JAIST Repository

https://dspace.jaist.ac.jp/

K Mean Spectral Normalizatip
Net works for Embedded Autp
Subramani an, Anand Krishng

Author(s)

Young
2019 I EEE 15th I nternatiohp

Citation Aut omation Science and Enp
256

Issue Date 2019-08

Type Conference Paper

Text version aut hor

URL http:// hdl handle.net/ 10110
This is the author's vers
Copyright (C) 2019 | EEE. %
I nternational Conference D
and Engineering (CASE), 2pD
use of this material is pg

: from I EEE must be obtainefd

Rights
any current or future med
reprinting/republishing th
advertising or promotiona
coll ective wor ks, for reshp
servers or | i st s, or reus
component of this work in

Description

AIST

JAPAN
ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

n of

Deep

mati on

moort

hy;

al Confer ¢

i neer

i ng

9/16196

on of
019 |

t he
EEE

(

n Aut omat i

19, 249- 2!

rmitt
for

ed.
al |

a, i nclud
i's mater.i
purposes

|l e or

red

of any ¢

ot her

Japan Advanced Institute of Science and Technology

wor

I
(
[
a

(
I

Mean Spectral Normalization of Deep Neural Networks for Embedded
Automation

Anand Krishnamoorthy Subramanian' and Nak Young Chong'

Abstract—Deep Neural Networks (DNNs) have begun to
thrive in the field of automation systems, owing to the re-
cent advancements in standardising various aspects such as
architecture, optimization techniques, and regularization. In
this paper, we take a step towards a better understanding of
Spectral Normalization (SN) and its potential for standardizing
regularization of a wider range of Deep Learning models,
following an empirical approach. We conduct several experi-
ments to study their training dynamics, in comparison with
the ubiquitous Batch Normalization (BN) and show that SN in-
creases the gradient sparsity and controls the gradient variance.
Furthermore, we show that SN suffers from a phenomenon,
we call the mean-drift effect, which mitigates its performance.
We, then, propose a weight reparameterization called as the
Mean Spectral Normalization (MSN) to resolve the mean drift,
thereby significantly improving the network’s performance.
Our model performs ~ 16% faster as compared to BN in
practice, and has fewer trainable parameters. We also show
the performance of our MSN for small, medium, and large
CNNs — 3-layer CNN, VGG7 and DenseNet-BC, respectively
— and unsupervised image generation tasks using Generative
Adversarial Networks (GANs) to evaluate its applicability for
a broad range of embedded automation tasks.

I. INTRODUCTION

The rise of application of Deep Neural Networks (DNNs)
to robot automation motivates various research questions that
typically differ from that of the traditional computer vision.
While the research direction in DNNs mainly focus towards
building architectures, developing loss functions and study-
ing their internal mechanism, standardizing DNN models has
been the main motivation and an essential criterion for their
successful application to robot automation. The reason being
that traditional robot automation relies on well-understood
white-box models, while DNNs are black-box models where
progress is still being made to reach a consensus about
their internal behaviour and dynamics. By standardizing, we
mean the basic well-behaved framework of architectures, loss
functions, regularization techniques and activation functions
for the DNN models.

To reinforce our motivation, we shall provide some recent
examples of applications of DNNs in automation tasks. Con-
cerning industrial automation, DNNs have found applications
that include fault diagnosis [1], combustion optimization [2],
welding faults detection [3], traffic control [4], power line
inspection [5] and spectrum sensing [6]. Even Generative
Adversarial Networks (GANs) have attracted some attention
and have been applied in practice (apart from the standard

1The authors are with the School of Information Science, J apan Advanced
Institute of Science and Technology, Ishikawa, Japan {anandkrish,
nakyoung}@jaist.ac. jp

unsupervised image generation or translation tasks), such
as fault detection [7]. The main surge in the interests and
applications of DNNs can be reasoned as follows - unlike
traditional/classical automation tasks where the features or
the control elements of the task are usually preset and their
dynamics/state changes are completely characterised analyt-
ically, DNNs try to capture the relevant features and their
dynamics automatically given the nominally pre-processed
data. The characteristics of DNNs where this feature se-
lection and extraction happens due to their hierarchical
structure and their ability to train over modern hardware over
thousands of data points are the foremost attractive reasons
for their current popularity and success.

The above discussed automation systems often use small-
medium sized neural networks in their tasks owing to speed
and hardware/cost constraints. DNNs are over-parameterised
models, in the sense that they have large number of trainable
parameters (typically hundreds of thousands) compared to
the size of the dataset (~ tens of thousands). Though
this over-parameterization helps greatly in optimizing the
network weights [8], regularization methods are required
to improve the generalization and stability of the network
during training. As such, a lot of regularization methods have
been developed to address this problem; of which the class
of methods called Weight reparameterization have proven to
be quite successful.

Weight reparameterization techniques like Batch Normal-
ization (BN) [9], Weight Normalization (WN) [10], Layer
Normalization (LN) [11] are implicit regularization methods
that restrict the capacity of the over-parameterized net-
work by normalizing/reparameterizing the network weights.
Among them, BN has established itself as a very effective
component of almost all modern DNNs. This is backed by
its stability over a wide range of learning rates, ability to
train over large minibatch sizes and faster convergence.

Although BN works well for almost all architectures of
neural networks, it is an overkill for small-medium sized
networks as it introduces additional training parameters. It
is in this background that we investigate the application
of spectral normalization (SN) for such networks — owing
to it requiring no additional parameters; unlike batch nor-
malization. SN [12] is a recently introduced technique for
normalizing the Lipschitz constant of intermediate layers of
deep neural networks, originally proposed for Wasserstein
GANs. We, however, have found that SN performs poorly
compared to BN for small to medium-sized networks, and
identified the cause of which to be the effect called mean-
drift. We rectify this effect using our proposed Mean Spectral

Normalization (MSN), thereby improving the performance to
be comparable to that of BN.

We demonstrate empirically that our MSN method works
across a wide range of model depths with fewer param-
eters and performs at par with BN. Most of the recent
applications of neural networks to automation tasks utilise
smaller to medium neural networks with 3-20 layers - usually
convolution or fully connected layers [13]. Almost every
neural network model employs BN (or its slight variants)
for regularization and training stabilization. We, therefore,
extend our ideas to a wide range of models, even to very deep
networks, with greatly improved performance. Through our
method, we propose to standardize the regularization aspect
of DNNs, and applicable for robot automation tasks. Our
contributions can be summarized as follows:

o We provide empirical results for the sparsity of gradi-
ents in spectral normalized networks (Refer to Fig. [I).
By bounding the gradient magnitude of the activations
(Lipschitz normalization), spectral normalized networks
yield a much sparser network compared to the sparsity
induced by the rectified linear units (ReLU).

o We show that by controlling the mean layer singular
values, spectral norm offers better utilization of feature
dimensions, unlike other methods such as weight nor-
malization.

o We identify the mean-drift effect to be a major cause for
the diminishing performance of SN as a regularization
technique for small and medium sized networks.

e We propose a modified SN technique called Mean
Spectral Normalization(MSN) to correct for the mean-
drift and accelerate the performance of the spectral
normalized network for small, medium and large neural
networks.

The structure of this paper is as follows - Section
introduces BN and SN methods formally; In Section [II} we
introduce our mean spectral normalization. In Section
we provide our experimental results (focussing on image-
related tasks) and various empirical observations. Note that
in this paper, we follow the current trend of empirical insights
into deep learning to provide solid experimental footing to
understand the dynamics of the SN.

II. BACKGROUND

In this section we discuss batch normalization and spectral
normalization techniques for convolutional neural networks
along with some background about other weight reparam-
eterization methods. The normalization methods discussed
here, come under a subclass of regularisation methods where
the network parameters are normalised based on some norm
of their parameters which limit some of their capabilities.
For example, the Ly norm tends to limit the parameters
values to lie on a unit ball centered about the origin i.e. be
closer to zero. The key insight here is that a normalization
method makes the network invariant to the scaling of the
weights. This makes the network more robust to the new data
points and parameter initialization strategies. This is true for

all currently used normalization techniques as well as our
proposed one.

A. Batch Normalization

Batch Normalization (BN) or simply batch norm, was ini-
tially introduced to reduce the internal covariate-shift (ICS)
in DNNs. The internal covariate shift is the phenomenon
when the distribution of activations gy, of a layer k& shift due
to the weight updates in the previous layers during training.
Batch norm rectifies this problem by simply standardizing(z-
score normalization) the activations of the intermediate layers
to zero mean and unit variance and rescaling them using the
affine transformations ~; and (3 along each channel with
respect to all the pixels/points in the input tensor.

gr — Ec[gx]

+ 1
Var(gr) + ¢ Br M

Zr =Yk
where € is a small value adding for numerical stability. By
standardizing the layer weights, we essentially remove the
dependencies on the previous layer updates. Rescaling the
weights based on some learnable parameters (v, B%) -called
the scaling factor and bias respectively- enable the flexibility
in choosing appropriate weights during the training. Note that
the batch normalized activations have a norm independent of
the data, and depends only on the effective layer dimension
D and the affine scaling v;. The effective layer dimension D
for a input tensor of dimensions m x H x W x C' is simply
D := v/mHWC where m is the minibatch size, H, W, C'
are the height, width and depth (number of channels) of the
input data.

The concrete reasoning behind the exceptional perfor-
mance of BN is still being investigated. The recent find-
ings include preventing gradient explosion, improving op-
timization by smoothing the loss landscape [14] and, most
importantly, improving the Lipschitzness of the layer [15],
i.e., the gradients become more concentrated around the
mean. This reduction of gradient variance has been accepted
[16] as one of the core reasons for the success of BN.
The idea of controlling the Lipschitzness of the network,
motivated us to probe a related weight reparameterization
technique - SN. Furthermore, in practice, BN is difficult to
accelerate as it is bounded by memory-bandwidth. Precisely,
BN requires two passes through the input data to compute the
statistics of the minibatch and then to normalize the output;
and this may consume up to a quarter of the total training
time for large networks [17]. Other similar normalization
methods like Layer normalization and Instance normalization
[18] are slight variations to BN with normalization across
different dimensions of the output like channels, layers or
spatial dimensions. As such, all these suffer from the same
drawbacks as that of BN.

B. Spectral Normalization

Spectral Normalization (SN) [12] essentially restricts Lip-
schitz constant of the network to unity by restricting the
spectral norm of each layer. Recall that the a function f is
K —Lipschitz if | f(x1)— f (z2)| < K||x1—a2||, for all 21, z2;

Layer 44

—— DenseNet with BN
04 DenseNet with SN
—— DenseNet with MSN

Sparsity

0 50 100 150 200 250 300 350 400
Training Epoch

Fig. 1.

Layer 56

DenseNet with BN
DenseNet with SN
DenseNet with MSN

Sparsity

I o e o o
2 8 R B @
5B Ok o8 &

)
o
)

0.05

0 50 100 150 200 250 300 350 400
Training Epoch

Sparsity of gradients during training DenseNet-BC with LeakyReLU activation function. SN immediately induces a high percent of sparsity to

the gradients of the model and steadily increases the sparsity of the gradients during training.

where K is the Lipschitz norm of f. In other words, small
changes in the input of the function causes corresponding
small changes in the magnitude of its gradients. From its
definition, the Lipschitz constant of a given intermediate
layer k of a neural network, whose activations are given by
gr = f(Wgi_1), is equal to the spectral norm o(W) of the
weight matrix W. Here, f is the activation function. The SN
method is then, defined as follows.

W =W/o(W), 2)

where o(W) is the spectral norm (Lo matrix norm) of the
weight matrix W given by

o(W) = sup o(Vgi) = max W2
g x20 x|

Again, from its definition, the spectral norm is essentially
the largest singular value of the matrix W. Furthermore, the
spectral normalization of each layer applies to the weights
of the layer and not the activation; similar to the Weight
Normalization techniques. This is a crucial distinction from
BN which applies to the activations. Since the weights are
much fewer than the activation of intermediate layers, SN
is often computationally faster than BN. In practice, this
means that SN is not bounded by memory-bandwidth, unlike
BN. An important caveat is that the Lipschitz norm of the
activation function used must be equal to 1. Therefore, we
are limited to activations such as ReLU and leaky ReLU
In contrast to spectral norm regularization [20], which
penalizes the spectral norm by adding an explicit regu-
larization term to the loss function, the layer weights are
simply divided by their corresponding spectral norm in SN.
Furthermore, convolutional neural networks usually have
fewer weights compared to pre-activations. Therefore, SN is
computationally much cheaper, and does not introduce any
additional parameters to be trained as evident from Eq. (2).

3)

III. PROPOSED METHOD
A. Motivation
In this section, we provide some stronger theoretical
motivation for the use of spectral norm for regularizing

'For proof, refer to Lemma A.1 in the Appendix of [19]

DNNs. Recent theoretical insights [19], [21] in analyzing
the learning capacity and the generalizability of the neural
networks have shown that the those characteristics can be
bounded by the network’s spectral complexity R. The spec-
tral complexity of a given neural network is given by

R = <,ﬁ”(w’“)) (ki_l¢<wk>)3/2

which is essentially the product of the spectral norm of the
weight matrices Wy, of all the L layers in the network times
a correction factor ¢ dependent on those weight matrices.
Theorem 1: For a given neural network function F', com-
puted as F(x) = fr(Wrfr_1(Wr_1--- fi(Wix)---))
where fj is the activation function at layer k£ and a dataset
{x;, i}, drawn i.i.d from some data distribution, we have

(&)

“4)

Plarg zmaxF(x)i #y] <O(R) +E(F)

where £(F') is the risk associated with the network, defined
as the expectation of the loss.

The above theorem states that the generalization error can
be reduced by reducing the upper bound, given by the
spectral complexity of the networ Additionally, recent
studies [20], [22] have been conducted in enforcing such Lip-
schitz continuity in neural networks, albeit through explicit
regularization methods, in contrast to our proposed implicit
technique.

B. Mean Drift

The empirical motivation for our proposed Mean Spectral
Normalization is the reduced performance of SN for small
and medium sized networks. Through our experimentation,
we observed that the reason to be the gradual uncontrolled
drift of the layer mean during training (Refer to Fig. f). We
hypothesize that the mean drift is directly related to the inter-
nal covariate shift, where the distribution of layer activations
change during training. This can be clearly observed from
Fig. 3] where the shift in some selected layers are shown.
It is evident that the spectral norm sufficiently restricts the

ZFor a complete proof of Theorem |1} refer to [19]

CIFAR10

©
)

@
S}

o
[
> 80 g 70
= n
e >
3 E 60
& 70 5
4 o
17} O s0
4 <
= 4+
60 $ 40
—— DenseNet with BN =
——— DenseNet with SN 30
50 .
—— DenseNet with MSN
20
o] 200 400 600 800 0 100

Training lterations

Fig. 2.

Training Iterations

MNIST

SVHN

95

>

E 90

>

(U]

(&)

< g5

3

3
—— VGG?7 with BN 80 —— CNN with BN
—— VGG7 with SN —— CNN with SN
—— VGG?7 with MSN 75 —— CNN with MSN

200 300 400 o 50 100 150 200

Training Iterations

Test Accuracy of various normalization methods during training DenseNet-BC, 3-layer CNN and VGG-7 models (with learning rate 0.001).

We observe that SN perform poorly for shallow CNNs, though the performance improves with the depth of the neural network (Compare VGG-7 and
DenseNet-BC). MSN clearly improves upon SN for both shallow and deep neural networks and performs comparable to BN.

DenseNet with BN

DenseNet with SN

DenseNet with MSN

——"ia —— Layer 6 —— |

0.2 0.2 ——— Layer 0.2
c = c
S 01 c O © 01
[} (] [
€ € IS
= = 00 =
< = oy
= °° ° o= 00
CU [
= = o1 =
= 01 = [
g °] o o
> > >
© © _g2 ©
- - B -

=0.2 -0.2

-0.3
-0.3 -0.3
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Training Epoch

Fig. 3.

Training Epoch

Training Epoch

Summary statistics of layer weights showing the internal covariate shift for various normalization methods while training DenseNet-BC. During

training, BN controls the mean and variance of the weight distribution while SN only controls the variance. Our proposed MSN corrects for the drift in

the mean and variance, thereby improving the performance of the network.

variance of the distribution of activations, however causes
their mean to drift during training. Moreover, the mean-drift
is also observable in batch normalized networks, but the
drift is controlled by the bias (3 during training. Therefore,
the rapid and uncontrolled drift of the activation-distribution
mean is the foremost cause for diminished performance of
spectral normalized networks. We resolve this mean-drift by
proposing a modification to the original SN, called as mean
spectral normalization.

C. Mean Spectral Normalization

We explore the idea of combining SN with a part of
BN, which we call Mean Spectral Normalization (MSN).
In this method, we perform the spectral normalization on
the weights and then subtract the minibatch means from the
activations like with BN, as

W
hy, = mgkq (6)
h; = h;, — E[h;] + m (7)

where hj is the preactivation for the given layer and m
is the external bias learned during training. The activation
g is then given by passing through the activation function
f as gg f(hy). By subtracting the mean, we create a

normalization method that restricts the variance as well as
the mean of the activation distribution, thereby resolving
the problem of mean-drift. Moreover, the mean correction
introduces only a small computational overhead compared
to the full BN.

During training, the running average of the minibatch
mean E[-] is stored to be used for validation data. The
spectral norm of the weight matrix can be efficiently com-
puted, with negligible overhead, using the power iteration in
practice (as pointed out in [12]). During stochastic gradient
descent, because the weights change slowly during each
update, a single power iteration on the latest version of
the initial vectors is sufficient for each training iteration;
making MSN computationally more efficient than BN. By
recentering the pre-activations, the dependency on the inputs
of the neurons x on the pre-activations h; is completely
detached. This method of decoupling the norm of the pre-
activations from the input vectors have shown to improve the
rate of convergence [10].

We distinguish our MSN from the weight normalization
with mean-only batch norm [10] from the fact that unlike
weight normalization, spectral norm does not reduce the
rank of the weight matrix and therefore can leverage upon
a wider range of features to improve the performance.

Layer 6

—0.005

—0.02 -0.010

c f
© ©
[(]
£ | € _o.015
£ 0.4 —— DenseNet with BN b=
2 DenseNet with SN 2
9] | D -0.020
= — DenseNet with MSN =
E -0.06 $
> > —0.025
© ©
- -
-0.030
-0.08
—=0.035
0 200 400 600 800 0 200

Training Epoch

Layer 44

—— DenseNet with BN 0.02
DenseNet with SN
—— DenseNet with MSN

Training Epoch

Layer 84

T
T A A NIV Ny

c
8 —-0.02
E .
2 -0.04 —— DenseNet with BN
-g’ DenseNet with SN
= 00 —— DenseNet with MSN
=
L .08
©
-
-0.10
-0.12
400 600 800 0 200 400 600 800

Training Epoch

Fig. 4. Mean drift correction by MSN during training DenseNet-BC. Our proposed MSN method reduces the gradual drift of the mean during training,
which we hypothesize as the major cause for the reduced performance of SN networks compared to BN networks.

Weight normalization, on the other hand, regularizes the
network by forcing the network to produce weight matrices
that lie (approximately) in low dimensional vector spaces,
compromising the feature dimensions. Besides, by dividing
by the Frobenius norm of the weights, weight normalization
enforces a stronger restriction on the layer weights, often
causing over-fitting. This was empirically shown in [17]
where even other methods like dropout and weight decay
failed to improve the generalization of the weight normalized
network. Our proposed MSN, however, has a stronger reg-
ularizing effect than weight normalization as it restricts the
layer weights in their gradient space, effectively regulating
their learnability.

D. Gradients of MSN

The gradient of MSN can be computed as follows. Con-
sider the gradient of the layer weight W after SN, w.r.t. W;

W= {I”' - 7] aa”év‘? W} ®
= U(i,v) {Iij - [ulvf]ijVAV} ©)

where I,; is the matrix that has 1 in its (i,)" entry and
zero elsewhere; u; and v are the left and right singular
vectors of W respectively. Note that the first column of
the left and right singular matrices of W correspond to the
largest singular value of W. Therefore, the gradient with
respect to the largest singular value at a given element W
is the (i,4)" entry in the left and right singular vectors of
the largest singular value.

Now, the gradient of the loss £ with respect to MSN pre-
activation hy, after the mean subtraction, can be found in a
straightforward manner.

thEZVBkE—E[VBkE} (10)
The recentering of the pre-activations has a much lower
computational overhead compared to the classical BN where
the second order batch statistics are required.

IV. EXPERIMENTS
A. Experimental Setup

To investigate the training dynamics of various normaliza-
tion techniques discussed thus far, we use a set three different
convolutions neural networks - 3-layer CNN (without pool-
ing and dropout), VGG-7, and 100-layer DenseNet BC [23]
architectures. These networks were trained on the standard
MNISTF|, SVHN| and CIFAR1(P| datasets, respectively. In
this work, our core focus is on improving the networks for
image-based tasks, as the application of DNNs in automation
are predominantly image-based. We train these networks
with Adam optimizer and set initial learning rates from
{0.1,0.001,0.0001}. We train these models with sufficiently
long epochs such that learning plateaus. We always report the
best results among those learning rates. The code for all the
experiments, plots and trained models are given in the follow-
ing GitHub repository — https://github.com/AntixK/mean-
spectral-norm. Moreover, the choice of the networks was
motivated from their widespread applications in real-world
object recognition and segmentation.

B. Training Dynamics and SN techniques

In this section, we discuss our empirical observations of
SN during training and the performance of our proposed
normalization technique. Firstly, we present the performance
comparison of BN, SN and MSN networks for all the
three models in Fig. to illustrate the effectiveness of
our proposed MSN weight reparametrization. We observe
that MSN greatly improves upon SN for small and medium
sized networks (3-layer CNN and VGG-7, respectively) and
provides a comparable performance to that of BN. Table [I|
provides a comparison of test accuracy of all the models.

Inducing sparsity - Sparsity in DNNs has usually been
connected to its robustness, with the reasoning that the
network automatically determines the right subset of pa-
rameters required to capture the high-level information from
the data. From Fig. [I] it is evident that the SN and MSN

3http://yann.lecun.com/exdb/mnist/
4http://ufldl.stanford.edu/housenumbers/
Shttps://www.cs.toronto.edu/ kriz/cifar.html

https://github.com/AntixK/mean-spectral-norm
https://github.com/AntixK/mean-spectral-norm
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
 https://www.cs.toronto.edu/~kriz/cifar.html

Layer 44

B DenseNet with BN
DenseNet with SN
B DenseNet with MSN

10000

8000

6000

Counts

4000

2000

0 -0.003 -0.002 -0.001 0.000 0.002

Bins

0.001

Fig. 5.

Layer 75

16000 oy DenseNet with BN

DenseNet with SN
B DenseNet with MSN

14000

12000

10000

8000

Counts

6000

4000

2000

-0.0015 -0.0010 -0.0005

Bins

0.0000 0.0005 0.0010

Gradient Histograms of layers 44 and 75 (chosen randomly) of DenseNet-BC with BN, SN and MSN respectively. For the spectral normalized

network, the gradients are more concentrated around the mean compared to the batch normalized network. MSN clearly improves in restricting the gradients

around the zero mean compared to BN or MSN.

DenseNet with BN

040 —— Layer 13
Layer 44
0.35 0.35 Yy
@ @ —— Layer 56
= 030 3 03 —— Layer67
© ©
> > Layer 7
oS 0.25 T 0.25
3 E
£ 020 £ 020
n Layer 13
% 0.15 Layer 44 % 0.15
= —— Layer 56 ~
N 0.10
010 —— Layer 67
0.05 — Layer 75 0.05

0

100 200 300 400 500
Training Epoch

600 700 800 0

100 200 300
Training Epoch

Fig. 6. Mean layer-singular values

methods constantly improve the gradient sparsity of the
network during training, while the gradient sparsity in the
batch normalized network saturates around 20%. One of the
advantages of such sparse gradients is that they are well
suited for distributed training of large neural networks [24],
as little gradient information has to be shared between the
sub-networks. Such distributed training of networks provide
exciting opportunities for distributed training of autonomous
systems.

Mean Drift Correction - As discussed before, the mean-drift
is a consequence of the internal covariate shift, observed in
all neural networks in general. From Fig. 3] and Fig. [it is
clear that the BN and MSN methods control the drift of the
mean compared to SN. We also observe that the mean-drift
is always in the negative region. Large negative mean for
layer weights causes the gradients to be extremely small after
the LeakyReLU activation, used in all our models. This, in
addition to already sparsified gradient, effectively reduced the
learning capacity of the networks with many dead neurons.
BN avoids this problem with recentering its layer weights
using a learnable bias 3 (Refer to Eq. |ID In MSN, we follow
a similar approach, where this recentering (Refer to Eq. [6)
avoids the mean-drift, causing a balance between creating a
robust sparse network but preventing too many dead neurons.
Fig. [confirms our hypothesis and MSN correctly rectifies

DenseNet with SN

DenseNet with MSN

o
w
«

(%]

[

=l

‘© 0.30

>

O 0.5

=l

2

= 0.20

b Layer 13

% 015 Layer 44

—l —— Layer 56
o-10 —— Layer 67
0.05 —— Layer 75

400 500 600 700 800

0

100 200 300 400 500
Training Epoch

600 700 800

during training for DenseNet-BC.

the mean-drift to match the performance with that of batch
normalised networks.

Lipschitzness of the network - From its definition, SN
controls the Lipschitz constant of the hidden layers of the
neural network to be 1. Empirically, we observe this in our
spectral normalized models as shown in Fig. 5] Neural net-
works with SN and MSN methods, concentrate the gradients
around the mean with much smaller variance compared to
batch normalized neural networks with the same learning
rate. As noted in [16], neural nets with larger variance of gra-
dients or the models with heavy-tailed gradient histograms
(e.g., unnormalized networks) lead to divergence rather than
convergence, as the training progresses.

Another interesting consequence of such concentrated
gradients is that the loss landscape of the network becomes
smooth as it does not allow erratic or sharp gradient changes.
This smoothing of the loss landscape is one of the prime
reasons for BN and now our proposed MSN to work over a
wider range of learning rates.

Singular value regularization - Fig. [6]shows the variation of
mean layer singular values of different layers during training.
Specifically, during training, BN causes the singular values
to increase monotonically. Furthermore, the average layer
singular values of all layers are closely spaced, implying

that all the weight matrices lie on the same vector subspace.
SN, on the other hand, causes the mean layer singular
values to taper more quickly, especially for higher layers,
where the the activations are affected by previous weight
matrices. We reason that in spectral normalized networks,
the weights of each layer lie in different vector subspaces
and therefore has lesser freedom in choosing the number of
singular components. In MSN, the bias correction term m,
improves the average singular value by appropriate factor,
learned during training. As a result, the divergence of the
mean singular values during training is reduced, forcing the
weights to lie in the same vector subspace.

TABLE I
TEST ACCURACY COMPARISON

Dataset Model BN SN MSN
MNIST 3-layer CNN 98.28 89.55 96.71
SVHN VGG-7 88.56 78.43 90.86
CIFAR10 DenseNet-BC 92.27 90.52 91.65

Fewer trainable parameters - Table shows the com-
parison of the number of trainable parameters of various
models with BN, SN and MSN normalization methods. The
amount of reduction in the number of parameters is given
within parentheses. Note that the SN does not introduce any
additional parameters to the network. Therefore, spectral nor-
malized models have fewer trainable parameters compared
to batch normalized models, and thus are usually faster dur-
ing training and more memory efficient. Albeit introducing
bias correction parameters, MSN still has lesser number of
parameters compared to BN. Additionally, this reduction in
number of parameters results in faster training. During our
experiments, SN models trained 27% faster compared to BN
models, and MSN models trained 16% faster than BN model.
This reduction in the number of parameters, coupled with
highly sparsity, makes the MSN a highly desirable choice
for embedded application of DNNs.

C. Comparison with SNGAN

We evaluate our proposed MSN method against the orig-
inal SN method on the Wasserstein Generative Adversarial
Network(WGAN) model (called as SNGAN [12]), for the
task of unsupervised image generation on the CIFAR-10
dataset. Furthermore, we also compare these spectral norm-
based Lipschitz regularizers against the gradient penalty
(WGAN-GP) regularization [25] method. Also, we use BN
for WGAN-GP following the original paper. In this section,
we shall very briefly discuss the GAN objective function and
Lipschitz regularization.

The SN scheme was initially proposed for improving
the training of Wasserstein GANs. Generative adversarial
networks [26] are a class of generative models with two
dueling neural networks - namely the generator G and the
discriminator D. The discriminator D is trained to differ-
entiate between real X ~ ¢gqtq(x) and fake data, while G
is trained to generate fake data z that D identifies as real.
However, in the original GAN, the gradient of the optimal

TABLE II
QUALITATIVE COMPARISON OF MSNGAN, SNGAN AND WGAN-GP

Model Inception Score (IS) FID Score

Real Data (CIFAR10) 11.24 +0.12 7.8

WGAN-GP(With BN) 6.42 +£0.10 41.3

SNGAN 7.42 + 0.08 29.3

MSNGAN (ours) 7.39 £ 0.07 29.8
TABLE III

COMPARISON OF NUMBER OF TRAINABLE PARAMETERS.

Model Normalization | Number of Parameters
BN 2,938,689

gﬂ‘;fminmr) SN 2,935,873 (—2816)
MSN 2,937,282 (—1407)
BN 103,562

3-layer CNN SN 103, 406 (—156)
MSN 103,486 (—76)
BN 138,314

VGG-7 SN 437,168 (—1146)
MSN 437,744 (—570)
BN 1,009, 730

DenseNet-BC SN 1,007,608 (—2122)
MSN 1,008,670 (71060)

discriminator D with respect to its input can be unbounded,
and therefore can lead to instability in training or modal
collapse. Addressing this problem, various methods [27],
[25] have been proposed for penalizing the Lipschitz constant
-essentially regularising the gradients- of the discriminator
in the form of Wasserstein distance-based GAN losses. Note
that the Wasserstein distance, in its dual form, asserts that
the discriminator function must have a Lipschitz constant
of K. Thus, employing the Wasserstein distance rather than
the original Jensen-Shannon distance for the GAN loss,
implicitly requires that the discriminator gradients must be
bounded. The WGAN objective function V (G, D) used in
our experiments (except for WGAN-GP) is given as follows
V(G,D) = E [logD(x)]

X~qdata (x)

+ E [log(l—D(G(z)))]

z~p(z)

(1)

For WGAN-GP, we have an additional gradient penalty
term, following the original paper. Furthermore, we observe
that the recentering of the pre-activations h in MSN, does
not alter the Lipschitz norm of the activations g. Therefore
MSN still regularizes the Lipschitz norm of the activations
effected by SN.

We employ the same DCGAN [28] architecture for both
generator and discriminator as described in [12]. To evaluate
the quality of the generated image samples, we use the
standard inception score (IS) [29] and the Fréchet inception
distance (FID) [30]. In Table @ we show the inception
scores (higher, the better) and Fllﬂ (lower, the better) for
the unsupervised image generation on various models, with
optimal setting, on the CIFAR10 dataset. The report the
average scores over 5 runs, each with 2000 sampled images.
The scores for the real CIFAR10 data is given for a baseline

6Code obtained from https:/github.com/mseitzer/pytorch-fid

https://github.com/mseitzer/pytorch-fid

comparison. We observe that MSN clearly improves upon the
WGAN-GP and performs at par with the original SNGAN.

V. DISCUSSION & CONCLUSION

Albeit originally proposed to control the Lipschitz con-
stant of WGANs, we believe SN is a generic method to
reparameterize the weights, with a goal to build a standard-
ized framework to employ DNNs for robot automation. In
this paper, we investigated a consequence of the internal
covariate shift, called mean drift, in spectral normalized
networks, which affects their performance compared to BN.
Furthermore, we presented many experimental results to
demonstrate the gradient sparsity and Lipschitzness induced
by SN in small, medium and large DNNs. We then proposed
a solution to resolve the mean drift, called mean spectral
normalization(MSN), deriving ideas from both BN and SN.
Through our experiments, we confirm that MSN clearly out-
performs SN for supervised classification models for all
depths of neural networks. Parallelly, Farnia et al., [31]
observe a similar result as ours with spectral normalized
DNNs. In contrast to our analysis, they conclude that the
naive algorithm used to compute the spectral norm (the
power iteration as used in [12]) was inefficient in regularizing
the actual spectral norm of the convolution layers. To correct
this, they slightly loosen the spectral norm constrain to be
o(W) < B, where § is some fixed value. Besides having
no such tunable parameter, in our work, we observe a
deeper mean-drift effect restricting network’s performance
and rectify the effect with our MSN method. Furthermore,
we also compare the qualitative results of our MSNGAN
with that of the SNGAN for unsupervised image generation.
In future, we wish to focus on evaluating the performance
of our MSN on sequence modelling tasks and on real-time
data from robots.

REFERENCES

[11 G. S. Chadha and A. Schwung. Comparison of deep neural network

architectures for fault detection in tennessee eastman process. In

Emerging Technologies and Factory Automation, 22nd IEEE Int’l

Conf. on, pages 1-8. IEEE, 2017.

Y. Cheng, L. Zou, Z. Zhuang, Z. Sun, and W. Zhang. Deep rein-

forcement learning combustion optimization system using synchronous

neural episodic control. In 37th Chinese Control Conference, pages

8770-8775. IEEE, 2018.

[3] H.-J. Choi and D.-J. Kang. Localization of welding defects using a
weakly supervised neural network. In I8th Int’l Conf. on Control,
Automation and Systems, pages 1461-1463. IEEE, 2018.

[4] Z. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani. State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems.
IEEE Communications Surveys & Tutorials, 19(4):2432-2455, 2017.

[5] V. N. Nguyen, R. Jenssen, and D. Roverso. Automatic autonomous
vision-based power line inspection: A review of current status and the
potential role of deep learning. Int’l Journal of Electrical Power &
Energy Systems, 99:107-120, 2018.

[6] K. Davaslioglu and Y. E. Sagduyu. Generative adversarial learning
for spectrum sensing. arXiv preprint arXiv:1804.00709, 2018.

[7]1 1. Chakraborty, R. Chakraborty, and D. Vrabie. Generative adversarial

network based autoencoder: Application to fault detection problem

for closed loop dynamical systems. arXiv preprint arXiv:1804.05320,

2018.

Y. Li and Y. Liang. Learning overparameterized neural networks via

stochastic gradient descent on structured data. In Advances in Neural

Information Processing Systems, pages 8168-8177, 2018.

[2

—

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23

[t

[24]

[25]

[26

[27]

[28]

[29]

[30]

[31]

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

T. Salimans and D. P. Kingma. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. In
Advances in Neural Information Processing Systems, pages 901-909,
2016.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. In Int’l Conf. on
Learning Representations, 2018.

Bingnan W. Thomas G. H. Shen Z., Shibo Z. Machine learning and
deep learning algorithms for bearing fault diagnostics - a comprehen-
sive review. arXiv preprint arXiv:1901.08247, 2019.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understand-
ing deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch
normalization help optimization?(no, it is not about internal covariate
shift). arXiv preprint arXiv:1805.11604, 2018.

J. Bjorck, C. Gomes, and B. Selman. Understanding batch normaliza-
tion. arXiv preprint arXiv:1806.02375, 2018.

I. Gitman and B. Ginsburg. Comparison of batch normalization and
weight normalization algorithms for the large-scale image classifica-
tion. arXiv preprint arXiv:1709.08145, 2017.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normaliza-
tion: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized
margin bounds for neural networks. In Advances in Neural Information
Processing Systems, pages 6240-6249, 2017.

Y. Yoshida and T. Miyato. Spectral norm regularization for improving
the generalizability of deep learning. arXiv preprint arXiv:1705.10941,
2017.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Explor-
ing generalization in deep learning. In Advances in Neural Information
Processing Systems, pages 5947-5956, 2017.

H. Gouk, E. Frank, B. Pfahringer, and M. Cree. Regularisation of
neural networks by enforcing lipschitz continuity. arXiv preprint
arXiv:1804.04368, 2018.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In CVPR, volume 1, page 3, 2017.
P. Jiang and G. Agrawal. A linear speedup analysis of distributed deep
learning with sparse and quantized communication. In Advances in
Neural Information Processing Systems, pages 2526-2537, 2018.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein gans. In Advances in
Neural Information Processing Systems, pages 5767-5777, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672-2680,
2014.

M. Arjovsky, S. Chintala, and L. Bottou.
preprint arXiv:1701.07875, 2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems,
pages 66266637, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. In Advances in
Neural Information Processing Systems, pages 2234-2242, 2016.

F. Farnia, J. M Zhang, and D. Tse. Generalizable adversarial training
via spectral normalization. arXiv preprint arXiv:1811.07457, 2018.

Wasserstein gan. arXiv

	Introduction
	Background
	Batch Normalization
	Spectral Normalization

	Proposed Method
	Motivation
	Mean Drift
	Mean Spectral Normalization
	Gradients of MSN

	Experiments
	Experimental Setup
	Training Dynamics and SN techniques
	Comparison with SNGAN

	Discussion & Conclusion
	References

