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Abstract—This paper presents a novel approach to auto-
matically adjusting the speech volume of a socially assistive
humanoid robot to enhance the quality of human-robot inter-
actions. We apply the Deep Q-learning algorithm to enable the
robot to adapt to the preferences of a user in the volume of
the robot’s voice in social contexts. Subjective experiments were
conducted to verify the validity of the proposed system. Twenty-
three human subjects had social conversations with humanoid
robots across various noisy environments. Participants rated
their perception of the robots’ voices in terms of clearness
and comfortability through a questionnaire. The results show
that the robot equipped with our framework outperforms
other experimental robots in trials. This study confirmed the
effectiveness of the proposed autonomous speech volume control
system for social robots communicating with people in noisy
environments.

Index Terms— Social Human-Robot Interaction, Speech Vol-
ume Control, Reinforcement Learning

I. INTRODUCTION

Nowadays, the cooperation between humans and robots is
turning essential in our society, as socially assistive humanoid
robots become more prevalent. Thus, the development of
models that can improve the interaction between humans
and robots become increasingly important. One of the main
tasks in the field of Human-Robot Interaction (HRI) is
to provide cognitive and affective capacities to robots by
creating architectures that enable them to achieve empathic
connections with users [1]], [2]]. In the literature, there are
many studied in adapting robot behavior that was proposed
to address this open-challenge. For example, in [3]-[6] the
authors studied social eye gaze behavior in HRI. Several
works, for instance [7]-[9]], have been performed on the body
and facial expression cues. Many attempts have been made
[10]-[12] in order to improve the robots in terms of speech
and vocal. However, an approach to adjusting the talking
volume of robots in social contexts is still lacking.

*This work is supported by the EU-Japan coordinated R&D project on
“Culture Aware Robots and Environmental Sensor Systems for Elderly Sup-
port” commissioned by the Ministry of Internal Affairs and Communications
of Japan and EC Horizon 2020 Research and Innovation Programme under
grant agreement No.737858. The authors are also grateful for financial
supports from the Air Force Office of Scientific Research (AFOSRAOARD/
FA2386-19-1-4015).

Therefore, in this paper, we aim to present an innovative
framework to support the humanoid robots to automatically
adjust the volume of its voice based on the daily conversation
contexts (the Pepper robois employed as a socially assistive
robot in this research). The Deep Q-learning algorithm is
adopted to solve our problem. Additionally, we conduct
experimental studies to investigate the correctness of our
proposed architecture.

In the following, we describe the details of our proposed
autonomous speech volume control system in
In [Section III} we present the design of the subjective
experiments, followed by the methodology used to collect
and analyze the data as well as the results. Finally, we share
our conclusions in

II. PROPOSED AUTONOMOUS SPEECH VOLUME
CONTROL SYSTEM

A. System Overview

User's feedback
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Fig. 1: System Overview

We proposed a system in order to enable a social robot
to autonomously adjust its speech volume in noisy envi-
ronments. shows the overall system architecture.
Specifically, we defined our problem as a Reinforcement
Learning [13]] task and solved it by adapting the Deep Q-
learning with Experience Replay algorithm [|14f]. To do so, the

Pepper Robot https://www.softbank. jp/en/robot/
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problem is formalized as the Optimal Control of a Markov
Decision Process (MDP). In detail, we introduced a tuple
< S,A,PR,y > and a policy 7, where
o S is a set of all states. A state s €S is a 4 x 1 vector
representing the level of ambient noises and obtained by
using four microphones of the robot.
e A is a set of all actions. An action a; € A will set the
volume of the robot’s voice to (i X 5) percent, i € [0,20].
e P is a transition function that returns the probability of
the next state being s/ if we take action a.
¢ Ris areward function that returns a reward value r given
as a result of taking action a in state s.

10, if user gives positive feedbacks
Reward r; = )
0, otherwise

e 7 is a policy defines the behavior of the robot. In other
words, it represents the preference of user in the volume
of robot’s speech in social communications.

With the definition of our problem as a Markov Decision
Process, we can learn the optimal policy 7y (s,a) by using the
Q-learning algorithm. Basically, Q-learning learns an action-
value function (also known as Q function). Given a state
and an action, it returns the value of taking that action. The
following equation is used to update the values of Q, usually
performing the update in an online manner, sampling directly
from the environment each time-step,

O(s,a) < O(s,a) + afr+ ymax O(st,ar) — Q(s,a)]. (1)
In [Equation (1)} the sum of the immediate reward and the

discounted future reward is calculated to update the current
estimate of the action-value function Q(s,a). This discounted
future reward is estimated by taking the maximum Q-value
of all possible actions in the next state and multiplying by
the discount factor y. The Q-learning update rule gives a new
estimate which is used to update the stored Q-value by taking
the difference and updating proportionally to the learning rate
a. [15]

With the Deep Q-learning algorithm, the neural network
serves as a function approximator and parameterize the
action-value function.

We employed the Deep Q-learning with Experience Replay
algorithm as in to solve our defined problem.

B. Model Architecture

In this research, we designed the architecture of the deep
neural network as in The deep learning libraries,
including Keras [16] and Keras-RL [17]], are used to build our
network. The input to our model consists of a 4 x 1 observed
state produced by using four microphones of Pepper robot
to capture the level of ambient noises. This is followed by 5
hidden layers. These hidden layers are fully-connected and
consist of 100, 64, 64, 64 and 64 Rectified Linear (RelLLU)

Algorithm 1 Deep Q-learning with Experience Replay Al-
gorithm [14]

1: Initialize replay memory & to capacity N

2: Initialize action-value function Q with random weights
3: for episode = 1,M do

4 Observe initial state s;

5: for t=1,T do

6 With probability € select a random action a;

7 otherwise select @, = max, Q*(s;,a; 0)

8 Execute action a; and observe reward r; and new

state ;41

9: Store transition (s;,dy,rs,si41) in 2

10: Sample random minibatch of transitions
(sj,aj,rj,st) from 9

11: if 5;, is terminal state then

12: Sety;=r;

13: else

14: Set yj =rj+ymaxy O(sj+1,a/;0)

15: end if

16: Perform  gradient descent update using
(vj = Q(s},a;:6))° as loss

17: end for

18: end for

units, respectively. The output layer is a fully-connected
linear layer with a single output for each valid action. In our
case, the number of valid actions is 21 with action; means
setting the volume of robot’s speakers to (i — 1) x 5 percent.

C. Training Details

TABLE I: The Neural Network Hyper-parameters

Parameter Value
Capacity of replay memory N 50000
Number of training episodes M 50
Number of training steps T 1000
Random exploration probability € 0.5
Discount factor y 0.99
Adam learning rate 0.001

In the process of training the deep neural network, we
choose the hyper-parameters in as in
The network can properly optimize the action-value function
O(s,a;0) after 5 learning episodes (approximately 5,000
learning data). In this work, the dataset was created by cap-
turing the data of real-life conversations between the author
and the robot. We recorded and processed all the information
about the environment’s ambient noises, the robot’s actions as
well as the feedback of the author. After training the neural
network with 50,000 training data, we tested the network
with 10,000 test cases and achieved a validation accuracy of
approximately 97 percent. It proofs that the proposed system
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Fig. 2: Deep Neural Network Architecture

Manipulation of the robot’s speech volume enabled testing
50004 of 'part?cipanFs’ responses to v'ary'ing degrees of the robot’s
= voice intensity. Spe.mﬁcally, it is served to explore. any
8 40004 clearness-related differences and comfort-related differ-
% ences in participants’ evaluations.
ﬁ 3000 To examine whether the proposed architecture also per-
£ forms well across environments with different background
.a 2000 4 noise levels, we designed five Experimental Environments
] with ambient noise levels ranging from 45 dBgpp, to 82 dBgpr,
10004 as shown in Particularly, they are
« Environmentl is a setup of a very quite environment.
0 5 10 15 20 25 30 « Environment2 is a setup of a quite environment.
Episode « Environment3 is a setup of a normal environment.

Fig. 3: Episode Reward during Training Phase

is able to learn the user’s preference through daily human-
robot interactions. shown the reward per training
episode during the training phase.

III. EXPERIMENTS

In this study, subjective experiments incorporating verbal
interactions between the Pepper robot and human subjects are
organized to verify the validity of the proposed architecture.
The details of our experimental protocol are described below
with an analysis of the results obtained.

A. Design

We conducted a 4 x 5 experiment in which we recruited
participants and let them communicate with robots of vary-
ing speech volume in environments with different reference
sound levels.

Volume Level of Robot’s Speakers and Ambient Noise
Level of Experimental Environments were manipulated as two
within-subjects factors.

To control the volume level of robot’s speakers, we in-
troduced four identical looking Experimental Robots. They
are

« Robot30 always talks in a volume of 30 %.

« Robot50 always talks in a volume of 50 %.

+ Robot80 always talks in a volume of 80 %.

« RobotSVA uses the proposed autonomous speech
volume control system to adjust its talking volume.

The sound pressure level (SPL) of the Pepper robot’s speakers

are described in

« Environment4 is a setup of a noisy environment.

« EnvironmentS is a setup of a very noisy environment.

Thus, in total, we had twenty study conditions as four
Experimental Robots spanning five levels of ambient noises in
Experimental Environments. Finally, this proposed protocol
led us to two hypotheses H; and H>,

1) Hj: Participants will be more positive toward the
RobotSVA across five experimental environments mea-
sured by listening more clear to the robot’s utterances.
H: Participants will be more positive toward the
RobotSVA across five experimental environments mea-
sured by feeling more comfortable with the robot’s
utterances.

2)

B. PFarticipants

A total of 23 participants (n =23, female = 3, male = 20),
with ages between 24 and 32 years old (M = 26.52, SD =
2.25), took part in the study. They were recruited among
graduated students at Japan Advanced Institute of Science
and Technology (JAIST) by convenience sampling. These
students are from Vietnam and China and were enrolling in
a Master’s or Doctoral program in English. All participants
confirmed that they do not have any hearing problems. We
asked the participants to describe their experiences with
humanoid robots with a 10-point Likert-type scale (unknown
= 1; familiar = 10). It was reported that the mean number
of participants’ experiences with humanoid robots is 5.30
(M =5.30, SD = 3.28). Before starting the actual tests, all
participants were instructed on the experimental protocol.
They could ask any questions until they can comprehend the
process.

C. Settings

As illustrated in the study was conducted in an
ordinary room (5.5m (W) x 4m (D) x 2.5m (H)) at JAIST.
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Fig. 5: Sound Pressure Levels of Robot’s Speakers as well
as Ambient Noises in Experimental Environments

The experimental setting comprises a humanoid robot Pepper,
a 2.1 compact speaker system, and a workspace computer
where all the processing takes place. We used the depth
camera of the Pepper robot to calculate the distance between
participants and itself. Four microphones on the robot’s
head were employed to listen to the surrounding sounds
and provide the input to the autonomous speech volume
control system. The robot interacted with participants by
talking through its speakers. The sound pressure levels of the
robot’s speakers were calculated and reported in The
compact speaker system was applied to create the different
ambient noise levels in five experimental environments as
in by playing recorded sounds (music, people talk-
ing, white noise, etc.). The experiment was conducted in a
controlled environment, including managing the temperature
in the room, checking that the battery of the robots was
always above 50 %, and verifying the volume of the ambient
noises in experimental environments. We used the “Sound
Level Meter, Class 2 NL-42’E| for all sound pressure level
measurements in this work.

D. Procedure

After welcoming a participant, each session started with a
short introduction. Then, he (or she) was instructed to sit in
front of the robot and was guided on how to communicate
with the robot. We also requested them to only consider the

2Sound Level Meter, Class 2 NL-42 https://rion-sv.com/
products/10005/NL420009

loudness and to ignore other characteristics of the robot’s
voice (e.g. tone, pitch, range, etc.). Subsequently, the partici-
pant was asked to listen to the robot’s utterances and to fill in
a short survey after each trial. There were a total of 20 trials,
one per study condition and each session took approximately
45 minutes.

At the beginning of each session, we shuffled the order of
the appearance of the experimental robots and the experimen-
tal environments by using the Fisher-Yates algorithm. In each
trial, the participant said “Start” at first. Then, the compact
speaker system created the corresponding noise level in 3
seconds later. After 10 seconds, the chosen robot talked a
10-second utterance. Following a trial is a 30-second break.

A survey was given after each trial and is comprised of two
questions on a 10-point Likert type scale. These questions are

1) “How clear you hear the robot’s voice?” (1: cannot
hear anything; 10: very clearly). With this question,
we aimed to capture that if the subject can hear and
acquire the transferred content from the robot (Hj).

2) “How comfortable are you with the volume of the
robot’s voice?” (1: annoyed; 10: very comfortable). On
the other hand, the rating of how comfortable they felt
about the robot’s speech volume was recorded by this
question (H3).

After completing all 20 trials, the participant filled in a

demographic questionnaire, and dismissed.

The standardized procedure of an experimental session is

given in
E. Results

Environment = 1 Environment = 2

10.04 B

Environment = 3

7.5 1

5.0 q

Evaluation

2.5 q

T T T T
Q Q Q
‘oo‘ﬂ" ‘00‘6 ‘00‘% 0{3\‘ >

Environment = 5 QO Q0¥ QO Q\o‘g

10.0 q Robot

Environment = 4

7.5 1

5.0 q

Evaluation

%\‘P‘

“o“ P& Nl
o $0‘0°\ @v"‘% o ©

0‘ 0‘6 0‘%
T Q8 g

Robot Robot

Fig. 6: Evaluations for Clearness-related through Experimen-
tal Environments (H;)

In this research, we used the software “IBM SPSS Statis-
tics” to analyze the data. To test our hypothesis, inferential
analyses were performed at a significance level of o = 0.05
and a Bonferroni correction for multiple comparisons was
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TABLE II: Descriptive Statistics of Participants’ Evaluations for Experimental Robots in Experimental Environments

Environment Evaluation (n = 23)
Robot30 Robot50 Robot80 RobotSVA
Min Max 12@68? Min Max Iz/gi;l;l Min Max 1:/;612)1;1 Min Max léeg;l
Environment 1
Comfort 2 8 4.74 4 10 7.57 2 9 5.43 6 10 8.52
(1.839) (1.472) (1.903) (1.310)
Clearness 2 10 5.74 7 10 9.09 6 10 9.48 6 10 9.22
(2.580) (1.164) (1.039) (1.242)
Environment 2
Comfort 1 3 1.17 1 8 3.91 5 10 7.61 5 10 7.87
(0.491) (1.703) (1.406) (1.604)
Clearness 1 2 1.09 2 9 4.48 7 10 9.26 5 10 8.65
(0.288) (2.064) (1.096) (1.526)
Environment 3
Comfort 1 2 1.09 1 3 1.65 2 10 6.04 2 10 7.83
(0.288) (0.775) (2.3006) (2.167)
Clearness 1 1 1.00 1 3 1.96 3 10 7.09 3 10 8.43
(0.000) (0.767) (2.130) (1.854)
Environment 4
Comfort 1 3 1.17 1 5 1.87 2 9 5.78 3 10 7.78
(0.491) (1.100) (1.833) (1.882)
Clearness 1 2 1.04 1 4 2.09 3 10 6.78 4 10 8.52
(0.209) (0.848) (1.906) (1.806)
Environment 5
Comfort 1 2 1.04 1 2 1.13 1 8 4.39 3 10 7.13
(0.209) (0.344) (1.725) (1.938)
Clearness 1 1 1.00 1 2 1.13 2 8 5.00 4 10 8.22
(0.000) (0.344) (1.732) (1.882)
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Environments (H>)

TABLE III: Pairwise Comparisons

Mean
(i) () . Std. .
Measure Robot Robot let(‘ei:_l:snce Error Sig.?
Comfort RobotSVA  Robot30 5.983 0.296 0.000
Robot50 4.600 0.260 0.000
Robot80 1.974 0.185 0.000
Clearness RobotSVA  Robot30 6.635 0.270 0.000
Robot50 4.861 0.206 0.000
Robot80 1.087 0.103 0.000

b The mean difference is significant at the 0.05 level.

applied to all post-hoc tests. Analyses were classical Two-
way Repeated Measures Analysis of Variance (ANOVA).

Descriptive statistics are shown in [Fig. 6 and
[Fig- 7} Furthermore, reported the post-hoc pairwise

comparisons.

After performing the study, the results indicate that there
are statistically significant differences between experimental



Algorithm 2 Standardized Procedure of an Experimental
Session
1: Setup experimental room
2: Experimenter welcomes Participant
3: Experimenter gives a short introduction and guides Par-
ticipant
4: Experimental Robots = {Robot30, Robot50, Robot80,
RobotSVA }
5. Experimental Environments = {Environment1, Environ-
ment2, Environment3, Environment4, Environment5}
6: Shuffle Experimental Robots
7. Shuffle Experimental Environments
8
9

: for each Environment in Experimental Environments do
for each Robot in Experimental Robots do

10 Participant says “Start”

11: 3 seconds pass

12: Setup Environment

13: 10 seconds pass

14: Robot says 10-second utterance

15: Participant answers two questions in the survey
16: Participant take 30-second break

17: end for

18: end for

19: Participant fills in the demographic questionnaire
20: Experimental session is done

robots. In detail, the observations confirm that RobotSVA
outperforms three other experimental robots through five ex-
perimental environments in terms of clearness and comfort.
The participants were able to capture all the contents that
RobotSVA talked to them with the fact that RobotSVA
obtains excellent scores regarding clearness (8.22 - 9.22).
Similarly, they felt very comfortable with the volume of
RobotSVA’s voice, reflected by high scores concerning
comfort (7.13 - 8.52). Moreover, they positively think that
RobotSVA is able to automatically adapt its speech volume
to suit with social cues in daily human-robot interactions.
Hence, we have enough evidence to accept the hypothesis
H; and H,. We also successfully prove the validity of our
proposed autonomous speech volume control system.

IV. CONCLUSION

In this paper, we provided a new approach to automatically
adjust the voice volume of a humanoid robot to improve
the quality of the human-robot interactions. With subjective
experiments, we are able to prove the soundness of our
proposed framework. The analyzed data indicated that there
are statistically significant differences between experimental
robots. The observations confirmed that RobotSVA, the hy-
pothetical robot supported by our proposed system, surpasses
three other experimental robots through five investigational
environments in terms of the clearness and comfort of

the robot’s voice. Specifically, the participants were able
to capture all the contents that RobotSVA talked to them
in trials. As well as, they felt very comfortable with the
speech volume of the robot. RobotSVA successfully adapted
the intensity of its voice to suit with social cues in daily
conversations.
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