
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
The Effect of Silence Feature in Dimensional

Speech Emotion Recognition

Author(s) Atmaja, Bagus Tris; Akagi, Masato

Citation
Proc. 10th International Conference on Speech

Prosody 2020: 26-30

Issue Date 2020-05-25

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/16290

Rights

Copyright (C) 2020 International Speech

Communication Association. Bagus Tris Atmaja and

Masato Akagi, Proc. 10th International Conference

on Speech Prosody 2020, 2020, pp.26-30.

http://dx.doi.org/10.21437/SpeechProsody.2020-6

Description



The Effect of Silence Feature in Dimensional Speech Emotion Recognition

Bagus Tris Atmaja1,2, Masato Akagi2

1Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
2Japan Advanced Institute of Science and Technology, Nomi, Japan

bagus@ep.its.ac.id, akagi@jaist.ac.jp

Abstract
Silence is a part of human-to-human communication, which can
be a clue for human emotion perception. For automatic emotion
recognition by a computer, it is not clear whether silence is use-
ful to determine human emotion within a speech. This paper
presents an investigation of the effect of using silence feature
in dimensional emotion recognition. Since the silence feature
is extracted per utterance, we grouped the silence feature with
high statistical functions from a set of acoustic features. The
result reveals that the silence features affect the arousal dimen-
sion more than other emotion dimensions. The proper choice
of a threshold factor in the calculation of silence feature im-
proved the performance of dimensional speech emotion recog-
nition performance, in terms of a concordance correlation coef-
ficient. On the other side, improper choice of that factor leads
to a decrease in performance by using the same architecture.
Index Terms: speech emotion recognition, dimensional emo-
tion, silence feature, silence threshold, affective computing

1. Introduction
One of the elements of human to computer communication is
the perception, which is implemented as automatic recognition
in computers. Perception is the application’s ability to con-
sume, organize, and classify information about the user’s phys-
ical and digital, and current and historical context. Perceptual
data includes things like location, date, time, mood, expres-
sion, environment, physiological responses, connected applica-
tions, networks, and nearby devices [1]. Due to this difference
with human communication, especially on processing the data,
the processing mechanism to obtain perceptual data on human–
to–machine communication may be different from human–to–
human communication.

Emotion is one of human perceptions. The difference be-
tween emotion and mood is that emotions are short-lived feel-
ings that come from a known cause, while moods are feelings
that are longer lasting than emotions and often without appar-
ent cause [2]. Emotions can range from happy, ecstatic, sad,
and prideful in the category, while moods are either positive or
negative. Emotion also can be described in a degree of valence,
arousal, and dominance. Other researchers used liking [3] and
expectancy [4] as additional dimensions or attributes to those
dimensional emotions.

Valence (V) is the pleasantness of the stimulus [pleasure
(P)], ranges from positive (extreme happy) to negative (extreme
unhappy). In other words, it is also known as “sentiment” or
“semantic orientation” [5]. Arousal or activation (A) is the
intensity of emotion provoked by the stimulus, ranges from
sleepiness to excitement. The dominance (D) or power dimen-
sion refers to the degree of power or sense of control over the
emotion [6]. This three-dimensional emotion model is known
as VAD or PAD model [7].

The concept of verbal communication is by conveying ver-
bal words. However, some researchers reported that the use of
non-verbal words, i.e., pause or silence, is needed for better hu-
man communication. Adding pause to emotional speech affects
the recognition rate by human participants. Furthermore, si-
lence and other disfluencies are not only useful for human com-
munication but also can be effective cues for the computer to
recognize human emotion [8].

An investigation on how speech pause length influences
how listeners ascribe emotional states to the speaker has been
done by authors in [9]. The author manipulated the length of
speech pauses to create five variants of all passages. The partic-
ipants were asked to rate the emotionality of these passages by
indicating on a 16 point scale how angry, sad, disgusted, happy,
surprised, scared, positive, and heated the speaker could have
been. The data reveal that the length of silent pauses influences
listeners in attributing emotional category to the speaker. Their
findings argue that pauses play a relevant role in ascribing emo-
tions and that this phenomenon might be partly independent of
language.

Different from human to human communication, human to
machine communication (or human-machine interaction, HMI)
is a form of communication where humans interact with a vari-
ety of devices like sensors and actuators, or generally the com-
puter. Although the silence aforementioned is useful for human
emotion perception, it is still unclear whether it is useful or not
for human to machine communication. One of the clue for this
question is a study by Tian et al. [8], [4], which used disfluen-
cies and other non-verbal vocalizations as features for speech
emotion recognition. Their results indicated that disfluencies
and non-verbal vocalizations provide useful information over-
looked by the other two types of features for emotion recog-
nition: lexical and acoustic features. However, instead of us-
ing silences or pauses, they used filler pauses, fillers, stutters,
laughter, breath, and sigh within an utterance to extract those
features.

Instead of using silence feature, Atmaja and Akagi [10, 11]
removed silence within speech and extract acoustic features
from the speech region after silence removal. Their results show
an improvement of emotion category detection on an emotional
speech dataset by utilizing silence removal and attention model.
However, this method may slightly corrupts the speech fluency,
because it generated a context of audio samples artificially.

The contribution of this paper is the investigation of the use
of silence as a feature in automatic dimensional speech emotion
recognition (SER). For each utterance, a number of frames are
calculated and checked whether those frames can be categorized
as silence. The fraction of the number of silence frames over
total frames is measured as a silence feature. This silence fea-
ture is grouped with high statistical function (HSF), i.e., mean
and standard deviation, of an acoustic feature set as the input
to speech emotion recognition system. The comparison of HSF
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Table 1: GeMAPS feature [13] and its functionals used for di-
mensional SER in this research.

LLDs loudness, alpha ratio, hammarberg index, spec-
tral slope 0-500 Hz, spectral slope 500-1500
Hz, spectral flux, 4 MFCCs, F0, jitter, shim-
mer, Harmonics-to-Noise Ratio (HNR), Har-
monic difference H1-H2, Harmonic difference
H1-A3, F1, F1 bandwidth, F1 amplitude, F2,
F2 amplitude, F3, and F3 amplitude.

HSFs mean (of LLDs), standard deviation (of LLDs),
silence

with and without silence feature can be used to determine the ef-
fect of silence feature on dimensional speech emotion recogni-
tion. The measure of comparison was given by the concordance
correlation coefficient (CCC) [12].

2. Acoustic and silence features
2.1. Acoustic feature set

Acoustic features are the input to an SER system. One of the
acoustic feature sets proposed for SER is called Geneva Min-
imalistic Acoustic Parameter Set (GeMAPS), which is devel-
oped by Eyben et al. [13]. Those acoustic features extracted
on frame-based processing are often called as Low-Level De-
scriptors (LLD). This frame-based processing is common in
other speech processing applications. Other researchers [14]
proposed to ex tract functional features on certain lengths, e.g.,
100 ms, 1 s, or per utterance/turn depend on the given labels.
These functional features is often called as High-Level Statis-
tical Functions (HSF). The reason for using HSF is to roughly
describe the temporal and contour variations of different LLDs
during certain period/utterance [15]. Assuming that emotional
content lies temporal variations rather than LLDs, HSFs may
give a more accurate performance in determining emotional
state from speech. Schmitt et al. suggested that using mean
and standard deviation (std) from a set of acoustic features
(GeMAPS) performed better than LLDs on speech emotion
recognition [16]. We used these mean and std features, which
are extracted per utterance from LLDs in GeMAPS feature set
(2 × 23 features). To add those functionals, we proposed to
use a silence feature, which is also extracted per utterance. The
computation of a silence feature is explained below.

2.2. Silence feature

Silence, in this paper, is defined as the portion of the silence
frames compared to the total frames in an utterance. In human
communication, this portion of silence in speaking depends on
the speaker’s emotion. For example, a happy speaker may have
fewer silences (or pauses) than a sad speaker. The portion of
silence in an utterance can be calculated as

S =
Ns

Nt
, (1)

where Ns is the number of frames to be categorized as silence
(silence frames), and Nt is the number of total frames within
an utterance. To be categorized as silence, a frame is checked
whether it is less than a threshold, which is a multiplication of
a factor with a root mean square (RMS) energy (Xrms). Math-
ematically, it can be formulated

th = α × Xrms (2)

and Xrms is defined as

Xrms =

√√√√ 1

n

n∑

i=1

x[i]2 (3)

These equations are similar to what is proposed in [17]. The
author of that paper used a fixed threshold, while we evaluated
some factors of α to find the best factor for silence feature in
speech emotion recognition. The equation 1 to calculate the
silence feature is also similar to the calculation of the disfluency
feature proposed in [4]. In that paper, the author divides the
total duration of disfluency over the total utterance length on n
words. Fig. 1 shows the calculation of our silence feature. If
Xrms from a frame is below the th, then it is categorized as
silence and follow the calculation of the equation 1.

...

Figure 1: The moving frame to calculate a silence feature

3. Experiments
3.1. Dataset

The “Interactive Emotional dyadic MOtion CAPture” (IEMO-
CAP) database, collected by the Speech Analysis and Interpre-
tation Laboratory (SAIL) at the University of Southern Califor-
nia (USC) was used to investigate the effect of silence feature on
dimensional SER. This dataset consists of multimodal measure-
ment of speech and gesture, including markers of the face, head,
and hands, which provide detailed information about facial ex-
pressions and hand movements during a dyadic conversation.
Among those modalities, only speech utterance is used. The
total utterances are 10039 turns with three emotion attributes:
arousal, valence, and dominance. The average turn duration is
4.5 s with average 11.4 words per turn. The annotations are
rated by at least two evaluators per utterance. The evaluators
were USC students. We used emotion dimensions scores aver-
aged from those two annotators as gold-standard labels in the
experiments. The detail of that pilot study for developing the
dataset can be found in [18].

3.2. Speech emotion recognition system

SER is an attempt to make the computer recognize emotional
states in speech. A deep neural network (DNN)-based SER is
the common approach in recent days. Among numerous DNN
methods, convolutional neural network (CNN) and LSTM are
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the most common [14], [15]. We choose an LSTM-based di-
mensional SER due to its simplicity and the hardware support
(CuDNN [19]). This architecture is a modification from the pre-
vious LSTM-based SER system reported in [20] by enlarging
the size of networks and using different parameters for multi-
task learning.

For the input features, three sets of acoustic features are
evaluated. These features are GeMAPS feature set (baseline);
mean and std of GeMAPS (mean+std); and mean, std, and si-
lence (mean+std+silence) features. The features in GeMAPS
are extracted in 25 ms and 10 ms of the window and hop lengths
using openSMILE feature extraction toolkit [21]. Mean, std,
and silence are extracted per utterance. The silence feature is
extracted per utterance from 2048 samples of time frame length
(128 ms) and 512 samples of hop length (32 ms) with 16000
Hz of sampling frequency. The implementation of silence fea-
ture computation was performed using LibROSA python pack-
age [22]. Those features are evaluated to the same architecture,
shown in Fig. 2, which is implemented using Keras toolkit [23].
Each frame shown in that figure represents a time frame to cal-
culate Xrms and to check whether it is a silence (if it is greater
than th) or not.

The first layer on the dimensional SER system on that fig-
ure is the batch normalization layer. This layer is intended to
accelerate deep network training, as suggested in [24]. The
size of the batch normalization layer depends on the input fea-
tures. GeMAPS has the size of the nodes of (3409 × 23)
for IEMOCAP dataset, mean+std has a size of (1 × 46), and
mean+std+silence has a size of (1 × 47). After a batch nor-
malization layer, we stacked three LSTM layers (unidirectional,
512 nodes each) and flattened the output of the last LSTM layer.
Three dense layers with each size of 1 are connected to Flat-
ten layer to predict the degree of valence, arousal, and domi-
nance. The degree of those emotion dimensions is a floating-
point value ranges from [-1, 1], converted from the original 5-
point scale. The total size of the networks (trainable parameters)
depends on the input features, about 10 million for GeMAPS
input, and about 5 million for mean+std and mean+std+silence
inputs.

For each input feature set, a number of 100 epochs were
performed with earlystopping callbacks with a number of 10
patiences. This means, if the training process did not find an
improvement of performance after 10 epochs, it will stop and
save that best model for evaluation. To obtain a consistent/same
result on each run, the same fixed random number is initiated at
the top of the SER computer programs.

To measure the performance, a correlation measure, namely
CCC, is used. This CCC is a measure of relation between pre-
diction and true dimensional emotion degree (valence, arousal,
dominance), which penalizes the score if the prediction shifts
the true value. Instead of using a single value, we measure CCC
for each emotion dimension. This method enables us to ana-
lyze which emotion dimension relates to specific features. The
cumulative performance for all three dimensions can be given
in an average of three CCC scores. The fair comparison can
be performed between mean+std and mean+std+silence feature
inputs, as it only has a difference in input size by a single value
(46 vs. 47).

4. Results and discussion
4.1. Effect of silence feature on dimensional SER

Although it is stated previously that the fair comparison
could be made by comparing results from mean+std vs.
mean+std+silence, for the sake of research continuity, the re-
sult from the previous reported result [20] and GeMAPS fea-
ture are presented as baselines. Both kinds of research used the
same SER architecture and the same input with different size
of network (64 vs. 512 nodes for each LSTM layer). By us-
ing larger networks and different multitasking coefficients, an
improvement of arousal has been obtained on GeMAPS feature
input, while the CCC scores of both valences and dominance are
similar. Our approach adopted multitask learning to train simul-
taneously valence, arousal, and dominance from [25]. Here, the
coefficients (weighting factors) used for valence, arousal, and
dominance are 0.1, 0.5, and 0.4, respectively. Table 2 shows the
obtained CCC score for each emotion dimension and its average
score from different methods.

Using HSFs of LLDs from GeMAPS, i.e., mean and std of
23 acoustic features, an improvement of valence was obtained.
However, the CCC score of arousal and dominance decreased,
although the average CCC score remains the same. This type of
input feature (mean+std) has a smaller number of dimensions
(1 × 46) compared to GeMAPS feature (3409 × 23). The size
of the network of input with mean+std also about half of the
network of GeMAPS input.

On the last method in Table 2, a silence feature was com-
bined with std+mean resulting (1 × 47) of input size. This small
modification leads to improvements in valence and arousal
among other methods. A CCC score for this mean+std+silence
input for dominance has decreased compared to GeMAPS, but
slightly higher than mean+std. Both CCC scores on valence and
arousal improved with 6% and 17% relative improvement. This
result suggests that the silence feature affects arousal (active-
ness of speech) more than other dimensions. This finding may
follow that humans tend to use more pauses in speech when they
are sad and fewer pauses when they are happy.

To extend this investigation, an evaluation of the silence
threshold factors (α) was performed and discussed below.

Table 2: Results of dimensional emotion recognition by various
methods measured in CCC scores; V: valence; A: arousal; D:
dominance.

Method V A D Mean
Ref. [20] 0.11 0.43 0.36 0.30
GeMAPS 0.118 0.536 0.466 0.373
mean+std 0.201 0.476 0.435 0.371

0.214 0.561 0.448 0.408mean+std+silence

4.2. Evaluation of silence threshold factors

Most studies on silent pauses used threshold as one of the ob-
jects of study [26], [27]. Those studies categorized thresholds in
silent pause into two groups: low threshold (200 ms) and high
threshold (2000 ms). However, the definition of the threshold
used here is different from those researches. The threshold in
this research is defined as the upper-bound of RMS energy of a
frame to be categorized as silence (equation (2)).

The silence threshold factor (α) in equation (2) plays an
important role in determining whether a frame belongs to the
silence category. To investigate the effect of this factor on
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Figure 2: Structure of dimensional SER system to investigate the effect of silence features; the number inside the bracket represents the
number of nodes/units.
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Figure 3: RMS energy of corresponding frames with Xrms and
threshold lines for different silence threshold factors.

dimensional SER performance, we variate the α to 0.4, 0.3,
0.2, and 0.1. The result obtained in the previous Table 2 with
mean+std+silence input was obtained using α = 0.3.

Fig. 3 shows the example of an utterance, its Xrms of cor-
responding frame, Xrms, and three lines of threshold using dif-
ferent silence threshold factors. As shown in that figure, using
α = 0.4 may result in an incorrect decision to include speech
as silence. However, using a low silence threshold factor, e.g.,
α = 0.1, leads to a smaller number of silence frames due to a
tight filter. An evaluation to choose the proper factor is needed
to obtain the optimal silence feature for dimensional SER.

Fig. 4 shows the effect of changing the silence threshold
factor to the CCC score of valence, arousal, and dominance.
Using a higher factor will impact on increasing the number of
silence frames. On the other side, using a smaller factor will
decrease the possibility to count a frame as a silence. As can
be seen in that figure, the best CCC score was obtained using
α = 0.3.

The result shown on Fig. 4 also supports the finding that
the silence affects the performance of predicting arousal. Using
α = 0.1, α = 0.2, and α = 0.3 shows no difference on valence
and dominance (0.21 and 0.43), but on arousal dimension. The
CCC scores on arousal dimension are 0.51, 0.52, and 0.56 for
α = 0.1, α = 0.2, and α = 0.3, respectively. Using α = 0.4
decreases the CCC scores of three emotional dimensions. This
high silence threshold factor may select non-silence frames as
silence frames. The average CCC scores for this α variation are
0.389, 0.392, 0.408, and 0.373 for α = 0.1, α = 0.2, α = 0.3,
and α = 0.4, respectively. These results also suggest that using
improper silence threshold factor will decrease the performance
of dimensional SER, especially on the arousal dimension.

0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

V A D

silence threshold factor (α)
C

C
C

Figure 4: Evaluation of different silence threshold factors (α)
and its impact on CCC score of valence, arousal, and domi-
nance.

5. Conclusions
In this paper, we investigate the effect of using silence fea-
ture on the dimensional speech emotion recognition. The result
reveals that using mean+std+silence features affects the CCC
score of predicted emotion degree compared to mean+std fea-
tures. Using a proper factor of silence threshold, a remark-
able improvement of CCC scores was obtained, particularly
on arousal (activation) dimension. This can be explained that
passiveness or activeness in speech, which reflected by num-
ber of pauses/silences in speech, contribute to arousal degree,
as expected. On the other side, the use of improper silence
threshold may decrease the performance of arousal. Using a
fixed random number to initiate the computation of dimensional
speech emotion recognition (same number for both mean+std
and mean+std+silence for all architectures), the consistent re-
sults were obtained to support that finding on effect of silence
on dimensional speech emotion recognition.

There are some issues which need to be confirmed for
the future research. Although we obtained improvements
in all emotion dimensions by using mean+std+silence from
mean+std, the relationship between silence features with va-
lence and dominance dimensions needs to be verified. The re-
lation between positive and negative emotion dimensions with
silence features is also meriting further study., e.g., more silence
features with more valence, arousal, and dominance.
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