2 = 0.75w1 in Loc 2, and w0 = w2 = 0.5w1 in Loc 3. It is observed that when the relay
at the same location, outage probability decreases as the distortion level increases. It can also be
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seen from the figure that, the outage performance in Loc 2 is superior than that obtained in Loc 1.
This is because the quality of the S-R link in Loc 2 is better than that in Loc 1, resulting in lower
probability of the S-R link transmission failure. From intuitive discussion for Fig. 5.7, we can
understand the fact that the lossy LF relaying shows the best outage performance in Loc 3, since
the relay is at the midpoint. Another interesting finding is that, the outage probability decreases
almost linearly with DX when the value of distortion is small (roughly less than 0.3); however,
the outage probability decreases significantly when DX is larger than 0.3. This observation can
explain the reason why the gap between the curve with DX = 0.4 and that with DX = 0.49
suddenly becomes large in Fig. 5.7.
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Fig. 5.9. The required mutual information between X and X̂ for given distortion requirement.

The approximately linear tendency of the outage probability for DX ≤ 0.3 eventually results
from the the required mutual information between X and X̂ . As illustrated in Fig. 5.9, I(X; X̂) is
almost linear in logarithmic scale as the distortion requirement DX changes from 0 to 0.3. Since
I(X; X̂) is supported by the channel capacities, the channel capacities required for satisfying
specified DX decrease faster when DX > 0.3. Moreover, the outage probability is also supported
by the channel capacities, and hence its decay becomes sharper due to the faster reduction of
required channel capacities for DX > 0.3.

5.4 Performance Evaluation

5.4.1 Simulation Design
Here, we start to evaluate the system performance for a practical wireless communications
network. As illustrated in Fig. 5.10, there are three nodes in the system containing source, relay
and destination. In the first slot, the source node encodes sequenceXn by encoder 1 and broadcasts
the modulated signal through Rayleigh channels. Then, the relay node decodes the received signal
by a decoder after demodulation and makes hard decision into Y n, while the destination node
just stores the received signal. In the second slot, the relay node encodes Y n by encoder 2 and
subsequently sends the modulated signal to the destination node. As soon as the destination node
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Fig. 5.10. The system model for simulation.

receives the signal from the relay node, it starts to jointly decodes the received signals and finally
outputs the estimate X̂n.

CC ∏ ACC
X
n

(a) Encoder 1.

CC ∏2 ACC∏1
Y
n

(b) Encoder 2.

Fig. 5.11. The structure of encoders.

The structure of encoders is shown in Fig. 5.11. For the sake of iteration gains between Xn

and Y n in joint decoding, Y n is interleaved by Π1 at the beginning of encoding.
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Fig. 5.12. The structure of joint decoder.

Fig. 5.12 depicts the structure of the joint decoder in the destination node. To begin with,
the demodulated signal in each link is separately decoded by ACC−1 and CC−1. In the local
iteration, the extrinsic information is exchanged between ACC−1 and CC−1 via an interleaver Π
and a deinterleaver Π−1. After CC−1 outputs LLRp at the end of local iteration, the joint decoder
calculates LLRe by subtracting LLRa from LLRp. When exchanging LLR between Xn and Y n,
the error probability of Y n is first estimated by the algorithm proposed in [55], and then the a
priori LLR is updated by the LLR updating function fc(·) [80] with the extrinsic LLR as input.
By this means, the relay information provides less extrinsic information if more errors exist in Y n,
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and hence Xn is insulated from the errors in Y n. Due to the interleaving process on Y n before CC,
LLRe

1 should be interleaved by Π1 and LLRe
2 should be deinterleaved by Π−1

1 when exchanging
the extrinsic information in the global iteration. Finally, the estimate X̂n is made by hard decision
from LLRp

1, if the maximum iteration time is exceeded or no more gains of the mutual information
on LLRp

1 can be obtained in iterations.

5.4.2 Simulation Results

Table 5.1. BASIC PARAMETER SETTINGS

Parameter Value Parameter Value
Frame length 104 bits Type of interleaver random interleaver

Number of frames 106 Generator polynomial of CC ([3, 2]3)8

Rate of CC 1/2 Decoding algorithm for CC BCJR algorithm [83]

Modulation method BPSK Maximum iteration time 30
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Fig. 5.13. Comparison between theoretical bound and simulation results.

The simulation result with parameter settings listed in Table 5.1 is shown in Fig. 5.13,
which compares the theoretical outage probability and frame error rate (FER) in simulation. For
simplicity, average SNR is set at the same value for the S-D, S-R and R-D links. In Fig. 5.13,
it is clear that the simulation result has the same tendency and similar slope as the theoretical
bound, even though there is an obvious gap between them. Moreover, the gap between the
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simulation and theoretical results becomes larger as DX increases. This phenomenon indicates
that the practical scheme used in simulation is more efficient when the distortion requirement is
more strict. There are two major factors which result in the loss of system performance. First,
notice that with relatively simple channel coding scheme, it is hard to achieve Shannon limit, and
hence there is also a gap between the FER in simulation and the theoretical outage probability of
the network, as a whole. Another significant factor is that, the practical coding scheme used in
simulation exchanges the extrinsic information in bit-wise; however, the distributed compress-bin
scheme in the achievability proof jointly decodes in sequence-wise, to completely exploit the joint
typicality. Therefore, the practical coding scheme cannot utilize the joint typicality as efficiently
as the distributed compress-bin scheme, resulting in the loss of system performance.
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Fig. 5.14. Comparison among different forwarding schemes.

Fig. 5.14 compares the practical performance for diverse relaying schemes, including AF, DF,
LF, and the case without relay3. Obviously, the curves with a relay have the same decay of the
performance curve independently of the relaying scheme, while the slope of the curve without a
relay is less steep compared to the curves with a relay. This observation demonstrates the diversity
gains achieved by introducing a relay, although there are some gaps between different relaying
schemes. It is found that AF has a worse performance than DF and LF for relatively small distortion
requirement, because DF and LF can eliminate the errors from the S-R link, while AF amplifies
the signals along with the noise. In addition, by encoding again at the relay, the data received
from the S-D and R-D links are equivalent to distributed turbo codes, and hence DF and LF have
coding gains while AF cannot. However, when the required distortion becomes very large, e.g.,
DX = 0.4, AF has a better performance than DF. The reason is that large DX requires even lower

3Although there are also many other forwarding schemes, such as ADF [84] and compress-and-forward (CF) [85],
we only compare LF with the most fundamental AF and DF schemes for simplicity. In the case of lossless transmission,
their performances are compared in [86]
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SNR, which makes more errors exist in the decoding result at the relay; therefore, the DF relay
discards the data sequences and stop forwarding more frequently. However, the system with an
LF relay still has a lower outage probability than that with an AF relay, due to the utilization of
correlations in the error-corrupted sequences.

5.5 Summary

We have analyzed the performance of lossy LF relaying, where distortion is allowed in the
destination with the assistance of an LF relay. To begin with, we divided the system into two
sub problems, i.e., lossy point-to-point communication for the S-R link, and the multiterminal
source coding problem for the S-D and R-D links. The sub problem for the S-R link can be easily
solved by Shannon’s lossy source coding theorem and lossy source-channel separation theorem.
Then, for the multiterminal source coding problem in the S-D and R-D links, we derive an inner
bound on the achievable rate-distortion region. We further determine the relationship between
final distortion and the rate constraints due to the channel condition, by applying Shannon’s
lossy source-channel separation theorem to the achievable rate-distortion region. Moreover, we
analyze the outage probability for specified distortion requirements over block Rayleigh fading
channels. Finally, we design a simulation system to evaluate the practical performance of FER.
Comparing to the theoretical outage probability, we find that the tendency of simulation result
matches with theoretical analysis. Especially for the case with strict distortion requirement, the
FER in simulation is very close to the theoretical outage probability.
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CHAPTER 6
Practical Coding Design for Lossy Compression

This chapter focus on coding design of lossy compression for practical use. Since the joint
typicality coding scheme utilized in the theoretical achievability proof requires extremely huge
memory for storing codebook, it is hard to be implemented in practical scenario. Instead,
puncturing is frequently used in the design of various source and/or channel coding scheme due
to its simplicity. Notice that puncturing can be also regarded as a lossy source coding scheme.
If there is a coding scheme that has a better performance than puncturing, we can improve the
performance by replacing puncturing with some better coding scheme.

6.1 Performance Analysis of Puncturing

Consider an n-bits binary sequence Xn with X ∼ Bern(0.5), if Xn is punctured with rate R, the
punctured n(1 − R) bits has 0.5 probability of error. Consequently, the expected distortion with
puncturing is given by

DP =
0.5 · n(1−R)

n
=

1−R
2

, (6.1)

which is obviously linear to the rate R. Intuitively, lossy source coding can only achieve linear
performance with linear algebra method, i.e., multiplying a generation matrix. Puncturing is
equivalent to multiplying a diagonal matrix with the diagonal elements for the punctured bit being
0 and other diagonal elements being 1, and hence its performance is linear.

However, according to Shannon’s lossy source coding theorem, the binary rate-distortion
function for Xn is

R = 1−Hb(D). (6.2)

In the achievability proof of Shannon’s lossy source coding theorem, 2n sequences xn are mapped
to 2nR sequences x̂n such that (xn, x̂n) is jointly typical. This joint typicality coding requires
extremely huge memory for storing codebook; however, the codebook with non-linear mapping
can achieve optimal performance as n → ∞. Therefore, a coding scheme containing non-
linear process is the key to make performance closer to the theoretical limit. Inspired by the
joint typicality coding scheme, we find a rate adaptive lossy source coding scheme, named HMV
code, which can achieve the performance shown in Fig. 6.1. The HMV code can make a trade-off
between efficiency and complexity.

6.2 Majority Voting Code

Consider a special case of joint typicality coding, i.e., R = 1
n

, and we have to map 2n sequences
to 2 sequence. It is not difficult to show that two sequences with all zeros and all ones are
optimal, because they have maximum Hamming distance n with each other. Since the distance
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Fig. 6.1. The performance of hybrid majority voting code.

between all zeros/ones and other sequences are smaller than n, the distortion is smaller compared
to using other codeword as the estimate of sequences. It is also obvious that in order to decrease
the distortion, a sequence should be mapped to all ones if the sequence contains more 1 than 0;
otherwise, the sequence should be mapped to all zeros. Then, we use only 1-bit codewords “0”
and “1” to represent two sequences, i.e., all zeros and all ones, respectively, we have successfully
compressed an n-bits sequence into 1-bit codeword. In summary, we compress an n-bits sequence
into the codeword “1” if the number of ones is more than n

2
; otherwise, we compress it into “0”.

By majority voting, we can simply perform the lossy compression described above, of which the
performance becomes closer to the theoretical bound as n goes large.
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Fig. 6.2. The performance of majority voting code with diverse sequence length.

Now, we analyze the expected distortion of the MV code. Without loss of generality, we
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assuming that we receive the 1-bit sequence “0”. For an integer l < n
2
, the number of sequence

with l bits errors is
(
n
l

)
. For l = n

2
with even n, only half of the sequences are mapped to all zeros,

and hence the number of sequence with l bits errors is 1
2

(
n
l

)
. Since there are 2(n−1) sequences

encoded to “0” and all sequences are generated with the same probability, the expected distortion
of the MV code is calculated as

DMV(n) =



1

2n−1

n−1
2∑
l=0

l

n

(
n

l

)
, for n is odd,

1

2n−1

n
2
−1∑
l=0

l

n

(
n

l

)
+

1

4

(
n
n
2

) , for n is even.

(6.3)

The performance of the MV code is depicted in Fig. 6.2, which demonstrates the expected
tendency that the distortion of MV code becomes close to the theoretical bound for sufficiently
long sequence.

Then, we start lossy compression with arbitrary R based on MV code. Notice that there are
nR bits in encoded sequence. The most simple way is compressing k = n(1 − R) + 1 bits into
1 bit and keeping the remaining nR − 1 bits the same as origin. By this single-compression with
MV code (SMV), we can satisfy the distortion

DSMV(n, k) =



1

2k−1

k−1
2∑
l=0

l

n

(
k

l

)
, for k is odd,

1

2k−1

 k
2
−1∑
l=0

l

n

(
k

l

)
+

k

4n

(
k
k
2

) , for k is even.

(6.4)
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Fig. 6.3. The performance of single-compression with MV code.

The performance of SMV is shown in Fig. 6.3 for various values of n. It is sensible that the
performance becomes even worse as n increases except the case with relatively small R. The
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reason for this observation is that the remaining nR − 1 bits have not been exploited in lossy
compression, and hence more bits are wasted when n becomes larger.

6.3 Hybrid Majority Voting Code

6.3.1 Encoding
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Fig. 6.4. The performance of grouped MV code and HMV code.

For the purpose of utilizing all remaining bits for lossy compression, a reasonable way is
to divide the sequence into nR groups and then compress group by group. Assuming that the
sequence can be divided into nR groups with equivalent size s = 1

R
, we can obtain the performance

curve illustrated in Fig. 6.4. It should be noticed that the distortion for R = 1
s

with even s is the
same as that for R = 1

s+1
, i.e., the distortion can be satisfied with lower rate. Therefore, the group

with odd size is better than that with even size.
Now, we extend this idea to general cases with R being arbitrary number from 0 to 1. By

mixing two MV codes with different odd sizes s and s + 2, the average rate between 1
s

and 1
s+2

can be satisfied. If we use i groups of the rate 1
s

MV code and j groups of the rate 1
s+2

MV code
as component codes, the average rate and the average distortion is a linear combination of the rate
and distortion of two component codes, respectively. Since each group of the MV code yields 1
bit compressed coding result, i + j = nR. From the total bits in the MV code groups, we have
i · s+ j · (s+ 2) = n. Consequently, we can obtain i = n[(s+ 2)R− 1]/2 and j = n(1− sR)/2.

The algorithm of the HMV code, consisting of two component MV codes, is summarized in
Algorithm 6.1, of which the gist is to first find appropriate values of s, i and j given sequence
length n and compression rate R. Then, encode group by group.

6.3.2 Decoding
There are two types of decoding algorithm, i.e., hard decoding and soft decoding. The hard
decoding algorithm for the HMV code is also very simple, i.e., repeating the coded bit s times for
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Algorithm 6.1. HYBRID MAJORITY VOTING CODE

Input: sequence Xn, R
Output: coded sequence Y nR

set smid = floor(1/R);
if smid is odd then

set s = smid;
else

set s = smid − 1;
end if
set i = n[(s+ 2)R− 1]/2 and j = n(1− sR)/2;
for t = 1 to i do

encode t-th group in Xn to Y (t) by the rate 1
s

MV code;
end for
for t = i+ 1 to i+ j do

encode t-th group in Xn to Y (t) by the rate 1
s+2

MV code;
end for

the first i-th group and (s+ 2) times for the last j-th group. Consequently, the expected distortion
of the HMV code can be expressed as

DHMV =
i · s ·DMV(s) + j · (s+ 2) ·DMV(s+ 2)

n
. (6.5)

The soft decoding yields LLR which is useful for exchanging the mutual information in
iterative decoding of codes having multiple constituency components [87]. We first transform
the received signal into LLR, and then take the expected distortion into account based on the
correlation model in [79]. With the a priori LLR of received signal being LLRa, the a posteriori
LLR of the coded bits can be calculated as

LLRp = log
(1− d) · exp(LLRa) + d

(1− d) + d · exp(LLRa)
, (6.6)

where d is set at DMV(s) and DMV(s + 2) for the group coded by the rate 1
s

and 1
s+2

MV codes,
respectively. After calculating the LLRp of coded (i + j)-bits, the LLRp

X of the sequence Xn is
reproduced by performing repetition of the corresponding bit in LLRp for s and (s + 2) times in
the groups of the rate 1

s
and 1

s+2
MV codes, respectively. In this way, the LLRp

X can be jointly
exploited in further iteration of decoding, depending on specified algorithm for exchanging mutual
information.

6.4 Implementation in Successive Refinement

Now, we start to implement the HMV code to successive refinement with DMS. The challenges
of practical coding design for successive refinement with DMS include the following two aspects.
First, for the standalone link, we have to find a lossy source coding scheme that minimizes the
average distance between the codeword and information sequences. Meanwhile, for the refinement
link, there should also be a complement coding scheme, which contains the information of lost part
caused by the lossy source coding in the standalone link. The simplest way for lossy source coding
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is puncturing, and the information of lost part is straightforwardly obtained in the form of the
punctured bits. Consequently, we can decompose the information sequence into two codewords by
puncturing for successive refinement. For convenience, this process that encoding a sequence
into two codewords for successive refinement with DMS is simply referred to as codeword
decomposition.

6.4.1 Problem of Codewords Overlapping
In the following, we focus on a DMS X ∼ Bern(0.5). According to the rate-distortion theorem
for successive refinement [81], the rates are achievable if

R1 ≥ I(X; X̂1), (6.7)

R1 +R2 ≥ I(X; X̂1, X̂2). (6.8)

Obviously, I(X; X̂2) can be equal to 1, i.e., X̂n
2 is a lossless recovery of Xn, if R1 + R2 ≥ 1.

For instance, the simplest method is to generate M1 by puncturing Xn at rate R1, and keep the
punctured bits as M2. Notice that the standalone link is equivalent to utilizing lossy source coding,
and as illustrated in Fig. 6.1, the performance has a big gap between puncturing and the theoretical
limit for the standalone link. The reason for the performance loss is that puncturing is performed
bit by bit and does not efficiently utilize the minimum distance between the whole sequences.

M1 0

000  001  010  100  111  110  101  011

  00    01    10    00    11    10    01    11

X
n

M2

1

Fig. 6.5. Overlap of codewords happens if M1 and M2 are generated by the HMV code and
puncturing, respectively.

For the purpose of improving the performance for the standalone link, we can use the HMV
code instead of puncturing. However, for the refinement link, the performance with M1 generated
by the HMV code may be worse than that by puncturing. For example, we consider a special case
n = 3, R1 = 1

3
and R2 = 2

3
. It is obvious that D2 can be easily reduced to 0 by puncturing Xn

to generate M1 and keeping the punctured bits as M2. Then, we discuss the performance of the
refinement link with M1 and M2 generated by the HMV code and puncturing, respectively. Since
M1 is generated by MV of 3 bits, each bit has the same weight of information. Therefore, we can
puncture the first bit of Xn to generate M2 without loss of generality. Notice from Fig. 6.5 that
there are some cases that Xn cannot be losslessly reconstructed by M1 and M2, because M1 and
M2 cannot determine a unique sequence of Xn due to the presence of the overlapped part in the
codewords. For instance, Xn could be “000” or “100” if M1 = “0” and M2 = “00”, resulting in
the distortion when reconstructing Xn.

Consequently, codeword decomposition with the HMV code and puncturing may degrade the
performance of the whole system, although the distortion in the standalone link is smaller. It is
obvious that if some different sequences ofXn have the sameM1 andM2, the reconstruction is not
unique, resulting in a distortion. Hence, the necessary condition for lossless successive refinement
is that all possible combinations of the decomposed codewords M1 and M2 are unique. If the
standalone link utilizes the HMV code, it is hard to find a relatively simple coding scheme that
contains all the information of lost part caused by the HMV code.
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6.4.2 Codeword Decomposition with HMV Code
Notice that the principle of the HMV code is to divide the sequence Xn into many groups of
bits with the group size being an odd number s or (s + 2), and then perform MV group by group.
Therefore, in order to find the complement code of the HMV code, we can first find the complement
code of MV code in a group with s bits, i.e., the rate 1

s
MV code. For a sequence with s bits, the

codeword of rate 1
s

MV code is only 1 bit, and hence its complement code has (s− 1) bits. Since
s is an odd number, all possible sequences with s bits contain two cases, i.e., the sequences with
more “0” than “1”, and its opposite. If we flip all bits of a sequence with more “0”, the flipped
sequence must have more “1” and vice versa. Hence, the number of the sequences with more “0”
is equal to that of the sequences with more “1”, i.e., 2s−1. Notice that 2s−1 is also the number
of all possible codewords with (s − 1) bits. Therefore, we can find a bijection that maps a s-bits
sequence with more “0” to a (s − 1)-bits codeword, and the bijection can be also utilized for the
s-bits sequence with more “1” by flipping all bits of the sequence with more “0”.

0

At most (s-1)/2 bits of 1

: 0

: 1

Fig. 6.6. The s-bits sequences with more “0” and the first bit being “0”.

As depicted in Fig. 6.6, for the sequences with more “0” and the first bit being “0”, the
remaining (s−1) bits contain at most (s−1)/2 bits of “1”. Therefore, the number of the sequences
with more “0” and the first bit being “0” is

(s−1)/2∑
l=0

(
s− 1

l

)
, (6.9)

which is also equal to the number of the (s− 1)-bits codewords with “1” not more than “0”. Thus,
for the sequences with more “0” and the first bit being “0”, we can directly use the last (s − 1)
bits of the sequence as the codeword. Then, the remaining part of the bijection is mapping the
sequences with “1” as the first bit to the codewords with more “1”.

1

1

At most (s-1)/2-1 bits of 1

Flip the last (s-1) bits

At least (s-1)/2+1 bits of 1

Fig. 6.7. The s-bits sequences with more “0” and the first bit being “1”.

As illustrated in Fig. 6.7, if the first bit is “1” for a s-bits sequence with more “0”, the remaining
(s − 1) bits contain at most [(s − 1)/2 − 1] bits of “1”. Consequently, the number of all possible
sequences is

s−1
2
−1∑

l=0

(
s− 1

l

)
=

s−1∑
l= s−1

2
+1

(
s− 1

l

)
. (6.10)
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Notice from (6.10) that the right side is equal to the number of the (s − 1)-bits codewords with
more “1”. In addition, if we flip the remaining (s − 1) bits of the sequence with more “0” and
the first bit being “1”, the flipped (s− 1) bits must contain more “1”. Hence, the mapping for the
remaining part of the bijection can be simply performed by removing the first bit of the sequence
and flipping the remaining bits to generate the codeword. Likewise, for a sequence with more
“1”, we first flipping all bits of the sequence to make the flipped sequence containing more “0”,
and then we can perform the same bijection stated above. Since the major process for this simple
mapping rule is to flip bits, the bijection is referred to as BF code.

M1 0

000  001  010  100  111  110  101  011

  00    01    10    11    00    01    10    11

X
n

M2

1

Fig. 6.8. Codewords decomposition by the HMV code and the BF code.

Fig. 6.8 shows a simple example of the codewords decomposition with the HMV code and
the BF code for n = 3. It is obvious that Xn → (M1,M2) is a bijection, and hence Xn can be
losslessly recovered from M1 and M2. Consequently, the BF code is the complement code of the
HMV code, and a sequence can be decomposed into two codewords by the HMV code and the BF
code for lossless successive refinement.

Algorithm 6.2. BIT FLIPPING CODE

Input: A group of bits Bs in the sequence Xn

Output: BF codeword W s−1

if B(1) is 1 then
set W (1 : s− 1) = flip(B(2 : s));

else
set W (1 : s− 1) = B(2 : s);

end if

Algorithm 6.2 summarizes the encoding algorithm of the BF code for a group of bits in the
sequence Xn. To decompose a sequence into two codewords by the HMV and BF codes, we
should generate the BF codewords group by group corresponding to the HMV code. For a group
of bits in the sequence, if the first bit is “1”, the codeword is generated by removing the first bit
and flipping the remaining bits; otherwise, the codeword is the same as the remaining bits.

For the purpose of reconstructing the original sequence, we can perform Algorithm 6.3 group
by group. To begin with, we recover the first bit by flipping the HMV codeword in the same group
of the BF codeword, if more than half of the bits in the BF codeword are “1”; otherwise, the first
bit is the same as the HMV codeword. If the recovered first bit is “1”, the remaining bits in the
group are generated by flipping the BF codeword; otherwise, the remaining bits keep the same as
the group of the BF codeword.

Remark: Notice that 1 ≥ R1 + R2 ≥ R1 in the general case where the refinement link still is
lossy. Since the HMV code and the BF code encode group by group, the codeword decomposition
can be easily extended from lossless case to lossy case by mixing a certain ratio of lossless
codeword decomposition and lossy source coding with the HMV code. More specifically, we
only generate the BF code for some of the groups in Xn to satisfy the rate R2, and hence the
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Algorithm 6.3. DECODING OF CODEWORD DECOMPOSITION

Input: HMV codeword Y in a group, BF codeword W s−1 in the same group
Output: A group of bits Bs in the sequence Xn

set n1 as the number of “1” in W s−1;
if n1 >

s−1
2

then
set B(1) = flip(Y );

else
set B(1) = Y ;

end if
if B(1) is 1 then

set B(2 : s) = flip(W (1 : s− 1));
else

set B(2 : s) = W (1 : s− 1);
end if

groups with the BF code can be losslessly recovered while the groups without the BF code are
still lossy. With this technique, we can trade off (R1, R2) and (D1, D2). Finally, from the view
of the whole sequence, the refinement link is lossy but still has a better performance than utilizing
puncturing.

6.5 Performance Evaluation
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Fig. 6.9. The system model for simulations.

We design a simulation system illustrated in Fig. 6.9 to evaluate the performance of codeword
decomposition. The sequence Xn is decomposed into two codewords by two source encoders for
the first step. In each link, the codeword is outer-encoded by CC, and an ACC is deployed for inner-
encoding after an random interleaver Π. After modulation, the outer-coded bits are transmitted to
receivers via orthogonal AWGN channels. Then, the receivers demodulate the received signals, and
further perform iterative decoding by CC−1 and ACC−1. The interleaver Π and deinterleaver Π−1

are utilized to exchange extrinsic information between CC−1 and ACC−1. Finally, the recoveries
are reconstructed by source decoders with the hard decisions of channel coding.
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Table 6.1. BASIC SETTINGS OF SIMULATION PARAMETERS

Parameter Value Parameter Value
Sequence length 104 bits The number of sequence 105

Generator polynomial of CC ([3, 2]3)8 Type of interleaver random interleaver

Modulation method BPSK Maximum iteration time 20
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Fig. 6.10. The performance of joint source-channel coding in the standalone link.

The basic setting of simulation parameters is listed in Table 6.1. First of all, we investigate
the performance in the standalone link as depicted in Fig. 6.10. It is clear that the joint source-
channel coding scheme based on the HMV code has lower BER than puncturing, with the same
SNR value. Furthermore, the SNR floor for the HMV code is also closer to the theoretical bound
derived from the rate-distortion function. This observation confirms that a coding scheme can get
better performance by replacing the puncturing component with the HMV code.

Fig. 6.11 shows the performance of codeword decomposition for the whole system. Clearly,
the HMV code has lower D1 than puncturing in the standalone link, because it builds correlations
among the bits of DMS by dispersing information within a group. As the complement code of
the HMV code, the BF code also generates correlated bits in a group, resulting in the error of a
bit propagating to other bits in the same group. The group length is larger for smaller R1, and
hence the problem of error propagation becomes more severe due to more influenced bits in a
group. Consequently, the codeword decomposition by the HMV code and the BF code has more
performance loss in the refinement link only when SNR is not large enough. However, if noise can
be completely eliminated by channel coding, there is no error floor for the codeword decomposition
by the HMV code. Moreover, ifR1 is relatively large,D2 for codeword decomposition by the HMV
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Fig. 6.11. The BER performance for the whole system.

code in the refinement link is almost the same as puncturing. Even for a very small R1 = 0.2, the
performance loss of the refinement link is less than 0.25 dB. Anyway, in spite ofR1, the standalone
link always has obvious performance gain by the HMV code than puncturing.

6.6 Methodology for Hybrid Codes Design

As presented above, given a specified codebook of a rate-distortion code, we can calculate its
source coding rate and expected distortion, which can be plotted as one point of the rate-distortion
function. If we have a series of rate-distortion codes, we can utilize the linear combination of
them to satisfy arbitrary rate and distortion between two component codes. Now, we introduce the
general method for finding component codes, which can be used to construct new hybrid codes
with lower distortion than the HMV code.

6.6.1 Hybrid Codes Based on the Duality of Channel Coding

From the duality between source coding and channel coding, we can notice that the MV code is
dual to the repeat code. For encoding, the MV code maps n bits to 1 bit, while the repeat code
maps 1 bit to n bits, and the decoding process is converse. This finding inspires us to exploit the
optimal codes to compose hybrid codes. In the following, we use the Hamming codes [88] as an
example to explain the method of hybrid codes design based on the duality between source coding
and channel coding.

For a Hamming code with n total bits and k data bits, it has (n − k) parity bits which can
detect 1-bit error at (2n−k − 1) different positions. Therefore, in decoding process, each possible
codeword can be mapped from 2n−k instances of received sequence, including 1 sequence without
error and (2n−k−1) sequences with one bit error. Notice that 1 data sequence with k bits is mapped
to 1 codeword with n bits, and hence the number of possible codewords is 2k. Consequently, 2k
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possible codewords can be mapped form 2k × 2n−k = 2n received sequences in total, i.e., the
mapping of 2k possible codewords can completely cover the sequence space with n bits.

Wk

Xn

Source

coding

Channel 

coding

Fig. 6.12. Duality between source coding and channel coding.

By making reverse of the encoding/decoding process of the Hamming codes as Fig. 6.12, we
can map n-bits sequence to k-bits sequence, i.e., equivalent to lossy source coding with R = k

n
.

More specifically, for encoding a source sequence Xn, we first use the parity-check matrix to
calculate its syndrome. Then, if any bit of the syndrome is not equal to “0”, we flip 1 bit in Xn

according to the syndrome. Finally, the systematic bits of the output are selected as the k-bits
codeword W k of lossy source coding. For decoding, the estimate X̂n can be easily reconstructed
by utilizing the generator matrix of the Hamming codes with W k as the input.

Obviously, there are (2n−k−1) cases where the distance between X̂n andXn is 1, i.e., (2n−k−
1) bits of error in 2n−k sequences with length being n. Moreover, we have (2n−k − 1) = n for the
Hamming codes. Hence, the expected distortion of lossy source coding based on the Hamming
codes can be calculated as

DHamming =
2n−k − 1

2n−k × n
=

1

2n−k
. (6.11)
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Fig. 6.13. The expected distortion of hybrid codes based on the Hamming codes.

Fig. 6.13 shows the rate-distortion function for the hybrid code composed of the Hamming
codes with diverse rates. Interestingly, the curves of the hybrid Hamming code and the HMV code
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cross at (1
4
, 1

3
). Because the Hamming(3, 1) code is essentially the same as the repeat code (MV

code) with 3 bits. For R > 1
3
, the hybrid Hamming code has lower distortion than the HMV code.

Therefore, we can use both the Hamming code and the MV code as component codes to generate
a new hybrid codes with better performance. Notice that the curve combined with the Hamming
code and the MV code is not convex between (1

8
, 4

7
) and ( 5

16
, 1

5
), which is found in the magnified

part of Fig. 6.13 with the dashed line connecting the two points below the rate-distortion functions
of the Hamming code and the MV code. Hence, to optimize the performance for 1

5
< R < 4

7
, we

can utilize the Hamming(7, 4) code and the rate 1
5

MV code as component codes.

6.6.2 Codeword Decomposition with the Hamming Codes
Since the Hamming(n, k) code has (n−k)-bits syndrome, we can identify a unique n-bits sequence
by k data bits and (n− k)-bits syndrome. Therefore, the syndrome of n-bits sequence completely
contains the lost part of information in lossy source coding by the Hamming codes. With the
(n−k)-bits syndrome as the complement code, we are able to losslessly recover the n-bits sequence
by joint decoding for successive refinement.

For a sequence Xn, we can follow the algorithm described above to generate the codeword
W k for lossy source coding. To generate the corresponding complement codewordW n−k

C , we only
need to calculate the syndrome by the parity-check matrix with Xn as the input. In the decoding
for successive refinement, we can calculate the n-bits sequence X̂n by the generator matrix of the
Hamming codes with W k as the input for the first step. Then, we flip 1 bit in X̂n at the position
specified by the syndrome W n−k

C , if W n−k
C is not all “0” bits. By this means, we can easily utilize

the Hamming codes and its syndrome for lossy source coding and successive refinement.

6.7 Summary

We have developed a lossy compression scheme, i.e., the HMV code, with relatively high efficiency
and low complexity for practical use. Based on a special and simplest case of the joint typicality
coding scheme, we have found the basic MV code and analyze its rate-distortion performance.
Then, we exploited the two MV component codes to construct the HMV code, for the purpose
of adapting arbitrary compression rate. The encoding and hard/soft decoding algorithms for
the HMV code were also presented in detail. Moreover, we also implement the HMV code to
successive refinement with DMS. We utilize the HMV code in the standalone link to achieve a
better performance than puncturing, and then develop the BF code to contain all information of lost
part caused by the HMV code. In addition, we conducted a series of simulations to compare the
performance difference between the HMV code and puncturing. The simulation results verify that
the HMV code can achieve better performance than puncturing. Although the simulation results
demonstrate that there is a small trade-off of performance between two links, the performance
of the whole system is obviously better for relatively large R1 by codeword decomposition with
the HMV code and the BF code. It should be emphasized that the proposed technique can easily
perform the trade-off between (R1, R2) and (D1, D2), in the case 1 ≥ R1 + R2 ≥ R1. Finally,
we conclude the methodology for hybrid codes design by utilizing the duality between source
coding and channel coding. One of the optimal codes, i.e., the Hamming codes, is exemplified for
applying the channel coding scheme into lossy source coding. We also find the syndrome of the
Hamming codes as the complement code for successive refinement.
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CHAPTER 7
Conclusion and Outlook

This dissertation have investigated several interesting topics belonging to the category of helper-
assisted lossy multiterminal source coding.

Initially, we analyze the performance improvement by introducing a helper into the system of
multiterminal source coding with two correlated sources. An inner bound on the achievable rate-
distortion region is derived, and then utilized to calculate the upper bound of the outage probability
over block Rayleigh fading channels. In the numerical results, the derived inner bound accurately
match the Berger-Tung inner bound, when the helper link is equivalently removed. The results also
demonstrate that a helper can obviously extend the achievable rate-distortion region and decrease
the outage probability.

Then, we concentrate on the binary CEO problem with a helper. In order to investigate
the performance limit, we divide the binary CEO problem with a helper into two sub problems
as multiterminal source coding with a helper and final decision. By this means, we derive
an outer bound on the achievable rate-distortion region, and formulate a convex optimization
problem to minimize the distortions in the step of multiterminal source coding. We further
analyze the distortion propagating from the decoding results of multiterminal source coding to
the final decision for theoretically optimal decision and MV decision. Through simulations, we
also compare the performance gain between introducing a helper and locating an extra agent.

Subsequently, we make efforts to evaluate the trade-off between link rates and final distortion
for lossy source coding with helpers. Based on joint typicality coding, we prove the achievability
of an inner bound on the rate-distortion region for general sources. Then, we further calculate the
inner bound for the case with binary sources. If there is only one helper and no rate constraint on it,
we find that the derived inner bound precisely coincides with the Wyner-Ziv theorem for arbitrary
correlation level between sources.

Moreover, we investigate an implementation of multiterminal source coding in wireless co-
operative communication networks, i.e., lossy communications with an LF relay. For the first
step, we determine an inner bound on the achievable rate-distortion region of lossy source coding
with a helper. Then, we calculate the upper bound of the outage probability for lossy LF relaying
over block Rayleigh fading channels. The theoretical results indicate that outage event occurs less
frequently, if lossless recovery is not necessarily needed in the destination. In addition, we make
a comparison of outage probability among AF, DF and LF for the relaying system allowing lossy
communications through simulations.

Finally, we develop the HMV code, i.e., a practical lossy source coding scheme with obviously
higher efficiency than puncturing, in contrast to its simple coding and decoding algorithms. We
also theoretically analyze the rate-distortion performance of the HMV code. After finding the
BF code as the corresponding complement code, the HMV code is implemented to successive
refinement with DMS. The simulations results confirm that, compared to puncturing, the HMV
code can significantly reduce the distortion in the standalone link, while the performance of the
refinement link keeps almost the same. To conclude the methodology of hybrid codes design, we
present an example based on the Hamming codes, and develop the corresponding complement
code for successive refinement by calculating the syndrome of the Hamming codes.
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In the future, we can extend the related studies in the following directions:

• The binary CEO problem with a helper is solved in this dissertation by decomposing it into
a successive process, i.e., multiterminal source coding with a helper, and then final decision.
However, the optimality of this successive decoding scheme is an open problem. Therefore,
it is a meaningful work to evaluate the optimality of successive decoding scheme, or find
another better decoding scheme for the binary CEO problem with a helper.
• The theoretical outage probability of the binary CEO problem with a helper and lossy com-

munications with helpers requires extremely complicated multiple integral; nevertheless, it
is still a very interesting implementation to wireless cooperative communications over fading
channels.
• For simplicity in theoretical analysis, we assume the channels to be orthogonal for the

binary CEO problem and lossy communications with helpers. Multiple access techniques
and multiuser detection schemes are the key to applying the theoretical results to practical
systems.
• Only the inner bound, i.e., sufficient condition, on the achievable rate-distortion region is

derived for lossy source coding with helpers in this dissertation. For the necessary condition
of lossy source coding with helpers, to determine the outer bound also make significant
sense.
• Regarding lossy communications in relaying systems, we only derive the theoretical outage

probability for LF relaying. The theoretical outage probability for lossy communications
with AF or DF will provide a more distinct view of performance limit.
• The LF strategy analyzed in this dissertation always forwards the relay sequence to the

destination regardless of the intra-link error. Although the performance of distortion will not
be worse by the adaptive LLR updating function, the performance gain becomes very small
if the relay sequence contains too many errors. However, the relay still consumes the same
power to forward the sequence and the destination needs to perform relatively complicated
algorithm for joint decoding. Thus, the trade-off between power consumption and final
distortion is of great importance for practical system design. One reasonable method is to
evaluate the error probability in the relay sequence, and compare with some threshold before
forwarding the sequence to the destination.
• Relatively simple channel coding schemes are applied in simulations for verifying the

tendency of theoretical results in this dissertation. Since the encoded sequences in different
links can be regarded as distributed codes, it is possible to obtain more distributed coding
gains by replacing the relatively simple channel coding scheme with more complicated
codes, such as turbo codes with long memories, LDPC codes and polar codes [89].
• Within the framework of grouped lossy source coding for practical use, the way to further

improve the coding efficiency is to find some simple component code in rate u
s
, i.e., compress

an s-bits sequence group into a u-bits codeword with better performance and then construct
a new type of hybrid code satisfying lower distortion. However, it might not be easy to find
the corresponding complement code for successive refinement.
• Another difficult but valuable work is the practical coding design, which can have high

performance while keeps relatively low complexity, for multiterminal source coding with
more than one source to be reconstructed.
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APPENDIX A
Error Probability by Weighted MV

Regarding the error probability by weighted MV, the final decision x̂ follows [90]:

x̂ =

{
1, if wbT > 0,

0, otherwise,
(A.1)

where w = [log 1−p1
p1
, · · · , log 1−pL

pL
] and b = 2·[x̂1, · · · , x̂L]−1. Similarly to the Poisson binomial

process, the error probability for the estimate of x is given by

pe = Pr

∑
k∈B+

wk >
∑
j∈B−

wj

+
1

2
Pr

∑
k∈B+

wk =
∑
j∈B−

wj

 , (A.2)

where B+ = {i|bi = +1} and B− = {i|bi = −1}. Note that in order to calculate (A.2), it needs to
carry out the search over all the possible combinations of wi.
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APPENDIX B
Proof of Lemma 4.1

First, consider

Pr{(Ṽ n
S , ṽ

n
Sc) ∈ T (n)

ε (VS , VSc)}

=
∑

ṽnS∈T
(n)
ε (VS |ṽnSc )

∏
j∈S

p(ṽnj )

≤
∑

ṽnS∈T
(n)
ε (VS |ṽnSc )

pow

(
2,−n

∑
j∈S

(1− ε)H(Vj)

)

=
∑

ṽnS∈T
(n)
ε (VS |ṽnSc )

pow

2,−n(1− ε)

H(VS) +

|S|∑
j=2

I(VSj−1
1

;VSj)


=
∣∣T (n)
ε (VS |ṽnSc)

∣∣ · pow

2,−n(1− ε)

H(VS) +

|S|∑
j=2

I(VSj−1
1

;VSj)


≤ pow

2, n(1 + ε)H(VS |VSc)− n(1− ε)

H(VS) +

|S|∑
j=2

I(VSj−1
1

;VSj)


= pow

2,−n

−(1 + ε)H(VS |VSc) + (1− ε)H(VS) + (1− ε)
|S|∑
j=2

I(VSj−1
1

;VSj)


= pow

2,−n

I(VS ;VSc) +

|S|∑
j=2

I(VSj−1
1

;VSj)− δ(ε)

 , (B.1)

where δ(ε) = ε
[
H(VS |VSc) +H(VS) +

∑|S|
j=2 I(VSj−1

1
;VSj)

]
. This completes the proof of

Lemma 4.1.
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APPENDIX C
Proof of Lemma 4.2

Define the events

Ẽk = {(V n
S1

(kS1), · · · , V n
S|S|

(kS|S|), Ṽ
n
Sc) ∈ T (n)

ε } for ki ∈ Ki, i ∈ S. (C.1)

By the union of events bound, the probability of the event of interest can be bounded as

Pr

( ⋃
ki∈Ki,i∈S

Ẽk

)
≤

∑
ki∈Ki,i∈S

Pr(Ẽk)

=
∏
i∈S

2nri · Pr(Ẽk)

≤
∏
i∈S

2nri · pow

2,−n

 |S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε)

 (C.2)

= pow

2, n
∑
i∈S

ri − n

 |S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε)

 , (C.3)

where (C.2) follows according to Lemma 4.1. Notice that (C.3) tends to zero as n→∞ if

∑
i∈S

ri <

|S|∑
j=2

I(VSj−1
1

;VSj) + I(VS ;VSc)− δ(ε). (C.4)

This completes the proof of Lemma 4.2.
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