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Abstract

It is known for many years that apart from the charge and spin degree of

freedom, carriers have yet another degree of freedom known as valley degree of freedom.

A per this degree of freedom, the charge carriers residing in the valleys of the band

structure of certain materials behave opposite to each other. It also gave rise to a new

branch of physics, namely, valleytronics. One of the physical quantity which is used to

manipulate and control the valley degree of freedom of the carriers is the Berry curvature.

Berry curvature can be understood as a pseudo-magnetic field in the reciprocal space

which drives the carriers according to the direction of the Berry curvature resulting in

valley current. However, the symmetry arguments of the Berry curvature require either

time reversal symmetry or spatial inversion symmetry to be broken for the emergence

of Berry curvature. Systems which preserve both these symmetries show no Berry

curvature and hence cannot be used as a valleytronic material. Also, an ideal valleytronic

material should possess two or more degenerate and in-equivalent valleys in its band

structure.

Two-dimensional materials such as graphene and transition metal dichalco-

genides, which are of great scientific interest these days have such valleys in their band

structure. However, single layer graphene is centrosymmetric. Although AB-stacked bi-

layer graphene is widely considered to be symmetric, there have been several theoretical

studies and experimental observations arguing about an inherent asymmetry persistent

in ungated (AB-stacked)bilayer graphene due to electron-electron interaction at low tem-

peratures. However, none of the experimental studies conducted so far have observed

Berry curvature induced valley current in ungated (AB-stacked)bilayer graphene, which

makes it vital to study the Berry curvature in ungated bilayer graphene. In this study,

we observed a non-zero Berry curvature with opposite values at K and K′ valleys, val-

idating the argumentation of the asymmetry persistent in ungated (AB-stacked)bilayer

graphene. The asymmetry comes from the spontaneous charge transfer to one of the

layers as a result of long-range Coulomb interaction between the electrons. This charge

imbalance results in a layer asymmetry in the system. Application of an out-of-plane

electric field (of the order of µV/nm) reduces the magnitude of the Berry curvature
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and dies out at a threshold electric field. When the magnitude of the electric field is

increased beyond the threshold value, the Berry curvature reappears but with a change

in polarity at K and K′ valleys. This indicates that the polarity of the layer asymmetry

also switches beyond the threshold electric field. However, application of higher electric

fields (of the order of V/nm) shows a reduction in the magnitude of the Berry curvature

with the increase in field strength. As for AA-stacked bilayer graphene, either ungated

system or system under out-of-plane electric field did not show any Berry curvature

owing to the symmetry present in the system.

Nonetheless, observation of valley current in ungated bilayer graphene is ex-

perimentally challenging as it requires ultra clean sample which is isolated from external

perturbation. Thus we studied theoretically the possibility of breaking the symmetry in

bilayer graphene with the use of hexagonal Boron Nitride (hBN) as a substrate or as an

encapsulation layer. Although the role of hBN in breaking the layer symmetry in bilayer

graphene and sublattice symmetry in single layer graphene is well known, the effect of

the alignment and orientation of hBN layer on the emergence of Berry curvature in these

systems is not studied in detail yet. The effect of the out-of-plane electric field is also

studied in detail. In the case of bilayer graphene hBN systems the magnitude, as well

as the polarity of the Berry curvature, greatly depends on the orientation of hBN layer

to the bilayer graphene. This comes from the layer asymmetry induced by the hBN

layer in bilayer graphene. Application of an out-of-plane electric field could manipulate

the magnitude as well as the polarity of the Berry curvature in these systems. On the

other hand, single layer graphene hBN systems are found to be rather insensitive to the

configuration of the hBN layer. Although the magnitude of the Berry curvature depends

on the alignment of the hBN layer, the orientation of the hBN layer or application of

out-of-plane electric field does not impact the polarity of the Berry curvature.

Although the observation of valley current in ungated bilayer graphene which

is completely isolated from the external perturbation is difficult, we can utilize the

asymmetry induced by the substrate in bilayer graphene to observe valley current. We

conducted experimental studies on bilayer graphene exfoliated on Si/SiO2 substrate in

order to detect valley current induced by Berry curvature. The non-local resistance

measurement method is employed to detect the valley current. A non-zero non-local

resistance was observed in ungated bilayer graphene. The Berry curvature induced

valley current is an indication of asymmetry in the system. The asymmetry comes

from the potential difference between the layers induced by the substrate. The Ohmic

contribution to the non-local resistance was found to be negligible. From the temperature

dependent measurements, it was confirmed that the bilayer graphene is gapped and the

band gap is calculated to be around 20 meV. The band gap opening substantiates the

asymmetry induced by the substrate. On the other hand, measurements conducted on
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single-layer graphene did not show any valley current, implying the symmetry persistent

in the system.

Keywords: Valleytronics, Berry curvature, Bilayer graphene, hBN, Valley current,

Valley Hall effect.
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Chapter 1

Introduction

Electrons have different degrees of freedom. Charge and spin are two of the

most known and widely studied degrees of freedom of electrons. As per charge degree

of freedom, there can be positive and negative charges and as per the spin degree of

freedom, there can be up-spin and down-spin. This freedom to be in either of the two

binary states of charge and spin makes them key candidates for the information carrying

for memory devices. But the introduction of Berry’s phase [1] and related effects have

led to the study of yet another degree of freedom in electrons i.e. valley degree of

freedom and a brand new branch of research, Valleytronics [2, 3]. A local minimum in

the conduction band or the local maximum in the valance band is referred to as a Valley.

An ideal valleytronic material would have more than one valleys in its band structure.

This gives the charge carriers the freedom to occupy either of the valleys. Thus valley

degree of freedom gives scope for a novel information carrier for memory devices, apart

from the charge and spin degree of freedom of the electrons [4, 5]. In recent years,

two-dimensional (2D) materials such as graphene and Transition Metal Dichalcogenides

(TMDs) have emerged as exemplary candidates for valleytronics study. These materials

have two degenerate and in-equivalent valleys at the adjacent corners of the hexagonal

Brillouin zone, namely, K and K′. Fig. 1.1 shows the band structure of bilayer graphene

with K and K′ valleys. The electrons in the two valleys can be distinguished by labeling

them as valley pseudo-spin up and valley pseudo-spin down.

Berry phase has given rise to various physical properties such as Berry cur-

vature and orbital magnetic moment associated with the Bloch electrons [6]. Both the

quantities are present only in those systems where inversion symmetry is broken. Be-

cause spatial inversion transforms energetically degenerate K and K′ valleys into one

another. Berry curvature can be understood as a pseudo magnetic field in the reciprocal

lattice which drives the electrons according to the direction of the curvature. A direct

1
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consequence of which is the phenomenon Valley Hall Effect (VHE), where electrons at

the two valleys drift to the opposite edges of the materials in the presence of an in-plane

electric field due to the equal, but, opposite Berry curvature at the two in-equivalent

valleys present in the two adjacent corners of the Brillouin zone [7, 8]. On the other

hand, orbital magnetic moment, which originates from the self-rotation of the electron

wave packet give rise to a shift in energy in the presence of a perpendicular magnetic

field [9, 10].

Figure 1.1: Band structure of bilayer graphene showing the valleys at K and K′ high
symmetry points.

1.1 Berry’s Phase

Berry’s phase is a geometric phase which originates from the adiabatic change

of the external parameters of a system. This was derived by Professor Michel V. Berry in

his seminal paper in 1984 [1]. An almost similar concept was derived for light propagating

through a media by Dr. S. Pancharatnam in 1956 [11]. He found that if the polarization

state of a light wave changes during its propagation, it acquires an additional phase

apart from the dynamical phase. This geometric phase or topological phase is referred

to as Pancharatnam’s phase of light. In order to understand Berry’s phase, we need

to be aware of certain concepts such as nonholonomic process, geometric phase, and

adiabatic change. Let us have a look at these concepts closely before going into the

details of Berry’s phase and its implications.

1.1.1 Nonholonomic Process

Examine the motion of the arrow in Fig. 1.2(a). The arrow is moved from

the pole to the equator through a longitudinal axis. And then without rotating the
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arrow, it is moved along the equator and then moved back to the pole through another

longitudinal axis. We can observe that, even though the arrow was not rotated at any

point in time, it is no longer pointing in the same direction when it returns to its original

position. The arrow is at an angle θ with the initial position of the pendulum. Such a

process in which the system does not return to its original position when cycled around

a closed loop is called nonholonomic process (the motion of the system need not be

physical always). This change in direction happens solely due to the geometry of the

sphere. It does not depend on the initial direction of the arrow. The same experiment

done on a plane surface will end without any change in direction (Fig. 1.2(b)).

Figure 1.2: Motion of an object on the surface of a spherical system results in the
change in direction when the object is brought back to the initial position

1.1.2 Adiabatic Theorem

Adiabatic theorem states that a system remains in its ground state if the

external parameters governing the system undergoes adiabatic change. The gradual

evolution of external parameters acting on a system defines the adiabatic process and

the change the system has undergone under adiabatic process is called adiabatic change.

Let us consider two situations, one classical mechanical and the other one quantum

mechanical, where the system undergoes adiabatic change.
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Classical Adiabatic Process

Consider a simple pendulum hanging from the roof inside a train as shown in Fig. 1.3.

Figure 1.3: Schematic diagram showing a pendulum hanging inside a train. Figure
taken from Ref. [12]

If the train is stationary, the frequency of oscillation of the pendulum is given by,

ω =

√
g

l

Whereas, if the train is moving with an acceleration a, the frequency of oscillation of

the pendulum also varies accordingly and is given by,

ω =

(√
a2 + g2

l

) 1
2

The pendulum oscillates with a higher frequency as the acceleration of the moving train

also adds up to the gravitational acceleration. Now suppose that the train moves very

slowly such that the velocity of the train tends to zero (v → 0). In that case the

acceleration also tends to zero (a → 0) and the frequency of oscillation of the pendulum

changes as,

ω =

(√
a2 + g2

l

) 1
2

a → 0−−−−→ ω =

√
g

l

This means that, even though the train is moving from one point to another since the

change is very slow (or adiabatic), the frequency of oscillation of the pendulum remains

unaltered.

Quantum Adiabatic Process

Consider a molecule which is a collection of constantly moving electrons and nuclei. Since

the proton is highly massive than electrons (
mp
me
≈ 1836), the nuclei can be considered
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to move much slower than the electrons. Hence it can be said that the electron evolves

adiabatically in the environment constituted by the nuclei.

Another interesting example of quantum adiabatic process is extension of

box width in particle in a box problem. Imagine a particle in the ground state of an

infinite square well with width a. The eigenstate of the particle is (Fig. 1.4(a)),

ψi(x) =

√
2

a
sin
(π
a
x
)

Now, if we gradually move the right side wall of the well to the position 2a, according

to adiabatic theorem, the particle remains in the ground state of the expanded infinite

well. Hence the final state of the paricle is given by(Fig. 1.4(b)),

ψf (x) =

√
1

a
sin
( π

2a
x
)

Figure 1.4: (a) Wave function corresponding to the ground state of particle in an
infinite well of width a. (b) If the right side wall of the particle moves very slowly to
the position 2a, the particle remains in the ground state of the expanded infinite well.

This implies that, since the change in Hamiltonian was slower, the particle remained in

the ground state even though the width of the well increased from a to 2a. Note that

this change is not as small as in perturbation theory, but a large change. Also, note that

the energy is not conserved here. Whatever is moving the wall is taking energy from the

system [13].

1.1.3 Geometric Phase

The adiabatic theorem states that if the Hamiltonian is independent of time,

a particle which starts out in the nth state remains in the state after time t apart from
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a phase factor,

Ψn(t) = ψne
−iEnt/~ (1.1)

If the Hamiltonian is time dependent, then the eigenvalues and eigenfunctions are also

time dependent,

H(t)ψn(t) = En(t)ψn(t) (1.2)

But these eigenfunctions constitute a complete and orthonormal set. Thus, the general

solution to the time-dependent Schrödinger equation

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (1.3)

can be written as a linear combination of the components of the set,

Ψ(t) =
∑
n

cn(t)ψn(t)eiθn(t) (1.4)

where,

θn(t) = −1

~

∫ t

0
En(t′)dt′ (1.5)

is the standard phase factor in the case where En varies with time. θn(t) is also known

as the dynamic phase.

Substituting Eq. 1.4 into Eq. 1.3 gives,

i~
∑
n

[
ċnψn + cnψ̇n + icnψnθ̇n

]
eiθn =

∑
n

cn(Hψn)eiθn (1.6)

The last two terms cancel due to Eq. 1.2 and Eq. 1.5. Thus we have,

∑
n

ċnψne
iθn = −

∑
n

cnψ̇ne
iθn (1.7)

Taking the inner product with ψm,
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∑
n

ċnδmne
iθn = −

∑
n

cn〈ψm|ψ̇n〉eiθn (1.8)

or

˙cm(t) = −
∑
n

cn〈ψm|ψ̇n〉e(iθn−θm) (1.9)

Now to find the inner product 〈ψm|ψ̇n〉 we differentiate Eq. 1.2 and take the inner

product with ψm,

〈ψm|Ḣ|ψn〉+ 〈ψm|H|ψ̇n〉 = Ėnδmn + En〈ψm|ψ̇n〉 (1.10)

We can write 〈ψm|H|ψ̇n〉 = Em〈ψm|ψ̇n〉. Then the above equation for n 6= m becomes,

〈ψm|Ḣ|ψn〉 = (En − Em)〈ψm|ψ̇n〉 (1.11)

Substituting the above term into Eq. 1.9 gives,

˙cm(t) = −cm〈ψm|ψ̇m〉 −
∑
n6=m

cn
〈ψm|Ḣ|ψn〉
En − Em

e−
1
~

∫ t

0
[En(t′)− Em(t′)]dt′ (1.12)

Now we introduce the adiabatic approximation. Assume that Ḣ is extremely small, this

makes the second term negligible. This leaves us with,

˙cm(t) = −cm〈ψm|ψ̇m〉 (1.13)

which has the solution,

cm(t) = −cm(0)eiγm(t) (1.14)

where,

γm(t) = i

∫ t

0

〈
ψm(t′)

∣∣∣ ∂
∂t′

ψm(t′)
〉
dt′ (1.15)
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Thus if the particle starts at the nth state (this makes cn(0) = 1 and cm(0) = 0 for

m 6= n), Eq. 1.4 becomes

Ψn(t) = eiθn(t)eiγn(t)ψn(t) (1.16)

The additional phase γn(t) is the geometric phase.

1.1.4 Impact of Geometric Phase - An Example

A general notion in quantum mechanics is that the phase of a wave function is

arbitrary as physical quantities involve |Ψ|2, the phase part of the wave function cancels

out. But this may not be the case always. For example, consider the case shown in

Fig. 1.5, a wave function Ψ0 is split into two equal halves. One of the two halves passes

through an adiabatic potential. As a result, it gains a geometric phase of Γ. Whereas the

other half remains invariant. If we now combine the two waves, the total wave function

would be,

Ψ =
1

2
Ψ0 +

1

2
Ψ0e

iΓ

Figure 1.5: A wave function Ψ0 is split into two equal halves. One of the two parts
pass through an adiabatic potential and attains a phase Γ. Where as the other half

remains invariant.

Then,

|Ψ|2 =
1

4
|Ψ0|2

(
1 + eiΓ

)(
1 + e−iΓ

)
|Ψ|2 = |Ψ0|2cos2(Γ/2)

The above equation implies that in some situations the phase of the wave function cannot

be ignored. They can play a major role.
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1.1.5 Berry Phase

The eigenfunction depends on the time t becuase there is some parameter

R(t) in the Hamiltonian which is changing with time (such as the width of the expanding

square well in the previous example). Thus we have,

∂ψn
∂t

=
∂ψn
∂R

dR

dt
(1.17)

Then the geometric phase becomes

γn(t) = i

∫ t

0

〈
ψn

∣∣∣∂ψn
∂R

〉dR
dt′

dt′ = i

∫ Rf

Ri

〈
ψn

∣∣∣∂ψn
∂R

〉
dR (1.18)

where Ri and Rf are the initial and final values of R(t). If the Hamiltonian returns to

its initial form after time T, then Rf = Ri and γn(T ) = 0. However, if there are more

than one parameter in the Hamiltonian which is changing with time,

∂ψn
∂t

=
∂ψn
∂R1

dR1

dt
+
∂ψn
∂R2

dR2

dt
+ · · ·+ ∂ψn

∂RN

dRN
dt

= (∇Rψn) · dR
dt

(1.19)

This makes the geometric phase,

γn(t) = i

∫ Rf

Ri

〈ψn|∇Rψn〉 · dR (1.20)

Thus, if the Hamiltonian returns to its original form after time T, the total geometric

phase becomes

γn(T ) = i

∮
〈ψn|∇Rψn〉 · dR (1.21)

This geometric phase is called Berry’s phase. Berry’s phase only depends on the path

taken, not on how fast the path was traversed, provided the adiabatic condition is

satisfied.

1.2 Berry Curvature

Applying the Stoke’s theorem to the Berry’s phase,
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γn(T ) = i

∮
〈ψn|∇Rψn〉 · dR = −

∫∫
S

Ω(R) · dS (1.22)

where Ω(R) is given by,

Ω(R) = Im∇R × 〈ψn|∇Rψn〉

= Im 〈∇Rψn| × |∇Rψn〉

= Im
∑
m 6=n
〈∇Rψn|ψm〉 × 〈ψm|∇Rψn〉

(∵ ∇× [f∇g] = (∇f)× (∇g))

(1.23)

We have already found that (Eq. 1.11),

〈ψm|∇RH|ψn〉 = (En − Em)〈ψm|∇Rψn〉 (1.24)

Hence we have,

〈ψm|∇Rψn〉 =
〈ψm|∇RH|ψn〉

(En − Em)
,m 6= n (1.25)

Therefore Eq. 1.23 becomes,

Ω(R) = Im
∑
m 6=n

〈ψn|∇RH|ψm〉 × 〈ψm|∇RH|ψn〉
(Em − En)2

(1.26)

The above derived quantity Ω(R) is called the Berry curvature. Berry curvature is the

physical quantity that is manipulated and controlled in order to address the carriers in

valleytronics. This is in analogy to spin in spintronics. However, the material has to be

satisfied with certain symmetry considerations in order to be classified as a valleytronic

material. Under time reversal symmetry the Berry curvature follows the relation

Ωn(k) = −Ωn(-k) (1.27)

whereas under spatial inversion symmetry the Berry curvature follows the relation,

Ωn(k) = Ωn(-k) (1.28)
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Thus if a system has both time reversal symmetry as well as the spatial inversion symme-

try the Berry curvature is zero. Thus for a valleytronic material, either of the symmetry

has to be broken in order to have a non-zero Berry curvature. Fig. 1.6 shows the band

structure as well as the Berry curvature of single layer MoS2. MoS2 has a layer of Mo

atom sandwiched between two layers of S atoms (shown in the inset of the top panel of

Fig. 1.6). Thus the system has inherent inversion asymmetry. Thus it shows a non-zero

Berry curvature at K and K′ high symmetry points with opposite polarity.

Figure 1.6: Top panel: Band structure of MoS2 (Inset: Crystal structure of MoS2).
Bottom panel: Berry curvature of MoS2 with non-zero values at K and K′ highy sym-

metry points with opposite polarity.

1.3 Valley Hall Effect

The presence of a non-zero Berry curvature results in an anomalous velocity

in the presence of an in-plane electric field (Eq. 1.28).

vn(k) =
1

~
∂εn(k)

∂k
− e

~
E× Ωn(k) (1.29)
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The last term in the anomalous velocity equation is a cross product between electric

field and Berry curvature. Hence the presence of non-zero Berry curvature with opposite

polarity at the K and K′ valleys will force the charge carriers to move to the opposite

edges of the sample in the presence of an in-plane electric field. This phenomenon is

called valley Hall effect. Fig. 1.7 shows the schematic illustration of the valley Hall effect

where charge carriers at K and K′ valleys move to the opposite edges of the material in

the presence of an in-plane electric field due to the opposite Berry curvature at the two

valleys.

Figure 1.7: Schematic illustration of the valley Hall effect where charge carriers at K
and K′ valleys move to the opposite edges of the material in the presence of an in-plane

electric field due to the opposite Berry curvature at the two valleys.

1.4 Early Work and Motivation

Valley Hall effect in bilayer graphene-based heterostructures have been ob-

served in recent years [42, 43]. Fig. 1.8a shows the optical micrograph of the device

used for the study in reference [42]. The schematic representation of the device (Fig.

1.8b) shows bilayer graphene sandwiched between two hBN layers. They performed

the non-local resistance measurement method (please refer to section 3.3 for the details

on non-local measurement method) to detect valley Hall effect in the device and it is

compared with the local resistance measurement. However, they could not observe any

non-local signal in ungated samples (Fig. 1.8c). Non-local characteristics could only

be observed once the gate voltage is applied across the heterostructure, which breaks

the symmetry between the layers. Fig. 1.9 shows the non-local resistance measured

at various gate voltages applied across the hBN/bilayer graphene/hBN heterostructure.

Shimazaki et al., [43] have also studied valley Hall effect in similar heterostructure and

obtained similar results. However, some of the fundamental issues are not addressed in

these studies.
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Figure 1.8: a Optical micrograph of the heterostructure. bschematic representation
of the device. c The measured local and non-local resistances for the device under zero

gate voltage. Image taken from [42].

One, there have been several theoretical studies [34–36] and experimental observations

[38–40] arguing about an inherent asymmetry persistent in ungated bilayer graphene

due to electron-electron interaction at low temperatures. Asymmetry induces Berry

curvature and hence valley Hall effect. Yet, no non-local resistance was observed in the

ungated samples in the above studies. Second, the effect of the presence of hBN layers

at the top and bottom is not considered in these studies. Thus in our study, we try to

understand these issues from a theoretical point of view.

Figure 1.9: The measured local and non-local resistances for the device under various
gate voltages applied across the device. Image taken from [42].
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From an experimental point of view, the above-mentioned studies used a

complicated device structure, which includes sandwiching the bilayer graphene with

hBN layers and applying a gate voltage to break the symmetry between the layers.

However, the presence of a substrate can also induce asymmetry between the layers of

bilayer graphene due to proximity effect. This can open up a band gap and induce

Berry curvature and hence valley Hall effect even under zero gate voltage. Thus we

also conduct experimental studies on ungated bilayer graphene exfoliated on Si/SiO2

substrate to study valley Hall effect.
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Density Functional Theory

The fundamental basis for the study of condensed matter physics and the study

of materials is the understanding of the behavior of electrons in an atom or a molecule

at varied conditions. The electrical, optical and magnetic properties of a material rely

on the way the electron act itself in the material. But the study of a system with many

electrons and nuclei could be difficult as we have to consider several interactions in the

system. Thus, reasonable approximations are made to reduce the computational cost and

yet obtain comparable results to that of all electron models. There is always a tradeoff

between the accuracy of the results and the approximations made. However, some of the

approximate theories can explain certain properties with a great amount of accuracy. In

this chapter we look at some of the methods employed in this work.

2.1 Free Electron Model

The properties of an electron in a material is studied by solving the Schrödinger

equation given by,

[
− ~2

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r) (2.1)

where, ψ(r) and E are the eigenfunction and energy of the electron respectively. V (r)

represents the potential experienced by the electron, which includes the interaction of the

electron with all the nuclei as well as all other electrons present in the solid. But, solv-

ing Schrödinger equation by including all these details is a mammoth, time-consuming

process, although it can give results comparable to that of experiments. Thus we make

appropriate approximations. Free electron model is the simplest approximation made,

15
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Figure 2.1: Schematic diagram showing the velocity of the electron in the vicinity of
the ions where it has stong potential.

where we assume that the crystal potential is exactly zero so that the electron behave

as free particles. In other words V (r) = 0. Although the interaction of the electron

with the ions and other electrons is neglected in this model, the free electron model

works because of the following reasons. One, the Coulomb interaction of the electron

with the ion is canceled by an additional repulsive potential due to quantum effects.

Another way to look at it is when the electrons are at the vicinity of the ions, where it

experience strong potential, the velocity of the electron increases (Fig. 2.1). Effectively

it spends most of its time far away from the ions, behaving like a free electron. Second,

the interaction of the electrons among themselves are also weak due to the following

reason. Electrons with parallel spin stay away from each other due to Pauli exclusion

principle. On the other hand, electrons with opposite spin stay away from each other in

order to minimize the energy of the system.

A better approximation is the nearly free electron model where a weak crystal

potential is taken into account through quantum mechanical perturbation method. This

method introduces gaps in the band structure of the materials which are otherwise closed

in the free electron model. Also, the gap which arises due to the turning on of the crystal

potential occurs at the boundaries of the Brillouin zone.

2.2 Tight Binding Model

Another widely used approximate method is the tight binding model in which

the ionic potential is treated as strong. Thus, when the electron is in the vicinity of an

ion, the electrons remain there for a longer period of time before moving to the next

ion. This implies that the electron effectively orbits around a single ion, resulting in an
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atomic orbital. The electron is essentially unaffected by the neighboring ions. In other

words, the electron is tightly bound to its own atom. However, the orbital is slightly

modified by the neighboring atoms. Consider a system with n atomic orbitals φj(k,r)

where, j = 1...n. The model can be written in terms of the atomic orbitals using n Bloch

function as

Φj(k,r) =
1√
N

N∑
i=1

eik,rj,iφj(r-Rj,i)

where, i = 1...N represents N different unit cells. The electronic wave function is the

superposition of n different Bloch functions, and is given by

Ψj(k,r) =

n∑
l=1

cj,l(k)φl(k,r)

where cj,l is coefficient of expansion. The energy of the jth band is given by

Ej(k) =
〈Ψj |H |Ψj〉
〈Ψj |Ψj〉

where H is the Hamiltonian. Expanding the wave function gives

Ej(k) =

∑n
i,l c

?
jicjl〈Φi|H|Φl〉∑n

i,l c
?
jicjl〈Φi|Φl〉

=

∑n
i,lHilc

?
jicjl∑n

i,l Silc
?
jicjl

where Hil = 〈Φi|H|Φl〉 is the transfer integral matrix element and Sil = 〈Φi|Φl〉 is the

overlap integral matrix element. Minimizing the energy Ej with respect to the coefficient

c?jm gives

n∑
l=1

Hmlcjl = Ej

n∑
l=1

Smlcjl

The above equation can be written as a matrix equation with ψj as the column vector.

Hψj = EjSψj
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The energy Ej can be obtained by solving the secular equation (provided the transfer

integral matrix and overlap integral matrix is known)

|H − EjS| = 0

2.3 Hartree-Fock Method

For a many-body system consisting of electrons and nuclei, the Hamiltonian

can be written as

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|~ri − ~RI |
+

1

2

∑
i 6=j

e2

|~ri − ~rj |
− ~2

2MI

∑
I

∇2
I (2.2)

where each term can be explained as,

− ~2

2me

∑
i

∇2
i =⇒ Kinetic energy term for the electrons.

−
∑
i,I

ZIe
2

|~ri − ~RI |
=⇒ Potential acting on the electron due to the nuclei.

1

2

∑
i 6=j

e2

|~ri − ~rj |
=⇒ Electron-electron interaction.

− ~2

2MI

∑
I

∇2
I =⇒ Kinetic energy of the nuclei.

As can be noted in the above terms, i and I subscripts run for electrons and nuclei

respectively. me is the mass of the electron and MI is the mass of the nucleus. Note that

the kinetic energy term for the nucleus has the mass of the nucleus in the denominator.

Since the mass of the nucleus is much higher than that of the electron (
mp
me
≈ 1836),

this term has only a minor contribution to the total energy of the system. Thus, this

term can be neglected. This approximation is called Born-Oppenheimer or adiabatic

approximation. Thus the Hamiltonian without the nuclear kinetic energy term becomes,

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|~ri − ~RI |
+

1

2

∑
i 6=j

e2

|~ri − ~rj |
(2.3)

The difficulty in soving the Schrödinger equation (Eq. 2.1) using the above Hamiltonian

arises from the Coulomb interaction term (1
2

∑
i 6=j

e2

|~ri−~rj |). In 1928 Hartree came up

with the notion of effective electron-electron potential (Veff (~r) =
∫
d~r e

2n(~r)
|~ri−~rj |) i.e. every

electron moves in an effective potential produced by sum of all other electrons. The



Chapter 2 19

Hamiltonian with effective potential term instead of the Coulomb term is called the

Hartree equation. A major drawback of the Hartree equation was that it does not

incorporate Pauli exclusion principle. Thus Fock and Slater formulated an antisymmetric

wave fuction in order to include Pauli exclusion principle. The wave function inclusive

of the spin is given by

ψi(~r) = φi(~ri)αi (2.4)

where, φi(~ri) is orbital part and αi is the spin part. The hamiltonian is given by,

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|~ri − ~RI |
+ Jij −Kij (2.5)

where

Jij =
1

2

∫
d~rid~rj

∑
i,j,α1,α2

e2

|~ri − ~rj |
|ψi(1)|2|ψj(2)|2 (2.6)

is the Coloumb integral and

Kij =
1

2

∫
d~rid~rj

∑
i,j,α1,α2

e2

|~ri − ~rj |
ψ?i (1)ψ?j (2)ψi(2)ψj(1) (2.7)

is the exchange integral. The Coulomb integral takes care of the potential energy inter-

action between ith electron and the jth electron. On the other hand, exchange integral

which does not have a classical analog arises from the necessity that the wave function

should be antisymmetric with respect to electron exchange. The Hartree-Fock equations

are solved using an iterative method known as the self-consistent field (SCF) method.

As per this method, a most probable form of the orbital is taken as an initial guess.

This orbital is improved with each iteration until the energy reaches a minimum and

the orbitals no longer change.

Although the Hartree-Fock method was successful in computing many elec-

tronic properties, it failed to address one important aspect of the electronic interaction

which is correlation. The electrons are not independent of each other as assumed by

the Hartree-Fock method, rather they are correlated to each other so as to minimize the

energy.
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2.4 Density Functional Theory

The underlying idea of the density functional theory is that the electron den-

sity contains all the information incorporated in a many-body wave function. This was

observed by Hohenberg and Kohn in 1964. They pointed out that if the density of the

electron in the ground state is known, then one can deduce the external potential in

which the electron resides. The electronic density at a point ~r in space is given by

n(~r) = N

∫
d~r1...d~rNΨ?(~r1, ~r2...~rN )δ(~r − ~r1)Ψ(~r1, ~r2...~rN ) (2.8)

All the solid systems have electrons moving in a potential V, with kinetic energy T,

interacting with each other by Coulomb potential Vee. As per the underlying idea of the

density functional theory, if the charge density is given, all the above parameters and

the ground state energy can be written as the functional of the density. In other words,

E[n] = T [n] + V [n] + Vee[n] (2.9)

here the density n is a function of space (n(~r)). The energy functional (Eq. 2.9) can

also be written as

E[n] =

∫
d~rn(~r)V (~r) + F [n] (2.10)

where F [n] is the sum of kinetic energy and Coloumb energy, i.e.,

F [n] = T [n] + Vee[n] (2.11)

The functional F does not depend on the potential V and it also does not depend on

what kind of system we have. Thus the functional F is an universal functional for all

systems of N particles. If this magical functional could be found once and for all, it

can solve many-body problems for all external potentials V. However, a true F does not

exist and never will be. Hence various approximations are made for the functional F,

which best represents the known results such as the Thomas-Fermi-(Dirac) equations

and the Kohn-Sham equations.
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2.4.1 Thomas-Fermi-(Dirac) Equations

Thomas and Fermi gave the simplest approximation for the functional F[n]

and hence E[n]. The idea here is to find the energy of the electron as a function of

electron density in a spatially uniform density. Unfortunately, the Coloumb interactions

cannot be solved in a uniform potential exactly except at high charge density. Thus

Hartree-Fock approximation is used to obtain all the terms in the Schrödinger equation

which cannot be expressed in terms of the charge density. Two terms evaluated this way

is the kinetic energy term and the exchange energy term. Thus in the Thomas-Fermi

theory, which assumes that the charge density is not uniform, but varies slowly, the

kinetic energy term and the exchange energy term are evaluated locally and integrated

over all space. The kinetic energy term is expressed as

T [n] =

∫
d~r

~2

2m

3

5
(3π2)2/3n5/3(~r) (2.12)

and the exchange energy term is given by

Exc = −
∫
d~r

3

4

(
3

π

)1/3

e2n4/3(~r) (2.13)

The potential and the Coloumb terms are expressed as a functional of the density. Thus,

combining all the terms, the density functional is given as,

E[n] =

∫
d~r

~2

2m

3

5
(3π2)2/3n5/3(~r) +

∫
d~rn(~r)V (~r)

+
1

2

∫
d~r2d~r1

e2n(~r1)n(~r2)

|~r1 − ~r2|
−
∫
d~r

3

4

(
3

π

)1/3

e2n4/3(~r) (2.14)

The above equation with the last term (exchange term) omitted is the Thomas-Fermi

equation whereas the functional including the exchange term is called the Thomas-Fermi-

Dirac equation.

2.4.2 Kohn-Sham Equations

The Kohn-Sham Equations are widely used to solve the properties of many

electron systems. In this method, instead of writing all the material properties as a

function of electron density, they considered N single electron wave functions ψi(~r) and

obtained the charge density from them by,
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n(~r) =
N∑
i=1

|ψi(~r)|2 (2.15)

The kinetic energy term as a functional of density is given by,

T [n] =
∑
i

~2

2m

∫
d~r |∇ψi(~r)|2 (2.16)

Now, instead of varying with respect to the charge density we vary with respect to the

wave function because we know the density as a function of the wave function, however,

the reverse is not true (we do not know the wave function as a function of the charge

density). The Schrödinger equation varying with respect to the wave function is given

by

− ~2

2m
∇2ψi(~r) +

[
V (~r) +

∫
d~r′

e2n(~r′)

|~r − ~r′|
+
δExc(n)

δn

]
ψi(~r) = Eiψi(~r) (2.17)

2.4.2.1 Local Density Approximation (LDA)

The above approximation (Eq. 2.17) is called the Local Density Approxima-

tion (LDA). The essential idea of the approximation is as follows. The potential due to

the exchange term is given by

Vxc ≡
δExc(n)

δn
(2.18)

The LDA is an approximation to this unknown term. In reality the potential acting on

a point depends on the density of all other points. However, LDA approximate that the

potential depends only on the density of the density at that point and this is done for all

the points. Thus the potential due to the exchange term (Vxc) which was a functional

of the density, becomes a function of the density. In other words,

Vxc[n](~r) ≈ Vxc(n(~r)) (2.19)

2.4.2.2 Generalized Gradient Approximation (GGA)

Several other approximations also exist as a consequence of the effort to make

the results close to the experiment such as the Generalized Gradient Approximations

(GGA). Here the approximation is that the density at a point not only depends on the
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denity at that point, but also its derivative at that point and higher derivatives. That

is,

Vxc[n](~r) ≈ Vxc(n(~r), ~∇n(~r)) (2.20)

Now, in DFT also the solution is obtained by self-consistency method. The potential

depends on the solution which is the density. We need to know the wave function to

know the density and the density defines the potential. This is solved iteratively using

self-consistency. We start with a guess density, obtain the potential, then solve the

problem. Once the problem is solved we get a wave function and use this wave function

to get the new density. This process is continued until the input density and the output

density are sufficiently equal.

2.4.3 K-point Sampling

In periodic solid the electronic states are labeled by the k-vector along with

the band index. Finding the density involves the integral of the square of the occupied

wave functions which are labeled by band index and k-vector. This integration which

runs over all the Brillouin zone is approximated as the sums over selected k-points.

This is called Brillouin zone sampling or k-point sampling. The accuracy of the results

greatly depends on the Brillouin zone sampling i.e, the number of k points selected as

well as the position of the selected k points in the Brillouin zone. The computational

cost increases with the number of k points. Thus, the appropriate number of k points is

identified by testing the convergence of the calculation. Over the years, different k point

sampling methods have been implemented and tested such as mean value point (where

just one point is used to calculate the required quantity) and special k-points (where

few points are selected to give fast convergence). But these were used in the olden days

when computing was not so efficient. When computing efficiency got improved, more

accurate methods took over such as Monkhorst-Pack method.

In this method, the reciprocal lattice primitive unit cell is divided into N1 × N2 × N3

points with each point having equal weights. Fig. 2.2 shows an example of k-point

sampling in the reciprocal lattice with a Monkhorst-Pack grid of 4×4×1. The accuracy

of the calculation as well as the computational cost increases with the number of k-points.

Thus, the convergence test is necessary to determine the level of accuracy.
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Figure 2.2: Schematic representation of k-point sampling in the resiprocal lattice.
The Monkhorst-Pack grid shown is 4× 4× 1.

2.4.4 Pseudopotentials

The electrons of an atom can be distinguished as core electrons and valence

electrons. The core electrons which are tightly bound to the nucleus respond very little

to the presence of neighboring atoms. They are trapped in the deep potential of the

nucleus. On the other hand, the valence electrons are which are in a smooth potential

of the nucleus are affected by the changes happening in its surroundings. If we consider

the energy eigenvalue of these electrons, the core electrons are much deeper in energy

compared to the valence electrons. These observations imply that the core electrons are

chemically inert. In other words, only the valence electrons are involved in chemical

bonding. In terms of the computation of physical and chemical parameters, the core

electrons make the calculation more expensive as we have to deal with more electrons.

The main role of the core electrons is to screen the nuclear potential seen by the valence

electrons. The above facts lead to the idea of Pseudopotentials. The idea is to ignore the

dynamics of the core electrons and replace their effect by an effective potential, which

is the Pseudopotentials.

2.5 Wannier Functions

Wannier functions are set of orthonormal wave functions which are highly

localized around the atomic sites. Wannier functions can be easily constructed from

Bloch funtions. Wannier functions for the electrons in the nth band which are centered

at the lattice site R is expressed as,
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Wn(~R,~r) =
1√
N

∑
~k

e−
~k·~Rψ

n~k
(~r) (2.21)

These functions being orthonormal and highly localized, are employed in the calculations

which use atomic orbitals. Many physical phenomena involve spatially localized objects

such as impurities, crystal defects, excitons, polarons. Thus, expressing the interactions

in terms of the localized orbitals reduces the complexity of the problem considerably.

Although the use of atomic functions rather than Bloch functions seems to be advan-

tageous in these circumstances, the non-orthogonality of the atomic functions makes

them less attractive. Here comes the importance of Wannier functions which are both

orthonormal and localized.

Wannier functions are also used along with ab initio calculations to study the

band structure and several other properties related to materials. Maximally localized

Wannier functions can replicate the ab initio states up to the Fermi level exactly and

to a great extent for the few lower conduction bands. Fig. 2.3 shows the band structure

of bilayer graphene along with the high symmetry points. The solid line corresponds to

the band structure obtained using the ab initio calculation and the dotted line corre-

sponds to the bands obtained through the Wannier interpolation scheme. As is evident

from the figure, all the occupied and two unoccupied bands constructed through the

Wannier-based calculation exactly matches with the fully ab initio bands. Hence it can

Figure 2.3: Band structure of bilayer graphene through the high symmetry points.
Solid lines : band structure evaluated using ab initio method. Dotted lines: band
structure obtained by Wannier interpolation scheme. Both the plots exactly matches
for all the occupied bands and two un-occupied bands. The horizontal dotted line

denotes the Fermi level.
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be presumed that the Wannier based evaluation of physical properties such as Berry

curvature and orbital magnetization, which is related to the occupied manifold should

have a perfect agreement to that of ab initio calculation.

2.5.1 Berry Curvature Calculation Using Wannier Functions

Berry curvature for the nth band is defined as

Ωn(k) = i∇× 〈unk|∇k |unk〉 (2.22)

where An(k) = i 〈unk|∇k |unk〉 is the Berry connection and |unk〉 is the periodic part of

the Bloch function for the nth band. The summation runs over all the bands including

the unoccupied bands. The total Berry curvature is the sum over all the occupied bands,

i.e.,

Ω(k) =
∑
n

fnΩn(k) (2.23)

where fn is the Fermi-Dirac distribution.

But taking the derivative of the periodic part of the Bloch function (Eq. 2.22) makes

the calculation cumbersome. Thus we rely on the more accurate Wannier interpola-

tion scheme, where the Berry curvature is calculated in terms of the Wannier functions

(Eq. 2.21) [21] using finite differences. The approach begins by creating Wannier func-

tions for all the occupied states and a few un-occupied states. In the present calculation,

we have considered two un-occupied states above the Fermi level. Subsequently, the

Wannier space Hamiltonian is constructed by fitting the first principle band dispersion.

Following the conventions of Ref. [21], Hamiltonian in the Wannier basis is given by

H(W )
nm (k) = 〈u(W )

nk | Ĥ(k) |u(W )
nk 〉 (2.24)

Diagonalizing the above Hamiltonian using a suitable unitary rotation matrix yields the

eigenvalues which replicate the true first principle eigenvalues. i.e.,H
(H)
nm (k) = ε

(H)
nk δnm

and ε
(H)
nk = εnk. Corresponding Bloch states are given by

|u(H)
nk 〉 =

∑
m

|u(W )
mk 〉Umn(k) (2.25)

Now the Berry curvature in terms of the above bases is given by
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Ω(k) =
∑
n

fnΩ
H
nn +

∑
n,m

(fm − fn)DH
nm ×A

H
nm + ΩDD (2.26)

where O
H

= U †OWU represent the components which transform covariently from

Wannier gauge (W ) to Hamiltonian gauge (H ) under unitary transformation U ; and

DH
nm = (U†∇HWU)nm

εm−εn (1− δnm). The last term is defined as

ΩDD =
i

2

∑
n,m

(fn − fm)
(U †∇HWU)nm × (U †∇HWU)nm

(εm − εn)2
(2.27)

Here, HW is the Hamiltonian in Wannier representation and εn is the energy of the nth

band. The summation runs over all the Wannier states [22], which is, all the occupied

and two un-occupied states in this case. As for Berry curvature calculation, this scheme

is more efficient compared to the previously implemented methods [23] where the sum-

mation runs over all the un-occupied states apart from the occupied ones. Hence the

above formulation was used to calculate the Berry curvature in this study.
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Experimental Methods

3.1 Graphene

Graphene is a 2 dimensional (2D) material with single atom thickness made

of carbon atoms arranged in hexagonal honeycomb structure (Fig.3.1a). Graphene was

first isolated from thick graphite flake through micromechanical cleavage [14] (Fig.3.1b

shows the optical image of single-layer graphene on Si/SiO2 substrate). Since its first

isolation, there have been several other 2D materials which were exfoliated from its bulk

counterpart [15]. However, graphene remains the most studied 2D material because of

its extraordinary properties which include excellent electronic, magnetic, thermal and

optoelectronic properties [16, 17]. A peculiar feature of graphene which makes it special

is the electric field effect on the conductivity (Fig. 3.2). It has bipolar conductivity which

linearly increases with the increase in the gate voltage, i.e., application of positive and

negative gate voltages can induce electrons and holes respectively into the graphene layer.

Figure 3.1: a Schematic diagram of a single layer graphene with carbon atoms ar-
ranged in hexagonal honey comb structure. b Optical image of a single layer graphene

(inside the dotted yellow circle) exfoliated on Si/SiO2 substrate.

28
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For neutral graphene, the minimum conductivity (charge neutrality point) is at Vg=0.

For p-doped graphene, the charge neutrality point shifts towards the positive gate voltage

whereas for n-doped graphene, the charge neutrality point shifts towards the negative

gate voltage. This peculiar feature makes graphene useful in various applications such as

gas sensing [18], transistors [19] and also to study the fundamental physical properties

[20].

Figure 3.2: Gate characteristics of a single layer graphene showing the charge neu-
trality point at Vg=0. Application of positive and negative gate voltages can induce an
appreciable amount of electrons and holes respectively into the graphene layer. Image

taken from [16]

3.2 Bilayer Graphene Valleytronic Device

In this study we used bilayer graphene to study its valleytronic properties.

The device fabrication process starts by exfoliating graphene on Si/SiO2 substrate from

graphite flakes using the scotch tape method. The number of layers is identified using

Raman spectroscopy. The characteristic of the 2D Raman peak of the graphene layers

is an indication of the number of layers. If the 2D peak could be fitted with a single

Lorentzian function, the graphene is a single layer. However, 2D peaks of the graphene

flakes which require four and six Lorentzian functions for a perfect fit is identified to

be bilayer and trilayer graphene respectively. Fig. 3.3 shows the 2D peaks of the single

layer (Fig. 3.3a), bilayer (Fig. 3.3b) and trilayer (Fig. 3.3c) graphene which are fitted

with Lorentzian functions.
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Figure 3.3: 2D Raman peak of a single layer b bilayer and c trilayer graphene fitted
with Lorentzian functions

Once the bilayer graphene is identified on the Si/SiO2 substrate, the pro-

cess of making bilayer graphene device is illustrated in Fig. 3.4. Fig. 3.4a shows the

schematic representation of bilayer graphene on Si/SiO2 substrate. The Si/SiO2/bilayer

graphene is coated with MMA/PMMA resist (positive resist) in order to perform Elec-

tron beam lithography (EBL) (Fig. 3.4b). EBL makes the exposed parts of a positive

resist soluble in a developer. Thus the portion where the contacts are to be made

were exposed using EBL. Now, the Si/SiO2/bilayer graphene/MMA/PMMA is put in

a developer to dissolve the exposed part. The developing procedure is as follows. The

Si/SiO2/bilayer graphene/MMA/PMMA is dissolved in 1:3 IPA:MIBK solution for 51

seconds followed by pure IPA solution for 30 seconds. Fig. 3.4c shows the schematic

representation of the substrate after developing. The resist at the exposed portion of the
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Figure 3.4: Schematic illustration of the fabrication process of the graphene device.
a Bilayer graphene exfoliated on Si/SiO2 substrate. b The Si/SiO2/bilayer grphene is
coated with MMA/PMMA resist (positive resist) in order to perform Electron beam
lithography (EBL). c The EBL exposed portion of the resist is dissolved in the devel-
oper. d Cr/Au contacts deposited on the Si/SiO2 substrate. e The final device after

removing the resist by dissolving in acetone followed by IPA and DI water.

substrate is dissolved. The next step is to evaporate gold (Au) onto the Si/SiO2/bilayer

graphene/MMA/PMMA in order to make the contacts. Since the adhesion of Au on

Si/SiO2 substrate is not very good, a 10 nm thick Chromium (Cr) was evaporated onto

the substrate before depositing gold. A 60 nm thick layer of gold was deposited after

Chromium. Fig. 3.4d is the schematic representation of the device after gold deposition.

(In reality, gold and chromium will be deposited all over the substrate after evaporation.

However, the Cr/Au will be in contact with the substrate and the graphene only at those

portions where the resist is not present as it is dissolved after EBL. Other parts of the

substrate and the graphene are protected by resist). After evaporation of Cr/Au, the

resist is removed by dissolving in acetone followed by IPA and DI water. This results in

the removal of the Cr/Au which was present on the resist and only the contacts which

are desired remain on the substrate (Fig. 3.4e). Fig. 3.5 shows the optical micrograph

of a bilayer graphene device which is fabricated following the steps described above.
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Figure 3.5: Optical micrograph of a bilayer graphene device. False colour is used in
order to enhance the clarity.

3.3 Non-Local Electrical Measurement

Non-local electrical measurement is used to detect the valley Hall effect in

bilayer graphene. Usually, the electrical properties such as the field effect characteristic

are studied using the local electrical measurement, where the current is sent across the

length of the device and the voltage is detected at the two ends. However, in the non-

local measurement setup, the current is sent across the terminals at one end of the device

and the voltage is detected at the other end. Fig. 3.6a and fig. 3.6b shows the schematic

illustration of local and non-local electrical measurements respectively. In the non-local

measurement, since the current is sent only across the terminals at one end, there should

be some driving force which pushes the charge carriers across the length of the device

to the other end. This driving force is called the Berry curvature as discussed earlier.

Thus the Berry curvature can be considered as a pseudo-magnetic field in the reciprocal

Figure 3.6: Schematic illustration of a local electrical measurement and b non-local
electrical measurement.
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lattice. Fig. 3.7 shows the local and non-local resistance measurements for a bilayer

graphene device sandwiched between two hBN layers. The measurements performed

at various gate voltages are also shown. As mentioned before the non-local resistance

appear as a result of the valley Hall effect where the electrons in the K and K′ valleys of

the bilayer graphene move to the opposite edges of the device since the Berry curvature

which drives the carriers at the two valleys have opposite polarity.

Figure 3.7: Local and non-local resistance measurements for a bilayer graphene device
sandwiched between two hBN layers. The measurements performed at various gate

voltages are also shown. Image taken from reference [42].
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Electrically controlled valley

states in bilayer graphene

Valley current, a stable, dissipationless current, originates due to the emer-

gence of Berry curvature in inversion symmetry broken systems. Several theoretical

predictions and experimental observations have explored layer symmetry breaking in AB-

stacked bilayer graphene due to long-range Coulomb interaction between the electrons.

However, none of the experimental studies conducted so far have observed valley cur-

rent in ungated bilayer graphene, which makes it vital to study the Berry curvature in

ungated bilayer graphene. In this study, we observed a non-zero Berry curvature with

opposite values at K and K′ valleys, validating the argumentation of the asymmetry per-

sistent in ungated bilayer graphene. The magnitude, as well as the polarity of the Berry

curvature, is tunable with the application of an out-of-plane electric field. These results

are especially important because it can lead to the realization of a valley valve, in which

the carriers from the K and K′ valleys can be regulated with a gate at the centre of the

bilayer graphene nanoribbon.

4.1 Introduction

Berry phase and related phenomena have gained considerable scientific inter-

est since its introduction[1]. It boosted the study of yet another degree of freedom in

electrons i.e., valley degree of freedom and a brand new branch of research, valleytronics

[2, 24, 25]. In the same way as the spin of the electron is used to manipulate and control

electrons in spintronic devices, Berry curvature and orbital magnetic moment, which are

two physical properties associated to the Berry phase of Bloch electrons, are utilized to

manipulate electrons in valleytronics [6]. Two-dimensional materials such as graphene

34
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Figure 4.1: a Schematic representation of the unit cell of bilayer graphene with four
carbon atoms arranged in AB stacking. The hexagonal Brillouin zone is schematically
drawn with the K and K′ points at the alternate corners and the Γ point at the center.
b A non-zero Berry curvature with opposite values at the two in-equivalent valleys
at the K and K′ points of the Brillouin zone is observed in systems where inversion
symmetry is broken. c Valley Hall effect: The presence of a non-zero Berry curvature
with opposite values at K and K′ valleys drives the electrons in the two valleys towards

the opposite edges of the sample in the presence of an in-plane electric field.

and Transition Metal Dichalcogenides (TMDs), which has in-equivalent valleys in their

band structure at the K and K′ corners of the Brillouin zone is of particular interest

to the valleytronics study, because, Berry curvature and orbital magnetic moment ex-

hibit contrasting behaviour at these valleys (Fig. 4.1a-b) [3–5]. Berry curvature can be

described as a pseudo-magnetic field in the reciprocal space which drives the carriers

according to the direction of the Berry curvature. A direct consequence of which is the

phenomenon Valley Hall Effect (VHE), where electrons at the two valleys drift to the

opposite edges of the materials in the presence of an in-plane electric field due to the

equal, but, opposite Berry curvature at the two valleys(Fig. 4.1c) [26, 27].

A prerequisite for the emergence of Berry curvature is the broken inversion

symmetry or broken time-reversal symmetry [26, 28, 29]. TMDs are inversion asym-

metric and are widely studied for valleytronic properties. However, the short distance

between the valleys in TMDs makes them vulnerable to intervalley scattering which

is not desirable in valleytronic materials. Thus, systems such as (AB-stacked) bilayer

graphene which possess large intervalley distance can be an excellent candidate for val-

leytronics study. Also, the symmetry in (AB-stacked) bilayer graphene can be regulated
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on demand using external perturbation such as electric field [30–33] (Hereafter, all the

discussions are about AB-stacked bilayer graphene unless otherwise specified).

Although bilayer graphene is widely considered to be symmetric, there have

been several theoretical studies [34–36] and experimental observations [38–40] arguing

about an inherent asymmetry persistent in ungated bilayer graphene due to electron-

electron interaction at low temperatures. Thus bilayer graphene should exhibit valley

contrasting behavior even at zero electric and magnetic fields. On the light of these stud-

ies, Berry curvature due to layer polarization is anticipated in ungated bilayer graphene

[41]. However, M. Sui et al. [42] and Y. Shimazaki et al. [43] who has independently

studied valleytronics in bilayer graphene through non-local electrical measurement, could

not observe a non-local current (valley current induced by Berry curvature) in ungated

bilayer graphene. Thus in this work, we look for the existence of Berry curvature in

pristine bilayer graphene and the effect of external perturbation such as out-of-plane

electric field on the Berry curvature.

The ab initio calculations are performed within density-functional theory us-

ing the Linear Combination of Atomic Orbitals (LCAO) method implemented in the

package SIESTA [48]. van der Waals exchange correlation functionals [49] were used

in order to obtain the interlayer distance in close proximity to the experimental values.

A vacuum layer of thickness 20 Å was used to avoid the interaction between adjacent

bilayers. A fine Monkhorst-Pack grid of 36 x 36 x 1 and a mesh cut off of 400 Ry

was used in all the calculations. The atomic positions are optimized until the force on

each atom is less than 0.01 eV/Å. The Berry curvature calculations are performed using

the Wannier90 package which follows the Wannierization procedure [50]. A total of ten

Wannier functions are constructed on a fine Monkhorst-Pack grid of dimension 36 x 36

x 1. In the disentanglement procedure, the Wannier spread is converged down to 10−10

Å2 in less than 600 iterations.

As for calculations performed using QUANTUM ESPRESSO [51] which uses plane

wave basis, PBE exchange-correlation functional [52] which employs Generalized Gra-

dient Approximation (GGA) is used. A norm-conserving pseudo-potential with kinetic

energy cutoff for wave functions of 80 Ry is used (320 Ry for charge density cutoff). In

order to procure optimum interlayer distance between the two graphene layers, semi-

empirical Grimme’s DFT-D2 [53] van der Waals correction is employed. The Berry

curvature calculations are performed using the WANNIER90 package which follows the

Wannierization procedure [50]. A total of 10 Wannier functions are constructed on a

fine Monkhorst-Pack grid of dimension 72 x 72 x 1. In the disentanglement procedure,

the Wannier spread is converged down to 10−10 Å2 in less than 600 iterations.
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4.2 Berry curvature at zero electric field

Berry curvature for the nth band is defined as

Ωn(k) = i
~2

m2

∑
n6=n′

〈un,k| p̂ |un′,k〉 × 〈un′,k| p̂ |un,k〉
[εn − εn′ ]2

(4.1)

where, p̂ is the momentum operator, |un,k〉 is the periodic part of the Bloch function

and εn is the energy of the nth Bloch band. The summation runs over all the bands

including the un-occupied bands. The total Berry curvature is the sum over all the

occupied bands, i.e.,

Ω(k) =
∑
n

fnΩn(k) (4.2)

Figure 4.2: a, A non-zero Berry curvature was observed for ungated bilayer graphene
indicating the presence an inherent charge asymmetry persistent in bilayer graphene.
This asymmetry comes from the charge transfer to one of the two layers due to
electron-electron interaction in neutral bilayer graphene as reported by previous stud-
ies (Ref. [34–36]). b-c The magnitude of the Berry curvature at both K and K′ high
symmetry points decreases with an increase in electric field strength implying the re-
duction in charge asymmetry as a result of the applied field. d-e The polarity of the
Berry curvature switches sign after a threshold electric (ET ) field and shows an increase
in magnitude with an increase in electric field strength. This suggests that the charge
asymmetry switches sign at ET ; also, the asymmetry grows with the increase in the elec-
tric field beyond the threshold electric field. f Schematic representation of the charge
asymmetry in bilayer graphene, which arises from the charge transfer from valleys to
one of the layers (here the electrons are shown to be transferred to the bottom layer).
g Magnitude of the Berry curvature at both K and K′ valleys at different out-of-plane
electric fields. The Berry curvature polarity changes at the threshold electric field ET

= 960 µV/nm.
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where fn is the Fermi-Dirac distribution. Fig. 4.2a-e shows the Berry curvature calculated

at different positive electric fields for bilayer graphene. A non-zero Berry curvature

is observed at zero electric field (Fig. 4.2a), which is an indication of the asymmetry

persistent in pristine bilayer graphene. This observation substantiates the previous

reports on asymmetry in bilayer graphene [34–36], which arises from the charge transfer

from valleys to one of the layers due to electron-electron interaction, resulting in an

interlayer charge asymmetry (Fig. 4.2f). In order to understand the evolution of the

asymmetry as well as the Berry curvature, a small out-of-plane electric field, of the

order of few hundred µV/nm, is applied in the positive direction. A decrease in the

magnitude of the Berry curvature with the increase in the applied external electric field

was observed, indicating that the asymmetry is decreasing with the external electric

field as it induces charges on the other layer (Fig. 4.2a-c). At a threshold electric field

(ET ), 960 µV/nm in this case (Fig. 4.2g), the Berry curvature vanishes which denotes

that the charge asymmetry is nullified at this electric field. Increasing the magnitude of

the external electric field beyond the threshold electric field results in the change in the

direction of the Berry curvature polarity at both the K and K′ high symmetry points.

Figure 4.3: a-e Berry curvature plot for bilayer graphene at different negative electric
fields. The Berry curvature at both K and K′ high symmetry points does not show any
sign change with the increase in electric field. The increase in the magnitude of the
Berry curvature is the result of growing asymmetry in the system with the increase in

electric field strength.
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Also, once the polarity of the Berry curvature changes, the magnitude of the Berry

curvature increases with the increase in the electric field (Fig. 4.2d-e). This implies that

the charge asymmetry shifts to the opposite layer beyond the threshold electric field ET

and the asymmetry grows with the further increase in the magnitude of the electric field.

To gain further insight into the development of the asymmetry with the elec-

tric field, we performed the Berry curvature calculations at different negative electric

fields (Fig. 4.3). The magnitude of the Berry curvature keeps on increasing with the

increase in the magnitude of the applied negative electric field. This indicates that nega-

tive electric field simply amplifies the inter-layer charge asymmetry persistent in neutral

bilayer graphene. This observation also supports the notion of the inherent asymmetry

present in ungated bilayer graphene due to long-range Coulomb interaction.

Figure 4.4: Berry curvature calculated at different positive electric fields using QUAN-
TUM ESPRESSO (see Methods). a As observed in the calculations performed using
SIESTA (Fig. 2a, main text), a non-zero Berry curvature with opposite values at K
and K′ valleys is observed, validating the argumentation of inbuilt layer asymmetry
persistent in neutral bilayer graphene as a result of charge transfer. b The increase in
electric field reduces the magnitude of the Berry curvature and hence the layer asym-
metry. c Further increase in the magnitude of the electric field reverses the polarity of
the Berry curvature at both K and K′ valleys. This implies that the layer asymmetry
shifts to the opposite layer beyond a threshold electric field. d Increasing the electric
field strength beyond the threshold electric field increases the magnitude of the Berry

curvature as a consequence of the increase in layer asymmetry.
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All the above calculations are performed using SIESTA code which employs

Linear Combination of Atomic Orbitals (LCAO) basis. For a rigorous validation of the

results, we performed the same calculations using QUANTUM ESPRESSO which uses

plane wave basis (Fig. 4.4). The results mimicked that of SIESTA apart from a slight

change in the magnitude of the electric field at which the polarity of the Berry curvature

changes. Similar results observed with two different methods (SIESTA and QUANTUM

ESPRESSO) which use completely different basis sets manifests the reliability of the

results.

4.3 Non-zero band gap in pristine bilayer graphene

As mentioned earlier, the studies predict the existence of an inbuilt asymmetry

in bilayer graphene at zero electric and magnetic fields due to charge transfer to one of the

layers as a result of electron-electron interaction [34–36]. An internal electric field builds

Figure 4.5: a Schematic representation of the internal electric field developed between
the layers in ungated bilayer graphene as a result of layer asymmetry due to charge
transfer to one of the layers. b Electronic band structure of pristine bilayer graphene
showing the valleys at K and K′ high symmetry points. c Enlarged view of the bands
near the Fermi level around K valley. ungated bilayer graphene shows a small band gap
of ∼ 7 meV which substantiate the argumentation of asymmetry between the layers.
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up across the layers as a result of this charge transfer to one of the layers (Fig. 4.5a).

This also creates a potential difference between the layers which should open a band gap

in pristine bilayer graphene. Thus, we plotted the band structure of bilayer graphene

at zero electric field (Fig. 4.5b). Fig. 4.5c shows the enlarged view of the bands near

the Fermi level around K valley. A small band gap of ∼ 7 meV was observed in pristine

bilayer graphene, which is agreement with the band gap calculated by J. Jung et al.

using lattice Hartree-Fock approximation [36]. Thus, the observed non-zero band gap

also upholds the finding that the non-zero Berry curvature observed is indeed due to the

asymmetry present in bilayer graphene due to charge transfer to one of the layers as a

result of the electron-electron interaction.

4.4 Berry curvature at high electric fields

We have also calculated the Berry curvature at higher (positive) electric fields

i.e., four orders of magnitude higher than the electric field at which Berry curvature

switching was observed. The magnitude of the applied electric field is consistent with

the experimentally reported values[37]. Fig. 4.6a-c shows the Berry curvature calculated

Figure 4.6: Berry curvature calculated at K and K′ high symmetry points a for
1 V/nm b for 2 V/nm and c for 3 V/nm. The magnitude of the Berry curvature
decreases with the increase in the electric field at higher electric fields, in contrast to
what is observed at lower electric fields (Fig. 4.2d,e). This is due to the large band
gap opening at higher electric fields because Berry curvature is inversely proportional
to the square of the energy difference between conduction band minimum and valence
band maximum. d-f Enlarged view of the bands near the Fermi level around K valley

d for 1 V/nm e for 2 V/nm and f for 3 V/nm.
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at the electric fields 1 V/nm, 2 V/nm and 3 V/nm respectively. The magnitude of the

Berry curvature rapidly decreases as the magnitude of the electric field increases at

higher electric fields. This is in contrast to what was observed at lower electric fields,

once the Berry curvature polarity is switched. Also, the delocalization of the Berry

curvature in the momentum space increases with the increase in the electric field at

higher fields. This has also been shown by plotting the Berry curvature in the 2D k-

space(Fig. 4.7). The above findings can be explained by analyzing the expression for

Berry curvature(Eq. (1.1)). Taking the derivative of the periodic part of the Bloch

function (Eq. (1.1)) makes the calculation cumbersome. As per Wannier interpolation

scheme, the Berry curvature, calculated in terms of the Wannier functions [21] using

finite differences is defined as,

Ω(k) =
∑
n

fnΩ
H
nn +

∑
n,m

(fm − fn)DH
nm ×A

H
nm + ΩDD (4.3)

where O
H

= U †OWU represent the components which transform covariently from

Wannier gauge (W ) to Hamiltonian gauge (H ) under unitary transformation U ; and

Figure 4.7: Berry curvature plotted in the 2D k-space a for 1 V/nm, b for 2 V/nm,
and c for 3 V/nm. At higher electric fields, the Berry curvature delocalizes and spreads
across the 2D k-space with the increase in the strength of the applied out-of-plane

electric field.
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DH
nm = (U†∇HWU)nm

εm−εn (1− δnm). The last term is defined as

ΩDD =
i

2

∑
n,m

(fn − fm)
(U †∇HWU)nm × (U †∇HWU)nm

(εm − εn)2
(4.4)

Here, HW is the Hamiltonian in Wannier representation and εn is the energy of the nth

band.

The summation runs over all the Wannier states, which is, all the occupied and two

un-occupied states in our case. The term (fn − fm) in Eq. (4.4) tells that a pair of

occupied states or un-occupied states have negligible contribution to the total Berry

curvature. Thus, a pair of bands, one of them occupied and another one un-occupied

contribute extensively to the total Berry curvature. In that case, εm and εn are the

energies of these occupied and un-occupied valleys respectively. Hence increasing the

band gap results in the decrease in total Berry curvature because Berry curvature is

inversely proportional to the square of the energy difference between conduction band

minimum and valence band maximum. In the case of bilayer graphene, the band gap

increases with the increase in the strength of the applied electric field (Fig. 4.6d-f). The

band gaps are measured to be 64 meV, 126 meV and 183 meV for 1 V/nm, 2 V/nm

and 3 V/nm respectively. Thus, as the Berry curvature is proportional to the inverse of

the square of the band gap, its magnitude decreases with the increasing field strength.

This findings elucidates the fact that the application of very high electric field is not

desirable in bilayer graphene valleytronic devices. Also, the delocalization of the Berry

curvature in the k-space at high electric fields may increase the intervalley scattering

which is undesirable for a valleytronic material. The splitting of the Berry curvature

arises from the formation of the Mexican hat in the band structure of bilayer graphene

near the valleys at higher electric fields.

4.5 Berry curvature in AA-stacked bilayer graphene

Bilayer graphene exhibits another stacking configuration apart from the usu-

ally studied AB-stacking which is AA-stacking. It, therefore, becomes inevitable to

investigate the valleytronics properties of AA-stacked bilayer graphene. Thus, we have

carried out the Berry curvature calculations for AA-stacked bilayer graphene. Fig. 4.8

shows the Berry curvature calculated near high symmetry points K and K′ for AA-

stacked bilayer graphene. No Berry curvature was observed at zero electric field indicat-

ing the symmetry persistent in the system (Fig. 4.8a). In order to examine if applying

an out-of-plane electric field can break the symmetry and show any valleytronic prop-

erty, a large electric field (1 V/nm, 2 V/nm, and 3 V/nm) was applied (Fig. 4.8b-d).
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Figure 4.8: a No berry curvature was observed in ungated AA-stacked bilayer
graphene implying that the system is symmetric. Berry curvature calculated at out-
of-plane electric fields b 1 V/nm c 2 V/nm and c 3 V/nm. The absence of Berry
curvature in the presence of an out-of-plane electric field which induce interlayer po-
tential difference implies that the symmetry of the system remains uninfluenced by the

field.

However, no Berry curvature was observed under the application of out-of-plane electric

field as well. This signifies that an interlayer potential difference does not break the layer

symmetry in AA-stacked bilayer graphene. To validate these findings, we plotted the

band structure of AA-stacked bilayer graphene at different out-of-plane electric fields

near the Fermi level, around the K point (Fig. 4.9a-d). As anticipated from the above

findings, no band gap opening was observed under the application of an out-of-plane

electric field. This implies that AA-stacked bilayer graphene remains layer symmetric

under an interlayer potential difference and does not show any valleytronic properties

such as Berry curvature.
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Figure 4.9: a No berry curvature was observed in ungated AA-stacked bilayer
graphene implying that the system is symmetric. Berry curvature calculated at out-
of-plane electric fields b 1 V/nm c 2 V/nm and c 3 V/nm. The absence of Berry
curvature in the presence of an out-of-plane electric field which induce interlayer po-
tential difference implies that the symmetry of the system remains uninfluenced by the

field.

4.6 Bilayer graphene valley valve

Our findings can also pave the way to a novel type of valley valve. Several

proposals are made so far to construct valley filter and valley valve in graphene-based

devices. But they either demand highly complicated fabrication such as perfect zigzag

edges [44, 45] or dual gate splitting with opposite potential at both the gates [46]. In

contrast, we propose a valley valve which can be operated with a single gate at the center

of the bilayer graphene ribbon. Also, this scheme does not rely on any complicated device

fabrication.

A valley valve allows the current to pass through when Berry curvature at K

(or K′) valleys have the same polarity throughout the direction of motion of the carrier;

on the other hand, if the polarity of the Berry curvature is opposite at any portion in the

direction of motion of the carriers, the current is blocked. Fig. 4.10 shows the schematic

representation of the working principle of a valley valve with a single gate at the center of

the graphene nanoribbon. The operation of the valve depends on the magnitude of the
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out-of-plane electric field applied by the gate at the center. Because the polarity of the

Berry curvature depends on whether the applied electric field is greater than or less than

the threshold electric field (ET ). If an electric field greater than the threshold electric

field, ET is applied, the system blocks the valley current since the region between the

two gates have opposite polarity for Berry curvature with respect to either side of the

device (Fig. 4.10a). Conversely, an electric field, which is less than the threshold electric

field, ET allows the valley current to pass through as the direction of Berry curvature is

same on the entire length of the device (Fig. 4.10b).

Figure 4.10: In a valley valve, the carriers from the K (or K′) valleys pass through
when the polarity of the Berry curvature is the same throughout the direction of motion
of the carriers; for opposite polarities, the current is blocked. a When a gate voltage
greater than VT (VT is the gate voltage corresponding to the threshold electric field
ET ) is applied at the central gate, the Berry curvature polarity at the region of bilayer
graphene between the gates becomes opposite to that of the ungated region at either
sides of the gate (top panel). This stops the carriers from either valley to pass through.
b On the other hand, if the gate voltage is less than VT , all the regions including the
region between the gates have same polarity for the Berry curvature (top panel). This

allows the carriers to pass the gate to the other end of the device.
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4.7 Summary

In conclusion, we validate the presence of an asymmetry in ungated, undoped

bilayer graphene with the observation of a non-zero Berry curvature. The polarity of the

Berry curvature changes with the sign of layer polarization. The nonobservation of the

valley current induced by Berry curvature at zero electric field in previous experimental

studies on bilayer graphene (ref. [42], ref. [43]) could be due to the following reasons;

(i) the high temperature at which the experiment was performed (70 K); carriers can

overcome the energy gap due to thermal excitation, (ii) the cleanliness of the sample;

gapped states are expected to be present only in the highest quality samples [39, 40]

and (iii) the screening of the Coulomb interaction by the substrate; in both the studies,

bilayer graphene was encapsulated by h-BN layers, which can suppress the electron-

electron interaction [47]. In addition, the asymmetry present in ungated bilayer graphene

is vulnerable to slight changes in charge density, out-of-plane electric field, and disorder

[40]. Thus a dedicated and systematic experimental study is necessary to observe Berry

curvature and hence valley current in ungated bilayer graphene.
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Manipulating Berry curvature in

hBN-Bilayer graphene

heterostructure

Berry curvature, which arises from the asymmetry in a system is a paramount

physical property which results in interesting phenomenon such as valley hall effect.

There have been several experimental observations of valley hall effect in hBN encapsu-

lated bilayer graphene systems and hBN-single layer graphene heterostructures. Although

the role of hBN in breaking the layer symmetry in bilayer graphene and sublattice sym-

metry in single layer graphene is well known, the effect of the alignment and orientation

of hBN layer on the emergence of Berry curvature in these systems is not studied in

detail yet. We show that the arrangement of the hBN layer has a significant effect on

the Berry curvature of the bilayer graphene system, which can further be manipulated by

applying a perpendicular electric field. However, single layer graphene hBN systems are

rather insensitive to the configuration of the hBN layer as well as to the application of

the electric field.

5.1 Introduction

Introduction of two-dimensional materials have led to the observation of sev-

eral interesting physical phenomena experimentally [14, 15], including Berry phase which

is a geometrical phase theoretically predicted a few decades back [1]. Berry phase was

experimentally observed and measured to be π and 2π in single layer graphene and

bilayer graphene respectively [54, 55]. Observation of this geometrical phase has also

lead to the quest for physical phenomenon associated with it such as Berry curvature

48
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and orbital magnetic moment[3, 4]. Berry curvature, which arises as a consequence of

inversion symmetry breaking, can be considered as a pseudo-magnetic field in the recip-

rocal lattice. It serves as the driving force for carriers in valley Hall effect (VHE), where

the electrons from K and K′ valleys of the hexagonal lattice move to opposite edges of

the material in the presence of an in-plane electric field[27, 56]. VHE and associated

valley current are observed in graphene-based devices through non-local electrical mea-

surement [42, 43, 57]. In these devices, hexagonal boron nitride (hBN) layer is used as

a substrate which can break the sublattice symmetry in single layer graphene (SLG),

or as a dielectric encapsulation layer. However, a detailed analysis on the role of the

hBN layer and its orientation in inducing Berry curvature in a single layer and bilayer

graphene (BLG) is still lacking. Thus herein we study the emergence of Berry curvature

and its manipulation in hBN-BLG and hBN-SLG heterostructures.

The ab initio calculations. calculations are performed within density-functional

theory using the Linear Combination of Atomic Orbitals (LCAO) method implemented

in the package SIESTA [48]. van der Waals exchange correlation functionals [49] were

used in order to obtain the interlayer distance in close proximity to the experimental

values. A vacuum layer of thickness 20 Åwas used to avoid the interaction between

adjacent bilayers. A fine Monkhorst-Pack grid of 36 x 36 x 1 and a mesh cut off of 400

Ry was used in all the calculations. The atomic positions are optimized until the force

on each atom is less than 0.01 eV/Å. The electronic charge density is calculated using

Denchar package included in SIESTA. The Berry curvature calculations are performed

using the Wannier90 package which follows the Wannierization procedure [50]. A total

of ten Wannier functions are constructed on a fine Monkhorst-Pack grid of dimension

36 x 36 x 1. In the disentanglement procedure, the Wannier spread is converged down

to 10−10 Å2 in less than 600 iterations.

Berry curvature for the nth band is defined as

Ωn(k) = i
~2

m2

∑
n6=n′

〈un,k| p̂ |un′,k〉 × 〈un′,k| p̂ |un,k〉
[εn − εn′ ]2

(5.1)

where, p̂ is the momentum operator, |un,k〉 is the periodic part of the Bloch function

and εn is the energy of the nth Bloch band. The total Berry curvature is the sum over

all the occupied bands, i.e.,

Ω(k) =
∑
n

fnΩn(k) (5.2)

As per the Wannier interpolation scheme [? ], a pair of occupied states or a pair of

un-occupied states have a negligible contribution to the total Berry curvature. Thus, a

pair of bands, one of them occupied and another one un-occupied contribute extensively

to the Berry curvature. This was previously observed in the case of the avoided crossing
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where an external perturbation can control the gap between the two bands [58? , 59].

The small energy difference between the bands in avoided crossing substantially increases

the Berry curvature. In the case of single-layer graphene, such a pair of bands, the bands

above and below the Fermi level comes from the A and B sublattices of the unit cell. On

the other hand, in bilayer graphene, these low energy bands arise from the non-dimer

carbon atoms (the atoms exactly one above the other is called dimer atoms and the other

pair are called non-dimer atoms) of the unit cell. Thus altering the potential of these

atoms can open up band gap and induce Berry curvature in these systems. This can be

achieved by aligning the hBN layer to the graphene in such a way that the nitrogen (N)

and the boron (B) atoms of the hBN layer comes above and/or below the non-dimer

carbon (C) atoms which contribute to the low energy bands.

5.2 hBN-BLG Heterostructure

The effect of the hBN layer as a substrate is studied using hBN-BLG het-

erostructure where the BLG is aligned on top of hBN (Fig. 5.1a, inset). The N and B

atoms of the hBN layer are placed such a way that they are below B1 and A2 non-dimer

atoms of the bilayer graphene respectively. The dimer atoms come at the center of the

hexagonal ring of the hBN layer. Fig. 5.1a shows the Berry curvature calculated for

the heterostructure along K and K′ high symmetry points of the Brillouin zone. Under

zero electric field, the system shows a non-zero Berry curvature with opposite values

at the two (K and K′) symmetry points. This implies that the system has broken in-

version symmetry which comes from the difference in the potential experienced by the

two layers of the bilayer graphene due to the presence of the hBN layer at the bottom.

Application of a positive electric field (1 V/nm) across the heterostructure switches the

polarity of the Berry curvature at both the high symmetry points, which indicates that

the asymmetry between the layers has switched with the application of a positive elec-

tric field. we have also studied the band structure of the system around the Fermi level

near K (Fig. 5.2b). The presence of hBN has induced a band gap of 36 meV in the

ungated hetrostructure. Application of a positive electric field has reduced the band

gap (23 meV) which also explains the increase in the magnitude of the Berry curvature

with application of the electric field. A narrow gap between one occupied and another

un-occupied bands results in a large Berry curvature as mentioned earlier. In order to

understand further and to confirm the asymmetry between the layer, we have plotted

the difference in charge density between the layers (DCDBL) i.e. the charge density of

the second layer subtracted from the first layer of the bilayer graphene. Fig. 5.1c shows

the DCDBL of the system at zero electric field. Positive value demonstrates the regions

where the bottom layer has more charges than the top layer, whereas, the negative value
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Figure 5.1: a Berry curvature calculated for the hBN-BLG heterostructure (shown
in the of inset figure a) along the K and K′ high symmetry points of the Brillouin zone
for 0 V/nm and 1 V/nm. b Band structure of the hetrostructure around the Fermi
level near K for 0 V/nm and 1 V/nm. c Difference in charge density between the layers
(DCDBL) i.e. the charge density of the second layer subtracted from the first layer of

the bilayer graphene at 0 V/nm. d DCDBL for the system at 1 V/nm.

indicates the regions where the top layer has more charges than the bottom layer. The

non-zero difference in the charge density indicates the asymmetry between the layers

which in turn results in the emergence of the Berry curvature. However, application of

a positive electric field (1 V/nm) induces charges on the top layer, reducing the posi-

tive DCDBL in the heterostructure (Fig. 5.1d). This reverses the polarity of the layer

asymmetry and hence the Berry curvature.

5.3 hBN-BLG-hBN Heterostructure

5.3.1 NCB/BCN Configuration

We have also studied encapsulated bilayer graphene where bilayer graphene

is sandwiched between hBN layers (Fig. 5.2a, inset). The hBN layers are arranged such
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Figure 5.2: a Berry curvature calculated for the hBN-BLG-hBN heterostructure
(for NCB/BCN configuration shown in the of inset figure a) K and K′ high symmetry
points of the Brillouin zone for 0 V/nm, 1 V/nm and -1 V/nm. b Band structure of
the hetrostructure around the Fermi level near K for 0 V/nm, 1 V/nm and -1 V/nm.

that the top hBN is opposite to that of the bottom one. At B1 site, N and B atoms are at

the bottom and top respectively, whereas, at A2, B is at the bottom and N is at the top

(NCB/BCN). Fig. 5.2a shows the Berry curvature calculated along the K and K′ points

of the Brillouin zone for 0 V/nm, 1 V/nm and -1 V/nm. For the ungated case (0 V/nm),

the heterostructure shows a small Berry curvature which is very much confined to the

k-space. This arises from the asymmetry in the bilayer graphene due to the spontaneous

charge transfer from the valleys to one of the layers, which will be discussed elsewhere

[60]. This also shows that encapsulation of bilayer graphene with hBN layers does not

make any difference to the basic properties of bilayer graphene apart from providing

additional screening. Thus, encapsulated bilayer graphene is the better alternative to

observe valley Hall effect in ungated bilayer graphene as the asymmetry in free-standing

graphene is vulnerable to the potential difference, charge imbalance and disorder [39, 40].

However, application of out-of-plane electric field results in a fairly large magnitude of

the Berry curvature and the Berry curvature is widely spread over the k-space compared

to the ungated case. The Berry curvature polarity is also tunable with the direction of

the electric field. Fig. 5.2b shows the band structure for the system around the Fermi

level at K. The small band gap opening in the ungated case comes from the spontaneous

chargre transfer discussed above. Applying a perpendicular electric field opens a large

band gap (73 meV) which has equal magnitude for both positive and negative electric

fields. This is due to the large asymmetry between the layers induced by the electric

field. In order to understand the origin of the Berry curvature we plotted the DCDBL

for the system at -1 V/nm, 0 V/nm and 1 V/nm (Fig. 5.3a-c). Although the DCDBL

is not apparent as it was in the case of hBN-BLG due to the near symmetry of the

system, a close inspection reveals that the application of positive and negative electric
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fields induces charges in the top and bottom layers respectively. Thus, the polarity of

the layer asymmetry and hence that of the Berry curvature changes with the direction

of the electric field.

Figure 5.3: DCDBL of hBN-BLG-hBN system with NCB/BCN configuration for a
-1 V/nm b 0 V/nm and c 1 V/nm.

5.3.2 NCN/BCB Configuration

In order to find the effect of the alignment of the hBN layer on the layer

symmetry of the encapsulated bilayer graphene, we inverted the top hBN layer (Fig.

5.4a, inset). In this configuration, the B and N atoms on the top and bottom hBN

layers are one above the other. More specifically, the B1 non-dimer atom has nitrogen

at the top and bottom, whereas, A2 non-dimer atom has boron atoms at the top and

bottom (NCN/BCB). Fig. 5.4a shows the Berry curvature calculated along the high

symmetry points of the Brillouin zone for this heterostructure. The heterostructure

shows a non-zero Berry curvature which is spread over the k-space. This implies that

the orientation of the hBN layer also has a significant role in breaking the symmetry

between the layers of the bilayer graphene. Also, this asymmetry can be reversed with
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Figure 5.4: a Berry curvature calculated for the hBN-BLG-hBN heterostructure
(for NCN/BCB configuration shown in the of inset figure a) along the K and K′ high
symmetry points of the Brillouin zone for 0 V/nm and 1 V/nm. b Band structure of
the hetrostructure around the Fermi level near K for 0 V/nm and 1 V/nm. DCDBL

for the system is plotted at c 0 V/nm and d 1 V/nm.

the application of a positive electric field across the layers, which can be seen from the

reversal of the Berry curvature polarity at 1 V/nm. The band structure studies shows

that inverting the orientation of the top hBN layer results in the openign of the band

gap (48 meV) in the heterostructure. However, application of a positive electrid field

reduces the band gap to 37 meV. This also explains the increase in the magnitude of the

Berry curvature at 1 V/nm as indicated in the case of hBN-BLG system. The DCDBL

carried out for the ungated case (Fig. 5.4c) shows non zero values indicating that the two

layers of the bilayer graphene experience difference potential in this configuration. This

induces charge asymmetry between the layers and hence a non-zero Berry curvature.

Application of a positive electric field across the layers changes the DCDBL (Fig. 5.4d)

and reverses the polarity of the layer asymmetry which further reverses the polarity of

the Berry curvature.
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5.4 hBN-SLG and hBN-SLG-hBN Heterostructures

For completion, hBN-single layer graphene heterostructures with and without

encapsulation are also studied. In contrast to the breaking of layer symmetry in bilayer

graphene, the A/B sublattice symmetry is broken in single layer graphene due to the

presence of hBN layer. Fig. 5.5a shows the unit cell of the single layer graphene on

hBN heterostructure with one carbon atom above the nitrogen atom and the other

carbon atom at the center of the hBN hexagonal ring (hBN-SLG). The Berry curvature

calculated along the high symmetry points for the hBN-SLG system is shown in Fig.

5.5d. ungated hBN-SLG shows a non-zero Berry curvature which has opposite values

at K and K′ high symmetry points. The asymmetry comes from the unequal potential

experienced by the A and B sublattice caron atoms due to the presence of two different

atoms (Nitrogen and Boron) in the bottom hBN layer. In order to study the effect

of electric field on the polarity as well as the magnitude of the Berry curvature, we

applied a positive (1 V/nm) and a negative (-1 V/nm) electric fields across the layers

of the heterostructure. However, unlike the bilayer graphene case, application of an

out-of-plane electric field does not invert the polarity of the Berry curvature either

in the positive or in the negative electric field case for hBN-SLG heterostructure. The

magnitude of the Berry curvature slightly varies with the applied electric field. The band

Figure 5.5: a Unit cell of the single layer graphene hBN heterostructure. Encapsu-
lated graphene-hBN heterostucture with b NCB configuration and c NCN configura-
tion. Berry curvature calculated at -1 V/nm, 0 V/nm and -1 V/nm for d hBN-SLG
heterostructure, e hBN-SLG-hBN heterostructure with NCB configuration and f hBN-

SLG-hBN heterostructure with NCN configuration.
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structure calculated for hBN-SLG system (Fig. 5.6 a) also shows that the application

of a perpendicular electric field have only mild effect in modifying the band structure.

For the encapsulated single-layer graphene, two configurations are considered.

One in which the top hBN layer is aligned opposite to that of the bottom hBN (NCB)

as shown in Fig. 5.5b and another in which the hBN layers on the top and bottom are

aligned in phase with each other (NCN) as shown in Fig. 5.5c. In NCB configuration,

one C atom has N at the bottom and B at the top, while the other C atom comes at

the center of the hBN hexagonal ring. Fig. 5.5e shows the Berry curvature calculated

along the K and K′ points of the Brillouin zone for NCB arrangement. A non-zero

Berry curvature which is highly constrained to the k-space in comparison to the hBN-

SLG case is observed. Also, the magnitude of the Berry curvature is larger than the

hBN-SLG case by at least two orders. A perpendicular electric field of magnitude 1

V/nm is applied across the layers in both the directions. It is found that application of

perpendicular electric field does not have any effect on the polarity of the Berry curvature

encapsulated case as well. However, an out-of-plane electric field can alter the magnitude

Figure 5.6: a Band structure calculated for hBN-SLG heterostructure for -1 V/nm,
0 V/nm and 1 V/nm. Band structure calculated for encapsulated single layer graphene
at -1 V/nm, 0 V/nm and 1 V/nm b with NCB configuration and c NCN configuration.



Chapter 5 57

of the Berry curvature. The hihgly constrained Berry curvature is a consequence of the

near symmetry of the system. The band structure of the system (Fig. 5.6 b) resembles

that of pristine bilayer graphene with sharp diract cones at the K point. Also the applied

electric fields does not alter the band structure. In NCN arrangement, one C atom has

N atom at the top as well as at the bottom and the other C atom is at the center of the

hexagon formed by hBN layers. The Berry curvature calculated at 0 V/nm as well as

at 1 V/nm and -1 V/nm (Fig. 5.5f) showcases similar behavior to that of the previous

case. A non-zero Berry curvature is observed at zero electric field whose magnitude can

be tuned with the electric field. The polarity of the Berry curvature does not change

with the application of the electric field. Nonetheless, it can be observed that the Berry

curvature is spread more over the k-space in comparison to the other configurations of

the single layer graphene. This is also evident from the band structure of the system

(Fig. 5.6 c) which is parabolic at the K point unlike the sharp conical shape in the case

of NCB configuration. Thus the alignment of the hBN layer does not have any effect in

altering the polarity of the Berry curvature.

5.5 Summary

In conclusion, we have studied the emergence of Berry curvature in hBN-

bilayer graphene and hBN-single layer graphene systems for various configurations of

the hBN layer. The effect of positive as well as negative electric fields is also studied. In

the case of bilayer graphene heterostructure, hBN induces layer asymmetry and hence

the Berry curvature. The electric field could manipulate the polarity as well as the

magnitude of the Berry curvature depending on the direction of the applied field. On

the other hand, the polarity of the Berry curvature could not be reversed with the ap-

plication of an out-of-plane electric field in hBN single-layer graphene systems although

the magnitude of the Berry curvature was dependent on the applied electric field.
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Substrate Induced Valley Hall

Effect in Bilayer Graphene

Bilayer graphene is widely studied for valleytronics due to its high quality and

properties. However, none of the experimental studies conducted so far has observed

valley Hall effect induced valley current in ungated bilayer graphene due to the symmetry

present in the system. Although there are several studies on the existence of asymmetry

in ultraclean ungated bilayer graphene, it is very challenging to realize. However, in

this study, we have observed a non-zero valley current induced by Berry curvature in

ungated bilayer graphene. The asymmetry comes from the potential difference between

the layers induced by the substrate. On the other hand, measurements conducted on

single-layer graphene did not show any valley current, implying the symmetry persistent

in the system.

6.1 Introduction

It is known from many years that similar to charge and spin degree of freedom,

the electron has another degree of freedom which is valley. A local minimum in the

conduction band or the local maximum in the valance band is referred to as a Valley.

This degree of freedom allows the electron to occupy one of the valleys. The study of

valley electrons is called Valleytronics [1–4]. An ideal valleytronic material should have

two or more degenerate and in-equivalent valleys in its band structure. 2D materials

which lack centro-symmetry has two types of valleys in their band diagram which are

opposite to each other (K and K′). Thus we can label the electrons in K valley as valley

pseudo-spin up and electrons in K′ as valley pseudo-spin down. In such materials, charge

carriers from opposite valleys experience an effective magnetic field (Berry curvature)
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which is equal in magnitude but opposite in direction (Fig. 6.1a). Berry curvature is

derived from the additional phase attained by Bloch electrons, known as Berry’s phase.

This leads to a phenomenon called valley Hall effect where the electrons residing in the

two valleys move to opposite edges of the sample in the presence of an in-plane electric

field (Fig. 6.1b).

Figure 6.1: a Schematic representation of the Berry curvature with opposite values
at K and K′ high symmetry points of the Brillouin zone. A non-zero Berry curvature
is observed only in systems with broken time-reversal symmetry or spatial inversion
symmetry. b Schematic diagram showing valley Hall effect. In the presence of an in-
plane electric field, electrons residing in the two valleys move to opposite edges of the
sample due to the opposite polarity of the Berry curvature at the two valleys. Berry
curvature, which can be considered as a pseudo magnetic field in the reciprocal space
drives the carriers to opposite edges. (This image is partly the same as Fig. 4.1. The

image is included here for the reader’s convenience).

Valley Hall effect is widely studied in two-dimensional materials including

bilayer graphene [42, 43]. However, these studies used a complicated device structure

consisting of bilayer graphene sandwiched between hBN layers. In addition, as they

could not observe any VHE in ungated bilayer graphene, an electric field had to be

applied between the top and bottom gates to break the symmetry between the layers

and induce VHE. However, in the current study, we observed VHE in ungated bilayer

graphene exfoliated on Si/SiO2 substrate.

The bilayer and single layer graphene devices are fabricated as follows. The

graphene is exfoliated on Si/SiO2 substrate using the scotch tape method. The number

of layers is identified using Raman spectroscopy. Once the number of layers is identified,

electron beam lithography followed by electron beam evaporation is used to make con-

tacts. MMA/PMMA resist (positive resist) is used for electron beam lithography. For

contacts, 10 nm chromium (Cr) and 60 nm gold (Au) is deposited.
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6.2 Local and Non-Local Measurement Method

In order to detect the valley Hall effect in bilayer graphene, the non-local re-

sistance measurement method is used. We have also performed local resistance measure-

ment in order to make a comparison. Fig. 6.2a and b show the schematic representation

of the local and non-local resistance measurement respectively. In the local resistance

measurement, the current is sent across the length of the device (I13) and the voltage is

detected at the two ends of the device (V24). Thus the local resistance is given by,

RL =
V24

I13
(6.1)

On the other hand, in the case of the non-local resistance measurement method, the

current is sent across the terminals at one end of the device (I12) and the voltage across

the two terminals at the other end is measured (V34). Hence the non-local resistance is

given by,

RNL =
V34

I12
(6.2)

Figure 6.2: Schematic illustration of the a local and b non-local resistance mea-
surement method. In the local resistance measurement, the current is sent across the
length of the device and the voltage is detected at the two ends of the device. Whereas
in the case of the non-local resistance measurement method, the current is sent across
the terminals at one end of the device and the voltage across the two terminals at the
other end is measured. (This image is the same as Fig. 3.6. The image is included here

for the reader’s convenience).

6.3 Valley Hall Effect in Bilayer Graphene

In this study we have investigated the valley Hall effect in bilayer graphene

exfoliated on Si/SiO2 substrate. Fig. 6.3a shows the optical micrograph of the bilayer

graphene device (false color is used to enhance the clarity). The local and non-local
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resistance measurements are performed using the contacts which are at the two ends of

the device (shown schematically in Fig. 6.3b). Fig. 6.3c shows the measured local and

non-local resistances for the bilayer graphene device. Following observations can be made

from the measurement. One, the intensity of the non-local resistance is much lower than

that of the local resistance. This is due to the large distance (12 µm) between the current

and voltage terminals in the case of non-local measurement. Second, the non-local

resistance is zero at higher positive and negative gate voltages, unlike the local resistance

which has a finite value even at higher voltages. This can be explained as follows. At

higher negative (positive) voltage, the Fermi level is deep in the valence (conduction)

band. The Berry curvature is maximum when the Fermi level is in the gap between the

valence and conduction band. The magnitude of the Berry curvature decreases when the

Fermi level is moved away from the gap deep to either band. Thus at higher voltages,

the carriers experience little or no force as the magnitude of Berry curvature is very

small. These observations also affirm the fact that the non-local resistance id indeed

due to the valley Hall effect induced by Berry curvature.

Figure 6.3: aOptical micrograph of the bilayer graphene device (false colour is used
to enhance the clarity). The scale bar is 5 µm. b Schematic illustration of the contact
configuration used for local and non-local resistance measurements on the device. c
Measured local and non-local resistances for the bilayer graphene device. The measure-

ment is performed at 4.6 K.

The observation of the valley Hall effect in ungated bilayer graphene is at-

tributed to the emergence of Berry curvature (which is the driving force that pushes the
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electrons to the other end of the device) as a result of the layer asymmetry in bilayer

graphene. The layer asymmetry comes from the proximity effect where the Si/SiO2 sub-

strate induces different potentials between the two layers of the bilayer graphene which

in turn breaks the layer symmetry in the system.

6.4 Ohmic Contribution to the Local Resistance

Although we have ascertained that the non-local resistance is due to the

valley Hall effect, there could be some Ohmic contribution to the non-local resistance

which arises from the diffusion of the carriers injected at one end to the other end. This

Ohmic contribution to the non-local resistance is given by,

ROhmic = ρxxe
−πL

w (6.3)

where ρxx = RL(w/L). Thus we have calculated the Ohmic contribution and compared

it with the non-local resistance (Fig. 6.4). The Ohmic contribution is at least two

orders of magnitude smaller than that of the non-local resistance. Hence we rule out the

Figure 6.4: Ohmic contribution to the non-local resistance calculated using the van
der Pauw formula is compared with the measured non-local resistance. The ohmic
contribution is at least two orders of magnitude smaller than that of the non-local

resistance.
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possibility of the diffusion of carriers to the voltage detecting terminals from the current

injecting terminals.

6.5 Temperature Dependence of the Local and Non-Local

Resistance

We have aslo studied the temperature dependence of the local (Fig. 6.5a) and

non-local (Fig. 6.5b) resistance. Both the local and non-local resistance shows thermal

activation behaviour. In order to extract more information from these measurements we

Figure 6.5: Temperature dependence measurements for a local and b non-local
resistances. 1/RMax versus 1/T plot for c local and d non-local resistances. The
inset of c and d shows the semi-log plot of resistance with 1/T for local and non-local

resistances respectively
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have plotted the 1/RMax as a function of 1/T for both local (Fig. 6.5c) and non-local

(Fig. 6.5d) resistances. The temperature dependence of both the local and non-local

resistances were following a double exponential function over the whole temperature

range:

1

R
=

1

R1
e
− E1
kBT +

1

R2
e
− E2
kBT (6.4)

where E1 and E2 are the activation energy at high temperature and low temperature

respectively. The band gap of the sample is twice that of the activation energy at high

temperature. We estimated the band gap from the activation energy and is found to

be 20 meV. The inset in Fig. 6.5c and Fig. 6.5d shows the semi-log plot of resistance

with 1/T. In both the cases it can be seen that at high temperature, band conduction

dominates whereas at lower temperatures the conduction is mainly due to hopping.

6.6 Non-Local Measurement in Single Layer Graphene

We have also studied single-layer graphene for valley Hall effect. Fig. 6.6a

shows the optical micrograph of the single layer graphene device. The terminal con-

figuration shown in Fig. 6.6b is used to perform the local and non-local resistance

Figure 6.6: aOptical micrograph of the single layer graphene device (false colour
is used to enhance the clarity). The scale bar is 5 µm. b Schematic illustration of
the contact configuration used for local and non-local resistance measurements on the
device. c Measured local and non-local resistances for the single layer graphene device.

The measurement is performed at 4.6 K.
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measurements. Fig. 6.6c shows the measured local and non-local resistance for the

single layer graphene at 4.6 K. As can be seen from the figure, single layer graphene

exhibit no non-local characteristics although it gives an intense local resistance with

charge neutrality point around 5 V. The non observation of nonlocal resistance indicates

the presence of symmetry in the system. This also implies that single-layer graphene

exfoliated on Si/SiO2 substrate has zero Berry curvature.

6.7 Summary

We have observed valley Hall effect in ungated bilayer graphene exfoliated

on Si/SiO2 substrate. This is attributed to the emergence of Berry curvature in the

system as a result of layer symmetry breaking. The layer asymmetry comes from the

proximity effect where the Si/SiO2 substrate induces different potentials between the two

layers of the bilayer graphene. The Ohmic contribution to the non-local resistance was

found to be negligible. Both local and non-local resistances shows thermal activation

behavior. From temperature dependence resistance measurement it is found that a

band gap is opened in the bilayer graphene and is calculated to be 20 meV. The non-

local resistance measurement in single layer graphene did not show any sign of valley

Hall effect. This indicates that single-layer graphene exfoliated on Si/SiO2 substrate

preserves the symmetry of the system and has zero Berry curvature.
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Conclusion and Future Prospects

In the first part of the work we have theoretically validated the presence of

asymmetry in ungated, undoped AB-stacked bilayer graphene with the observation of a

non-zero Berry curvature. The asymmetry comes from the spontaneous charge transfer

to one of the layers due to long range Coloumb interaction. The polarity of the Berry

curvature changes with the sign of layer polarization which can be controlled with the

application of an out-of-plane electric field. At higher out-of-plane electric fields of the

order of few V/nm, the magnitude of the Berry curvature decreases with the increase

in the electric field. This is due to the increase in band gap in bilayer graphene at

high electric fields. However, no Berry curvature was observed in AA-stacked bilayer

graphene. This indicates the presence of layer symmetry present in the system. Even

the application of an out-of-plane electric field could not break the symmetry and induce

Berry curvature in AA-stacked bilayer graphene.

We further conducted theoretical studies on the emergence of Berry curvature

in hBN-bilayer graphene and hBN-single layer graphene heterostructures for various

configurations of the hBN layer. The effect of positive as well as negative out-of-plane

electric fields on the magnitude as well as the polarity of the Berry curvature is also

studied. In the case of bilayer graphene heterostructure, hBN induces layer asymmetry

and hence the Berry curvature. The electric field could manipulate the polarity as well

as the magnitude of the Berry curvature depending on the direction of the applied field.

On the other hand, the polarity of the Berry curvature could not be reversed with

the application of an out-of-plane electric field in hBN single-layer graphene systems

although the magnitude of the Berry curvature was dependent on the applied electric

field.

Moreover, we have experimentally observed valley Hall effect in ungated

bilayer graphene exfoliated on Si/SiO2 substrate. This is attributed to the emergence
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of Berry curvature in the system as a result of layer symmetry breaking. The layer

asymmetry comes from the proximity effect where the Si/SiO2 substrate induces different

potentials between the two layers of the bilayer graphene. The Ohmic contribution to

the non-local resistance was found to be negligible. From temperature dependence of

the measurement it is found that a band gap is opened in the bilayer graphene and is

calculated to be 20 meV. However, single layer graphene did not show any sign of valley

Hall effect. This indicates that single-layer graphene exfoliated on Si/SiO2 substrate

preserves the symmetry of the system and has zero Berry curvature.

The distinct behavior of electrons in the two equivalent valleys intrinsically as

well as towards external perturbation makes them promising to be used to store binary

information. But, immense research has to be performed to understand the various

aspects of the valley quantum number. Also finding the suitable material for practical

applications is a challenging task. Two dimensional materials like graphene, h-BN and

Transition Metal Dichalcogenides (TMDs) are suitable candidates for valleytronics study

due to the presence of degenerate but inequivalent valleys K and K’. Various valley

related properties such as valley Hall effect, valley excitons and valley Zeeman effect are

of great scientific importance and worth studying.
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