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Abstract

We investigate the computational complexity of the following problem. We
are given a graph in which each vertex has an initial and a target color.
Each pair of adjacent vertices can swap their current colors. Our goal is
to perform the minimum number of swaps so that the current and target
colors agree at each vertex. When the colors are chosen from {1,2,... ¢},
we call this problem ¢-COLORED TOKEN SWAPPING since the current color
of a vertex can be seen as a colored token placed on the vertex. We show
that c-COLORED TOKEN SWAPPING is NP-complete for ¢ = 3 even if input
graphs are restricted to connected planar bipartite graphs of maximum degree
3. We then show that 2-COLORED TOKEN SWAPPING can be solved in
polynomial time for general graphs and in linear time for trees. Besides, we
show that, the problem for complete graphs is fixed-parameter tractable when
parameterized by the number of colors, while it is known to be NP-complete
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when the number of colors is unbounded.

Keywords: computational complexity, NP-completeness, fixed-parameter
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1. Introduction

Sorting problems are fundamental and important in computer science.
Let us consider the problem of sorting a given permutation by applying
the minimum number of swaps of two elements. If we are allowed to swap
only adjacent elements (that is, we can apply only adjacent transpositions),
then the minimum number of swaps is equal to the number of inversions
of a permutation [12, 15|. If we are allowed to swap any two elements,
then the minimum number of swaps is equal to the number of elements of a
permutation minus the number of cycles of the permutation [2, 12|. Now, if
we are given a set of “allowed swaps”, can we exactly estimate the minimum
number of swaps? We formalize this question as a problem of swapping
tokens on graphs.

Let G = (V, E) be an undirected unweighted graph with vertex set V'
and edge set E. Suppose that each vertex in G has a token, and each token
has a color in C' = {1,2,...,¢}. Given two token-placements, we wish to
transform one to the other by applying the fewest number of token swaps on
adjacent vertices. We call the problem ¢-COLORED TOKEN SWAPPING if ¢
is a constant, otherwise, we simply call it COLORED TOKEN SWAPPING(a
formal definition can be found in the next section). See Figure 1 for an
example.

In this paper, we study the computational complexity of ¢-COLORED
TOKEN SWAPPING. We consider the case where ¢ is a fixed constant and
show the following results. If ¢ = 2, then the problem can be solved in
polynomial time (Theorem 6). On the other hand, 3-COLORED TOKEN
SWAPPING is NP-complete even for planar bipartite graphs of maximum de-
gree 3 (Theorem 2). We also show that ¢-COLORED TOKEN SWAPPING is
O(n*?)-time solvable for graphs of maximum degree at most 2 (Theorem 4),
2-COLORED TOKEN SWAPPING is linear-time solvable for trees (Theorem 8),
and ¢-COLORED TOKEN SWAPPING is fixed-parameter tractable for com-
plete graphs if ¢ is the parameter (Theorem 15).

If the tokens have distinct colors, then the problem is called TOKEN
SWAPPING [20]. This variant has been investigated for several graph classes.
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Figure 1: An instance of 4-COLORED TOKEN SWAPPING. Tokens on vertices are written
inside circles. We swap the two tokens along each thick edge. (a) The initial token-
placement. (b)—(d) Intermediate token-placements. (e) The target token-placement.

TOKEN SWAPPING can be solved in polynomial time for paths [12, 15], cy-
cles [12], stars [18], complete graphs |2, 12|, and complete bipartite graphs [20].
Heath and Vergara [10] gave a polynomial-time 2-approximation algorithm
for squares of paths (see also |6, 7]). Yamanaka et al. 20| gave a polynomial-
time 2-approximation algorithm for trees.

Recently, Miltzow et al. [17] gave computational complexity results for
TOKEN SWAPPING. First, they showed the NP-completeness of TOKEN
SWAPPING. Second, they proposed an exact exponential algorithm for TO-
KEN SWAPPING on general graphs and showed that TOKEN SWAPPING can-
not be solved in 2°") time unless the Exponential Time Hypothesis (ETH)
fails, where n is the number of vertices. Third, they proposed polynomial-
time 4-approximation algorithms for TOKEN SWAPPING on general graphs
and showed the APX-hardness of TOKEN SWAPPING. Independently, Kawa-
hara et al. [14] proved the NP-completeness of TOKEN SWAPPING even if
an input graph is bipartite and has only vertices of degree at most 3. More
recently, Bonnet et al. [1] gave some results for TOKEN SWAPPING. They
showed the parameterized hardness: TOKEN SWAPPING is W|[1|-hard, pa-
rameterized by the number of swaps and TOKEN SWAPPING cannot be solved
in f(k)(n+m)°*/°ek) yunless the ETH fails, where n is the number of vertices,
m is the number of edges and & is the number of swaps. TOKEN SWAPPING
on trees is one of the attractive open problems. They gave an interesting
result for the open problem: TOKEN SWAPPING is NP-hard even when both



the treewidth and the diameter are constant, and cannot be solved in 2°(%
time unless the ETH fails.

Miltzow et al. [17] and Bonnet et al. [1] also gave important results on
COLORED TOKEN SWAPPING. Here, we mention only the results related
to our contributions. Miltzow et al. [17] gave the NP-completeness of COL-
ORED TOKEN SWAPPING using §2(n) colors. On the other hand, in this
paper, we show the the NP-completeness of ¢-COLORED TOKEN SWAP-
PING even if the number of colors is only 3. Bonnet et al. [1] showed the
NP-completeness of COLORED TOKEN SWAPPING on complete graphs us-
ing Q(n) colors. To complement their result, we show the fixed-parameter
tractability of c-COLORED TOKEN SWAPPING on complete graphs, param-
eterized by the number of colors.

2. Preliminaries

The graphs considered in this paper are finite, simple, and undirected.
Let G = (V, E) be an undirected unweighted graph with vertex set V' and
edge set E. We sometimes denote by V(G) and E(G) the vertex set and the
edge set of G, respectively. We always denote |V | by n. For a vertex v in G,
let N(v) be the set of all neighbors of v.

We formalize our problem as a problem reconfiguring an initial coloring of
vertices to the target one by repeatedly swapping the two colors on adjacent
vertices as follows. Let C'={1,2,...,c} be a set of colors. In this paper, we
assume that ¢ is a constant unless otherwise noted. A token-placement of G
is a surjective function f: V — C. For a vertex v, f(v) represents the color
of the token placed on v. Note that we assume that each color in C' appears
at least once. Two distinct token-placements f and f’ of G are adjacent if
the following two conditions (a) and (b) hold:

(a) there exists (u,v) € E such that f'(u) = f(v) and f'(v) = f(u);

(b) f'(w) = f(w) for all vertices w € V' \ {u,v}.
In other words, the token-placement f’ is obtained from f by swapping the
tokens on the two adjacent vertices u and v. For two token-placements f and
f'of G, a sequence S = (fi, fa,..., fn) of token-placements is a swapping
sequence between f and f’ if the following three conditions (1)—(3) hold:

(1) fi=fand fr,=f,

(2) fr is a token-placement of G for each k = 1,2,... h;

(3) fr—1 and fy are adjacent for every k =2,3,... h.



The length of a swapping sequence S, denoted by len(S), is defined to be
the number of token-placements in & minus one, that is, len(S) indicates
the number of swaps in §. For two token-placements f and f’' of G, we
denote by OPT(f, f’) the minimum length of a swapping sequence between
f and f’. If there is no swapping sequence between f and f’, then we set
OPT(f, f') = oc.

Given two token-placements fy and f; of a graph GG and a nonnegative in-
teger ¢, the c-COLORED TOKEN SWAPPING problem is to determine whether
OPT(fo, f:) < ¢ holds. From now on, we always denote by f, and f; the ini-
tial and target token-placements of GG, respectively.

Let f and f’ be two token-placements of G. If there exist a component
C of G and a color ¢ such that the numbers of tokens of color ¢ in C' are
not equal in f and f’, then we cannot transform f into f’. If there are no
such C and i, then we write f ~ f’. Note that one can easily check whether
f =~ f’ in linear time. Thus we can assume that input instances satisfy this
condition. It holds that if f ~ f’, then f can be transformed into f’ with
at most (Z’) swaps. This can be shown by slightly modifying the proof of
Theorem 1 in [20].

Lemma 1. Let fy and f; be token-placements of G. If fo ~ f;, then

OPT(fo, f) < (Z)

Proof. No two tokens are swapped twice or more in a swapping sequence
with the minimum length. Hence, the claim holds. O]

The bound in Lemma 1 is tight. For the path graph (vi,ve,...,v,), we
set fo(v;) =i and fi(v;) =n—i+1fori=1,2,... ,n. It is known that this
instance requires (g) swaps [12, 15].

3. Hardness results

In this section, we show that 3-COLORED TOKEN SWAPPING is NP-
complete by constructing a polynomial-time reduction from PLANAR 3DM [4].
To define PLANAR 3DM, we first introduce the following well-known NP-
complete problem.

Problem: 3-DIMENSIONAL MATCHING (3DM) [9, SP1]
Instance: Set T'C X x Y x Z, where X, Y, and Z are disjoint sets having
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Figure 2: (a) The initial token-placement and (b) the target token-placement of the graph
constructed from an instance (X = {z1,22,235}, Y = {y1,y2,vu3}, Z = {21,20,23}, T =
{tl - (xlyylvz?)); t2 - ($3792,21)7 t3 = (mlathQ)a t4 = (x37y3a22)7 t5 = ($2792a21)})-

the same number m of elements.
Question: Does T contain a matching, i.e., a subset 7" C T such that
|T'| = m and it contains all elements of X, Y, and Z?

PLANAR 3DM is a restricted version of 3DM in which the following
bipartite graph G is planar. The graph G has the vertex set V(G) = TUX U
Y UZ with a bipartition (7, XUY UZ). Two verticest € T and w € XUYUZ
are adjacent in G if and only if w € t. PLANAR 3DM is NP-complete even
if G is a connected graph of maximum degree 3 [4].

Theorem 2. 3-COLORED TOKEN SWAPPING is NP-complete even for con-
nected planar bipartite graphs of mazximum degree 3.

Proof. By Lemma 1, there is a polynomial-length swapping sequence between
two token-placements, and thus 3-COLORED TOKEN SWAPPING is in NP.

Now we present a reduction from PLANAR 3DM, as illustrated in Fig-
ure 2. Let (X,Y,Z;T) be an instance of PLANAR 3DM and m = |X| =
Y| = |Z|. As mentioned above, we construct a bipartite graph G = (T, X U
Y UZE) from (X,Y,Z;T). We set fo(z) = 2 and fi(z) = 1 for every
x € X, set fo(y) = 3 and fi(y) = 2 for every y € Y, set fo(z) = 1 and
fi(z) = 3 for every z € Z, and set fy(t) = 1 and fi(t) = 1 for every t € T.
From the assumptions, GG is a planar bipartite graph of maximum degree 3.
The reduction can be done in polynomial time. We prove that the instance
(X,Y, Z;T) is a yes-instance if and only if OPT(fo, f;) < 3m.

To show the only-if part, assume that there exists a subset 7" of T" such
that |7"| = m and 7" contains all elements of X, Y, and Z. Since the
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Figure 3: A swapping sequence to resolve the token-placement of a triple.

elements of T are pairwise disjoint, we can cover the subgraph of G induced
by T"U X UY U Z with m disjoint stars of four vertices, where each star is
induced by an element ¢ of 7" and its three elements. To locally move the
tokens to the target places in such a star, we need only three swaps. See
Figure 3. This implies that a swapping sequence of length 3m exists.

To show the if part, assume that there is a swapping sequence S from fy
to f; with at most 3m swaps. Let 77 C T be the set of vertices such that the
tokens on them are moved in S. Let G’ be the subgraph of G induced by
T"UXUYUZ Letwe XUY UZ. Since foy(w) # fi(w) and N(w) C T,
the sequence S swaps the tokens on w and on a neighbor ¢t € T" of w at least
once. This implies that w has degree at least 1 in GG'. Since each t € T" has
degree at most 3 in G', we can conclude that [T| > 3 [ X UY U Z| = m. In
S, the token placed on a vertex in X UY in the initial token-placement is
moved at least twice, while the token placed on a vertex in Z U T" is moved
at least once. As a swap moves two tokens at the same time,

1
len(8) 2 5(21X] +2[Y| + |7] + |T']) = 3m.

From the assumption that len(S) < 3m, it follows that |T’| = m, and hence
each w € X UY U Z has degree exactly 1 in G'. Therefore, G’ consists of m

disjoint stars centered at the vertices of 7" which form a solution of PLANAR
3DM. O

The proof above can be modified to show hardness for instances with more
colors. We transform the reduced instance by adding a path of polynomial
length containing additional colors as follows.

Corollary 3. For every constant ¢ > 3, c-:COLORED TOKEN SWAPPING is
NP-complete even for connected planar bipartite graphs of mazimum degree 5.

Proof. Let G be the graph obtained in the proof of Theorem 2. Recall that
the token-placement of GG uses three colors 1, 2, and 3. It is known that we can

7



assume that G has a degree-2 vertex [4]. We connect a path (p4,ps, ..., pe)
to G by adding an edge between p,; and a degree-2 vertex in G. We set
fo(pi) = fi(pi) = @ for every i € {4,...,¢}. The proof of Theorem 2 still
works for the obtained graph. m

4. Positive results

In this section, we give some positive results. First, we show that c-
COLORED TOKEN SWAPPING for graphs of maximum degree at most 2 is
in XP! when c is the parameter. Second, we show that 2-COLORED TOKEN
SWAPPING for general graphs can be solved in polynomial time. Third,
we show that the 2-COLORED TOKEN SWAPPING problem for trees can be
solved in linear time without constructing a swapping sequence. Finally, we
show that the c-COLORED TOKEN SWAPPING problem for complete graphs
is fixed-parameter tractable? when c is the parameter.

4.1. c-COLORED TOKEN SWAPPING on graphs of maximum degree 2

In this subsection, we show that the degree bound in Theorem 2 and
Corollary 3 is tight. If a graph has maximum degree at most 2, then we
can solve c-COLORED TOKEN SWAPPING in XP time for every constant ¢
as follows. Each component of a graph of maximum degree at most 2 is a
path or a cycle. Observe that a shortest swapping sequence does not swap
tokens of the same color. This immediately gives a unique matching between
tokens and target vertices for a path component. For a cycle component,
observe that each color class has at most n candidates for such a matching
restricted to the color class. This is because after we guess the target of a
token in a color class, the targets of the other tokens in the color class can
be uniquely determined. In total, there are at most n® matchings between
tokens and target vertices. By guessing such a matching, we can reduce
c-COLORED TOKEN SWAPPING to TOKEN SWAPPING. Now we can apply
Jerrum’s O(n?)-time algorithms for solving TOKEN SWAPPING on paths and
cycles [12]. Thus we have the following theorem.

Theorem 4. c-COLORED TOKEN SWAPPING can be solved in O(n°*?) time
for graphs of mazimum degree at most 2.

1See [3, p. 13] for a formal definition of XP.
2Also see [3, p. 13] for a formal definition of fixed-parameter tractability.
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Figure 4: (a) The initial token-placement. (b) The target token-placement. (c) The
weighted complete bipartite graph constructed from (a) and (b). The edge weights are
written beside the edges.

4.2. 2-COLORED TOKEN SWAPPING on general graphs

In this section, we show that 2-COLORED TOKEN SWAPPING is poly-
nomially solvable. We lately noticed that an equivalent problem was solved
previously by van den Heuvel [19, Theorem 4.3|. Our proof is quite similar
to the one in [19]. However, to be self-contained we describe our proof.

Let C' = {1, 2} be the color set. Let G = (V, E) be a graph, and let f, and
f: be initial and target token-placements. We first construct the following
weighted complete bipartite graph G = (X,Y, Ep, w) as follows. The vertex
sets X, Y and the edge set Ep are defined as follows:

X = {z,|veVand fy(v) =1},
Y= Ay [veVand fi(v) =1},
Ep = {(z,y) |z € X andy € Y}.

The vertices in X correspond to the vertices in V' having tokens of color 1
in fy, and the vertices in Y correspond to the vertices in V' having tokens of
color 1 in f;. For x € X and y € Y, the weight w(e) of the edge e = (z,y)
is defined as the length of a shortest path from z to y in G. Figure 4 gives
an example of an initial token-placement, a target token-placement, and the
associated weighted complete bipartite graph.

We bound OPT(fy, f;) from below as follows. Let & be a swapping se-
quence between fy and f;. The swapping sequence gives a perfect matching
of G, as follows. For each token of color 1, we choose an edge (z,y) of Gp
if the token is placed on z € X in fy and on y € Y in f;. The obtained
set is a perfect matching of G. A token corresponding to an edge e in the



matching needs w(e) swaps, and two tokens of color 1 are never swapped
in §. Therefore, for a minimum weight matching M of Gpg, we have the
following lower bound:

OPT(fo, fi) > Z w(e).

eeM

Now we describe our algorithm. First we find a minimum weight perfect
matching M of G. We then choose an edge e in M. Let P. = (p1,p2,...,Dy)
be a shortest path in G corresponding to e. We have the following lemma.

Lemma 5. Suppose that the two tokens on the endpoints of P, have different
colors. The two tokens can be swapped by w(e) swaps such that the color of
the token on each internal vertex does not change.

Proof. Without loss of generality, we assume that fy(p1) = 2 and fy(p,) =1
hold. We first choose the minimum 7 such that fy(p;) = 1 holds. We next
move the token on p; to p; by i — 1 swaps. Note that, after the swaps above,
p1 has a token of color 1 and p; for each j = 2,3,...,% has a token of color
2. We repeat the same process to the subpath (p;, pit1,...,p,). Finally, we
obtain the desired token-placement. Recall that there are only two colors on
graphs, and so the above “color shift” operation works. See Figure 5 for an
example. Since each edge of P. is used by one swap, the total number of
swaps is w(e) = ¢ — 1. O

This lemma permits to move the two tokens on the two endpoints p; and
pg of P. to their target positions in w(e) swaps without changing the token-
placement of the other vertices. Let g be the token-placement obtained after
the swaps. We can observe that fy(v) = g(v) for every v € V \ {p1,p,}
and g(v) = fi(v) for v € {p1,py}. Then we remove e from the matching M.
We repeat the same process until M becomes empty. Our algorithm always
exchanges tokens on two vertices using a shortest path between the vertices.
Hence, the length of the swapping sequence constructed by our algorithm is
equal to the lower bound.

Now we estimate the running time of our algorithm. The algorithm first
constructs the weighted complete bipartite graph. This can be done using
the Floyd-Warshall algorithm, which computes all-pairs shortest paths in a
graph, in O(n?) time. Then, our algorithm constructs a minimum weight
perfect matching. This can be done in O(n?®) time [16, p.252]. Finally,
for each edge in the matching, along the corresponding shortest path, our

10



@

020200205050
Pr P2 P Ps Ps Ps P Ps

(b)

Figure 5: An example of the color shift operation on the path (p1,p2, ps, pa, 05, D6, P7, Ps)-
(a) The initial token-placement. (b) The token-placement obtained from (a) by moving
the token on p4 to p1. (c) The token-placement obtained from (b) by moving the token
on ps to py. (d) The token-placement obtained from (c¢) by moving the token on pg to ps.
The total number of swaps is 7.

algorithm moves the tokens on the endpoints of the path in linear time. We
have the following theorem.

Theorem 6. 2-COLORED TOKEN SWAPPING is solvable in O(n?) time. Fur-
thermore, a swapping sequence of the minimum length can be constructed in
the same running time.

4.3. 2-COLORED TOKEN SWAPPING on trees

In the previous subsection, we proved that, for general graphs, 2-COLORED
TOKEN SWAPPING can be solved in O(n?) time. In this subsection, we show
that 2-COLORED TOKEN SWAPPING for trees can be solved in linear time
without constructing a swapping sequence.

Let T be an input tree, and let f; and f; be an initial token-placement
and a target token-placement of 7'. Let e = (x,y) be an edge of T'. Removal
of e disconnects 1" into two subtrees: T'(z) with z and T'(y) with y.

Now we define the value diff(e) for each edge e of T'. Intuitively, diff(e)
is the number of tokens of color 1 which we wish to move along e. More

11
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Figure 6: An example of diff(e). For each edge e, the value diff(e) is written beside e.
(a) The initial token-placement. (b) The target token-placement.

formally, we give the definition of diff(e) as follows. Let n'(fy) and n'(f;) be
the numbers of tokens of color 1 in fy and f; in T'(x), respectively. Then, we
define diff(e) = [n'(fo) — n'(f:)]. (Note that, even if we count tokens of color
1in fo and f; in T'(y) instead of T'(z), the value diff(e) takes the same value
as fo =~ fi.) See Figure 6 for an example. For each edge e of T', we need to
move at least diff(e) tokens of color 1 from a subtree to the other along e.
Therefore, OPT(fo, f¢) is lower bounded by the sum D = }_ 5 diff(e).

To give an upper bound of OPT(fy, f;), we next show that there exists a
swapping sequence of length D. The following lemma is the key to construct
the swapping sequence.

Lemma 7. If D # 0, then there exists an edge e such that the swap on e
decreases D by one.

Proof. We first give an orientation of edges of T'. For each edge e = (z,y),
we orient e from x to y if the number of tokens of color 1 in fy in T'(z) is
greater than the number of tokens of color 1 in f; in T'(z). Intuitively, the
direction of an edge means that we need to move one or more tokens of color
1 from T'(x) to T'(y). If the two numbers are equal, we remove e from 7. Let
T" be the obtained directed forest. For an edge e = (x,y) oriented from x to
y, if  has a token of color 1 and y has a token of color 2, swapping the two
tokens decreases D by one. We call such an edge a desired edge. We now
show that there exists a desired edge in T". Observe that if no vertex u with
fo(u) = 1 is incident to a directed edge in 7", then indeed 7" has no edge
and D = 0. Let u be a vertex with fo(u) = 1 that has at least one incident
edge in T". If u has no out-going edge, then the number of the color-1 tokens

12



in fy exceeds the number of the color-1 tokens in f;. Thus we can choose an
edge (u,v) oriented from u to v. If fy(v) = 2 holds, the edge is desired. Now
we assume that fo(v) = 1 holds. We apply the same process for v, then an
edge (v, w) oriented from v to w can be found. Since trees have no cycle, by
repeating the process, we always find a desired edge. O]

From Lemma 7, we can find a desired edge, and we swap the two tokens
on the endpoints of the edge. Since a swap on a desired edge decreases D
by one, by repeatedly swapping on desired edges, we obtain the swapping
sequence of length D. Note that D = 0 if and only if fy(v) = fi(v) for every
v € V(T). Hence, we have OPT(fo, f;) < D.

Therefore OPT(fy, f;) = D holds, and so we can solve 2-COLORED ToO-
KEN SWAPPING by calculating D. The value diff(e) for every edge e, and
thus the value D, can be calculated in a bottom-up manner from the edges
incident to leaves of 7" in linear time in total. We have the following theorem.

Theorem 8. 2-COLORED TOKEN SWAPPING is solvable in linear time for
trees.

4.4. c-COLORED TOKEN SWAPPING on complete graphs

In the previous subsections, we showed that 2-COLORED TOKEN SWAP-
PING can be solved in polynomial time for graphs and linear time for trees.
In this subsection, let us consider if c-COLORED TOKEN SWAPPING for con-
stant ¢ > 2 can be solved in polynomial time for restricted graphs classes. We
show that, for complete graphs, the c-COLORED TOKEN SWAPPING problem
is fixed-parameter tractable when c is the parameter.

As a preliminary of this subsection, we first introduce a destination graph
which represents the target vertex of each token. Let G = (V,E) be a
complete graph, and let f; and f; be an initial token-placement and a target
one. The destination graph D(fy, f:) = (Vp, Ep) of two token-placement f
and f; is the directed graph such that

e Vp=V;and

e there is an arc (u,v) from u to v if and only if fo(u) = fi(v).

Upper bound

We here design an algorithm that computes a swapping sequence between
fo and f; to give an upper bound. Let us show an observation before de-
scribing the details of the algorithm. Let A be a cycle in D(fo, f;), and we
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assume that A is not a self-loop. We can move every token in A to its target
vertex so that the tokens on the vertices in the other cycles are unchanged,
as follows. First we choose any vertex v in A. We swap the two tokens on
v and the out-neighbor u of v in A. After this swap, A is split into the two
cycles Ay and As: A; is a self-loop, that is the cycle with only u, and A, is
the cycle with all the vertices in A except u. Then, u has its desired token
and hence the remaining task is to move every token on the vertices in A,.
We repeat to swap the two tokens on v and its out-neighbor until v has its
desired token. If a cycle has 3 or more vertices, the swap split the cycle into
the two cycles: a self loop and a cycle with one less edges. If a cycle has 2
vertices, the swap split the cycle into two self-loops. Hence, the number of
swaps to move all tokens in A to their target vertices is |V (A)| — 1.

We now describe the details of our algorithm. The algorithm uses a
(vertex-disjoint) cycle cover of vertices in the destination graph. Let C( fy, f;)
be a cycle cover of D(fy, f;) and let A be a cycle in C(fo, fi). (We will present
how to find a cycle cover later.) The algorithm swaps tokens cycle by cycle.
If A is a self-loop, the algorithm does nothing. Let us assume that A is not
a self-loop. The algorithm moves all tokens in A to their target vertices by
|[V(A)| — 1 swaps while keeping the rest unchanged. The algorithm repeats
the same process for every cycle in C(fy, f;). The total number of swaps is

Y WVAI=D= D VA= IC(fo, fi)l =n—IC(fo, f)] -
A€eC(fo,ft) A€eC(fo,ft)

Thus we have the following upper bound.

Lemma 9. Let G be a complete graph with n vertices, and let fo and f;
be initial and target token-placements. If there exists a vertex disjoint cycle
cover C( fo, ft) of D(fo, ft), we have the following inequality:

OPT(fo, f:) <n—|C(fo, fo)]-

If we apply the above lemma to a cycle cover such that the number of
cycles in the cover is maximized, we obtain the smallest upper bound among
cycle covers of D(fy, f;). We call such a cycle cover optimal.

Corollary 10. Let Copr(fo, fi) be an optimal cycle cover. Then we have
OPT(fo, fi) <n — |Copr(fo, fi)|-

Next, we show that the problem of finding an optimal cycle cover is fixed-
parameter tractable when parameterized by the number of colors

14



Figure 7: An illustration for Lemma 11.

Finding an optimal cycle cover

We show that, when ¢ is the parameter, an optimal cycle cover of a
destination graph can be found in FPT time. We reduce the problem into
an integer linear program such that the number of variables and the number
of constraints are both upper bounded by functions of ¢ and all values in the
program are nonnegative and at most n.

Lemma 11. If A is a cycle in an optimal cycle cover Copr(fo, fi), then A
contains at most ¢ vertices.

Proof. Let A = (wq,ws, ..., wg). Suppose to the contrary that k > c. Then,
there are two vertices with the same target color. Without loss of generality,
assume that fi(wy) = fi(w;) = a. This implies that fy(wg) = fo(wi—1) = a.
Hence, there exist the edges (wy, w;) and (w;_1,w;) in the destination graph.
See Figure 7. Therefore, the vertices of A can be cover by the two disjoint
cycles Ay = (wy,wy, ..., w;_1) and Ay = (w;, wiy1, ..., wg). This contradicts
the optimality of Copr(fo, fi)- O

We define “type” of vertices in a graph. The type of a vertex v is (a,b) if
fi(v) = a and fy(v) = b hold. Intuitively, a vertex of type (a,b) has a token
of color b in fy but the vertex desires to have a token of color a in f;. The
number of all possible types is c?.

Now we reduce the problem of finding an optimal cycle cover to an in-
teger linear program as follows. We first define a type sequence of a cy-
cle. For a cycle A = (wy,ws, ..., wg), the type sequence of A is a sequence
(tp(w), tp(ws), . . ., tp(wg)), where tp(w;) is the type of w;. We list all possi-
ble type sequences that appear in D(fy, f;). The length of a type sequence
is at most ¢ from Lemma 11, and the number of type sequences is at most
c!. For each type sequence s, we prepare a variable x, which represents how
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many times the corresponding type sequences appear in a cycle cover. Let
S be the set of type sequences. Finally, we have the following integer linear
program:

Maximize Z Ts,
seS
Subject to Z s = #(a,b) for each (a,b),
s€S with
(a,b)es

r, >0 for each s € S,

where #(a, b) is the number of vertices of type (a, b) in D(fy, f;). This formula
can be constructed in FPT time with parameter c.

The feasibility test of an ILP formula is fixed-parameter tractable when
parameterized by the number of variables [8, 13, 11]. For our purpose, we
need to solve the optimization version. We formally describe the problem
and the theorem presented by Fellows et al. [5] below.

Problem: p-VARIABLE INTEGER LINEAR PROGRAMMING OPTIMIZATION
(p-OpT-ILP)

Instance: A matrix A € Z™*? and vectors b € Z™ and ¢ € ZP.
Objective: Find a vector £ € ZP that minimizes ¢'x and satisfies that
Ax > b.

Parameter: p, the number of variables

Theorem 12 (Fellows et al. [5]). p-OPT-ILP can be solved using O(p*°r+0®).
L-log M N) arithmetic operations and space polynomial in L, where L is the
number of bits in the input, N is the maximum absolute values any variable
can take, and M is an upper bound on the absolute value of the minimum
taken by the objective function.

In our ILP formulation, (1) the number of variables is at most ¢!, (2) the
constraints are represented using O(f(c)logn) bits for some computable f,
(3) each variable takes value at most n, and (4) the value of the objective
function is at most n. Therefore, by Theorem 12, the ILP formulation can
be solved in FPT time.

Lower bound

Let G be a complete graph and let fy and f; be an initial token-placement
and a target token-placement. Let Copr(fo, f;) an optimal cycle cover of the
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destination graph D(fo, fi). Now we define a potential function for f, and
Ju:
®(fo, fr) = n — |Copr(fo, ft)| -

Note that ®(f;, f;) = 0 holds.

Let f be a token-placement of GG, and let C(f, f;) be a cycle cover of
D(f, fi). Then, for C(f, f;), we define an adjacent cycle cover as follows. Let
/" be a token-placement adjacent to f, and assume that f’ is obtained from
f by swapping along an edge e = (u,v). Let (u,u") and (v, ") be the directed
edges leaving from u and v, respectively, in C(f, f;). We define C'(f’, f;) as
the cycle cover obtained by replacing (u,«’) and (v, v") with (v, «’) and (u, v').
Note that C'(f’, f;) is a cycle cover of D(f, f;). Then, we say that C'(f’, f;) is
adjacent to C(f, f;) with respect to e. Note that any cycle cover of D(f’, f;)
is adjacent to some cycle cover of D(f, f;) with respect to e.

Lemma 13. For any adjacent two token-placements f and f', ®(f', f;) >
O(f, fr) — 1 holds.

Proof. Suppose f’ is obtained from f by swapping along an edge e = (u,v).
Let C(f, f;) be a cycle cover of f, and let C'(f’, f;) be its adjacent cycle cover
with respect to e. Now, we investigate how the number of cycles in C(f, f;)
changes by swapping along e.

Case 1: u and v are in the same cycle. See Figure 8(a).
Swapping along e splits the cycle including u and v into two cycles. Hence,
the number of cycles increases by one.

Case 2: u and v are in different cycles. See Figure 8(b).
Swapping along e combines the two cycle including v and v into one cycle.
Hence, the number of cycles decreases by one.

Hence, we have [C(f’, f;)| < |C(f, fi)] + 1. Recall that any cycle cover
of D(f', fi) is adjacent to a cycle cover of D(f, f;). Thus we also have

\Copr(f, )l < |Copr(f, fi)|+1. Therefore, ®(f’, f;) > ®(f, f)—1holds. O

From Lemma 13, we have the following lower bound.

Lemma 14. Let G be a complete graph and let fy and f; be an initial token-
placement and a target one. Then we have

OPT(fo, f:) = n — |Copr(fo, f1)|-
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Figure 8: (a) An illustration for Case 1. The cycle in the left side is split into the two
cycles in the right side. (b) An illustration for Case 2. The two cycles in the left side are
combined into the cycle in the right side.

Therefore, we have the following theorem.

Theorem 15. Given a complete graph, an wnitial token-placement fy and
a target one f;, c-COLORED TOKEN SWAPPING s fized-parameter tractable
when ¢ is the parameter.
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