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Abstract

Similarity-based inference has been widely used for recognition. The principle behind
the similarity-based inference is that similar objects will share common properties. In
machine learning, similarity-based inference is employed through various methods such
clustering, k-nearest neighbors, etc. In addition, similarity-based inference is useful for
controlling confounding factors in statistical causality inference.

There are several issues in using similarity-based inference in practice. The principles
of the inference are applicable if the representation of objects and similarity measure
used for this representation are ideal. In case these factors are not ideal, there has the
inconsistency of the similarity measured based on the objects’ representation with the
similarity of objects’ target values. In addition, in analogy-based causality inference,
similar causes play the role of reference factors for assessing the relation between the
cause of interest with effects. Hence, the main issue here is how to choose good similar
causes for accurately recognizing confounding factors.

This work aims to solve the issues mentioned above through verifying the proposed
hypothesis that conservation of diversity in selecting models and data samples can help
to effective solve these issues. As such, we enrich the knowledge about the diversity
preservation in machine learning.

We demonstrate issues in similarity-based inference through specific studies. The
first one regards to measure the similarity between materials for effectively predicting
materials’ formation energies. The second one regards to control polypharmacy-induced
confounding in assessing the cause of drug adverse reaction. Through these studies, we
can evaluate the likelihood of our proposed hypothesis. In both studies, we focus on model
interpretation and explanation based on model performance.

In the first study, we address the problem that most materials’ descriptors in vector
space are not ideal for representing materials for predicting formation energy, which in-
duces the roughness of the energy surface. Hence, the similarity of materials measured
based on their presentation is not consistent with the similarity of their energies. In this
situation, finding an appropriate similarity measure for these descriptors may help to im-
prove the performance of similarity-based learning models in approximating the energy
surface. We hypothesize that to effectively approximate the energy function, similarity
measures need to preserve the distinction of two objects in comparison with the third one.
We propose a protocol for verifying this hypothesis that incorporates various methods for
investigating the roughness of energy surface and similarity measures. In addition, we
also proposed a method for estimating the loss of distinction of two objects in comparison
with the third one when using similarity measures. The experimental results show the
high likelihood of our proposed hypothesis. Furthermore, we establish general principles
for effectively using similarity measures for mining materials data, which do not depend
on any specific learning method.

In the second study, we concentrate on an important problem in post-marketing phar-
maceutical surveillance that is drug-adverse reaction causality assessment. The main issue
here is to deal with confounding factors induced by polypharmacy in the treatment. In
this study, we employ reference sets constructed based on the analogy criterion – one
of nine Bradford Hill criteria to control confounding factors. This criterion states that
similar drugs may cause similar adverse events. We propose a novel model, called the
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analogy-based active voting, for effectively assessing causal relations between drugs and
adverse events. This model mimics the analogy criterion by a voting process of similar
drugs. In this context, each drug is represented by a set of its associated adverse events
extracted from electronic medical records. The diversity of these sets induce the con-
flict in voting of similar drugs, which plays an importance role for eliminating non-causal
drug-adverse reaction pairs. This case study demonstrates the importance of diversifying
reference in analogy-based causality inference.

Keywords: Similarity-based inference, diversity preservation, similarity measure,
confounding, analogy-based causality inference
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Chapter 1

Introduction

1.1 Context-dependent diversity

1.1.1 Example

Before define the concept of context-based diversity, we shows a simple example, which
provides a first glance at this concept. Given a collection of three countries C ={United
Kingdom, France, Germany} which are described by the continent they locate, the main
language used in these countries, and the faction they belong to in the World War II
(WWII), as shown in Table 1.1.

Relying on this table, if countries are compared with each other based on their conti-
nent, they are identical because all of them belong to the Europe. Meanwhile, when based
on the faction in WWII, United Kingdom and France are different from Germany, so the
collection C is more diverse. When based on the language, countries in each possible pair
are different, thus, the collection in this context is most diverse. Through this example,
we see that the diversity of a collection can vary when this collection is considered in
different contexts.

1.1.2 Context-dependent similarity and difference evaluation

The evaluation of similarity and evaluation of difference are complementary (the difference
can be considered a linear function of similarity with slope of -1), and depend on a
specific context [93]. For example, the United Kingdom and France are similar in terms
of continent, while are different in terms of the main language.

The evaluation of similarity or difference is commonly carried out with two objects by
measuring how alike these objects are. In terms of mathematics, similarity measures are

Table 1.1: Example of context-based diversity

Country Continent Language Faction in WWII
United Kingdom Europe English Alliance

France Europe French Alliance
Germany Europe German Axis powers

1



real-valued functions that take representations of two objects as the function input, and
then output a scalar. For example, distances between two points in the vector space such
as the Euclidean, Manhattan, and cosine are used for measuring the similarity of these
points. In fact, these distances are functions of two variables.

1.1.3 Context-dependent diversity evaluation

Differing from the similarity (or difference) evaluation, the evaluation of diversity is often
conducted for a collection of n objects with n ≥ 3. This evaluation is based on the set of
pairwise difference of objects in this collection. In other words, the diversity evaluation is
an aggregation of objects’ pairwise differences. For example, in context of the faction in
WWII, the number of country pairs whose elements are different is 2, while the number
of these pairs in context of language is 3. Hence, in context of language, the collection is
more diverse than that in context of the faction in WWII.

As mentioned above, the evaluation of similarity and difference depends on a specific
context. Therefore, the evaluation of diversity in a collection also depends on a given
context.

1.2 Diversity preservation in machine learning

Essentially, machine learning models aim to represent a collection of real-world objects and
the relation among them in specifict contexts based on the “no free lunch” theorem [100].
In fact, each model here corresponds to a context of these objects. Obviously, objects in
the real-world are essentially diverse. In several situations, capturing the diversity of these
objects can help machine learning models attain high performance. To reflect the diversity
of real-world objects, diversification of data, model parameters, and model ensemble is
necessary [36]. Therefore, the term of “diversity preservation” in terms of machine learning
refers to: the selection of data samples that maximize information contained for training
process; the selection of models whose parameters can reflect much information in the
data; and the selection of model ensembles whose based models are diverse.

1.2.1 Importance of diversity preservation

Machine learning techniques have been widely applied to solve real-world problems that is
expected to make incredible improvements for people lives, and to accelerate scientific dis-
covery. There are numerous factors that can affects the performance of machine learning
systems, in which the diversity of training data and learning process plays an important
role. Indeed, the diversity property in data and learning models can make the fairness
in assessing learning models, enlarge the searching space of hypotheses in these models,
and enhance the effective information exploitation from data. In addition, the diversity
of recommended items can help to minimize the risk induced by the user dissatisfaction
in information retrieval and recommender systems.

In machine learning, the “no free lunch” theorem [100] states that there is no search
and optimization algorithm is expected to perform better than any other algorithms. In
other words, there has no a model which is the best for solving all problems. Hence,

2



the selection of appropriate models is an inevitable step in most of learning methods.
To perform the suitable selection, evaluating and comparing models play an important
role. One of important criteria is to assess how a model is generalized for achieving better
prediction performance. The evaluation on the generalization of models requires the use of
different testing or validation data samples. Thus, diversifying the testing sets helps with
the fairness in model assessment. For example, cross-validation, which is a well-known
method for model assessment, generates one several pairs of training and validation sets
for estimating the risk of the model in prediction [5].

In principle, a model is tuned for fitting with an available dataset, hence, to avoid
the bias of such a model and overfitting as well as enhance the generalization of such a
model for effectively predicting new instances, the learning process should be carried out
with difference data samples. A well-known approach, which attempts to generate multi-
ple learners and then incorporates these learners for improve prediction, is the ensemble
learning. Several methods in the ensemble learning, e.g., bagging and adaBoost, have
been widely used in many applications. These methods target to enlarge the searching
space of hypotheses from the amount of available training dataset, and then aggregate
these hypotheses for making the improvement in prediction [27, 106]. In ensemble learn-
ing methods, diversifying classifiers is needful to be considered when building classifiers
ensembles for real-life pattern recognition, which was proven in [57].

The diversity property helps machine learning techniques be able to adapt with real-
world problems, furthermore, enhance their ability for solving these problems. In the
area of recommendation system, the diversity of output has been taken into account in
information retrieval and recommender systems for a long time. The reason is that in
searching engines and recommender systems, diversifying results helps to minimize the
risk of dissatisfaction of users [2]. In other words, diverse items that are recommended
for users will help the users get more options for selection, and improve their satisfaction.
The importance of result diversification has been discussed in early work on information
retrieval. This problem is stated that the relevance of retrieval documents depends on
not only the individual relevance of each user, but also on how they are related to other
users [19]. Ideally, we expect that recommended documents should be relevant to the
common interest of most of users in the population [22]. Because of the importance
of result diversification, numerous studies so far have attempted to develop diversity-
based ranking methods for improving the quality of retrieved items. Besides the result
diversification in recommendation systems, in [45], the author proved that the diversity
and size of data are important factors for better performance of machine learning methods.
This proof was based on a comparison of performance in playing between the AlphaGo
and AlphaGo Zero systems.

1.2.2 The need of measuring the diversity

As mentioned above, diversity preservation is known as the selection of data samples and
learning models that maximizes the ability of reflecting the diversity of real-world objects.
Hence, defining and measuring the diversity in specific situations are needful because they
are used for establishing criteria for selecting data samples and models.

In general, quantifying the diversity plays an important role for effectively constructing
learning models that minimize the risk when performing with real-world data. The risk
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can be caused by the limited labeled data for training as the motivation of active learning,
additionally can be caused when the events happening the future are out of intended
outcome of the model as the issue in recommendation system.

In recommendation systems, although the recommending models can be fitted with the
historical information of customers’ interest, these models can be poor to suggest items for
the customers in the future because the interest of customers may change over time, even
the interest can be significantly different from that collected in the historical data. Hence,
diversifying retrieval results is important for search engines and recommender systems as
mentioned above. In these systems, the measure for ranking items needs to make the
trade-off between the relevance level of items to a specific customer and the novelty level
of these items to this customer.

In machine learning, data diversification is important that aims to provide informative
samples for training machine learning models. Considering the diversity of instances in
these samples aims to maximize the amount of information contained in these ones. Thus,
measuring the diversity of samples, a.k.a. measuring the informativeness of samples, is
needful to provide the basis for selecting informative training samples. In active learning,
we aim to enrich existing labeled data for effectively training, while reduce the cost of
labeling and time consuming. Thus, selecting informative samples for labeling plays an
important role, which are based on evaluations on the diversity of samples [104, 91].

1.3 Problem and research objectives

In this study, we focus on the problem of diversity preservation in similarity-based in-
ference. This problem is specified through two studies: (i) preserving the distinction of
pairwise comparison in triplet of objects in measuring similarity for approximating rough-
ness target function; (ii) diversifying the reference in analogy-based causality inference.

1.3.1 Similarity-based inference

Measuring the similarity is a fundamental process in analogy-based recognition. The
principle behind the similarity-based inference is that similar objects will share common
properties. In machine learning, similarity-based inference has been widely used through
several well-known methods such as clustering, k-nearest neighbors methods, etc. By
this methods, unknown target values of new instances are inferred by comparing these
instances with existing ones based on similarity measures. In addition, the similarity-
based inference can be used in causality inference that similar presume causes may result
in similar effects.

There are several issues in similarity-based inference. In practice, the principle of
similarity-based inference is applicable if the representation of objects and similarity mea-
sures used for this representation are ideal. However, finding an ideal representation is so
difficult and takes lots of time. In case the representation and similarity measure are not
ideal, there will be an inconsistency of measuring objects similarity based on their rep-
resentation with the similarity of their target values. In fact, this induces the roughness
of target function. In analogy-based causality inference, the use of this principle can help
for controlling confounding, in which similar causes play the role of reference for assessing
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the relation between the cause of interest with effects. The main issue here is that how
to choose good similar causes for accurately recognizing confounding factors.

1.3.2 Objectives

As mentioned in previous sections, we address two issues in similarity-based inference:
(i) the inconsistency of measuring objects similarity based on their representation with
the similarity of their target values because of using non-ideal representation; (ii) how to
design and select good similar causes for effectively controlling confounding in analogy-
based causality inference. Our work aims to solve these issues. We hypothesize that
conservation of the diversity in selecting models and data samples can help to effectively
solve these issues.

Regarding (i), we hypothesize that the use of similarity measures that preserve the
distinction of pairwise comparison in a triplet of objects can help similarity-based learn-
ing models improve the performance in approximating rough target functions induced
by the use of non-ideal representation. Regarding (ii), we hypothesize that diversifying
the reference (similar causes) can help to improve the performance of similarity-based
causality inference. In this work, we aim to verify and estimate the likelihood of proposed
hypotheses.

Through solving these issues, we aim to enrich the knowledge about diversity preser-
vation in machine learning by providing additional views in such a situation. To verify
our proposed hypotheses, we address two main objectives as follows:

• Defining and measuring the concept of diversity in specific context when solving
each issue. This helps for assessing similarity measures and collections of similar
causes used for controlling confounding factors.

• Interpreting why preserving the diversity when selecting similarity measures and
samples of reference factors (similar causes) can help to solve these issues.

1.4 Contributions

We demonstrate issues in similarity-based inference as mentioned above by specific studies.
For the first issue, we carry out a study on measuring the similarity between materials
for effectively predicting materials’ formation energies. For the second one, we carry a
study on controlling polypharmacy-induced confounding in assessing the cause of drug
adverse reaction. Through investigations in these studies, we can verify and estimate the
likelihood of proposed hypotheses on the role of diversity preservation.

1.4.1 Measuring the similarity between materials for effectively
predicting materials’ formation energies

The main problem is this study is that most material descriptors (representations) of in-
terest in the vector space are not ideal for representing materials for predicting formation
energies, which induces the roughness of the energy surface. Hence, measuring the simi-
larity of materials based on their presentation in vector space is not compatible with the
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similarity of their formation energy. In other words, neighbors of materials in a vicinity,
determined by similarity measures in the vector space, may have the energies that are
extremely different from the energy of these materials.

We hypothesize that in this situation, finding an appropriate similarity measure for
these descriptors may help to improve the performance of similarity-based learning mod-
els in approximating the energy surface. We evaluate the appropriateness of similarity
measures in fitting the rough energy surface though the use of these measures for local ap-
proximation. Indeed the number of neighbors of each instance affects the approximation
accuracy at this instance, which depends on the similarity measure used. Hence, relying
on this, we hypothesize that to effectively approximate the energy function, similarity
measures need to preserve the distinction of two objects in comparison with the third
one.

Relying on the dependency among data presentation, similarity measure, and learning
model, we propose a protocol for verify the proposed hypothesis, which includes two main
steps: (1) examining the roughness of target function; and (2) evaluating appropriateness
of similarity measures in fitting rough target function. The roughness of target function is
quantitatively evaluated by estimating the roughness level based on function derivative,
examining whether the target variable distribution is close to uniform, and examining
whether the target function can be approximated by a linear function. For investigating
similarity measures, we interpret empirical performance of k−nearest neighbors and kernel
ridge regression which use these measures.

Inspired by the fixed-radius nearest neighbors regression, we propose a method for
measuring the loss of distinction of two objects in comparison with the third one when
using similarity measures. Let DMIN be the distance from each data point to its closest
neighbors, we enlarge the neighboring region of this data point for determining other
neighbors with a radius of DMIN × (1 + ε), ε is a predefined scalar. This loss is defined
as the average of the number of neighbors of each instance in a given dataset. This is
used for evaluate similarity measures.

The experimental results show the high likelihood of our proposed hypothesis. That
can help to explain why the Manhattan distance and Bray-Curtis dissimilarity provide
better prediction performance with most of descriptors and material datasets. Further-
more, we establish general principles for effectively using similarity measures for mining
material data, which do not depend on any specific learning method.

1.4.2 Controlling for confounding in assessing the cause of drug
adverse reactions

In this study, we concentrate on an essential problem in post-marketing pharmaceutical
surveillance (i.e., pragmatic clinical trials) – assessing the causality between drugs and
adverse drugs reactions (ADRs) observed during the treating process. The main diffi-
culty is that the presence of co-morbidity in patients requires polypharmacy for treating,
hence, we have to face with the problem of confounding factors in the statistical causal-
ity inference. The polypharmacy-induced confounding makes most of existing methods
poor in detecting actually causal drug-ADR pairs. Therefore, reducing bad impacts of
confounding factors on the causality inference process motivates our work.
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In our work, confounding factors are defined as non-causal drug-ADR pairs which
frequently and coincidentally co-occur in treatment. To control confounding factors, we
need additional references which are constructed based on the analogy criterion – one of
nine Bradford Hill criteria. The analogy criterion states that similar drugs may causes
similar ADRs, hence, a drug is believed more to cause an ADR if we found other drugs that
are similar to the drug of interest and also have associations with the ADR. Therefore, in
this context, we use similar drugs with their associated and ADRs (extracted from clinical
narratives) as the reference for recognizing confounding factors.

We propose a novel semi-supervised model for inferring drug-ADR causality based on
the analogy criterion, called the analogy-based active voting (AAV). This model represents
this criterion as a voting process of similar drugs, in which similar drugs vote for a
drug-ADR association to be causal if they also have the association with the ADR. The
set of similar drugs is called the committee. We present each drug by two features:
the mechanism of actions and targets; and the list of its associated ADRs extracted
from electronic medical records. The first feature is used to identify similar drugs for
establishing committees. The second one is used for voting of these drugs.

For effectively controlling confounding factors, we hypothesize that it is needful to
diversify committee according to the feature of its drugs. It aims to create a strict inspec-
tion for distinguishing causal drug-ADR pairs from non-causal ones, and then can help to
improve the causality inference performance. Similar to active learning, we need to select
similar drugs that maximize the committee in terms of the second feature (list of associ-
ated ADRs). Because the second feature of each drug is bag of associated ADRs denoted
by Fxi where xi indicates a drug, we measure the diversity of committee by considering
the intersection of Fxi , and using the Hamming distance for modeling the conflict in vot-
ing of each drug in committee with the rest. By using the Hamming distance, sets Fxi
is represented by one-hot vectors. The experimental results show that the use of diverse
committee results in higher accuracy in detecting causal drug-ADR pairs. In other words,
this shows the high likelihood of our proposed hypothesis.

1.4.3 Dissertation structure

The dissertation includes five chapters, in which Chapters 3 and 4 present the main
content of our work. In Chapter 2, we make an overview of diversity preservation in
machine learning via existing studies. In Chapter 3, we demonstrate the problem of
inconsistency of similarity estimated based on object representation with the similarity of
target values via the study on measuring materials similarity for predicting their formation
energies. In Chapter 4, we discuss about the reference diversification in analogy-based
causality inference through the study on controlling polypharmacy-induced confounding
in assessing the cause of adverse drug reactions. Chapter 5 shows conclusions and future
work.
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Chapter 2

Diversity Preservation in Machine
Learning

2.1 Introduction

As mentioned in previous chapter, diversity preservation in machine learning refers to
the selection of data samples the maximize information contained for training process;
the selection of models whose parameters can capture the information in training data
as much as possible; the selection of models ensembles in which the output of each based
model is different from that of the others. In this chapter, we make an overview of data
diversification, model diversification, inference diversification in machine learning, and
methods for measuring the diversity. This inspires our work on investigating the diversity
preservation in similarity-based inference.

2.2 Diversifying data in machine learning

2.2.1 Increasing the number of dimensions in representation

Data representation in terms of computer science refers to methods to structure data for
storing, processing, and transmitting by the computer. Data representation is almost the
first step in machine learning and data mining. There are various forms for representing
data, in which the vector form are widely used. In this representation, each object is
described by a number of attributes, each attribute corresponds to a dimension of vector.
Each attribute is considered an aspect for comparing data instances. For example, in
healthcare data, a patient can be described by a vast amount of variables (or attributes),
e.g., blood pressure, weight, cholesterol level, etc. Typically, data can be represented as
a table or matrix whose columns represent dimensions. High-dimensional data simply
means that the number of dimensions are staggeringly high.

As the common sense, the concept of diversity refers to different things, hence, we can
define the concept of data diversity as the distinctiveness of data instances. However, it is
trivial to say that because instances are manifestly distinct, and duplicated instances are
usually removed. What we would like to mention here is how the number of dimensions
is associated with the distinct level of instances. For example, let A,B ∈ R3 be two
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Figure 2.1: Visualization of two distinct points A and B in 3D space, and project them
to 2D space.

distinct 3-dimensional vectors, which are plotted in 3D space as shown in Figure 2.1. If
we project A and B to the plane Oxy, these points stack up. In fact, higher the number
of dimensions is, more distinct instances are.

We demonstrate how the distinctiveness of data instances is reflected in high-dimensional
space through investigating the pairwise distance between such instances. In 2-dimensional
space, the distance between two points is

√
∆x2 + ∆y2. When the third dimension is

added, this extends to
√

∆x2 + ∆y2 + ∆z2, which is probably larger. Hence, the pair-
wise distances grow in high-dimensional space. To confirm that, we randomly generate a
data sample with 10000 dimensions, and then we project such a sample to hyperplanes
of 2, 5, 10, 100, and 1000 dimensions by using principal component analysis (PCA). The
distributions of pairwise distances between data points in the original space and pro-
jected spaces are shown in Figure 2.2. The figure shows that pairwise distances increase
when increasing the number of dimensions. In addition, histograms also show that in the
low-dimensional spaces (the number of dimensions is 2, 5, 10, 100) the range of pairwise
distances is larger than that in the high-dimensional spaces (the number of dimensions is
1000, 10000). In context of k-nearest neighbors method, the narrowed range of pairwise
distances between points in high-dimension space means that all points in the dataset
are almost equidistant to the query point (the point needs to be predicted its label or
target value). That means the distinction between close points and distant points to the
query point is small, which is called “contrast loss” [63]. The contrast loss can hinder the
clustering or other machine learning techniques for generalizing data into patterns. No
generalization reflects the distinctiveness of data instances.

2.2.2 Active learning

Active learning is a semi-supervised method that helps to reduce the cost of labeling data
by selecting informative samples for human to assign their labels. Samples are selected
based on examining that they can enrich information contained in the current data that is
known as enhancing the diversity of data. To this end, several criteria are used for selecting
samples. The first one is uncertainty sampling that select samples which the current
model θ is the most uncertain about. There are various ways to measure the uncertainty
in predicting labels of new samples. If the model is characterized as a hyperplane, we can
estimate the distance from new instance to this hyperplane. In addition, we can measure
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Figure 2.2: Histogram plots show the distribution of all pairwise distances between ran-
domly distributed points in d-dimensional space.

the uncertainty based on labels probabilities as follows:

• Least confident:
x∗LC = argmax

x
1− Pθ(ŷ|x) (2.1)

where ŷ is the most probable label for x under the current model θ.

• Smallest margin:
x∗SM = argmin

x
Pθ(y1|x)− Pθ(y2|x) (2.2)

where y1, y2 are the two most probable labels for x under the current model

• Label entropy: choose example whose label entropy is maximum:

x∗LE = argmax
x
−
∑
i

Pθ(yi|x)logPθ(yi|x) (2.3)

where yi ranges over all possible labels.

Besides, samples can be selected based on query by committee (QBC). QBC uses a
committee of models C = {θ1, ..., θn}. All models are trained by using the current labeled
data, and then vote their predictions on the unlabeled data. Examples with maximum
disagreement are chosen for labeling. The disagreement is measured by the vote entropy:

x∗V E = argmax
x
−
∑
i

V (yi)

C
log

V (yi)

C
(2.4)

where yi ranges over all possible labels, V (yi): number of votes received to label yi.
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2.3 Diversifying models in machine learning

In addition to diversify the data for learning by adding informative samples, we can also
diversify models to enhance the representation ability of these models. Indeed, diversifying
model includes diversifying parameters of an single model and diversifying an ensemble
of models.

Diversifying parameters can enhance the representation ability of models because this
helps to capture the information from the data as much as possible. Additionally, it
makes the model complex and flexible. Obviously, increasing the flexibility of model is
equivalent to enhancing the representation ability of this model. To enforce the diver-
sity of parameters, we can utilize Bayesian method, posterior regularization method [33],
diversity regularization by using distance-based measurement [17], angular-based mea-
surement [108], etc.

For effectively solving real-world problems, ensembles of models are often used. Di-
versifying based models in these ensembles can help to improve the performance. Indeed,
this induces various representations of data. A well-known method that are commonly
used for encouraging the diversity of ensembles is sample-based methods that attempt to
generate different models by randomly dividing the training data into subsets.

2.4 Diversifying inference in machine learning

Diversifying data and models can help to improve the performance of machine learning
models. Besides, there has several methods that focus on obtaining multiple choices in
inference of machine learning models. By using machine learning models, the predicted
labels of data instances often converge to sub-optimal results because of the limitation
of data and representation ability of the models. Hence, it motivates the use of multiple
choices in inference of machine learning models. Diversifying choices can minimize the
risk in prediction of models. There are several methods for diversifying the choices in
inference such as diversity-promoting multiple choice learning (D-MCL), submodular, M-
Modes, and M-NMS [36].

2.5 Measuring the diversity

Quantifying the diversity in machine learning is important, however, it is not straight-
forward, and depends on a specific domain. Measuring the diversity has attracted the
interest of researchers for a long time such that many models have been proposed for at-
tempting to measure such a property. Nevertheless, so far we have no a general measure
method for this property.

As mentioned above, diversifying result in recommendation systems is important,
which attracts many studies on this. Most studies attempted to propose quantitative
models for ranking items that makes a tradeoff between the relevance (i.e., utility) and
the diversity. Agrawal et al. [2] proposed an algorithm with an explicit objective of
tradeoff between the relevance and the diversity. Additionally, they generalized several
classical information retrieval metrics to explicitly account for the value of diversifica-
tion. Carbonell et al. proposed a ranking method which combines query-relevance with
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information-novelty for text retrieval and summarization [22]. The method is called the
maximal marginal relevance. In [18], an algorithm, called optSelect, was proposed with a
novel utility measure. This allows the diversification task to be accomplished effectively.

The diversity can be quantified by pairwise distance measures [105, 110]. Given ele-
ments in a collection, the diversity in such a collection is defined as an aggregate function
(e.g., sum) of pairwise distances between elements. In addition, coverage-based measures
have been used for estimating the diversity [76, 102]. This measure relies on the existence
of a predefined number of aspects, that is, topics, interpretations, or opinions. In [57],
the authors pointed out the connection between the diversity in classifier ensembles and
accuracy. Furthermore, they presented ten statistics that can measure the diversity of bi-
nary classifier outputs, in which: averaged pairwise measures include the Q statistic, the
correlation, the disagreement and the double fault; and non-pairwise measures include
the entropy of votes, the difficulty index, the Kohavi-Wolpert variance, the interrater
agreement, the generalized diversity, and the coincident failure diversity.
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Chapter 3

Measuring Similarity: The Need of
Preserving Objects Distinction in
Reference-based Comparison

3.1 Introduction

In this chapter, we make an intensive discussion about an important problem in similarity-
based learning (i.e., instance-based learning). The problem is that the use of inappropriate
combination of representations and similarity measures can make objects with significant
differences in their target values lost the distinction. This induces abrupt changes in the
target surface (rough surface), which makes similarity-based learning methods become
ineffective. To solve this problem, we focus on finding an appropriate similarity measure
for a given previously designed representation. We found that it is needful to make a trade-
off between the preservation of objects distinction when comparing them using a referenced
object and the loss of this distinction. We quantify the loss of this distinction when using
a similarity measure. To validate our statement, we employ a protocol that aims to point
out the relation among: the roughness of target surface with a given representation; the
loss of objects distinction as mentioned above; and the high predictive accuracy.

The problem mentioned above is demonstrated in our study on approximating the
materials’ formation energy surface that is evaluated to be rough towards most existing
material representations (e.g., orbital field matrix, Coulomb matrix, and smooth over-
lap of atomic positions). We investigate several well-know dissimilarity measures (e.g.,
p−norm, chebyshev, cosine distances, Bray-Curtis and Canberra dissimilarities) where
these measures are used in similarity-based learning models such as k−nearest neighbors
regression and kernel ridge regression for predicting formation energies. The empirical
experiments with several well-known material datasets and representations show the high
potential of our finding as mentioned above. In addition, relying on this, we propose a
policy for effectively designing similarity measures for material data.

Distance metric learning (DML) is a class of similarity measure learning methods that
is useful for dealing with the problem of inconsistency of representation-based similarity
measurement with the similarity of target values. Indeed, DML aims to learn an appro-
priate Mahalanobis distance between object representations to maximize the consistency
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with the similarity of their target values. By examining the model complexity of kernel
ridge regression using the learned Manhalanobis distance, we found that the appropriate
distance for represented materials makes the model complexity increase. This is consistent
with and supports our investigations of selecting available similarity measures.

3.2 Overview of similarity measurement in materials

data mining

A small change in the chemical composition or structure of materials can lead to a sig-
nificant change in the properties of materials. For example, differences in the chirality
of a honeycomb network of carbon atoms can lead to a distinctive difference in physical
properties of nanotubes. In fact, the distinctiveness of materials, which makes the diver-
sity of materials in the nature, is the main characteristic of the material data. Therefore,
this characteristic needs to be represented in a metric that allows for a comparison of
materials in a reliable, efficient, and useful way.

The main target of machine learning systems when mining material data is to deter-
mine a likely function f(x), which indicates the relation between the materials’ attributes
and their physical/chemical properties. Typically, these systems includes two main com-
ponents: (i) data representations which are also called descriptors; and (ii) operators
including similarity measures between materials and learning methods (which map ma-
terials’ attributes to physical properties). For efficient mining, these components are
designed with the aim of reflecting domain knowledge and the nature of material data.

To render computational methods tractable for materials in datasets, the geometrical,
topological, or electronic characteristics of the materials need to be represented in form
of numerical variables. Descriptors commonly encode the information of a material A by
a vector ~xA = (x1

A, x
2
A, ..., x

m
A ) whose number of dimensions, and values in each dimension

depend on the information selected to describe the materials with a specific purpose for
mining tasks. To represent material structures, several descriptors have been proposed.
Behler et al. utilized atom-distribution-based symmetry functions to represent the local
chemical environment of atoms [12]. Rupp et al. proposed the Coulomb matrix (CM),
which represents materials via the Coulomb repulsion between all possible nuclei in the
material [88]. Bartok et al. proposed the smooth overlap of atomic positions (SOAP)
that is effective to represent molecules [10, 26]. In addition, Isayev et al. used the band
structure and density of states (DOS) fingerprint vectors as descriptors of materials to
visualize material space [47]. Zhu et al. introduced another fingerprint representation
for crystals and used this to define the configurational distance between crystalline struc-
tures [109]. Pham et al. proposed a descriptor for encoding atomic orbital information,
called the orbital field matrix (OFM) [59, 80].

Similarity measures aim to quantify how alike two materials are, which are math-
ematically implemented as scalar valued functions that take two vectors representing
materials A and B as input: S(A,B) = S(~xA, ~xB). The use of these measures is subjec-
tive because they depend on a specific domain or application. Similarity measure is an
important operator in many learning models. Conventionally, materials science studies
begin by grouping similar materials in order to explore the patterns and rules in these
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materials. Consequently, measuring material similarity is considered a key technique in
material informatics [13]. The advantages and disadvantages of many similarity measures
were addressed in [70] and the argument that similar structures lead to similar proper-
ties was offered in [9, 99]. However, the validity of this argument was reconsidered by
Maggiora et al., who showed that small chemical modifications can lead to significant
changes in biological activity [69]. Because the nature of materials is fundamentally di-
verse, Riniker et al. addressed the problem of partially losing the transparency among
fingerprint types by using fuzzier similarity methods [86]. In addition, Maldonado et al.
optimized measures of molecular similarity and diversity based on selecting and classifying
descriptors [72]. Moreover, several methods have been proposed for comparing crystalline
materials [58, 109].

Although similarity measures are disseminated in many studies in machine learning,
to the best of our knowledge, most previous work rarely makes the discussion about
properties of these measures, and why they perform well in specific contexts. It makes
the explanation and interpretation of these measures poor, so this motivates our work to
overcome such a limitation.

3.3 Roughness of target function subject to repre-

sentation

3.3.1 Similarity-based inference

Similarity assessment is a fundamental operator in recognition. In machine learning,
similarity-based inference has been widely used in various learning methods such as clus-
tering, k−nearest neighbors methods, kernel methods. The principle of the similarity-
based inference is that similar instances result in similar target values. Hence by this
inference, unknown target values of new instances are inferred by finding neighbors (sim-
ilar instances of the ones of interest) using various similarity measures. In practice, for
similarity-based learning methods to effectively perform, representation and similarity
measure need to reflect the nature of data. However, finding appropriate representation
and similarity measure is not straightforward that requires intensively digging into the
nature of data for understanding.

3.3.2 Problem Statement

Given a collection of objects O = {o1, ..., on}, and T = {T1, ..., Tn} is the set of target
property corresponding to each object in O. Suppose that there has a function f(o) with
o ∈ O that maps each object to its target value: f : O → T .

To approximate the function f , we first encode objects in O in various forms, in
which the vector form is widely adopted. Let r be a representation function that converts
each object to its corresponding vector, r : O → V where V is the set of vectors. To
preserve the identification of objects, two distinct objects oi, oj need to have different

representations, vi 6= vj. The target properties in T are approximated by a model f̂ on

vectors: Ti ≈ f̂(vi) where vi ∈ V . To find the function f̂ , if Ti and Tj are different, vi and
vj must be different:
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Figure 3.1: The illustration of abrupt changes in the target surface that is induced by the
use of inappropriate combination of representation and similarity measure.

Ti 6= Tj ⇒ vi 6= vj (3.1)

If we find two objects oi and oj that vi = vj and Ti 6= Tj, it is hard to find an appropriate

function f̂ .

Inappropriately using the combination of representation and similarity mea-
sure

As mentioned above, a small change in material structure can lead to significant change
in material physical property. Suppose that the change between two objects oi and oj is
defined by the Euclidean distance between vi and vj, denoted by deuc(vi, vj). Let consider
an example shown in Figure 3.1, when using inappropriate representation, deuc(A,B) and
deuc(A,C) are small while |TA − TB| and TA − TC are significantly large. This makes
estimating the TA based on TB and TC is imprecise. In general, inappropriately using
representation method can make the surface indicating the target property become rough,
and then makes similarity-based learning methods ineffective.

Suppose, with this representation, we use the cosine distance instead of Euclidean
distance. Thus, we have dcos(A,D) = 0 and dcos(A,D) < dcos(A,B), dcos(A,C). In
addition, TA = TD, so we can properly infer TA based on TD. That means the cosine
distance is more appropriate than the Euclidean distance for this representation.

We address the problem that similarity-based learning methods become ineffective
because of the inappropriate use of combination of representations and similarity measures
that poorly distinguish materials with significant differences in physical property values.
There are two potential approaches for solving this problem: (i) finding an appropriate
representation; (ii) finding an appropriate similarity measure for a given representation.
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To find an appropriate representation of objects, it requires the prior knowledge about
the nature of data. In fact, this knowledge is almost hidden, even though is out of
our knowledge, hence, finding an appropriate representation is extremely difficult. In
case of lacking prior knowledge, finding an appropriate similarity measure for a given
representation is a potential solution. In this study, we concentrate on this approach.

Objectives

For selecting an appropriate similarity measure, simply, we can use the performance of
existing similarity measures when they are used in instance-based learning methods. In
fact, this criterion is just applicable for selecting available similarity measures, and is
meaningless for interpreting and explaining the nature of data. Hence, we demand a
more informative criterion that helps to gain insight into the nature of data. In addition,
this criterion can be useful for designing new similarity measures.

3.4 Hypothesis on the influence of preserving the in-

stances distinction in their reference-based simi-

larity evaluation on the performance of similarity-

based learning methods

As mentioned above, we attempt to explore an informative criterion for similarity measure
selection, which is useful for gaining insight into the nature of data. In this section, we
aim to clarify how similarity measures preserve the distinction of two instances when
comparing them using a specific instance as a reference. In addition, we hypothesize the
dependency of similarity-based model performance on this characteristic.

3.4.1 A comparison between the Manhattan distance and Eu-
clidean distance in terms of their ability of preserving in-
stance distinction in the reference-based similarity evalu-
ation

We demonstrate the preservation of the distinction between two particular objects when
these objects are compared using another object as a reference by considering the Man-
hattan (1-norm) distance and Euclidean (2-norm) distance. As illustrated in Figure 3.2,
let S = {X|deuc(X,O) ≤ r} be the set of points X whose Euclidean distances to O are
smaller or equal than r; and S ′ = {X|dman(X,O) ≤ r} be the set of points X whose
Manhattan distances to O are smaller or equal than r. We compare two points A and
B only based on their distance to O, thus, O is known as a referenced point for this
comparison. By using the Euclidean distance, we see that A and B lost the distinction
because of deuc(A,O) = deuc(B,O). Meanwhile, by using the Manhattan distance, we
still preserve the distinction of A and B because of dman(A,O) = dman(B,O). Hence, we
conclude that the Manhattan distance preserves the distinction between A and B when
comparing them based on their distance to O, but the Euclidean does not.
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Figure 3.2: The comparison between the Manhattan distance and Euclidean distance
in terms of preserving the instances distinction when comparing these instances using
a referenced instance. Area of the blue square indicates the set of instances that the
Manhattan distance between these instances and O is smaller or equal than r. Area of
the red circle indicates the set of instances that the Euclidean distance between them and
O is smaller or equal than r.

3.4.2 The influence of preserving the instance distinction in
their reference-based similarity evaluation on the perfor-
mance of similarity-based learning models

Suppose that we need to estimate the target value at the instance O that is denoted by yO.
If r is small enough, S and S ′ are the sets of O’s neighbors determined by the Euclidean
and Manhattan distances, respectively. With neighbors in S (or in S ′), the value of yO
can be estimated as the following:

ŷO =
1

|S|
×
∑
X∈S

yX

=
1

|S|
×

( ∑
X+∈S+

yX+ +
∑

X−∈S−

yX−

) (3.2)

where S+ ⊂ S is the set of neighbors in S whose target values are greater or equal than
yO, yX+ = yO + σX+ with σX+ ≥ 0; S− ⊂ S is the set of neighbors whose target values
are smaller than yO, yX− = yO − σX− with σX− > 0. Let σS+ =

∑
X+∈S+

σX+ , and
σS− = −

∑
X−∈S− σX− . Actually, to precisely estimate yO, the ground truth is that the

sum of σS+ and σS− approaches to 0, σS+ + σS− ≈ 0. Hence, if O is an extremum, this
sum is significantly different from 0 because either S+ or S− is empty. Such situation is
undesirable in which we cannot estimate yO correctly.

As mentioned above, the use of inappropriate descriptor can induce the roughness of
the target surface. In other words, there has many abrupt changes of target values in the
neighboring region of O. In fact, these changes can produce the previously mentioned
undesirable situation in which the sum of σS+ and σS− is significantly different from 0,
consequently, the estimation of yO is inaccurate. Therefore, we should determine neigh-
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boring regions of O in which the changes of target values are as small as possible. If O is
an extreme point, we expect that the number of neighbors used for estimating yO is also
as small as possible.

Given the same value r, area of the neighboring region of O determined by the Eu-
clidean distance is larger than that determined by the Manhattan distance, as shown in
Figure 3.2. With the larger neighboring region, instances that have the small distance
to O but significantly different target values to O and other neighbors of O have a high
chance to be included in this region. By using the Manhattan distance that produces
a smaller neighboring region, this chance can be lowered. Hence, we hypothesize that
to improve the performance of similarity-based models for fitting rough target surface,
it is needful to select similarity measures that preserve the distinction of two particu-
lar instances when they are compared using a specific instance as a reference. However,
the exceedingly preserving this distinction can lead to the overfitting problem because
the number of neighbors used for inferring the target value at the instance of interest
is extremely small. This induces the low prediction performance. Hence, the function
indicating the dependency of the predictive performance on this distinction has an unique
extreme point. At this point, the prediction accuracy attains the highest value.

3.5 Protocol for validating the proposed hypothesis

We demonstrate the proposed hypothesis mentioned in previous section through the study
on selecting appropriate similarity measures used in instance-based learning methods for
predicting materials’ formation energies. To validate this hypothesis, we need to point
out the relation among: (i) the roughness of the target surface indicating the material
formation energy given a representation of materials; (ii) the loss of instance distinction
in reference-based similarity evaluation when using each similarity measure; and (iii) the
high formation energy prediction accuracy. To this end, we employ a protocol, in which
we attempt to quantify the loss mentioned in (ii), and to derive features indicating factors
(i) and (iii). This protocol takes into account several well-known material representations,
(dis)similarity measures, and similarity-based learning methods (e.g., k−nearest neighbors
regression, kernel ridge regression). In this section, firstly we introduce several well-
known material representations and dissimilarity measures that are used for evaluating
the similarity of objects. Next, we present about components in the proposed protocol in
detail.

3.5.1 Material representation (descriptor)

Material descriptors aim to represent or encode real materials into mathematical forms
for computation, in which, vector form is widely utilized, as shown in Figure 3.3. In
this study, we investigate three well-known material descriptors: orbital field matrix ;
Coulomb matrix ; and smooth overlap of atomic positions. To the best of our knowledge,
these descriptors often help to improve the performance of machine learning models for
predicting materials’ physical/chemical properties.
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Figure 3.3: Representing materials in the vector space.

Orbital field matrix

The orbital field matrix (OFM) is a novel descriptor that was proposed recently [59, 80],
which uses the valence atomic configuration to represent the structure of materials. In
the OFM descriptor, a material is assumed to be composed of building blocks that are
called local structures. Each local structure includes a central atom and its environmental
(or neighboring) atoms. First, each atom is represented by a one-hot vector based on a
dictionary of subshell orbitals: D = {s1, s2, p1, ..., p6, d1, ..., d10, f 1, ..., f 14}. We denote

the vector of the central atom by ~Ocentral, and the vector of the kth neighboring atom by
~Ok. Second, the vector representing the environment of each atom in a structure, ~Oenv,
is computed as follows:

~Oenv =
K∑
k

wk ~Ok, (3.3)

where the weight, wk, measures the contribution of the k neighboring atom, and K is the
number of neighboring atoms. The local structure is represented by a matrix, X, where
Xij represents the number of an environment atomic orbital (orbital j) coordinated with
a central atomic orbital (orbital i). Hence, the representation matrix of a local structure
is

X = ~OT
central × ~Oenv

= ~OT
central ×

( K∑
k

~Ok
θk
θmax

) (3.4)

where wk = θk
θmax

is the weight representing the contribution from atom kth to the coor-
dination number of the central atom; θk is the solid angle determined by the face of the
Voronoi polyhedral that separates the kth atom and the central atom; and θmax is the
maximum of all solid angles determined by this Voronoi polyhedral.

The distance rk between the central atom and the kth neighboring atom is incorporated
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in the representation of local structures as follows:

X = ~OT
central ×

( K∑
k

~Ok
θk
θmax

ζ(rk)
)
, (3.5)

where ζ(rk) = 1/rk is the distance-dependent weight function. Finally, the descriptor for
the entire material is a mean of descriptors for its local structures.

In an extension of the OFM, the information regarding the central atom is incorporated
by simply concatenating ~OT

central to the matrix X as a new column, as follows:

X = ~OT
central ×

(
1.0,

K∑
k

~Ok
θk
θmax

ζ(rk)
)

(3.6)

In this study, we use this extension to the OFM to predict crystals’ formation energies.

Coulomb matrix

The Coulomb matrix (CM) [88, 74] is a descriptor that encodes the structure of a material
using nuclear charges Zi and the 3D coordinates RRRi of each constituent atom in the
material, as follows:

Cij =

{
0.5Z2.4

i ∀i = j
ZiZj

|Ri−Rj | ∀i 6= j
(3.7)

To deal with the atom-ordering problem in CM, the authors used (i) the eigenspectrum
representation that first obtains eigenvalues of each Coulomb matrix, and then uses the
sorted eigenvalues (i.e., spectrum) as the representation, and (ii) sorted Coulomb matri-
ces that choose the permutation of atoms whose associated Coulomb matrix C satisfies
||Ci|| ≥ ||Ci+1|| ∀i where Ci is the ith row of the Coulomb matrix. In practice, padding
the Coulomb matrices by zero-valued entries is required in order to avoid the difference
in matrix size induced by the difference in the number of atoms in each material.

Smooth overlap of atomic positions

Smooth overlap of atomic positions (SOAP) [10, 26] is a descriptor that encodes regions
of atomic geometries by using local expansion of Gaussian smeared atomic density with
orthonormal basis functions based on spherical harmonics. This is based on the similarity
kernel between two environments of atoms which is defined as the overlap of the two local
atomic neighbor densities.

The output of this descriptor is a vector p(rrr), where the different elements are formed
from the partial SOAP power spectrum defined as1:

p(rrr)ZZ
′

nn′l = π

√
8

2l + 1

∑
m

cZnlm(rrr)†cZ
′

n′lm(rrr), (3.8)

where rrr is a atomic position in space; cZnlm are the expansion coefficients of the Gaussian
smoothed atomic density at position rrr that is expanded in the basis of spherical harmonics

1https://singroup.github.io/dscribe/tutorials/soap.html
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and orthonormal radial basis functions; n and n′ are indices for different radial basis
functions up to nmax; l is the angular degree of spherical harmonics up to lmax; Z and
Z ′ are atomic species. This form ensures stratification of the output by species and also
provides information about cross-species interaction.

3.5.2 Similarity measures of interest

Commonly, the similarity between two objects is assessed by estimating the difference
of two objects. There are various methods for quantifying the dissimilarity between
two objects. In dissimilarity measures, ones are called the distance if they satisfy all
conditions of a metric that include non-negativity, identity of indiscernibles, symmetry,
and triangular inequality. Besides, there are dissimilarity measures which are asymmetric
and do not obey the triangular inequality.

In this study, because materials are represented by numerical vectors, we focus on
distances or dissimilarity measures used for numerical vectors. Let u, v ∈ Rm be two
vectors, dissimilarity measures are essentially mathematical functions that take the vectors
u and v as their input then produce a scalar as their output. In our work, we investigate
several well-known distances and dissimilarity measures which are commonly used for
numerical vectors, as follows:

• p−norm distance

d(u, v) = ||u− v||p = (
m∑
i=1

|ui − vi|p)
1
p (3.9)

with p = 1, 2, 3 in which the 1-norm and 2-norm are known as the Manhattan and
Euclidean distances, respectively.

• Cosine distance
d(u, v) = 1− u.v

||u||2||v||2
(3.10)

Noting that cos(u, v) = u.v
||u||2||v||2 measures the similar between u and v.

• Bray-Curtis (B-C) dissimilarity: this is not a distance measure because it does not
obey the triangular inequality

d(u, v) =

∑m
i=1 |ui − vi|∑m
i=1 |ui + vi|

(3.11)

• Canberra distance

d(u, v) =
m∑
i=1

|ui − vi|
|ui|+ |vi|

(3.12)

• Chebyshev distance
d(u, v) = max

i=1,...,m
|ui − vi| (3.13)
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Figure 3.4: Directed graph showing the dependence of material descriptor, similarity
measure, and learning model on each other, and the dependence of them on the nature
of material data.

3.5.3 Dependency among data representation (descriptor), sim-
ilarity measure, and learning method

Typically, for designing an appropriate machine learning system for solving a mining task,
it is needful to consider the association among the data representation (i.e., descriptor),
the similarity measure, and the learning model. In addition, these factors must reflect the
nature of data. In this study, we demonstrate the association of the proposed criterion of
dissimilarity measures with the representation and learning model. This helps to interpret
and explain the performance of learning models with material datasets.

Regarding the association between data representation and learning model, in fact,
different representations make different locations of data instances, in other words, result
in different distributions of data instances. Hence, the shapes of the target function
corresponding to each data distribution are also different. In fact, understanding about
the shape of target function is useful to select learning models as well as their parameters.
In addition, the complexity of learning models also depends on the data representation
because it depends on the shape of target function. For example, if the data representation
results in a rough surface of the target function, we need high-complexity models for fitting
this surface.

Regarding the association between similarity evaluation and data representation, in
fact, the similarity is evaluated by dissimilarity measures which are essentially real-valued
functions taking two represented vectors as their input. Hence, obviously, selecting dis-
similarity measures depends on the nature of representation. In addition, as mentioned
above, data representations affect the distribution of data instance and the shape of the
target surface. Indeed, the shape of target surface affects the selection of appropriate
dissimilarity measures that we focus on clarifying in this study.

Regarding the association between the similarity evaluation and the learning model, so
far many machine learning methods have been developed based on similarity assessment
(inference) such as clustering, k−nearest neighbors, kernel methods, etc. These methods
are often called the instance-based (or distance-based) learning methods. Hence, the

23



selection of appropriate dissimilarity measures plays an important role that affects the
performance of these methods. In addition, in this study, we point out that dissimilarity
measures selection affects the model complexity in terms of kernel method.

Take into account the dependency among the data representation, similarity eval-
uation, and learning model is important for model interpretation and explanation. In
addition, this helps to select or design representations, measures for similarity evaluation,
and learning model for attaining high prediction accuracy. In this study, we investigate
dissimilarity measures based on analyzing their association with the nature of material
data, material representations, and instance-based learning models, which is shown in
Figure 3.4.

3.5.4 Protocol

To validate the proposed criterion of the nature of dissimilarity measures, we need to
derive features that indicate the three factors as mentioned above. The features are
shown in Figure 3.5 that include:

1. Sensitivity to the change of target values towards the change of instances

2. Likelihood of globally and linear approximating the target surface

3. Performance of k−nearest neighbors (KNN), and the number of neighbors of each
data instances determined based on the fixed-radius nearest neighbors.

4. Kernel ridge regression performance

The features 1, 2 are used for evaluating the roughness of the surface that indicates
the formation energy. The feature 3 is used for evaluating how dissimilarity measures
preserve the distinction of objects in context-based comparison. The features 3, 4 show
the performance of dissimilarity measures used in the instance-based learning methods.
These features indeed affect the performance of instance-based learning methods.

To evaluate the roughness of the target surface indicating the formation energies, we
estimate the sensitivity to the change of target values towards the change of instances by
counting the number of neighboring regions of instances in which there has the signifi-
cant change of target values. In addition, we evaluate the fluctuation amplitude of the
energy surface towards a hyperplane through the global linear approximation using ridge
regression.

We investigate the appropriateness of using dissimilarity measures in instance-based
approximating the rough target surface by interpreting the accuracy obtained when using
these measures in the k−nearest neighbors regression and kernel ridge regression. We ex-
amine various dissimilarity measures and kernel functions that are essentially constructed
from dissimilarity measures. We consider the k−nearest neighbors regression and kernel
ridge regression because these methods employ the local approximation of the target sur-
face in which identifying proper neighbors plays an important role that depends on the
dissimilarity measure or kernel function selection. Hence, we can evaluate the effectiveness
of dissimilarity measures or kernel functions in the association with the learning method.
By exploring the correlation between well-performing measures and their nature, we can
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Figure 3.5: Protocol for examining the correlation among: the roughness of target sur-
face indicating the material formation energies; the nature of dissimilarity measures as
mentioned in the proposed criterion; and the formation energy prediction accuracy.

validate the proposed criterion. The detail of methods used in this protocol is provided
in next sections.

3.5.5 Evaluating the roughness of the target surface

Sensitivity to the change of the target values towards the change of instances

Given a function y = f(x), the derivative of the function f measures the slope of the
surface indicating this function at each instance which is estimated by the ratio between
the change of y with respective to the change of x. This is denoted by ∆y

∆x
. Inspired of

this, we can investigate the change of target values in a neighboring region of each data
instance. In this context, the change of x, ∆x, is defined by the Euclidean distance from
each data instance to its closest neighbor because this distance indicates the geometrical
distance between two vectors. Let (xxx, y) with xxx ∈ Rd be an instance in the dataset, and
the instance (xxx′, y′) be the closest neighbor of xxx according to the Euclidean distance. The
ratio between the change of target values towards the change between xxx and x′x′x′ as the
following:

ChangeRatio(xxx,x′x′x′) =
y′ − y

deuc(xxx,x
′x′x′)
, (3.14)

where deuc(xxx,x
′x′x′) is the distance from xxx to x′x′x′.

Now we consider a neighboring region N of xxx that additionally contains x′′x′′x′′ where
deuc(xxx,x

′x′x′) < deuc(xxx,x
′′x′′x′′). Next we estimate the ChangeRatio(xxx,x′x′x′) and ChangeRatio(xxx,x′′x′′x′′),

and then count the number of neighboring regions N that satisfy one of following condi-
tions:
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• Change of sign: ChangeRatio(xxx,x′x′x′)× ChangeRatio(x′x′x′,x′′x′′x′′) < 0

• Change of magnitude:

ChangeRatio(xxx,x′x′x′)

ChangeRatio(x′x′x′,x′′x′′x′′)
≥ ζ or

ChangeRatio(x′x′x′,x′′x′′x′′)

ChangeRatio(xxx,x′x′x′)
≥ ζ

We consider this change is significant if ζ is at least 10.

These conditions indicate the sensitivity to the change of target values with respect to the
change of instances in N. Hence, given a dataset D with a representation r, we denote
the number of neighboring regions of instances that satisfy one of above conditions by the
SensitivityToChange(D, r).

3.5.6 Evaluating the likelihood of globally and linearly approx-
imating the target surface

Suppose that the roughness of the surface is caused by adding noise to a hyperplane:
f(x) = linear(x)+ε(x) where ε(x) is the noise. We locally approximate the function f(x)
by taking an average of target values at neighbors of each instance, or making a series of
local linear approximation, as the following:

f̂(x) =
1

Nk

∑
i∈Nk

yi ≈
1

N

∑
i∈Nk

〈w(Nk),x〉, (3.15)

where Nk is the set of nearest neighbors of x, and wNk is the linear coefficients obtained
when linearly fitting neighbors in Nk.

The the fluctuation amplitude of f(x) (as illustrated in Figure 3.6) values towards the
hyperplane is small, local linear functions can be replaced by a global one. In contrast,
we cannot find the global function that fits with the target surface. Hence, firstly we find
the most likely hyperplane that fits with the target surface f(x) using ridge regression.
The fluctuation amplitude of f(x) values towards this hyperplane is implicitly indicated
through the prediction accuracy when performing the ridge regression.

Ridge regression is a parametric model that approximates the energy function by a
linear function. In this method, the linear coefficients β are estimated to minimize the
penalized residual sum of squares, as the following:

RSS(λ) = (yyy −XXXβ)T (yyy −XXXβ) + λβTβ, (3.16)

where the matrixXXX is the input data, and λ ≥ 0 is a predefined parameter which indicates
an amount of coefficient shrinkage towards zero (weight decay). Ridge regression has the
following closed-form solution:

β̂ = (XXXTXXX + λIII)−1XXXTyyy, (3.17)

where III is the identity matrix.
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Figure 3.6: Illustration of the fluctuation amplitude of f(x) values towards a hyperplane.

3.5.7 K-nearest neighbors regression

K-nearest neighbors (KNN) is known as a “lazy learning” algorithm that predicts a
target value of an instance by averaging target values of nearest neighbors of this instance
without any assumption of the relation between this instance and its target value. Let
D = {(x1, y1), (x2, y2), ..., (xn, yn)} be a sample data that is generated from a function
y = f(x). KNN locally approximates this function by predicting new instances x′ as the
following:

f̂(x′) =
1

|Nk|
∑

(xi,yi)∈Nk

yi, (3.18)

where Nk ⊂ D is the set of k nearest neighbors of x′.
Fixed-radius nearest neighbors – Instead of determining the number of nearest

neighbors k, we can determine a neighboring region of each query point by a given prede-
fined distance threshold. Data points which fall in this region are considered the neighbors
of the query point. The target value at the query point is also estimated by taking an
average of target values at these neighbors. This method is called the fixed-radius nearest
neighbors regression [21].

3.5.8 Measuring the loss of instances distinction in their reference-
based similarity evaluation when using similarity measures

In instance-based learning methods, we need to compare each data instance with the
query instance to identify its neighbors. hence, we evaluate the similarity between two
instances based on their similarity to the query instance. In fact, the query instance here
is the reference for this comparison.

Inspired by the fixed-radius nearest neighbors method, and the intuition obtained by
investigating the Manhattan and Euclidean distances, when using a similarity measure,
we can measure the loss of the distinction between two instance where they are compared
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Figure 3.7: Illustration of the method used for estimating the loss of instances when they
are compared using a specific instance as a reference, which corresponds to the use of each
similarity measure.

using a referenced instance. Suppose that Q be an query instance that we aim to approx-
imate the target value at. We determine the closest instance to the query instance by
using a dissimilarity measure, and the distance (or dissimilarity) between these instances
is denoted by DMIN . To determine other neighbors of Q, we enlarge a region surround-
ing Q by a radius (1 + ε) × DMIN . This region is called the neighboring region of Q
because data instances belonging to this region ae considered the neighbors of this query
instance. The method is illustrated in Figure 3.7. In fact, different dissimilarity mea-
sures will determine different number of neighbors of a query instance given a ε. By this
method, we can evaluate the effectiveness of dissimilarity measures based on the number
of neighbors of the query instance they define.

Given a fixed value of ε for determining the neighboring region of the query instance
Q, data instances are distinct when they are compared using the query instance as a a
reference if there is a small number of instances that fall in such a region. On the other
hand, if those instances are not distinct, we will find a large number of instances falling
in this region. Inspired by this assessment, we propose a measure that quantifies how
similarity measures preserve the instances distinction in their reference-based similarity
evaluation. The loss of this distinction is defined by the average number of neighbors
corresponding to each query instance when given a value of ε that is denoted by the
DLoss. Taking a set of m random data samples DDD = {D1, ...,Dm} into acount, the
DLoss is estimated as the following:

DLoss =
1

|DDD|
∑
Di

1

ni

ni∑
j=1

νεj (3.19)

where ni is the number of instances in the data sample Di, νεj is the number of instances
falling in the neighboring region of each query instance xj (in the data sample Di) that is
determined by a given similarity measure and a value of ε. Note that the values produced
by different similarity measures need to be normalized into the range of [0, 1] via dividing
by the maximum value. Actually, the estimation of DLoss depends on the distribution of
a specific dataset. Therefore, to avoid this bias of the estimation, we use a set of random
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data samples. Larger the average number of neighbors determined by ε is, greater the
value of DLoss is.

When the surface indicting the target function is rough, the small number of neighbors
of an instance is preferred to use if this instance is an extreme point of the function. Hence,
dissimilarity measures that have small DLoss are appropriate in such a context. Although
different dissimilarity measures result in different ranges of values, in this method, they
share the common parameter ε. In other words, 1 + ε can be understood as the relative
value of these measures. As such, it is possible to compare these measures based on their
relative values.

3.5.9 Kernel ridge regression

Algorithm

Kernel ridge regression (KRR) is the dual form of the ridge regression solution (see the
detail in Appendix A). KRR aims to improve the performance of linear methods by
mapping instances from the original space (Hilbert space) to a higher-dimensional space
to obtain linearly separable patterns. Let φ be the mapping function which transforms
the data to the higher-dimensional space. In kernel method, because the computation of
pairwise dot product of instances in the new space is intractable, this is approximated
by kernel functions K(xi, xj) ≈ 〈φ(xi), φ(xj)〉, which form kernel matrices KKK (i.e., Gram
matrices).

KRR indeed makes a local approximation of the target function, in which kernel
functions play the role of similarity measures. Given a kernel matrix KKK, this method
aims to estimate the dual coefficients α based on this matrix. In each row ith of the
kernel matrix, an element in this row measures the similarity between ith instance (xi)
and another one (xj), denoted by s(xi, xj). The dual coefficients can be understood as
the weights corresponding to each s(xi, xj) which indicates how important to take xj
for approximating the target value at xi. Hence, there exists a subset of instances that
contributes to approximating the target value at the instance ith more significantly than
the others. The size of these subsets affects the locality level of the kernel matrix that
depends on the used kernel function which is constituted by the similarity measure and
the value of γ. Hence, we investigate how similarity measures preserving the distinction
of objects in comparison with the third one affects the locality of kernel matrix.

Kernel function

Kernel functions play an essential role in KRR. The radial basis function (RBF) kernel
and Laplacian kernel, which are constituted from the 2-norm and 1-norm distances, re-
spectively, have been widely used in many applications. The formulas of these two kernels
are as follows:

• RBF kernel (Krbf): K(xi, xj) = exp(−γ‖xi − xj‖2
2) where ‖xi − xj‖2 is the 2-norm

distance between xi and xj, and γ is a predefined scalar.

• Laplacian kernel (Klap): K(xi, xj) = exp(−γ‖xi − xj‖1), where ‖xi − xj‖1 is the
1-norm distance between xi and xj.
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In this work, we consider other kernel functions which are constructed from the 3-norm
distance, cosine distance, B-C dissimilarity, Canberra distance, and Chebyshev distance,
as follows:

• 3-norm-based kernel (Kmin3): K(xi, xj) = exp(−γ||xi − xj||3) where ||xi − xj||3 is
the 3-norm distance between xi and xj.

• cosine-based kernel (Kcos): K(xi, xj) = exp(−γ × dcos(xi, xj)) where dcos(xi, xj) is
the cosine distance between xi and xj.

• B-C-based kernel (Kbray): K(xi, xj) = exp(−γ× dbray(xi, xj)) where dbray(xi, xj) is
the Bray-Curtis dissimilarity between xi and xj.

• Canberra-based kernel (Kcan): K(xi, xj) = exp(−γ×dcan(xi, xj)) where dcan(xi, xj)
is the Canberra distance between xi and xj.

• Chebyshev-based kernel (Kche): K(xi, xj) = exp(−γ×dche(xi, xj)) where dche(xi, xj)
is the Chebyshev distance between xi and xj.

Model complexity

As mentioned above, inappropriately using representations (with the Euclidean distance)
induces the roughness of the target surface, hence, to approximate this surface, we need
high-complexity model. In fact, similarity measures used in kernel functions affect the
model complexity in KRR. Hence, we investigate the relation between similarity measures
and model complexity.

Model complexity is an important concept in model selection. In addition, it has the
association with the nature of data. For example, if the real target function (e.g., the
formation energy function) is rough with many local extreme points, the learning model
should be a non-linear function to avoid underfitting. Of course, the non-linear model is
more flexible and complex than simple linear ones. However, the high complexity of the
learning model can cause overfitting.

There is no strict definition of model complexity. Simply, the model complexity will
be related to the number of free parameters that the model requires for better fitting.
A complex model often requires more free parameters than a simple one. However, this
definition does not imply a one-to-one relationship between model complexity and the
number of parameters because parameters are not necessary to be equally important. For
example, in linear models, there is a subset of dimensions which are more important than
the rest. The complexity results in the flexibility of model, hence, two terms complexity
and flexibility can be exchanged.

The complexity of the model can be quantitatively interpreted by the degrees of free-
dom. The degrees of freedom are denoted by df and defined as the number of freely
varying parameters in the model (or function). In terms of model complexity, the greater
the number of free parameters is, the more complex the model is. For computation, the
degrees of freedom are defined as the trace of the first derivatives of ŷyy according to yyy as
follows:

df = tr

(
∂ŷ

∂y

)
, (3.20)
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where y and ŷ are the real target value and the estimated target value, respectively [55].
In KRR, because β̂ = XXXT (KKK + λIII)−1yyy (see Equation A.7 in Appendix A), we have:

ŷyy = XXXβ̂ = XXXXXXT (KKK + λIII)−1yyy,

= KKK(KKK + λIII)−1yyy.
(3.21)

Therefore, the model degrees of freedom in KRR, df(λ), are estimated as tr
(
KKK(KKK +

λIII)−1
)

. In fact, the locality of kernel matrix affects the model complexity that the

increase of locality makes the increase of model complexity.

3.6 Experiments and discussion

In this section, firstly we introduce several well-known material datasets used in our
work. This work focuses on predicting formation energy. Next, we demonstrate our in-
vestigations on the roughness of the energy surface over materials subject to material
representations. We derive features as mentioned in the proposed protocol for validating
the proposed hypothesis on the nature of dissimilarity measures. By using these features,
we show the correlation among the roughness of the energy surface towards a representa-
tion, the need of preserving the instances distinction in their context-based comparison,
and the high prediction accuracy. However, if the distinction of instances in context-based
comparison is preserved too much, it induces the lower performance of similarity-based
learning methods. Hence, we need to adjust DLoss to find appropriate dissimilarity
measures.

3.6.1 Material dataset

Open Quantum Materials Database

Open Quantum Materials Database (OQMD) [53, 89] is a well-known database of ther-
modynamic and structural properties of crystals that are calculated by using the Density
Functional Theory (DFT). In this study, we use a sample of 5967 crystals extracted from
this database that are magnetic materials based on rare earth-transition metal alloys.
The structures of crystals containing rare-earth and transition elements are almost di-
verse that induces a diverse range of electronic properties on account of interval magnetic
freedom [42, 67]. This dataset provides the information of chemical structure and lattice
of crystals.

QM7 dataset

The QM72 is one of well-known dataset that is widely used for molecular machine learn-
ing [14, 88]. It consists of totally 7165 stable organic molecules which contain heavy
atoms (e.g., C, N, O, S). This dataset provides the information of SMILES representation
of molecules and 3D coordinates of each atom in these molecules.

2http://quantum-machine.org/datasets/
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Table 3.1: Estimation of the SensitivityToChange(D), r

OQMD QM7
OFM CM SOAP OFM CM SOAP

SensitivityToChange(D, r) 70.7% 75.9% 73.3% 70.7% 79.5% 69.9%

Table 3.2: Performance of ridge regression with the material datasets and representations
of interest

Data Desc MAE RMSE R2

OQMD
OFM 0.188±0.007 0.06±0.01 0.968±0.004
CM 0.706±0.027 0.814±0.07 0.565±0.039

SOAP 0.201±0.012 0.094±0.026 0.95±0.015

QM7
OFM 8.546±0.429 134.824±22.973 0.997±0.001
CM 20.447±0.899 723.924±125.521 0.985±0.002

SOAP 80.708±4.623 14168.311±2876.64 0.714±0.048

3.6.2 Evaluating the roughness of the energy surface subject to
material representations

Sensitivity to the change of target values towards the change of instances

We estimate the value of SensitivityToChange(D, r) where D is the dataset of interest
(OQMD, QM7) and r is the material representation of interest (OFM, CM, SOAP). The
results are shown in Table 3.1.

Table 3.1 shows that most material datasets with representations of interest have
large value of SensitivityToChange(D, r) (almost greater or equal than 70%). Hence,
the energy surface are rough towards most material representations of interest.

Likelihood of globally and linearly approximating the target surface

Besides using the SensitivityToChange(D, r), we evaluate the fluctuation amplitude of
the energy surface towards the hyperplane determined by approximating this surface by
ridge regression. The likelihood of globally and linearly approximating the energy surface
can be used for evaluating the roughness of this surface. This likelihood is assessed based
on the prediction accuracy when performing ridge regression.

We perform the ridge regression with OQMD and QM7 datasets with the OFM, CM,
and SOAP representations. The prediction accuracy is indicated through three evalua-
tion metrics: the root mean squared error (RMSE), the mean absolute error (MAE), and
the coefficient of determination (R2). For an equitable assessment of the model and void
the overfitting of model, we employ an ensemble approach for model assessment by re-
peating the cross-validation ten times with randomly generated samples. The most likely
parameter in ridge model λ is chosen by performing grid search. The prediction accura-
cies obtained when performing ridge regression with the datasets and representations of
interest are shown in Table 3.2.

The measure R2 is not only useful for evaluating the linear fitting but also used as a
common criterion for comparing the performance of ridge regression with different datasets
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and representations. To qualitatively evaluate the fluctuation amplitude of materials for-
mation energies towards the hyperplane learned by ridge regression, we classify material
datasets with representations into three groups based on their corresponding R2, as fol-
lows:

• Extremely high R2: including the QM7-OFM and QM7-CM with R2 of 0.997 and
0.985, respectively. The QM7-OFM is more likely to be linearly approximated than
the QM7-CM because it results in much smaller MAE and RMSE than the QM7-
CM.

• High R2: including that OQMD-OFM and OQMD-SOAP with R2 of 0.968 and 0.95,
respectively.

• Low R2: including the OQMD-CM and QM7-SOAP with R2 of 0.565 and 0.714,
respectively.

3.6.3 Estimating DLoss

As mentioned in Subsection 3.5.8, the measure DLoss is used for indicating how dissim-
ilarity measures preserve the distinction of instances when comparing them based on a
context (the query instance). We estimate the values of DLoss corresponding to each
dissimilarity measure of interest with various values of ε, and then take an average over
these values as shown in Table 3.3.

3.6.4 K-nearest neighbors performance

We examine the appropriateness of each dissimilarity measures in predicting materials’
formation energies using KNN with various values k. For fairly assessing the model
performance, we employ ten-times ten-fold cross-validation with random samples. For
each material dataset and representation, we find the most likely dissimilarity measure
which is shown in Table 3.4. In addition, we also demonstrate the dependency of the
energy prediction accuracy obtained using KNN on the DLoss of dissimilarity measures,
as shown in Figure 3.8.

Relying on Table 3.4 and Figure 3.8, we derive several assessments as follows:

• The function indicating the tendency of the dependency of KNN performance on
the DLoss almost has an minimum with most material datasets and descriptors. As
mentioned Subsection 3.4.2, we argue that exceedingly preserving the distinction of
materials when comparing them using a referenced material can lead to overfitting,
and result in poor predictive performance. In addition, the significant loss of this
distinction also results in low performance where the target surface is rough. The
tendency shows the high likelihood of this hypothesis.

• With pairs of datasets and representations OQMD-OFM, OQMD-CM, OQMD-
SOAP, and QM7-SOAP, the fluctuation amplitude of energy values towards the
hyperplane learned by ridge regression is fair large because of low or high R2. For
these datasets and representations, the tendency function has an extreme point at
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Table 3.3: Estimation of DLoss corresponding to each dissimilarity measure of interest

Data & Desc Dissimilarity measure DLoss

OQMD-OFM

1-norm 2.01
2-norm 2.46
3-norm 2.92
cosine 1.66
B-C 2.06

Canberra 1.84
Chebyshev 4.35

OQMD-CM

1-norm 2.28
2-norm 2.47
3-norm 2.52
cosine 1.38
B-C 1.72

Canberra 2.08
Chebyshev 3.08

OQMD-SOAP

1-norm 3.3
2-norm 4.02
3-norm 4.76
cosine 3.06
B-C 3.3

Canberra 1.74
Chebyshev 5.44

QM7-OFM

1-norm 1.95
2-norm 2.08
3-norm 2.19
cosine 1.49
B-C 1.96

Canberra 2.11
Chebyshev 2.52

QM7-CM

1-norm 3.03
2-norm 3.27
3-norm 3.41
cosine 1.93
B-C 3.02

Canberra 4.84
Chebyshev 3.97

QM7-SOAP

1-norm 1.63
2-norm 1.69
3-norm 1.73
cosine 1.36
B-C 1.63

Canberra 1.71
Chebyshev 1.77
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Table 3.4: The most likely dissimilarity measure for effectively performing KNN with
material datasets and representations

Data Descriptor Dissimilarity measure

OQMD
OFM 1-norm, B-C
CM Canberra

SOAP B-C

QM7
OFM 2-norm
CM Canberra

SOAP 1-norm, B-C

Figure 3.8: The dependency of KNN performance (MAE) on the DLoss of the 1-norm
(man), 2-norm (euc), 3-norm (min3), cosine (cos), B-C (bray), Canberra (can), and
Chebyshev (che). The solid blue line indicates the tendency of this dependency.
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which, the prediction accuracy is largest. For example, the B-C dissimilarity and
1-norm distance almost result in the highest accuracy with most datasets and rep-
resentations of interest. With OQMD-OFM, the Canberra dissimilarity is the most
likely.

• With the QM7-OFM and QM7-CM, the fluctuation amplitude of energy values
towards the hyperplane learned by ridge regression is small (extremely high R2).
For these datasets and representations, using dissimilarity measures with larger
DLoss result in better performance than the others. For example, with QM7-OFM,
using the 2-norm distance with larger DLoss than the 1-norm distance and B-
C dissimilarity result in the highest accuracy. With the QM7-CM, the Canberra
distance with the largest DLoss results in the highest accuracy.

Relying on these assessments, we see that it is needful to make the trade-off between
the preservation of material distinction in reference-based similarity evaluation and the
loss of this distinction. When the target surface is rough with high fluctuation amplitude
towards the based hyperplane, we need to minimize the loss of this distinction. For the
surface with too small fluctuation amplitude, the preservation of this distinction is not
compulsory.

Kernel ridge regression performance

As mentioned above, KRR aims to smooth the energy surface by using kernel functions
which measure the similarity between data instance. Indeed, kernel functions are usually
constructed based on (dis)similarity measures. Hence, we can investigate similarity mea-
sures based on the performance of their corresponding kernel functions used in KRR. To
this end, we perform the KRR for material datasets and representations of interest with
various kernel functions. We determine the most likely hyperparameters of the model λ
and γ by performing grid search. To examine the likelihood of each pair of these hy-
perparameters, we also repeat cross-validation ten times with random samples. The full
prediction results are shown in Table 3.5. In addition, we show the most likely kernel
function when performing KRR with each dataset and representation in Table 3.6.

Similarly to KNN investigation, we examine the dependency of KRR performance on
the DLoss of each similarity measure used in each kernel function. The tendency of
this dependency is shown in Figure 3.9. We also see that the function indicating the
tendency with most material datasets and representations (excluding QM7-CM) has an
unique minimum. This again shows the high likelihood of the hypothesis mentioned in
Subsection 3.4.2.

As argued above, the use of inappropriate material representations (towards the Eu-
clidean distance) induces the roughness of the energy surface over materials. Therefore,
high-complexity models should be used for fitting this surface. To confirm this hypothesis,
we show the dependency of KRR accuracy on the model complexity that is quantified by
the degrees of freedom df(λ) in Figure 3.10.

Figure 3.10 shows that for the OQMD-OFM, OQMD-CM, OQMD-SOAP, and QM7-
SOAP, the model with high df(λ) almost results in better performance than the others.
Recalling that the energy surface of these datasets with these representations have large
fluctuation amplitude towards the based hyperplane. Hence, we see that for rough target
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Figure 3.9: The tendency (blue line) of the dependency of KRR perfor-
mance (MAE) on the DLoss of similarity measures used in kernel functions,
Klap, Krbf , Kmin3, Kcos, Kbray, Kcan, Kche.
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Figure 3.10: Dependency of KRR performance (MAE) on the model degrees of freedom
df(λ).
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Table 3.5: Formation energy prediction performance using KRR with different kernel
functions and descriptors for the OQMD and QM7 datasets, and the corresponding model
complexity (df(λ)).

Data &
Desc

Kernel MAE RMSE R2 df(λ)

OQMD-OFM

Krbf 0.124±0.007 0.037±0.005 0.98±0.01 1452.3±16.6
Klap 0.07±0.005 0.015±0.003 0.992±0.002 2067.3±11.3
Kmin3 0.224±0.015 0.142±0.023 0.9±0.1 2034.7±22.1
Kcos 0.122±0.007 0.033±0.006 0.982±0.003 1392±11
Kbray 0.067±0.006 0.015±0.003 0.992±0.002 2317.1±20.9
Kcan 0.084±0.005 0.021±0.004 0.989±0.002 2141.3±13.7
Kche 0.555±0.025 0.468±0.033 0.753±0.021 430.9±1.1

OQMD-CM

Krbf 0.245±0.019 0.179±0.047 0.906±0.023 656.5±10.4
Klap 0.182±0.014 0.099±0.018 0.945±0.012 1715.9±13.1
Kmin3 0.209±0.018 0.142±0.031 0.922±0.018 1918.5±16.2
Kcos 0.344±0.017 0.247±0.039 0.862±0.025 258.2±6.4
Kbray 0.17±0.02 0.106±0.024 0.944±0.013 2227±17
Kcan 0.177±0.016 0.105±0.022 0.941±0.014 1933.1±7.4
Kche 0.34±0.02 0.253±0.041 0.868±0.021 703.5±4.3

OQMD-SOAP

Krbf 0.145±0.01 0.055±0.01 0.971±0.005 1731.9±11.2
Klap 0.069±0.007 0.018±0.006 0.99±0.01 2258.3±17.7
Kmin3 0.186±0.015 0.097±0.015 0.949±0.007 1934.1±13.1
Kcos 0.172±0.009 0.068±0.009 0.964±0.005 1398.1±15.9
Kbray 0.068±0.006 0.017±0.004 0.99±0.01 2183.2±12.3
Kcan 0.088±0.008 0.026±0.006 0.987±0.003 2110±15
Kche 0.316±0.016 0.183±0.021 0.901±0.012 261.5±0.9

QM7-OFM

Krbf 5.6±0.4 68.2±16.9 0.999±0.001 905.8±6.4
Klap 5.1±0.4 78.5±24.2 0.998±0.001 2244.8±12.6
Kmin3 22.2±1.1 956±116 0.982±0.002 500.7±19.4
Kcos 21.2±1.7 1518.5±1116.1 0.969±0.028 981.8±9.6
Kbray 5.3±0.4 86.9±38.4 0.998±0.001 1814.8±11.1
Kcan 5.6±0.6 114.5±94.3 0.997±0.003 2229.3±15.5
Kche 109.1±4.9 17914.8±1284.1 0.633±0.036 36.5±1.9

QM7-CM

Krbf 15.5±0.9 498.2±88.5 0.99±0.01 1794.9±10.9
Klap 6.1±0.4 98.5±33.2 0.998±0.001 2308.9±14.1
Kmin3 23.2±1.8 1494.9±603.3 0.969±0.011 2253±10
Kcos 15.5±0.8 513±196 0.99±0.01 1572.9±4.7
Kbray 6.6±0.6 133.7±69.2 0.997±0.002 2445.4±11.5
Kcan 6.7±0.4 108.5±37.3 0.998±0.001 1893.3±10.1
Kche 44.9±2.8 5062.7±1165.2 0.898±0.021 1299.3±4.9

QM7-SOAP

Krbf 36.1±4.3 7862.5±3835.2 0.839±0.108 724±8
Klap 22±3 3928.1±1648.9 0.922±0.035 2386.2±15.1
Kmin3 37.7±6.2 11630.6±3713 0.758±0.078 2438±18
Kcos 40.5±4 7968±2407 0.84±0.04 587.6±8
Kbray 20.3±3.1 3463.1±1548.5 0.932±0.033 2387.7±19.9
Kcan 21.4±2.7 3524±1923 0.927±0.031 2416.8±15
Kche 119.1±5.4 24764.4±3089.4 0.491±0.037 13.7±0.138



Table 3.6: The most likely kernel function for effectively performing KRR with material
datasets and representations

Dataset Representation Kernel function

OQMD
OFM Klap, Kbray

CM Klap, Kbray, Kcan

SOAP Klap, Kbray

QM7
OFM Krbf , Klap, Kbray

CM Klap, Kcan

SOAP Kbray, Kcan

Table 3.7: Combining derived features from empirical experiments for validating the
effectiveness of the proposed criterion

Data Desc
Surface roughness

DLoss∗ Model complexity∗
SensitivityToChange(D, r) R2

OQMD

OFM large high small high
CM large low small high
SOAP large high small high

QM7

OFM large extremely high large low or high
CM large extremely high large low or high
SOAP large low small high

surface, using kernel functions which induce the high model complexity is the most likely
for fitting. In addition, these kernel functions are often constructed from dissimilarity
measures with small DLoss.

For the QM7-OFM and QM7-CM, the energy surface have too small fluctuation ampli-
tude towards the based hyperplane, hence, using kernel functions which induce the small
model complexity can provide the better performance. For example, for QM7-OFM, RBF
kernel is the most likely, and for QM7-CM, using the Kcan that makes low-complexity
model provides the highest accuracy.

3.6.5 Combining derived features and make induction rule for
effectively using dissimilarity measures for material datasets

A series of our investigations based on the proposed protocol (as presented above) indeed
derives qualitative features indicating the roughness of the energy surface, the nature of
dissimilarity measures as mentioned in the proposed criterion, and the prediction accuracy.
We combine these features as shown in Table 3.7. Relying on this table, we draw the tree
indicating the rule for appropriately using dissimilarity measures for fitting the energy
surface, as shown in Figure 3.11.

The combination of derived features show the correlation among the roughness of
target surface given a representation, the need of preserving objects distinction in context-
based comparison when using dissimilarity measures, and the high prediction accuracy.
In other words, it shows the high potential of our proposed hypothesis on the nature of
dissimilarity measures and the importance of considering this nature in similarity-based

39



Fluctuation	  amplitude	  towards	  
the	  based	  hyperplane	  

small	  
𝐷𝐿𝑜𝑠𝑠 large	  𝐷𝐿𝑜𝑠𝑠

small
(Extremely	  high	  𝑅&)

not	  small
(low	  or	  high	  𝑅&)

High-‐complexity	  
model

Improve	  the	  
performance

Figure 3.11: Derived rules for appropriately using dissimilarity measures for predicting
formation energies.

learning.

3.7 Learning the distance between materials

To deal with the problem that measuring the similarity based on data representation
is not compatible with the real similarity of target values, we use the distance metric
learning (DML) to learn a suitable Mahalanobis distance between instances by taking
the target variable into account. By using this measure, close instances (according to
this similarity measure) in the representation space will have the similar target values,
and vice versa. Learning the Manhalanobis distance is the original space is equivalent
to learning a linear transformation of original instances. In other words, we expect that
the Euclidean distance between two transformed instances will be consistent with the
difference/similarity of their target values.

The DML learns the distance that fits with the relation between instances in a specific
dataset, and aims to improve the performance of similarity-based learning models for this
dataset. Therefore, we can use DML to confirm whether finding an appropriate similarity
measure between materials for effectively predicting their formation energies will result
in the high complexity of learning model.
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3.7.1 Introduction to distance metric learning

DML is a branch is machine learning that aims to explore an appropriate distance between
instances in a given dataset. It is widely used for improving the performance of similarity-
based methods and dimensionality reduction [24]. The motivation of DML is that the
distance measured instances is not compatible with the difference of their target values,
so it attempts to enhance the consistency between them. The idea of DML originates
from the definition of the Mahalanobis distance that is defined as the following:

dM(x, y) =
√

(x− y)TM(x− y) (3.22)

where M is a positive definite (or semidefinite) matrix. Note that when M = I, the
distance dM(x, y) is the Euclidean. Because M is symmetric positive semidefinite matrix,
it can be decomposed into its Cholesky factors as M = LTL. Hence, alternatively, we can
re-write the Equation 3.22 as dL(x, y) = ||L(x−y)||2. Given an objective, DML can learn
an appropriate distance between instances for fitting with this objective by adjusting the
matrix L.

There are many methods for learning the Mahalanobis distance between instances
in a given dataset that depend on a specific purpose. The original method to learn
the Mahalanobis distances proposed by Xing et al., which is called probabilistic global
distance metric learning [101]. For improving the performance of k-nearest neighbors
classification, Goldberger et al. proposed the neighborhood component analysis (NCA)
that attempts to optimize the leave-one-out error on the training set [35]. In addition,
Wang et al. proposed the method called average neighborhood margin maximization
(ANMM) [96], and Weinberger et al. proposed the method called large margin nearest
neighbors (LMNN) [98]. Recently, Ying et al. formulated the DML as an eigenvalue
optimization problem [103].

In this study, we investigate two well-known DML methods: neighborhood component
analysis (NCA); and large margin nearest neighbors (LMNN). These methods are used
for improving the performance of k-nearest neighbors.

3.7.2 Neighborhood component analysis (NCA)

NCA [35] is a distance metric learning algorithm which aims to minimize the leave-one-
out error expected by the nearest-neighbors classification. We consider the training set
X = {x1, x2, .., xN} ⊂ Rd with labels y1, ..., yn. The goal of NCA is to determine a linear
transformation L to optimize the leave-one-out error. However, the leave-one-out error is
non-smooth function subject to the linear transformation L, so it is difficult to minimize
this function directly. Alternatively, NCA solve this problem in a stochastic way. Given
two instances xi, xj ∈ X, the probability that xi has xj as its nearest neighbor is defined
via their distance as the following:

pLij =
exp(−||Lxi − Lxj||2)∑
k 6=j exp(−||Lxi − Lxk||2)

(j 6= i),

pLii = 0

(3.23)
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The probability that xi is correctly classified is defined as the sum of probabilities that
xi and its nearest neighbors have the same label, that is:

pLi =
∑
j∈Ci

pLij, where Ci = {j ∈ {1, ..., N} : yj = yi}. (3.24)

We define the expected number of correctly classified instances, and try to maximize the
this function as the following:

f(L) =
N∑
i=1

pLi =
N∑
i=1

∑
j∈Ci

pLij =
N∑
i=1

∑
j∈Ci

exp(−||Lxi − Lxj||2)∑
k 6=i exp(−||Lxi − Lxk||2)

(3.25)

This function is differentiable, and we can compute its first derivative as the following:

5f(L) = 2L
N∑
i=1

(
pLi

N∑
k=1

pLikOik −
∑
j∈Ci

pLijOij

)
, (3.26)

where Oij = (xi−xj)(xi−xj)T . Since the gradient is known, we can optimize the objective
function using a gradient descent method.

3.7.3 Large margin nearest neighbors (LMNN)

Large margin nearest neighbors (LMNN) [98] is a metric learning algorithm that learns
a Mahalanobis distance metric for improving the accuracy of k-nearest neighbor classifi-
cation. As mentioned above, learning the Mahalanobis distance is equivalent to learning
a projection matrix L (M = LTL) of the original data. To improve the performance of
KNN, k nearest neighbors are expected to share the same label, thus, LMNN targets to
learn a distance between instances to maximize the number of instances which share its
label with as many neighbors as possible.

Let X = {x1, x2, ..., xN} ⊂ Rd be a dataset with corresponding labels y1, y2, ..., yN .
Given a instance xi ∈ X , considering k nearest neighbors of xi (Nk), if a neighbor xj ∈ Nk

has the same label with xi, it is called a target neighbor of xi, denoted by j  i. In such
neighbors, a neighbor xl is called an impostor of xi and xj if it has different label from
xi and xj (yl 6= yi = yj), and satisfies the constraint ||xi − xl||2 ≤ ||xi − xj||2 + 1 where
j  i. In fact, each sample xi has a margin for its neighbors which are expected to have
the sample label with xi, but impostors invade this margin. The target neighbors and
impostors of a given instance are illustrated in Figure 3.12.

There are two optimization goals in LMNN. The first goal is to minimize the Maha-
lanobis distance between an instance of interest and its target neighbors as the following:

εpull(M) =
∑
i,j i

DM(xi, xj)

⇔ εpull(L) =
∑
i,j i

||L(xi − xj)||
(3.27)

where, M = LTL, and DM(xi, xj) denotes the squared distance with respect to the
Mahalanobis metric M . The second goal is to penalize small distances between differently
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Figure 3.12: Graphical description of target neighbors and imposters in the large margin
nearest neighbors algorithm.

labeled instances. That means increasing the distance between the instance of interest
and its impostors. The second objective is formulated as follows:

εpush(M) =
∑
i,j i

∑
l

(1− yil)
[
1 +DM(xi, xj)−DM(xi, xl)

]
+

⇔ εpush(L) =
∑
i,j i

∑
l

(1− yil)
[
1 + ||L(xi − xj)||2 − ||L(xi − xl)||2

]
+

(3.28)

where the term [z]+ = max(z, 0), yil = 1 if and only if yi = yl, and yil = 0 otherwise. The
objective function of LMNN is the combination of two goals, as follows:

ε(M) = (1− µ)εpull(M) + µεpush(M)

= (1− µ)
∑
i,j i

DM(xi, xj) + µ
∑
i,j i

∑
l

(1− yil)
[
1 +DM(xi, xj)−DM(xi, xl)

]
+

(3.29)
where µ ∈ [0, 1] is the weight parameter. For minimizing ε(M), we can solve by using
a semidefinite program (SDP) that is a linear programming incorporating an additional
constraint on a symmetric positive semidefinite matrix. To this end, the optimization in
Equation 3.29 needs to be formulated as a standard form of SDP by additionally using
slack variables {ξijl} for all triplets of target neighbors (j  i) and impostors. This
minimizes the following function:

(1− µ)
∑
i,j i

(xi − xj)TM(xi − xj) + µ
∑
i,j i,l

(1− yil)ξijl, (3.30)

subject to:

1. (xi − xl)TM(xi − xl)− (xi − xj)TM(xi − xj) ≥ 1− ξijl

2. ξijl ≥ 0

3. M � 0
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Table 3.8: Formation energy prediction performance by using KNN for the original and
LMNN-based and NCA-based transformed data.

Dataset & descriptor X XLMNN XNCA

OQMD-OFM
MAE 0.286±0.003 0.277±0.003 0.266±0.003
R2 0.898±0.003 0.903±0.003 0.911±0.003

OQMD-CM
MAE 0.265±0.004 0.261±0.004 0.277±0.004
R2 0.904±0.004 0.907±0.004 0.896±0.004

AB Compound
MAE 0.325±0.026 0.283±0.018 0.278±0.028
R2 0.81±0.03 0.835±0.021 0.832±0.043

3.7.4 Model complexity investigation with the learned distance

Notation

As mentioned above, learning a Mahalanobis distance for instances in a dataset is equiv-
alent to learning a projection matrix L of these instances. Hence, we perform KNN and
KRR for transformed data then compare the performance with the original one. Let
X be a data sample. The instances in this sample are transformed to a new space by
using LMNN and NCA, and then we denote transformed sample by XLMNN and XNCA,
respectively.

Experiments

We use the OQMD dataset with the OFM and CM descriptors, which are denoted by
OQMD-OFM and OQMD-CM, respectively. In addition, we take the AB compound
dataset [48] into account that consists of 239 binary AB materials (A elements are metallic
atoms and B elements are metalloids and non-metallic atoms) described by 17 features.

Because the LMNN and NCA work with discrete target values (labels), we divide
formation energies (continuous variable) into bins, and then assign a label for each bin.
For OQMD dataset, we divide the formation energies into 500 bins. For the AB compound
dataset, we divide energies into 20 bins. We project X on a new space with preserving
the original number of dimensions.

To evaluate the appropriateness of learned Mahalanobis distance, we perform KNN
(with using the Euclidean distance) for the transformed data, and then evaluate based on
the accuracy. The accuracies when using KNN for X, XLMNN , and XNCA are shown in
Table 3.8. This table shows that in general, the LMNN and NCA make the improvement
in predicting formation energy by using KNN.

Next, we perform the KRR using RBF kernel for transformed data XLMNN and XNCA,
and then also compare their prediction accuracy with that of the original data. The
accuracies obtained when performing KRR for the original data and transformed data
are shown in Table 3.9. In addition, we measure the model complexity of KRR with these
samples by estimating model degrees of freedom (denoted by df(λ)). The table shows that
with the Mahalanobis distance learned by using LMNN, we obtain the higher prediction
accuracy. Meanwhile, we obtain a lower accuracy by using NCA.

Besides showing the improvement of prediction accuracy when using KRR with LMNN,
Table 3.9 also shows that LMNN implies the increase of model complexity with all datasets
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Table 3.9: Formation energy prediction performance using KRR for the original and
LMNN-based and NCA-based transformed data.

Dataset & descriptor X XLMNN XNCA

OQMD-OFM
MAE 0.113±0.001 0.109±0.001 1.077±0.01
R2 0.987±0.001 0.987±0.001 -0.075±0.019
df(λ) 2132.017 2679.793 5953.459

OQMD-CM
MAE 0.245±0.006 0.212±0.005 0.769±0.005
R2 0.916±0.008 0.93±0.01 0.278±0.007
df(λ) 711.061 1041.639 4501.203

AB Compound
MAE 0.179±0.017 0.156±0.011 0.256±0.017
R2 0.938±0.013 0.945±0.007 0.869±0.024
df(λ) 128.059 234.003 227.273

of interest. Obviously, the learned distance, used for constructing the kernel matrix, in-
duces the increase of model complexity and is appropriate for approximating the energy
surface of materials. It is consistent with our investigations as presented in previous
sections.

Extremely high complexity of model may cause overfitting that results in a poor pre-
diction accuracy. The experiment shows that the use of NCA makes the model complexity
exceedingly high, so KRR poorly performs with XNCA.

3.8 Chapter summary

We address an important problem in machine learning that the similarity measure based
on objects’ representation is not consistent (compatible) with the similarity of their target
values. It makes the roughness of target function. In case the representation is not
ideal, selecting appropriate similarity measures can help to improve the performance in
predicting target values. To effectively fitting rough target function, we hypothesize that
similarity measures need to preserve the distinction of two objects in comparison with the
third one. In other words, the distinctiveness of pairwise comparison in triplet of objects
needs to be preserved. We demonstrate and verify this hypothesis by carrying out a
study on measuring similarity between materials serving the formation energy prediction.
We employ a protocol that incorporates various methods for investigating the roughness
of target function and similarity measures, and the distance metric learning to verify
this hypothesis. In addition, various material dataset and descriptors are also taken into
account for verifying the generalization of the proposed hypothesis. The experimental
results indicates high likelihood of our proposed hypothesis. Relying on this, we establish
general principles for effectively using similarity measures for mining material data, which
do not depend on a specific learning model.
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Chapter 4

Reference Diversification in
Analogy-based Causality Inference

4.1 Introduction

In this chapter, we present our work on using analogy-based approach for causality infer-
ence through a study on assessing the cause of adverse drug reactions (ADRs) by using
the analogy criterion - one of nine criteria proposed by Bradford Hill for causality as-
sessment in medicine. This criterion states that similar drugs can cause similar ADRs,
hence, if we observe an ADR that has the association with two similar drugs, it is likely
to be caused by these drugs. In this context, we use similar drugs as a reference for
confirming the causal relation between the drug of interest with an ADR. By using the
similarity-based causality inference, we have chance to recognize confounding factors that
are caused by polypharmacy. Confounding factor here are non-causal drug-ADR pairs,
which are coincidentally and frequently observed in the treatment period.

In this work, we present a drug by two main attributes: (i) its mechanism of actions
and targets; and (ii) list of associated ADRs that is resulted from the use of this drug
in practical treatment. We model the analogy criterion as the voting process of similar
drugs for the existence of causal relationship between a pair of drug-ADR of interest. The
conflict in voting, which is exploited for eliminating non-causal pairs, is resulted from
the the difference of similar drugs according to the second attribute. Hence, we propose
methods for selecting groups of similar drugs that maximize the diversity of these groups
according to the second attribute.

4.2 Overview of pragmatic clinical trials

Clinical trials that are often carried out before a drug is approved to be marketed
cannot cover all possible responses to this drug because these trials are conducted on
non-representative patient cohorts and under ideal and controlled conditions. In practi-
cal treatment, the drug-drug interaction and overdose can lead to unpredictable effects.
Therefore, to enrich knowledge about these effects as well as to manage the drug risks, the
need of a long-term administration on the entire population is inevitable. This admin-
istration is called post-marketing pharmaceutical surveillance, a.k.a. pragmatic clinical
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trials (PCT) [16, 31, 43, 113].
PCT has been promoting a new paradigm shift in epidemiology and drug safety [75].

The main purpose of PCT is to relatively evaluate drug effectiveness in real-world treat-
ment where the diversity and evolution of circumstances may lead to an occurrence of
unintended adverse drug reactions (ADRs). The risk of drugs is evaluated by determining
the association between these drugs and observed ADRs during the treatment period.

Most studies on PCT have been based on textual data which includes clinical notes
and patients’ reports. Several spontaneous reporting systems (SRS) were early established
to collect information about ADRs from patients, physicians, and pharmacists. These
systems help to accelerate the process of detecting unknown ADRs with an effective
cost [23, 40, 46]. However, spontaneous reports, which are almost collected from patients,
do not fully meet requirements for effectively assessing drug-ADR causality since ADRs
described by patients are bias and incomplete.

Recently, the use of electronic medical records (EMRs) has been encouraged, which is
expected to overcome limitations of SRS. This data source provides objective descriptions
about patient treatment progress that helps to improve the quality of PCT [23, 94].
In addition, EMRs can help to discover unknown ADRs. However, because this data
describes real-world treatments with the co-occurrence of multiple events, it can makes
confusions when assessing the causal relationship between drugs and ADRs. This raises
a big challenge in PCT when using EMRs.

The key problem in PCT is to assess the causality ADRs based on reasonable evi-
dences [32]. This helps to estimate the risk of drugs for early preventing the recurrence of
medical failure in the future [81]. For assessment, it is needful to estimate the likelihood
a drug will be responsible to an ADR [30, 60].

Essentially, the causality assessment is PCT is a phenotype-based (or observational)
study. Hence, this cannot guarantee the truth of discovered causal relations between
drugs and ADRs because we cannot clarify the biologically causal mechanism under these
relations from textual data. In vivo and in vitro test are further required for intensively
confirming drug-ADR relations found by PCT. However, PCT is needful because people
have not known all ADRs and have not fully understood how ADRs are caused, so PCT
helps to highlight suspicious drug-ADR pairs which are likely to have causal relationship.
Drug-ADR causal relations recommended by PCT can help to reduce cost of confirmation
steps.

For treatment, particularly, for elderly patients, polypharmacy is usually required for
the longer life expectancy and co-morbidity [34]. In several cases, the polypharmacy can
be used for reducing side effects of several medications [66, 44]. However, the unnecessary
polypharmacy can result in negative consequences such adverse effects, drug-drug and
drug-disease interactions [90, 38, 71, 39]. When combining multiple medications, adjusting
doses of medications plays an important role. In fact, physicians may reduce doses of
drugs [65, 61, 62]. However, medical errors can result in the overdose of medications
which can lead to appearance of ADRs [15]. Polypharmacy makes a big challenge in
detecting drugs which actually cause observed ADRs when multiple drugs are prescribed
simultaneously for treating co-morbidities.
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4.3 Confounding caused by polypharmacy

4.3.1 The importance of considering confounding for avoiding
bias in medicine

Much of epidemiology and social science research is devoted to estimation of causal ef-
fects and testing causal hypothesis using non-experimental data. In such effort, issues of
confounding will invariably arise [37]. Confounding refers to the bias in estimating causal
effects which is informally described as a mixing of effects of extraneous factors (called
confounders) with the effect of interest. This definition has been widely used in studies
in epidemiology and sociology. Confounding factors may mask an actual association, so
it causes the false estimation of the treatment-outcome association when there is no real
association between them. The existence of confounding factors in observational studies
makes a difficulty to establish a clear causal link between treatment and outcome. In [92],
several general characteristics of confounding factors were discussed that include: (i) a
confounding factor is predictive a the outcome, even in the absence of the exposure; (ii)
a confounding factor has the association with the exposure being studied but is not the
result of the exposure; and (iii) a confounder cannot be an intermediate between the
exposure and the outcome.

In general, the concept of confounding is mathematically quantified by considering the
distribution of the outcome in a specific population. Suppose that the objective here is
to determine the effect of applying a treatment or exposure x1 for the population A with
the distribution of the outcome parameterized by µA1. In addition, another treatment
x0 is also applied for the population A with the outcome distribution denoted by µA0.
For example, the population A could be a cohort of breast-cancer patients, treatment
x1 could be a new hormone therapy, and x0 could be a placebo therapy. The outcome
distribution µ could be the expected survival or the five-year survival probability in the
cohort. The causal effect of x0 relative to x1 is defined as the change from µA1 to µA0 that
could be measured by µA0 − µA1 (or by µA0

µA1
). Suppose, however, additionally considering

a population B under the treatment x0, we expect that the outcome distribution of x0

on these populations is the same, i.e., µA0 = µB0. We say confounding is present if we
observe that µA0 6= µB0. The population B is called a control or reference population.

The confounding should be considered and controlled in design and implementation
of study. To avoid confounding, a common approach is to use a reference population B,
however, such a population may be difficult or impossible to find, so the constructions
of this are demanded that is called design-based methods. Besides, confounding can be
controlled by analytic adjustments which are based on observed covariate distributions in
the compared populations [37]. Inspired by this, we need the reference in assessing the
cause of ADRs with the aim of controlling confounding.

4.3.2 Definition of drug-ADR association

Before addressing the issue of confounding factors in drug-ADR causality assessment, we
define the association between drugs and ADRs. Note that the association between drugs
and ADRs does not means that they have the causal relationship. In fact, there is only a
subset of these associations that have causal relation.
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Table 4.1: An example of prescriptions in EMRs.

SUBJECT ID HADM ID START DATE END DATE DRUG

57139 155470 12/27/85 1/11/86 Heparin
57139 155470 12/28/85 1/11/86 Rifaximin

Let X and Y be a set of drugs prescribed for a specific patient cohort and a set of ADRs
observed, respectively. For treating a given patient, a drug x ∈ X is being prescribed
from tstartx (the time of starting using the drug) to tstopx (the time of stopping using the
drug). An ADR, denoted by y ∈ Y , then is observed at the time ty. The drug x is
suspected to cause the ADR y, denoted by x→ y (x is followed by y), if ty ∈ (tstartx , tstopx ).
In other words, we say that the drug x and the ADR y have an association. Suppose, we
do not know the biologically causal mechanism under such an association, so we predict
the causative relationship between this drug-ADR pair based on the frequency of its
co-occurrence although the co-occurrence frequency does not reflect the causality. Each
drug-ADR association is considered as a candidate for the causality assessment.

4.3.3 Polypharmacy-induced confounding definition

In practical treatment, patients are often admitted to the hospital with a presence of sev-
eral diseases (co-morbidity) that requires the use of several drugs for curing at the same
time. The use of multiple drugs can be risky because of accidents caused by the drug-drug
or drug-disease interaction, and overdose. The prescriptions, treatment progress, and ob-
served adverse events can be noted in EMRs that can help with taking a chance to find
the cause of such adverse events. However, we just observe a mixture of drugs’ effects
which are noted in clinical notes. Tables 4.1 and 4.2 show an example of prescriptions
and clinical notes which contain treatment information of a patient whose id is 57139.
Clinical notes mention about ADRs observed during the treatment. Note that the date in
the tables has the format of mm/dd/yy where the year are encoded for de-identification.
Relying on the information in these tables, we can draw a diagram indicating the progress
of treatment by using Heparin and Rifaximin with the time of observing ADRs (“abnor-
mally deep breathing”, “coughing”, and “erythema”) as shown in Figure 4.1.

As illustrated in Figure 4.1, a mixture of drugs’ effects are observed when multiple
drugs are being prescribed, which raise the problem of confounding in assessing the causal
relation between drugs and effects. In fact, we have no information of single drug used
in EMRs and may lack the domain knowledge to predict causal drug-ADR pairs. Hence,
there is a huge space of all possible drug-ADR associations for assessment. For example,
since Heparin and Rifaximin are co-prescribed, there are totally six associations between
these drugs and observed ADRs (candidates) for assessment. These candidates include
non-causative associations, e.g., Rifaximin and erythema because erythema is not caused
by Rifaximin. The lack of strict evidences to distinguish causal drug-ADR pairs from
non-causal ones, and the coincidental and frequent co-occurrence of non-associated pairs
make most of associated-based methods unsuccessful in causality assessment.

Non-causal drug-ADR pairs, which frequently co-occur, are called polypharmacy-
induced confounding factors [77]. Confounding factors make a distortion in measuring
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Table 4.2: An example of clinical notes in EMRs. Terms indicating ADRs are italic.

SUBJECT ID HADM ID DATE CATEGORY TEXT

57139 155470 12/30/85 Nursing His symp-
toms gradually
worsened with
erythema.

57139 155470 12/29/85 Nursing Pt has episode
of coughing
with abnormal
deep breathing.
Erythema was
observed.

12/27/85 12/28/85 12/29/85 12/30/85 1/11/86

Heparin

Rifaximin

erythema

erythema
coughing

abnormal?deep?
breathing

Figure 4.1: The diagram indicating the treatment progress which is extracted from Ta-
bles 4.1 and 4.2. The red and blue lines indicate the period that Heparin and Rifaximin
are being prescribed.
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the drug-ADR causality [68, 95].
In principle of causality perception, an action has a causal effect on a response if the

response changes when the action changes while everything else remains unchanged [4].
Therefore, isolating causal mechanism is the basis to draw conclusions about the causal
relationship between a presume cause and an effect. In pre-marketing clinical trials, it
is feasible to isolate the interaction between a drug of interest and an ADR of interest
because we can design ideal circumstances with selective and controlled conditions. Nev-
ertheless, no information of single drug utilization is given in EMRs that makes isolating
the causal mechanism in PCT infeasible. Hence, we need mechanisms to control and avoid
confounding factors for effectively predicting the causal relationship.

4.4 Previous studies on ADR causality assessment

The methods for assessing causality of ADRs so far vary from the expert-judgment-based
methods to the probabilistic and algorithmic methods [1, 3]. Several algorithms were
early developed to assess the cause of ADRs, which measure the association between
drugs and ADRs based on designing a series of criteria or questionnaires and counting
yes/no answers. These algorithms were reviewed in [1, 29] in which the Naranjo algorithm
has been disseminated for evaluating the drug-outcome causality [78]. Additionally, the
genetic algorithm was designed as a quantitative method and utilized in several ADR
assessment systems [54]. The methods following the algorithmic approach can reduce the
disagreement and uncertainty in the assessment, but narrow down the searching space for
possible causal relations, particularly, for searching unknown relations.

To overcome the limitation of the algorithmic approach, methods, which estimate drug-
ADR associations by using the co-occurrence-based statistics from textual data, aim to
enlarge the search space of drug-ADR causal relations and capture the uncertainty. So
far, various measures have been developed to quantify the drug-ADR associated strength
that were reviewed in [82]. Liu et al. measured the drug-ADR associations by using
the log-likelihood ratio on drug reviews [64]. Several methods base on the contingency
table such as the χ2 test [20, 97], the reporting odd ratio (i.e., ROR, ROR05) [112].
For longitudinal databases, temporal association rules can be used for representing drugs
followed by ADRS in a predefined time interval. The rule strength can be calculated
via several measures commonly used in association rule mining such as: confidence (i.e.,
conf), leverage, unexlev (in the MUTARA algorithm), and RankRatio (in the HUNT
algorithm) [49, 50, 51]. In addition, Harpaz et al. proposed a novel measure called the
relative reporting ratio (i.e., RR) [41]. Noren et al. developed the observed to expected
ratio algorithm with the information component measure (i.e., IC) [79]. There are two
main drawbacks of methods following this approach such that: (i) non-associated drug-
ADR pairs, which are coincidentally and frequently observed, will be wrongly identified
because of the polypharmacy-induced confounding; and (ii) these methods cannot retrieve
infrequently observed drug-ADR associations.

Besides using the temporal association rule, Bayesian network was also utilized to
produce probabilities which indicate the likelihood that a drug-ADR pair is associated for
assessing the drug-ADR causal relationship [11, 87]. In this method, the network structure
needs to be declared beforehand by experts. Zitnik et al. utilized the graph convolutional
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networks for modeling polypharmacy side effects based on constructing a multimodal
graph of protein-protein, drug-protein, and drug-drug interactions [111]. Bansal et al.
addressed computational challenges in predicting the activity of pairs of compounds [8].
For the drug-disease association prediction, Zhang et al. proposed a similarity constrained
matrix factorization method that uses known drug-disease associations, drug features and
disease semantic information [107]. In addition, multiple kernel learning was used for
identifying the drug-side-effect association [28]. For improving efficacy and reducing side
effects, Huang et al. developed a novel method for predicting combinations of drugs (i.e.,
drug co-prescription) [44].

Bradford Hill criteria have been widely used in many areas such as epidemiology, genet-
ics, molecular biology, and toxicology. Several attributes based on Bradford Hill criteria
were investigated for predicting drug-ADR causal relations, which showed that the tem-
porality and specificity are useful for causal inference [83]. However, most of associations
found in longitudinal observational databases are non-causal because of confounding that
was addressed in [84]. Therefore, the consistency evaluation is needful for improving the
classification performance. A feature set imitating the strength, specificity, temporality,
biological gradient, and experimentation was constructed to enable applying supervised
learning methods to detect ADRs [85].

Most existing work is poor to deal with polypharmacy-induced confounding, and can
leave out causal drug-ADR pairs that are infrequently observed. Hence, this motivates
our study on drug-ADR causality assessment with focusing on reducing the bad effects of
polypharmacy-induced confounding on the assessment performance.

4.5 Objectives and ideas

4.5.1 Objectives

Most previous studies assess the causality between a drug and an ADR based on their co-
occurrence, so they are poor to deal with the polypharmacy-induced confounding factors.
Hence, it motivates our work. As the process of unsupervised causal relation recognition,
associations of drugs and ADRs are ranked according to the likelihood that they have
causal relation. Therefore, appropriately measuring the likelihood that the drug and
ADR have causal relation plays an essential role. To reduce the bad effect of confounding
factors on the performance of causal relation detection, we target to find an appropriate
measure that can distinguish causative drug-ADR pairs from non-causative pairs.

4.5.2 Ideas

Inspired by the use of reference population for controlling confounding, we use similar
drugs as the reference for assessing the causal relation between the drug of interest with
ADRs based on the analogy criterion. This criterion states that similar drugs may cause
similar ADRs. Hence, the drug is believed more to cause the ADR if we find other drugs
which are similar to the drug of interest and also have association with the ADR. In other
words, the likelihood that a drug-ADR association is causal will increase if we observe the
association between similar drugs and ADRs.
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We propose a novel semi-supervised model called the analogy-based active voting
(AAV) that represents the analogy criterion as a voting process of similar drugs. Similar
drugs vote for the existence of causal relationship in the drug-ADR association of interest
if they have association with the ADR. We call a set of similar drugs as a committee.
The voting rate of similar drugs in the committee is used as the likelihood measure for
assessing the causal relation of this association.

We represent each drug xi by two features: (i) the mechanism of actions and targets;
and (ii) the list of associated ADRs that are extracted from clinical notes, denoted by
Fxi = y|xi → y. The first feature is used for grouping similar drugs to establish committee,
while the second one is used for the voting process of similar drugs. To push non-causal
associations down in rank list, we select similar drugs (towards xi) whose lists of associated
ADRs are different from that of xi. As such, ADRs, which have association with most
drugs in the committee, will get a higher voting rate than ADRs that have association with
a small number of drugs in the committee. Note that under the analogy criterion, ADRs
that are associated with most drugs in the committee are likely to be caused by these
drugs. We propose methods for measuring the difference among lists of associated ADRs
of similar drugs that are useful for selecting similar drugs to establish a good committee.

Essentitally, the difference of Fxi is resulted from the diversity of pharmaceutical
therapies. In fact, the diversity of co-morbidity presenting in patients results in the
diversity of treatment because the treatment need to adapts for each specific case (case-
based treatment). That means different combinations of drugs are prescribed for different
patients. The explanation in detail of how the diversity in treatment implies the difference
of Fxi will be mentioned in Subsection 4.9.5.

The analogy criterion indeed cannot cover all cases that each drug causes its own
ADRs which its similar drugs do not cause. Therefore, in our model, we incorporate
the voting rate of each drug-ADR pair with its association strength as the likelihood for
assessment.

4.6 Electronic medical record Data

In this case study, we utilize the MIMIC-III database1 for assessing the causal relationship
between drugs and ADRs observed in practical treatment. The term MIMIC-III stands for
the Medical Information Mart for Intensive Care III [52], which contains demographics,
laboratory tests, clinical notes of more than forty thousand patients n the Beth Israel
Deaconess Medical Center for supporting a wide range of studies in medicine. In this
work, we utilize clinical notes and prescriptions that are available in the “NOTEEVENTS”
and “PRESCRIPTIONS” tables, respectively. The prescriptions provide the information
of drug names with starting and ending dates when drugs and being prescribed. The
clinical narratives provide the information of patients’ symptoms, adverse events, and
abnormalities occurring during the treatment process.

1https://mimic.physionet.org
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Figure 4.2: Data preprocessing pipeline.

4.7 Data preprocessing

The data preprocessing aims to extract all possible drug-ADR pairs where the ADR is
suspected to be caused by the drug from clinical texts. The pipeline of this process is
illustrated in Figure 4.2.

4.7.1 Text normalization

In the first step of data preprocessing, we utilize the word tokenizer, which is available in
the NLTK package2, for separating words from punctuations, commas, and semicolons,
etc. Next, we split clinical notes, which are documents, into sentences and remove punctu-
ations, commas, etc. We replace special tokens by their corresponding label. For example,
the number in the texts is replaced by the label “#NUM”. Additionally, we substitute
abbreviations such that “SOB” is replaced into “short of breath” by utilizing a dictionary
of 800 abbreviations with their unique term for replacing.

4.7.2 Sentiment classification

In clinical texts, words and phrases which indicate ADRs can be mentioned in both pos-
itive and negative sentences. The negative sentences mention the appearance of adverse
events or reactions during the treatment process. Meanwhile, the positive ones mention
the improvement in the treatment or effectiveness of drugs although they may contain
terms indicating ADRs. For example, we consider the following sentence:

“The patient is less nauseous than previous”.

In spite of containing the negative word “nauseous”, this sentence mentions the drug
efficacy for curing diseases (or symptoms) rather than side effects. This work focuses on
detecting ADRs caused by inappropriately prescribing drugs, hence, eliminating positive
sentences helps to avoid wrongly selecting drug-ADR pairs which are extracted from these
sentences.

Utilizing machine learning approach for sentiment classification on clinical texts must
be faced with the problems of implicit sentiment, various negation terms, and short

2https://www.nltk.org
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texts [25]. The various negation terms make a difficulty in identifying the sentiment
orientation of sentences, and the short text makes the measurement of semantic similar-
ity between sentences imprecise. Hence, we solve these problems by learning embedding
vectors for sentences in clinical notes.

Before learning the embedding vector for each sentence, we present each word in a
sentence by its own distributed vector. The word distributed vector is generated by
taking the context (surrounding words) of each word into account, which helps to reflect
the word semantic. We produce words’ vectors by utilizing the Word2Vec model [73]. We
train this model implemented in the Gensim package3 with approximately 260,000 clinical
notes (documents) in the MIMIC-III database. The vectors of sentences are generated by
summing up vectors of words in these sentences.

To classify sentences into positive ones and negative ones, we use the binary support
vector machine (SVM) classifier. For training, we feed to this model 7000 sentences
which are extracted from clinical notes and annotated with two labels “1” (indicating
positive and neural sentences) and “-1” (indicating negative sentences). In the training
set, the number of positive and negative sentences is approximately equal. We present each
sentence by its corresponding vector by using the embedding method mentioned above.
To evaluate the performance of the classifier system as well as select the most likely
hyperparameters (e.g., kernel function, kernel parameter) for the model, we randomly
divide the annotated data into ten folds in which six folds are used for training and the
rest is used for testing. We repeat this process in ten times and then take the precision
average over iterations. The accuracy attains approximately 86% with the RBF kernel.

4.7.3 Term extraction

After determining negative sentences by using the sentiment classifier, we use the MetaMap4

to extract terms which indicate ADRs [6, 7]. The MetaMap is a well-known Natural Lan-
guage Processing tool for biomedical texts whose main functions include: parsing an input
sentence or paragraph into words and phrases; assigning an appropriate semantic label
for each word and phrase. To select terms indicating ADRs, we base on three labels
“Acquired Abnormality”, “Finding”, and “Sign and Symptom”. The extracted terms
are mapped to their corresponding unique concepts and IDs which are defined in Uni-
fied Medical Language System (UMLS). For example, the UMLS ID of term “abdominal
cramps” is C0000729. After extracting ADR terms, we determine all possible drug-ADR
pairs (candidates) for assessing their causal relations based on the starting and ending
time when drugs are being prescribed and the creating time of clinical notes.

4.8 Preliminaries

Our proposed model for drug-ADR causality assessment is based on the analogy criterion
which is one of nine Bradford Hill criteria, and incorporates several existing association
strength measures. Hence, in this section, we make a brief introduction about nine Brad-
ford Hill criteria and several association measures.

3https://radimrehurek.com/gensim
4https://metamap.nlm.nih.gov/
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4.8.1 Bradford Hill criteria

Nine Bradford Hill criteria provide general epidemiological principles for inferring the
causal relationship between interventions and effects, which have been widely applied in
many medical studies. Given a drug-ADR pair, the causality assessment for this pair
according to these principles is specified as follows:

1. Association strength: a measure of the dependence between the drug and the ADR.

2. Consistency: is the association between the drug and the ADR found in different
databases?

3. Specificity: is the association between drugs and ADRs unique?

4. Temporality: does ADRs occur after prescribing drugs?

5. Biological gradient: the influence of the drug on biological factors that cause the
ADR.

6. Plausibility: is it possible to exist a causal mechanism under the co-occurrence of
the drug and the ADR?

7. Coherence: does the drug causing the ADR make sense or contradict to known
knowledge?

8. Experimentation: does the observation of the ADR start and stop in synchronizing
with the drug?

9. Analogy: Could similar drugs cause similar ADRs?

So far, the first eight criteria, which support the direct assessment on drug-ADR pairs,
have been exploited in most of existing work. In these criteria, evaluating drug-ADR pairs
based on their association strength has been widely used so that many measures have
been developed for quantifying the association strength, as presented in Subsection 4.8.2.
Meanwhile, the analogy criterion, which demands the consideration of similar drugs for
evaluation, has not been exploited. Hence, this motivates our work to investigate whether
this criterion is applicable for assessing the drug-ADR causality.

4.8.2 Drug-ADR association measurement

Various statistical measures have been developed and used for measuring strength of drug-
ADR associations. This section makes a brief introduction regarding how these measures
characterize the likelihood that a drug-ADR pair (i.e., candidate, denoted by x → y)
has causal relationship. Furthermore, these measures are used as a part in our proposed
method.

Several measures are based on contingency tables which provide probabilities that a
drug and an ADR co-occur and do not co-occur. Table 4.3 shows an example of a 2× 2
contingency table in which we have:

a: the number of patients who used the drug x and the ADR y was observed.
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Table 4.3: Contingency table of two random variables (x and y)

y = yes y = no
x = yes a b
x = no c d

b: the number of patients who used the drug x, but the ADR y was not observed.

c: the number of patients who did not use the drug x, but the ADR y was observed.

d: the number of patients who did not use the drug x and the ADR y was not
observed.

n = a+ b+ c+ d: the total number of patients under consideration.

The independence between x and y can be tested by using the χ2 test that relies on
the contingency table. This is calculated as the following:

χ2 =
n× (a× d− b× c)2

(a+ b)× (c+ d)× (b+ d)× (a+ c)
(4.1)

This value is used to test two hypotheses: one is that x and y are not associated (null
hypothesis); the other is that they are associated. To determine whether the null hypoth-
esis can be rejected, we compare this value to a critical value which is estimated from the
χ2 distribution with a given degree of freedom and a level of significance. We reject the
null hypothesis if the χ2 value is greater than the critical value.

Not only χ2 test, relative odds ratio (i.e., ROR) and 90% confidence interval of ROR
(i.e., ROR05) are also based on the contingency table as follows:

ROR(x→ y) =
a/c

b/d
(4.2)

ROR05(x→ y) = exp

(
ln
(a/c
b/d

)
− 1.645×

√
1

a
+

1

b
+

1

c
+

1

d

)
(4.3)

Other measures have been also used to compute drug-ADR association strength such
as relative reporting ratio (i.e., RR), confidence (i.e., conf), leverage, unexlev, RankRatio,
and information component (i.e., IC). The formulations of these measures are a follows:

RR(x→ y) =
n× supp(x→ y)

supp(x)× supp(y)
(4.4)

conf(x→ y) =
supp(x→ y)

supp(x)
(4.5)

leverage(x→ y) = supp(x→ y)− supp(x)× supp(y) (4.6)

unexlev(x ↪→ y) = supp(x ↪→ y)− supp(x)× supp(↪→ y) (4.7)
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RankRatio(x ↪→ y) =
rankleverage(x→y)

rankunexlev(x↪→y)

(4.8)

where

n: the total number of patients

supp(x → y): the proportion of patients who are prescribed the drug x and the
ADR y is observed.

supp(x): the proportion of patients who are prescribed the drug x.

supp(y): the proportion of patients who have the ADR y after being prescribed any
drug.

supp(x ↪→ y): the proportion of patients who have the ADR y when the drug x is
being prescribed, and do not have the ADR y in a defined time period before the
first time the drug x is used. We set the length of time period prior to the first time
each drug is used to two days.

supp(↪→ y): the proportion of patients who have never used the drug x and have
the ADR y, plus with supp(x ↪→ y).

IC =
ntxy + 1/2

Et
xy + 1/2

Et
xy = ntx.

nt.y
nt..

(4.9)

where

ntx.: the number of patients who use the drug x for the first time with an active
follow up in time period t.

nt.y: the number of patients who are prescribed any drug for the first time and have
event (or ADR) y within time period t.

nt..: the number of patients who use any drug for the first time with an active follow
up in time period t.

Et
xy: the expected number of patients who use the drug x and then have event y in

time period t.

ntxy: the number of patients who use the drug x for the first time and event y occurs
within time period t.
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4.9 Analogy-based active voting

We propose a novel model, called the analogy-based active voting (AAV), for detecting
drugs which are assessed to cause ADRs because of unnecessary polypharmacy. This
model is based on the analogy criterion–one of nine Bradford Hill criteria, and applied
for EMR data. For predicting drug-ADR causal relations, the model plays the role as
the first screening process that only takes into account the information of the drug-
ADR co-occurrence during the treatment and the drug mechanism of actions without any
additional information such as dose, etc.

4.9.1 Do similar drugs cause similar ADRs?

We need to evaluate the feasibility of applying the analogy criterion for assessing the
cause of ADRs. In other words, we need to investigate how likely that similar drugs cause
similar ADRs is in terms of medical domain knowledge. Furthermore, this investigation
poses criteria for selecting similar drugs in our proposed model.

Firstly, we consider whether two drugs, which have the same mechanism of action, are
likely to cause similar ADRs. For example, Fluvastatin and Rosuvastatin are cholesterol-
lowering statin drugs that target to inhibit the hepatic enzyme hydroxymethylglutaryl-
coenzyme A (HMG-CoA) reductase. Because HMG-CoA reductase converts HMG-CoA
to mevalonate in cholesterol synthesis, this inhibition results in the decrease in hepatic
cholesterol levels. The change of membrane cholesterol leads to the change of membrane
fluidity in tissues of skeletal muscles which can affect ion channels and modify muscle
membrane excitability. Therefore, this change may cause several side effects such as
myositis, myalgia, and rhabdomyolysis.

Secondly, we investigate whether two drugs, which have different mechanisms of action,
can cause similar ADRs. For example, we consider two drugs: Nifedipine and Nitroglyc-
erin. These drugs are often utilized for curing hypertension. The mechanisms of action of
these two drugs are described in detail in Table 4.4. The table shows that although two
drugs Nifedipine (whose essence is a calcium blocker) and Nitroglycerin (whose essence
is a nitrate) act in different ways, both drugs target to relax the smooth muscle cells and
dilate the coronary for reducing blood pressure. These actions result in several side effects
such as headache, dizziness, and nausea because of reducing the blood pressure.

Through two investigations mentioned above provide us several viewpoint and criteria
for determining similar drugs. Furthermore, they indicate the feasibility of applying the
analogy principle for assessing drug-ADR causality. In general, two drugs are likely to be
similar in terms of causing similar ADRs if:

• The drugs have a similar mechanism of action.

• The target of drugs’ actions is similar.

4.9.2 Model intuition

As mentioned in Section 4.5, the analogy criterion is the groundwork of our proposed
model which tightens up the constraint for inferring and selecting causative drug-ADR
pairs. Concretely, although non-causative drug-ADR pairs can be frequently co-occurred,
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Table 4.4: Nifedipine and Nitroglycerin mechanisms of action

Drug Mechanism of action

Nifedipine

• Decreasing arterial smooth muscle contractility
and vasoconstriction by inhibiting the influx of cal-
cium ions through L-type calcium channels (i.e.,
the calcium blocker).

• Calcium ions entering the cell through these chan-
nels bind to calmodulin.

• Calcium-bound calmodulin activates myosin light
chain kinase (MLCK).

• Activated MLCK catalyzes the phosphorylation of
myosin light chain, which leads to muscle contrac-
tion.

• inhibition of the influx of calcium inhibits the
contractile process of smooth muscle cells, which
causes the coronary dilation and increased oxygen
delivery to the myocardial tissue.

• Nifedipine results in the decrease in blood pres-
sure.

Nitroglycerin

• Nitroglycerin is converted to nitric oxide (NO)
which activates the enzyme guanylate cyclase.

• This stimulates the synthesis of cyclic guanosine
3’, and 5’-monophosphate (cGMP), which results
in the dephosphorylation of the myosin light chain
of the smooth muscle fiber.

• This causes the relaxation of the smooth muscle
cells and vasodilation.
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we have chance to recognize and eliminate these pairs when these pairs have not asso-
ciation with other similar drugs (towards the drug of interest). This may help to avoid
confusions in assessing ADR causality which are induced by the use of multiple drugs. In
fact, each drug has its own ADRs which its similar drugs have not. Our proposed model
just prioritizes common ADRs of similar drugs by assigning the high score for them.

Given a drug-ADR association, we model the analogy criterion for assess whether this
association has causal relation as a voting process of similar drugs. The likelihood that this
association is causative is estimated by the number of similar drugs which are associated
with the ADR. Relying on medical domain knowledge, we determine similar drugs in
terms of their mechanism of action, and then establish groups of such similar drugs that
are called committees. We denote a committee by the set C = x1, x2, ..., xn where xi
indicates a drug and xi ∼ xj with i 6= j. Besides the domain knowledge, by taking the
clinical notes and prescriptions into account, we can extract drug-ADR association where
the ADR is observed after prescribing the drug, which is denoted by xi → y. According
to the analogy criterion, the drug xi is believed to cause the ADR y if its similar drugs
xj ∈ C also has the association with y.

Generally, the AAV model includes two main steps:

1. Establishing committees based on expertise knowledge, as presented in SubSec-
tion 4.9.3.

2. Estimating the voting rate of each drug-ADR association which is used for rank-
ing associations according to their likelihood of causality, as presented in Subsec-
tion 4.9.4. Relying on the ranked list of associations, we can select associations (at
the top of the list) which are likely to have the causal relationship.

As mentioned in Section 4.5, the conflict in the voting of similar drugs is exploited for
eliminating non-causative drug-ADR pairs. The conflict is characterized through the
difference of sets Fxi extracted from the EMR data. It is needful to measure the diversity
of drugs in committees which is presented in detail in Subsection 4.9.5. The measure will
help to select similar drugs in each committee that maximize the committee’s diversity.

4.9.3 Establishing committee for voting

Relying on two criteria for selecting similar drugs as mentioned in Subsection 4.9.1, we can
group drugs to establish committees based on the pharmacological expertise knowledge.
In this work, similar drugs are grouped based on the information of their mechanism of
action which is available in the DrugBank5. We consider four committees C1, C2, C3, C4
which are briefly presented in Table 4.5.

4.9.4 Estimating voting rate of drug-ADR pairs

As mentioned in Section 4.5, For each drug xi in the committee C, Fxi = {yj|xi → yj}
is the set of ADRs which have the association with xi (these ADRs are observed during
period that the drug xi is being prescribed). Let F = Fx1 ∪Fx2 ∪ ...∪Fxn be the set of all

5https://www.drug-bank.ca/
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Table 4.5: Expertise-based committee establishment

Committee Drug Common indication Mechanism of action

C1 Cefuroxime,
Valganciclovir,
Ribavirin,
Meropenem,
Cefazolin,
Oseltamivir,
Albendazole,
Miconazole

Antibiotic, treat bac-
terial infections, an-
tiviral, antiworm, an-
tifungal

Binding to protein,
RNA to inhibit bac-
terial/viral/fungal cell
synthesis. Battling with
bacteria may result in
adverse effects.

C2 Fluvastatin,
Ezetimibe,
Rosuvastatin

Lowering cholesterol
in blood, reducing
cholesterol absorbed
by the body

Inhibiting the
hydroxylmethylglutaryl-
coenzyme A reductase or
cholesterol transport pro-
tein to reduce cholesterol.
The change of cholesterol
membrane can lead to
adverse effects of muscle.

C3 Guanfacine,
Timolol, Lisino-
pril, Diltiazem,
Nicardipine,
Labetalol, Meto-
prolol, Valsar-
tan, Nifedipine,
Nitroglycerin

Treat hypertension Drugs in this group act in
different ways but all of
them aim to reduce blood
pressure by dilating the
coronary or reducing heart
rate. Overdose can cause
ADRs regarding low blood
pressure.

C4 Lorazepam,
Alprazolam,
Diazepam

Benzodiazepine, treat
anxiety, panic disor-
ders

All of drugs in this group
are benzodiazepine. Ad-
verse effects can result from
inhibiting neurotransmit-
ter.
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ADRs observed when all drugs in the committee C are being prescribed. We represent
drugs in the committee with their associated ADRs by a voting matrix which is denoted
by VVV |C|×|F |. The voting matrix VVV is a binary matrix in which each row corresponds to
each drug in the committee, and each column corresponds to each ADR yj ∈ F . The
value in each cell of this matrix gets one if there exists the association xi → yj, otherwise
it gets zero.

From the voting matrix VVV , the likelihood that a drug-ADR association (xi → yj where
xi ∈ C and yj ∈ F ) has causal relationship according to the analogy criterion is estimated
as the following:

V ote(xi → yj|C) = exp
(
v(C, yj)

)
× assoc(xi → yj),

v(C, yj) =
n∑
i=1

VVV ij,
(4.10)

where

• v(C, yj) is the number of drugs in the committee C which vote for the causal rela-
tionship between xi and yj. This value is calculated by summing up all cells in the
jth column of the voting matrix VVV . The exponential function is utilized with the
aim of emphasizing on the order of drug-ADR associations according to the voting
rate v(C, yj) in the ranked list.

• The assoc(xi → yj) measures the association strength between xi and yj. This
measure is added to assessed two drug-ADR associations which have the same value
of v(C, yj). We can used measures of association mentioned in Subsection 4.8.2
for estimating the assoc(xi → yj), however, only measures, which produce only
positive values such as ROR, RR, conf, and RankRatio, are preferable to preserve
the proximity (order) among associations formed by the v(C, yj). Indeed, drugs can
cause their particular ADRs which their similar drugs do not cause, thus, we also
incorporate the drug-ADR association strength for recognizing these ADRs.

4.9.5 Evaluating the committee diversity

Non-causative drug-ADR associations, which coincidentally and frequently observed when
using multiple drugs, can be recognized by exploiting the disagreement of voters (drugs
in a committee). This is indicated by the difference of sets Fxi .

Indeed, the difference of Fxi is resulted from the difference of drugs which used with
similar drugs in a committee for treatment, which is illustrated by a simple example shown
in Figure 4.3. The explanation is as follows:

• Let x1, x2, and x3 be three similar drugs, denoted by x1 ∼ x2 ∼ x3. Two drugs x4

and x5 are drugs which are co-prescribed with such three similar drugs.

• Five drugs are used for treating three patients, and then we obtain associations
between such drugs and ADRs (including y1 and y2) as shown in the figure.

• From obtained associations, we can export sets Fxi with i = 1, ..., 5 for each drug.
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Figure 4.3: An example illustrating that the difference of drugs, co-prescribed with similar
drugs, results in the diversity in voting for drug-ADR causality in committees. Note that
three drugs x1, x2, x3 are similar: x1 ∼ x2 ∼ x3.

• Suppose, the ground truth is that: (1) x1 causes y1 and does not cause y2; (2) x4

causes y2.

• If the committee C includes drugs x1 and x2: C = {x1, x2}, the voting rate for the
causative relation between x1 and y1 is equal to that between x1 and y2 because
both drugs are prescribed with the same drug x4.

• If C = {x1, x3}, the voting for the causal relation between x1 and y1 is greater
than that between x1 and y2. This reflects the ground truth. Indeed, drugs x1 and
x3 are prescribed with different drugs, so we do not see the occurrence of y2 after
prescribed x3.

Evaluating the diversity of committees is not straightforward that requires the con-
sideration in multiple views. Because in this case, the committee diversity is indicated
through the difference of Fxi , we can evaluate this by relatively comparing the intersection
of Fxi towards their union. Thus, the committee diversity can be measured by estimating
the proportion between the number of ADRs voted by all drugs in the committee (the
intersection) and the total number of ADRs (the union). We denote this measure by
divi(C). The voters in the committee are more divergent if the value of divi(C) is small.

divi(C) =
|Fx1 ∩ Fx2 ∩ ... ∩ Fxn|

|F |
(4.11)

In other view, the committee diversity can be evaluated by examining the contradiction
of each drug to the majority in the committee. To this end, we measure the disagreement
between the votes of each drug for ADRs and the overall votes of the rest for such ADRs.
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The measure of disagreement is denoted by dis(xi, C/{xi}). We first determine the voting
consensus of drugs in C/{xi} as follows:

• Let VVV = [vvv1, ..., vvvn]T where vvvi is a row of the voting matrix VVV that indicates the
votes of the drug xi for all ADRs in Fxi .

• Deriving a matrix VVV (i) from the matrix VVV by eliminating ith row.

• Obtaining the voting consensus of the drugs in the set C/{xi} by extracting a vector
rrr(i) based on the matrix VVV (i). The value at jth element in the rrr(i) (a binary value)
is the value which accounts for the highest proportion in cells at jth column of VVV (i).
We ignore columns that we cannot find the major value in these columns. Vector
rrr(i) is a one-hot vector.

This disagreement between the drug xi and the drugs in the set C/{xi} is characterized by
the normalized Hamming distance between the row vvvi and the vector rrr(i) as the following:

dis(xi, C/{xi}) =
ham(vvvi, rrr

(i))

maxi=1,...,n ham(vvvi, rrr(i))
(4.12)

where ham(vvvi, rrr
(i)) is the Hamming distance between vvvi and rrr(i). As noted above, if jth

column of VVV (i) is ignored because of having no major value, jth element in vvvi is also ignored
in estimating the Hamming distance between vvvi and rrr(i).

A diverse committee needs to includes many drugs which have a conflict to the ma-
jority when voting for ADRs. Therefore, the diversity of the committee here, denoted by
divm(C), is measured as a proportion between the number of drugs xi that satisfy the
constraint of dis(xi, C/{xi}) ≥ 0.5 (that means xi conflict to the rest of the committee)
and the total number of drugs in the committee, as the following:

divm(C) =
|{xi|xi ∈ C; dis(xi, C/{xi}) ≥ 0.5}|

n
(4.13)

This assessment method is just applicable for committees which contain more than three
drugs because the set C/{xi} must contain at least three drugs for finding the major value
of each column.

The assessment of the committee diversity is based on both measures divi(C) and
divm(C). According to the divi(C) measure, a committee is more diverse if its value
is small while according to the divm(C) measure, its value is large. The rank of each
committee according to each measure will be summed up for comparing committee.

4.10 Results and discussion

4.10.1 Data preparation and ground truth

We export the prescription and clinical notes of 8000 patients who are prescribed the
drugs listed in Table 4.5. These clinical notes and prescriptions are processed to extract
associations between drugs and ADRs from EMRs data, as presented in Section 4.7. The
SIDER6 [56], which is a well-known database of side effects, is utilized as the ground truth
for confirming drug-ADR relations extracted from EMRs.

6http://sideeffects.embl.de
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Table 4.6: Precision (%) obtained by using the existing measures for ranking drug-ADR
associations.

Top χ2 ROR ROR05 RR Conf Leverage Unexlev RankRatio IC

C1

5%

5.88

1.85 11.11 1.85 25.93 9.26 5.56 3.7 7.41
10% 7.41 5.56 2.78 25.0 8.33 3.7 3.7 3.7
15% 5.52 4.29 4.91 22.09 7.98 3.07 3.07 4.29
20% 5.07 5.07 4.15 18.43 5.99 2.76 2.76 5.07

C2

5%

6.38

0.0 0.0 0.0 13.33 13.33 13.33 13.33 0.0
10% 3.33 0.0 0.0 16.67 13.33 6.67 6.67 0.0
15% 2.22 6.67 2.22 15.56 13.33 6.67 4.44 4.44
20% 5.0 6.67 5.0 16.67 13.33 6.67 5.0 5.0

C3

5%

11.29

2.8 6.54 0.93 24.3 13.08 4.67 3.74 0.93
10% 3.27 7.94 1.87 25.7 8.39 4.04 2.8 3.42
15% 4.35 9.63 3.42 25.16 8.39 4.04 2.8 3.42
20% 5.83 10.96 4.66 23.31 7.23 3.5 2.8 5.36

C4

5%

10.17

2.63 5.26 2.63 13.16 5.26 0.0 0.0 2.63
10% 2.6 7.79 2.6 18.18 6.49 2.6 3.9 2.6
15% 2.59 5.17 2.59 21.55 8.62 3.45 2.59 4.31
20% 4.52 7.1 3.87 20.0 7.1 3.23 1.94 4.52

4.10.2 Evaluation metric

By using measures for quantifying the likelihood that a drug-ADR association has causal
relationship, we can rank such associations. Drug-ADR associations, which have the
causative relation, are expected to be arranged in the top of the ranked list. Hence, to
compare the effectiveness of such measures, we investigate how they highlight causative
drug-ADR associations. We estimate the precision at the top of K associations in the
ranked list. In this work, we examine the precision at the top of 5%, 10%, 15%, and 20%
of associations in the ranked list.

4.10.3 Comparing the AAV with existing methods

Table 4.6 shows the precision at the top of 5%, 10%, 15%, and 20% of ranked drug-
ADR associations by using existing association measures which are presented in Subsec-
tion 4.8.2. The experiments show that most of existing measures give low accuracies. In
these measures, the confidence (Conf) significantly outperforms the others. Noting that
the method for evaluating the χ2 test is different from the others because we retrieve
associations the reject the null hypothesis then estimate the precision of such associations
without considering the top of K associations.

Table 4.7 shows the accuracy of our proposed measure for ranking drug-ADR asso-
ciations. Four baseline measures, ROR, RR, Conf, and RankRatio are integrated to the
voting rate for ranking associations. These measures are selected because they produce
only positive values. The integrated measures are denoted by VoteROR, VoteRR, VoteConf ,
and VoteRankRatio, respectively. The table shows that the measure VoteConf outperforms
the rest.
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Table 4.7: Precision (%) obtained by using the proposed measure for ranking drug-ADR
associations

Top VoteROR VoteRR VoteConf VoteRankRatio

C1

5% 22.22 22.22 37.04 18.52
10% 22.22 24.07 28.7 19.44
15% 19.63 20.86 22.09 17.79
20% 16.13 16.13 18.43 15.21

C2

5% 6.67 6.67 13.33 6.67
10% 6.67 6.67 13.33 10.0
15% 6.67 4.44 15.56 8.89
20% 5.0 5.0 16.17 6.67

C3

5% 18.69 20.56 29.91 22.43
10% 19.16 20.56 25.23 14.95
15% 11.29 17.7 25.47 12.42
20% 16.78 17.72 22.84 12.35

C4

5% 5.26 5.26 13.16 7.89
10% 9.09 9.09 18.18 5.19
15% 10.34 8.62 21.55 3.45
20% 9.03 9.03 20.0 4.52

Relying on Tables 4.6 and 4.7, we compare the performance of detecting drug-ADR
causal relations obtained by using our proposed method with that obtained by using
existing methods in four committees. The comparison is showed in Figure 4.4. The figure
shows that our proposed measure significantly outperforms three measures ROR, RR,
and RankRatio. However, the VoteConf measure just outperforms the Conf measure at
the top of 5% and 10% of ranked associations in the committee C1, and at the top of
5% of ranked associations in the committee C3. For committees C2 and C4, there is no
improvement when using the proposed method.

In fact, the performance improvement when using the AAV model reflects its ability for
dealing with the polypharmacy-induced confounding factors. Indeed, this improvement
is resulted from the committee diversity that will be discussed in next section.

4.10.4 Association between the committee diversity and AAV
performance

We aim to clarify the role of the committee diversity towards the performance of detecting
drug-ADR causal relations as well as the ability of the AAV model for dealing with the
polypharmacy-induced confounding. In addition, this analysis can give an explanation
for the fact that the VoteConf just makes an improvement of performance when detecting
ADRs caused by each drug in the committees C1 and C3.

As presented in Section 4.9.5, the diversity of each committee is quantitatively evalu-
ated through two measures divi(C) and divm(C), which are presented in Table 4.8. We
can rank four committees based on their diverse levels according to each criterion cor-
responding to each measure. The most diverse committee according each criterion of
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Figure 4.4: Comparing the proposed measures with existing (baseline) measures.
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Table 4.8: Estimation of the divi(C) and divm(C) for committees C1, C2, C3, and C4 (the
notation ↓ indicates the smaller value is better, and the notation ↑ indicates the larger
value is better). The rank assigned for each committee is in the parentheses.

Committee divi(C) ↓ divm(C) ↑
C1 0.003 (1) 0.75 (1)
C2 0.037 (3) -
C3 0.02 (2) 0.2 (2)
C4 0.431 (4) -

measures (indicated by ↓ and ↑) will get the first rank which is shown in the parentheses
in Table 4.8.

Relying on the values of divi(C), we see that committees C1 and C3 are more diverse
than committees C2 and C4 because of smaller values. In addition, we get an increase in
performance of assessing drug-ADR causality when utilizing the AAV model for commit-
tees C1 and C3 while there has no improvement when using this model for committees C2
and C4. This evaluation shows an evidence for that the diversity of committees results in
the better performance in drug-ADR causality assessment.

The divm(C) measure is not applicable for assessing the diversity of committees C2 and
C4 because these committees do not meet the requirement of the number of drugs. Relying
on the values provided by this measure, we see that the committee C1 is more diverse
than the committee C3. The experiment also shows that utilizing the VoteConf measure
for the committee C1 makes the accuracy increase from 25.95% to 37.04% (increases
about 11%) at the top of 5% of ranked associations. Meanwhile, utilizing this measure
for the committee C2 just makes the accuracy increase from 24.3% to 29.91% (increases
about 5.5%). In addition, when considering the top of 10% of ranked associations, we
do not gain any improvement by using the VoteConf measure for committee C3 while we
still obtain the improvement by using this measure for C1 (the accuracy increases from
25.0% to 28.7%). The committee diversity evaluation based on the divm(C) also supports
our hypothesis of the influence of the committee diversity on the improvement of the
drug-ADR causality assessment performance.

4.10.5 Detecting infrequently observed drug-ADR causal rela-
tions

We perform the ability of the AAV model for detecting uncommon causative drug-ADR
pairs. By using measures which are based on the frequency of drug-ADR co-occurrence,
these pairs can be left out because of having a weak association strength.

Basing on the analogy criterion, causative drug-ADR associations, in which the drug is
uncommonly used, can be recognized if the drug belongs to a large committee. The voting
rate by a large number of similar drugs can help to highlight uncommon associations. Of
course, only causative associations between uncommon drugs and common ADRs (i.e.,
ADRs are observed in many different treatment) can be recognized. The AAV model
cannot recognize causative associations where both the drug and the ADR are rarely
used and observed.
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Table 4.9: An example of recognizing uncommon causative drug-ADR associations by the
AAV model (considered at the top of 5% of ranked associations).

Causative drug-ADR association ADR name Rank by VoteConf Rank by Conf

Ribavirin → C0042963 vomiting 7 55
Meropenem → C0042963 vomiting 9 77
Oseltamivir → C0042963 vomiting 10 85

Valganciclovir → C0042963 vomiting 14 90
Miconazole → C0042963 vomiting 15 91
Cefazolin → C0042963 vomiting 19 133
Lisinopril → C0027497 nausea 59 115

Metoprolol → C0027497 nausea 61 117

To examine this ability of the AAV model, we consider causative drug-ADR associa-
tions which are retrieved by selecting top of 5% ranked associations by using the VoteConf
measure. Next, we consider the order of retrieved causative associations in the ranked
list constructed based on values of the confidence (Conf) measure. We present the order
of such associations according to the VoteConf and Conf measures in Table 4.9.

Table 4.9 shows that many causative drug-ADR associations, which have the low rank
according to the Conf measure (hence, cannot be recognized), can be highlighted (have
higher rank) according to the VoteConf measure. However, we can only recognize causative
relations between uncommonly used drugs and commonly observed ADRs such as vomit,
nausea, etc.

4.11 Chapter summary

This chapter aims to clarify the role of preserve the diversity in designing reference fac-
tors for avoiding confounding in analogy-based causality inference. To demonstrate that,
we carry out a study on drug-ADR causality assessment with focusing on dealing with
confounding caused by polypharmacy. In this study, we propose a semi-supervised model
that for improving the performance of drug-ADR causality assessment. This method is
called the analogy-based active voting (AAV). This model is based on the analogy cri-
terion for causality inference that is proposed by Bradford Hill. In this work, we model
the analogy-based causality inference as a voting process of similar drugs. The conflict
in the voting, which is resulted from the diversity of drugs used for practical treatment,
is exploited to eliminate non-causal drug-ADR pairs. The experimental results show the
improvement in detecting causal drug-ADR pairs from EMRs when taking the diversity
into account in constructing the set of reference drugs (similar drugs) for inferring.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this dissertation, we concentrate on elucidating the role of diversity preservation in
similarity-based inference. To the best of our knowledge, this is a novel and important
problem in machine learning. However, this problem has not been intensively discussed
in most existing studies. We demonstrate the necessary of preserving the diversity in
similarity-based inference via two studies: (1) preserving the distinction of pairwise com-
parison in triplet of objects when measuring the similarity; (2) reference diversification in
analogy-based causality inference. Each study provides a perspective of the problem of
interest.

In both studies, we focus on model interpretation and explanation based on perfor-
mance of models. In the first study, we explore characteristics of similarity measures that
significantly affect the performance of approximating rough target functions. Relying on
this, we establish general principles for effectively using similarity measures for mining
material data. In the second one, we clarify that establishing committee in which similar
drugs have different lists of associated ADRs can help to control polypharmacy-induced
confounding as well as improve the accuracy in detecting causal relations between drugs
and adverse reactions.

In the first study, we address the problem that measuring similarity of objects based
on their representation is not consistent with the similarity of their target values as using
non-ideal representations. It induces the roughness of target function (or surface) subject
to these representations. For effectively approximating rough target functions, we hypoth-
esize that it is needful to preserve the distinction of pairwise comparison in the triplet of
objects when using similarity measures. In other words, by using these similarity mea-
sures, two objects are distinct in comparison with the third one. To verify this hypothesis,
we investigate the appropriateness of similarity measures for fitting rough target function
based on locally approximating this function. The main criterion for investigation is the
number of neighbors of each data point determine by each measure in a predefined scope.
We employ a protocol for the investigation that includes two main steps: (i) estimating
the surface roughness; and (ii) evaluating similarity measures in context of fitting rough
target function via k−nearest neighbors and kernel ridge regression. The experimental
results show the high likelihood of our proposed hypothesis. Furthermore, relying in-
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vestigations of similarity measures, we establish general principles for effectively using
similarity measures that do not depend on a specific dataset and representation method.

In the second study, we concentrate on an important problem in post-marketing phar-
maceutical surveillance – drug-ADR causality assessment. The main issue in this problem
is to deal with confounding factors caused by polypharmacy. Confounding factors here are
non-causal drug-ADR pairs that coincidentally and frequently co-occur. To control con-
founding factors, we employ the similarity-based causality inference method for inferring
drug-ADR causality based on the analogy criterion (one of nine Bradford Hill criteria).
This criterion states that similar drugs may cause similar ADRs. We mimic the criterion
by a voting process of similar drugs for the existence of causal relation in the drug-ADR
association of interest. Relying on that, we propose a novel model for drug-ADR causal-
ity inference, called analogy-based active voting. In this model, groups of similar drugs
used for voting are called committees. We represent each drug by two main features:
(i) mechanism of actions and targets; and (ii) list of associated ADRs extracted from
clinical notes. The first feature is used for establishing committees, and the second one is
used for voting of drugs in these committees. Our work shows that diversifying drugs in
committees according to the second feature can induce the conflict in voting process of
similar drugs. This plays an important role for recognizing non-causal drug-ADR pairs
and improving performance of detecting drug-ADR causal relations.

5.2 Contributions to knowledge science

In this dissertation, we address a novel problem in machine learning – preserving the
diversity in similarity-based inference. The concept of diversity preservation in similarity-
based inference is elucidated through concrete case studies. Through each study, we
provide a view of this concept. In this work, we hypothesize and verify properties of
operators an representations that strongly affect performance of learning models such
as: how similarity measures preserve the distinction of pairwise comparison in a triplet
of objects; and diversifying reference in similarity -based inference. We conceptualize
these properties by providing quantitative definitions. Based on these definitions, we can
explain the performance of learning models. In the first study on measuring the similarity
of materials, we establish general principles for effectively using similarity measures for
mining material data that are generated from making the induction of investigations on
similarity measures performance. In conclusion, our work focus on conceptualizing the
diversity in similarity-based inference, and attempt to enrich knowledge about this.

5.3 Future work

Our work derives knowledge about diversity preservation in similarity-based inference
based on the induction of observations on learning models performance with specific
datasets. In the current work, we just verify our hypotheses by using limited data re-
sources. To enhance the stability and generalization of these hypotheses, it is needful to
verify them with more data sources in the future work.

Preserving the diversity is an important concept in machine learning. It helps to
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improve the performance of machine learning models. In this dissertation, we just pro-
vide perspective of this concept in terms of similarity-based inference models. Hence, it
demands to investigate this concept in other contexts. This motivates our work in the
future.
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Appendix A

Kernel ridge regression - dual form
of ridge regression

We rewrite the optimization problem for ridge regression as

minimize
β,r

1

2

(
||r||22 + λ||β||22

)
subject to r = Xβ − y

(A.1)

The solution is equivalent to

min
β,r

max
α

L(β, r, α)

= min
β,r

max
α

(
1

2
||r||22 +

λ

2
||β||22 + αT (r−Xβ + y)

)
,

(A.2)

where L(β, r, α) is the Lagrangian function. We solve the minimization problem by
setting to zero the first derivatives of the Lagrangian function according to β and r:

∂L

∂β
(β, r, α) = 0⇒ λβ −XTα = 0⇒ β̂ =

1

λ
XTα

∂L

∂r
(β, r, α) = 0⇒ r + α = 0⇒ r̂ = −α

(A.3)

Plugging β̂ and r̂ into the Lagrangian function obtains

L(β̂, r̂, α) =
1

2
||α||22 +

1

2λ
||XTα||22 + αT (−α− 1

λ
XXTα + y)

= −1

2
||α||22 −

1

2λ
αTXXTα + αTy

(A.4)

Now, the dual problem is maxα L(β̂, r̂, α), which is equivalent to the following (noting
that λ ≥ 0):

min
α

(
1

2
αT (K + λI)α− λαTy

)
, (A.5)
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where K = XXT is called the kernel matrix. To obtain α, we also set the first derivatives
of the dual objective function to zero, to obtain

(K + λI)α− λy = 0

⇒α = λ(K + λI)−1y
(A.6)

Based on Equation A.3, we obtain

β = XT (K + λI)−1y (A.7)
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