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Abstract Each person has their personal area which they
do not want to share with others during social interactions.
The size of this area usually depends on various factors such
as their culture, personal traits, and acquaintanceship. The
same applies to the case of human-robot interaction, espe-
cially when the robot is required to exhibit a certain level
of social competence. Here, we propose a new robot nav-
igation strategy to socially interact with people reflecting
upon the social relationship between the robot and each per-
son. To this end, we need a clear definition of interaction
areas: (1) Quality interaction area where people can be en-
gaged in high-quality interactions with robots, and (2) Pri-
vate area not to be interfered with by the robot speech or
action. A technical challenge in enhancing social human-
robot interactions is how to enable robots to delineate the
boundary of the two areas of each person. Specifically, the
Social Force Model (SFM) is designed by a fuzzy inference
system, where the membership functions are optimized to
give the robot the ability to navigate autonomously in the
quality interaction area using a reinforcement learning al-
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gorithm. Finally, the proposed model was verified through
simulations and experiments with a real robot that can gen-
erate a suitable SFM of each person, allowing the robot to
maintain the quality of interaction with each person while
keeping their private personal distance.

Keywords Proxemics · Social Interaction · Social Force
Model · Fuzzy Inference System · Reinforcement Learning

1 Introduction

People feel safe and comfortable within their own territory
they keep from others. We should be respectful of other peo-
ple’s territory and learn to adapt to such territory when in-
teracting with others. Therefore, the interpersonal distance
should be adaptively estimated to foster a better interaction
through real-time responses from others, allowing one to
modify their position not to trespass on others’ private areas.
In the near future, domestic robots are expected to share the
environment with humans and their perceptual and behav-
ioral abilities must conform to our social norms. Therefore,
domestic robots should be able to learn the proper social in-
teraction distance and private area. However, it is difficult
for the robot to estimate the social interaction distance of
each person which may vary due to various social factors
such as their culture, personal traits, and acquaintanceship.
Although various researches have been conducted on the so-
cial model for mobile robot navigation [19][9][20], little at-
tention has been paid to the dynamics of human social fac-
tors.

For mobile robot navigation in a human populated en-
vironment, collision avoidance is one of the most important
concerns. Another important issue that needs increased at-
tention is how to enable the robot to generate socially com-
petent navigation behaviors, which should help people feel
safe and comfort. These are important key challenges for
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Fig. 1 Human Interaction Area: a) Human interaction area accord-
ing to Proxemics [2]. b) Our proposed interaction area considering the
quality of interaction and human privacy.

human-robot symbiosis. The theory of Proxemics [2] and its
related psychological concepts are frequently used for de-
veloping socially competent robot behaviors. This concept
is integrated into various research endeavors, especially safe
navigation considering social effects [3][26][25]. However,
it is still a challenging problem to formalize this social sci-
ence theory into a mathematic model for human-centered
robot navigation.

Considering individuals’ social factors, our goal is to
propose a dynamic social force model of human-robot social
interaction. This enables the robot to adaptively estimate the
human social interaction distance, especially their private
area, in a public environment. This paper proposes a person-
alized social interaction model designed by a fuzzy infer-
ence system whose parameters are adjusted and optimized
by a reinforcement learning method in an on-line manner.
The estimated social force model is used as a cost map for
the path planner to generate robot navigation paths to make
people feel comfortable.

2 Related Work

In this section, we summarize the existing research related to
interpersonal distance to mediate people’s interaction with
others. First, we reference social science studies to give the
definition of privacy and Proxemics. Then, we describe some
studies based on the Proxemics theory to model human in-
teraction areas and its application. Finally, we identify the
technical challenges of modeling human interaction areas
responding to individuals‚Äô social factors.

2.1 Privacy and Proxemics in Social Science

The key idea to formalize human-robot interaction is to un-
derstand and accommodate human behavior. Therefore, the

knowledge of social science is of importance. First of all,
Privacy was defined in human-robot interaction by Ruben
and Smart [24]. They summarized that privacy is the ability
of an individual or group to separate themselves and thereby
express themselves selectively. The boundaries and content
of what is considered private differ among cultures and indi-
viduals. Westin [30] mentioned that most of the animals seek
privacy either as individuals or in the small groups. From
this concept, we can get the idea of territoriality which is the
defense of one area against intrusion by others. In his study,
he reported three types of spacing observed among animals:
personal distance between individuals, social distance be-
tween groups, and fight distance at which an intruder causes
conflicts. At the same time, animals often gather in large
groups. They seem to live in a tension between privacy and
sociality. Zeeger studied human privacy in childhood [31],
and found that 58 of 100 three-, four- and five-year-olds
said they had a special place at the daycare center that be-
longs only to them. Newell found that adults usually seek
privacy when they feel sad or tired, or need to concentrate
[18]. These studies are mostly related to the theory of Prox-
emics [2] which describes different interpersonal distances
that people keep from others. These distances depend on
the type of interaction and relationship between individu-
als. Human interaction areas could be defined by this theory
as shown in Fig. 1a. Among the various types of human in-
teraction area, Public area is the area often used to interact
with strangers, Social area is to interact with acquaintances,
Personal area is used for familiar people, and Intimate area
is for intimate contacts. On the other hand, people also use
the interpersonal space concept to approach to others per-
son. For example, when we try get closer to the closed friend
to get more quality of interaction but keep the distance for
stranger to make the person more comfortable. On top of
this, protecting one’s privacy is an essential prerequisite for
forming long-term, stable relationships, and developing so-
cially competent robots. The safety reason is one of the cri-
teria that results in the comfortable feeling to interact with
the robot [24]. Therefore, the robot should consider human’s
private space to maintain the comfortable feeling and quality
of interaction. Empirical research claims that spatial privacy
rights are important to determine whether to accept the in-
teraction with robots [8][16][29].

2.2 Social Science in Human-Robot Interaction

The private space of human can be grouped into geometric
and potential field models [11]. The models are designed
based on four different shapes i.e., concentric circle, egg
shape, concentric ellipses or asymmetric shapes, which used
to describe the personal space of the human [23]. The private
space or personal space can model by the geometric func-
tions, for example, ellipse or semi-ellipse function. These
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geometric models have crisp boundaries. Thus, they are ap-
propriated to express sharp transitions between personal space
and other free space. This group of models are suited for
local path planning and obstacle avoidance. The examples
of this group of modelling can be found in [10, 17, 19, 28].
However, the sharp transitions between spaces cause the robot
movement when it operates in population-environment be-
cause the robot avoids intruding into the personal are.

Another group of models describes the personal space
of the human with the potential field method. This group
of models composed of the continuous functions assigning
values to location around the human. This group of personal
space models reflect the idea that human comfort is getting
worse when an intruder approaches closer to humans. The
example of this group of modelling can be found in [3, 7, 9,
20, 25, 26]. This group of personal space models are suited
for the optimal path planning frameworks which would like
to optimal path cost that comes from human’s response.

Human social factors are incorporated into a high-level
representation. Human’s pose, speech, and gesture cues are
often used to evaluate social interaction area to guide a robot
in a socially compliant manner [15]. For example, Butler
and Agah studied what type of approach behaviors make
humans uncomfortable [1]. In [27], they investigated human
traits influencing proxemic behaviors. These works proposed
methods to design robot behaviors not to violate people’s
privacy. The social relationship and genders were used as
the social factors to generate the social interaction area and
robot collision avoidance paths in human environments [21].
Several robot behaviors have already been implemented with
the private space in mind, such as, standing in line [17], fol-
lowing a person [4], and passing a person in a hall [12].

Referring to the above literature, the actual size of inter-
action area at any given instance varies depending on social
factors of people and on the task being performed. There-
fore, adaptive space of human-robot interaction was pro-
posed to deal with uncertainties of robot perception [5]. The
method was based on the non-stationary model as skew-
normal probability density functions, allowing smooth adap-
tation in situation awareness of a robot within the common
human-robot interaction. Luber and Spinello addressed the
problem of social-aware navigation among humans that meet
the objective criteria such as travel time or path length as
well as subjective criteria like human comfort feeling [13].
The method adapts the social interaction area based on learn-
ing from a set of dynamic motions observed in a public hall.
In [22], the authors performed computer simulations that the
robot should be able to prevent itself from intruding onto the
human private area, but place itself in a location allowing
social interaction, maximizing the degree of visiting the ac-
ceptable area and minimizing the degree of trespassing on
the private area.

Fig. 2 Overall Process: Three main parts: (1) Human social model de-
signed by a fuzzy inference system (FIS), (2) Reinforcement learning
to update human social model by optimizing the parameters of the FIS,
and (3) Social path planner to generate socially competent navigation
using social model

To recapitulate, a major weakness of previous works is
a lack of adaptability in social interaction without consid-
ering individuals’ characteristics. In contrast, our approach
enables the robot to learn to estimate the human private area
during the interaction. The robot can learn parameters to up-
date the private area through the human feedback. This so-
cial model can be integrated into a path planner to simul-
taneously ensure the human safety as well as the quality of
interaction without intruding onto the private area (Fig. 1b).
As the sizes of the quality interaction area and the private
area vary from person to person, this work proposes a rein-
forcement learning based path planning approach for social
robots capable of navigating outside the private area at all
times.

3 Personalized Social Interaction

3.1 Overall Process

We propose a novel method to navigate the robot capable of
generating a socially competent path considering the human
state as shown in Fig. 2. There are three main parts in the
proposed method: (1) Human social model designed by a
fuzzy inference system (FIS), (2) Reinforcement learning to
update the parameters of the FIS, and (3) Social path planner
to generate socially competent navigation using the human
social model. During the human-robot interaction, the robot
detects the human state and social factors, such as the so-
cial relationship between humans and the robot, to prelim-
inary design human’s private area. These social factors are
the crisp set of input data which gathered for the fuzzy in-
ference system. These crisp set are converted to a fuzzy set
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using fuzzy linguistic variables, fuzzy terms, and member-
ship functions. Afterward, an inference is based on a set of
fuzzy rules. Lastly, the resulting fuzzy output is mapped to
a crisp output using the output membership function, in the
defuzziffier step. The output from the fuzzy inference sys-
tem is the parameters to calculate the model of privacy area
of the human which can be calculated by the Gaussian func-
tion. Based on preliminary human’s private area, the robot
can estimate the social map that includes people’s private
area and use it to generate its navigation paths to perform
social interactions. However, with the preliminary estimate
social map, the robot receives the reward which is the com-
bination of interaction degree and unacceptable degree, and
use it for update the parameters of input membership func-
tion by learning mechanism (R-Learning). The robot con-
tinues to navigate around humans based on the new estimate
social map. Finally, the robot will navigate through the paths
that generate based on the estimated social map to perform
social interactions within the quality interaction area, while
not intruding into the private area (Fig. 1b).

3.2 Human Social Model

The social factor describes the social cues of people such as
their relationship with other people, personality traits, cul-
ture, and emotional states. Use of such information is im-
portant to ensure people’s privacy as well as their safety in
social robot navigation planning. This section will summa-
rize the mathematic model of our fuzzy social relationship
[21]. Our proposed human’s social model is designed ac-
cording to two concepts. First is a concept of asymmetric
shape personal space [23] which describes the personal or
private space of the human with the different size of the
frontal area and lateral area. Second is the degree of sur-
rounding environment which can be used as the cost for path
planning algorithm. Our proposed method considers the dis-
comfort feeling from humans which has the maximum value
at the human location, and decrease at the location far away
from the human position. Therefore, the asymmetric Gaus-
sian function which is the simple mathematics function, is
suit to the model asymmetric shape of personal space and
possible to provide the degree of the surrounding environ-
ment.

3.2.1 Fuzzy Social Relationship Model

The human state and the social factor (e.g., relative posi-
tions between the robot and each person, social relationship
between them, genders of each person, etc.) can be used to
design the private area each person wants to secure and keep
from others. The private area can be represented by a set of

Fig. 3 Human’s private area: the privacy area of the human can be
determine by using two factor. Frontal side B f r, which depends on hu-
man’s motion, and Lateral side Bsi which can be determined by social
signals.

positions (x,y) surrounding each person to which force val-
ues are assigned as follows:

F (x,y) =
n

∑
i=1

fi (x,y) (1)

where n is the total number of persons, fi is the repulsive
force originating from the i-th person which can be expressed
by the bivariate Gaussian distribution function. Let A be the
magnitude of the repulsive force which can be determined
by a person’s physique. Also let β f r and βsi be the size of
the private area in the frontal and lateral directions, respec-
tively, with respect to the i-th person, as shown in Fig.3. The
repulsive force generating from the i-th person fi (x,y) is de-
signed by

fi (x,y) = A∗ exp
(
−
(
β f r−βsi

))
(2)

which presents the degree of discomfort of the i-th per-
son. Its peak value is observed at his/her position which de-
creases as the distance from him/her increases. It is clear
from Eq. 2 that the magnitude of the degree of discomfort
depends not only on the amplitude A, but also on β f r and
βsi. These terms can be updated by the human state and the
social factors, respectively.

Let us assume that the robot is able to perceive the hu-
man state which consists of his/her position, velocity, and
orientation with respect to the inertial coordinate frame de-
noted by (xi,yi, ẋi, ẏi,θi). Let d be the distance between the
i-th person’s position (xi,yi) and any position (x,y) in their
surrounding environment. θi is the orientation of the per-
son’s facing direction vector. The magnitude of velocity v
can be computed by

vi =
√

ẋ2
i + ẏ2

i (3)
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Considering the motion of people, β f r can be defined as fol-
lows:

β f r =


(d∗cos(θ−θi))

2

2∗σ2
f 0

if cos(θ −θi)≤ 0

(d∗cos(θ−θi))
2

2∗(σ f 0/(1+γ f vi))
2 otherwise

(4)

where σ f 0 is chosen according to the different interpersonal
social distance defined in [2]. Here γ f is the normalization
term, and θ is the orientation of the vector that represents
the position of any point in the environment with respect to
the inertial coordinate system. Therefore, the robot would
pay more attention in front of people rather than behind of
them.

This paper also reflects social factors of people in rela-
tion to the robot, e.g., the gender, the relative distance, and
the relationship degree, to estimate the design parameters of
the private area in the lateral direction βsi. Since the social
factors vary depending on various conditions, it is difficult
to group them as a binary function. Therefore, a fuzzy logic
approach is used to quantify these parameters [21].

Gender is one of social factors that should be considered
to model the private area. The input MF of gender is defined
as a binary function subject to male (M) and female (Fe)
which is given by

Γ1(g) =
{

0, if g is M
1, if g is Fe

(5)

where g is the gender input.
Our next social factor is the relative distance which can

be divided into two sets such as near (Near) or far (Far). It
is represented by a sigmoid function. Let rr be the input of
the relative distance, ar the steepness of the distribution of
relative distance, and cr the inflection point. Then the MFs
of the relative distance is given as follows:

Γ2(rr;ar,cr) = 1/(1+ exp(−ar ∗ (rr− cr))) (6)

Likewise, the relationship degree describes the personal
knowledge or experience with the robot which can be set
by three Gaussian functions, familiar (Fam), acquaintance
(Acq), and stranger (Str). Let ri be the relationship degree
that the robot perceives from people. Therefore, the relation-
ship degree MFs are given as follows:

Γ3 (ri) =


N
(
µFam,s2

Fam
)

if Fam

N
(

µAcq,s2
Acq

)
if Acq

N
(
µStr,s2

Str

)
if Str

(7)

For the output of the fuzzy logic, there are several ranges
in the human interaction area according to the theory of
Proxemics [2]. The distance of human interpersonal space
inspires us to estimate the private area of the human. There-
fore, the concept of different parameters in determining the
different social model for each person is chosen related to

Table 1 Designing the social interaction area using fuzzy rules

Input Output
Gender Relative Relationship Interaction
(Γ1) Dist(Γ2) Degree.(Γ3) Area N

(
µ,s2

)
M Near Fam NPA
M Near Acq FPA
M Near Str SA
M Far Fam NPA
M Far Acq FPA
M Far Str PA
Fe Near Fam FPA
Fe Near Acq SA
Fe Near Str SA
Fe Far Fam FPA
Fe Far Acq PA
Fe Far Str PA

these interpersonal space concept. In [21], we separate the
personal area into two group, far personal area (FPA) and
near personal area (NPA). These interaction areas give the
different standard deviations σsi. Therefore, four Gaussian
functions are used to represent a change of standard deviation(σsi)
in each interaction area which is defined as

σsi = N
(
µ,s2)=


N
(
µPA,s2

PA

)
if PA

N
(
µSA,s2

SA

)
if SA

N
(
µFPA,s2

FPA

)
if FPA

N
(
µNPA,s2

NPA

)
if NPA

(8)

Thus, a detailed description of the proposed fuzzy rule
is shown in Table 1. Combining the above-mentioned social
factors, βsi can be defined as follows:

βsi =
(d ∗ sin(θ −θi))

2

2∗N (µ,s2)2 (9)

This means that, to prevent the robot from intruding onto
the human private area, the robot is required to delineate the
dynamic boundary of interaction areas based on the human
social factors.

3.2.2 Learning Fuzzy Social Model

In this paper, the reinforcement learning method is used to
learn from human feedback how to spot and respect the pri-
vate area varying from one person to another. We integrate a
reinforcement learning algorithm into fuzzy MFs. The MF,
as the agent, learns to improve the private area in an attempt
to increase the total amount of reward through human feed-
back. The action is then selected by the behavior policy in
order to adjust the MFs to effectively update the social force
(i.e., cost) map and to make a minimum cost path in the en-
vironment. This process is repeated until a maximum reward
is reached in an iterative way.
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Algorithm 1 R-Learning
Input: Reward R
Output: action a

Initialization :
1: R̄ and Q(S,a);

LOOP Process
2: S← current state;
3: Choose action a in S using behavior policy (e.g. ε-greedy)
4: Take action a, observe R, next state S′

5: δ ← R + R̄ + maxaQ(S′,a)−Q(S,a)
6: Q(S,a)← Q(S,a) + αδ

7: if Q(S,a) = maxaQ(S′,b) then
8: R̄← R̄+βδ

9: end if

Specifically, the R-Learning algorithm is used as the learner.
Many reinforcement learners have to abandon the discounted
future reward. In this work, with the average reward set-
ting, R-Learning neither discounts nor divides experience
into distinct episodes with a finite return [14]. This is well-
suited to the social cost map generation in order to sustain
long-term interactions that should take every interaction ex-
perience into account equally.

The transition matrix depends on the action by an agent.
In this paper, the state S consists of the parameters of each
MF. We focus only on mean values µµµ of MFs to be learned,
therefore, the state will consist of three means of Familiar,
Acquaintance and Stranger functions, µµµ = [µFam,µAcq,µStr].
The action, a⊂A, is how each MF can be adjusted. To select
the action a, the ε-greedy method is used to select the action
that has maximum estimated state-action value Q. There-
fore, the value of state S with the action a can be defined
as

Q(S,a) = Q(S,a)+α[R+ R̄+maxaQ(S′,a)−Q(S,a)] (10)

where S′ is the next state, α is a constant learning rate,
R is the reward signal to be gained from the environment,
and R̄ is the average reward value. In the real robot exper-
iment, the robot can receive the reward in real time in the
form of interaction and unacceptable degrees, respectively,
from each person’s emotion or feeling. The interaction de-
gree (ID) presents the degree of interaction quality or the
degree of easiness of interaction, while unacceptable degree
(UD) implies the degree of discomfort during human-robot
interaction. The ID and UD are increasing and decreasing
respectively when the robot gets closer to the human. Both
degrees depend on the distance between the human and the
robot. Therefore, the reward can be defined as

R =
k1 ∗ ID

k2 ∗UD+ c
(11)

where k1 and k2 are the weights of each degree, and a con-
stant c is used to prevent zero division. For simulation, ID
and UD are collected from the generated path through the

Fig. 4 Algorithm Flow Chart

predefined ground truth social map. Therefore, the interac-
tion and unacceptable degrees can be determined as

ID =

{
∑p ∑

n
i=1− fi(p)+1, p within distance limit

0, otherwise
(12)

UD =

{
∑p ∑

n
i=1 fi(p), p within distance limit
0, otherwise

(13)

where p is a set of navigation path coordinates in the pre-
defined social cost map. Therefore, this MF can be learned
by µµµ to maximize the reward having a maximum value of
ID and a minimum value of UD. The complete R-Learning
algorithm is given in Algorithm 1.

3.3 Path Planner

We use Transition based Rapidly-Exploring Random Tree
(T-RRT) that can choose an optimal navigation path in the
social cost map and collect the reward [6]. T-RRT takes ad-
vantage of two approaches. First, the exploration strength
of the RRT algorithm rapidly grows random trees toward
unexplored areas. Secondly, the features of stochastic opti-
mization methods apply transition tests to accept or to re-
ject potential states. This planner produces the path that effi-
ciently follows the low-cost area and the saddle point of the
cost map. Therefore, we use T-RRT for the exploration and
optimal path generation, allowing the robot to evaluate the
navigation cost as the social map is updated. More specif-
ically, we employ T-RRT to navigate the robot through the
space that separates the private area and the low quality in-
teraction area.
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Fig. 5 Social Map: Comparison of social maps. Ground truth social map (Left), initial social map (Middle), and estimated social map after the
learning process (Right)

Table 2 Results of learning social model with the number of people

No. of People
Average

Interaction Degree
Average

Unacceptable Degree
Average

Social Map Error

Initial
After

Learning Initial
After

Learning Initial
After

Learning

3 5.6804 5.7923 0.9742 0.2528 0.0243 0

4 5.5695 7.6095 1.8829 0.2321 0.0587 0

5 5.2651 6.6644 3.4072 0.9995 0.0560 0

Table 3 Results of learning social model with people facing different directions

Facing Directions of 4 People
Average

Interaction Degree
Average

Unacceptable Degree
Average

Social Map Error

Initial
After

Learning Initial
After

Learning Initial
After

Learning

Into the center of group 5.5787 7.1985 1.74589 0.2129 0.0501 0

Out of the center of group 5.5695 7.6095 1.8829 0.2321 0.0587 0

4 Results and Analysis

This section shows simulation and real experiment results
with a humanoid robot Pepper. Our goal is to enable the
robot to plan paths to visit every person in the environment
without trespassing on their private area, but to keep the dis-
tance from which people are able to have high quality in-
teractions. Figure 4 shows the algorithmic process flowchart
implemented in this paper. First, the robot explores the en-
vironment to generate a geometric map. It can then create a
social map by computing and assigning the social cost to the
geometric map. Using the social map, the robot can generate

the path to visit any person in the environment. Specifically,
a genetic algorithm is used to determine the order of visiting
people. After that, T-RRT path planner generates the low-
cost path following the order of visiting people. To update
the social map, R-learning adjusts the MF parameters by re-
ceiving the reward while visiting people. The social map is
being updated until the robot gains the maximum rewards
which maximize the interaction degree and minimize the un-
acceptable degree evaluated by people. The simulation re-
sults show that our proposed method has the capability to
adjust and update the social map to gain the maximum inter-
action degree and minimum unacceptable degree in various
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Fig. 6 Private boundary: Comparison of private area boundaries.
Ground truth boundary (blue solid line), estimated boundary at ini-
tial setting (green dash line), and estimated boundary after the learning
process (red dash line)

Fig. 7 Fuzzy Input MFs: Comparison of parameters of social re-
lationship model (fuzzy membership function). Ground truth val-
ues (Top), Initial parameters of membership functions (Middle), and
Trained parameters of membership functions (Bottom)

conditions. We also perform real robot experiments to show
that our proposed method can navigate the robot to interact
with people at the proper distance. The social factors of each
person, i.e., the gender and relationship degree of people in
relation to the robot, are given to the robot in both simula-
tions and real robot experiments.

4.1 Simulation Results

In the simulation, we assume that a geometric map is given
or created by the robot. Our proposed model is to generate

the social map by computing and updating social cost as-
signed to the geometric map. This social map is used to plan
the robot navigation path in the environment. To validate the
proposed model, we need to receive the reward from people.
Therefore, the concept of social relationship model in [21] is
used to model the ground truth social map of people whose
relationship degree MFs are set to three Gaussian functions
as follows: sFam = 0.15, µFam = 0.1 to Fam set, sAcq = 0.15,
µAcq = 0.3 to Acq and sStr = 0.15, µStr = 0.8 to Str set. The
ground truth MFs are shown in Fig. 11 (Top). To estimate the
human private area, the initial parameters of the relationship
degree MFs in Eq.(7) are designed as follows: sFam = 0.15,
µFam = 0 to Fam set, sAcq = 0.15, µAcq = 0.5 to Acq set, and
sStr = 0.15, µStr = 1 to Str set as shown in Fig. 11 (Middle).
These parameters can be adjusted by the learning process.
Likewise the relative distance MFs are designed as follows:
aNear = -0.35, cNear = 300 to Near set and aFar = 0.35, cFar
= 300 to Far set.

For the output function, the social interaction area is split
into four Gaussian sets. The parameters of Eq.(8) are as fol-
lows: µPA = 0.035, sPA = 0.005, µSA = 0.045, sSA = 0.005,
µFPA = 0.0035, sFPA = 0.06, µNPA = 0.0035, sNPA = 0.065.
These parameters are decided based on the human interac-
tion area concept [16] which determined the range of an in-
dividual’s interpersonal space with different social factors
when the robot approached the person. Reflecting their re-
sults, we can determine the parameters for the output mem-
bership functions.

For the reinforcement learning process, we set the dis-
crete states which consist of three mean values of each re-
lationship MF, i.e., µFam,µAcq,µStr. The action set for each
function is simply defined as stay, move right, or move left,
i.e., 0, +0.1, -0.1. The MFs can be adjusted through iterative
learning processes until gaining a maximum reward signal.

The ground truth and estimation social map can be seen
and compared in Fig 5. The results show that the estimated
social cost map with the initial setting (Middle) is differ-
ent compared to the ground truth map (Left). With an initial
setting, the robot estimated the private area unsuitably for
the people, causing the robot to generate paths that decrease
their comfortable feeling. The learning process enables the
robot to adjust the system parameters and re-estimate the
human private area incorporating the feedback from the hu-
man. Therefore, the estimated social map after the learning
process (Right) becomes similar to the ground truth map and
can be used to generate paths that make people feel comfort-
able. To make it clearer, Fig. 6 shows that the private area
boundary of the initial setting (green dash-line) is smaller
than the ground truth (blue line). However as the learning
process proceeds, the estimated private boundary becomes
similar to the ground truth (red dash-line). The relationship
degree MFs after the learning process can be seen in Fig. 11
(Bottom). The results of our proposed model can be com-
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Fig. 8 Social Map Error: The error between the ground truth cost and estimated cost on the social map. Fixed-parameters (blue) estimates the
same cost of social map, the error is maintain. For our proposed (red), At the beginning, the error is high due to the incorrect parameters. As the
learning process proceeds with updated parameters, the error converges to zero (Red).

Fig. 9 Interaction Degree: Interaction degree presents the acceptable degree that the robot can receive from people along generated paths. High
interaction degree means that the robot approaches close enough to have quality interactions with people.

Fig. 10 Unacceptable Degree: Unacceptable degree presents the total discomfort feeling that robot receive from people along the generated path.
The robot should plan the path without entering the human private area.

pare to the fixed-parameters model which use the same pa-
rameters to estimate the social map. The errors of estimated
social maps for three, four, and five people, respectively,
compared to ground truth social maps, are shown in Fig.

8. The result shows that, while navigating the initial and up-
dated social cost maps, the robot was able to learn and adjust
the MFs through the reward obtained from people. Finally,
the errors converged to a value near zero (red). However, for
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Fig. 11 Fuzzy Input MFs: Comparison of parameters of social re-
lationship model (fuzzy membership function). Ground truth val-
ues (Top), Initial parameters of membership functions (Middle), and
Trained parameters of membership functions (Bottom)

the fixed-parameters model (blue), the error of social map is
constant which mean the estimate social map is not change
and different to the ground truth.

In this paper, we define the quality interaction area and
the private area. Fig. 9 shows the interaction degree with
three, four, and five subjects, respectively. The results show
that our proposed method increases the interaction degree
of subjects during their interaction with the robot until it
suits everyone. Fig. 10 shows the results of the unaccept-
able degree. The results show that our method can reduce the
unacceptable degree of subjects until they feel comfortable
to interact with the robot. These results show that our pro-
posed model outperforms the fixed-parameter for estimated
the privacy area and more clearly with the number of hu-
mans in the environment. The results can be summarized in
Table 2. We also perform the simulation with four subjects
facing different directions. The results are consistent with
the previous results obtained from the simulations with dif-
ferent numbers of subjects. The results show that our pro-
posed method increases the quality interaction degree and
reduces the unacceptable degree of the subjects, as shown in
Table 3.

4.2 Humanoid Robot Experiment

We perform the experiment with a humanoid robot Pepper
developed by SoftBank Robotics Corp. A variety of sensors
of Pepper and its innate perception capabilities are suitable
for human-robot social interaction. We navigate the robot
through the environment while interacting with as many peo-
ple as possible therein. We test the proposed navigation method
in the open-source environment of Robot Operating System

(ROS). Specifically, Pepper needs to have prior knowledge
about its environmental geometric map which can be stored
in the map server. With several sensors, Pepper can local-
ize itself required for the navigation task. Pepper also can
detect and receive the human state and social factors to gen-
erate the social map to assign the social cost to the geometric
map. This social map imposes constraints on the robot path,
enabling the robot to avoid or interact with people. The robot
also receives a reward from people to update the parameters
of MFs to re-compute and update the social map. The overall
process is illustrated in Fig. 13.

The Pepper robot visits everyone and keeps the distance
to make them feel comfortable around it. However, as many
uncertainties exist, it is likely that Pepper initially makes a
rough estimate of the size of the private area which may not
suitable for him/her to comfortably interact with it. For in-
stance, 12 (a) shows that Pepper is outside the boundary of
the quality interaction area Bi. During the interaction with
Pepper, people give reward by the verbal answer to the ques-
tion from the robot. This reward allow Pepper to evaluate
the social distance with them, i.e., the positive reward when
Pepper is within the area where they feel comfortable to in-
teract with it, or the negative reward for the distance from
which they feel difficult to interact or discomfort (outside
the quality interaction area boundary Bi or inside the pri-
vate area boundary Bp). Learning people’s social interaction
model helps Pepper to re-estimate the human private area
until gaining a maximum positive reward. Finally, Pepper
can locate itself within the area to interact with people that
separates the private area as shown in Fig. 12(b). In order to
evaluate our proposed model, a total of five subjects partic-
ipated in the experiment. Each person has a different range
of quality interaction area, which is represented by the green
line Bi and private areas, which is represented by the red
line Bp. The results are shown in Fig. 14 to Fig. 18. It was
confirmed that the social map may not clearly designate the
private area at the initial phase of interaction, which is un-
suitable for the subjects. In case of Figs. 14, 15, 17, and 18,
the robot is located away from the quality interaction area,
therefore the robot receives hardly noticeable response from
people, which is considered to be the negative reward, to up-
date its parameters associated with the MF of the interaction
degree. On the other hand, the robot receives the positive re-
ward to update its parameters for the MF of the private area.
In case of Fig. 16, the robot is initially located inside the pri-
vate area. Therefore, the robot receives the negative reward
to decrease the unacceptable degree and the positive reward
to update the parameters associated with the interaction de-
gree. Finally, our proposed social distance learning model
enabled the robot to interact with the subjects at the proper
distance between the boundaries of interaction and private
areas as shown in Fig. 14 to Fig. 18.
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Fig. 12 Humanoid Robot Experiment: (Left) The real experiments with Pepper. (Right) The blue area visualizes the estimate private area. The
green line is the quality interaction area boundary Bi. The red line is the private area boundary Bp.

Fig. 13 Humanoid Robot Experiment Overall Process

5 Conclusion

In this paper, a new proxemics learning strategy was pro-
posed for social mobile robots toward realizing socially com-
petent navigation behaviors by integrating a fuzzy inference
system and a reinforcement learning method. The proposed
method employed an individual’s state and social factor in-
formation to determine the size of the quality interaction
area of each person in a shared environment. However, ini-
tial social maps may not correctly produce an accurate inter-
action distance to each person. This problem may cause the

Fig. 14 Experiment Result with Pepper Robot: the interaction dis-
tance (blue line) converges to the area between the quality interaction
area boundary Bi and the private area boundary Bp of Person 1.

robot to intrude onto the human private area or remain away
from the quality interaction area. The proposed method used
the concept of learning from experiences to update the inter-
action distance with people reflecting their feedback. This
concept improves the accuracy of social navigation map gen-
eration for the robot capable of avoiding the human private
area while maintaining the path within the quality interac-
tion area. The simulation and real robot experiments showed
that our proposed method provides accurate social interac-
tion cost maps through the reinforcement learning process
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Fig. 15 Experiment Result with Pepper Robot: the interaction dis-
tance (blue line) converges to the area between the quality interaction
area boundary Bi and the private area boundary Bp of Person 2.

Fig. 16 Experiment Result with Pepper Robot: the interaction dis-
tance (blue line) converges to the area between the quality interaction
area boundary Bi and the private area boundary Bp of Person 3.

which can increase the interaction degree and reduce the un-
acceptable degree at the same time.

There are some aspects of our proposed method that
should be improved and expanded by future research. First,
the analysis and comparison of using different mathemat-
ics functions to model a private space of the human will
be considered to determine the suitable function for mod-
elling human’s private space. Second, we will investigate
and analyze the effect of different parameters and condi-
tion of the reinforcement learning algorithms, i.e., reward
shaping, discounting factor, and also the optimal solution of
each state, which can be improved the efficiency of our pro-
posed method to appropriate to the real-world task. Third,
we will extend experiments under various dynamic environ-
ments populated with moving obstacles. Moreover, differ-
ent social factors such as individual cultures and personality

Fig. 17 Experiment Result with Pepper Robot: the interaction dis-
tance (blue line) converges to the area between the quality interaction
area boundary Bi and the private area boundary Bp of Person 4.

Fig. 18 Experiment Result with Pepper Robot: the interaction dis-
tance (blue line) converges to the area between the quality interaction
area boundary Bi and the private area boundary Bp of Person 5.

traits can be considered to design a more sophisticated social
interaction map.
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