
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title String commitment scheme with low output locality

Author(s) Miyaji, Hideaki; Kawachi, Akinori; Miyaji, Atsuko

Citation
2019 14th Asia Joint Conference on Information

Security (AsiaJCIS): 32-39

Issue Date 2019-08

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/16194

Rights

This is the author's version of the work.

Copyright (C) 2019 IEEE. 2019 14th Asia Joint

Conference on Information Security (AsiaJCIS),

2019, pp.32-39. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future

media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

String commitment scheme with low output locality
Hideaki Miyaji

Graduate School of Engineering,
Osaka University

hideaki@cy2sec.comm.eng.osaka-u.ac.jp

Akinori Kawachi
Dept. Info. Eng.,
Mie University
QIQB, OTRI,

Osaka University
kawachi@cs.info.mie-u.ac.jp

Atsuko Miyaji
Graduate School of Engineering,

Osaka University
miyaji@comm.eng.osaka-u.ac.jp

Abstract—Commitment schemes are important tools
for various protocols. However, no scheme with output
locality have been proposed yet. Low output locality
is a property of functions that every output bit to
depend on a small number of input bits. In this paper,
we construct a commitment scheme having low output
locality from a modified lattice-based hash function
for the first time. We also prove that our scheme
satisfies the binding property by using the collision
resistance of the lattice-based hash functions and the
hiding property by using a modified version of the
leftover hash lemma, respectively.

Index Terms—hash functions, commitment schemes,
output locality

I. Introduction

The complexity of cryptographic primitives is a funda-
mental research problem for constructions of highly effi-
cient and secure protocols [3], [9]. Applebaum et al. showed
groundbreaking results for low-complexity cryptographic
constructions of fundamental primitives [2]. Their tech-
nique provided a general framework for conversion to
low-complexity cryptographic functions, including one-
way and pseudorandom functions of low output locality.

The output locality is a natural complexity measure of
computational efficiency for Boolean functions. A Boolean
function has an output locality k, if each output bit
depends on at most k input bits. One can easily see
that functions of low-output locality are implementable
by low-depth circuits, implying high parallelizability. In an
extreme case, if a function has constant output locality, it
can be decomposed into much smaller functions that can
be computed by constant-depth circuits in parallel. The
low-depth cryptographic functions play crucial roles in
some situations. For example, the bootstrapping method
requires a low-depth decryption function for lattice-based
fully homomorphic public-key encryption [6].

From the results of Applebaum et al., approaches to
low-complexity cryptographic constructions have been de-
veloped [2]. They most recently provided constructions
for collision-resistant hash functions of low-output local-
ity from computationally hard problems of lattices and
multivariate polynomials [2].

On the other hand, a commitment scheme is a funda-
mental protocol and a key necessity for achieving basic
cryptographic tasks, such as zero-knowledge identification
and more [5]. The scheme is performed between two
parties (i.e., sender and receiver) with commitment and
decommitment phases. In the commitment phase, the
sender converts his message to a commitment string and
sends it to the receiver. In the decommitment phase, the
sender sends his message and a decommitment string that
allows the receiver to verify if the commitment string
was indeed generated from his message. The security of
commitment schemes is formalized by two properties (i.e.,
hiding and binding). The hiding property guarantees that
no receiver can obtain any partial information of the
message prior to the decommitment phase. The binding
property guarantees that no sender can choose one of more
than two candidate messages by switching decommitment
strings during the decommitment phase.

In this paper, we examine the possibility of low-
complexity constructions for higher-level cryptographic
protocols. We propose the commitment scheme with low
output locality for the first time. As far as the authors’
knowledge, no commitment scheme has low output locality
so far. For example, the well-known standard commitment
schemes of Pedersen [10] and of Halevi and Micali [7] do
not have low output locality. In particular, we construct
the commitment scheme of non-trivial (expected) output
locality from a variant of lattice problems, called the
binary shortest-vector problem (bSVP).

To construct the commitment scheme with low output
locality, we focus on two primitives. One is a commitment
scheme from a well-known lattice problem of the short
integer solution (SIS) problem [8]. Their scheme made use
of a lattice-based collision resistant hash function of the
“matrix-vector multiplication” form, y = M ·x for a matrix
M and vector x.

In their scheme, the binding property is shown from the
collision resistant property of M . The hiding property is
derived from the so-called leftover hash lemma [11]. They
proved that every two commitment strings generated from
distinct messages were statistically indistinguishable with
high probability with respect to random choices of M . An-
other primitive is a collision-resistant hash function of low
output locality based on the matrix-vector multiplication
form with a randomized encoding function [2]. They first
constructed a function, f(x) = M · ex(x), where ex is
an expanding function that dilutes Hamming weight on
input x to achieve non-trivial output locality and collision-
resistant properties from the intractability of bSVP. Their
important idea is to apply a randomized encoding function
f̂(x) to the function f(x) to achieve much lower output
locality. Here, we say that a function f̂(x) is a randomized
encoding function of f if f̂(x) satisfies δ-correctness and
(t, ϵ)-privacy in [1].

A straightforward approach to construct a commitment
scheme with low output locality is to combine these two
primitives: the commitment scheme based on SIS, and
the collision-resistant hash function with a randomized
encoding function. However, it is not easy to give a proof
on its hiding property of the commitment scheme based
on the collision-resistant hash function with a randomized
encoding function. To overcome this difficulty, we con-
struct the collision-resistant hash function HLO without
using a randomized encoding function. We evaluate the
output locality of HLO explicitly. Then we construct the
string commitment scheme (SEND, RECEIVE) based on HLO.
We evaluate output locality of our commitment scheme in
Theorem 3. We also prove that our commitment scheme
satisfies the computationally-binding property in Theo-
rem 4 and the statistically-hiding property in Theorems 5
and 6. When we give a proof on the statistically-hiding
property, we prove a variant of the leftover hash lemma
applicable to random inputs with diluted Hamming weight
and biased random matrices.

This paper is organized as follows. Section II summa-

rizes the commitment scheme, the hash function, and
output locality. Section III explains building blocks of our
construction. In Section IV, we present our commitment
scheme. Finally, we conclude our results in Section V.

II. Preliminaries

In this section, we summarize the commitment scheme,
the hash function, and output locality.

A. Commitment Scheme

First, we summarize the notation used in this paper.
• S: sender
• R: receiver
• 1k: security parameter
• a: message string
• r: random string
• c: commitment string
• d : decommitment string
• d′ ̸= d : decommitment string, where S wants to cheat
• ⊥: rejection symbol that R outputs for invalid inputs
• ε(k): negligible function
• Hw(x): Hamming weight of x

• Comm: a commitment scheme
• SEND: an algorithm that makes a commitment string

from security parameter 1k

• RECEIVE: an algorithm that verifies the correctness of
the commitment string from (1k, c, d)

• n: a positive integer
• m: a positive integer less than n

• H2(p) := −p log(p) − (1 − p) log(1 − p) denotes the
binary entropy function where p ∈ [0, 1]

Next, we provide a definition of the commitment
scheme, which follows [4].

Definition 1 (Commitment Scheme). A commitment
scheme, Comm(SEND, RECEIVE), is a two-phase protocol be-
tween the probabilistic polynomial-time party, S, and the
unbounded computational party, R, respectively the sender
and receiver.

During the first phase (commitment), S commits string a
to a pair of keys, (c, d), by executing (c, d)←− SEND(1k, a)
and by sending c (commitment string) to R. Given c, the
unbounded computational party receiver, R, cannot guess
the string with a probability significantly better than ε. This
is the hiding property.

During the second phase (decommitment), S reveals the
string, a, and sends the key, d, (decommitment string) and
a to R. Next, R checks by executing RECEIVE(1k, c, d) whether

the decommitment string is valid. If not, RECEIVE(1k, c, d)
outputs a special string, ⊥, meaning that R rejects the
decommitment of S. Otherwise, RECEIVE(1k, c, d) can effi-
ciently compute the string, a, revealed by S, and sees that a
was indeed chosen by S during the first phase. This is the
binding property.

In the following, we give security notions of the commit-
ment scheme Comm(SEND, RECEIVE) in Definitions 2 and 4.

Definition 2 (Computationally binding property [7]). We
say that Comm(SEND, RECEIVE) is computationally binding
if it is computationally infeasible to generate a commitment
string, c, and two decommitment strings, d, d′(d ̸= d′),
such that R would compute one message, a, from (c, d)
and a different message a′ from (c, d′). In detail, for every
probabilistic polynomial-time adversary, given SEND

′(1k),
the following occurs.

Pr


RECEIVE(1k, c, d) ̸=⊥,

(c, d, d′)← SEND
′(1k) : RECEIVE(1k, c, d′) ̸=⊥,

RECEIVE(1k, c, d)
̸= RECEIVE(1k, c, d′)


< ε(k),
where ε(k) is a negligible function in k. We then say
that the commitment scheme, Comm(SEND, RECEIVE), is
computationally binding.

Before we define statistically hiding, we review a defini-
tion of statistical distances.

Definition 3 (Statistical distance). Given two probability
distributions, ϕ1 and ϕ2, on a finite set, S, we define the
statistical distance between them as

d (ϕ1, ϕ2) := 1
2
∑

x∈S |ϕ1(x)− ϕ2 (x) |.

Definition 4 (Statistically hiding property [7]). Let a ∈
{0, 1}∗ be a message string, and let Ck(a) denote the distri-
bution over the commitment string for a in a commitment
scheme, Comm(SEND, RECEIVE). Thus, Ck(a) is the distribu-
tion of the first coordinates of the pair that is obtained by
running algorithm SEND(1k, a). The commitment scheme,
Comm(SEND, RECEIVE), is statistically hiding if R cannot
distinguish two commitment strings less than ε, as follows;

∀a1, a2 ∈ {0, 1}∗, d (Ck(a1), Ck(a2)) < ε(k),

where ε(k) is a negligible function in k.

In this paper, we construct the string commitment
scheme, Comm(SEND, RECEIVE), which satisfies

computationally-binding and statistically-hiding
properties.

B. Hash Functions

In this section, we summarize the definition of hash
functions. A hash function converts input bits of arbitrary
length into compressed output bits of shorter length.
When a hash function satisfies Definition 5, it has collision
resistance.

Definition 5 (Collision Resistance). We have arbitrary
probabilistic polynomial algorithm, Adv, given a descrip-
tion of hash function and length parameter as inputs. If
the probability of Adv to output x, x′ ∈ {0, 1}k satisfying
x ̸= x′ and f(x) = f(x′) is negligible, the function is a
collision-resistant hash function.

Pr[Adv(f, 1k)→ x, x′(x ̸= x′) s.t. f(x) = f(x′)] < ε(k),

where ε(k) is a negligible function in k.

We construct a string commitment scheme from lattice-
based hash functions. We use a slightly modified version
of the hash functions of Applebaum et al. [2]. The hash
function has output locality, and it is based on binary
shortest vector problem (bSVP). We review bSVP in Defi-
nition 9. First, we provide the definitions of output locality,
expansion, relative hamming weight, and hamming weight.

Definition 6 (Output Locality). We say function h has
output locality d if each of output bits depends on at most
d input bits.

Definition 7 (Expansion). We say n/k is an expansion
of a function f : {0, 1}k → {0, 1}n(k < n).

Definition 8 (Hamming Weight, Relative Hamming
Weight). Let x = (x1, ..., xn) ∈Fn

2 be a vector. The number
of “1”s in x is called the Hamming weight, which we denote
by Hw(x). The ratio of “1”s in x is called the relative
Hamming weight, which we denote by ∆(x).

Definition 9 (bSVP). For a weight parameter, δ(n), δ :
N → (0, 1/2), and an efficient sampler, M(1n), which
samples m×n binary matrices, the (M , δ)–bSVP assump-
tion asserts that, for every efficient algorithm, Adv, the
probability,

PrM R←M(1n)
[Adv(M) = x|x ̸= 0, Mx = 0 and ∆(x) ≤ δ]

< ε(n)

where ∆(x) is the relative Hamming weight of x and ε(n)
is a negligible function in n.

In [2], they supposed that the matrix sampler M(1n)
generates a uniformly random binary m × n matrix. In
this paper, we consider a slightly biased version of matrix
samplers. Our matrix sampler Mγ(1n) generates m × n

binary matrix of which each element is taken to 1 (and to
0) with probability γ (and 1 − γ, respectively) indepen-
dently of other elements for some constant γ ∈ (0, 1/2).
Thus, every row of the matrix is expected to have γn “1”s
rather than n/2 in the case of [2].

III. Building blocks

In this section, we review the hash-function construction
that we use in this paper. The collision resistance of
the hash function is based on the bSVP assumption.
Applebaum et al. constructed an expand function to use
the bSVP assumption, which dilutes relative Hamming
weight of input bits. (In the statement of the lemma, we
fix output locality to 1, but they showed a general case of
output locality d.)

Lemma 1 (Expand Function with Low Output Local-
ity [2]). Fix any δ ∈ (0, 1/2). Suppose β ≤ δ/2 and
n/k = ⌈1/H2(β)⌉ for β ∈ (0, 1/4) and natural num-
bers n, k. There exists an efficiently computable function
ex : {0, 1}k → {0, 1}n such that (1) ex is injective, (2)
∆(ex(x)) ≤ β for every x, and (3) ex has output locality
1.

proof: In the statement of this lemma, we fixed output
locality to 1, but we show a general case of output locality
d. Suppose that n/k = c/d for constants c and d.

We construct a function, ex : {0, 1}k → {0, 1}n, con-
sisting of two steps. First, we divide input {0, 1}k into
blocks of d bits and extend a d-bit block to a c-bit block
by a function, ex0 : {0, 1}d → {0, 1}c, which is provided in
Algorithm 1. Note that c = ⌈1/H2(β)⌉d. Then, the number
of strings of relative Hamming weight at most β is less
than 2d. Hence, the outputs of ex0 have relative Hamming
weight at most β and ex0 is injective. In addition, ex0
obviously has output locality d.

We combine ex0 to construct a function ex, which we
describe in Algorithm 2. From the construction of ex0,
the properties of (1), (2) and (3) (of output locality d) are
immediately satisfied. We will show the images of expand
function in Fig. 1.

Fig. 1. ex function

Algorithm 1 ex0 function
Input: x ∈ {0, 1}d

Output: ex0(xi) ∈ {0, 1}c

1: Identify x ∈ {0, 1}d as a binary representation of
natural numbers in {0, . . . , 2d − 1} naturally.

2: Set y ∈ {0, 1}c to the (x + 1)-th string of relative
Hamming weight at most β.

3: return y ∈ {0, 1}c．

Algorithm 2 ex function
Input: x ∈ {0, 1}k

Output: ex(x) ∈ {0, 1}n

1: Partition k-bit input into k/d input blocks of d bits
each.

2: Apply ex0 to each input block and generate k/d

output blocks of c bits.
3: return ex0(x1) ◦ ex0(x2) ◦ .. ◦ ex0(xk/d) = ex(x).

IV. Proposed Commitment Scheme

A. Proposed Hash Function and its Low-Output Locality

Our proposed commitment scheme uses a hash function
with low output locality. The hash function comprises a
matrix and an expand function, ex, as shown in Algorithm
3. Let HLO : {0, 1}k → {0, 1}m.

Algorithm 3 Hash function: HLO

Input: x ∈ {0, 1}k , M ∈Mm,n(F2).
Output: y ∈ {0, 1}m

1: ex : x ∈ {0, 1}k → {0, 1}n

2: Compute y = M · ex(x)．
3: return y

Next, we discuss the output locality of HLO. By using
the expand function, ex, the output locality of ex can be
suppressed by the constant, 1, in Lemma 1. However, HLO

needs to multiply the output of ex by a matrix, M , where
output of ex is treated as a vector. This is why we cannot
suppress the output locality as a constant.

Theorem 1 (Output Locality). Let c = n/k =
⌈1/H2(β)⌉, let γ be an expected relative Hamming weight
in every row of the matrix M . Then, the hash function HLO

has expected γ · c · k output locality.

proof: We first review the definition of output locality.
A function h has output locality d if each output depends
on at most d inputs. Thus, we compare between the
number of input bits influencing every output bit in HLO

and the number of input bits k. If HLO has output locality,
the number of input bits influencing each output bit in HLO

should be less than k.
HLO is expressed by M ·ex(x). The matrix in HLO is taken

to 1 (and to 0) with probability γ (and 1−γ, respectively)
independently of other elements for some constant γ ∈
(0, 1/2). An expected “1”s in every row in the matrix is
γn. The output locality in ex(x) is 1 from Lemma1, so
an expected output locality in HLO is γn. From n = ck,
γn · 1 = γ · ck. Therefore, HLO has expected γ · c · k output
locality.

From Theorem 1, the expected output locality γck is
strictly less than k by setting γ < ⌈1/H2(β)⌉−1.

B. Collision resistance of HLO

In this section, we show that HLO satisfies collision
resistance under the bSVP assumption.

Theorem 2. HLO has collision resistance under the
(Mγ , δ)–bSVP assumption.

proof:
We assume there exists an adversary, Adv, which defeats

collision resistance. Then, we can write the following for
some non-negligible function ε′(n).
∃Adv s.t. Pr

M
[Adv(M)→ (x1, x2)s.t.

x1 ̸= x2 ∧M · ex(x1) = M · ex(x2)] > ε′(n).
Adv can obtain (x1, x2) from the given M as an input.

Next, we construct another adversary, Adv’, which breaks
the bSVP assumption.

Algorithm 4 Adv’
Input: M

Output: ex(x1), ex(x2)
1: Execute Adv(M)→ (x1, x2)．
2: Compute ex(x1), ex(x2) from x1, x2.
3: return ex(x1), ex(x2)

From Algorithm 4, the adversary Adv’ executes

Adv′(M)→ (ex(x1), ex(x2)).

(ex(x1) ̸= ex(x2) from injectivity of ex.)
We next compute ex(x1) − ex(x2) and obtain

M(ex(x1)−ex(x2)) = M ·ex(x1)−M ·ex(x2). The relative
hamming weight of each ex(x1) and ex(x2) are at most
β. Thus, the relative hamming weight of ex(x1) − ex(x2)
is at most 2β. From the construction of ex in Lemma 1
we have β ≤ δ/2. Hence, the relative hamming weight
of ex(x1) − ex(x2) is less than δ. We can derive an
equation below for some non-negligible function ε′′(n) and
x′ = ex(x1)− ex(x2).

PrM R←M(1n)
[Adv’(M) = x′|x′ ̸= 0, Mx′ = 0 and ∆(x′) ≤

δ] > ε′′(n)

.
Algorithm 4 shows that Adv’ can defeat the bSVP

assumption in Definition 9. Therefore, HLO has collision
resistance via the contraposition.

Now, we propose a string commitment scheme,
Comm(SEND, RECEIVE) for a message string a ∈ {0, 1}k/2,
based on HLO in section IV-C.

C. Protocol of Proposed Commitment Scheme

In this section, we show our proposed commitment
scheme based on hash function HLO. The commitment
scheme comprises initialization and a commitment phase
and a decommitment phase. We explain each phase.
Initialization
Prior to the commitment phase, both S and R share the
following information.
• ex:{0, 1}k → {0, 1}n

• matrix M ∈Mm,n(F2)
• 1k : security parameter

Commitment Phase by S
1) Choose a random number r ∈ {0, 1}k/2 as the key of

hash functions.
2) Choose a message string a ∈ {0, 1}k/2, and concate-

nate a and r as c = a||r.
3) Compute ex(c) ∈ {0, 1}n

4) Compute M · ex(c).
5) Sends com(a; r) = M · ex(c) to R as a commitment

string.
Decommitment Phase from S to R

S executes:
1) S sends (a, r) ∈ {0, 1}k/2 × {0, 1}k/2 to R as a

decommitment string d

R executes
1) Compute c = a||r from d.
2) Compute ex(c).
3) Compute M · ex(c) and if com(a; r) = M · ex(c). If

so, RECEIVE outputs a. Otherwise, RECEIVE outputs ⊥.
Output locality of our commitment scheme follows eas-

ily from Theorem 1.

Theorem 3 (Output Locality). Let c = n/k =
⌈1/H2(β)⌉, let γ be an expected relative Hamming weight in
every row of the matrix M . Then, our commitment scheme
(SEND, RECEIVE) has expected γ · c · k output locality.

Next, we prove the security of the commitment scheme
we constructed.

D. Computationally Binding Property

We show computationally binding property from the
contraposition.

Theorem 4. Our commitment scheme
Comm(SEND, RECEIVE) satisfies the computationally
binding property under the (Mγ , δ)–bSVP assumption.

proof:
We assume there exists an adversary, AdvSEND , that

defeats the computationally binding property of the com-
mitment scheme, Comm(SEND, RECEIVE), based on HLO. We
derive the equation below with the non-negligible function,
ε(k)

Pr


RECEIVE(1k, c, d) ̸=⊥,

(c, d, d′)← AdvSEND(1k, M) : RECEIVE(1k, c, d′) ̸=⊥,

RECEIVE(1k, c, d)
̸= RECEIVE(1k, c, d′)



> ε(k).

AdvSEND executes

AdvSEND(1k, M)→ (c, d, d′).

Next, we construct another adversary Adv’ that solves
the collision resistance of HLO. We describe how another
adversary Adv’ works after Adv gains c, d, d′ in Algorithm
5.

Algorithm 5 Adv’ for collision resistance
Input: (c, d, d′)
Output: x1, x2

1: Compute d = (a, r), d′ = (a′, r′) from (c, d, d′).
2: Compute x1, x2 from message string a and random

number r. x1 = a ◦ r, x2 = a′ ◦ r′

3: return Output x1, x2

Adv’ executes Adv′(c, d, d′)→ (x1, x2). Adv’ knows the
value of matrix M . Thus, Adv’ can compute M · x1 and
M · x2. Therefore, we can derive the equation below with
a non-negligible function, ε′(k)

Pr[Adv′(M · x)→ (x1, x2) s.t. M · x1 = M · x2 ∧ (x1 ̸=
x2)] ≥ ε′(k).

This shows there exists an Adv’ that defeats the collision
resistance of hash functions. However, we prove that HLO

has collision resistance by Theorem 2 under the (Mγ , δ)–
bSVP assumption. Therefore, the commitment scheme has
the computationally binding property under the (Mγ , δ)–
bSVP assumption from contraposition.

E. Proof of the Statistically Hiding Property

In this section, we prove that the commitment scheme,
Comm(SEND, RECEIVE), satisfies the statistically hiding
property. We first consider a modified version of the
leftover hash lemma, proved by Regev [11]. The modified
version of the leftover hash lemma indicates that the
statistical distance between the uniform distribution and
the distribution of the sum of randomly selected subsets
are small.

Lemma 2 (A version of the leftover hash lemma [11]).
Let G be a finite Abelian group and let l be a positive
integer. For any l elements, g1,, gl ∈ G, consider the
statistical distance between the uniform distribution on G

and the distribution given by the sum of a random subset of
g1,, gl. Then, the expectation of this statistical distance
over a uniform choice of g1,, gl ∈ G is at most

√
|G|/2l.

In particular, the probability that this statistical distance is
more than 4

√
|G|/2l is at most 4

√
|G|/2l.

The hiding property of Kawachi et al.’s lattice-based
commitment scheme [8] was proved from this lemma di-
rectly by identifying G as a set of possible columns in M .
However, we cannot apply this lemma directly to our case
since ex(x) is not uniformly at random over {0, 1}ℓ and
M is biased. Thus, we have to modify this lemma.

Theorem 5. Let k = 5m, 5m < ℓ ≤ 10m and
G = {0, 1}m. We choose ℓ elements, g1, . . . , gℓ ∈ {0, 1}m

so that gi,j = 1 with probability γ ∈ (0, 1/2) indepen-
dently for every i, j. For sufficiently large m, the ex-
pected statistical distance between

∑
i giex(x)i and the uni-

form distribution over {0, 1}m with respect to the random
choice of g1, . . . , gℓ ∈ {0, 1}m is at most

√
m(5/4)−5m +

2−m. In particular, the probability that the statistical
distance is more than

√√
m(5/4)−5m + 2−m is at most

O(
√√

m(5/4)−5m + 2−m).

proof: Let g = (g1, . . . , gℓ). For h ∈ G, we define

Pg(h) = Pr
x∈{0,1}k

[
ℓ∑

i=1
ex(x)igi = h

]
.

The expectation of the statistical distance with uniform
distribution is

Exp
g

1
2

∑
h∈{0,1}m

|Pg(h)− 2−m|


≤ Exp

g

2m/2

2

 ∑
h∈{0,1}m

(
Pg(h)− 2−m

)2

1/2


= 2m/2

2
Exp

g


 ∑

h∈{0,1}m

Pg(h)2 − 2−m

1/2


≤ 2m/2

2

(
Exp

g

[∑
h

Pg(h)2

]
− 2−m

)1/2

.

We want to evaluate Exp
g

[∑
h Pg(h)2]. So, we first evalu-

ate
∑

h Pg(h)2.

∑
h

Pg(h)2 = Pr
x,x′∈{0,1}k

[
ℓ∑

i=1
ex(x)igi =

ℓ∑
i=1

ex(x′)igi

]

= Pr
x,x′∈{0,1}k

[
ℓ∑

i=1
ex(x)igi =

ℓ∑
i=1

ex(x′)igi ∧ ex(x) = ex(x′)

]

+ Pr
x,x′∈{0,1}k

[
ℓ∑

i=1
ex(x)igi =

ℓ∑
i=1

ex(x′)igi ∧ ex(x) ̸= ex(x′)

]
≤ 1

2k

+ Pr
x,x′∈{0,1}k

[
ℓ∑

i=1
ex(x)igi =

ℓ∑
i=1

ex(x′)igi

∣∣∣∣∣ex(x) ̸= ex(x′)

]
.

We can then evaluate the expectation

Pr
x,x′∈{0,1}k

[
ℓ∑

i=1
ex(x)igi =

ℓ∑
i=1

ex(x′)igi

∣∣∣∣∣ex(x) ̸= ex(x′)

]
as below.

Exp
x ̸=x′

[
Pr
g

[
ℓ∑

i=1
ex(x)i · gi =

ℓ∑
i=1

ex(x′)i · gi

]]

=
∑
x̸=x′

1
2ℓ(2ℓ − 1)

· Pr

[
ℓ∑

i=1
(ex(x)i − ex(x′)i)gi = 0

]

=
ℓ∑

d=1

∑
∆(x,x′)=d

1
2ℓ(2ℓ − 1)

· Pr

[
ℓ∑

i=1
gi = 0

]

=
m∑

d=1

∑
wt(x)=d

1
(2ℓ − 1)

· Pr

[
ℓ∑

i=1
gi = 0

]

= Pr

[
ℓ∑

i=1
gi = 0

]
.

Since gi,j is independently set to 0 with probability 1−γ

for every i, j, we have

Pr

[
ℓ∑

i=1
gi,j = 0

]
= 1

2
+ {(1− 2γ)}ℓ

2
.

Therefore, it holds that

Pr

[
ℓ∑

i=1
gi = 0

]
=
(

1
2

+ {(1− 2γ)}ℓ

2

)m

.

Hence, the expected statistical distance is

Exp
g

1
2

∑
h∈{0,1}m

|Pg(h)− 2−m|



≤ 2m/2−1
{

1/2k +
(

1
2

+ {(1− 2γ)}ℓ

2

)m

− 1/2m

}1/2

.

Since k = 5m and 5m < ℓ ≤ 10m, this expectation
is bounded by

√
m(5/4)−5m + 2−m above for sufficiently

large m. In particular, From Markov’s inequality, the
probability that this statistical distance is more than√√

m(5/4)−5m + 2−m is at most
√√

m(5/4)−5m + 2−m.

From Theorem 5 and the hybrid argument, we can
immediately prove the statistically hiding property of our
commitment scheme as follows.

Theorem 6. Let ComM (a) be the probability distribu-
tion of a commitment string in our commitment scheme
Comm(SEND, RECEIVE) for a matrix M and message string
a. Then, the statistical distance between ComM (a) and
ComM (a)is negligible with probability exponentially close
to 1 with respect to a random choice of M .

proof:
Using the triangle inequality, we obtain

d(ComM (a), ComM (a′))

≤ d(U, ComM (a)) + d(U, ComM (a′))

for every message, a and a′, where U is the uni-
form distribution. From Theorem 5, d(U, ComM (a)) and
d(U, ComM (a)) is negligible with probability exponen-
tially close to 1, and thus, so is d(ComM (a), ComM (a′)).

From Theorem 6, we can see that the statistically hiding
property holds except exponentially small probability with
respect to the random choice of M .

V. Conclusion

We have proposed the commitment scheme,
Comm(SEND, RECEIVE), that satisfies:
• the expected output locality which is strictly less than

input length;
• the computationally binding property; and
• the statistically hiding property.

Importantly, this is the first commitment scheme that
satisfies non-trivially low output locality.

acknowledgement

This work is partially supported by Microsoft Research
Asia, CREST(JPMJCR1404) at Japan Science and Tech-
nology Agency, Project for Establishing a Nationwide
Practical Education Network for IT Human Resources
Development, Education Network for Practical Informa-
tion Technologies, and Innovation Platform for Society 5.0

at MEXT, JSPS Grant-in-Aid for Scientific Research (A)
No. 16H01705, (B) No. 17H01695, JSPS Grant-in-Aid for
Young Scientists (B) No. 17K12640.

References
[1] Benny Applebaum. Garbled circuits as randomized encodings of

functions: a primer. IACR Cryptology ePrint Archive, 2017:385,
2017.

[2] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal
Kushilevitz, and Vinod Vaikuntanathan. Low-complexity cryp-
tographic hash functions. In 8th Innovations in Theoretical
Computer Science Conference, ITCS 2017, January 9-11, 2017,
Berkeley, CA, USA, pages 7:1–7:31, 2017.

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptog-
raphy in nc0. SIAM J. Comput., 36(4):845–888, 2006.

[4] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and
Adam D. Smith. Efficient and non-interactive non-malleable
commitment. In Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001,
Proceeding, pages 40–59, 2001.

[5] Ivan Damgard. Commitment schemes and zero-knowledge pro-
tocols. In Lectures on Data Security, Modern Cryptology in
Theory and Practice, Summer School, Aarhus, Denmark, July
1998, pages 63–86, 1998.

[6] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 169–178, 2009.

[7] Shai Halevi and Silvio Micali. Practical and provably-secure
commitment schemes from collision-free hashing. In Advances
in Cryptology - CRYPTO ’96, 16th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings, pages 201–215, 1996.

[8] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Con-
currently secure identification schemes based on the worst-
case hardness of lattice problems. In Advances in Cryptology
- ASIACRYPT 2008, 14th International Conference on the
Theory and Application of Cryptology and Information Security,
Melbourne, Australia, December 7-11, 2008. Proceedings, pages
372–389, 2008.

[9] Moni Naor and Omer Reingold. Synthesizers and their appli-
cation to the parallel construction of pseudo-random functions.
J. Comput. Syst. Sci., 58(2):336–375, 1999.

[10] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Advances in Cryptology -
CRYPTO ’91, 11th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, pages 129–140, 1991.

[11] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. J. ACM, 56(6):34:1–34:40, 2009.

