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Chapter 1

Introduction

1.1 Overview of Software Evolution Problem

Software evolution generally means that software can change its structure and functions
to tolerate changes of its specification and operating environment in which it is used. It
ranges from the very practical software maintenance problem to the design of sophisticated
software which can adapt its behavior autonomously according to changes.

The significant amount of work has been done so far, however, software evolution prob-
lem is still a challenge. It is not only due to the inherent difficulty of changing complex
softwares, but also it comes from the fact that evolution activities are not performed
properly. Aiming at establishing a sound and scientific basis for software evolution, a
general framework of software evolution has been proposed. It is based on the concepts
of evolutionary domain and evolutionary development process.

The evolutionary domain and evolutionary development process are parts of a general
software framework. This framework assumes a rather ideal software development pro-
cess. The core of this framework is a transparent mapping from specification domain to
program (implementation) domain. Each specification is mapped to an unique program
L Therefore, if the specification and program domains behave in similar manners, the
change in specification will then result in a very similar change in its program. We call
this property as transparency between specification and program. In reality, these two
domains usually behave in that way as transparency property has been observed in most
well-designed systems. The evolution job is then reduced to manage the correspondences
between specifications and their counterparts in program domain.

Another assumption in this framework is about program composition simplicity. If a
system can be specified in term of the composition from several specification fragments,
its implementation can be regarded as a composition of program fragments respectively
associated with the initial specification fragments. As system evolves, some specification

'In evolutionary development process, it is assumed that the mapping between specification and
program sets is one-to-one. That assumption is only for formalization simplicity purpose as there could
be more than one program satisfying a given specification. Fortunately, it is not difficult to extend the
model for dealing with one-to-many mapping.



fragments are either added to or removed from the system. Due to transparency property
assumption, program fragments of those specifications are composed or removed from
the original implementation according to the specification domain. Moreover, if a single
specification fragment changes its internal structure during evolution process, the change
does not propagate to other parts as long as the interfaces between them are kept and
the implementation change within the fragment compromises the interface. Fortunately,
that is usually the case.

The above software evolution framework may rely on some ideal assumptions. However,
its evolutionary software development process is a good guide for practical software evolv-
ing tasks. In fact, it is really effective in case software specification of a system is regarded
as a composition of rather orthogonal goals. The whole system is simply a composition
of several separate components. And the composition step is simple and dynamic.

In brief, ideal software evolution framework relies on two properties: transparency and
composition simplicity.

1. System is specified in terms of several independent concepts or goals.

2. There exists a scheme to maintain the transparency between concept domain and
program domain.

3. System implementation is regarded as composition of program components imple-
menting above goals.

Software development and evolution in this way are guaranteed to cost little as the process
consists of two main steps: concept-to-program mapping and programs composition. The
first is certainly simple due to transparency property, while the second is ensured by
composition simplicity.

Any software paradigm satisfying these two properties are very promising in software
development and evolution. The paradigm we investigate partially in this thesis seems to
handle those two properties well. It is Aspect-Oriented Software Development. We inves-
tigate this paradigm partially because we only consider a special case of this approach.
The software design is based on system partition according to collaborations. The aspects
in system are expressed by collaborations.

1.2 Aspect-Oriented Software Development - AOSD

Due to its emphasis on the identity associated with the object, the classical design of
object-oriented (OO) methodology is trapped in the so-called ”tyranny of the dominant
decomposition”. It permits the separation and encapsulation of classes only. Other con-
cepts, goals of the software are not encapsulated and they are scattered across the classes.
The proposed paradigm called Aspect-Oriented Software Development (AOSD) tries to
overcome the shortcoming in traditional OO approach. This paradigm is constructed on
top of OO technology. In some perspective, it is an extension of current OO methodology.
In AOSD community, there are two major research streams which differ on the way dealing



with aspect granularity. Both streams are rooted at the so-called subject-oriented program-
ming (SOP). Its recent derivation multi-dimensional separation of concerns (MDSOC) is
the first of those two mentioned streams. The other trend aspect-oriented programming
(AOP), despite of deriving from SOP much of its characteristics, takes a different approach
in defining and composing concerns. Comparing with MDSOC, AOP is substantially dif-
ferent from SOP.

1.2.1 SOP and MDSOC

In SOP model, each subject is an object-oriented program or program fragment that mod-
els its domain in its own subjective way. A system, instead of focusing on participating
classes, is structured from many subjects. Each subject can be implemented in a relatively
independent manner. And any two subjects are loosely coupled. Once the implementation
of subjects are completed, a composition designer can use a compositor program to com-
pose subjects into larger subjects, and eventually the whole system. During composing
process, corresponding classes in different subjects are merged in the manner that their
methods, data members can mix or cancel each other out depending on the composing de-
cisions. That composition process repeats for all subject components until entire system
is constructed. The final system then behaves as a combination of member subjects.

The recent enhancement of SOP leads to a new model of MDSOC. Concern, hyperslice
and hypermodule are the central concepts of MDSOC. The concept of concern is wider
than that of subject. The idea behind the separation of concerns is to identify concerns of
importance, and seek to localize units representing concepts associated with each concern
into a module. Common dimensions of concern are object (leading to data abstraction)
and function (leading to functional decomposition). Other concerns may be feature (both
functional and non-functional), role (collaboration) etc. A hyperslice is a set of con-
ventional modules to encapsulate concerns in dimensions other than the dominant one.
Hyperslices may overlap in the sense that a given unit may occur in multiple hyperslices.
A system is written as a collection of hyperslices, thereby separating all the concerns of
importance in that system. To some extent, hyperslice in MDSOC and subject in SOP are
very similar. A hypermodule is a set of hyperslices, together with a composition rule that
specifies how those must be composed to form a single, new hyperslice that synthesizes
and integrates their units.

1.2.2 Aspect-Oriented Programming: AOP

Though inheriting much of its merit from SOP, AOP takes a lower level approach to
separating concerns. In AOP, there are only two main dimensions of concerns: dominant
class and aspect. Aspects encapsulate all concerns but classes. They look and behave
much like classes. AOP’s top job is to weave aspects in aspect dimension into classes. In
this sense, each aspect crosscuts all participating classes. In SOP model (eg. Hyper/J),
primitive units are data members and methods. Hence, weavable units are only classes.
In contrast, AOP allows a much more powerful programming mechanism in controlling
execution flow. The key concept in AOP is join point at which some interesting event



will occur. A join point could then be nested at any depth in a class’s function call. An
aspect crosscuts a class at a join point. A point cut defines a set of related join points
in many classes. Hence, to our view, a point cut is essentially similar to a concern in
MDSOC. AOP attempts on aspects associated with dynamic behavior. On the other
hand, MDSOC focuses on static structure of system composed from many aspects.

The difference between aspect and concern, in my opinion, are in their granularity.
Concerns are usually defined in top-down approach and hence, they are coarse. On
the contrary, aspects are associated with very small join points during thread execution.
Therefore, aspects are, in general, finer than concerns. In a concern, there could be several
aspects defined on special events during concerns execution. I think, concern concepts
are more goal- or feature-oriented, while aspect concepts are biased toward events during
execution.

1.3 Purpose and Scope of This Research

AOSD is a promising approach as it seems to satisfy two essential properties: transparency
and composition simplicity as discussed in Section 1.1. As a result, software evolution
in this paradigm is inherently easier compared with many traditional approaches such as
0O0.

Due to its pre-mature state and great scope, I do not intend to investigate the evolu-
tion process of AOSD paradigm in the most general form. Instead, we take a special case,
namely collaboration-based software, for investigating under general software evolution
framework. The collaborative system is initially formalized for adapting to evolutionary
specification domain. This formal model needs to address both static structure as well as
dynamic behavior of system specification. After that, as such a formal system evolves,
we are interested in how the changes in specification affect implementation part. That is
the mapping task of evolutionary development process. This step is used to clarify that
collaboration-based approach can map easily the change in specification to implementa-
tion (i.e. transparency). Further, program fragments in this method can be composed in
a relatively simple manner (i.e. composition simplicity). In general, evolutionary devel-
opment process is a mapping between specification and program domains. Chapters 3, 4
attempt to formalize role-based static and dynamic behaviors. They are all on the spec-
ification side. Based on these formal definitions, an evolutionary domain on role-based
system specification is derived. On the program side, as program is dependent on the
underlying languages, the real formalization for evolutionary program domain, if any,
is different between languages. In this thesis, the formalization of evolutionary domain
on program side is not presented in details. Its existence is assumed independent from
programming languages. By assuming the existence of evolutionary program domain re-
gardless programming languages, the evolutionary development process is mentioned in
Chapter 5. This chapter presents some basic mapping framework from specification to
codes written in two selected languages, namely C++ and Java. Their selection are rooted
at their popularity and above all, their program fragment composition mechanisms. Those
mechanisms are at two extremes. In case of C++, it directly facilitate mixin layer - an



elegant way to represent collaboration, while Java does not. However, Java relies on a
powerful AOSD programming paradigm to compose collaboration layers.

The above clarification, in essence, confirms that collaboration-based approach pos-
sesses two important properties: transparency and composition simplicity. As a re-
sult, the thesis partially confirms the usefulness of AOSD software paradigm, especially
collaboration-based designs, in developing and evolving softwares.

The background and basic explanations are shown in Chapter 2. This part is a stepping-
stone for later arguments in Chapters 3, 4. Finally, we discuss some related work and
future direction of this research at Chapter 6.



Chapter 2

Background

2.1 Evolutionary Domain - An Evolution Software
Framework

2.1.1 Software Evolution Problem

Let S and P be sets of all the specifications and programs respectively which will appear
in the evolution problem under consideration. The expression p F s denotes the fact
that a program p € P satisfies a specifications s € S. p is usually constructed from s
by applying a evolutionary software development process for p . Or p could be derived
mechanically by, say, a theorem proving techniques if the specification is given formally
enough.

Software evolution problem can be formulated as follows. Let p be derived from s.
When s changes to s’, denoted as s = s', p has to transform to the corresponding p'.
That is,

Suppose pF s and s = ¢
Find p': p=p' and p'F &

Of course, the evolved program p' has to be constructed reusing as much part of p as
possible.

2.1.2 Evolutionary Domain

To make sound and effective discussions of the evolution problem, we need to restrict the
way specification and programs may change. To this end, evolution relations Cg and Cp
are introduced in the sets S and P to express the relationship between s and s', and, p
and p’ respectively. We assume that the changes s = s’ and p = p’ are possible only if

!The evolutionary development process is shown later. In essence, it is a mapping between specification
and program domains, namely: F: S — P



s Cg s and p Cp p'. In the following, we write, for the sake of simplicity, both relations
by C. We also assume that S and P have the following structure with respect to C 2.

Usually, s’ is more detailed or has richer functions than s. Though, what the relation
C will take depends on the evolution we consider, we are still able to pose a general and
acceptable restrictions on it.

1. We suppose S is a partially ordered set with respect to C and there exists the
greatest lower bound s M s’ for any s, € S. Mathematically, S is called a lower
semi-lattice 3.

2. We assume one more property of S. Two operators difference © and composition &
are introduced with a set of tags Ag associated with S.

0 : 8 x § — 2Asx5)
@: 9 x2M4sx9) 5 g

where 27 is the set of subsets of T. The operators are implicitly assumed satisfying:
s C ¢ implies s’ = s ® (' © s)

In the above, we require that if the specification s’ is an evolution of s, then (i) we are
able to find their difference s'© s as a tuple of specifications and (ii) adding this difference
back to s gives s'.

We call such a set S an evolutionary domain. That is, the evolutionary domain is
defined as:

(87 E) @7 69)

satisfying the above properties 1 and 2. In the evolutionary domain, we can determine
whether one object is more evolved than the other, and, if so, we can extract their
difference as a set of objects in the domain.

2.1.3 Evolutionary Development Process

Suppose the sets of specifications and programs are formulated as evolutionary domain
Dg and Dp respectively, and consider evolutionary development process between them.

DS:(57E767®) and DP:(P7E’6’®)

2In fact, the C relations in both domains are different. Both domains require a separate definition to
each of those. However, this thesis focuses only on specification side. Intuitively, there is an assumption
that evolutionary domain on program side does exist and its structure is similar to that on specification
side.

3 A lower semi-lattice structure is formed over a set if there exists an order relation over that set. That
relation must be reflective, asymmetric and transitive. In addition, for any two items in that set, there
always exists a greatest lower bound of two. Finally, that set should include a minimum item which is
less than any other item in the set.

10



We assume here for the sake of simplicity, the program development process could be
represented by a mapping F' between the above evolutionary domain, and assume that a
unique program F'(s) is obtained from the specification s € S.

F:S—P

Suppose s C s’. An evolutionary development process F' should possess the following
four properties:

e Realizability: For any s € S, F(s) € P.
e Monotonicity: F(s) C F(s)

e Incrementality: F(s @ As) = F(s) ® G(F'(As)) for some G : 2(4rxF) —y 9(ArxP)
and F' : 2(Asx5) — o(ApxP),

e Locatability: p = F(s) could be obtained as a substructure of p’ = F(s') and the
be located in p’ by a locator L as p = L(s, s',p').

The idea of the evolutionary development is to express that the evolved program should
be obtained by merging the original program with program fragments which are imple-
mented from specification difference. It characterizes the most desirable software evolution
process in terms of evolutionary domain.

2.1.4 Evolution Types

Two types of evolution is considered. The first occurs when s C s, while in the other
case, there is no evolution relation between s and s’. Instead, s and s’ have a common
specification to be evolved from, i.e. t C s and ¢ C s’ for some t.

In the first evolution type, the evolutionary development process is executed in the
following manner:

1. Make the difference As = s' 6 s
2. Construct incremental program fragment by Ap = G(F'(As))
3. Merge Ap with p to create p': p' =p @ Ap.

In the second evolution type, the evolutionary development process is executed in the
following manner:

1. Extract the common specification ¢ between s and s’. The most desirable ¢ will be
the greatest lower bound of them: ¢t = sM 5.

2. According to the degeneration of specification s to ¢, the program r = F(t) is needed.
By the locatability of F', r = L(t, s, p).

3. Evolve r to p' corresponding to the specification evolution ¢ to s’ as in the first
scheme.

11



Step 1 is simply the phase to find the common specification between two unrelated
specifications. The lower bound could be the intersection of two collaboration sets. The
step 2 requires to reverse the usual evolution direction. The last step is then interpreted
in the same manner as the first evolution type.

2.2 Collaboration-Based Software Design - A Special
Case of AOSD paradigm

This is a design aiming to break a system functionality into several orthogonal layers *
of object collaboration. Within each outer mixin, there are a number of objects partici-
pating with some role in the collaboration. Each object’s role is called inner mixin. As a
collaboration is a software concept, it is quite capable to apply the argument of AOSD to
this design. In other words, collaboration-based design is only a special software design
in AOSD paradigm. Hereafter the terms of collaboration-based design, role-based design
are used interchangeably.

2.2.1 Role-Based and Layered Designs

A key objective in designing reusable software modules is to encapsulate within each
module a single and mostly orthogonal aspect of application design. One view on the
system for such orthogonal aspects is based on collaborations. Each collaboration consists
of some classes and the interaction between them. The collaborations are very much
independent of each other. The systems under such design are broken down into several
orthogonal collaborations. Hence, an object-oriented application simply consists of a set
of classes and a set of collaborations. Each application class encapsulates several roles
where each role represents that class under one of the collaborations. In other words, a
collaboration is a cooperating suite of roles corresponding to participating classes.

If viewed in two-dimensional coordinate of object classes and collaborations axes as in
Figure 2.1, the design is necessarily constructed in a layered manner.

This type of design eases effort in implementing the software. Each layer can be im-
plemented in a relatively independent manner. Those layers are then composed together
for a synthesized layer and eventually, a complete system. The development process has
shifted from traditional construction of OO classes to layers. Each layer encapsulates
collaborative protocol between objects in that collaboration. Change in the protocol only
results in local modification in that layer. In this design style, concerns are separated. As
a result, softwares built from this style are quite simple to maintain and evolve.

4As later shown, these layers are outer mixins during implementation phase.

12



Object Cal Object Ca2 Object Ca3

Collaboration Col Role Coll Role Co12 Role Col3

g J
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Collaboration Co4 Role Co41l Role Co42 Role Co43

g J

Figure 2.1: Example of collaboration decomposition. Round rectangles represent collab-
orations, while rectangles represent objects. Their intersections represent roles.

2.2.2 Implementation of Role-Based Designs by Mixins and Mixin
Layers

There are several implementation techniques that transform the collaboration-based de-
signs into the respective implementations. Many of them are rooted at techniques using
mixin classes. Mixin is a facility compensating for some drawbacks in traditional single
inheritance in object-oriented languages. Mixin is a particularly useful facility specifying
a uniform extension of many family-related classes with one set of fields and methods
(i.e. interface). Mixin is actually an abstract subclass. It represents a mechanism for
specifying classes that will eventually inherit from a super-class while this super-class is
not yet specified at mixin’s definition. The characteristic behind mixin programming is
linearization of interfaces.

In the real world, collaborations between participating entities are generally stable in
the sense that the interfaces between objects are rarely changed. The changes in these
collaborations are usually in the form of either independent role evolution or the intro-
duction of new collaboration into the application. The former is regarded as fine-grained
evolution and the later is considered as large-grained evolution. Referring to Figure 2.1,
the large granularity evolution could be expressed as an uniform extension of family of
existing collaboration layers with one new collaboration. For example, the new collab-

13



oration C'o4 in Figure 2.1 could be introduced into the existing family of collaborations
Coy,Coy,Cosz. More specifically, let G be the application class defining and implementing
the collaborations C'oy, C'og, C'oz from their corresponding mixins and having been instan-
tiated by some concrete classes. By defining a mixin which provides the implementation
to the collaboration C'os and instantiating class G as the super-class of the mixin, we
can theoretically create a new application class H which defines and implements all the
collaborations Coy, C'oy, Coz, C'o4. Such a mixin is called mizin layer.

Mixin layer is implemented as an abstract subclass which in turn contains many inner
classes to accommodate the scalability problem. In the Figure 2.1, those inner classes are
Cay, Cay and Caz. The collaboration composition process actually consists of two mixin
extension processes. The first process occurs inside all object classes contributing to the
whole application class. In the Figure 2.1, this extension process occurs in constituent
objects C'ay, C'as and Cag. In case of object C'as, the mixin definition for collaboration
Co, should be defined as an abstract sub-class. At the same time, it also provides the
implementation for role C'ogs of object Cas with respect to collaboration C'os. If the
super-class is instantiated as the concrete class C'ayz) handling up to collaboration Cos
layer, we then create a new concrete class Clayy) accommodating all roles C'oip, Cog,
Cosy and Coyo (i.e. Coyo can handle to the bottom layer). This process happens inside
the layer and hence is named as inner mizin. It is necessary to note that this composition
process only deals with each object class separately. On the other hand, the mixin layer
deals with the whole suite of classes C'a;, C'ay and Caz together and the composition
process happens outside individual class. Therefore, to distinguish between these two
types of mixin, the mixin layer is also named as outer mizin.

By utilizing these two types of inner and outer mixin extensions, the layered design is
mapped to implementation in a relatively straightforward manner.

2.3 Concurrent System Modeling - Concurrent Reg-
ular Expressions

In general, the formal models proposed for specification and analysis of concurrent systems
can be categorized roughly into two groups: algebra-based and transition-based. The
algebra-based models specify all possible behaviors of concurrent systems by means of
expressions that consist of algebraic operators and primitive behaviors. Examples of such
models are path expression and concurrent reqular expressions. Examples of transition-
based models are finite state machines and Petri nets. Transition-based models have the
advantage that they are graphical in nature, while algebraic systems promote hierarchical
description and verification. A good formal model hence should support both styles.
Concurrent regular expressions can be easily converted into equivalent Petri nets which
possesses many analysis, verification and simulation techniques for concurrent systems.
Conversely, any Petri net can be converted to a concurrent regular expression providing
further insights into its language power.

All the existing models can also be classified according to their inherent expressive

14



power. For example, a finite state machine is inherently less expressive than a Petri net.
However, the gain in expressive power comes at the expense of analyzability. Analysis
questions such as reachability are more computationally expensive for Petri nets than
for finite-state machine. A complex system may consist of many components requiring
varying expressive power. There should be a formal description technique supporting
models of different expressive powers under a common framework. An example of such a
description technique for syntax specification is Chomsky hierarchy of models based on
grammars. A similar hierarchy is required for formal description of concurrent systems.
The model of concurrent regular expressions provides such a hierarchy. A regular ex-
pression is less powerful than a unit expression, which, in turn is less expressive than a
concurrent regular expression.

2.3.1 Concurrent Regular Expressions

We use languages as the means for defining behaviors of a concurrent system. A language
is defined over an alphabet and, therefore, two languages consisting of the same strings
but defined over different alphabet sets will be considered different. For example, null
languages defined over ¥; and X5 are considered different. We will generally indicate the
set over which the language is defined, but may omit it if clear from the context.

The following describes operators required for definition of concurrent regular expres-
sions (CRE).

Choice, concatenation, Kleene closure

These are the usual regular expression operators. Choice denoted by “+” is defined as
follows. Let L; and Ly be two languages defined over ¥; and 5. Then

L1 + L2 = L1 U L2 defined over 21 U 22.

This operator is useful for modeling the choice that a process or an agent can make.
The concatenation of two languages (denoted by “.”) is defined based on usual con-
catenation of two strings as

Ll.LQ = {£U1£U2|J?1 € Ll;xQ € LQ}

This operator is useful to capture the notion of a sequence of action followed by another
sequence. The Kleene closure of a set A is defined as

A* = U2y A” where A" = A.A™ ! and A = A.

This operator is useful for modeling the situations in which some sequence can be repeated
any number of times.
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Interleaving

To define concurrent operations, it is especially useful to be able to specify the interleaving
of two sequences. Consider for example the behavior of two independent vending machines
V' M; and V' M,. The behavior of V M; may be defined as (coin.choc)* and the behavior of
V' M, as (coin.cof fee)*. Then the behavior of the entire system would be an interleaving of
V My and V M,. With this motivation, we define an operator called interleaving, denoted
by “||”. Interleaving is formally defined as follows: (e denotes the hidden event in X)

e Va € X :alle=¢|la={a}
e Va,be ;s t € ¥*: a.s|bt =a.(s||bt) Ub.(a.s||t)

Thus, abllac = {abac, aabe, aach, acab}. This definition can be extended to interleaving
between two sets in a natural way, i.e.

A|l|B={w|3s € A,t € B,w € s||t}

For example, consider two sets A and B as follows: A = {ab} and B = {ba}, then
Al||B = {abba, abab, baab, baba}.

Note that similar to A||B, we also get a set A||A = {abab, aabb}. We denote A||A by
A®) | The parentheses in the exponent is used to distinguish from the traditional use of
the exponent for concatenation, i.e. A2 = A.A.

Interleaving satisfies the following properties:

—_

. A||B = BJ||A (Commutativity).

[\]

. Al|(B||C) = (A||B)]|C (Associativity).

w

. Alle = A (Identity of |]).

=~

. A||0 = 0 where 0 is the empty set (Zero of ||).

ot

. (A+ B)||C = (A]|C) + (B||C) (Distributivity over +).

This operator, however, does not increase the modeling power of concurrent regular
expression.

Alpha closure

Consider the behavior of people arriving at a supermarket. We assume that the population
of people is infinite. If each person CUST is defined as (enter.buy.leave), then the behavior
of the entire population is defined as interleaving of any number of people. With this
motivation, we define an analogue of a Kleene closure for the interleaving operation,
a-closure of a set A, as follows: A* = [J2, A"

Then if #(a, w) means the number of occurrences of the symbol @ in the string w, the
interpretation of CUST® is as follows:
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CUST* = {w| Vs € pref(w), #(enter,s) > #(buy, s) > #(leave, s); #(enter,w) =
#(buy, w) = #(leave, w)} where pref(w) is a set of all prefixes to w.

Note the difference between Kleene closure and a-closure. The language shown above
can not be accepted by a finite-state machine. Therefore, the a-closure can not be ex-
pressed by ordinary regular expression operators.

Intuitively, the a-closure allows modeling the behavior of an unbounded number of
identical independent agents. It satisfies the following properties:

1. A% = A” (Idempotence).
2. (A")® = A™ (Absorption of ).
3. (A+ B)® = A%||B*.

Synchronous composition

To provide synchronization between multiple systems, we define a composition operator
denoted by [ ]. Intuitively, this operator ensures that all events that belong to two sets
occur simultaneously. For example, consider a vending machine VM described by the
expression (coin.choc)*. If a customer CUST wants a piece of chocolate he must insert
a coin. Thus, the event coin is shared between VM and CUST. The complete system is
represented by VM [ | CUST, which requires that any shared event must belong to both
VM and CUST. Formally,

Al 1B ={w|lw/¥4 € A;w/Ep € B}

where w/S denotes the restriction of the string w to the symbols in S. For example,
acab/{a,b} = aab and acab/{b,c} = ¢b. If A = {ab} and B = {ba}, then A[ |B =0 as
there exists no string satisfying the order imposed by both A and B. Consider another
set C'= {ac}. Then A] ]C = {abc, ach}.

Many properties of | | are the same as those of the intersection of two sets. Indeed, if
both operands have the same alphabet, the | ] is identical to intersection.

1. A[ ] = A (Idempotence).
2. Al |B = B[ ]A (Communtativity).

3. A[ (B[ ]C) = (4] ]B)[ ]C (Associativity).

4. A[ INULL = NULL where NULL = (X 4,0) (Zero of [ ]).
5. Al IMAX = A where MAX = (34,%%) (Identity of [ ]).

6. A[ |(B+C) = (A[ |B) + (A[ ]C) (Distributivity over +).
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Renaming

In many applications, it is useful to rename the event symbols of a process. Some examples
are:

e Hiding: We may want some events to be internal to a process. We can do so by
means of renaming these event symbols to €.

e Partial observation: We may want to model the situation in which two symbols a
and b look identical to the environment. In such cases, we may rename both of these
symbols with a common name such as c.

e Similar processes: many systems often have “similar” processes. Instead of defin-
ing each one of them individually, we may define a generic process which is then
transformed to the required process by renaming operator.

Let L; be a language defined over X;. Let o represent a function from ¥; to ¥p U {€},
ie. 0:%) — XyU{e}. Then o(L,) is a language defined over o(%,) as follows:

o(Ly) ={o(s)| s€ L}.

A renaming operator labels every symbol a in the string by o(a).

Definition of CRE

A concurrent regular expression is any expression consisting of symbols from a finite set X
and +,.,*%,[1,1|,a, o() and ¢, with certain constraints as summarized by the following
definition.

e Any a that belongs to ¥ is a regular expression (RE). A special symbol called € is
also a regular expression. If A and B are REs, then so are A.B (concatenation),
A+ B (or), A* (Kleene closure).

e A regular expression is also a unit expression. If A and B are unit expressions, then
so are A||B (interleaving) and A% (indefinite interleaving closure).

e A unit expression is also a concurrent regular expression (CRE). If A and B are
CREs then so are A||B, AL 1B (synchronous composition), and o(A) (renaming).

The intuitive idea behind this definition is as follows. We assume that a system has
multiple (possibly infinite) agents. Each agent is assumed to have a finite number of states
and, therefore, can be modeled by a regular set. These agents can execute independently
(I'l and «) and a unit ezpression models a group of agents (possibly infinite) which do not
interact with each other. The world is assumed to contain a finite number of these units
which either execute independently (| |) or interact by means of synchronous composition

(L 7).
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2.3.2 Modeling of Concurrent Systems

This section gives a simple example of the use of concurrent regular examples in modeling
concurrent systems. That is the traditional producer-consumer problem. It concerns
shared data. The producer generates items which are kept in buffer. The consumer then
takes these items from the buffer and consumes them. The solution requires that the
consumer wait if no item exists in the buffer. The problem can be specified in concurrent
regular expressions as follows:

producer :: (produce putitem)*,

consumer :: (getitem consumer)*,

buffer :: (putitem getitem)®,

system :: producer [ 1 buffer [ 1 consumer.

The buffer process ensures that the number of getitem is always less than or equal to
the number of putitem. Note that if « is replaced by * in the description of the buffer,
the system will allow at most one outstanding putitem.

2.3.3 Relationship with Petri Nets
Languages of Petri nets

Definition 1 A Petri net N is defined as a five-tuple (P, T, 1,0, 1), where
e P is a finite set of places.
e T is a finite set of transitions such that PN'T = ().

e [ : T — P is the input function, a mapping from the transition to the bag of
places.

e O :T — P is the output function, a mapping from the transition to bag of places.

o, the initial net marking, is a function from the set of places to the set of non-
negative integers Ny g : P — N.

Definition 2 A transition t; € T in a Petri net N = (P,T,1,0, u) is enabled if for all
pi € P, p(pi) > #(pi, I(t;)), where #(p;, L(t;)) represents multiplicity of the place p; in
the bag 1(t;).

Definition 3 The next-state function § : ZU xT — Z7% for a Petrinet N = (P,T,I,0, 1),
|P| = n, with transition t; € T is defined iff t; is enabled. The next state is equal to 1,
where

Vpi € P p(pi) = p(pi) — #(pi 1(t;)) + #(pi, O(1;))

We can extend this function to a sequence of transitions as follows:
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5(#7 t]’O) = 6(5(M7 tj)) O)‘
d(p, A) = p where A represents the null sequence.

To define the language of a Petri net, we associate a set of symbols called alphabet X
with a Petri net by means of a labeling function, o : 7" — . A sequence of transition
firings can be represented as a string of labels. let F' C P designate a particular subset
of places as final places and we call a configuration y final if

Vp; € P—F,u(p;) = 0.

That is, all tokens are in final places in a final configuration. If a sequence of transition
firings takes the Petri net from its initial configuration to a final configuration, the string
formed by the sequence of labels of these transitions is said to be accepted by the Petri
net. The set of all such strings is called the language of the Petri net.

Definition 4 The language L of a Petri net N = (P, T, 1,0, u) with alphabet X2, labeling
function o and the set of final places F is defined as

L={o(B)eX| BeT* u=0p,p): VpeP—F, us(p) =0}

Note that the notion of final configurations is different from the traditional definition of
Petri net languages which typically use a finite set of final configurations This definition
of final configurations may result in infinite number of them.

Decomposed Petri Nets (DPNs)

In a concurrent process analysis, it is better to separate big process into several smaller
threads in which there is no synchronization between actions. The synchronization only
exists between those threads. That is also the case in analyzing a Petri net. A Petri net
is partitioned into multiple units which share all the transitions of the Petri net. Each
unit contains some of the places of the original Petri net. Intuitively, the decomposition
is such that the tokens with in a unit need to synchronize only with tokens in other units.
Each unit is a generalization of finite-state machine. Formally, a DPN D is a tuple (7, U),
where

e 1’ is a finite set of symbols called transition alphabets,

e U is a set of units (U, Us,...,U,), where each unit is a five-tuple, ie. U; =
(Piaciaziaéhﬂ)a where
— P, is a finite set of places.

— (; is an initial configuration which is a function from the set of places to non-
negative integers N and a special symbol “*”, ie., C; : P, — (N U {x}) (the
symbol “*” represents an unbounded number of tokens. A place which has *
tokens is called a *-place).

— 3, is a finite set of transition labels such that ¥; C T
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Figure 2.2: A DPN machine for producer-consumer problem.

— 0; is a relation between P, x ¥; and P;, i.e. ¢; C (P; x ¥;) x P; (0; represents
all transition arcs in the unit).

— F; is a set of final places, F; C P,.

The configuration of a DPN can change when a transition is fired. A transition with
label a is said to be enabled if for all units U; = (P;, C}, ¥, d;, F;) such that a € %;, there
exists a transition (py,a,p;) with C;j(pg) > 1. Informally, a transition a is enabled if all
the units that have a transition labeled a, have at least one place with nonzero tokens
and an outgoing edge labeled a. For example, in Figure 2.2, getitem is enabled only if
both ps and ps have tokens. A transition may fire if it is enabled. The firing will result
in a new marking C! for all participating units, and is defined by

Cz,(pk) = Oz'(pk) - 17 Cz,(pj) = C'Z-(pj) + 1.

A *-place remains the same after addition or deletion of tokens.

As an example of a DPN machine, consider the producer consumer problem. The
producer produces items which are kept in a buffer. The consumer takes these items from
the buffer and consumes them. The solution requires that the consumer wait if no item
exists in the buffer. The consumer can execute getitem only if there is a token in the
place ps. Note how the *-place is used to represent an unbounded number of buffers.

The definition of the language of a DPN is identical to that of a PN.

Relationship between CRE, Petri nets, Decomposed Petri nets

It has been proved that the expressive power of algebra-based CRE is equal to a Petri
net, which in turn can be decomposed into a DPN. Those describes the same class of
language, namely concurrent processes. The proof is based on the following theorems and
lemmas.

1. Every Petri net can be decomposed, i.e. for every PN there exists a DPN such that
they have the same language. Therefore, PN C DPN.

2. There exists an algorithm to derive a concurrent regular express that describes the
set of strings accepted by a DPN. Hence, DPN C CRE.
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3. There exists an algorithm to derive a Petri net that describes the set of strings
described by a concurrent regular expression. Thus, CRE C PN.

From above arguments, we can conclude that those CRE, PN and DPN describes the
same class of language. A system can be expressed in PN, DPN or CRE formalism and
transformed to any other formalism. This transformation can be used for systems which
are easier to specify in one formalism but easier to analyze in another.

By decomposing a PN into a DPN, the method has an advantage of separating con-
currency and synchronization in PN. The resulting DPN and its equivalent CRE satisfy
modularity properties and can be more easily used for specification of concurrent systems.
The modularity of a system is considered as:

e A system is broken down into several units.

e Within each unit, there is no concurrency or synchronization. Hence, each unit
executes in sequential style.

e Units execute concurrently in synchronous manner.
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Chapter 3

Static Structure Modeling

3.1 Unifying Role Treatment

Inner mixin (or role) is treated as the primitive unit for system composition. That is
because inner mixins are supplied as a whole indivisible units for any outer mixin (collab-
oration). In this model, an inner mixin is represented by a mizin term. The composition
of two roles is also a mixin term but it is vertically composite. A collaboration is, on the
other hand, simply a tuple of roles which is a horizontally composite term to distinguish
from the former.

It is easy to see that class is a special kind of mixin. That argument can be justified
if a mixin is created with the same structure as the class. In addition, its superclass is
initialized with null type. The instantiated mixin and the initial class can then be regarded
as equivalent. That argument helps to unify both mixin treatment and concrete OO class
or type treatment. Hereafter, we only need to deal with mixins to represent both sets
of mixins and classes. From that perspective, a layered system simply consists of several
mixin layers. That system could instantiate to a concrete class by setting null type to
all superclasses for top layer. That initializing step is simple and ignored in subsequent
discussion about layered design .

Let M be the set of symbols representing a set of all mixin terms including e. The
symbol € is a special one representing empty mixin. Note that as primitive in role-
based design is role, the mixin term in M corresponds to role. We view a system as
consisting of several classes. Each class encapsulates attributes and methods concerning
with interactions with other classes to accomplish collaborations. This view is inherently
object-oriented. The improvement over that OO view is our model reveals more about
internal structure of each class rather than simply a black box. Our class structure is
formed by composing several class fragments. Each class fragment is a role representing
the intersection of a vertical class and a horizontal collaboration. Class fragments in our
model are considered as primitive units. Each mixin term in M expresses a role of this
kind, but not collaboration. In other words, M is a set of all inner mixins. Hereafter, the

'With that view, a system has one more mixin layer comparing with the original view. That mixin
layer corresponds to the original top layer of concrete class/type which is now considered as a mixin layer.
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mixin term is used to mean inner mixins. In case of outer mixins, they will be explicitly
explained to avoid ambiguity.

From that perspective, a class is then formed by one or more mixin terms. Each mixin
term represents the intersection of this class with a collaboration it takes part. In a
typical collaborative system, its member classes does not participate in all collaborations.
A class plays some role in a collaboration, but it does not in another. In order to unify
our formal treatment of such a class with respect to all collaborations, in the latter case,
we consider that class also contributes to the collaboration with a special empty role e.
Therefore, any class can join any collaboration. The importance lies in the role type it
plays. If that role is empty, the class does not affect the collaboration by any means. The
uniform treatment is shown in the following explanation. A role-based system consists of
several collaborations. Let co be one of those collaborations. On the other hand, system
contains a set of classes. And ca is one of them. Thus, the tuple (ca,co) represents the
intersection part between class ca and collaboration co (i.e. class fragment). This tuple
is then a mixin term in our model. It could be € when class ca has no role in co.

In addition to M, we assume the existence of an universal label set £. This set contains
all labels which are mapped one-to-one with roles in M. A mixin term m € M is uniquely
associated with a label [ € £. The mapping function is defined as: A : M — L such as:
Vmy, mgy € M, my # mgy : X(my) # A(mz). In this sense, A is called role-labeling function.
This A mapping function is used for tagging in composition and difference operators in
Section 3.3. In some respect, the label represents the interface of the mixin while the
mixin term is concerned with the actual implementation.

3.2 Basic Object-Oriented Type Theory

3.2.1 Evolution Relation in Object Types

Because our model is built on the assumption that inner mixins are basic units, inner
mixins are equally treated as usual types in OO. Because mixin technique is built on top
of object-oriented methodology, the basic operators will be related to object-oriented type
theory. OO methodology is characterized by three features: encapsulation, inheritance
and polymorphism. In dealing with type and class operation, only the first feature is
retained. The last two features are dropped by a technique called flattening. In such a
situation, there is no concept of class hierarchy in mixin domain. A class encapsulates all
methods and variables, commonly called as attributes, which are directly reachable from
the class. Let C be the universal set of such OO classes and types.

Definition 5 Given two flattened classes cy,ca, from OO perspective, co s said to be
more evolved than ¢y, denoted as ¢y Cg co, if all attributes in ¢ are also encapsulated in
Co.

And this relation is reflective, i.e. Ve € C : ¢ Eg ¢. Certainly, the empty class € is less
evolved than any type as it contains no attribute, i.e. Vc € C : € Cp ¢. The reason of
using subscript R will be explained in the next section.
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3.2.2 Primitive Type Operators

In addition to evolution relation in object types, we need to define some basic composing
or extracting operations between mixin terms (i.e. object types). Our ultimate formal
model of role-based design relies on them as later discussed.

The basic operators are defined over two flattened classes. They are difference and
composition type operators, denoted as ©r and @p respectively. Operator & returns
a new class having attributes in the first class but not in the second, provided the first
class is more evolved than the second with respect to Cg. On the other hand, given two
classes whose attributes are disjoint, the semantic of @f is to create a new class whose
attributes are from the union set of attributes of two initial flattened classes.

For the primitive units, each unit (class fragment) corresponding to a role is expressed
as a type in OO world. As role-based design has OO technology as its foundation, we cast
those primitive units to simple classes or types in OO world. Therefore, the composing
and subtracting operations between units are defined with respect to the OO domain.

Given two mixin terms m; and my € M, the basic composition and difference operators
between those are defined according to type theory in the object-oriented world.

Definition 6 Let my, my be two mixin terms, i.e. mqy, my € M. The composition and
difference operators between these two with respect to object type theory are defined as:

e Op : M XM — M, this difference operator returns the type difference between two
flattened types (provided that my Cg my ).

e Or : M x M — M, this composition operator returns the type formed by adding
two flatten types together (given that my and my are disjoint in terms of attributes).

The subscript R in the above two operators means role as mixin terms are actually
formal representations of roles - the basic elements in formal model discussed in the next
section.

3.3 Formal Static Structure Model of Collaboration-
Based Design

This section gives the details of formal specification of a typical role-based system. Such a
system contains some collaborations. In addition, from OO world, the system encapsulates
some classes. Let CA and CO be universal sets of all class and collaboration labels. A
typical system then has a set of classes Ca C CA and a set of collaborations Co C CO. A
function 0 represents the set of roles available within the system at some specific class. As
the order of collaborations is important to the whole system, we need to associate each
collaboration with a set of collaborations it required for existence. This collaboration
dependency mapping is realized by function w.

From all the above arguments, the role-based system specification can be defined as in
the following.
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Definition 7 The static structure modeling of a role-based system s is formally defined
as a tuple of (Ca,Co,d,w) in which:

Ca C CA is a set of constituent class labels.

Co C CO is a set of collaboration labels.

0:CAXxCO — M is a role mapping of a class to a specific collaboration.

o w:CO — 20 is the dependency constraints between collaborations in the systems.

The above ¢ function assigns a mixin term to a role of a class with respect to a collabora-
tion. In addition, as in Section 3.1, there exists a mapping function A associating a mixin
term with its unique label.

Concerning with w function, if a collaboration o € C'o is independent of all other collab-
orations in C'o, w(o) = (). Otherwise, a collaboration only depends on other collaborations
existing in the system. That is, Vo € Co: w(o) C Co.

In essence, an empty collaboration is the same the an empty mixin € because in term
of OO type theory, they contain no attribute at all. So is an empty class. Thus we can
assign € to both collaboration or class which are empty. Since an empty collaboration
or an empty class do not contribute anything to a system, the system properties are
preserved if all empty collaborations and empty classes are extracted from such an above
formal specification. This step is called compacting. Horizontal compacting step removes
empty collaborations, while vertical compacting step cancels empty classes out. After a
compacting process, the compact system is functionally equivalent to the initial.

Definition 8 Let s = (Ca,Co,d,w) be a role-based system specification. Specifications
sy = (Cay,Coy,0p,wy) and sy = (Cay,Coy, dy,wy) are results after horizontal and
vertical compacting processes on s.

1. In case of vertical compacting sy,
e Cay =Ca,
e Coy={o | (o€ Co)A(Ja€Ca:dla,0)#c¢€)},
e 5y ={(a,0,7) | ((a,0,7) €w)A (o€ Coy)},
e wy ={(0,s¢) | (0€Co)A(Vec€ sc:(cew())A(Ta€ Ca:dla,c)#e))}.
2. In case of horizontal compacting sy,
e Coyg =Co,
e Cag={a | (a€Ca)A(Joe Co:d(a,0)#e€)},
e oy ={(a,0,7) | ((a,0,7) €w)A(a€ Cay)},
° Wy =w.
The compacting step is used in optimizing system specifications. Hereafter, the specifi-
cations s in discussion have been already transformed into respective compacting forms.

Let S; be the universal set of all such formally defined s. In such a system, there is no
redundant classes or collaborations.

26



3.4 Evolutionary Domain of Collaboration-Based Static
Structure Specification

From the above formal definition, an evolution relationship C between static structure
is defined to express how two systems are related to each other. In other words, this
definition decides whether one system is more evolved than the other.

Definition 9 Given two role-based formal specifications s; = (Cay, Coy,d1,w1) and sy =
(Cagy, Cog,02,ws). The latter specification is more evolved than the former if and only if
all the followings are satisfied:

1. Ca; C Cas,

2. Co; C Coo,

3. Ya € Cay, o€ Coy:d1(a,0) Cg dy(a,o0),
4. Yo € Coy, wi(o) C wy(o).

The third condition confirms that all roles in the second system are more evolved than their
counterparts in the former in terms of basic OO types. The fourth condition ensures that
although each collaboration may evolve separately, the composition order between those
collaborations in the former system are preserved in the latter. Composition dependency
of the former are completely maintained in the latter.

It can be proved from the definitions above that the tuple (S;, C) forms a lower semi-
lattice. The proof is in Appendix A.1.

Lemma 10 The tuple (S;, C) forms a lower semi-lattice.

After defining formal specification of static structure and evolution relation, i.e. domain
(Sr, ©), we need to define two operators for the complete evolutionary domain. They
are © and @ operators. Concerning with these operators, we need to define the tag
set, corresponding to specification fragments during evolution process. This is where the
role-labeling function A defined in Section 3.1 comes to play. We assigns the tag set Ag
(specified in Chapter 2) to be exactly the product of CAxCO x L (defined in Section 3.3).

Comparing to the general definition in Chapter 2, the two operators have a slightly
different forms as:

e O Sf % Sf - 2CA><CO><£><M><QCO‘
e P SfX 2CA><C(9><L><M><QCO N Sf.

Note that the specification fragment is originally defined as a pair of label and specifica-
tion. In this definition, the fragment is assigned to mixin term M and a set of required
collaborations for the mixin instantiation.

27



Definition 11 Let s1,s9 € S; and s1 T sy. The difference between si and sg, i.e. s30 s1
= {(a,0,l,m,sc)| Ya € Caz,0€ Coy:m = ds(a,0) Or d1(a,0) ANl = A(m) A sc = ws(0)}

For the composition operator, let s € Sy, and s = (Ca,Co,§,w). Given a set of mixin
fragments d = {(ca,co,l,m,sc)} C CAx CO x L x M x 2¢C. The composition s & d
is defined by iteratively composing each member in d with s. In this composing process,
there are two cases to consider. The first is more simple when this addition does not
cause any new class and collaboration creation. On the contrary, the second case occurs
when new class and collaboration is required. For simplicity, the following definition does
not deal with a set of tuples (ca, co,l, m, sc). Instead, it defines the composition of s with
a tuple only. In case of multiple pairs, we only need to iterate the same process until all
members of the specification fragments set are done.

Definition 12 Lets € S;, and s = (Ca,Co,d,w). The composition of s with specification
set fragment d = {(ca, co,l,m, sc)} is denoted as s®d = s = (Cd',Cd,d',u").

1. if (ca € Ca) A (co € Co) A (A(0(a,0)) =1) then
e Cd =Ca,
Co =Co,
8 (z,y) =0(x,y) Vo e Ca,ye CoA((x#ca)V (y# co)),
§'(a,0) = d(a,0) Dr m,
Ve € Co,c# co:W'(c) =w(c),

w'(co) = w(co) U sc.

2. if (ca & Ca) V (co & Co) then
e Cd =CaU{ca},
e Co =CoU{co},
e Va € Cd o€ Co such that (a # ca) V (0 # co) : '(a,0) = d(a,0),
e ' (ca,co) =m,
e Yo Cod,o#co:uw (o) =wl(o),
e w'(co) = w(co)Use, if co € Co,
e Ww'(co) = sc, otherwise.

When inserting a new specification fragment (ca, co, [, m, sc) into the system, that frag-
ment m only depends on existing collaborations. That is, sc C Clo.

Theorem 13 The set of S; together with previously defined evolution relation &, © and
@ operators forms a mizin evolutionary domain (S;, C, ©, @).
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Node Container

Alloc collaboration ml1l ml2

Bintree collaboration m21 m22

Figure 3.1: A simple binary tree data structure from the collaboration-based perspective.

This domain will be used as basis reference to analyze the evolution of role-based
systems when new requirements come. The core of this evolution is a mapping between two
evolutionary domains in specification and program sets. This mapping corresponds any
specification (even a fragment) with a counterpart in program domain. The mapping is
named evolutionary development process. This mixin specification domain is the common
to role-based designs. However, their respective programs are different depending on the
languages and underlying programming mechanism. This thesis selects two representative
languages to deal with during software development process. They are C++ and Java
2. The evolutionary program domain will be mapped with the specification evolutionary
domain by an evolutionary development process. The evolutionary development process,
namely F : § — P, will be discussed in Chaper 5. Standing on the triangle of three
formal definitions, namely specification domain, language-dependent program domain and
specification-program mapping, software evolution can be performed in a consistent and
systematic manner.

3.5 Some Examples

This section explains briefly the ideas discussed so far for role-based static structure. Our
example is initially a simple data structure of binary tree. This data structure allocate the
memory for a node into a container whose management scheme is like a binary tree. By
analysis, this simple data structure consists of two collaborations: Alloc and Bintree.
In addition, for each collaboration, there are only two actors: Node and Container. This
system is shown in Figure 3.1. Note that the Bintree collaboration requires the existence
of Alloc for its inserting, deleting and searching operations.
According to the Definition 7, this system s = (Ca, Co, d,w) is formalized as follows:

2This thesis assumes the existence of evolutionary program domain independent of underlying lan-
guages. It is convincing that specification and program sets are very much in parallel. Let p;, p> be
implementations of s, sy respectively. If s; Cg s2, then py is certainly more evolved than p;, i.e.
p1 Cp p2. Formalization of program domain only gives insights into the semi-lattice structure of program
set. It is left for future work.
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Node Container
[ Alloc collaboration m'11l m’12 }
[ Bintree collaboration m21 m22 }

Figure 3.2: The same binary tree data structure but different implementation in Alloc
layer: mixins m/,, m}, replace my;, ms.
e Ca ={Node,Cont},
e Co= {Alloc, BTree},
e § = {(Node, Alloc, mq1), (Cont, Alloc, mis), (Node, BT'ree, may), (Cont, BT ree, mas)},
o w={(BTree,{Alloc})}.

There is another implementation of the same data structure is shown in Figure 3.2. In
this structure, mixins m/,, m}, inherit my;, my, respectively. Roles have evolved in this
case.

This new system s’ = (Ca’,Cd’, §',w') has:

e Cd' ={Node,Cont},

Co' = {Alloc, BTree},
e §' = {(Node, Alloc,m},), (Cont, Alloc, m’,), (Node, BTree, msy;), (Cont, BTree, mays)},
o w' = {(BTree,{Alloc})}.
Furthermore, as the mixins inherit from their respective counter parts. We have:
e my Crm), and m), ©p mi = Ayy.
e miy T mi, and mi, Or mis = Aps.

By Definition 9, s C s’. And their specification difference is expressed by s' & s =
{(Node, Alloc, \(A11), A11,0), (Cont, Alloc, \(A12), A12,0)}. As those class fragments As
are in Alloc collaboration. Its dependency set is empty.

Adding back {(Node, Alloc, \(A11), A11,0)} to s, we do not change class and collabo-
ration label sets C'a and Co, as well as w. Instead, § function becomes:

d = {(Node, Alloc, m',), (Cont, Alloc,m13), (Node, BTree, ms, ), (Cont, BT'ree, mas)}.
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Node Container

[ Alloc collaboration ml1l ml2 }

[ Bintree collaboration m21 m22 }

=]

{Timestamp collaboratio m31 m32 }

Figure 3.3: The data structure is extended with a Timestamp layer.

Adding again for Ay, fragment, we get s'.

Suppose we have a pair of mixins defined as: mg3; and mgs. They are parts of an
implementation of Timestamp collaboration. Their associated labels could be expressed
as A\(mg;) = T'Stamp_Node_OtherInfo and \(mss) = T'Stamp_-Cont_OtherInfo.

In addition, Timestamp layer requires the existence of both collaborations Alloc,
Bintree. Hence, the dependency would be sc = { Alloc, BT ree}.

Adding {(Node, T Stamp, A\(ms1), m31, sc)} to s by pre-defined & would result in the
creation of new collaboration T'Stamp. Inserting the mixin ms, then results in a new
system s" = (Ca",Co",§",w") such as:

Ca" = {Node, Cont},

Co" = {Alloc, BTree, T Stamp},

8" = {(Node, Alloc, my1), (Cont, Alloc, m13), (Node, BTree, my;), (Cont, BT ree, mas),
(Node, T Stamp, mz ), (Cont, T Stamp, mss) },

w" = {(BTree, {Alloc}), (T'Stamp, { Alloc, BTree})}.
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Chapter 4

Dynamic Behavior Modeling

4.1 Role-Based Dynamic Behavior as Composition of
State Machines

The previous chapter is about the static structure of layered designs, namely how indi-
vidual layers are structured from actor classes and how composite layer is constructed
on those layers. In general, the static structure in that section deals with class diagram
between actors in separate collaborations and in composite collaboration as a whole. The
static structure does not reveal the actors’ behavior during the run-time execution. The
actors interact with each other to accomplish a goal by calling each other’s method or
sending/receiving messages. In traditional OO methodology, such behaviors are modeled
by dynamic diagrams in OMT (Object Modeling Technique) or more recently UML (Uni-
fied Modeling Language). The core of those diagrams is state chart (or state-machine
diagram) representing the change in an object state after some event has occurred.

We view a design as a set of classes. A collaboration consists of a set of class extensions
(inner mixins) in a collaboration related to a common task. To make the dynamic model
for a collaboration tractable, each actor class is described as a state machine, and hence,
the mixin of an actor class in the lower layer extends an existing (base) state machine of all
layers from top to the immediate above layer of the same actor. The extension is expressed
by adding nodes, edges, and/or paths between states in the base machine. That extension
is actually carried out by a graph merging process. The state diagram merging process can
be viewed from two different perspectives. The first is a sequential composition of layers
(via outer mixins), while the other emphasizes on parallel composition of extended actors
(via inner mixins). This model in our opinion poses two apparent questions in role-based
software development process. Firstly, for the software transparency, it is preferable to
generate the source code directly from the inherited state diagrams for respective actors.
This code generation process could be either manual or automatic. In fact, with the
current status of tool support, there exists such a tool automatically generating codes
from state charts. Most of such tools are related with the concept of domain specific
languages (DSLs). Another question is about the consistency verification between this
dynamic model and the static model discussed in previous chapter.
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4.2 Sequential Collaboration Execution Modeling

As a first step, this section models the system in which collaborations do not interact to
each other. Though they may execute concurrently, they are not under any effect from
others. It is equivalent to a scenario in which collaborations run in sequential manner,
one after the other’s completion.

Like the approach taken in formalizing static structure, we first look at the primitive of
our dynamic model. This primitive corresponds to dynamic state chart of an inner mixin
(role). For a class, the roles are partitioned into layers according to collaborations. Each
base or composed layer specifies interfaces, in terms of states, at which clients may attach
extensions. The formal definition of interface is given below.

Definition 14 A sequential state machine is a tuple < S, %, A, so, R, L >, where:
e S is a set of states,
e X is the input alphabet,
e A is the output alphabet,
e sy € S is the initial state,

e R C Sx PL(X) x S is the transition relation (where PL(X) denotes the set of
propositional logic expressions over ¥.),

e and L : S — 2% indicates which output symbols are true in each state.

Definition 15 A base system is a tuple < My, ..., M} > of state machines and a set of
interfaces. We denote the elements of machine M; as < Syri, Xnriy Anriy S0,y Boviy L >-
An interface contains a sequence of pairs of states

<< exity, reentry; >, ..., < exity, reentryy >>.

Each exit; and reentry; is a state in machine M;. State exit; is a state from which control
can enter an extension machine, and reentry; is a state from which control returns to the
base system. Interfaces also contain a set of properties and other information which are
derived from the base system.

Definition 16 An extension is a tuple < Fy,..., E, > of state machines. Fach E; must
induce a connected graph, must have a single initial state with in-degree zero, and must
have a single state with out-degree zero. For each E;, we refer to the initial state as in;,
and the state with out-degree zero as out;. States in; and out; serve as place-holders for
the states to which the collaboration will connect when composed with a based system.
Neither of these states is in the domain of the labeling function L;.
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Figure 4.1: Composition of a base system B with an extension E via an interface.

Given a base system B, one of its interfaces I, and an extension F, we can form a
new system by connecting the machines in F to those in B through the states in [ in
Figure 4.1. For simplicity, we assume that the number of state machines (actors) are the
same in both B and E. To handle the case of role number mismatch, as discussed in static
structure, we can uniform both collaborations as the same number of actors, while the
actor in one collaboration not involving in another can be regarded as taking an empty
role in that collaboration. Also the states in the constituent machines of base systems
and extensions are distinct.

Definition 17 Composing base system B =< My, ..., M > and extension collaboration
E =< Ey, ..., E; > via an interface I =<< exity,reentry, >, ..., < exilg, reentry, >>
yields a tuple < C4,...,Cy > of state machines. Each state machine C; =< S¢;, Xci, Aci,
Sou:s Reis Lei > is defined from M; =< Swiy Xaris Aaris Soyy, By, L > and its corre-
sponding extension E; =< Sgi, Xgi, Agi, So,., Rei, Lgi > as follows:

[ ] SCi = SMz U EMz — {ZTLZ, OUtz}
® Sogi = Sowm

e Roi is formed by replacing all references to in; and out; in Rg; with exit; and
reentry; respectively, and unionizing it with Ry,

e all other components are the union of the corresponding pieces from M; and F;.

Definition 17 allows composed designs to serve as subsequent base systems by creating
additional interfaces as necessary. This supports the notion of compound components
that is fundamental in most definitions of component-based systems.

We will refer to the cross-product of C1, ..., C} as the global composed state machine. In
this perspective, this merging process is simply to connect two corresponding state charts
M; and F; associated with the same actor i. The connecting point lies in the interface
I; =< exit;, reentry; > of base system to be plugged with the client extension F; with
< in;,out; >. In general, the real work is about merging two graphs together with two
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matching pairs, namely (exit;, in;) and (reentry;, out;). However, the result of merging is
not simply merging those four nodes into two and redirect all incoming/outgoing labeled
edges to/from those new nodes.

Note that this simple state machine merging process assumes that collaboration threads
execute in atomic fashion, i.e. there is no interrupt in the middle of collaboration execution
sequence. One collaboration only starts after another has finished. In some respect, the
collaborations are totally independent of each other. The event in one collaboration does
not affect any others. And hence, the change of state in one layer is not observable from the
other 1. Such a system has no synchronized actions even though the layers actively execute
in parallel. Therefore, all event sequences raised in the system, though they are initially in
interleaving manner, can be reduced to an equivalent sequential event sequence in which
all events relevant to a layer are concatenated in one consecutive sequence segment. The
reduced form of event sequence is equivalent to the initial sequence in the sense that the
behavior of each state machine does not change with respect to either sequences.

In reality, this assumption only true in some cases. For most of the cases, many col-
laborations between actors run in parallel. Because of possible interleaving actions due
to concurrent collaboration execution, at any time during the execution sequence in base
system, the actor can receive any call or message from the extension. That causes the
base system to relinquish its control to the extension at the middle of its execution thread
in the base machine. The proposed model is not strong enough to handle such a case. A
more powerful model is required. That topic is discussed in detail in the next section.

4.3 Concurrent Collaboration Execution Modeling

4.3.1 Two views on Collaboration-based Designs

This section deals with the system consisting of many related collaborations. The rela-
tionship between layers are expressed by their dependency. One collaboration requires
the existence of others. As one collaboration consists of possibly many actor state ma-
chines. When composing in vertical manner, a final actor state machine includes a base
state machine and several extensions. The dependency between collaborations is actually
caused by the dependency between base and extensions within some actor class. Some
extension uses base or another extension in an upper layer for its associated operations.
There are some synchronized actions. The change of state in the higher layer must be
observed by the lower layer and this layer in turn will change its current state. In other
words, a special event raised in one collaboration triggers the transitions of more than one
base or extension state machines. Obviously, such a system is classified as a concurrent
system with some synchronization in between. This type of system can not be modeled
by the mechanism in Section 4.2. A better formal model to deal with such systems is
required.

Looking at the Figure 4.2, we can see two different views on collaborative design. On
the right is the view about parallel composition of actors. This is a traditional view of

'In fact, there is no need to do that.
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Sequential composition of layers Parallel composition of actors (base + extensions)

Figure 4.2: Two views of a collaborative design: sequential composition of layers (left)
versus parallel composition of extended actors (right)

OO approach, focusing on dominant dimension, i.e. class. Because of the encapsulation
feature in OO world, this view does not care about the contents inside each actor class,
but only about the interfaces for interaction between actors. Any class implementing
this interface is quite capable to perform a role in this compound collaborative system.
This type of software use is rather large-grained as a subtle variation in any collaboration
protocol will lead to a change of the whole actor class. Clearly, this way is not desirable.
Software developed in this way will certainly suffer in long term due to its weakness in
maintainability, evolvability. In fact, this view is not what we rely on to formalize a model
for layered designs. We want to know more about the internal structure of each actor.
The second view considers the system as a sequential composition of collaboration layers.
Those collaborations execute in a concurrent manner, quite possibly with synchronization
between collaborations. If taking the actor class into the scope, we can see that within each
class, there are a number of class fragments corresponding to the number of collaborations.
Each fragment represents the role of that actor in a layer. Due to external behavior
changes via events, messages, function calls etc raised by other actors, those fragments

themselves change their “states”?.

4.3.2 Concurrency and Synchronization in Dynamic Modeling

As a first impression about actor class’s content, the state of each actor consists of sev-
eral fragment states. Each class is then regarded as a composition of several fragments
each of which behaves rather autonomously. During execution time, those fragments run
concurrently in accord to their peers in other actors. In other words, modeling the dy-
namic behavior for each class now turns to modeling several fragments’ behavior executed
in a concurrent manner. Unlike the previous section assuming the total orthogonal be-
tween collaborations, our most general collaborative model has to take care of dependent
constraints between layers. Those dependencies in layers express in terms of synchroniz-
ing between class fragments. Therefore, a required model for each class needs to handle
both the concurrency and synchronization. Actually, only those two are most important

2Note that the term fragment state used here only involves with class attributes relevant to the role
of the actor in a particular layer.
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Figure 4.3: A library circulation system includes two actors book and patron. The dashed
box encloses an extension handling lost book collaboration.

concerns. Intuitively, as in Chapter 2, Section 2.3, the language of this model type is
similar to the one generated by a Petri net or algebraic expressions in Concurrent Reg-
ular Expression. The reason for choosing concurrent regular expressions is its explicitly
comprehensible algebraic model. In addition, there is a proof of its equivalent language
expressive power to Petri nets for concurrent systems. And Petri net is well-known for its
abundant verification, analysis and simulation tools of concurrency and synchronization.

To illustrate our discussion to reach a powerful enough and comprehensible formal
model, there is a simple example for such a composite collaborations in which there exists
a dependency constraint. Figure 4.3 presents a layered design on a library circulation
system. Books are in one of the states {order, in, out, res(erve), hold}; patrons are in
one of the states {clear, owes, block(ed)} (corresponding to the level of fines on a patron’s
account). Labels on the transitions are omitted here, but support operations such as
checking books out and putting books on hold. A later extension to the system adds
facilities for handling lost books. This extension involves a new state and path in the
book machine (to register a book as lost and possibly order it again) and a new path in
the patron machine (to take into account the fines for losing books). The two machine
extensions form a collaboration. Composing the Lost-Book collaboration with the original
system through the dashed edges yields a new library system.

As an initial step, we only look at each actor class separately first. After formalizing the
actor’s dynamic behavior by state machine-based mechanism, we will proceed to model
the whole system as a parallel composition of a number of actors.

As shown above, each actor class contains a number of fragments corresponding to
roles of that actor in layers. Those fragments are inherently sequential but executes
concurrently as in general, collaborations do not wait for each other’s completion as
in Section 4.2. However, between fragment execution threads are there a number of
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synchronous actions. Those actions only happen at some specific fragment states. Those
states are “interesting” points in our model . Their reaction to some specific external
event will affect more than one state machine in base or extensions. Hereafter, all state
machines in the base system or in the extension are commonly regarded as state machines
for short. And the state of each class fragment, the state of a role are all commonly
called sub-state. The behavior of the actor is better analyzed if the class is subdivided
into a number of fragments along layer boundaries. In addition, an “interesting” state
is duplicated to all state machines dependent on it. In the library example, considering
the book actor, the order and out states are interesting states. They are duplicated
to all concerning fragments. This step, in some aspects, is equivalent to the step that
transforms a general Petri net (PN) to a decomposed Petri net (DPN) form. In fact, when
we subdivide the class into fragments with some synchronized actions between them, the
original PN for the class has been decomposed into DPN form in which each unit in DPN
is the model for one class fragment *. This process is illustrated in Figure 4.4. In this
figure, each fragment is inherently modeled by a state machine (or unit in DPN). The
whole actor class is thus a DPN. It is easy to see that each class is modeled graphically
by a DPN. Or that graphic-based DPN can be easily converted to an equivalent CRE for
algebraic analysis purpose. The formal definition is quite similar to that of DPN as in
Chapter 2, Section 2.3.

4.4 Concurrent Modeling with Decomposed Petri Net

In this section, we first try to model the dynamic behavior of each state machine separately.
According to the previous section, each class consists of several state machines with respect
to role fragments. State machines execute in concurrent (and possibly synchronized)
manner. Referring to the definition of DPN in Chapter 2, Section 2.3.3, this model fits
well to the language of a DPN. The state machine model is the basis where class and
role-based system are formulated upon. Comparing with our approach in dealing with
static structure mentioned previously in Chapter 3, it is very similar in the sense that
the primitive elements in our model, regardless static or dynamic, are mapped to roles.
Unlike static structure modeling, the dynamic behavior need to formalize that of each
state machine. Whereas, in the former, mixin terms are presumably regarded as atomic.
Their internal structures are not visible from outside. Furthermore, they are unified to
classes or types in OO type theory.

After formalizing dynamic behavior of a typical state machine, we utilize that formal-
ization to construct the compound state machines with greater granularity, namely classes

3This “interesting” point concept could be related to the hot-spot concept mentioned later in Chap-
ter 5, Section 5.4.2. Further research are needed to clarify the relationship between these two concepts.

“Inside each class fragment (i.e. unit in DPN), there is no synchronization. The synchronization only
exists between roles of the same actor. Our model has simplified role entities by assuming that there is
no synchronization within a role. This assumption is generally true even in a more restrictive sense of no
concurrency within a role. In reality, a role is often modeled separately by a regular state chart (i.e. a
finite-state machine) whose power does not cover concurrency and synchronization.
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Figure 4.4: A library circulation system includes two actors book and patron. The dashed
box encloses an extension handling lost book collaboration. Note that synchronized states
are duplicated to all concerning layers.

and system as a whole. In the dynamic model of class, as the state machines are composed
in some dependency ordering, the dependency mapping w of formal static structure in
Section 3.3 is applicable again. However, in dynamic diagram for classes, such kind of
collaboration dependency is much more complicated and fine-grained if comparing with
that of static case. Frequently, states in one collaboration are actually nodes of state chart
in another. Such a state is called * “interesting”. We also need a mapping on “interesting”
states. This mapping takes a state in a machine as an input and maps it to a list of
corresponding states in other layers which mean the same state after being duplicated
in all concerning layers (referring to Figure 4.4). This is actually the enhancement from
formal definition of DPN in Chapter 2.

4.4.1 A State Machine with DPN
Formal Model of a State Machine

In a layered design, each actor class’s dynamic behavior is defined as a tuple (T, S, U, M),
where

e 1" is a finite set of symbols called transition alphabets.

e S is a finite set of symbols called state alphabets.
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e UU is a ordered list of tuples each of which contains a state machine, namely U
contains a set of units (uq,us,...,u,), where each unit is a 4-tuple, i.e. w; =

(Pia Cia Eia Az) 5-

e M is a mapping from an item in S to a subset of S, i.e. M : S — 29, Note that M
has to satisfy: Vsy,so € S i s9 € M(s1) = M(s2) = M(s1).

We may neglect initial configuration C; in each unit if for each role, there is only
sequential execution thread. The above definition is the most general case in which there
is a possibility of concurrency inside each role. Comparing with the original definition of
DPN, we note there are some substantial differences. Firstly, that is set of state symbols
S to represent the alphabet of states (or places in DPN). Mapping M is used to represent
the result of node duplication for a state in a layer. It groups nodes in different state
machines together because they are all duplicated from the same node state in the topmost
layer.

Each symbol in transition alphabet is a representation of an external event raised by
other actor objects. On the other hand, the formal specification for each state machine is
specified separately in units u;. The formal dynamic behavior of an unit is shown below:

Definition 18 Fach unit u; is a 4-tuple of (P;, C;, X;, A;) as in the following:
e P; is a finite set of places or states; and P; C S.

e C; is an initial configuration which s a function from the set of places to non-
negative integers and a special symbol “*” i.e. C;: P; — N U {x} (the symbol
“*7 - as previously defined, is unbounded number of tokens which is used for modeling
concurrent and synchronized properties inside each role) °.

e Y, is a finite set of transition labels, ¥; C T.

e A; is a relation between P; x ¥; and Py, i.e. A; C (P; x 3;) X P; (A; represents all
transition arcs in the unit).

Let U be the universal set of all units defined as above definition. U = Sx (SxN U {x})x
T x ((SxT)xS). We can note the difference between this concurrent state machine
by DPN with a sequential state machine defined in Definition 14. The main difference
is the introduction of initial configuration C; which is used to handle the concurrency.
Transition label ¥; and arc A; combination is equal to the combination of input alphabet
Y, output alphabet A, transition R and output symbol L. P; in this definition is similar
to S in the former. Within an unit, there is no synchronization. Between several units,
synchronization is expressed by transitions with the same name. As shown in Chapter 2,
Section 2.3.3, that transition is enabled if the source states of that transition in all units
have non-zero tokens. If it is enabled, it can fire to generate a new configuration C] such

°In a fully expanded form, the sets of state alphabets in units are disjoint, i.e. i #j: P, N P; = ().
6This term C; could be dropped in case a role executes in sequential style. This configuration is only
useful to deal with concurrency within role entity.
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that the number of tokens in source state is decremented by 1, while at the other end of
transition, that number is incremented by 1.

Given the above formal definition, we note that even though a full definition consists
of 4-tuple, namely (7, S, U, M), the most important part lies in U. In general, a common
context, 7" and S are simply representing the universal sets of transition (7) and state
(8) labels respectively. Hence, we can uniform all specifications with the same pair of
(7,S8). In addition, we define a specification in a normal form if the mapping function
M is an empty set. This normalizing process can be done by repeatedly reducing the
cardinal of M. Each time, this process takes out all associated states by a single label
and updates that label accordingly to the unit specifications. A general specification can
be transformed into a normal form by replacing all the associated state labels in all units
by the same state label. Certainly, after the transformation, the initial specification is
completely equivalent to the normalized specification as they specify the same compound
state machine. The normalized specification will have the form of (7,8, U',0) = U'.
In subsequent discussion, we only consider the normal forms of classes, i.e. ignoring
transition, state alphabets (T'= T and S = §), and setting mapping set M to empty set
(. As a result, the initial 4-tuple is equivalent to the ordered list of units u;’s.

Before going into definition of evolution relationship between dynamic behaviors of
classes, we first define the that relationship between units.

Definition 19 An unit with empty dynamic behavior is a special 4-tuple of: (P,C, ¥, A)
=(0,0,0,0). This is indeed the specification for dynamic behavior of an empty role. This
special empty unit s represented by symbol € € U.

Definition 20 Let uy, us be two units according to the Definition 18 above, The unit us
s more evolved than uy, i.e. uy Cg ug, if:

e PCPh,

e Vp e P :Ci(p) < Cyp), with a presumption: Yn € N : n < “«”,

o X C 2,

o A, C Ay.
Like Chapter 3, the subscript R is used in place of role since an unit defined here is a
dynamic behavior of a role.

Primitive Operators on Units

In addition to evolution relation in units, we need to define some basic composing or
extracting operations between these. Our ultimate formal model of role-based design
relies on them as later discussed. Therefore, before going into the details of formal model
for classes and role-based systems, there are some basic operators to be defined in advance.
Together with definition of units, they serve as basic building blocks for subsequent class
and system models.

41



The basic operators are defined over two units. They are difference and composition
type operators, denoted as ©r and @p respectively. The semantic of ®g is to create a
new unit formed by the union of two state machines. On the other hand, &g returns a
new one having attributes (nodes, transition arcs) in the first unit but not in the second.

For the primitive operators, they are actually the operations of merging and subtracting
two state charts.

Given two units vy and uy € U, the basic composition and difference operators between
those should have the types:

.@RZZ/{XZ/{—)U.
.EBRZMXZ/[—)Z/{.

Definition 21 Let uy = (P, C1,%1,A1) and uy = (P, Co, 35, Ay) be two units, i.e.
uy,us € U. The composition and difference operators between these two are defined as:

1. Ui @R U2 = Ue = (Pm 067 Z:C7AC)

.PC:PIUPQ,

eVn € PN P : C(n) = Ci(n ) + Cy(n), and a presumption: if (Cy(n) =
%) V (Cy(n) = %), then C.(n) =

e Vne P\ Pp:C.n)=Ci(n),
e Vne P\ P :C.n) =Cyn),
¢« Y, =%, U,
e AL =A;UA,.

2. if uy Cg ug, ug S uy = ug = (Py, Cyq, Xg, Ay)

o Py=h,

e Vn € PNP,: Cyn) = Cyin) —Ci(n), and a presumption: if (Ci(n) = *),
then Ce(n) = *

OVnePg\Pl:Cd(n):Cg(n),
L Ed:EQ;
L] Ad:Az.

In the difference operator definition, if the number of tokens for the same node in both
units are “*”, we face an indeterminate state in the result. In that case, we assume that
value is also “*”, i.e. unbounded.
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4.4.2 Dynamic Behavior Formalization of a Role-based System

After defining units and its primitive comparison relationship C and two basic operators
@r and O, the formal specification of a role-based system is derived. Like static structure
approach, a specification should include:

e a set of class labels Ca,
e a set of collaboration labels Co,

e a state machine mapping which corresponds a role of a class in a collaboration with
a state chart,  : CAxCO — U,

e dependency mapping between collaboration w : CO — 2¢©.

For a general class definition, we may need a mapping M of state labels in several state
machines of the same class. However, as shown in Section 4.4.1, we will duplicate that
label to all corresponding places so that mapping M is an empty set ().

Definition 22 The dynamic behavior modeling of a role-based system s is formally de-
fined as a tuple of (Ca,Co,d,w) in which:

e Ca CCA is a set of constituent class labels.
e Co CCO is a set of collaboration labels.
e §:CAXCO — U is a role mapping of a class to a specific collaboration.

e w:CO — 2°C is the dependency constraints between collaborations in the systems.

The only difference between static and dynamic models are the substitution of unit set
U in place of mixin set M. In the same way, we need to define a unit-labeling function
At U — L which returns the label associated with an unit. The reason to introduce A
function is the same for that of static structure modeling.

The set of role-based systems defined in the way above is denoted as S;.

4.4.3 Evolutionary Domain of Role-based Dynamic Behavior
Specification

Based on the normal form and evolution relationship between units, we derive the evolu-
tion relationship between systems in terms of dynamic behavior. The evolution relation-
ship between elements in S is defined as below:

Definition 23 Let s, s, € St be two dynamic specifications, namely s; = (Cay, Coy,61,w1)
and sg = (Cag, C'0g, 02, ws). Sy is more evolved than s,, denoted as sy C sy if the followings
are satisfied simultaneously:

1. C’a1 Q CCLQ,
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2. 001 g COQ,
3. Ya € Cay, o€ Coy:01(a,0) Cg dy(a,o0),
4. Yo € Coy, wi(o) C wy(o).

Similar to static structure formalization, the third condition confirms that all state ma-
chines (units) in the second system are more evolved than their counterparts in the former.
The fourth condition ensures that although each collaboration may evolve separately, the
composition order between those collaborations in the former system are preserved in the
latter. Composition dependency of the former are completely maintained in the latter.

It can be proved from the definitions above that the tuple (Sf, C) forms a lower semi-
lattice. The proof is in Appendix A.2.

Lemma 24 The tuple (S;, T) forms a lower semi-lattice.

Now we go to the definition of composition and difference operators, namely & and &,
in the above semi-lattice structure. The basic operators in Section 4.4.1 are used in this
circumstance.

Comparing to the general definition in Chapter 2, the two operators have a slightly
different forms as:

e O Sf % Sf - 2CA><CO><£><L{><2CO‘

o« & SfX 2(?.A><C(’)><£><L{><2CO S,

Note that the specification fragment is originally defined as a pair of label and specifica-
tion. In this definition, the fragment is assigned to mixin term U and a set of required
collaborations for the mixin instantiation.

Definition 25 Let si,sy € Sf and s1 E sy, The difference between s; and sy, i.e. $30 51
= {(a,0,l,u,sc)| Ya € Caz,0€ Coy:u=70ds(a,0)Ordi(a,0) Nl = Au) A sc=ws(0)}.

For the composition operator, let s € Sf, and s = (Ca, Co,0,w). Given a set of units
d = {(ca,co,l,u,sc)} C CAxCO x L xU x 2°C. The composition s @ d is defined by
iteratively composing each member in d with s. For simplicity, the following definition
does not deal with a set of tuples (ca, co, l, u, sc). Instead, it defines the composition of
s with a tuple only. In case of multiple pairs, we only need to iterate the same process
until all members of the specification fragments set are done.

While inserting a specification fragment to a system, we may encounter two cases. The
first is more simple when this addition does not cause any new class and collaboration
creation. On the contrary, the second case occurs when new class and collaboration is
required.

Definition 26 Lets € Sj, and s = (Ca,Co,0,w). The composition of s with specification
set fragment d = {(ca, co,l, u, sc)} is denoted as s®d = s' = (Cd',Cd, ', u').
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1. if (ca € Ca) A (co € Co) A (A(0(ca,co)) =1) then

Cd = Ca,

Co =Co,

8 (z,y) =6(z,y) VoeCayye€CoA((x#ca)V(yF#co)),
8 (ca, co) = §(ca, co) B u,

Ve € Co,c# co:w'(c) = w(c),

w'(co) = w(co) U sc.

2. if (ca & Ca) V (co & Co) then

Cd =CaU {ca},

Co' = CoU {co},

e Vo € Cd',o € Co such that (a # ca)V (0 # co) : '(a,0) = (a,0),
d'(ca, co) = u,

Vo € Cd',0 # co: w'(0) = w(o),

w'(co) = w(co) U sc, if co € Co,

e w'(co) = sc, otherwise.

An unit u only depends on existing layers in the system when (ca, co, [, u, sc) is added to
the system. For the correct semantic of unit composition, we have, sc C Co.

The label of a state machine contains information about its class and collaboration
interafaces. It is essential that the label is “compatible” with the interface at the position
this fragment is plugged to. The naming function A : &Y — L is already discussed in
Section 4.4.2.

Theorem 27 The set of S; together with above T evolution relation, © and & operators
forms an evolutionary domain (S, C, 0, ®).

This evolutionary domain of role-based dynamic behavior will serve as the basis of
evolutionary development process acting over role-based designs.

4.5 Some Examples

This section focuses on ideas of formalization and evolution of system dynamic behavior so
far. The example in this section is about a simple library system. Firstly, it handles only
very basic operations of a typical library, namely borrowing/returning a book from/to a
library. In such a library, we consider only two main actors: book and patron. Initially,
the system does not support holding book. Later, this new feature is added to the system.
The behavior of both classes are shown in Figure 4.5.

This base system has two state machines, namely uy; = (Py1,C1, 311, A11) and uje =
(P12, C12, %12, Aya) for book and patron respectively. uy; does not initially support holding
book.
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Book state machine Patron state machine

b-loan

b-arr b-ret —pa
order m clear ppy @
b-hald b-lost
p—unpaid

Figure 4.5: The state machines for basic library system.

Original collaboration

Base system

e P, = {order,in,out,res},

e (1 = {(order, 1), (in,0), (out,0), (res, 0)},

e Yy = {barr,bloan,b_ret,b_res,b_unres},

e Ay = {(order,b_arr,in), (in, b_loan, out), (out, b_ret,in), (in, b_res, res), (res, bunres, in)}.

In case of u12, we have:

e Py = {clear,block, owes},

e C15 = {(clear,1), (block,0), (owes,0)},

e Yy = {b.lost,b_pay, b_unpaid},

e Ay = {(clear,b_lost, owes), (owes, b_unpaid, block), (block, b_pay, clear)}.

The place labels are obvious. For transition labels, there is a need to explain: b_arr, b_loan,
b_ret,b_res,b_unres correspond to (book) arrival, loan, return, reserved and unreserved
respectively. On the other hand, b_lost, b_pay, b_unpaid are labels of (book) lost, payment
for the fine on time and overdue.

The initial system is specified as: s = {Ca,Co,d,w} in which:

e Ca = {Book, Patron},

Co = {Base},
e § = {(Book, Base, u11), (Patron, Base, us)},
e w=_0.

If the base system handles book-holding support, the state machine of this functionality
can be expressed as: u = (P,C, 3, A) where

e P = {in, hold},
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e C = {(in,0), (hold,0)},
e ¥ = {b_hold,b_rel},
e A = {(in,b_hold, hold), (hold,b_rel,in)}.

Transitions b_hold, b_rel represent the events of holding and releasing book. The label [ =
A(u) associating with state machine u would be Base_Book_OtherInfo. This unit does
not require the existence of any other collaboration, namely sc = (). Adding the specifica-
tion fragment {(Book, Base, ,u, sc)} to s would results in s' = s®{(Book, Base, [, u, sc)} =
(Cd',C0', 0", w'") where:

e Cd' = Ca = {Book, Patron},
e Co =Co = {Base},
e §' = {(Book, Base, u!,), (Patron, Base, u3)},
e W =w=0.
Here, v}, = u1; ®ru = (P}, Cly, X1, Al;). By Definition 21, we should have:
e P/, = {order,in,out,res, hold},
e (1, = {(order, 1), (in,0), (out,0), (res, 0), (hold, 0)},
o Y\, = {barr,bloan,b_ret,b_res,b_unres,b_hold, b_rel},

e A\, = {(order,b_arr,in), (in,b_loan, out), (out,b_ret,in), (in, b_res, res),

(res,b_unres,in), (in, b_hold, hold), (hold, b_rel,in)}.

Certainly, uyy Cg u), and hence, s C s'.

Now, our system is extended with capability of charging user a fine in case he/she lost
a book. In addition, once the book loss is notified, our system will automatically order
to publisher a new copy of the book. This new extended system is shown in Figure 4.6.

This system s” = (Ca",Co",0",w") is formed by adding above s’ with a specification
fragment set of two elements {(Book, Extension,ly, eq, s¢1), (Patrol, Extension, ly, e5, s¢2)}
where eq, ey corresponds to the extended behavior of Book and Patrol in Extension col-
laboration respectively. We should have:

e [y = \ey) = Ext_Book_OtherInfo,
e [y, = Aey) = Ext_Patrol_OtherInfo,
e sc; = sc; = {Base}.
e; and ey are extensions of base state machines, and formally expressed as:

1. ey = (P,Ch, %21, Ay)
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Figure 4.6: The state machines of extended library system.

P, = {order, lost, out},

C1 = {(order,0), (lost,0), (out,0)},

¥, = {b.lost,border},

Ay = {(out, b lost, lost), (lost, b_order, order)}.

2. ey = (P, (2,39, Ay)

e P, = {clear,owes},

o Cy = {(clear,0), (owes,0)},
o Yy = {blost},

o Ay = {(clear,b_lost, owes)}.

Note that states order, out in Book state machine are duplicated, while for Patron case,
states clear and owes is copied. Transition label b_lost are copied in both actors. New
transition label b_order shows the book-ordering event raised after notifying a book loss.

An important point is on Patrol class. We can see that state machine for this class
(base and extension) share the same transition arc b_lost from state clear to owes. It
seems the transition in those two units are the same but in fact, they are different in the
action activated on transition fire. In the base layer, the action simply records that the
user owes to our library a book, while in the extension, his/her fine record is updated by
the price of that book. If composing two state machines together, we need to compose
two actions in the resulting compound state chart.
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Adding extensions e; and e; to s’ results in s = (Ca”,C0",¢",w"). Certainly, s’ C
s" = s @ {(Book, Extension,ly, ey, sc1), (Patrol, Extension, ly, €3, sco) }. After some sim-
ple steps, we can derive the specification for s”,

e Cd" = {Book, Patron},

e Co" = {Base, Ext},

e 0" = {(Book, Base, u!,), (Patron, Base, uy5), (Book, Ext,e1), (Patron, Ext,ey)},
e W' = {(Ext,{Base})}.

49



Chapter 5

Evolutionary Development Process
in Layered Designs

5.1 Program Development Process

In the previous chapters, we have established a formal foundation for the specification
domain of role-based systems.

The development process maps mixins in classes and collaborations in specification
correspondingly to the fragments in program. Each mixin is initially mapped with a class
fragment whose class is set with the mixin’s class name. This mapping is very transparent
from specification to implementation. The evolution relationship in mixin specification
also reflects in the respective class fragment implementing that mixin. If a mixin is more
evolved than the other, then its class fragment in program domain is also more evolved
than the other’s counterpart with respect to OO type evolution. This is a rationale
behind skipping the formalization part of evolutionary program domain and claiming the
structure similarity between specification and program domains.

As the program fragments corresponding to mixins are completed, the fragments sharing
same class name are composed. This class fragments composing step relies on two basic
factors. Firstly, programming language should support separate mixin implementation.
In fact, this property is guaranteed by many OO programming languages. The second
factor is involved with composing program fragments. The composition mechanism is
different between languages. Some OO languages utilize inheritance feature for mixins
composition. C++ is among these. On the other hand, some AOP-flavored languages deal
with composition via a compositor. This compositor parses directives written in high-level
script to compose modules written in some typical OO language. Notable languages with
this mechanism are Hyper/J and AspectJ which compose layers written in traditional
Java.

The specification of role-based systems includes both static and dynamic behavior speci-
fication discussed in Chapters 3, 4 respectively. Of course, the set of specification S should
involve both &; and S;. On the other hand, let P be the set of role-based programs. Due
to its transparency its the specification domain, intuitively, the structure of element in
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P is similar to that in S. As discussed in Chapter 2, Section 2.1.3, an evolutionary
development process, mapping F : S — P has to satisfy 4 basic properties, namely:

e Realizability: any wvalid specification is realized by at least a program. It turns
to the question of what a valid specification is and how to verify the validity of a
specification.

e Monotonicity: This property is ensured due to the monotonic co-variation of mixin
specification and class fragment.

e Incrementality: The role-based approach even gives simpler effort in evolving role-
based specification, i.e. F(S @g AS) = F(S) ®&p F'(AS). This is clearly sim-
pler compared with the general form defined in Section 2.1.3, F(S ®gs AS) =
F(S) ®&p G(F'(AS)). This is due to the transparency between specification and
implementation domains.

e Locatability: Due to the above property, the locator L is greatly simplified. The
effort to maintain specification - program mapping is very simple.

From the above observation, transparency property has helped a lot during software
development and evolution. In addition, simple composition (extraction) keeps the effort
to integrate the change in program with the existing system small. Overall, these two
properties eases software development and evolution work.

5.2 Formal Evolutionary Development Process

Based on previous formal specification of role-based designs, this section presents a formal
process description in transforming specification to program. As the target domain is
dependent on its underlying facility including programming languages, it is better to
express the target in a pseudo-language. Later, those constructs of this pseudo-language
are mapped to specific constructs if we implement programs in the respective programming
language.

As a first step toward a complete development process description, this section tries to
deal with formal static structure specification. In case of dynamic behavior, this section
does not present the way mapping the dynamic behavior of a role! to the pseudo-code
due to inherent difficulty in dealing with dynamic behavior and the lack of investigation
in that area.

With those restrictions in mind, the formal mapping deals with static structure spec-
ification only. Therefore, the mapped programs are only represented as class skeletons
whose contents are later determined by dynamic behavior specification.

!Possibly by a DPN unit or an equivalent language construct such as CRE mentioned in Chapter 4
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P = defn* s*

defn = outermizin | innermizin
| mixin m = m compose m
| interface i extends i* {meth*}
outermizin = mixin m extends m { innermizin* }
innermixin = mixin m extends m :: m implements i* { field* method* }
| outermizin
field = t fd
method = tmd (arg*) { body }
arg = twvar
body = s*|abstract
§ = a statement
var = a variable name or this
m = a class name, a mixin name or Object
¢t = 1interface name or Empty
fd = a field name
md = a method name
t = mli

Figure 5.1: Pseudo-language basic syntax: A statement is treated as a primitive syntactic
unit because the details of statement types are not relevant to subsequent discussion in
this section.

5.2.1 Mixin-Supporting Pseudo-Language: A Basic Syntax

On the program side, a minimum pseudo-code is assumed to implement necessary con-
structs for a role-based program. The pseudo-code used here is actually very similar to
the syntax extensions for MixedJava. As a result, the terminology is quite Java-flavored.
Another note is, since this pseudo language inherently supports mixin, during real imple-
mentation state, a language not facilitating mixin like Java requires a little workaround
if this formal development process is still utilized. That case will be explained later in
Section 5.3.2.

In the Figure 5.1, a basic syntax notation for the language is displayed. Note that
the mixin declaration is responsible for both mixin and concrete class declarations. In
addition, statements are treated as primitive units and their detailed syntactic notations
are skipped due to its irrelevance to subsequent discussion. The subsequent formal de-
velopment process only deals with mixin, class or interface skeletons. It is not concerned
with the internal details of methods in those entities. Statement syntactic details are only
needed in case of generating codes from dynamic behavior model which, as mentioned
before, is left for future work.

A program in this language consists of a sequence of declarations followed by a sequence
of statements. A declaration could be either an outer mixin, an inner mixin, a mixin
composition or an interface definition. An interface, as expected, could extend several
interfaces. At the same time, its content are only method declarations. An outer mixin
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extends? another outer mixin. Within this outer mixin, there is a list of associated inner
mixins. Each inner mixin could be defined by a regular mixin class implementing fields
and methods. The notation of m: :m shows a fact that this inner mixin extends another
intentionally mapped inner mixin belonging to an outer mixin referable from the initial
inner mixin scope. Or even an inner mixin could be an outer mixin itself.

A field is declared with a type and a name. Similarly, a method signature is associated
by a name, several arguments with types and a body. That body could be either concrete
or abstract.

5.2.2 Linear Ordering of Mixin Layers

According to Chapter 3, a collaborative static structure s is formalized as a tuple of
(Ca,Co,d,w). This section presents a framework mapping a static structure to a partially
complete mixin-based pseudo-code program.

Let consider the w : CO — 299 element. It specifies the ordering dependency between
collaborations. This framework only deals with acyclic dependency collaborations. In
case of cyclic dependency, a subtle technique, later mentioned in Section 5.4, is utilized
to break the cycle. However, that technique is only applicable in some specific cases
requiring internal structures of collaborations and roles. As a consequence, at this stage,
that technique is skipped.

If we represent the dependencies between collaborations by a directed graph in which
each collaboration is a node, a directed edge starts from a collaboration to the collabo-
ration it depends on. Each node is then associated by an in-degree identifying how many
layers are dependent on it. There are some lemmas involving with dependency acyclic
graph.

Lemma 28 In an acyclic directed graph, there is at least one node with zero in-degree.

The proof is simple and based on the finite set of nodes. That node of zero in-degree is
obviously the collaboration in which there is no layer depending on it.

Lemma 29 Given an acyclic directed graph, if one or more nodes are taken away from
the graph together with their inward directed edges, the resulting subgraph is still acyclic.

The proof is clear. If a subgraph is cyclic then its parent graph is certainly cyclic.
The formal evolutionary development process is defined as: F : & — P. It definition is
defined as following;:

Definition 30 Let s € S be a role-based specification, s = (C'a,Co,d,w), the mapping of
s to program domain is defined as: F(s) = F,(Ca,{o},d/0,w/0) < F(s/o) where o is a
layer with zero in-degree.

2This terminology use is due to Java. Actually, I would prefer to use the term “inherit” of C++ to
express meaning of this relation. That is because most of cases, an outer mixin uses the facility provided
by the layer above to achieve its goal, while that upper layer does not care about the existence of the
initial outer mixin lying below itself, it does not need “extension”.
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In this definition, s/o represents the a new system after deleting collaboration o. That
system is like the one created after vertical compacting s whose roles in o are set to empty.
d, = /0 is a the mapping of roles in collaboration o to respective mixin terms. Similarly,
w, = w/o is a set of collaborations o depends on. The operational semantic of <1 operator
is to initialize the second parameter as the super-mixin of the first parameter.

Of course, the dependency subgraph resulted from s/o is acyclic due to Lemma 29.
It should contain at least one zero in-degree node because of Lemma 28. That node is
selected for recursive call up to the top layer. During this recursive call, the specification
s gets simpler and simpler.

F, is a fragment mapping for outer mixins.

Definition 31 The mapping definition F, for outer mizin is defined as: F,(Ca, {0}, d,,w,)
Fi({a}a {0}7 607 Wo) = E(Oa/a, {0}, 50, wo).

In the definition, a is a class label, i.e. a € Ca. Moreover, Ca/a is a set of class
label after removing a from Ca. F; maps inner mixins to program domain. If Ca = (),
then F;(Ca, {0}, d,,w,) = € - empty mixin. The operational semantic of operator < is to
append the first parameter to the head of list represented by second parameter.

Definition 32 Mapping F; is defined as: F;({a}, {0}, 0, w,) = do(a, 0)[SuperLayer: :a].

Keyword SuperLayer is used to specify the layer that will be set as super-mixin of
current outer mixin. SuperLayer::a simply means the mixin whose name is a in that
layer. The above definition of inner mixin mapping results in a mixin m (equal to d,(a, 0))
whose name is set to a. Furthermore, its parameter is SuperLayer: :a.

5.2.3 From Formal Mixin Mappings to Pseudo-Language

This section shows how the formal definition of system, outer-mixin and inner-mixin
mapping in Definitions 30, 31, 32 really mean to pseudo-language. This section reverses
the approach dealt in the previous section, namely starts from lowest level and then goes
bottom-up.
For F; mapping, a role specification is mapped with a mixin term whose super-role is
parameterized. In pseudo-code, F;({a}, {0}, d,,w,) should be represented as:
mixin a extends Superlayer::a [implement i]{
Interface i1 specifies the protocol this role performs within the layer.
Internal content of this mixin is mixin term m = d,(a,0) = §(a,o0).
Sometimes, this inner mixin could be an outer mixin itself.

ki

In case of F, mapping, a layer specification is mapped to a list of inner mixins, en-
closed by an outer mixin declaration to limit the scope of those mixins. In pseudo-code,
F,(Ca, {0}, d,,w,) can be expressed as:
mixin o extends <Parameter> {

In general, outer mixin does not need to implement any interface.

Inner mixin list.
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mixin FstRole extends SuperLayer::FstRole [implement i;]{
etc

}

mixin SndRole extends SuperLayer::SndRole [implement iy]{
etc

}

etc

mixin LastRole extends SuperLlayer::LastRole [implement 4;]{
etc
}
}
With F mapping, it only order outer mixin in a consistent manner and then provides
a mechanism to instantiate the super-mixin at each layer from top to bottom.

mixin o0; extends <Parameter> {
Inner mixin list declaration.

}

mixin o0y extends <Parameter> {
Inner mixin list declaration.

}

etc.

mixin o, extends <Parameter> {
Inner mixin list declaration.

}

o, is the first zero in-degree node in the whole dependency directed graph. After
removing o,, the subgraph results in o0,_; as its next zero in-degree candidate. This
process is iterated until oy .

The final system is constructed by composing outer mixins in the following way.
mixin 09 = 02 compose 0;
mixin o03p; = 03 compose 09
etc.
mixin 0,1 = 0, COMPOSEe O(p_1).1

The compose operator initializes the second parameter as the super-mixin of the first.
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Node Container
[ Alloc collaboration Node for Alloc Container for Alloc }
[ Bintree collaboration Node for Bintree Container for Bintree }
{Timestamp collaboration ~ Node for Timestamp Container for Timestamp }
[ Sizeof collaboration Node for Sizeof Container for Sizeof }

Figure 5.2: Complex data structure design and implementation based on mixin layers.

5.3 Implementing Layered Designs

The example used for illustrating of implementing layered designs shown in Figure 5.2
is taken from [32]. The example is about a data structure design. In this simplified
example, there are two classes participating in some collaborations of the design. They
are: Node class and Container class. All data nodes in this data structure are instances
of node class, while there is only one instance of container class per data structure. The
target data structure consists of four different collaborations: BinTree, Alloc, TimeStamp
and SizeOf. BinTree captures the functionality of a binary tree. Alloc is in charge
of memory allocation. TimeStamp is responsible for maintaining timestamps for data
structure and element updates. SizeOf simply keeps track of the data structure size. This
section will show a revised mixin layer definition mechanism in C++ from the original
version in [32]. After that, the paper will present a different way in building mixin layers
with Java. The layer composition mechanisms in C++ and Hyper/J are also presented
as we go through the detailed implementation.

5.3.1 Mixin Layer Mechanism with C++ - A Template Compo-
sition Approach

C++ programming language provides facility in defining mixins. That mechanism is
accomplished via template. In this approach, each mixin layer corresponding to a col-
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laboration is implemented as a C++ template class whose super-class is parameterized.
Each role inside that collaboration is respectively mapped to a nested class in that mixin
layer. This inner mixin also inherits from the corresponding role in super-class of outer
mixin. The name of an inner mixin is hard-coded into source. So does the name of its
super-class. For correct mapping between inner mixin of lower layer with its super-class
of layers above, the respective names must be specified correctly. Otherwise, if the name
mismatches, the lower role could not instantiate because its parent is not found. In gen-
eral, for the convenience, all inner mixins associated with the same actor are assigned with
the name of that actor. The composition at a layer occurs by instantiating its super-class
with a concrete class of all layers above it. This process results in a new composite con-
crete class capable of handling all collaborations down to this layer. This new concrete
class will be then fed to the immediate below mixin layer as its super-class. This process
continues in that manner until the bottom layer is reached. The composition mechanism
is characterized by inheritance. This approach composes classes in C++ source code level.

To make Node and Container classes instantiable, a concrete class for the root is
needed. The top layer is the Alloc collaboration requiring some type instantiation for
its Node class member. The simplified C++ source code from top to bottom layer in this
data structure layered design is a revised version having some enhancements compared
with the original version taken from [32].

template <class InstantiationType> class ALLOC{
typedef InstantiationType EleType;
public:
class Node {
EleType m_tElement;
// The actual stored data

public:
...// methods definition

s

class Container {

public:
// The actual type of stored data
virtual Node* NodeAlloc();
// memory allocation call must be virtual
// etc.

}s

s

template <class SC> class BINTREE: public SC{
// SC stands for SuperCollab.
public:
typedef typename SC::EleType EleType;
// type passing mechanism between layers.
// This basic type is visible in this layer.
typedef typename SC::Node SN;
typedef typename SC::Container ST;
// SN stands for SuperNode.
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+s

// ST stands for SuperContainer.

class Node: public SN {
// Mixin name is hard-coded into definition.
// Upper layer must consist of the class Node.
// Otherwise, error - superclass not found.
Node* m_pPLink;// parent link
Node* m_pLLink;// left link
Node* m_pRLink;// right link
// Node data members
public:
...// node interface

+s

class Container: public ST {

Node* m_pHeader;// point to head of tree.
public:

virtual Node* NodeAlloc();

void Insert(EleType e) {...};

void Delete(EleType e) {...};

Node* Search(EleType e) {...};

};...

template <class SC> class TIMESTAMP: public SC{
public:

typedef typename SC::EleType EleType;
typedef typename SC::Node SN;
typedef typename SC::Container ST;

class Node: public SN {

// Similar to class Node in BINTREE layer.
time_t m nCreationTime, m_nUpdateTime;
// Node data members

public:
bool MoreRecent(timet t) {...};

...// node interface

s

class Container: public ST {
time_t m_nUpdateTime;

public:
virtual Node* NodeAlloc();
bool SearchNewer (EleType e, timet t) {...};
// This method uses a call to ST::Search(e)
void Insert(EleType e) {...};
// This method uses a call to ST::Insert(e)
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template <class SC> class SIZEOF: public SC{
public:
typedef typename SC::EleType EleType;
typedef typename SC::Node SN;
typedef typename SC::Container ST;

class Node: public SN {
// etc.

+s

class Container: public ST {
int m_nCount;
public:
virtual Node* NodeAlloc();
Container () :mmnCount (0), ST() {};
void Insert(EleType e) {...};
// This method uses a call to ST::Insert(e)

}s
}s
The target data structure is formed by composing mixin layers. A binary storing integers
and maintaining time information and size is defined a type ABTS standing for above four
collaborations, namely Alloc, BinTree, TimeStamp, SizeOf.
typedef SIZEOF< TIMESTAMP< BINTREE< ALLOC< int > > > > ABTS;

The Node and Container classes in this data structure can be retrieved from ABTS as:

e typedef ABTS::Container ABTS_Container;
o typedef ABTS::Node ABTS_Node;

The usual operations on binary tree structure with timestamp and counter manage-
ment can be achieved via collaborations of some objects from above two classes. As each
collaboration is encapsulated in separate module, we have created a group of components.
By plugging those components together in a consistent manner, namely preserving de-
pendency constraints between layers, we can produce a family of products. Furthermore,
any change in a collaborative protocol is localized to the component implementing that
collaboration. Because the interface between layers are considered very stable, as long
as new changes in the component implementation compromise with that interface, new
component can replace its old version in any existing products without a need to alter
the implementation of other components.

5.3.2 Mixin Layer Mechanism in Java and Hyper/J - A MDSOC-
Based Approach

Java does not have the facility to support mixin directly. Thus, mixin layer implemen-
tation by Java is much different from C++ approach. The implementation mechanism
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m_tElem

Node > Element

-~ - Node()
Element m_tElem;

IntElement StrElement

switch opt
0: new StrElement;
1: new IntElement;

Figure 5.3: Builder pattern to instantiate different concrete Element classes by Node class
constructor depending on option.

of collaborations in this section is not based on mixin. In fact, this section presents a
workaround method to implement mixin layer in case the underlying language does not
support mixin. This workaround is rooted at MDSOC model. As previously claimed,
collaboration is a special case of concern. Hence, mixin layer for a collaboration can be
equally considered as the representation of a concern in MDSOC. In Java, each concern
can be encapsulated in a separate module. Hyper/J then acts as a compositor to synthe-
size those concerns. Characteristically, this section shows another way to simulate mixin
layers in implementing collaborative designs.

In this example, as above, every collaboration requires only two classes, namely Node
and Container. In Java-based implementation, the outer mixin is not explicitly pro-
grammed as the case of C++. Instead, we wrap each outer mixin into a separate Java
package. Each package has two class definitions. In addition, each package is mapped by
Hyper/J script to a separate feature. Because of four collaborations to be implemented,
there are four features to be specified in Hyper/J project file. To deal with type instanti-
ation at the top layer, namely EleType for class Node, the Builder design pattern is used
as illustrated in Figure 5.3 [11].

The top layer, besides Node and Container classes, has another class called OpenDS
(Open Data Structure) for main program. Its job is to request the container member
to “process” a node. The meaning of this call is different in layers. In Alloc layer, it
asks the container to allocate memory for a node. On the other hand, in BinTree layer,
container will insert a value to the tree. However, these process methods in containers
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at different layers will be merged into a composite process method by a composition rule
in Hyper/J - mergeByName. This composite process method calls all member process
methods in sequence.

public class OpenDS{
public static void main ( String[] args ){
m_nOption = args([0];
m_cCont = new Container();
Element e; e
try{ m_cCont.Process(e);

catch ( Exception e ){...};
}; // END main

private static Container m_cCont;
private static String m nOption;

s

// Alloc collaboration definition
package collab.Alloc;
public class Container{
// Container role definition
public Node AllocNode(int n, String s){
Node res = new Node(n, s);
return res;

}s

void Process(Element e){
// do something appropriate for the
// element e in this layer

-

}; // END class Container

package collab.Alloc;
public class Node{
// Node role definition
public Node(int n, String s){
// create m_tElem according to option s.

s

private Element m_tElem;
}; // END class Node

The Java code for the other three layers, namely BinTree, TimeStamp and SizeOf, are
quite similar to that of Alloc layer. The source code of those layers are skipped here.

Once a layer implementation is completed. We can compile inner mixins (Container
and Node classes) separately into Java’s .class files. Hyper/J compositor then comes
in to deal with those .class files. It looks for its three component files in the project.
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// Hyperspace specification file: OpenDS.hs
// Instructing Hyper/J to compose all Java
// classes in provided packages.
hyperspace CollabHyperspace
composable class collab.Element.*;
composable class collab.Alloc.*;
composable class collab.BinTree.*;
composable class collab.TimeStamp.*;
composable class collab.SizeOf.x*;

// Concern mapping file: concerns.cm

// It specifies the feature (collaboration)
// corresponding to each package.

package collab.Element : Feature.Alloc
package collab.Alloc : Feature.Alloc

package collab.BinTree : Feature.BinTree
package collab.TimeStamp : Feature.TimeStamp
package collab.SizeOf : Feature.Size(Of

// Hypermodule specification file: ABTS.hm
// It instructs Hyper/J to merge classes,
// methods with each other by name.
hypermodule ABTS
hyperslices:
Feature.Alloc,
Feature.BinTree,
Feature.TimeStamp,
Feature.SizeOf;
relationships:
mergeByName;
override action Feature.BinTree.Node.Value
with action Feature.Alloc.Node.Value;

end hypermodule;

Denote A.B for mixin B in layer A; and B::C for method/data member C in class B.
The override instruction in the above hypermodule is to override any Value function
call of Node class defined in BinTree layer by that in Alloc layer. BinTree layer is not
aware of the contents inside each node because that value is associated with m_tElem
data member in Alloc. BinTree will have to refer to Alloc::Value to get the right
value of node for binary search, insertion or deletion. To make each package a sepa-
rate compilation, the reference to Value function call in BinTree is initially directed
to a dummy Value method in BinTree.Node mixin. That dummy method is eventu-
ally overriden by Alloc.Node: :Value function (as written in hypermodule file ABTS.hm).
People may wonder another way of not implementing BinTree.Node: :Value() but leav-
ing it as an abstract method. Later we can map that abstract method with the method
Alloc.Node: :Value() to complete the implementation. This does not work simply be-
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cause that abstract method would give BinTree.Node as an abstract class. That means
we can not create any BinTree.Node instance within the context of this BinTree layer.
But for a binary tree insertion, a Node creation is needed for any Element value while
doing the appropriate binary tree insertion. Thus, Node instance, even with respect to
BinTree layer only, must be concrete.

package collab.BinTree;
public class Node{

// Node role in BinTree collaboration.

Element Value(){
//dummy implementation, overridden by
//Node: :Value() in Alloc collab.

return null;

}s
}; // END class Node

There is another important note on dependency between layers. BinTree layer and
TimeStamp layer are both working on value insertion operation for a Element value.
BinTree layer only deals with usual binary tree insertion, deletion and search. For search-
ing operation, it provides a method whose signature is ¢ ‘Node FindNode(Element e)’’
defined within BinTree layer’s context. On the other hand, TimeStamp layer needs to up-
date the timestamp associated with a node when its value is inserted into a data structure.
Its insertion does not care about the way node is inserted and stored, i.e. whether the
higher layer deals with those values according to a binary tree or a linked list management
scheme. In this case, that higher layer is binary tree. The main goal of node insertion in
this TimeStamp layer is to update the current timestamp to a node which has been just in-
serted by the layer above. To do that, it needs to get a pointer to the place where that value
was inserted. That pointer can be retrieved through BinTree.Container: :Search().
Through the pointer, TimeStamp.Container can update the current timestamp of system
to the appropriate node. This relation between these two BinTree and TimeStamp layers
identifies a dependency from the latter on the former. To deal with this dependency, an
abstract method ¢ ‘Node FindNode(Element e)’’ is declared in TimeStamp.Container
class definition. By declaring in such manner, TimeStamp package can be separately com-
piled but the Container class is not instantiable for its abstract method. That method
will be merged with the above method of the same signature in BinTree.Container dur-
ing Hyper/J composition. That is called “declarative complete” [34].

package collab.TimeStamp;
import java.util.x*;

import collab.Element. *;

public abstract class Container{
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// class fragment for TimeStamp collaboration.
// methods definition.

void InsertNode(Element e){

// Upper layer will insert the element.

// That InsertNode() runs before this method.

// This layer only updates time of that node.
Calendar c = Calendar.getInstance();
Date d = c.getTime();// get update time
Node n = FindNode(e);
// retrieve the pointer to that node.
n.UpdateTime(d) ;

s

abstract Node FindNode(Element e);

+s

package collab.BinTree;
import java.io.*;
import collab.Element. *;

public class Container{
// class fragment for BinTree collaboration.
Node FindNode(Element e){...};

etc.// other methods and data declaration.

+s

5.4 Discussion

Previous sections are about the design of collaborative design. The implementation map-
ping from designs to different languages are also presented. Two mixin layer mechanisms
are mentioned, namely real mixin layer (in C++) and MDSOC-based layer (in Java). This
section devotes for the strength and weakness as those two are compared with each other.
After that, some typical issues arisen during programming mixin layers are discussed.

5.4.1 Comparing Two Methods

Problems in Mixin Layer Approach

As commented in Section 5.3.1, corresponding inner mixins between layers, in general,
should be the same name. Nevertheless, in some inevitable cases requiring adaptation, we
can redirect a mixin to inherit a super-class with a different name via typename facility
in C++ like the following:

typedef typename SC::DiffContainer ST;

This declaration will direct Container role to inherit attributes from DiffContainer
actor of a layer above it. However, all name mappings must be declared right at the
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source code. This is not a problem in Hyper/J as we can connect mixins with different
names together by using equate directive in hypermodule file.

In the former approach, because all inner mixins are written with their corresponding
outer mixin, we face the tightly coupled problem between inner mixins and outer mixin.
As a single role evolves while other roles in the same collaboration is not changed, this
type of coding is not appropriate for such an evolution. In such a case, we have to change
the source code of inner mixin which is the same as of outer mixin. And a recompilation of
a new inner mixin activates the recompilation of the whole outer mixin and inner mixins
of other roles.

Because the mixin composition happens at the source level in C++, a new product
built from available correctly-compiled collaborations always requires recompiling. That
is not true for Java and Hyper/J because the later operates on byte-code level (.class
files).

The above disadvantage of the former approach is largely due to the limitation of C++
template static binding. In C+4, when a template is used, its source must be included.
Mixin layer composition always operates on template source.

As pointed out in [32], because composition is not commutative, there are some se-
mantical dependency orders between layers. That means the data structure formed by
BINTREE< ALLOC< > > is not the same as that of ALLOC < BINTREE< > >. To enforce
a correct composing order, low-level codings, such as assertion or supplementary data
members, are essential in outer mixin class definition. Additional member variables in
outer mixins for composing assertion do not properly reflect the encapsulation of mixins.
That is because a collaboration is a separate code module and it is intended for reuse in
other contexts. Hence, some additional variables like P_NoSizeof dummyl, P_NoTimestamp
dummy?2...[32] as introduced in asserted version of BINTREE outer mixin definition are not
appropriate. If we utilize this BINTREE collaboration in different application without
SIZEOF and TIMESTAMP collaborations, such dummy variables are not relevant in that
circumstance. By introducing those variables into class definition, more dependencies
are added between collaborations. A layer should be supplied as a component with a
well-designed interface and semantic, and the ordering scheme to plug those components
together must follow their interfaces and ordering dependencies. Therefore, in our view,
composing order should be specified at higher level, outside of mixin definition.

Mixin layer approach therefore requires a concise way to specify layer constraints in
addition to the mixin layer definition itself. At the moment, ordering collaborations are
still done manually. In MDSOC-based approach, a concern-mapping layer written in Java
also suffers the same kind of dependency constraints. However, Hyper/J comes to help in
dealing with specifying those dependencies between features, although the specification is
not very explicit. It is desirable to construct a pre-processor for mixin layer dependency
specification which is somewhat similar to Hyper/J. Given a set of mixin layers, this pre-
processor can automatically detect the dependency between layer based on their interfaces
and give the correct composition order. How an interface is represented is still not clear
though. As later mentioned in Section 5.4.2, the characteristics of layer dependency are
hot-spots. Some layers supply concrete definitions for hot-spots, while others use those
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hot-spots without concerning about their actual implementations. To tackle this type of
problem, a layer interface should specify clearly the hot-spots supplied and required by
its member mixin classes. This would be a topic of future work.

Setting aside its drawback due to language (i.e. C++) capability, mixin layer also
suffers another setback because of its theoretical nature. This weakness is independent of
the underlying languages. As mixin layer composition in C++ utilizes linear inheritance
at its basis, there could be a problem if there exists a cyclic dependency between layers. At
the first thought, there is no way to order such layers into a linear composition sequence.
Dealing with such a problem requires a subtle technique to rearrange layers. The core of
this technique is to break a selected link between two layers in the cycle. After breaking
the link, dependent layer A with respect to that link will be on top of the other layer B
according to usual composition scheme because the link is not considered. That link will
be implicitly implemented as methods of layer A depending B will be relegated downward
to B. Because some methods can not be relegated in such a way, not all dependencies can
be solved in this technique. That is why only special links satisfying some properties can
be selected as candidates to be broken.

On the other hand, cyclic dependency does not pose serious problem to mechanism
in Hyper/J. The only concept in this mechanism is group matching without any con-
sciousness about order between layers. A layer calling a method without knowing about
its implementation should declare that method abstract. Another layer will defines con-
cretely that method. At the same time, the second layer will declare a different method
as abstract which is in fact implemented by the first method.

Problems in MDSOC-based Layer Approach

Comparing with Java, because of its generic programming support with template con-
struct, initial type instantiation for collaboration implemented by C++-based mechanism
is uniformly treated for any primitive type or concrete class. Hence, the type parameter
like SIZEOF < TIMESTAMP < BINTREE < ALLOC <t> > > > is very simple for t whether
it is a primitive type (int, string) or any concrete class. This advantage is due to the
language capability of C++4. Currently, Java does not have template construct, it treats
primitive types and reference types differently. Therefore, type instantiation in Java-based
program is more complicated (via abstract class Element).

The characteristic of mixin layer mechanism in C++ is based on real mixin. There exist
some “stable“ relations between layers. A role in a layer can call methods provided by its
superclass in layer above. Hence, the interfaces between layers are in general well-defined
and stable. Moreover, as corresponding methods in different layers will be eventually
replaced by a respective method at the bottom layer, control logic inside this method
can be very complicated as new collaborations are composed. This inheritance-based
composition mechanism helps defining very complicated logic dealing all layers at once.
In fact, this mechanism allows interleaving corresponding methods into a single composite
method which represents all initial methods if they are ever called.

On the contrary, Hyper/J approach has no idea about relations between layers. Role in
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one layer can not call a method of the same actor in other layers. The characteristic of this
approach is biased toward the so-called flattening technique. In that technique, there is
only encapsulation feature in OO world. There is no traditional features of OO technology
like inheritance and polymorphism. Hyper/J flattens all classes of roles in layers. It then
matches classes from the same actor together via grouping the corresponding attributes
(i.e. methods and data). Calls to abstract methods are eventually replaced by those calls
to concrete counterparts (eg. FinNode method in TimeStamp is abstract and eventu-
ally mapped to FindNode method in BinTree layer). Concrete methods are merged into
one composite method executing its element methods in a schedule according to layers
composition order (eg. composite Process in main program is defined as a sequential
execution of Process methods in layers Alloc, BinTree, TimeStamp and SizeOf). Due
to their unawareness of the other layers, control logic inside the composite methods are
generally simple as they are either merge all or select one method from several member
methods. Methods can not be interleaved in this approach. A constituent method either
runs as a whole or does not run at all (when it is overridden). This is due to the fact
that at the moment, MDSOC model considers a method as atomic [34] 3. Comparing
with real mixin layer mechanism in C++, this approach is much less powerful. In ad-
dition, most of the time, role in a layer requires the existence of some method in other
layer, it has to declare the method in the calling layer as well (like the case of abstract
TimeStamp.Container: :FindNode above).

An example to illustrate problems in Java and Hyper/J approach is about dependency
between BinTree and SizeOf layers. The constraint is related with Insert() method
in these layers. As expected, BinTree layer inserts a value in the binary as usual whether
that value is already in the tree or not. However, with the addition of Size0f collabora-
tion, some extra cares are needed. If the value is not in the tree, node counter variable
m_nCount in SizeOf.Container increases by 1. Otherwise, it stays the same as it was.
As the order of execution, the method Insert() in BinTree layer will be executed ahead
of that in Size0f layer. As the first method is done, the value is in the tree regardless of
its initial availability before composite Insert call or not. Hence, SizeOf layer loses the
track of that value in order to update m_nCount properly. In the following, a workaround
is proposed to this problem. A supplementary variable is added to both layers to keep
track of the existence of a value before Insert call of BinTree is made. That variable is
passed to SizeOf layer for later proper update. This variable is redundant and imposes
extra synchronization between two layers. It leads to bad design and possible flaws as
system evolves.

package collab.SizeOf;

public abstract class Container{

// class fragment for SizeOf collaboration.
...// other methods
void InsertNode(Element e){

3In our opinion, to overcome this setback, MDSOC model must provide a way to refer features from
using side to other supplying sides. In mixin layer, layers are referred to each other via super-class.
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if (m_bAlreadyThere == false){
// node is not there before
m_nCount++;

}

else{

s

private boolean m_bAlreadyThere;

// synchronization point with BinTree layer.
private int m nCount;

s
package collab.BinTree;
public class Container{
...// other declarations.
void InsertNode(Element e){
m_bAlreadyThere = false;
// assume this value is not in tree yet.

// update m_bAlreadyThere accordingly.

s

private boolean m_bAlreadyThere;

// synchronization point with SizeOf layer.

+s

On the other hand, in C++ case, the real mixin implementation is simple as it reuses
many of calls in upper layers. The above job can be easily achieved in real mixin layer as
the following.

template <class SC> class SIZEOF: public SC{
public:
...// other definitions.
class Container: public ST{
...// other definitions.
void Insert(EleType e){
Node *pn = (Node *) ST::Search(e);
ST::Insert(e);
if (pn == NULL) m_nCount++;

return;
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5.4.2 Programming Issues Within Mixin Layer Context

It is important to note that though mixin layer programming is based on OO technology,
programming in mixin layers are more difficult and much different from traditional OO
programming. In the traditional OO approach, we only need to consider one-dimensional
horizontal interface formed between classes. In the mixin layer implementation paradigm,
there are two dimensions of concerns. The first is between classes as usual OO. The second
is between layers and hence vertical. Handling calls in horizontal direction is the same
as basic OO programming. The points to be discussed further are related with vertical
direction, namely layer-crossing calls. Due to space limitation, those points are not shown
in details in this paper.

With the implementation of the small example about composite data structure, we have
observed some frequent function calls between roles in different layers. Each of call type
requires a different technique.

e Memory management calls for objects: allocating and deallocating memory of some
roles and objects. These calls in general has to be dynamically bound (virtual
functions and virtual destructors in C++).

e Up-calls in the same actor: a role uses some methods in the same actor of upper
layer. In C++, it is simple since calls are directly accessible via inheritance.

e Down-calls in the same actor: a role relegates a call to lower layer to deal with. This
type of calls is usually accomplished via virtual calls.

e Skew up- and down-calls: a role in a layer issues a call to another actor in different
layers. This is usually done via two-step function call. The skew call is assigned to
a horizontal call from source role to target role. Then a vertical (up or down) call
is directed to the appropriate layer.

Layer dependency specification is another point to be discussed. A layer may depend
on several layers. In our previous data structure example, BINTREE, TIMESTAMP and
SIZEQF layers are all depending on ALLOC layer. The link between these dependencies
is the instatiation type EleType defined in ALLOC layer. At the same time, TIMESTAMP
and SIZEOF layers are dependants of BINTREE for their uses of ST: :Insert call in their
respective function calls. Between layers, those are hot-spots in which layers synchronize
with each other. Hot-spots are either data member, type parameter (EleType) or method
(Insert). Identifying hot-spots properly and including them in layer component interfaces
could be very useful in verifying the consistency of a collaboration-based design.
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Chapter 6

Future Work

6.1 Dynamic Behavior Formalization

This thesis has provided some preliminary attempts on dynamic behavior modeling of
role-based designs. So far most of the work has focused on static structure which is,
in general, regarded as easier than the counterpart in dynamic behavior. Furthermore,
static structure only reveals visible interfaces of roles from outside. The real contents
inside class fragments are constructed from role dynamic behavior.

Formal model of dynamic behavior is so important in verifying the consistency of a
design. In addition, that model is used as a basis of a mapping framework of evolutionary
development process between specification domain to program domain written in some
selected programming languages.

As presented in Chapter 4, the dynamic behavior could be represented by Decomposed
Petri Net (DPN). However, this is just a preliminary attempt. Another way is to use
concurrent regular expressions (CRE). Both ways need time to validate their respective
power and efficiency.

6.2 Evolutionary Development Process in Selected
Programming Languages

So far, this research has mentioned about mapping between static structure model to
some representative languages such as C++, Java. However, this mapping only deals
with the external interface, not with the contents inside of each role. To do that, this
formal mapping, from arguments of previous section, requires formal model of dynamic
behavior.

Constructing the formal model for dynamic behavior is interesting enough. Based on
such a model, a framework of code generator would be even more appreciated. Such a
framework is inspired by research about domain-specific languages. The general rule of
such a code generator is to encapsulate state charts of roles in a high level language for
its high abstraction and simplicity. Then a generator will produce codes associated with
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transitions and nodes in composite state charts. The codes are written in some regular
programming languages such as Java or C++.

6.3 Formalization and Evolution of AOSD Paradigm

We claim that collaboration-based approach is a special case in AOSD paradigm. Our
research so far has dealt with only static structure of role-based designs. It is preferable
to extend the work to more advanced model, namely MDSOC or AOP. In addition to
static structure analysis, the work on dynamic behavior evolution of AOSD paradigm are
much essential.

As AOSD is a promising approach to build software with low cost and high evolvability.
A formal specification and representation of AOSD is essential to understand the static and
dynamic behavior of a system constructed under the approach. However, it is necessary to
find the common between current two major trends in AOSD. One approach would start
with MDSOC and subsequently extend toward AOP. This is my favorite approach since
MDSOC treats concerns as primitive unit by hyperslice encapsulation. It focuses much
more on interconnection between hyperslices rather than details inside each hyperslice.
This trend is rather in favor of large-grained modules. In my opinion, the formalization of
static structure specification is the first to be dealt with. That will utilize much experience
from MDSOC. Later step in tackling dynamic behavior will require the help of AOP.

A comprehensive formal specification of concern (MDSOC) and aspect (AOP) is needed
for specification domain of such systems. Based on this specification, the complete system
model of static structure and dynamic behavior is specified. This process is similar to
that having been applied in role-based designs. The details are following:

e primitive units in concerns and aspects.

e concern and aspect formal representations.

formal tag set representation.

dependency order and semantic constraints between concerns and aspects;

the changes in static structure, dynamic behaviors due to evolution process: com-
position and difference operators on concerns and aspects.

In Hyper/J, primitive units contributing for each concern are methods, data members.
However, in AspectJ, it is possible to control execution flow at an arbitrarily nested depth.
In AOP, experiments have shown that it often leads to more compact code but sometimes
the program semantic is altered in an unexpected way.

6.4 Evolutionary Development Process in AOSD Paradigm

Evolutionary development process serves as a bridge between specification and program
domains. Even though we want to formalize both specification and program sets as evo-
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lutionary domains whose structures are similar, the effect of the transformation mapping
F is not negligible.

Some analysis on software developed by Java and Hyper/J, and possibly Aspect]J are
to be considered in reference to general evolutionary development framework.

e mapping F definition: how various units in specification domain are mapped to
program fragments in Java.

e how Hyper/J (or Aspect]) integrates those program fragments in Java together in
a consistent way.

e run time concern update: dynamic behavior of concern-composing system.
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Appendix A

Semi-lattice Structure

A.1 Static Structure Modeling

This section gives the proof of semi-lattice structure of (S;, C) where S; is a set of
static structure specification defined in Chapter 3, Section 3.3, whereas C is the evolution
relation in static specification set §; as shown in Definition 9.

Let S1 = (001,001,51,(.01), S1 = (C(ZQ,COQ,(SQ,CUQ), 51 = (003,003,53,(4}3).
1. Order relation C in &;:

Reflective property: In term of OO type theory, we have: V type ¢ : ¢ Cg c.
Therefore, Va € Cay, o € Coy : 01(a,0) Cg §1(a,o0).

In addition, Ca; C Cay, Co; C Co;p and Yo € Coy, wi(0) C wi(0). According to
Definition 9, s; C s;. Hence, the C relation is reflective. O

Asymmetric property: Suppose s; T s and so C s;. From Definition 9, we have:
Ca; C Cay and Cay C Cay. Hence, Ca; = Cay = Ca. Similarly, Co; = C'o, = Co.

For a class a € Ca, a collaboration o € Co, as s; C s, 01(a,0) Cg da(a, 0). Because
sy C s1, by similar step, d2(a,0) Cg 61(a, o).

In term of OO type, the above two relations lead to the equality: Va € Ca, o €
Co: 01(a,0) = d3(a,0). That is, 6; = ds.

It is easy to derive that Yo € Co : wy(0) = wy(0), i.e. w; = wo.

Comparing s; and sg, we have: C'a; = Cay, Co; = Cos, 6 = 09 and w; = wy =
s1 = sg. The C relation is asymmetric. O.

Transitive property:

Suppose s; C s9 C s3, we could derive:
e Ca; C Cay C Caz = Cay C Cas,
e (o CCoy CCo3= Coy CCos,

e Consider a € Cay, 0o € Co, we have: §;(a,0) Cg 02(a,0) and dy(a,0) Cg
d3(a,0). For OO type theory, we have: Va € Cay, o € Coy : 61(a,0) Cg
d3(a, 0).
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e Vo € Cop,wi(0) C wy(0) and of course, wy(0) C ws(0). As a result, Vo € Coy :
wi(0) C ws(o).

According to Definition 9, s; C s3. The C relation is transitive. O

2. The existence of greatest lower bound:

To prove this part, we assume some basic properties of OO types. In the set of OO
types, the evolution relation between type is an order relation. For any two types
t1, 1o, the greatest supertype to both is the intersection of those types, denoted as
tl |_|R tg.

Applying that argument to static structure specification set, given two specifciations
s1 and s9, the greatest lower bound of s; and sy, 1M sy, is the tuple (Ca, Co,d,w),
where:

e Ca=Ca;NCas,

e Co=CoNCoo,

e Va € Ca, o€ Co:d(a,0)=0d(a,0) Mg d(a,o).

e Voe Co,w(o)={z | z€wi(o) Az € wso) Az € Co}.
We can prove easily that (s; M sg) C s and (s; M sg) T sy. Furthermore, for any
s C sy and s C sy, s C (81 M s2). The intersection of s, sy exists. Indeed, it is the
greatest “super-specification” of both s; and s,. O

3. The existence of L specification:

This special specification L= (0,0, 0,0) = e. It is quite easy to prove that Vs € S,
el s. O

A.2 Dynamic Behavior Modeling

This section proves the semi-lattice structure of (S;, E) where Sy is a set of all dynamic
behavior specification defined in Chapter 4, Section 4.4.2, while C is the evolution relation
in the specification set S as shown in Definition 23.

The proof of semi-lattice structure for dynamic behavior is very much identical to that
of previous Section A.1.

1. Order relation C in S;:

As the relation C is defined on the assumption of relation Cp in OO types, and
relation C in general set. The latter two relations are reflective, asymmetric, tran-
sitive. It is obvious that our evolution relation C is also reflective, asymmetric and
transitive. O
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2. The existence of greatest lower bound:

To prove this part, we assume some basic properties of decomposed Petri nets.
In the set of DPN, the evolution relation between DPN is an order relation. For
any two DPNs wq,us, the greatest subgraph to both is the intersection of those
graphs, denoted as uy Mg us. The intersection of two graphs contains the common
nodes and arcs in both graphs. In case of DPN, we need to deal with configuration
C : P — N U{x}. The configuration at a node in the intersection is set to the
minimum value of configurations for that node in both former graphs.

Applying that argument to dynamic behavior specification set, given two specif-
ciations s; and s,, the greatest lower bound of s; and sy, s; M sy, is the tuple

(Ca,Co,d,w), where:
e Ca=Ca;NCasy,
e Co=CoNCoo,
e Va € Ca, o€ Co:d(a,0)=0d(a,0) Mg d(a,o).
e Voe Co,w(o)={z | z€wi(o) Az € wso) Az € Co}.
We can prove easily that (s; M sg) C s and (s; M sg) T sy. Furthermore, for any
s C sy and s C sy, s C (81 M s2). The intersection of s, sy exists. Indeed, it is the
greatest “subgraph” of both s; and s,. O
3. The existence of L specification:

This special specification L= (0,0,0,0) = e. It is quite easy to prove that Vs € Sy,
el s. O
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Appendix B

Open Data Structure
Implementations

This appendix gives the detailed implementation of mixin layers. The codes are written
in C+4 and Java. As told in previous chapters, the illustrated example is about an open
data structure encapsulating several collaborations. Within this data structure, there is
only two classes, namely Node and Container.

B.1 C+H+ Template Composition

The source files written in C++ for the data structure are in the followings:
e C++ template file definition, OpenDS.h
e Main program, Collab4.cpp

e Makefile for compiling the project, Makefile
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/] ==
// Template definition file OpenDS.h

#ifndef __OPENDS_H__

#define __OPENDS_H__

#include <sys/time.h>
#include <time.h>
#tinclude <stdio.h>

#define TRUE 1
#tdefine FALSE O

template <class InstantiationType> class ALLOC{
typedef InstantiationType EleType;

public:
class Node{
EleType m_tElement; //The actual stored data.
public:
Node () {
// Constructor can not be virtual, so for dynamically bound constructor
// of Node, refer to virtual Container::NodeAlloc()
m_tElement = 0;
s

/* This workaround for memory deallocation not dynamically bound */
virtual “Node(){// virtual destructor to delete composite Node.
s

/* End of workaround */

void SetValue(EleType e){
m_tElement = e;

};

EleType GetValue(){
return m_tElement;

};
};

class Container{
public:
/* This workaround for memory allocation not dynamically bound */
virtual void* NodeAlloc(){
Node *p = new Node;
printf ("ALLOC:: nodesize = %d\n", sizeof (*p));
return p;
s

/* End of workaround */
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};
};

template <class SuperCollab> class BINTREE: public SuperCollab{
public:

typedef typename SuperCollab::EleType EleType;

typedef typename SuperCollab::Node SuperNode;

typedef typename SuperCollab::Container SuperContainer;

class Node: public SuperCollab: :Node{
Node *m_pPLink; //Node pointer data members.
Node *m_pRLink;
Node *m_pLLink;
public:
Node() : SuperNode: :Node(){
// Constructor can not be virtual, so for dynamically bound constructor
// of Node, refer to virtual Container::NodeAlloc()
m_pPLink = NULL;
m_pRLink = NULL;
m_pLLink = NULL;

};

/* This workaround for memory deallocation not dynamically bound */
virtual “Node(){// virtual destructor to delete composite Node.

};

/* End of workaround */

Node #*ParentLink(){
return m_pPLink;

};

Node *RightLink(){
return m_pRLink;

};

Node *LeftLink(){
return m_pLLink;

};

void SetParentLink(Node *p){
m_pPLink = p;

};

void SetRightLink(Node *p){

m_pRLink = p;

};

void SetLeftLink(Node *p){
m_pLLink = p;

};

void SetValue(EleType e){
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SuperNode: :SetValue(e);
s

};

class Container: public SuperCollab::Container{
Node* m_pHeader; //Container data member
public:
Container(){
m_pHeader = NULL;
s

“Container (){
if (m_pHeader == NULL){
printf ("Empty Container...\n");
return;

}

printf ("Non-empty Container destructor called...\n");
PruneBranch (m_pHeader->RightLink()) ;
PruneBranch (m_pHeader->LeftLink());
delete m_pHeader;
m_pHeader = NULL;
s

void Insert(EleType e){
if (m_pHeader == NULL){
//m_pHeader = new Node;// not dynamically bound, requires workaround.
m_pHeader = (Node *) NodeAlloc();
m_pHeader->SetValue(e);
m_pHeader->SetLeftLink (NULL) ;
m_pHeader->SetRightLink (NULL) ;
m_pHeader->SetParentLink (m_pHeader) ;
return;

Node *cp = m_pHeader;
Node *ptemp;
bool totheleft;
while (TRUE){
if (cp—>GetValue() < e){//Insert to the right branch
ptemp = cp—>RightLink();
if (ptemp == NULL){
totheleft = FALSE;
break;
}
cp = ptemp;
}
else if (cp->GetValue() > e){//Insert to the left branch
ptemp = cp->LeftLink();
if (ptemp == NULL){
totheleft = TRUE;
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break;

}
cp = ptemp;

}

else{//it is there
return;

}

}

//up to here: ptemp = NULL.

// ptemp = new Node; // not dynamically bound, require workaround.
ptemp = (Node *) NodeAlloc();
ptemp->SetValue(e);
ptemp->SetLeftLink (NULL) ;
ptemp->SetRightLink (NULL);
ptemp->SetParentLink(cp);
if (totheleft)
cp—>SetLeftLink(ptemp) ;
else
cp->SetRightLink (ptemp) ;

return;

};

void Delete(EleType e){// delete a node with value e in current BINTREE layer.
Node *pn = Search(e);
if (pn == NULL)// nothing to delete
return;

Node *pcs;// pointer to closest smaller value,
// i.e. the rightmost leaf node in the left branch.
pcs = GetClosestSmallerValue(pn);
if (pcs == NULL){// There is no left branch under node pointed by pn.
pn->ParentLink () ->SetRightLink (pn->RightLink());
delete pn;// virtual Node destructor.
pn = NULL;
}
else{// There exist a left branch under node pointed by pn.
pn—->SetValue (pcs->GetValue());
if (pn->LeftLink() == pcs){// left branch under pn having 1 leaf only
pn->SetLeftLink (NULL);
}
else{// Left branch having more than 1 leaf.
pcs->ParentLink () ->SetRightLink (NULL) ;

X
delete pcs;// workaround by virtual Node destructor.
pcs = NULL;

3

return;

};
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Node* Search(EleType e){
if (m_pHeader == NULL)
return NULL;

Node *cp = m_pHeader;
while (cp != NULL){
if (cp—>GetValue() < e)
cp = cp—>RightLink();
else if (cp—>GetValue() > e)
cp = cp->LeftLink();
else{//it is there
return cp;
}
}
return NULL;//not found
s

/* This workaround for memory allocation not dynamically bound */
virtual void* NodeAlloc(){

Node *p = new Node;

printf ("BINTREE:: nodesize = %d\n", sizeof (*p));

return p;
s

/* End of workaround */

protected:
virtual void PruneBranch(Node *pn){
if (pn == NULL)
return;
PruneBranch (pn->RightLink());
PruneBranch(pn->LeftLink());
delete pn; // workaround with virtual Node destructor.

3

Node* GetClosestSmallerValue(Node *pn){
Node *pl = pn->LeftLink();
if (pl == NULL)// There is no left branch
return NULL;

Node *cp = pl;
while (cp->RightLink() != NULL)
cp = cp—>RightLink();

return cp;

};

};
};

template <class SuperCollab> class TIMESTAMP: public SuperCollab{
public:
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typedef typename SuperCollab::EleType EleType;
typedef typename SuperCollab::Node SuperNode;
typedef typename SuperCollab::Container SuperContainer;

class Node: public SuperCollab: :Node{
time_t m_nCreationTime;
time_t m_nUpdateTime; //Node data members
public:
Node () : SuperNode(){
// Constructor can not be virtual, so for dynamically bound constructor
// of Node, refer to virtual Container::NodeAlloc()
m_nCreationTime = 0;
m_nUpdateTime = 0;
s

/* This workaround for memory deallocation not dynamically bound */
virtual “Node(){// virtual destructor to delete composite Node.
s

/* End of workaround */

bool MoreRecent(time_t t){
printf ("Checking for timestamp at Node...\n");
if (t < m_nUpdateTime)
return TRUE;
else
return FALSE;
};

void SetUpdateTime(time_t t){
m_nUpdateTime = t;
s

void SetCreationTime(time_t t){
m_nCreationTime = t;

};
};

class Container: public SuperCollab::Container{
time_t m_nUpdateTime; //Container data member
public:
bool SearchNewer (EleType e, time_t t){
Node *pn = (Node *)SuperContainer::Search(e);
if (pn == NULL)
return FALSE;
return pn->MoreRecent (t);

};
void Insert(EleType e){// update timestamp.

Node *pn = (Node *) SuperContainer::Search(e);
SuperContainer::Insert(e);
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time_t curtime;

char *ptime;
time(&curtime) ;

ptime = ctime(&curtime) ;
printf ("%s\n", ptime);

if (pn != NULL){//the value is already in the tree.
pn—->SetUpdateTime (curtime) ;
}
else{ //newly inserted node.
pnr = (Node *) SuperContainer::Search(e);
// of course now pn != NULL
pn->SetCreationTime (curtime);
pn->SetUpdateTime (curtime) ;

};

/* This workaround for memory allocation not dynamically bound */
virtual void* NodeAlloc(){

Node *p = new Node;

printf ("TIMESTAMP:: nodesize = J%d\n", sizeof (*p));

return p;
s

/* End of workaround */
};
};

template <class SuperCollab> class SIZEOF: public SuperCollab{
public:

typedef typename SuperCollab::EleType EleType;
typedef typename SuperCollab::Node SuperNode;
typedef typename SuperCollab::Container SuperContainer;

class Node: public SuperCollab::Node{ //This class not needed in this layer.
public:
Node() : SuperNode(){
// Constructor can not be virtual, so for dynamically bound constructor
// of Node, refer to virtual Container::NodeAlloc()
s

/* This workaround for memory deallocation not dynamically bound */
virtual “Node(){// virtual destructor to delete composite Node.

s

/* End of workaround */

};

class Container: public SuperCollab::Container{
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int m_nCount; //Container data member
public:
Container() :m_nCount(0), SuperCollab::Container(){//Constructor

};

void Insert(EleType e){
Node *pn = (Node *) SuperContainer::Search(e);
SuperContainer::Insert(e);
if (pn == NULL) m_nCount++;
return;

};

void Delete(EleType e){
Node *pn = (Node *) SuperContainer::Search(e);
if (pn !'= NULL){
SuperContainer: :Delete(e);
m_nCount--;
}

return;

3

int Size(){
return m_nCount;

};

/* This workaround for memory allocation not dynamically bound */
virtual void* NodeAlloc(){

Node *p = new Node;

printf ("SIZEOF:: nodesize = %d\n", sizeof (*p));

return p;
s

/* End of workaround */
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/] ==
// Main program file Collab4.cpp

#ifndef __OPENDS_H__

#include "OpenDS.h"
#endif

#include <stdio.h>
#tinclude <unistd.h>

typedef SIZEOF< TIMESTAMP< BINTREE< ALLOC< int > > > > Collab4Int;
typedef Collab4Int::Container Collab4Container;
typedef Collab4Int::Node Collab4Node;

main(int argc, char *argv[]){
Collab4Container cont;
Collab4Node node;

int i = 3;

cont.Insert(3);
sleep(1);
cont.Insert(-1);
sleep(1);
cont.Insert(-3);
sleep(3);
cont.Insert(-1);
sleep(2);

bool recent = cont.SearchNewer (i, 20000000000) ;
if (recent == TRUE)

printf ("Current node in container is newer!\n");
else

printf ("Current node in container is older!\n");

printf ("OpenDS size: J%d\n", cont.Size());

cont.Delete(-1);
printf ("After deleting, OpenDS size: %d\n", cont.Size());
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/] ==
// Makefile of the C++-based project

[/ =mmmmm

0BJS = Collab4.o

0BJS_DBG = Collab4_dbg.o

CC = g++

DEBUG_FLAG = -g # empty now, but assign -g for debugging

Collab4 : ${0BJS}

$(CC) -o Collab4 ${0BJS}

clean:

rm *”

Collab4.0 : Collab4.cpp OpenDS.h
$(CC) -c Collab4.cpp

Collab4_dbg : ${0BJS_DBG}

$(CC) $(DEBUG_FLAG) -o $@ ${0BJS_DBG}
Collab4_dbg.o : Collab4.cpp OpenDS.h
$(CC) $(DEBUG_FLAG) -c -o $@ Collab4.cpp
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B.2 Java and Hyper/J

The source files written in Java and Hyper/J for the data structure are in the followings:
e Element abstract class file, Element . java
e Integral element class file, IntElement. java
e String element class file, StrElement. java
e Node class in Alloc collaboration, /A1loc/Node. java
e Container class in Alloc collaboration, /Al1loc/Container. java
e Main testing program, /Alloc/OpenDS. java
e Node class in BinTree collaboration, /BinTree/Node. java
e Container class in BinTree collaboration, /BinTree/Container. java
e Node class in TimeStamp collaboration, /TimeStamp/Node . java
e Container class in TimeStamp collaboration, /TimeStamp/Container. java
e Node class in SizeOf collaboration, /Size0f/Node. java
e Container class in SizeOf collaboration, /Size0f/Container. java

e Concern mapping files, /Alloc/concerns.cm, /BinTree/concerns.cm,
/TimeStamp/concerns.cm and /Size0f/concerns.cm.

e Hyperspace file, OpenDS.hs

e Hypermodule to create a AB data structure, AB.hm

e Hypermodule to create a ABT data structure, ABT.hm

e Hypermodule to create a ABS data structure, ABS.hm

e Hypermodule to create a ABTS data structure, ABTS.hm

e Project makefile, Makefile
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/] =

// Element class file definition Element.java

/] =
package collab.Element;
public abstract class Element{

public abstract int Compare(Element m) ;

public abstract String ToString();
}; // END class Element
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/] =

// Integral element class file IntElement.java
package collab.Element;
public class IntElement extends Element{

int m_nValue;
public IntElement (int n){

System.out.println("Instantiating Element with IntElement..

m_nValue = n;

};
int Value(){return m_nValue;};

public String ToString(){
String temp = new String();
return temp.valueOf (m_nValue);

public int Compare(Element m){
if(m instanceof IntElement){
IntElement temp = (IntElement) m;
if (m_nValue < temp.Value())
return -1;
else if (m_nValue == temp.Value())
return 0;
else
return 1;
}
else
return -2; // incomparable
};
}; // END class IntElement
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/] =

// String element class file StrElement.java
package collab.Element;
public class StrElement extends Element{

String m_sValue;
public StrElement(int n){

System.out.println("Instantiating Element with StrElement..

m_sValue = new String() + n;

};
String Value(){return m_sValue;};
public String ToString(){return m_sValue;};

public int Compare(Element m){
if (m instanceof StrElement){
StrElement temp = (StrElement) m;
if (m_sValue.compareTo(temp.Value()) < 0)
return -1;

else if (m_sValue.compareTo(temp.Value()) == 0)
return 0;
else
return 1;
}
else

return -2; // incomparable
};
}; // END class StrElement
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/] =

// Node class in Alloc collaboration - file Node.java

e
package collab.Alloc;

import collab.Element. *;

public class Node{

public Node(int n, String s){
if (s.compareTo("0") == 0)
m_tElem = new StrElement(n);
else
m_tElem = new IntElement(n);

};

Element Value(){
return m_tElem;

};

void SetValue(Element e){
m_tElem = e;

};

private Element m_tElem;
}; // END class Node
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// Container class in Alloc collaboration - file Container.java

A
package collab.Alloc;

import collab.Element. *;
import java.io.*;

public class Container{

public Node AllocNode(int n, String s){
Node res = new Node(n, s);
return res;

};

void Process(Element e){
System.out.println("Allocating layer is active.");

}
}; // END class Container
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/= -

// OpenDS class for main testing program - file OpenDS.java

package collab.Alloc;

import java.io.;
import java.util.Random;
import collab.Element. *;

public class OpenDS{

public static void main ( String[] args ){
if (args.length < 1){
System.out.println("Usage: java collab.Alloc.0OpenDS opt [loopcount]");
return;
}
m_nQOption = args[0];

int loopcount;

if (args.length < 2)
loopcount = 3;
else
loopcount = Integer.valueOf (args[1]).intValue();

m_cCont = new Container();

for ( int i = 1; i <= loopcount; i++ ){
Node anode = build();
Element elem = anode.Value();

System.out.println("Created node with value of " + elem.ToString());

try{
m_cCont .Process(elem) ;
Thread.sleep(2000) ;
}
catch ( Exception e ){
System.out.println ( "**x Exception in inserting: "
+ e.getMessage());
s
}; // END loop, for i

}; // END main

public static Node build(){
Random rn = new Random();
int num = rn.nextInt();

num = (num >= 0) ? num % 10 : (-num) % 10;

return m_cCont.AllocNode (num, m_nQOption);
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};

Yo/

private
private
// END

END build

static Container m_cCont;
static String m_nOption;
class OpenDS
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/= -

// Node class in BinTree collaboration - file Node.java

/] =

package collab.BinTree;

import collab.Element. *;

public class Node{ // class fragment for BinTree-related collaboration.

void SetLeftLink(Node n){
m_pLLink = n;
};

Node LeftLink(){
return m_pLLink;

};

void SetRightLink(Node n){
m_pRLink = n;
s

Node RightLink(){
return m_pRLink;

};

void SetParentLink(Node n){
m_pPLink = n;
};

Node ParentLink(){
return m_pPLink;

};

Element Value(){
//dummy implementation, overridden by Node::Value() in Alloc collab.
return null;

};

void SetValue(Element e){
//dummy implementation, overidden by Node::SetValue() in Alloc collab.
return;

};

private Node m_pLLink, m_pRLink, m_pPLink;
}; // END class Node
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e

// Container class in BinTree collaboration - file Container.java

/=
package collab.BinTree;

import java.io.;
import collab.Element. *;

public class Container{ // class fragment for BinTree-related collaboration.
Container (){
m_bAlreadyThere = false;
m_pHeader = null;

};

void Process(Element e){
System.out.println("BinTree layer is active.");
InsertNode(e);

s

Node FindNode(Element e){
// return a pointer to that node in tree, if not found: null.
if (m_pHeader == null)
return null;

Node cp = m_pHeader;
Element he;
int comp;

while (cp !'= null){
he = cp.Value();
comp = e.Compare(he);

if (comp == 1)// search value is greater.
cp = cp.RightLink();
else if (comp == -1)// search value is smaller.

cp = cp.LeftLink();
else// it is here
return cp;
}
return null;// not found.

};

void DeleteNode(Element e){
Node p = FindNode(e);
if (p == null)// nothing to delete
return;

Node pcs;//pointer to the closest smaller value,
//i.e. the rightmost leaf node in the left branch of p.
pcs = GetClosestSmallerValue(p);
if (pcs == null){// there is no left branch under node pointed by p.
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p.-ParentLink () .SetRightLink(p.RightLink());

}
else{// there exists a left branch under node p.
P = pcs;
if (p.LeftLink() == pcs)// one leaf only in left branch
p-SetLeftLink(null);
else
pcs.ParentLink() .SetRightLink (null) ;
}
return;

};

void InsertNode(Element e){
m_bAlreadyThere = false;// assume that this node is not in tree yet.

if (m_pHeader == null){
System.out.println("Init tree.");
m_pHeader = new Node();
m_pHeader.SetValue(e);
m_pHeader.SetLeftLink(null);
m_pHeader.SetRightLink(null);
m_pHeader.SetParentLink (m_pHeader) ;
// top tree node points to itself as its parent

X

elseq{
Node cp = m_pHeader;
Node ptemp;

boolean totheleft;

Element he;
int comp;

while (true){
he = cp.Value();
comp = e.Compare(he);

if (comp == 1){// value to insert is greater.
System.out.println("---> Inserting to right branch");
ptemp = cp.RightLink();
if (ptemp == null){
totheleft = false;

break;
3
cp = ptemp;
X
else if (comp == -1){// value to insert is smaller.
System.out.println("---> Inserting to left branch");

ptemp = cp.LeftLink();

if (ptemp == null){
totheleft = true;
break;
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}
cp = ptemp;

X

else{// it is there.
m_bAlreadyThere = true;
return;

}

// up to here ptemp = null
ptemp = new Node();
ptemp.SetValue(e);
ptemp.SetLeftLink(null);
ptemp.SetRightLink (null) ;
ptemp.SetParentLink(cp);
if (totheleft)
cp.SetLeftLink (ptemp) ;
else
cp.SetRightLink (ptemp) ;

return;
};

Node GetClosestSmallerValue(Node p){
Node pl = p.LeftLink();
if (pl == null)// there is no left branch.
return null;

Node cp = pl;
while (cp.RightLink() != null)
cp = cp.RightLink();

return cp;

};

private boolean m_bAlreadyThere;// synchronization point with SizeOf layer.
private Node m_pHeader = null;
}; // END class Container
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// Node class in TimeStamp collaboration - file Node.java

T

package collab.TimeStamp;

import java.util.x*;
import java.io.*;

public class Node{ // class fragment for TimeStamp-related collaboration.
public Node(int n, String s){ // option s is not used.
Calendar c = Calendar.getInstance();
m_dUpdatetime = m_dTimestamp = c.getTime();
System.out.println(n + " is created at " + m_dTimestamp.toString());

};

public void UpdateTime(Date d){
m_dUpdatetime = d;
System.out.println("Node is updated at " + m_dUpdatetime.toString());

s
private Date m_dTimestamp;

private Date m_dUpdatetime;
}; // END class Node
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// Container class in TimeStamp collaboration - file Container.java

/=
package collab.TimeStamp;

import java.io.;
import java.util.x*;
import collab.Element. *;

public abstract class Containerf{
// class fragment for TimeStamp-related collaboration.
Container(){
Calendar c = Calendar.getInstance();
m_dTimestamp = c.getTime();

};

void Process(Element e){
System.out.println("TimeStamp layer is active:
Container created at " + m_dTimestamp.toString());

};

void InsertNode(Element e){
// Upper layer will insert the element into tree via InsertNode().
// That InsertNode() will run before this InsertNode().
// This layer only set the update time for that node in the tree.
Calendar c = Calendar.getInstance();
Date d = c.getTime();// get update time

Node n = FindNode(e);// retrieve the pointer to that node in tree.
n.UpdateTime (d) ;
s

abstract Node FindNode(Element e);

private Date m_dTimestamp;
}; // END class Container
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// Node class in Size0Of collaboration - file Node.java

.
package collab.SizeOf;
import java.io.;
public class Node{ // class fragment for SizeOf-related collaboration.
public Node(int n, String s){ // option s is not used.
System.out.println(n + " is created at SizeOf layer");

};
}; // END class Node
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// Container class in SizeOf collaboration - file Container.java

/=
package collab.SizeOf;

import java.io.;
import collab.Element. *;

public abstract class Container{// class fragment for SizeOf-related collaboration.
Container (){
m_nCount = 0;
m_bAlreadyThere = false;
s

void Process(Element e){
System.out.println("Size0f layer is active: Size = " + m_nCount);

};

void InsertNode(Element e){
if (n_bAlreadyThere == false){// node is not there before
m_nCount++;

}
elseq

System.out.println("Node is there");
}

s
private boolean m_bAlreadyThere;// synchronization point with BinTree layer.

private int m_nCount;
}; // END class Container
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// Concern mapping files in various collaborations - concerns.cm

]

// Concern mapping file of Element package - /Element/concerns.cm
package collab.Element : Feature.Alloc

// Concern mapping file of Alloc package - /Alloc/concerns.cm
package collab.Alloc : Feature.Alloc

// Concern mapping file of BinTree package - /BinTree/concerns.cm
package collab.BinTree : Feature.BinTree

// Concern mapping file of TimeStamp package - /TimeStamp/concerns.cm
package collab.TimeStamp : Feature.TimeStamp

// Concern mapping file of SizeOf package - /Size0f/concerns.cm
package collab.SizeOf : Feature.Size(f
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// Hyperspace file specifying which packages are composable - OpenDS.hs

hyperspace CollabHyperspace
composable class collab.Element. *;
composable class collab.Alloc.*;
composable class collab.BinTree.*;
composable class collab.TimeStamp.*;
composable class collab.Size0f.*;
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// Hypermodule file to compose 2 layers A and B - AB.hm

hypermodule AllocBinTree
hyperslices:
Feature.Alloc,
Feature.BinTree;

relationships:
mergeByName;

override action Feature
action Feature
override action Feature
action Feature
end hypermodule;

.BinTree.Node.Value with \
.Alloc.Node.Value;
.BinTree.Node.SetValue with \
.Alloc.Node.SetValue;
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// Hypermodule file to compose 3 layers A, B and T - ABT.hm

hypermodule AllocBinTreeTimeStamp
hyperslices:
Feature.Alloc,
Feature.BinTree,
Feature.TimeStamp;

relationships:
mergeByName;

override action Feature.BinTree.Node.Value with \
action Feature.Alloc.Node.Value;
override action Feature.BinTree.Node.SetValue with \
action Feature.Alloc.Node.SetValue;
end hypermodule;
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// Hypermodule file to compose 3 layers A, B and S - ABS.hm

hypermodule AllocBinTreeSizeOf
hyperslices:
Feature.Alloc,
Feature.BinTree,
Feature.SizeOf;

relationships:
mergeByName;

override action Feature
action Feature
override action Feature
action Feature
end hypermodule;

.BinTree.Node.Value with \
.Alloc.Node.Value;
.BinTree.Node.SetValue with \
.Alloc.Node.SetValue;
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// Hypermodule file to compose 4 layers

hypermodule AllocBinTreeTimeStampSizeOf

hyperslices:
Feature.Alloc,
Feature.BinTree,
Feature.TimeStamp,
Feature.SizeOf;

relationships:
mergeByName;

override action Feature.BinTree.Node.Value with \

action Feature.Alloc.Node.Value;

override action Feature.BinTree.Node.SetValue with \

action Feature.Alloc.Node.SetValue;

end hypermodule;

108



/] ==
// Makefile of the Java and Hyper/J project

[/ mm

# Environment declaration

JC = javac # Java compiler

JI = java # Java interpreter

HYPERJ = com.ibm.hyperj.hyperj

HS_FLAG = -hyperspace

CM_FLAG = -concerns

HM_FLAG = -hypermodules

OUTPUT_FLAG = -output

VERBOSE_FLAG = -verbose

DEBUG_FLAG = -Xdebug # empty now, but assign -Xdebug for debugging
CURRENT = .

CUR_DIR = $(CURRENT)

ELEMENT_DIR = $(CUR_DIR)/Element

ALLOC_DIR = $(CUR_DIR)/Alloc

BINTREE_DIR = $(CUR_DIR)/BinTree

TIMESTAMP_DIR = $(CUR_DIR)/TimeStamp

SIZEOF_DIR = $(CUR_DIR)/SizeODf

VPATH = .:$(ELEMENT_DIR) :$(ALLOC_DIR) : $(BINTREE_DIR) : $ (TIMESTAMP_DIR) : $ (SIZEOF _DIR)

# Pattern rule
%.class : %.java

$(JC) $<

# No need ALLOC_DIR below since they are already handled by pattern rule.
Node.class : $(BINTREE_DIR)/Node.class \

$ (TIMESTAMP_DIR)/Node.class \

$(SIZEOF_DIR)/Node.class

Container.class : $(BINTREE_DIR)/Container.class \
$ (TIMESTAMP_DIR) /Container.class \
$(SIZEOF_DIR) /Container.class

# Configuration

ABTS: cleartarget Node.class Container.class Element.class IntElement.class \
StrElement.class OpenDS.class

$(JI) $(HYPERJ) \

$ (HS_FLAG) OpenDS.hs \

$(CM_FLAG) $(ELEMENT_DIR)/concerns.cm \

$(ALLOC_DIR)/concerns.cm \

$ (BINTREE_DIR)/concerns.cm \

$ (TIMESTAMP_DIR)/concerns.cm \

$ (SIZEOF_DIR)/concerns.cm \

$ (HM_FLAG) ABTS.hm \

$ (VERBOSE_FLAG)

cp AllocBinTreeTimeStampSizeOf/collab/Alloc/*.class Alloc

echo "To test, type the command: java collab.Alloc.OpenDS opt [loopcount]"

ABT: cleartarget Node.class Container.class Element.class IntElement.class \

109



StrElement.class OpenDS.class
$(JI) $(HYPERJ) \
$ (HS_FLAG) OpenDS.hs \
$(CM_FLAG) $(ELEMENT_DIR)/concerns.cm \
$(ALLOC_DIR)/concerns.cm \
$ (BINTREE_DIR)/concerns.cm \
$ (TIMESTAMP_DIR)/concerns.cm \
$ (HM_FLAG) ABT.hm \
$ (VERBOSE_FLAG)
cp AllocBinTreeTimeStamp/collab/Alloc/*.class Alloc
echo "To test, type the command: java collab.Alloc.OpenDS opt [loopcount]"

ABS: cleartarget Node.class Container.class Element.class IntElement.class \
StrElement.class OpenDS.class

$(JI) $(HYPERJ) \

$ (HS_FLAG) OpenDS.hs \

$(CM_FLAG) $(ELEMENT_DIR)/concerns.cm \

$ (ALLOC_DIR)/concerns.cm \

$ (BINTREE_DIR)/concerns.cm \

$ (SIZEOF_DIR)/concerns.cm \

$ (HM_FLAG) ABS.hm \

$ (VERBOSE_FLAG)

cp AllocBinTreeSizeO0f/collab/Alloc/*.class Alloc

echo "To test, type the command: java collab.Alloc.OpenDS opt [loopcount]"

AB : cleartarget Node.class Container.class Element.class IntElement.class \
StrElement.class OpenDS.class

$(JI) $(HYPERJ) \

$ (HS_FLAG) OpenDS.hs \

$(CM_FLAG) $(ELEMENT_DIR)/concerns.cm \

$ (ALLOC_DIR)/concerns.cm \

$ (BINTREE_DIR)/concerns.cm \

$(HM_FLAG) AB.hm \

$ (VERBOSE_FLAG)

cp AllocBinTree/collab/Alloc/*.class Alloc

echo "To test, type the command: java collab.Alloc.OpenDS opt [loopcount]"

cleartarget:

rm -f $(ALLOC_DIR)/*.class
clean:
rm —-f *7

rm -f $(ELEMENT_DIR)/*~

rm -f $(ALLOC_DIR)/*~

rm -f $(BINTREE_DIR)/*~

rm -f $(TIMESTAMP_DIR)/*~

rm -f $(SIZEOF_DIR)/*~
clearall:

rm -f $(ELEMENT_DIR)/*.class
rm -f $(ALLOC_DIR)/*.class

rm -f $(BINTREE_DIR)/*.class
rm -f $(TIMESTAMP_DIR)/*.class
rm -f $(SIZEOF_DIR)/*.class
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