
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Efficient Robotic Grasp Learning by Demonstration

Author(s) Gao, Ziyan; Chong, Nak Young

Citation Lecture Notes in Mechanical Engineering: 87-99

Issue Date 2019-06-16

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/16451

Rights

This is the author-created version of Springer,

Gao Z., Chong N.Y. (2020) Efficient Robotic Grasp

Learning by Demonstration. In: P. P. Abdul Majeed

A., Mat-Jizat J., Hassan M., Taha Z., Choi H.,

Kim J. (eds) RITA 2018. Lecture Notes in

Mechanical Engineering. Springer, Singapore. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-981-13-8323-6_8

Description RITA 2018

Efficient Robotic Grasp Learning by
Demonstration

Ziyan Gao and Nak Young Chong

Japan Advanced Institude of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
{ziyan gao2015, nakyoung}@jaist.ac.jp

Abstract. In this paper, we propose a Learning from Demonstration
approach for robotic grasping with compliant arms. The compliance in
the robot arm for safety often causes a problem in grasping. In our ap-
proach, we construct a recurrent neural network, given the estimation of
the target object position and random initial joint angles of the robot
arm, that can produce the whole trajectories for grasping the target ob-
ject. In order to generate smooth and stable trajectories and to decrease
the number of human demonstrations, we propose a data augmentation
method to increase the training data and utilize the trajectory planning
technique using cubic splines for smooth and stable trajectories. Specif-
ically, the two arms of the robot are trained respectively, and a support
vector machine is used to decide which arm needs to be used for grasping
the target object. The evaluation results show that our recurrent model
not only has a good prediction for the final joint configurations, but also
generates smooth and stable trajectory. Moreover, the model is robust to
the changes in the initial joint state which means that even though the
initial joint configuration is affected by disturbances, the model can still
generate trajectories leading to the final joint configurations for grasping
the object. Finally, we tested the proposed learning method on the Pep-
per robot which can successfully grasp randomly placed object on the
workbench. Compared to traditional methods which need to avoid singu-
lar configurations as well as to secure accurate localization, our method
turns out to be robust and efficient and can be applied to cluttered en-
vironment.

Keywords: grasp planning, Learning from Demonstration, recurrent
neural network, support vector machine

1 Introduction

Recent advances in robotic grasping have shown promising results. However, to
make robots see, perceive, decide, and act in a way a human or a primate does,
many challenges still need to be addressed [1]. In recent years, Learning from
Demonstration (LfD) was successfully used in the field of robotics for applica-
tions such as playing table tennis [2], object manipulation [3], making coffee

[4], grasping novel objects [5], carrot grating [6], etc. Since robots must oper-
ate in real environments and make decisions based on noisy sensory information
and incomplete models of the environment, deep learning methods that directly
model the relationship between the available sensory input and the desired out-
put have become more popular [7]. In order to generate smooth trajectories and
to decrease the number of human demonstrations, we propose a data augmen-
tation method to increase the training data and utilize the trajectory planning
technique for smooth and stable trajectories. For human-like dual-arm robots,
it also needs to make decision for which arm needs to be used for grasping the
object. We implemented a support vector machine classifier for the arm selection
problem.

2 Ralated Work

A major challenge in LfD is to extend these demonstrations to unseen situations
[8]. One obvious way to mitigate this problem is by acquiring a large number
of demonstrations covering as many situations as possible [9]. Some researchers
proposed cloud based and crowdsourced data collection techniques [10],[11],[12]
or the use of simulation environments [13]. Another direction is to use smaller
number of demonstrations, and update the learning model for better generaliza-
tion. One possible technique is to hand-engineer task-specific features [14],[15].
[16] uses a large amount of synthesized images for training a model for position
detection and transfers to the real physical environment images using a hand-
ful of images collected in the real physical world. Our method, in contrast to
the previous approach, augments the data based on the demonstrated data. [17]
uses a recurrent model to pick and place an object in a virtual environment and
deals with the pick and place task both by recurrent neural network (RNN) and
reinforcement learning. [18] uses a deep spatial autoencoder to acquire a set of
feature points that describe the environment for the task. In our approach, we
estimate the location only by the robot head orientation and object loaction in
an RGB image.

3 Our Approach

3.1 An Overview of Our Approach

An overview of our approach is illustrated in Fig. 1. There are four phases:
Data Collection Phase, Trejectory Generation Phase, SVM Training Phase, and
Trajectory Generator Training Phase. In the Data Collection Phase, we collect
multiple sets which can be represented as:

{Cx, Cy, Hp, Hy, J},

where Cx, Cy refer to the coordinates of the location of the object in the image
plane, Hp, Hy refer to the neck joint angles of the robot, and J refers to the

joint angles of left or right arm. We use J0 to represent the initial joint angles
and JT to represent the final joint angles. In the Trajectory Generation Phase,
we use cubic polynomial to generate the whole trajectory and use our data
augmentation method to create multiple trajectories based on the collected data.
In the Trajectory Generator Training Phase, we use the augmented data to
train the recurrent neural network. In the SVM Training Phase, we use the
{Cx, Cy, Hp, Hy} as input and binary signal (0 represents the left arm and 1
represents the right arm) to train a support vector machine with non-linear
kernel.

Demonstrating the target joint angles for grasping while recording:
1) Final joint angles for grasping. 2) Head yaw and Head pitch
angles. 3)the location of the red mark attached on the object.

(C x ,C y , H p , H y , J T)
1

(C x ,C y , H p , H y , J T)
2

(C x ,C y , H p , H y , J T)
3

⋮

(C x ,C y , H p , H y , J T)
m

Training the
neural network

[
C x

C y

H p

H y

J t

]
Batch

FC
J t+1

Training the SVM

Initial state Final state

...

Cubic
polinomial

Trajectory
Generation

Data normalization

Data normalization and
augmentation

Data collection

[
C x

C y

H p

H y
] Support

Vector
Machine

Binary
classification

Fig. 1. An overview of our approach.

3.2 Trajectory Planning in Joint Space

We used a cubic polynomial represented as

θ(t) = a0 + a1t+ a2t
2 + a3t

3 (1)

to generate the trajectory connecting the initial joint angle and final joint angle
of the robot arm. θ(t) is the joint angle function about time t. Four constraints
must be specified to solve the unknowns: {a0, a1, a2, a3}. The first two con-
straints are the start and end configurations, and the last two are the initial and
end velocities. t0 identifies the initial time and tf identifies the final time. The

constraints can be represented as
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 tf 2tf 3t2f



a0
a1
a2
a3

 =


θ(t0)

θ̇(t0)
θ(tf)

θ̇(tf)

 (2)

T represents the coefficient matrix. Let A represent the unknowns, and θ repre-
sent the functions, respectively. Then the unknowns can be derived as:

A = T−1θ (3)

Now we can collect the data without noisy signals. This will be conductive to
training the recurrent model much more efficiently. After obtaining the cubic
polynomial, we sampled 21 trajectory points with a uniform interval from the
cubic polynomial (see Fig. 2).

Fig. 2. We sampled 21 sampling points from each of the cubic polynomial: the first
sampling point of each polynomial will be the input of the recurrent neural network,
and the rest of the sampling points will be the output of the recurrent neural network.

3.3 Data Augmentation

In order to increase the training data, we generate multiple initial states in a
small vicinity of the initial joint state. We generated 243 initial states both for
the right and left arms. After that we used cubic polynomial to connect these
initial states and final states. Therefore, we can generate 243 trajectories for
one {Cx, Cy, Hp, Hy, JT } and each of them has 21 sampled via points. There are
two merits in our method: First, our model can be trained by much larger data
so that it will predict much more smooth and stable trajectories. Secondly, our

model is non-sensitive to the initial joint state, which means that even though
the initial state of the robot is affected by disturbances, it does not cause an
error in the model’s prediction of the final joint state.

3.4 Trajectory Generator and SVM

We use a recurrent neural network as the trajectory generator. Basically our
model is an one to many model, which consists essentially of (1) two Gated
Recurrent Unit layers [19] and (2) one fully connected layer. The robot controller
takes {Cx, Cy, Hp, Hy, J0} as input and outputs the whole trajectories leading
to the final joint angle. There are two ways to train the recurrent model as
shown in Fig. 3. The first one is trained by a sequence to sequence fashion.
The input is the first 20 trajectory points, the output is the last 20 trajectory
points. In other words, the output shifts backward by one time step compared
to the input. The second one is trained in a one to many fashion. The input
is the first trajectory point, the output are the last 20 trajectory points. Once
fitting the first trajectory point into the model, then the model needs to generate
the whole trajectory. During the training phase, the first one converged faster
than the second one and the loss function also decreased to less than 10−6.
But in the test phase, the model trained in the first fashion tends to result
in nonsuitable trajectories, while the model trained in the second fashion can
generate smooth as well as accurate trajectories even though it is difficult to
converge. Furthermore, we implemented a Support Vector Machine classifier for
hand selection. The input features are selected as {Cx, Cy, Hp, Hy}, and the
output is a binary signal which inferred to use the left or right arm. We use
Radial Basis Function kernel SVM given by

K
(
x(i), x(j)

)
= φ(x(i))Tφ(x(j)) = exp(−γ‖x(i) − x(j)‖2) (4)

where γ defines how far the influence of a single training example reaches. The
data flow is shown in Fig. 4.

Fig. 3. Different training approach for trajectory genteration model.

Fig. 4. A schematic of the proposed robot grasping learning. Raw image is an RGB
image of size 240 × 320, cx, cy are the coordinates of the center of the object related
to the top left corner of the image. Hp, Hy represent two neck angles: head pitch and
head yaw. J1, J2, ..., JT represent the joint angles of left/right arm in the corresponded
time step.

4 Experiment

4.1 Physical Environment

In order to simplify the task for object localization, we made a black colored
workbench whose height is 83 centimeters from the floor. We used a 3.5 cen-
timeter cubic block (see Fig. 5(a)) and attached a red mark on top of the surface
of the block to be the target. For convenience, we marked 24 positions on the
workbench with the same intervals of 5 centimeters. In the experiment, the Pep-
per robot (see Fig. 5(b)) is used to collect the data as well as to test the proposed
recurrent model. The RGB camera mounted on the mouth of the Pepper robot
is used for recording the instant picture. The instant joint angles of the robot’s
left or right arm are also recorded. During the phase of collecting data, we fixed
the robot’s position and the waist as well as knee joint angles. We place the
block on the workbench, and then the robot grabs pictures with different head
orientations. After finishing taking picture and recording the head orientation,
we guided the robot’s arm to the desired position and recorded the joint angles
of robot’s right or left arm.

4.2 Data Preprocessing

In the experiment, we collect 2 demonstrated initial joint angles, 24 demon-
strated approaching joint angles for the robot’s right or left arm in total, and

(a) cubic block (b) human demonstration

Fig. 5. the experimental setup

574 images and their corresponding head orientations. After that we generate
139,482 trajectories in total. Finally, we normalized all the sample points to the
range between 0 and 1.

4.3 Training for the recurrent model and SVM

We set 40 neurons in each hidden recurrent layer and 6 neurons for the output
layer, and did not add any activations on the output layer. In the training phase,
we set the learning rate to be 0.001 and use Adam optimizer to train the model.
After 2,000 iterations, we stop the iteration process.

We developed a Support Vector Machine for hand decision. There are two
hyper-parameters we need to set: C and γ, The C parameter tells the SVM
optimization how much you want to avoid misclassifying each training example.
For large values of C, the optimization will choose a smaller-margin hyperplane
if that hyperplane does a better job of getting all the training points classified
correctly. Conversely, a very small value of C will cause the optimizer to look
for a larger-margin separating hyperplane, even if that hyperplane mis-classifies
more points. γ can be seen as the inverse of the radius of the influence of samples
selected by the model as support vectors.

5 Result

For the evaluation of the recurrent model for trajectroy generation, first we use
the trained recurrent model to predict the joint angles on the test set. Then we
use the forward kinematics to obtain the position of end effector relative to the
robot torso. The Pepper robot has 5 degrees of freedom for each arm, and we
compute the position of cubic block with respect to the robot torso.

Using the transformation function, the end effector’s position as well as ori-
entation can be calculated. We only evaluate the position error relative to the
demonstrated position. We use the mean squared error to calculate the distance
between the generate predicted hand position and the demonstrated position.

Finally, we visualize the error distribution by using the seaborn library as shown
in Fig. 6.

Fig. 6. the mean squared error distribution both of robot hand: The left one represents
for left hand position error distribution, its mean and variance are 6.35 and 14.07,
respectively. The right graph shows the right hand position error distribution, its mean
and variance are 7.07 and 23.74 respectively.

In order to verify that our model is robust to the changes in the initial joint
state, we randomly choose the initial joint state in the trajectory generation
model. The generated whole trajectory is then compared to the demonstrated
trajectory. The result is shown in Fig. 7. It is clear that the robot hand finally
reaches to the same position even though the initial state is different. The grasp-
ing procedure is shown in Fig.8

Fig. 7. Different initial joint angle states leading to the same target state: The dash
lines represent the trajectories generated by the recurrent model, while the solid lines
represent the trajectories demonstrated.

Fig. 8. Pepper robot grasps the cubic block, approaching the final joint states from its
initial joint states.

We use {Cx, Hp} as the feature for visualization. Fig. 9 shows that when C equals
to 100 and γ equals to 0.1, the SVM exhibit the best classification performance
on the test set.

Fig. 9. Visualization of SVM with different hyperparameters.

We compare the models which are trained by different training sets: one is
the augmented by the proposed method, the other one is the origin dataset. We
also use forward kinematics to compute the hand position relative to the robot

torso and then use mean squared error to calculate the error between the taught
position and the calculated position. The result is shown in Fig. 10. It shows
that the model trained by augmented data outperforms the model trained by
the original demonstrated data.

Fig. 10. Performance comparison between the model trained by augmented data and
the original data. The model trained by augmented data has a smaller error, which is
the distance between the calaulated hand position at the end of the generated trajectory
and the demonstrated hand position.

During the data augmentation section, we augmented the data by randomly
changing the initial state within a small range, which is 0.2 radians for each of
the joint. After finishing training the model, we random selected a test data from
the test set, and generated 1,000 initial states by adding a small perturbation
to each of the joint values. Then we input these initial states to our model
and pick up the final states. We used forward kinematics to calculate the hand
position relative to robot torso and compared with the demonstrated position.
We use mean squared error to calculate the distance between them. We found
that the perturbed initial joint angles can be tolerated up to a maximum of 0.2
radians, and clearly do not lead to the prediction error. Fig. 11 shows the error
distribution due to initial perturbations.

6 Conclusion and Future Work

We proposed a new grasp learning by demonstration algorithm for a dual arm hu-
manoid robot with joint compliance. We have learned that the recurrent model
can generate stable and smooth trajectories for grasping the object and this

Fig. 11. We change each of the initial joints by adding small perturbations less than
0.2 radians to each of the joints. This graph shows the error distribution, bounded by
12.4 millimeters.

model is robust to the changes in the initial state of robot arm joints. Our
proposed data augmentation method was very successful in improving the con-
vergence of the recurrent neural network and the smoothness of the trajectory.
The support vector machine classifier with non-linear kernel was capable of de-
ciding which arm needs to be used for grasping based on the head orientation
and object location in RGB image features. The proposed model has some lim-
iations: first of all, it cannot accurately generate trajectories when the object is
placed on a different height workbench. Inspired by humans, we used the camera
twice to see the object with different head orientations, and then used it to train
the same model with different input sizes. The result was encouraging, but still
needs to be improved. We also tried to use the depth camera mounted on the
robot’s right eye. However, due to the measurable range limitations, it cannot
sometimes detect the object. We will further increase the robot’s grasping range
and capability by taking its waist joint and mobility and the object’s shape into
consideration.

Acknowledgment

This project was supported by the EU-Japan coordinated R&D project on “Cul-
ture Aware Robots and Environmental Sensor Systems for Elderly Support”
commissioned by the Ministry of Internal Affairs and Communications of Japan
and EC Horizon 2020.

References

[1] Task-Informed Grasping (TIG) for rigid and deformable object ma-
nipulation. https://www.birmingham.ac.uk/research/activity/metallurgy-

materials/robotics/workshops/task-informed-grasping-objects-manipulation.aspx.
[2] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell and A. G. Billard.: Learn-

ing and Reproduction of Gestures by Imitation. IEEE Robotics and Automation
Magazine, vol. 17, no. 2, pp. 44-54, June 2010.

[3] P. Pastor, H. Hoffmann, T. Asfour and S. Schaal.: Learning and general-
ization of motor skills by learning from demonstration. 2009 IEEE Interna-
tional Conference on Robotics and Automation, Kobe, 2009, pp. 763-768. doi:
10.1109/ROBOT.2009.5152385

[4] J.Sung, S.H.Jin, and A.Saxena.: Robobarista: Object part-based transfer of manip-
ulation trajectories from crowd-sourcing in 3d point-clouds. International Symposium
on Robotics Research (ISRR),2015.

[5] M.Kopicki, R.Detry, M.Adjigble, R.Stolkin, A.Leonardis, and J.L.Wyatt.: One-shot
learning and generation of dexterous grasps for novel objects.The International Jour-
nal of Robotics Research.vol.35, no.8,pp.959976,2016.

[6] A. L. P. Ureche, K. Umezawa, Y. Nakamura and A. Billard.: Task Parame-
terization Using Continuous Constraints Extracted From Human Demonstrations.
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1458-1471, Dec. 2015.doi:
10.1109/TRO.2015.2495003.

[7] Rok Pahic.: Deep learning in robotics.
[8] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.: A survey

of robot learning from demonstration. Robot. Auton. Syst. 57, 5 (May 2009), 469-483.
DOI=10.1016/j.robot.2008.10.024. http://dx.doi.org/10.1016/j.robot.2008.10.024.

[9] Rahmatizadeh, Rouhollah and Abolghasemi, Pooya and Blni, Ladislau and Levine,
Sergey. (2017). Vision-Based Multi-Task Manipulation for Inexpensive Robots Using
End-To-End Learning from Demonstration.

[10] . Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, Cloud-based
robot grasping with the Google object recognition en- gine, in IEEE International
Conference on Robotics and Automation (ICRA) , pp. 42634270, 2013.

[11] M. Forbes, M. J.-Y. Chung, M. Cakmak, and R. P. Rao, Robot programming
by demonstration with crowdsourced action fixes, in Second AAAI Conference on
Human Computation and Crowdsourcing , 2014.

[12] C. Crick, S. Osentoski, G. Jay, and O. C. Jenkins, Human and robot perception
in large-scale learning from demonstration, in Interna- tional conference on Human-
robot interaction , pp. 339346, ACM, 2011.

[13] Z. Fang, G. Bartels, and M. Beetz, Learning models for constraint- based motion
parameterization from interactive physics-based simula- tion, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) , pp. 40054012, 2016.

[14] S. Calinon, F. Guenter, and A. Billard, On learning, representing, and generalizing
a task in a humanoid robot, IEEE Transactions on Systems, Man, and Cybernetics
, vol. 37, no. 2, pp. 286298, 2007.

[15] S. Calinon, F. Dhalluin, D. G. Caldwell, and A. Billard, Handling of multiple con-
straints and motion alternatives in a robot programming by demonstration frame-
work., in IEEE International Conference on Humanoid Robots (Humanoids) , pp.
582588, Citeseer, 2009.

[16] Tadanobu Inoue , Subhajit Chaudhury , Giovanni De Magistris and Sakyasingha
Dasgupta.: Transfer learning from synthetic to real images using variational autoen-
coders for robotic applications.(2017)

[17] Giovanni De Magistris, Asim Munawar, Phongtharin Vinayavekhin.: Teaching a
Robot Pick and Place Task using Recurrent Neural Network. ViEW2016, Dec 2016,
Yokohama, Japan. < hal − 01426846 >

[18] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter
Abbeel.: Deep Spatial Autoencoders for Visuomotor Learning. arXiv:1509.06113
(2015)

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio.: Em-
pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv:1412.3555(2014)

[20] http://doc.aldebaran.com/2-4/naoqi/index.html

