
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
スマートホームにおける自動運用管理のためのネット

ワークトラフィック生成フレームワーク

Author(s) Pham, Van Cu

Citation

Issue Date 2020-03-25

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16648

Rights

Description Supervisor:丹　康雄, 先端科学技術研究科, 博士

Network Traffic Generation Framework for
Automated Operation, Administration, and

Maintenance in Smart Homes

PHAM VAN CU

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Network Traffic Generation Framework for
Automated Operation, Administration, and

Maintenance in Smart Homes

PHAM VAN CU

Supervisor : Professor Yasuo TAN

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science
March, 2020

Copyright c© 2020 by PHAM VAN CU

Abstract

The term Operation, Administration, and Maintenance (OAM) represents a group of
network management activities that include fault detection, isolation, and restoration in
order to keep a network operate stability and reliably. Generally, the OAM is essential
for Internet Service Provider networks (commercial networks) and is accountable by ex-
perienced network operators with the support of tools and network equipment. Since
networking is getting more complex due to the development of the information and com-
munication technologies (ICT), automated OAM which relies on the Artificial Intelligence
for IT Operations (AIOps) is a must to reduce the workload of human. The AIOps auto-
mates IT operations by utilizing concepts of big data analytics and machine learning to
analyze data in order to detect and react to issues automatically. Smart homes are homes
which utilize home appliances and a home network to connect those appliances to organize
residential infrastructure so as to improve the overall quality of life of residents and assist
them to live actively and independently. Following the development of the Internet of
Things, home networks are becoming more and more sophisticated. Unlike, commercial
networks which are monitored by experienced network operators, complex home network
systems are now in the hand of naive users include children, older people, and people
without the knowledge of network management. Therefore, providing automated OAM
for smart homes based on the concept of AIOps is even more important.

Data is a fundamental source of building AIOps based automated solutions. Data is col-
lected during daily operations and also from expensive network equipment in commercial
network infrastructures, however, the situation is diverse in smart home networks. Thus,
the lack of network traffic data of home networks is the biggest barrier to implement
automated OAM solutions for smart homes. In the smart home context, the network
traffic data reflects interactions between devices and services utilized these devices, hence
it matches to the concept of the IoT Area Network where devices are connected to ser-
vice gateway(s) (GW) and network traffic data is the traffic between devices and the
target service gateway. Generally, network traffic data is generated by real smart homes,
testbeds, or simulation. Since network simulation is one of the promising approaches to
generate traffic data which achieves the low cost in terms of time and money, a home
network simulator which includes (i) a device emulator and (ii) a mechanism to simulate
services is proposed as a preliminary component of the network traffic generation frame-
work. Thereafter, a solution to convert the raw network traffic into data used as input for
machine learning techniques is introduced to complete the proposed framework. In the
scope of the dissertation, the ECHONET Lite protocol which is a dominated protocol for
smart homes in Japan is the target protocol for the proposed framework.

The implementation of an ECHONET Lite home gateway (HGW) is one of the first
steps to build the simulator. The layered architecture, which includes (i) an adaptation
layer to handle the interaction inside of the IoT Area Network, and (ii) an integration
layer to integrate with other systems, is proposed. The proposed HGW satisfied all re-
quirements of a GW, as stated in the ITU-T Y.4113 and ITU-T Y.2070, which clarify
functional requirements for operation, management, and operation scenarios. To verify

i

the feasibility and reliability of the proposed HGW architecture, the integration with
ambient assisted living platform, namely universAAL, and a Machine-to-Machine ecosys-
tem, namely oneM2M, has been implemented. Experiments have been conducted with
the commercial devices, and the results proved the reliability and correct operations of
the proposed HGW.

Device simulation is proposed as the last piece of the puzzle of the network simulation
because it is hard to have real, controllable faulty devices to generate the faulty traffic
which is required for the data set. An ECHONET Lite device emulator has been pro-
posed. The experiment results show that the emulator fully simulated behaviors of real
commercial devices. The emulator can simulate faulty devices by extending the concepts
of a fault model for the distributed system. Experiment results verified the correct oper-
ations of the emulator in simulating normal and faulty devices. By utilizing the Docker
platform, automatic and scalable deployment is achievable, and the CPU and memory
usage of the device emulator is (0.15%) and 100 MB respectively to simulate a node.

By deploying the network simulator that includes the proposed HGW, normal device
emulator, and faulty device emulator, network traffic data is collected in the form of raw
captured packets. Data preparation is an essential part that requires to clean the in-
put data and extract meaningful features from data. A network flow calculator, namely
Flowcal, is proposed to aggregate captured packets into bidirectional flows, which reflect
the interaction of devices and the HGW. The Flowcal is customized for the IoT area
network and is able to appoint the flow initiator and also handle multicast flows. Data
samples, which represent device behaviors, are prepared by extracting features from flows
and combined into vectors. A total of 91080 samples representing 138 nodes (384 device
objects) are extracted from raw captured packets by the proposed solution. The distribu-
tion of data samples is visualized by applying the Principal Component Analysis to scale
the data dimension. The visualized results prove that IF-ELSE is impossible to predict
device behaviors.

Since detecting problems is a starting point to build an automated OAM solution and
network traffic data could be used to diagnose the health of a smart home network, a
network traffic classification application for anomaly detection is implemented based on
data generated from the proposed framework to verify the usability of the generated data.
Three ML methods include Decision Tree (DT), Support Vector Machine, and Artificial
Neural Network (ANN), are investigated for the experiments. All three models achieve
high accuracy in classifying normal devices and devices with response fault from the rest
of faulty devices. However, the accuracy of detecting omission fault devices and devices
with three errors combined is low. The ANN achieves the best performance (average ac-
curacy 96.72%) with data normalization. The DT achieves the best performance (average
accuracy 93.23%) without data normalization.

Keywords: IoT Area Network Simulation, Network Traffic Generation, AIOps
for Smart Homes, Machine Learning Based Network Management, Operation,
Administration, and Maintenance

ii

Acknowledgments

Coming to JAIST to undertake this Ph.D. is a life-changing experience for me, and it
could be impossible without the support and guidance from many people.

First of all, I would like to express my sincere gratitude to my advisor Professor Yasuo
Tan of Japan Advanced Institute of Science and Technology (JAIST) for all support and
encouragement he gave me during my master course and this Ph.D. course. Without his
constant guidance and support with his patient and knowledge, this Ph.D. would not have
been achievable. I am proud to be a member in Tan laboratory student.

I wish to offer my special thanks to Associate Professor Yuto Lim, my second super-
visor, for his valuable comments and advice not only to my research but also about life
experiences. He always points out my problems and gives me great suggestions.

I would like to thank Professor Yoichi Shinoda for his straight comments as always.
Without his comments, I am still an innocent kid in science. Also, I would like to thank
Professor Masao Isshiki from Kanagawa Institute of Technology his valuable comments
and suggestions to improve the quality of this thesis. My examination committee Professor
Razvan Beuran was instrumental in defining a story for my thesis. For this, I am
extremely grateful.

I wish to say sincere thanks to Professor Satoshi Tojo and Associate Professor Nguyen
Le Minh, who taught me and gave me a chance to be at JAIST.

I am grateful to the CARESSES project members, especially Professor Nak Young
Chong from JAIST and Associate Professor Antonio Sgorbissa from the University of
Genova for their technical, and financial supports.

I am particularly grateful for the warm welcome and kindly support given by TAN and
LIM lab members.

To my beloved wife, I would never complete this Ph.D. without your understanding
and tolerance.

Finally, my family is the biggest motivation to go to my studies. My dear parents, your
unconditional love made me today. This thesis is dedicated to you.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

Glossary x

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 3
1.3 Main Contributions . 4
1.4 Outline . 4

2 Background and State of the Art 6
2.1 Background . 6

2.1.1 Home Network . 6
2.1.2 Network Management . 7
2.1.3 Policy-based Network Management 8
2.1.4 ML-based Network Management . 10

2.2 State of the Art . 11
2.2.1 Machine Learning for Networking 11
2.2.2 Standardization Activities in Home Network 13

2.3 Summary . 17

3 Service Gateway Architecture for Service Simulations 19
3.1 Target Home Network: IoT Area Network 19

3.1.1 Target Home Network Protocol: The ECHONET Lite 20
3.2 Home Gateway Architecture . 21
3.3 Home Gateway Adaptation Layer . 22

3.3.1 Related Work . 22
3.3.2 Ontology Based Data Model . 24
3.3.3 Adaptation Layer Architecture . 25
3.3.4 ECHONET Lite Adaptation Flowchart 28

3.4 Integration Layer: oneM2M Integration . 29
3.4.1 oneM2M and oneM2M Interworking Proxy Entity 30

iv

3.4.2 oneM2M Based ECHONET Ontology 30
3.4.3 Integration Layer Architecture: ECHONET Lite Interworking Proxy

Entity . 31
3.4.4 Implementation . 33
3.4.5 Demonstration . 34
3.4.6 Conclusion . 35

3.5 Integration Layer: universAAL Integration 35
3.5.1 universAAL Platform . 35
3.5.2 Implementation . 36
3.5.3 Experiment . 38
3.5.4 Conclusion . 44

3.6 Summary . 44

4 Device Emulator 45
4.1 Device Simulation . 45

4.1.1 Related Work . 45
4.1.2 Device Emulator . 46
4.1.3 Faulty Device Simulation . 48
4.1.4 Implementation . 49
4.1.5 Deployment . 50
4.1.6 Experiment and Evaluation . 51
4.1.7 Conclusion . 56

4.2 Home Network Simulation . 56
4.2.1 Related Work . 56
4.2.2 Deployment Options . 57
4.2.3 Network Traffic Dataset Generation 59
4.2.4 Conclusion . 61

4.3 Summary . 61

5 Machine Learning based Solutions for Smart Homes 62
5.1 Overview . 62
5.2 Related Work . 64
5.3 Network Flow Calculator . 64
5.4 Experiment . 67

5.4.1 Data Processing and Labeling . 67
5.4.2 Results . 68

5.5 Summary . 70

6 Application: Machine Learning Based Network Traffic Classification 72
6.1 Machine Learning Methods . 72

6.1.1 Decision Tree . 72
6.1.2 Support Vector Machine . 74
6.1.3 Artificial Neural Network . 74

6.2 Experiment . 76
6.2.1 Results . 76

6.3 Summary . 81

v

7 Conclusions and Future Work 82
7.1 Conclusions . 82
7.2 Future Work . 83

Bibliography 84

Publications and Awards 93

vi

List of Figures

1.1 Global M2M Connections (Source: Cisco VNI Global IP Traffic Forecast,
2017 to 2022) . 1

1.2 The Elements of an AIOps Platform . 2

2.1 Device-Cloud Oriented and Service Platform Oriented Architecture in Smart
Homes . 7

2.2 A Typical Network Management Architecture 8
2.3 Policy-based Network Management Architecture 9
2.4 A Baseline Workflow of Machine Learning for Networking 10
2.5 ITU-T Y.2070 Home Network Service Architecture 14
2.6 Overview of OmniRAN Architecture . 15
2.7 OmniRAN Network Reference Model and ITU-T Y.2070 Mapping 15
2.8 Overview of HTIP Architecture . 16
2.9 Data Collection Flows in Home Networks 17

3.1 Basic Model of IoT Network in the context of Smart Homes 19
3.2 Concepts of the ECHONET Lite protocol 20
3.3 Overview Functional Architecture of a Home Gateway 22
3.4 SAREF Ontology Context . 24
3.5 Overview of ECHONET Ontology Model 24
3.6 ECHONET Lite Adaptation Layer Architecture 26
3.7 ECHONET Lite Frame Format . 27
3.8 Node Finding Message . 28
3.9 ECHONET Lite Adaptation Layer Flowchart 29
3.10 oneM2M IPE(a) and its example(b) . 30
3.11 Ontology Based Data Model for oneM2M Integration 31
3.12 Overview of ECHONET Lite IPE . 32
3.13 Device Resource and Service Registration Sequence 33
3.14 Device Interaction Sequence . 33
3.15 Demonstration Configuration . 34
3.16 The universAAL Platform . 36
3.17 ECHONET Lite - uAAL Gateway . 37
3.18 iHouse Outdoor . 38
3.19 Experiment Environment: iHouse and experiment devices 39
3.20 Experiment Configuration . 40
3.21 Seamless Plug and Play Use Case . 41
3.22 Total Time For Device Recognition . 42
3.23 Device Service Interaction Use Case . 43

vii

3.24 Lighting Service Interaction Time . 43

4.1 ECHONET Lite Device Emulator . 46
4.2 Device Object Configuration Structure . 47
4.3 Simulator Middleware (Humming) Flowchart 49
4.4 Deployment Overview . 50
4.5 Experiment Deployment . 51
4.6 Devices and Home Gateway Exchanged Packets 53
4.7 CPU and Memory Usage of Deployed Containers 54
4.8 Faulty Device and Normal Device Comparison 55
4.9 Human Generated Traffic Simulation . 58
4.10 Mapping target smart home floor map into Simulation GUI 58

5.1 Bidirectional Flow Conceptual Diagram . 63
5.2 Network Traffic Flow Calculator Overview 65
5.3 Bidirectional Multicast Flow Aggregation 66
5.4 Bidirectional Unicast Flow Aggregation . 67
5.5 Data Pre-Processing Conceptual Diagram 68
5.6 Data Distribution with PCA . 70

6.1 An example of applying Decision Tree for decision making 73
6.2 Conceptual Diagram of the Artificial Neural Network 75

7.1 Proposed Home Gateway in the CARESSES Ecosystem 99

viii

List of Tables

2.1 Machine Learning for Network Traffic Prediction 11
2.2 Machine Learning for Fault Management 12

3.1 Requirements for Home Gateway (referred from ITU-T Y.2070) 21
3.2 ECHONET Lite SDK . 23
3.3 Ontology Metrics . 25
3.4 Node Detection Result . 41

4.1 Requirements for Device (referred from ITU-T Y.2070) 45
4.2 ECHONET Lite SDKs . 46
4.3 Reponse Time Comparation Between Real and Emulated Devices 52
4.4 Device Configuration of the Home Network Simulator 60

5.1 Typical Attributes of a flow record with an example 63
5.2 Basic attributes of exported bidirectional flows with an example 65

6.1 Decision Tree Without Normalization Confusion Matrix 77
6.2 Decision Tree With Normalization Confusion Matrix 77
6.3 Support Vector Machine Without Normalization Confusion Matrix 78
6.4 Support Vector Machine With Normalization Confusion Matrix 79
6.5 Artificial Neural Network Without Normalization Confusion Matrix 80
6.6 Artificial Neural Network With Normalization Confusion Matrix 80

7.1 Home Network Simulator Device Description 99

ix

Terms and Abbreviations

OAM : Operation, Administration, and Maintenance

AIOps : Artificial Intelligence for IT Operations

IoT : Internet of Thing

ISP : Internet Service Provider

SNMP : Simple Network Management Protocol

CMIP : Common Management Information Protocol

NETCONF : Network Configuration Protocol

ISO : International Organization for Standardization

IETF : Internet Engineering Task Force

FTP : File Transfer Protocol

SMTP : Simple Mail Transfer Protocol

POP3 : Post Office Protocol 3

IMAP : Internet Message Access Protocol

HTTPS : Hypertext Transfer Protocol Secure

HTTP : Hypertext Transfer Protocol

SSH : Secure Shell

DNS : Domain Name System

NTP : Network Time Protocol

P2P : Peer To Peer

M2M : Machine To Machine

PLC : Power Line Communication

RSSI : Received Signal Strength Indication

CAN : Controller Area Network

OSI Model : Open Systems Interconnection Model

x

Chapter 1

Introduction

1.1 Overview

As stated in the Theory of Maslow’s Hierarchy of Needs [1], the house provides sheltering
and physiological needs of humans and helps humans to maintain their life. Recently,
following the development of the IoT, housing-related terms such as Smart Home, Smart
Environment, and Connected Home are getting more and more attention to deal with
the population aging problems. Smart Homes are spaces utilized advanced information
and communication technologies (ICT), which can organize residential infrastructure to
improve the overall quality of life (QoL) of residents [2] and assist them to live actively
and independently.

Figure 1.1: Global M2M Connections (Source: Cisco VNI Global IP Traffic Forecast, 2017
to 2022)

In the global traffic forecast reported by Cisco [3], the number of connections from
smart homes are the largest and increasing steadily. It means that home networks (HN)
are complex systems where a large number of heterogeneous devices interconnect with each

1

other and with the global ICT infrastructure. Since users of smart homes are ordinary
users without networking expertise, the task of monitoring and managing HN becomes a
problematic issue.

Operation, Administration, and Maintenance (OAM) is a term that represents for a
group of network management activities that utilizes various tools, network devices, and
knowledge to monitor and maintain the stable working condition of networks. As stated
in the RFC 6291 [4] and RFC 7276 [5]

• Operation: Operation activities are taking to ensure the network (and
the services that the network system provides) up and running stably. It
includes monitoring the network, finding, and notifying problems. In the
ideal case, these problems should be detected before users are affected.

• Administration: Administration activities include keeping track of net-
work resources and resource usages. It involves all the necessary book-
keeping to track networking resources and put the network under control.

• Maintenance: Maintenance activities mean facilitating repairs and up-
grades – for example, when equipment needs to be replaced, or when a
router needs to update its operating system image, or when a new switch
is installed to a network. The maintenance also includes corrective and
preventive measures to make the managed network run more effectively,
e.g., adjusting device configuration and parameters.

Generally, these OAM activities are conducted by network operators by gathering in-
formation of the network from several sources such as SDN controller, network traffic
monitor in order to make decisions to ensure efficient and stable operations of a network.
Those decisions are based on know-how that network operators have acquired through
their daily operations. However, it is becoming so hard for them to continue such a style
of operations in the future, considering the growing volume and kinds of data from several
sources. Automated OAM based on concepts of artificial intelligence (AI), and machine
learning (ML) which is referred to as AIOps (i.e. Artificial Intelligence for IT Operations)
is the answer to this problem. The AIOps automates IT operations by utilizing concepts
of big data analytic and machine learning to analyze data in order to detect and react to
issues automatically.

Data Sources
Events TicketsMonitoring Logs

Real Time Processing
Rules and Patterns
Domain Algorithms

ML AI
Automation

Figure 1.2: The Elements of an AIOps Platform

2

AIOps concepts leverages existing network data to reduce time consuming manual trou-
bleshooting and analysing so that operators can focus on more high-level work. As in Fig.
1.2, an AIOps platform consists of following elements

• Data Sources is the baseline of the platform and data is collected from daily
operations such as events, logs, monitoring data, help-desk tickets, etc.

• Real Time Processing to processing streaming data based on the concept of big
data platform such as Hadoop File system, and Apache Stack, etc.

• Rules and Patterns are extracted or discovered from data.

• Domain Algorithms is based on domain expertise to interpret extracted rules and
patterns in order to achieve goals such as correlating unstructured data, detecting
anomalies, and identifying root cause, etc.

• Machine Learning and Artificial Intelligence to adapt to the new and unknown
from the deployment environment.

• Automation that leverages outcome from AI and ML to response to identified
issues.

Data is a fundamental source of building AIOps based automated solutions. Data is
collectable during daily operations and also from expensive network equipment in com-
mercial network infrastructures, however, the situation is diverse in smart home networks.
Thus, the lack of network traffic data of home networks is the biggest barrier to implement
automated OAM solutions for smart homes.

1.2 Motivation

Unlike a human, machines can monitor the HN 24 hours a day, seven days a week. On the
other hand, machines can mimic the human brain to manage the HN as humans learned
from experience to get the know-how. Machine Learning (ML) and Deep Learning (DL),
which are subsets of AI, can learn from experience like the human brain to perform tasks.
The idea is to have an AI model that can monitor and detect abnormal behavior of devices
in the HN.

Generative Adversarial Networks (GANs) [6], which was proposed in 2014, is one
of the most interesting ideas of the last decade in the field of machine learning. The idea
of GANs is derived from the zero-sum game with a Generator and a Discriminator are
countering against the other. The Generator is a model that can generate new samples,
and the Discriminator model tries to classify samples as either real (from the domain)
or fake (generated). The two players are trained together in adversarial. Throughout the
training process, these two models improve their performances in mutual confrontation
and iterative optimization [7] where the Generator can generate a sample that is almost
the same to the real one and the Discriminator can detect every generated sample. In
the field of networking, the Discriminator can be a network anomaly detector that can
detect derived patterns of the network traffic if various patterns of the traffic in the HN
were generated as the input.

3

This work proposes a network traffic generation framework in order to generate smart
home network dataset, which is essential to develop ML based solutions to automated
OAM tasks of smart homes.

1.3 Main Contributions

This thesis presents processes and solutions to support an AI integrated framework to
detect abnormal traffics of devices of smart homes in Japan. To build AI models for AI-
based network management, HN traffic data is a must, and the dissertation contributes to
the research field of machine learning for HN network management by providing a dataset
of traffic in smart home networks. Additionally, the smart home simulator for dataset
generation contributes to the field of the smart home simulator by simulating both of the
machine generated traffic, which is produced by device interaction only and human gen-
erated traffic which reflects human-environment interactions. The home gateway, which
is a part of the smart home simulator, is contributing to the interoperability between the
European ambient assisted living platform and Japanese smart home protocol. The main
contributions are:

1. The HN management framework which supports heterogeneous devices of smart
homes;

2. A home gateway architecture which provides interoperability for smart home appli-
ances and service platforms outside of the HN;

3. A device simulator which can simulate normal and faulty network traffic;

4. A smart home simulator which is able to provide both machine-generated and
human-generated traffic;

5. A framework to generate network traffic dataset for smart home;

6. A ML-based network traffic classification for anomaly detection.

1.4 Outline

The rest of this dissertation is organized as follows:

• Chapter 1 mainly introduces preliminary concepts, motivation, contribution, and
the outline of this dissertation.

• Chapter 2 provides concepts of home networks and home network management. An
overview of policy-based network management (PBNM) is described with the ad-
vantages and disadvantages of the PBNM are also included. The machine learning-
based network management (MLBNM) is briefly described together with a step-by-
step process to build MLBNM solutions. Moreover, the state of the art of applying
MLBNM solutions for network traffic prediction, fault management, and network se-
curity are highlighted . Finally, standardized activities such as standards, protocols,
and architectures for network management in the literature review are summarized.

4

• Chapter 3 describes network models of the smart home environment referred to
from the ITU-T Y. 4113 and the target network model in the dissertation, the
IoT Area Network. Also, the target protocol for the IoT area network, namely
ECHONET Lite, is described. Finally, the home gateway (HGW) architectures
and implementations are introduced. The PoC of the integration of the proposed
HGW into an ambient assisted living platform, and a global standards initiative for
machine-to-machine will be described.

• Chapter 4 describes the necessity of having a device and network simulators. Fur-
thermore, the device simulation that bases on the target protocol, the ECHONET
Lite, is proposed and implemented. Then, the deployment of device emulators and
the proposed HGW in Chapter 3 in order to form a home network simulator is
described as well.

• Chapter 5 introduce a solution to aggregate raw network traffic into data usable for
ML applications. Data preparation process includes a solution to extract bidirec-
tional flows from captured packets for the target network model is proposed. Also,
the data processing steps which turn raw input flows into data samples to train ML
models are described.

• Chapter 6 mainly explain about building ML solutions to classify the traffic of
the target network based on the data set provided in Chapter 5. Furthermore,
ML methods include decision tree, support vector machine, and artificial neural
network are briefly introduced and investigated. The performance of those methods
is highlighted.

• Finally, chapter 7 summaries results and outlines future research directions.

5

Chapter 2

Background and State of the Art

2.1 Background

2.1.1 Home Network

As stated in [8], HN is

A short-range communications system designed for the residential
environment, in which two or more devices exchange information
under some sort of standard control.

A typical HN has grown from a simple network with a few devices such as telephones
and computers to a complex system that connects HVAC devices, digital entertainment
devices, home security, smart appliances, sensors, and actuators into a common network.
Today HN is a complex system that allows devices to communicate with each other to
share resources and also to service providers outside of the HN via the Internet. Devices in
the HN are heterogeneous IoT devices due to they are different in terms of functionalities,
processing power, communication capabilities. There are two main trends in current smart
home appliances:

• Device-Cloud Oriented (DCO): Devices directly connect and use the services pro-
vided from cloud or servers, which are outside of the HN via the Internet. Amazon
Echo is one example of this pattern. Amazon Echo is a smart speaker provided by
Amazon, and it connects to the Amazon cloud, namely Alexa. Amazon Echo takes
user’s voices as input and sends it to the cloud server, and requests are processed
at the server then results are sent back to the Amazon Echo.

• Service Platform Oriented (SPO): Devices such as sensors and actuators are
connected to a device called Home Gateway (HGW) that is inside of the HN.
The HGW acts as a man-in-the-middle or a proxy between these devices and service
providers from outside of the HN. In general, these devices can be remotely accessed
via the HGW. However, they only connect to the HGW via the local area network.

The overview of Device-Cloud Oriented architecture and Service Platform Ori-
ented architecture are illustrated in Figure. 2.1.

6

Amazon
Echo

Nest
Thermostat

Nest
CloudAmazon

Web
Service

API

Application
1

API

Application
2

Sensor Actuator Appliances

Home Gateway

Service Platform

W
A
N

API

Application
3

L
A
N

W
A
N

W
A
N

Home Network

LAN
 Local Area

Network

WAN
 Wide Area

Network

API
Application
Program
Interface

Device-Cloud Oriented
Architecture

Service Platform
Oriented Architecture

Figure 2.1: Device-Cloud Oriented and Service Platform Oriented Architecture in Smart
Homes

2.1.2 Network Management

According to the ISO, functional requirements of a network management model includes:

• Fault Management to support fault detection, notification, and correction to keep
the network running steadily and stably. Since faults can create downtime and un-
acceptable network degradation, fault management is essential and the most widely
implemented element of the ISO model [9].

• Configuration Management to track, monitor, and manage configuration informa-
tion of network systems.

• Performance Management to track and audit various aspects of performance so as
to maintain the acceptable level of network system overall performance.

• Security Management to monitor access to network resources in order to prevent
network sabotage, abuse, and unauthorized access.

• Accounting Management to manage the usage information of network resources.

In general, most network management architectures share a standard structure and set
of relationships, as shown in Figure. 2.2. A typical architecture has:

• A Management Agent, which resides in an end device such as computers or net-
worked devices, is a software to monitor and report the status of the end devices
and also execute instructions from the network manager(s).

7

• A Management Entity, which acts as a network manager, collects information from
Managed Agent(s) and provides instructions for Management Agent(s) to
maintain the stable operation of end devices. The Management Entity and the
Management Agent(s) communicates with each other via network management pro-
tocol such as SNMP, NETCONF, or CMIP, etc.

• A Management Proxy is an Managed Agent that provides management information
on behalf of other entities.

Managed Device

Managed
Agent

Managed
Agent

Managed
Agent

Managed Device Managed Device

Terminal 1

Terminal 2

Terminal 3

Proxy

Network

Management
Entity

Network Management System

Figure 2.2: A Typical Network Management Architecture

2.1.3 Policy-based Network Management

Policy-based Network Management (PBNM) had widespread attention after the IETF
released the Policy-based Network Management Architecture as in Figure. 2.3. The ar-
chitecture was considered as the best solution for the Internet policy-based management
which consists of (i) the Policy Console (PC) to specify policies by supporting create,
modify or remove policy abilities; (ii) the Policy Repository to store policies created by
the PC; (iii) Policy Decision Point to make decision, translate and transform policies
and enforce policies; and (iv) the Policy Enforcement Point to apply policies including
verifying, executing and validating the execution of policies. The term Policy refers to
rules containing (i) Event (when the policy will be triggered); (ii) Action (task(s) needs
to be done in the scope of the policy);(iii) Condition (criteria for triggering a policy); and
(iv) Priority.

8

U
se

r I
nt

er
fa

ce
Se

rv
er

H
om

e
N

et
w

or
k

Policy Console

Policy
Repository

Policy Decision Point

Local Policy
Decision Point

Policy Enforcement
Point

Figure 2.3: Policy-based Network Management Architecture

The benefit of the PBNM is that it is easy to achieve the automation of network
management. The administrator can interact with the network via human-friendly policies
[10]. Additionally, it can adapt to the change quickly via run-time reconfiguration of
policies. However, rules-based systems are limited since they must follow the predefined
rules and can not handle subtle cases. The PBNM requires effort from experts to update
policies accordingly, and it is impossible for smart homes.

9

2.1.4 ML-based Network Management

The ML evolution has achieved breakthroughs in several domains such as computer vi-
sion, speech recognition, self-driving cars, and network management [11]. Unlike PBNM,
where computers can tirelessly and consistently perform repetitive and well-defined poli-
cies provided by the network operators, machine learning-based Network Management
(MBNM) can create policies based on the situations of the HN by learning from network
operator perspectives [12].

A typical flow of applying ML in networking is as in Figure. 2.4.

Data Collection Data Feature
Analysis

Model Learning

Model Validation
NO

YES Meet
Requirements?

Deployment

New DataOutcome

Model

Validation

Step 1 Step 2 Step 3

Step 4

Step 5

Online Data
Collection

Figure 2.4: A Baseline Workflow of Machine Learning for Networking

For a given problem, ML requires data, possibly without bias, to build the ML model.
Therefore, Data Collection is an important initial step [13]. Network data such as
network traffic, logs from network devices can be collected by deploying real network
laboratory, emulated environment, or synthetic environment [14]. Data can be collected
in two phases: online and offline [15]. In the offline phase, a large amount of historical
data is used for model training and testing. Data collected from the online phase is used
as feedback to re-train the model. Data Feature Analysis is an important step before
training and testing the ML model. Since each problem has its characteristics and only
several factors from the raw collected data are meaningful for that specific problem, finding
and choosing the proper features is one of the keys to fully unleashing the potential of data.
Model Learning is a process that includes model selection, training, and adjusting. A
suitable model or algorithm can be selected according to the problem category, size of
data, requirements, and so on. Model Validation evaluates whether the chosen model
works well or not. Usually, the overall accuracy of the model is used for cross-validation.
The predefined steps might need to be repeated if the requirements have not been met.
Deployment is the last step when the trained model has been deployed into practical
applications that take real-time input and produce corresponding output.

10

2.2 State of the Art

2.2.1 Machine Learning for Networking

Traffic Prediction

Traffic prediction provides forecasting on future traffic and supports network planning,
resource provisioning, optimization, and so on. Table. 2.1 summaries research activities
on applying ML for traffic prediction.

Table 2.1: Machine Learning for Network Traffic Prediction

ML Technique Application
Dataset /
Features

Output

Network
Bandwidth
Predictor[16]

Supervised Learning
Multi-Layer
Perceptron
Neural Network

End-to-end
bandwidth
availability
prediction

NSF Teragrid
Dataset/
Min, Max, and
Average load

Available
bandwidth
in future

Internet
Traffic
Forecasting[17]

Supervised Learning
Neural Network with
Resilient Propagation

Link load
and traffic
volume
prediction in
ISP networks

SNMP traffic data
from 2 ISP
networks/
Traffic volume
observed

Expected
traffic
volume

Link Load
Prediction [18]

Supervised Learning
Support Vector
Regression

Link load
prediction in
ISP networks

Internet traffic of
an ISP network/
Link load observed

Expected
link
load

Internet
Traffic
Prediction [19]

Supervised Learning
Multi-Layer Perceptron
Neural Network

Network
traffic
prediction

1000 points
dataset/
Past measurements

Expected
traffic
volume

Network
Traffic
Prediction [20]

Supervised Learning
Particle Swarm Back
Propagation Neural
Network

Network
traffic
prediction

2-weeks of houly
traffic/
N past day houly
traffic

Expected
next day
hourly traffic
volume

Data Center
Network
Traffic
Prediction[21]

Supervised Learning
Multi-Layer Perceptron
Neural Network

Data Center
traffic
volume
prediction

6 weeks of traffic
from Baidu/
Time and frequency
from total and
elephant traffic

Expected
traffic
volume of
future
30s blocks

Future
Traffic
Prediction[22]

Supervised Learning
Long Short Term
Memory

Future traffic
inferring based
on flows

24 weeks of network
traffic & flow count/
Flow count

Expected
traffic volume

Online
Flow Size
Prediction[23]

Supervised Learning
Multi Layer Perceptron
Neural Network

Early low size
prediction and
elephant flow
detection

3 campus networks
and 3 million flows
each/
Netflow, size of 3
first packets

Flow size
classes
elephant flow
vs non elephant
flow prediction

11

Fault Management

Table 2.2: Machine Learning for Fault Management

Application/
ML Technique

Target Network/
Dataset

Features Output

Proactive
Network Fault
Prediction[24]

Fault Prediction/
Bayesian Network

Campus Network/
Data from router

MIB based
information
includesInterface,
IP, UDP

Network
health
prediction

Cellular
Network Fault
Prediction[25]

Cellular Network/
Simulation

Power,
Cell Transmission,
Multiplexer

Faulty
or Not

Dependability
of Wireless
Network[26]

Fault Prediction/
Neural Network

Wireless Network/
Simulation

Mean time to
failure/ restore

Time Profile
Run Time

Dependability,
Survivability,
Availability,
Failed
component

Link Quality
Prediction[27]

Fault Prediction/
Support Vector
Machine, Bayesian
Network

Wireless Sensor
Network /
Sensor Network
Testbed

RSSI, buffer size,
Chanel load

Link quality
estimation

Autonomic
Failure
Prediction[28]

Fault Prediction/
Hessian Locally
Linear Embedding

Distributed System/
File Transfer
Application Testbed

Performance, IP,
TCP, UDP

Network, CPU,
Memory failure
prediction

Optical Network
Failure
Prediction[29]

Fault Prediction/
Support Vector
Machine

Optical Network/
Telecommunication
operator data

Input/ output
optical power
Temperature
Unuseable time

Equipment
failure
prediction

Operational
Fault
Detection[30]

Fault Detection/
Statistical learning

Cellular Network/
Data from
real cellular
networks

Mobile user call
load profile

Base station,
sector, carrier,
and channel
fault detection

Network Traffic
Fault
Classification
[31]

Fault Detection/
K-mean, Fuzzy C
Mean

Campus Network/
Network with heavy
and light traffic

SNMP data

Normal/ link
failure traffic,
server crash,
broadcast storm
classification

Network Failure
Logs Mining
[32]

Service Provider
Network/ data from
service providers

Fault occurence
time,
Geographical,
fault cause,
resolutiontime

Identify spatio
temporal
patterns

Adaptive Fault
Detection[33]

Fault Detection/
Change Detection
Method

Local Area
Network/
Real network

SNMP Data
Detect anomaly
as soon as
possible

Fault management is a headache problem for network operators and administrators since
it requires a thorough knowledge of the entire network and the running application of
the network. Table 2.2 summaries ML-based fault management approaches. However,
the biggest challenge is that it lacks data in the production network as it is difficult to
generate faulty data in the production network. Injecting faults could be a solution [34],
however, it is unrealistic to inject faults into a production network for data generation

12

purposes. Therefore, unsupervised learning and reinforcement learning techniques could
be potential solutions for fault management.

Network Security

Network security purpose is to protect networks from threats where attackers always find
clever ways to attach networks [35]. ML has been widely applied in cybersecurity and
intrusion detection [36]. In general, ML improves the rule-based systems and can detect
complex patterns of attacks. However, the KDD’99[37], which is an out-dated dataset,
has been used for the majority of researches. Therefore, it does not reflect the recent
types of attacks.

Summary

ML has been applied successfully in networking. It shows promising results to provide
OAM services for networking. The critical success of ML is the availability of data,
which is achievable by the explosive growth inf traffic volume and connected devices.
However, current research works focus on the core network and the Device-Cloud Oriented
architecture in the home network (Figure. 2.1). There is no literature about the DCO
architecture in the HN so far since it lacks datasets for the SPO architecture for several
reasons:

• Devices are constrained, and they can not have a monitoring agent.

• Devices are heterogeneous in terms of communication medium.

• It lacks a standardized communication protocol between devices and the HGW.

2.2.2 Standardization Activities in Home Network

ITU-T Y.2070

ITU-T Y.2070 [38] is a recommendation that focuses on Next Generation Networks
-Frameworks and functional architecture models. The ITU-T Y.2070 specifies the
requirements and architecture of the home network services and is widely referred to in
the research field of HN. The recommended HN service architecture is shown in Figure.
2.5. The recommended HN architecture focuses on the SPO architecture that includes:

• Requirements for device: it is required for devices to have an abstract data
model to reflect device operation. Moreover, it is required to have a managed agent
that provides information to the manager.

• Requirements for Home Gateway (HGW): It is required to support protocol
conversion to deliver information from LAN to WAN to the management platform.
For management purposes, it is required to support the concept of a resource in-
formation collector to discover new devices and retrieve connected device statuses.
Additionally, it is required to have a local management mechanism in case of network
disconnection.

13

• Requirement for Management Platform (MP): it is required to support the
concept of virtual devices, which are a logical mapping of physical devices. Addi-
tionally, it is required to support API to allow services to access HN resources. For
management purposes, it is required to discover and control devices connected to
the HGW remotely from WAN.

Internet

Home Controller

Device 1 Device 2 Device 3

Home Gateway

Device 1 Device 2 Device 3

Application A Application B Application C

Management Platform

Application A Application B Application C

Common
Platform

Applications inside the home

Applications on the Internet

a) Aggregate type architecture b) Distribute type architecture

Figure 2.5: ITU-T Y.2070 Home Network Service Architecture

OmniRAN (802.1 CF)

Modern networks such as smart homes, smart grid, and smart cities are heterogeneous,
which support multiple network interfaces and various network access technologies. There-
fore, omniRAN scope is to unify the support of different interfaces, enabling shared net-
work control and the use of software-defined network (SDN) principles, thereby lowering
the barriers of heterogeneous IEEE 801 families. OmniRAN stands for

• RAN: Range Area Networks

• Omni: Open Mobile Network Interface

which is a recommended practice for the network reference model and functional descrip-
tion of the IEEE 802 access network. The OmniRAN network architecture is illustrated
in Figure. 2.6.

14

802.3
ASN

802.11
ASN

802.15
ASN

802.16
ASN

802.20
ASN

802.22
ASN

Other
ASN

802.3
MS

802.11
MS

802.15
MS

802.16
MS

802.20
MS

802.22
MS

Other
MS

IEEE 802 OminiRAN
Connectivity Service Network (CSN)

R111R13 R115 R116 R120 R122 R1x

R4 R4 R4 R4 R4 R4

R3 R3 R3 R3 R3 R3 R3

The Internet

R2

R5

ASN: Access Service Network R: Reference pointMS: Mobile Station

Figure 2.6: Overview of OmniRAN Architecture

The Connectivity Service Network (CNS) is the core functionality of the OmniRAN
which provides a common interface for IEEE 802 access technologies. The Access Service
Network (ASN) is unified network interfaces customized for each technology.

R1

Terminal
Interface

R8

R2

Terminal
Control

R5

R6Node of
Attachment

R9

R4

Access Network Control

R7

R3Backhaul

Terminal
Interface

R12

Acess
Router
Control

Terminal Access Router

R10

Coordination
and Information

Service

R11

Network
Management

Service

Subscription
Service

Access Network
R1

Device

R5

Access Point/
Coordinator

R8

Home Gateway

Resource Information
Collector

Managed
Agent

R11

Management Platform

Resource Management

Terminal Node of
Attachment

Access
Network
Control

Network
Management

Service

ITU-T Y.2070
Mapping

R: Reference pointLogical Link Physical Link

Figure 2.7: OmniRAN Network Reference Model and ITU-T Y.2070 Mapping

The OmniRAN network reference model (NRM) includes

• Terminal is an end device which connects to a node of attachment of the access
network via wired or wireless interface. A node of attachment is either an access
point or base station.

15

• The Access Network aggregates and forwards traffic from terminal to the access
router via the backhaul.

• Access Router terminates the layer-2 link from the terminal and forwards user
traffic to information servers according to IP addresses in the payload of the layer
2 data frames.

• Services are able to provide to the terminal directly via the agent resides inside the
terminal or indirectly via the Access Network Control

The OmniRAN NRM can be mapped into the ITU-T Y.2070 which specifies the service
architecture of home networks as in Figure. 2.7. The OAM is also supported in the
OmniRAN by being described in fault diagnostic and management service.

Home Network Topology Identifying Protocol

Home Network Topology Identifying Protocol (HTIP), [39] is specially designed for HN.
HTIP defines a protocol to check the connectivity of devices and the overall topology of an
HN. HTIP covers a wide range of end devices such as PCs, TV, gaming devices, printers,
sensors, and so on. Moreover, HTIP supports heterogeneous transmission medium, espe-
cially in the HN, such as PLC, wired, wireless, CoAx, and UTP cable [40]. The overview
of HTIP is illustrated in Figure. 2.8.

HTIP IP Terminal

Layer 3 Agent

HTIP
Manager

HTIP Network
Equipment

Home Network

Layer 2 Agent

HTIP IP Terminal

Layer 3 Agent

HTIP IP Terminal

Layer 2 Agent

Device Information Transmission

Device and Link Information Transmission

Figure 2.8: Overview of HTIP Architecture

HTIP supports managed agent (as in Figure. 2.2) for lightweight home appliances.
HTIP agents can be installed inside devices (terminals) or network devices (switch, router,
access point, etc.). The HTIP manager is responsible for collecting information from
agents. There are two types of information:

16

• Device Information consists of (i) Device category, (ii) Manufacturer code, (iii)
Model name, and (iv) Model number as mandatory attributes. The device informa-
tion is useful information to identify devices in the HN.

• Link Information is only collected from HTIP network equipment. The link
information provides information on pairs of [Port, MAC address], which is usable
to identify topology on HNs. Moreover, the link information may include useful
information for fault detection and isolation in HNs such as Pairing information,
channel usage information, RSSI, etc.

The overall HN topology of an HN provided by the HTIP is useful for HN fault detection,
isolation, and recovery [41].

2.3 Summary

HN is becoming more and more complicated due to the rapidly growing of connections
inside the HN. Network management for HNs is more complicated, and the traditional
way of network management using Policy-based approaches seem challenging to adapt to
the heterogeneous of devices in HNs. Recently, ML technologies achieved breakthroughs
in various fields, including networking. The ML-based approach shows compromising
results. It reduces human effort on network management widely applied in core networks,
campus networks where devices and equipment support management protocols such as
SNMP and SDN. However, there has been no effort in HN management since it lacks
a dataset of HN. Data is a fundamental source of building ML-based solutions for HN
management. The basic workflow of data collection is as in Figure. 2.9

YES

NO
Device

Support Managed
Agent?

Collect data
from Managed

Agent

YES

NO

Network
Equipment

Support Managed
Agent?

Collect Traffic
Data

Network Data Collection

Figure 2.9: Data Collection Flows in Home Networks

17

In general, in the HN, where devices are constraint thus they do not support a managed
agent, and network equipment is low-cost equipment, and it does not support a manage-
ment protocol such as SNMP or even HTIP. Therefore the only way to collect information
for management purposes is via the traffic of devices during operations.

18

Chapter 3

Service Gateway Architecture for
Service Simulations

3.1 Target Home Network: IoT Area Network

The basic model of the IoT network (in the context of smart homes) that refers from the
ITU-T Y.4113 [42] is illustrated in Figure. 3.1.

IoT Application
ServerIoT Area Network

Device 2

Device
Device
Cloud

Home Network

Device 1

Device 3

Home Gateway

Access
Network

Core
Network

Service
Platform

Figure 3.1: Basic Model of IoT Network in the context of Smart Homes

The gateway is responsible for interconnecting devices with the core network. It in-
cludes a proxy translation between device protocols and core network protocols and device
resources and services management. The core network provides communication infras-
tructures to connect service providers and access networks. The access network connects
devices and gateway(s) to the core network. The IoT area network is a local area net-
work that interconnects devices and gateways by utilizing short-range communication
technologies such as CAN, Zigbee, Bluetooth, Wi-Fi, Wi-SUN, and so on. As the access
network and core network are managed by ISPs, this dissertation targets on providing
OAM services for the IoT area network.

In [43], a management architecture that supports direct management techniques for

19

DCO devices and indirect management for SPO devices (Figure. 2.1) via an intelligence
HGW. The proposed solution [43] proved that an intelligence HGW could manage the
IoT area network efficiently and also guarantee the interoperability for the smart homes.
However, the proposed intelligence HGW was implemented by the policy-based approach
(Section 2.1.3), which requires knowledge of experts for policy definitions. By employing
the ML-based solutions, the limitation of the previous might be resolved.

3.1.1 Target Home Network Protocol: The ECHONET Lite

Layer
5-7

Get

Set

Node

ECHONET
Lite NodeNode

Node

Node
Profile
Object

Network
Address

Device
Object List

ObjectObjectObject

Properties

Property 1

Property 2

Property n

...

Device
Indentifier

Class
Group
Code
Class
Code

Instance
Code

Access Rules

Gettable Settable Observable

EPC
Property Code

Property
Description

Data Format Restrictions

Property
Name EPC

Contents of property
Value range(decimal notation)

Data
Type

Data
Size

Access
Rule

Operation
Status 0x80

This property indicates the
ON/OFF status

ON = 0x30, OFF = 0x31

unsigned
char

1
byte

A sample property in device object specifications

Layer
1-4

Device Objects

Communication Middleware

Application
(Services)

Transmission Media

IP address MAC
addressor Enables various standard communication protocol

Ex: Ethernet, Wi-Fi, Bluetooth, Wi-SUN, etc.

ECHONET Lite Specification
(communication protocol) ISO/IEC 14543-4-3

Detail Requirement for ECHONET
Device Objects IEC62394 Ed3.0

b) ECHONET Device Concept

a) ECHONET Lite Protocol Stack
OSI

Model

Figure 3.2: Concepts of the ECHONET Lite protocol

ECHONET, which has become a de facto home network standard certified by ICE and
ISO, stands for Energy Conservation and Homecare Network. However, the ECHONET
protocol did not attain widespread adoption due to two significant factors. Firstly, the
specification requires a more complicated system configuration for multiple controllers

20

and multiple devices. The other factor was the overall complexity of the protocol, leading
to only a few compliant implementations. Therefore, in 2011, it was redesigned as the
substantially simplified ECHONET Lite protocol.

ECHONET Lite has become a leading interface used in smart homes in Japan, and the
number of devices compatible with the ECHONET Lite protocol is growing steadily [44].
The basic concepts of the ECHONET Lite protocol are illustrated in 3.2 where a network
of ECHONET Lite devices is a collection of Nodes. A node is a physical device connected
to the network. Each node contains the Network Address and Profile Object which identify
a node, and a list of Device Objects. A device object represents a logical device that is
classified into seven groups and 108 classes of devices in the latest specification released
in 2017 [45]. Device objects offer a standardized method to represent device resources
and services via a list of Properties and corresponding constraints for each property.

As shown in Figure. 3.2 a), the ECHONET Lite protocol stack defines layer five to
seven of the OSI model. The lower layer is left free in order to support IoT area network
technologies. Furthermore, the ECHONET Lite protocol provides the concept of device
object (Figure. 3.2 b)) which is a requirement for IoT devices in HN. Since the ECHONET
Lite protocol is able to cover the concept of IoT area network (as specified in Section 3.1),
ECHONET Lite protocol is the target protocol in this dissertation.

3.2 Home Gateway Architecture

Table 3.1: Requirements for Home Gateway (referred from ITU-T Y.2070)

Requirements Functions Description

Device Operation
Data Format &
Protocol
Conversion

To convert the communication protocol of home
network to HTTP protocol for sending information
of connected physical devices to the management
platform (outside of the house). Moreover, it is
required to convert data format of physical devices
into a common data modelusable by others to
achieve interoperability

Management
Resource
Information
Collector

To collect information from devices includes
discover, activate, monitor and control connected
devices. Moreover, it is required torecognize newly
connnected devices and generate a unique identifier
for each devices

Application
Execution

Application for
disconect

To autonomously and locally monitor devices and
backup data in case of network disconnection

Table 3.1 summaries requirements for a HGW. Since devices in IoT area networks must
connect the HGW and the HGW is a central point that manages and represents for
them, the traffic between HGW and devices are usable to diagnostic the health of IoT
area networks. The mapping between requirements and components of the HGW in the
context of HN is visualized in Figure. 3.3.

21

Home NetworkThe Internet

Management Platform Device

Device
object

IP packet
processing

Managed
agent

Home Gateway
(HGW)

Data format
conversion

HTTP/IP
conversion

Resource info.
collector

Application for
disconnect

Command

IP Home Network

Management

Virtual
device

HTTP
processing

Resource
management

Application
management

Ap
pl

ic
at

io
n

in
te

rfa
ce

Command

WAN

Management

Applications

Home security

Healthcare

Management
Applications

Command

WAN

Management

Home energy
management

Application
execution

Device
Operation

Management ITU-T Y.2070

Figure 3.3: Overview Functional Architecture of a Home Gateway

To support the flexible and extensible implementation and integration with other sys-
tems, the proposed HGW architecture is divided into:

• Adaptation Layer is responsible for monitoring devices and transform device re-
sources and services into a common data model includes

– Frame Translator acts as a translation proxy to interact with devices using
packets.

– Network Monitor covers the requirements of the Resource Information Col-
lector that continuously monitors device resources by sending commands and
parsing the response into device objects.

– Data Exporter supports a common data model and mechanisms to transform
device objects into data usable by other systems.

• Integration Layer supports the Application Execution requirements and provides
APIs for the Management Platform.

Since ECHONET Lite has been chosen as the target protocol for the evaluation, imple-
mentations of the proposed HGW architecture are based on the ECHONET Lite protocol.

3.3 Home Gateway Adaptation Layer

3.3.1 Related Work

A list of ECHONET Lite SDKs referenced from Smart House Research center of Kanagawa
Institute of Technology 1 is summarized in Table. 3.2. These SDKs provide tools and
middleware which basically implemented frame translator functions and device interaction

1http://sh-center.org/en/

22

APIs to support sending and receiving frames in order to control ECHONET Lite devices
in a simple manner. However, mechanisms to manage a network of devices have not been
stated as well as the interoperability issues have not been mentioned.

Table 3.2: ECHONET Lite SDK

Name Category OS
Programming

Language
SSNG Tool Window -
SSNG

for iPhone [46]
Tool iOS -

SSNG for
Node JS

Tool
Window
MacOS
Linux

Node.js

echonet-lite Middleware - JavaScript
library for
Swift 3.0

Middleware iOS -

OpenECHO Middleware - Java
Temperature

Sensor EL
Emulator iOS -

Light
Emulator -1

Emulator
Window
MacOS
Linux

Java

In [47], a proxy that integrated ECHONET base smart home to PUCC 2 protocol has
been proposed. This implementation achieved interoperability at the communication level,
which was able to facilitate ECHONET Lite devices to service platforms (outside of the
home network). However,the interoperability at the data level has not been introduced.

There was another effort from the ECHONET consortium3 to map from the concept
of device objects into a smart device template (SDT) [48] to gain interoperability for
ECHONET Lite devices. The SDT aims to provide an abstraction layer to describe ap-
pliance resources in XML format. XML is intuitively manifest for human beings because
tag names are able to provide semantic meaning. However, machines do not work that
way due to the lack of intuition, and consequently, the usage of XML for semantic inter-
operability will be ineffective in the long run, as stated in [49]. Therefore, the ontology
model for ECHONET Lite specification is still desired.

In [50], the SAREF ontology was proposed for the smart appliances domain. An
overview of SAREF is illustrated in Figure. 3.4. SAREF is not intended to replace existing
standards but to provide a domain abstraction model to link information from different
technologies and domains for semantic interoperability based on ontology. The SAREF
ontology becomes a part of ETSI 4 standards [51]. There have been many extensions of
SAREF to support ontology models for environmental devices, smart building devices,
smart city infrastructure, and energy domain. There is no such model for ECHONET

2http://pucc.jp/
3https://github.com/ECHONET-Consortium/ECHONET-SDT-Contribution
4https://www.etsi.org/

23

Lite devices. Thus an ontology model that is able to extend to SAREF is able to improve
the semantic interoperability for ECHONET Lite protocol.

Heteogeneous
Technologies

Domain
Abstraction

Upper
Ontology

ZigbeeZ-
Wave

Z-
WaveAllJoyn

SAREF
Smart Appliances Reference

Ontology

...

Base
Ontology

Figure 3.4: SAREF Ontology Context

3.3.2 Ontology Based Data Model

Ontology was introduced to computer science in order to represent real-life concepts that
are understandable by computers[52]. The ontology defines an information model to share
a common understanding of knowledge and functionalities. The ECHONET Ontology
(eOnt) is required to reflect the concept of ECHONET device objects including restrictions
and enumerations based on RDF (Resource Description Framework) as shown in Figure.
3.11.

Thing

provide

ECHONET
Lite Device is a

Airconditioner
Related
Device

Audio Visual
Related
Device

Cooking/
Household

Related Device
Housing

Related Device
Health

Related Device
Sensor

Related Device
Management

Operation
Related Device

is a

is a is a is a

is a
is a

is a

is a

has property

has function

Airconditioner Television

is a

Cooking
Heater

is a

Cooking
Heater

is a

Weighing
Machine

is a

Automatic
Door

is a

Switch

is a

Operation
Mode

has property

...

...

ECHONET
Lite Service

is a

control

setMode

Sample Property

Root Ontology

Newly Defined
Ontology

is a

Cooling Heating Automatic Dehumification Air circulator
is a is a is a is a

Figure 3.5: Overview of ECHONET Ontology Model

24

In order to improve the extensibility, the owl:Thing is the root of the eOnt which
is the most general concept and is easily replaceable by other domain concepts (e.g.
saref:Device). The structure of the eOnt in Figure. 3.11 is different from ECHONET
Lite device concept in Figure. 3.2 where the stating point of the eOnt is the concept of
the device object instate of node, and the node information is a part of the device object.
These changes reduce the subclassOf mappings needed and shorten the implementation
of a hierarchical mapping for the simple extension with other domains.

The eOnt fully supports 108 types of different devices in the latest ECHONET Lite
specifications (English version, Release J, 2017) that includes vocabularies for device
properties, relationships and constraints (mandatory or optional, data type and data
range restrictions) of properties, and predefined enumeration values.

ECHONET Ontology Metric Analysis

During the study, namely Smart Appliances funded by the European Commission from
January 2014 to March 2015, a reference ontology model (SA Ontology) that supports
ECHONET Lite specifications were introduced. The SA Ontology exploited ECHONET
specification (Release C, 31 May 2013), which supports 89 different device types. The
SA Ontology is being used as a reference for evaluation. The quantitative analysis of the
eOnt has been calculated by exporting the ontology metric using Protege, a most widely
used tool to create and modify ontology [53]. The metric of eOnt and SA Ontology is
shown in Table. 3.3

Table 3.3: Ontology Metrics

SA Ontology
eOnt

ECHONET Ontology
Axiom 945 6199
Classess 188 159
Object Properties 27 289
Data Properties 2 509
Individual 35 391

Axioms support for the semantic interpretation of concepts and relations [54]. More
axioms support more inference rules, which can be used for automated reasoning. Num-
bers of Data Properties and Object Properties imply the number of properties of a concept
that has been mapped to the ontology. The coverage of the ECHONET device objects of
the eOnt is better than the referenced ontology model. The number of Individual implies
the number of mapped enumeration values. The eOnt also supports more individuals to
predefined reflex concepts of the specifications. The eOnt model is more comprehensive
in the sense of providing semantic interoperability.

3.3.3 Adaptation Layer Architecture

An overview architecture of the AL is described in Figure. 3.6. The AL supports the
semantic description of the network of ECHONET Lite devices by mapping device re-
sources and services into RDF format resources using the eOnt model. This AL layer

25

allows integrations between ECHONET Lite protocol with service platforms by imple-
menting corresponding technology exporters, which take the exported semantic resources
as input for wrapper functions of specific technologies without any knowledge about the
ECHONET Lite interface.

Export

ECHONET Lite Devices

Properties
Extraction

Object
Recognition

Use

Implement

Expose

Implement Implement

Network Monitor

Device
Resources

Device
Services

Ethernet
Driver

Implement
Wi-Fi
Driver

WiSun
Driver

Driver API

ImplementImplement

Use

Provide Send/ Receive
Frames

ECHONET Lite Frame Translator

Network Interaction API
<GET, SET, OBSERVE: Resource>

Node
Detection

Expose

Consume

Service
Manager

Consume

Resource
Manager

ECHONET
Ontology

Model

Semantic Exporter

Consume

Technology
Exporter Service Platform

App AppApp

ECHONET Lite Adaptation Layer

Network Resources

RDF Format

Figure 3.6: ECHONET Lite Adaptation Layer Architecture

Frame Translator

The ECHONET Lite protocol is defined at the application layer of the OSI model where
the network layer is based on Internet Protocols, the frame translator (FT) utilizes IP
supported drivers such as Ethernet, Wi-Fi, or WiSun driver. The implementation of this
FT module is heavily based on the frame format (Figure. 3.7), which is a part of the
ECHONET Lite specification.

26

EHD1 EHD2 TID SEOJ DEOJ ESV OPC EPC1 PDC1 EDT1 ... EPCn PDCn EDTn

­ EHD1: ECHONET Lite message header 1 (1 Byte)
­ EHD2: ECHONET Lite message header 2 (1 Byte)
­ TID : Transaction ID (2 Bytes)
­ SEOJ: Source ECHONET Lite object specification （3 Bytes)
­ DEOJ: Destination ECHONET Lite object specification (3 Bytes)
­ ESV : ECHONET Lite service (1 Byte)
­ OPC : Number of processing properties (1 Byte)
­ EPC : ECHONET Lite Property (1 Byte)
­ PDC : Property data counter (1 Byte)
­ EDT : Property value data (Specified by PDC)

Figure 3.7: ECHONET Lite Frame Format

ECHONET Lite Header 1 is a 1-byte value specifies ECHONET protocol type.
EHD1 with value 00010000 indicates ECHONET Lite protocol. ECHONET Lite
Header 2 is a 1-byte value indicates format of EDATA filed. There are two options :
10000010 (EDATA is in arbitrary message format) and 10000001 (EDATA is in Format
1 as describing in Figure. 3.7). TID is a 2-byte transaction ID parameter that matches the
request and response. EDATA is variable-length ECHONET Lite data field of message
exchanged between ECHONET Lite devices.

GET, SET operations are mapped to the corresponding value of the ESV and a Re-
source is described by a triple of EPC (property name), PDC (property format) and EDT
(value).

Network Monitor

The main objectives of this network monitor module are to (i) obtain a list of ECHONET
Lite nodes in the network, (ii) identify device objects in each node and (iii) recognize
supported properties and extract property data in each object.

Node Detection
There are two ways to implement the node detection for the ECHONET Lite network

[55] (i) passively waiting for a message sent by nodes when they joined into a network or
(ii) actively broadcast a node finding message at an arbitrary timing.

The first approach seems to support the real-time detection of the node without flooding
the network with the node finding message. However, this approach is not feasible to apply
in an entire running network because devices joined the network, and they will not send
the identification message again. The second approach solves this problem by actively
asking nodes to send the identification message. However, in order to reduce latency for
node detection, a high broadcasting frequency is desired, and it increases overhead for the
network.

To this end, the hybrid approach, which only broadcasts the node finding message once
at the starting time and passively waiting for messages from nodes, is implemented to
take advantage of both mentioned approaches. The node finding message is shown in
Figure. 3.8 with the TID is an arbitrary value as the transaction ID and SEOJ ’s value
is a node profile object(e.g. 0x0EF001).

27

EHD1 EHD2 TID SEOJ DEOJ ESV OPC EPC

0x01 0x81 - - 0x0EF001 0x62 1 0xD6

Figure 3.8: Node Finding Message

Object Recognition
As stated in the ECHONET Lite specifications, a node must return a response with a

list of device objects supported by that node. A device object has its identification, which
provides the device name. By the device name, supported properties, as well as property
constraints of that device, are defined at the specifications. However, in the specification,
there are optional properties, and these optional properties need to be identified by the
Property Extraction module.

Properties Extraction
ECHONET Lite specifications require each device object to maintain a list of settable

properties (EPC 0x9E), a list of gettable properties (EPC 0x9F), and a list of observable
properties EPC 0x9D. Therefore device services and resources are extractable by sending
frames with the corresponding EPC s to request the list of supported properties.

Semantic Exporter

This module uses the eOnt data model and device resources to serialize semantic resources
in the RDF format, which is a standard for the semantical description of resources. An
RDF statement is a triple of a subject, a predicate, and an object. A subject is a resource,
a predicate implies the relation between a subject and an object, and an object can be a
resource or a data value. RDF statements can be linked to each other by using resources
as objects. These resources are the object of one statement, then become the subject of
another statement.

The Service Manager is responsible for creating resource described generic services
for a class of devices which shares the same functionalities. The Resource Manager is
responsible for creating device resources as an RDF graph. TheECHONET Ontology
Model provides vocabularies that are used to annotate device resources and services as
RDF data semantically.

3.3.4 ECHONET Lite Adaptation Flowchart

The AL monitors device properties data changed events and maps these changes into
semantic resources as illustrated in Figure. 3.9.

In the ECHONET Lite specification, observable properties will notify the observer
whenever a data-changed event happened. Thus these observable properties are easily
monitored by implementing corresponding observers. For other properties, the AL has
to store the old value and send multiple unicast messages to query data at an arbitrary
timing.

28

Execute
Node Detection

NO

YESNew Node
Detected?

Execute
Object Regconition

Setable
Property

Gettable Property

Execute
Properties Extraction

Create
Device Service

NO

YES

Semantic
Service
Existed?

Generate
Semantic Service

Profile

Store
RDF Resource

Monitor
Property Data

NO

YES Data
Changed?

Generate
Semantic Device

Resource

[END]

[START]

ECHONET Lite
Interface

Semantic Interface

Figure 3.9: ECHONET Lite Adaptation Layer Flowchart

3.4 Integration Layer: oneM2M Integration

The ECHONET Lite protocol lacks interoperability with service platforms and the sup-
port of standard APIs for service developers as well. This integration introduces a solution
to handle ECHONET Lite device resources and transform these resources into standard
APIs usable by third-party applications. An oneM2M Interworking Proxy Entity for
ECHONET Lite protocol was implemented, and ECHONET Lite devices are able to have
interacted with devices from different domains via the oneM2M ecosystem.

29

3.4.1 oneM2M and oneM2M Interworking Proxy Entity

oneM2M is a global standards initiative that aims to define a standard service platform
for M2M systems. For the interoperability with non-oneM2M systems, the concept of the
interworking proxy entity (IPE) (illustrated in Figure. 3.10) was proposed by oneM2M.

Mca

use

encapsulate
Interwoking

Proxy

AE

MccCSE CSE

Mca

use Application
Entity

provideECHONET Lite
Middleware ECHONET

Objects

Semantic Based
Common Data Model

Specific
Data Model

Interwoking
Proxy <AE>

Non-oneM2M
Interface

oneM2M
Interface

(a) (b)

Figure 3.10: oneM2M IPE(a) and its example(b)

The IPE is an application entity (AE) that provides the application logic to map specific
data models into a common data model usable by the oneM2M system. A common service
entity (CSE) comprises a set of services usable by applications and other CSEs such as
registration, security, application, service, data, and device management. The Mca and
Mcc are reference points that enable AEs to use services provided by CSE and inter-CSE
communication, respectively.

3.4.2 oneM2M Based ECHONET Ontology

An ontology[56] defines an information model to share a common understanding of knowl-
edge and functionalities of a domain, and it has been used to achieve interoperability of
the oneM2M ecosystem with external systems. The oneM2M base ontology enables the
semantic discovery of entities in the oneM2M ecosystem. Additionally, it allows non-
oneM2M technologies to interwork with the oneM2M system by extending the base ontol-
ogy concepts. Since ontology supports both syntactic and semantic interoperability[57], it
has been chosen as a common data model to represent ECHONET Lite device resources.
In Section. 3.3.2, a comprehensive ECHONET ontology model was introduced. The
proposed ontology model fully covers the ECHONET Lite concept as shown in Figure.??.
The oneM2M based ECHONET Ontology namely oneECHONET is proposing by replac-
ing the root ontology of the domain ontology by the root ontology of the oneM2M based
ontology 5.

By this extension, the oneEchonet ontology model is compatible with oneM2M on-
tologies and fully supports the concept of ECHONET Lite device objects. Therefore,

5https://git.onem2m.org/MAS/BaseOntology

30

third-party developers can access to ECHONET Lite resources without prior knowledge
of ECHONET Lite via the oneM2M defined concepts.

is-a

hashas

exposesService refers-toFunctionality

hasThing

Device

is-a

Thing
Property

describes

Thing
Property

Aspect

has
has-service

has-service

is-a

has-function

has-profile-object
has-device-object

Light

type

Operation
Status

is-a
Controlling
Function

is-a
TurnON

is a

TurnOFF

is-a

controls

Control
ON_OFF

Profile
Object

has-property

Device
Object

oneM2M
Base Ontology

ECHONET
Ontology

Figure 3.11: Ontology Based Data Model for oneM2M Integration

3.4.3 Integration Layer Architecture: ECHONET Lite Inter-
working Proxy Entity

oneM2M is a well-known platform and to build the Common Platform as stated in ITU-T
Y.2070 recommendation [38], proposing the Home Gateway (HGW) which is compatible
with the oneM2M ecosystem is a must. Concerning the oneM2M compatibility, it could
be fulfilled by the concept of IPE and oneECHONET ontology. The HGW is required
to implement an operational procedure to manage a network of ECHONET Lite devices
then map resources into the semantic description, and those semantic resources will be
registered to the oneM2M platform by the CSE (provided by the oneM2M IPE). The
overview architecture of eIPE is illustrated in Figure. 3.12.

The core components of the ECHONET Lite IPE are:

• The proposed Adaptation Layer with the oneECHONET ontology model.

• Resource Manager maps resources extracted from the Network Monitor module,
which includes the device name, and a list of property: data tuple into semantic

31

resources by utilizing the oneECHONET ontology model. Then, these semantic
resources will be passed to a CSE so that the CSE will register them to the oneM2M
ecosystem.

• Service Manager acts the same to the Resource Manager. However, it only handles
settable properties, and these registered semantic resources will be used to advertise
provided services of an ECHONET Lite device. It also handles requests from CSE
by triggering exposed device services.

CSE

Interworking
Service

CSE
Service

ECHONET Lite Devices

Property Data
Observation

Object
Extraction

Use

Implement

Expose

Network Monitor

Device
Resources

Device
Services

Ethernet
Driver

Implement

Wi-Fi
Driver

WiSun
Driver

Driver API

ImplementImplement

Use

Provide Send/ Receive
Frames

ECHONET Lite Frame Translator

Network Interaction API
<GET, SET, OBSERVE: Resource>

Implement

Node
Detection

Implement

Expose

Consume

Request Service

Implement

Service
Manager

Consume

Register
Resource

ECHONET Lite IPE

Resource
Manager

Figure 3.12: Overview of ECHONET Lite IPE

32

3.4.4 Implementation

Service
Manager

Network
Monitor

1.4 propeties
observation

Frame
Translator

1.1 multicast
nodefindingMessage

1.5 observe
(node, object, property)

Resource
Manager

2. device service registration

ECHONET
Lite Device

oneM2M
CSE

ECHONET Lite IPE

1. node
detection

1.2 (node,device objects)

 1.3 object
extraction

1.6(node, object, property,value)
[Settable Property]

2.1 register
service

[Not Settable Property]
3. device
resource

registration
3.1 register resource

Figure 3.13: Device Resource and Service Registration Sequence

Service
Manager

1.3 update device resource
(device, object, property, value)

Network
Monitor

1.4 doSET
(frames)

Frame
Translator

1.5 send frames

Resource
Manager

2. service response

ECHONET
Lite Device

oneM2M
CSE

ECHONET Lite IPE

1. request a service
1.2 Find
device
object DeviceID

Operation
Parametters

1.6 execute
 frames 1.7 attribute changed

(device, object,property,value)

2.1 update
device resource

2.2 register resource

Figure 3.14: Device Interaction Sequence

33

oM2M[58] is a java based open-source implementation of the oneM2M. The proposed eIPE
was implemented as an OSGi bundle and integrated into the oM2M project as the HGW.
The sequence diagrams for ECHONET Lite device resources and services detection and
registration, as well as device interaction (control) by the proposed ECHONET Lite IPE
is illustrated in Fig. 3.13 and Fig. 3.14 respectively.

3.4.5 Demonstration

Apparently, ECHONET Lite devices and a device developed by Amazon, namely Ama-
zon Echo Plus, are incompatible. The purpose of this demonstration is to verify the
interoperability and compatibility between them by using the oneM2M ecosystem and
the proposed HGW. Two ECHONET Lite lighting devices created by Toshiba (Toshiba
LEDD85021LT1) are subject of the demonstration, and the detail configuration of the
demonstration is described in Figure. 3.15.

In the end, two lights are controllable by the Amazon Echo Plus, which is not compatible
with the ECHONET Lite protocol by utilizing APIs provided by the implemented IPE
via the oneM2M service platform.

Internet

ECHONET Lite
IPE

oneM2M
CSE

ECHONET Lite
Light bub

Amazon
Echo Plus

on
eM

2M

am
az

on

oM2M API

oneM2M
Platform

oM
2M

oM
2M alexa APIAmazon

Cloudal
ex
a

H
om

e
G

at
ew

ay

Controlling ECHONET
Devices by Voice

Application

Node-RED Server

SmartHome
Skill AE

ECHONET Lite
AE: Application Entity

oM2M: An open source
implementation of oneM2M

IPE: Interworking Proxy
(Application Entity)

Figure 3.15: Demonstration Configuration

34

3.4.6 Conclusion

This integration layer introduces the integration of the ECHONET Lite protocol into the
oneM2M ecosystem by extending and implementing the ECHONET Lite IPE. The pro-
posed IPE facilitates networks of ECHONET Lite device resources into semantic descrip-
tion compatible with oneM2M and discoverable by third-party developers via standardized
API of the oneM2M. Additionally, a comprehensive ontology model called oneECHONET
is proposed to be a foundation for the semantic interoperability. To verify the feasibility
of the proposed solution, a practical implementation of the ECHONET Lite HGW was
introduced. The HGW supports seamlessly plug and play as well as allows interaction
between ECHONET Lite devices and other appliances and applications which are not in
the ECHONET Lite domain.

3.5 Integration Layer: universAAL Integration

3.5.1 universAAL Platform

universAAL (uAAL) [59] stands for universal open platform and reference specification for
Ambient Assisted Living and is the result of the European Union funded project to pro-
duce an open platform for the AAL. The uAAL platform allows the seamless integration
of heterogeneous devices within a network environment through two base concepts: i) the
usage of three communication buses for topic-based communication among components,
namely a Context Bus, a Service Bus, and a User Interface Bus; ii) the usage of ontologies
for information and services sharing between components semantically. An overview of
the uAAL platform is shown in Figure. 3.16. uAAL MW is the core component of the
uAAL platform, which encompasses the communication infrastructure of the platform.
All devices that run this MW are nodes that can share knowledge and functionalities
with other nodes in the form of ontology. The heart of this MW is formed by three buses,
and all the communication takes place via one of three following buses:

1. Context Bus (CB) is an event-based communication channel to allow nodes to pub-
lish context events to the CB, regardless of the existence of recipients or not. Recip-
ients are context subscribers who register their interest to the CB in order to only
receive registered events.

2. Service Bus (SB) is a call-based communication channel that allows nodes to re-
quest services from other nodes. Service providers are called service callees. They
announce themselves by registering a service profile that describes their capabilities
to the SB. The counterpart to service callees is service callers, which send a service
request through the SB to ask for a specific request.

3. User Interface Bus (UI Bus) is used for delivering messages related to user interac-
tions.

35

RDF/OWL
API

Container API

Data Presentation

D
is

co
ve

ry
 &

 P
ee

rin
g

C
om

m
un

ic
at

io
n Service

API

UI
API

Context
API

OSGi Container

AAL Space
Manager

AAL Space
Gateway

General
Purpose

Reasoner

Context
History

Entrepot

Situation
Recognition
Reasoner

Special
Purpose

Reasoner

C
on

te
xt

 A
w

ar
e

M
od

ul
e

universAAL Managers

un
iv

er
sA

AL
 M

id
dl

ew
ar

e

Interaction
Channels

Sensors

Applications

universAAL
Adaptation

3rd party
 services

Actuator

It is me!
I need those
I offer these

UI Bus Context Bus Service Bus

Figure 3.16: The universAAL Platform

The uAAL is the most promising and holistic platform [60], which directly benefits the
end-user by being an affordable, simply configured, and personalized solution that also
further empowers service providers by enabling easier and cheaper development of new
AAL services or adaptation of existing ones. The uAAL has been widely used in European
AAL projects such as inLife [61], ACCRA [62], Plan4Act, Plan4Act, OCARIOT, ReAAL,
and Activage [63]. The idea of ECHONET and uAAL integration has been proposed in
recent researches in Japan. In [64], the basic concepts and benefits of the integration were
clarified, in [65], the integration layer, including the ontology model, has been clarified.
However, detailed implementation, as well as the integration methodology, have not been
explained. This integration is not only to validate the semantic interoperability of the
proposed solution but also an effort to make the ECHONET Lite protocol available to
European countries as well as support AAL services for ECHONET Lite smart home in
Japan.

3.5.2 Implementation

There are two main approaches to protocol-platform integration: Adapter and Gateway
approach. However, there are a considerable amount of heterogeneous devices in smart
home environments, and the adapter approach requires one adapter for each device in
which the total hardware cost is extremely high. The ECHONET Lite - uAAL gateway
(elite4u) is implemented for the integration.

The overall architecture of the elite4u, which used the proposed AL to facilitate a
network of ECHONET Lite devices, is illustrated in Figure. 3.17.

36

Semantic Resource

RDF Format

Export
Manage

Proposed ECHONET Lite
Adaptation

Network of
ECHONET Lite

Devices

Consume

Generate

Context API

Context Event

Consume

Generate

Service API

Service
Profile universAAL

Space

uAALAdaptation

Applications

Context Bus Service Bus

ECHONET Lite - uAAL Home Gateway

Figure 3.17: ECHONET Lite - uAAL Gateway

The elite4u has been implemented with the following characteristics:

• Seamless Plug and Play: When deploying the elite4u gateway into a network of
ECHONET Lite devices, running nodes and newly joined nodes are discoverable.
Resources and functionalities of discovered nodes are extractable and manageable.
All devices are recognized and integrated automatically.

• Semantic Annotation of resources of the network of ECHONET Lite devices: Dis-
covered logical device properties are mappable into semantic resources, which are
discoverable and understandable for the semantic level interoperability support.

• Ontology support: Ontology provides consistent meanings and relationships to de-
scribe resources, which is the foundation for semantic annotation. The ontology
must be comprehensive in order to reflect all attributes of a device without knowing
device specifications.

Since the ECHONET Lite protocol does not provide facilities for UIs, the UI bus was ig-
nored in this architecture. The elite4u exploits semantic resources of the network provided
by the AL, classifies resources into knowledge into Context Event, and functionalities into
Service Profile to share in the uAAL space.

37

3.5.3 Experiment

Smart Home Testbed: iHouse

Experiments that have been conducted to test the implemented elite4u in the smart
home supported the ECHONET Lite protocol. The experiment has been conducted at
the iHouse located at Nomi city, Ishikawa Prefecture, Japan. The outdoor and the living
room (experiment room) of the iHouse is shown in Figure. 3.18 and Figure. 3.19.

Figure 3.18: iHouse Outdoor

38

(a) ECHONET Lite Lighting Device (b) Peper Robot with Controller

(c) ECHONET and ECHONET Lite Adapter (d) iHouse Living Room

Figure 3.19: Experiment Environment: iHouse and experiment devices

The iHouse is an advanced experimental environment for future smart homes in Japan,
and it has been implemented according to Standard House Design by the Architectural
Institute of Japan. The iHouse consists of sensors, electronic devices, and home appliances
that are connecting by utilizing ECHONET Lite version 1.1 and ECHONET version 3.6.
This configuration network emanates more than 300 sensors and actuators.

39

Experiment Configuration

All the tests have been carried out at the iHouse with the configuration as in Figure. 3.20

Karaf:2.2.9
OSGI: Apache Felix 3.2.2
JVM: JavaSE1.8.0_131
OS: Ubuntu 16.04, 64-bit

Hardware: Intel NUC6i3SYK

Software

<<Application>>
<<ECHONET Lite ontology>>

<<universAAL Middleware 3.4.0>>

ECHONET Lite
Space

Robot Controller

Temperature
Sensor Airconditioner

Light

ECHONET Lite Device

universAAL

Karaf:2.2.9
OSGI: Apache Felix 3.2.2
JVM: JavaSE1.8.0_131
OS: Ubuntu 16.04, 64-bit

Hardware: Intel NUC6i3SYK

Software
<<elite4u>>

<<ECHONET Lite ontology>>
<<universAAL Middleware 3.4.0>>

ECHONET Lite - uAAL Service Gateway

ECHONET
Lite

iHouse

Figure 3.20: Experiment Configuration

The elite4u service gateway (GW) is deployed in the Karaf container, which was config-
ured as an uAAL coordinator node. The proposed ECHONET ontology and uAAL MW
(v3.4.0) were installed in this Karaf container. The GW has two interfaces in order to
interact with the ECHONET Lite network and uAAL space. The Robot Controller (RC)
acts as a uAAL node with the same hardware and is configured as a normal uAAL node.

For the experiment, the identification temperature sensors, air conditioners, and lighting
devices are recognized fro the interaction, other devices are detectable without identifi-
cation. There are two use cases (UC) have been conducted. The actor of these use cases
includes the elite4u service gateway, the entire network of ECHONET Lite device in the
iHouse, and the RC.

Use case 1: Seamless Plug and Play

The goal of UC 1 is to verify the operation of the elite4u when installing in the iHouse
where the entire network of ECHONET Lite devices is operating normally. The purpose
of this UC is to accomplish the following objectives:

• The elite4u GW is able to detect ECHONET Lite nodes and objects in the iHouse;

• The elite4u GW is able to extract and monitor properties of identifiable objects;

40

• Extracted properties are able to be transformed into semantic resources (context
events and service profiles);

The sequence diagram of the UC1 is shown in Figure. 3.21.

6.1 monitor
property

data

6. extract
Property

5. regconize
Object

ECHONET
Lite Node

Frame
Translator

Network
Monitor

6.1 create service
resource

Semantic
Exporter

ECHONET Lite Adaptation uAAL Adaptation

Context API Service
API

1. detectNode()
2. doGet(Frame)

3. nodeIdentification 4. node, object list

[Settable Property] 6.2 register device
service

6.3 register
completed[Gettable Property]

6.2 create device
resource 6.3 generate context

event

Figure 3.21: Seamless Plug and Play Use Case

As soon as getting started, the elite4u queries connecting nodes of the network by
sending node finding message to the multicast address at 224.0.23.0 for IPv4 or ff02::1
for IPv6. Nodes must return a node identification message which contains a node profile
and a list of objects managed by that node. Each object is a logical device, and the
name of the object can be identified by Group Code and Class Code, as stated in the
ECHONET Lite specifications. Attributes of the device are extracted as object properties
where settable properties allow the interaction will be mapped to services, and gettable
properties are resources that must be monitored in order to get the latest status of the
device. Device resources and services are semantically annotated by context events and
service profiles of the uAAL, respectively.

In order to verify the plug and play, numbers of ECHONET Lite node, numbers of
detected object, and the necessary time for this process have been summarized in Table
3.4.

Table 3.4: Node Detection Result

Total number
Total time for
detection(ms)

Average time for
detection (ms)

Node 85 564 ∼6.6
Device Object 252 581 ∼2.3

Total time to detect network resources is 581 ms.

41

Figure 3.22: Total Time For Device Recognition

Use Case 2: Device Service Interaction

The goal of UC2 is to verify the correct operation of elite4u service gateway when applying
commands to devices by the following objectives

• The elite4u is able to register semantic device services exported by the proposed
adaptation layer to the service bus.

• The registered services are usable for interacting with devices.

• The elite4u is able to send commands to the corresponding device on the network.

• The elite4u is able to report results sent by the device to the requester.

Recalling the procedures of the elite4u when detecting a node, device services are identified
by the access rule of properties. A mechanism to register abstract service profiles for
devices that share the same function instead of registering separate service profiles for
each device to reduce workload for the service bus was provided by the adaptation layer.
The purpose of this use case is to measure the delay time caused by the adaptation layer,
including the time to identify the correct device to execute the request.

The sequence diagram of the UC2 is shown in Figure. 3.23.
The uAAL service bus supports a matchmaking mechanism to ensure the semantic

discovery of provided services based on pre-registered service profiles, and the delivery of
service requests to the service provider is guaranteed by the service bus (1).

As soon as a request is passed to the uAAL adaptation of the elite4u service gateway,
the service request is forwarded to the semantic exporter (2) in order to extract corre-
sponding endpoint(3), operation, and parameters (4). After deciding the command, the
corresponding ECHONET Lite device service provided by the network monitor module
is invoked (5), and ECHONET Lite frames are generated (6). The SET operation API

42

provided by the frame translator is called to forward the frame to the corresponding
hardware (7). The ECHONET Lite device, which receives the request (in the form of
ECHONET Lite frame), executes the request and returns the result frames (8). Based on
the frame, a service execution result and a service response are generated accordingly(9),
(10), (11). The service bus forwards the service response to the requester and terminates
the interaction cycle (12).

4. extract
operation and
parametter

3. extract endpoint

ECHONET
Lite Node

Frame
Translator

Network
Monitor

Semantic
Exporter

ECHONET Lite Adaptation uAAL
 Adaptation

Service
API

Robot
Controller

Service
API

1. request provided
service2. forward service

rquest

5. require device
service

6. generate frame
7. doSet(frame)

8. result frame 9. doSet result
10. service result

11. service response

12. service response

Figure 3.23: Device Service Interaction Use Case

4. getOperation()

3. getResourceURI()

Lighting
Device

Frame
Translator

Network
Monitor

Semantic
Exporter

ECHONET Lite Adaptation uAAL
 Adaptation

Service
API

Robot
Controller

Service
API

1. turnON(LightingURI)
2. handleCall

(SeviceRequest)

5. light.setOn(IP)

6. generate EOJ,
EPC, EDT 7. doSet

(EOJ,EPC,EDT)

8. result frame 9. doSet result
10. service result

11. service response

12. service response

705 ms621 ms

616 ms 620 ms 620 ms 620 ms

Figure 3.24: Lighting Service Interaction Time

The experiment which used the Robot Controller to turn on the ECHONET Lite light-
ing device (Toshiba LEDD85021-LT1) was conducted, and the time is broken down in

43

Figure. 3.24.
The necessary time for the light to execute the request is 616 ms, and the total time

for an interaction cycle in the uAAL space is 705 ms. The time added for the integration
is 89 ms, which is consider a small amount of time. The added time caused by the
adaptation layer is only 4 ms.

3.5.4 Conclusion

The service gateway based on the proposed adaptation layer, which integrates the ECHONET
Lite protocol into the uAAL platform was implemented. The wrapper for the uAAL plat-
form was created without taking care of ECHONET specifications by using semantic
resources exported by the proposed adaptation layer. The delay time caused by the
adaptation layer is small enough to prove the feasibility of the proposed solution. The
implemented service gateway is the core component to support the interaction between
the robot and smart environment in [66] as a part of the CARESSES project [67].

3.6 Summary

Unlike the core network, that is operated by ISP companies with expert network operators,
the IoT area network (Figure. 3.1) is still required efforts to provide OAM services as
users are normal people without knowledge on networking. Since the ECHONET Lite
protocol covers all requirements of desired IoT area network protocols stated in [42], the
ECHONET Lite protocol has been chosen as target protocol for the home network model.
To implementing AI models for providing OAM services for the IoT area network, traffic
data of a target home network is desired. As the required traffic data is generated based on
the communication between HGW and devices, this section proposed, implemented, and
verified an ECHONET Lite based HGW architectures. The proposed layered architecture
of the ECHONET Lite HGW supported all requirements of the HGW, as stated in 2.5,
and an experiment involves real users was conducted as well. The efficiency and reliability
of the proposed HGW were confirmed. The implemented HGW is using as the service
gateway for the human, robot, and smart home interaction of the CARESSES project6.

6http://caressesrobot.org/en/

44

Chapter 4

Device Emulator

4.1 Device Simulation

Since the ECHONET Lite protocol is able to support various protocols/ technologies us-
able by either constrained and non-constrained devices, the device simulation is proposed
and implemented based on the ECHONET Lite protocol.

Table 4.1: Requirements for Device (referred from ITU-T Y.2070)

Requirements Functions Description

Device Operation Device Object
To support an abstract data model representing
resources and functionalities of the device

Management
Managed
Agent

To respond to resource information collector
request sent from home gateway. Moreover, it is
required to check the status of device and report
in the case of failure

Table 4.1 summaries requirements of a device as stated in the ITU-T Y.2070 [38].

4.1.1 Related Work

ECHONET Lite is the country’s recommended protocol for smart homes in Japan. There
have been many efforts to promote the protocol by introducing middleware, tools, and
emulators. The summary of the ECHONET Lite software development kit (SDK) referred
from the HEMS (ECHONET Lite) Interoperability Test Center 1 is shown in Table 4.2.

1http://sh-center.org/

45

Table 4.2: ECHONET Lite SDKs

Name Description
SSNG

SSNG for iPhone
SSNG for NodeJS

Tools to send and receive ECHONET Lite packet
Support graphic user interface (GUI)

Device Emulator
ECHONET Lite device emulator
Display sent and received ECHONET Lite frames
Support GUI

EL Lighting
EL Blind

Controller for ECHONET Lite devices
Mobile application to control device object via GUI

node-echonet-lite
Middleware supports creating, parssing, sending
and listening for ECHONET Lite packets in Node.js.
It allows creating and managing device objects

OpenECHO
Middleware supports creating, parssing, sending and
listening for ECHONET Lite packets in Java. Also,
It allows creating and managing device objects

Currently, ECHONET Lite is getting more attention, especially in European countries,
by a collaboration project [67]. These tools and emulators are helpful to get started since
ECHONET Lite equipment are not popular in Europe. However, it is challenging to build
a smart home simulator by using these SDKs because it is not flexible enough to simulate
a new device rather than predefined devices.

4.1.2 Device Emulator

The overview architecture of the proposed ECHONET Lite device emulator is shown in
Figure. 4.1.

Generates

Subnet Module

Transation Module

Loads
device

definition

Object Module

Device Object
Configuration

Middleware

XML

ECHONET
Lite

NodeImports

Generates

Fi
le

 S
ys

te
m

 M
an

ag
er

File System

Network of ECHONET
Lite devices

Input Device Emulator Software Output

Figure 4.1: ECHONET Lite Device Emulator

The device emulator (DE) is designed while keeping in mind the following points:

• Decoupling the Device Objects and Communication Middleware (in Figure. 3.2) to
improve flexibility when simulating new devices.

46

• Supporting a mechanism to simulate a faulty device.

• To reduce memory usage, GUI is not necessary. However, an alternative interface
for device interaction must be supported.

• Be able to simulate all classes of devices (113 classes in [45]).

• Be able to simulate a network with hundreds of devices.

The purpose of this DE is to take device configuration files as the input and create
ECHONET Lite nodes that behave exactly the same to a commercial device by im-
plementing the middleware specification provided by the ECHONET consortium2. The
proposed DE includes two main components that cover two parts of the ECHONET Lite
specifications (Figure. 3.2 a) (i) Device Objects and (ii) the Communication Middleware
and a mechanism to interact with emulated devices via a file system (FS) from outside of
the DE.

• Device object configuration (DOC) is an xml[68] document that provides device
identification, device resources, and services. The structure of the DOC is visualized
in Figure. 4.2 and Listing 7.1. The network address is either an IP address or the
MAC address of a node and specified by the file name of the DOC. The DOC reflects
concepts of the Device Object in which device resources are properties with initial
values and services are specified by Access Rule. Each property is attached with a
unique Access Path, and it is a relative path of the property in the FS. The property
value can be updated using this path.

Node

Network
Address

Profile

Property 1

Access Rule

Init Value

Access Path

Property n

...

Device Object 1

Property 1

Access Rule

Init Value

Access Path

Property n

...

...

Device Object n

Figure 4.2: Device Object Configuration Structure

2https://echonet.jp/english/

47

• Middleware (MW) represents the standard operating procedure of an ECHONET
Lite node, including start-up (restart) sequence, request handling sequence, and
notify sequence, which is required by the ECHONET Lite protocol stack. The
proposed MW provides three layers (i) Object Module imports object definition
from the DOC and also monitors the data object value changed event in the FS.
(ii) Transaction Module manages transactions of request-response cycle and notify
cycle. (iii) Subnet Module implements network drivers (Wi-Fi, Ethernet, Bluetooth,
Wi-SUN, etc.) and a frame translator to translate the ECHONET Lite frame into
data and vice versa.

An emulated device can be generated by defining a DOC and importing it to the MW.
The FS is respectively generated based on the Access Path of each device object. By
updating the values of properties via the FS, device status can be simulated by external
agents. The pseudo-code of the DE is as in the Algorithm 1.

Algorithm 1 ECHONET Lite Device Emulator Pseudo code

Input: An XML file
Result: An ECHONET Lite node
Create root folder with the name of XML file
Create ECHONET Lite profile object
Create a sub-folder with the name is the profile object code under the root
for XML tags in XML file do

for each pair of property, value in the profile object tag do
Create a file with the name of the property and the content is set with value
Add the property with default value is value to the profile object

end
for device object tag in the XML file do

Create ECHONET Lite device object
Create a sub-folder with the name is the device object code under the root
for each pair of property, value in the device object tag do

Create a file with the name of the property and the content is set with value
Add the property with default value is value to the device object

end

end

end

4.1.3 Faulty Device Simulation

A faulty device could be simulated by mimicking abnormal behaviors (faults) of com-
mercial devices. In [69], [70], [71], and [72], faulty behaviors of IoT devices and wireless
sensors based on the data-centric approach are specified. The data-centric approach fo-
cuses on data values reported by devices, and a fault can be determined by a data point
that deviates from the expected data. These faults can be represented by simulating the
value of properties of a target device via the FS without changing the MW or the DOC.

From the view of communication, as stated in [73], a fault can be categorized into:

• Crash Fault: A device completely stops responding.

• Omission Fault: A device does not reply to one or more requests.

48

• Timing: Responses of a device occur outside of the specified time interval.

• Response Fault: A device replies incorrectly either by an incorrect request return
value or an incorrect state transition.

These faults required modification of the MW, which handles transmitting and receiv-
ing frames. The crash fault happened when a device totally drops either the incoming
frames or outgoing frames, and it can be implemented by adding a mechanism to drop
incoming/outgoing frames to the Subnet Module of the MW. The omission fault shares
the same phenomenon to the crash fault, but since it happens with a possibility, the drop
rate is less than 100 percent. Therefore, crash fault and omission fault are simulated by
a frame dropping mechanism configurable (drop rate) by a value specified in the DOC.
The timing fault is simulating by adding a time delay before transmitting frames to the
Subnet Module. The added delay time is configurable via the DOC also. The response
fault can be implemented by editing the frame value at the Subnet Module to a faulty
value before transmitting the outgoing frame.

4.1.4 Implementation

The simulator middleware, namely humming, is implemented and released as an open-
source project via github3. Humming is a Java implementation that supports all opera-
tions of an ECHONET Lite node. The flowchart of the humming is shown in Figure.4.3.

[Start]

Program Started

NO

Load Device Object
Configuration file

Notify node instance
information

Node
Start-up

Request Waiting

Request
Received?

Handle Request

Reply Result

YES Faulty
Device?

Adjust config

Handle by Object Module

Handle by Transaction Module

Handle by Subnet Module

Figure 4.3: Simulator Middleware (Humming) Flowchart

3https://github.com/ymakino/humming

49

https://github.com/ymakino/humming

A node is created by deploying the MW together with a DOC that describes the node.
The Object Module loads the DOC file and extracts the node’s configuration, which con-
tains information to simulate a target node. The DOC is generated by mapping all
required properties of the target node stated in [45] into the XML format. Additionally,
the DOC also provides instructions to simulate a faulty node (device). When a faulty
node is desired, the configuration is applied to the Subnet Module as follows:

• Crash fault is falling into two cases (i) device keeps rebooting, or (ii) device does
not reply to any request. Since an ECHONET Lite node must notify the node
instance information which contains node identification and supported device ob-
jects at the time the node joins a network, the rebooting scenario is simulating by
keep sending the node instance information after an arbitrary short timing (about
one second) to the multicast address of the network. The non-response scenario
is simulating by declining all incoming requests after joining a network, and it is
implemented by setting the rate to drop incoming frames to one hundred percent.

• Omission fault and Timing fault are normally adjusting the rate to drop in-
coming frames and the delay time before sending outgoing frames at the Subnet
Module.

• Response fault has several patterns, such as replying a request with a wrong result,
replying to a request by a non-ECHONET Lite frame, or replying to a request by
an invalid value. In this implementation, the response fault is implemented by
removing all properties of the target device object from the DOC.

4.1.5 Deployment

Device Emulator n Device Emulator 2

Hardware

Host Operating System

Docker Engine

Device Emulator 1

Emulator Middleware (humming)

...
Docker

Container

DOC1.xml
DOC2.xml

...
DOCn.xml

DOC
Device
Object

Configuration

eth0: 192.168.x.x eth0: 192.168.x.x eth0: 192.168.x.x

ECHONET Lite ECHONET LiteECHONET Lite

ECHONET Lite
Network

Figure 4.4: Deployment Overview

50

Algorithm 2 ECHONET Lite Device Emulator Pseudo code

Input : A collection of XML file
Result: ECHONET Lite nodes
Prerequisite: Install docker images and dependencies 4 Install Device Emulator Mid-

dleware
Initialize a virtual network interface for all containers
for An XML file in the collection of XML file do

Deploy docker container
Load emulator configuration information
Run Device Emulator as in Algorithm 1

end

To support an easy and scalable deployment, each DE is deployed as a docker container
[74]. The overview of the deployment model and deployment script is as in Figure. 4.4 and
Algorithm. 2 respectively. By utilizing the deployment script, the automatic deployment
of a large number of ECHONET Lite DE is achievable by feeding the XML file into the
target collection only.

4.1.6 Experiment and Evaluation

Normal Device Simulation

Firstly, an experiment to evaluate operational aspects of simulated devices and commercial
devices is conducted, and the experiment configuration is as in Figure. 4.5.

Host PC ECHONET Lite
Service Gateway

Wi-Fi Accesspoint

ECHONET Lite Light bub

Light Emulator 1

eth0 192.168.2.102

Light Emulator 2

eth0 192.168.2.103

lan0 lan0

lan0 192.168.2.254

ECHONET Lite
Service Gateway

PC Docker Container 1 Docker Container 2

a) Deployment of Real ECHONET Lite Devices

et
h

19
2.

16
8.

0.
10

2

et
h

19
2.

16
8.

0.
10

3

eth 192.168.2.100

b) Deployment of Device Emulator

Figure 4.5: Experiment Deployment

51

To verify whether the simulated device can mimic commercial device operations, the
implemented ECHONET Lite HGW in Section 3.2 is deployed together with commercial
devices and simulated devices. The HGW is able to detect devices and enable basic
interaction sequences such as GET, SET. Two commercial ECHONET Lite light bubs
(Toshiba LEDD85021N-LS) as shown in Figure.4.5 a) is used as commercial devices.
Two simulated lighting devices are configured exactly the same to commercial devices in
terms of numbers of property and initial data of each property.

Table 4.3: Reponse Time Comparation Between Real and Emulated Devices

ECHONET Lite
Light 1

ECHONET Lite
Light 2

Emulated
Light 1

Emulated
Light 2

Time to detect
device

1067
(ms)

1080
(ms)

1027
(ms)

1048
(ms)

Time to get
Profile Object

8
(ms)

7
(ms)

4
(ms)

3
(ms)

Time to get
Device Object

20
(ms)

18
(ms)

12
(ms)

13
(ms)

Time to set
(ON/OFF)

82
(ms)

76
(ms)

35
(ms)

36
(ms)

Table 4.3 summaries the response time for requests sent by the HGW to real and em-
ulated devices. The necessary amount of time for the HGW to detect devices is around
1000 ms after multi-casting the request. It requires additional 13 ms to detect the sec-
ond commercial devices and 21 ms to detect the second emulated device. The required
time to process the request of emulated devices is shorter than commercial devices be-
cause the hardware performance of emulated and commercial devices are different. The
time variance is several millisecond for GET operation and less then 50 millisecond for
SET operation. Obviously, the processing time of emulated devices is shorter because the
processing power of the emulated device is much higher. Since the processing power of
the emulated deployment environment (docker container) is adjustable, the time variance
between emulated devices and commercial devices can be eliminated. However, the time
variance is small enough, and in the real deployment, it is interfered with by the commu-
nication media, it could be ignored. Therefore, emulated devices are functioning in the
same way as real ECHONET Lite devices.

Furthermore, packets transmitted between devices(emulated and commercial devices)
and the HGW are captured as in Figure. 4.6. The result shows that emulated devices
and commercial devices behaved in the same manner in responding to requests from the
HGW.

• Both of emulated devices and commercial devices replied to the node finding message
request from the HGW with a 60-byte packet.

• Both of emulated devices and commercial devices replied to the get request from
the HGW with the same packet size and the same payload data.

This result proves the correctness and reliability of the DE.

52

(a) Commercial Light Deployment

(b) Emulated Light Deployment

Figure 4.6: Devices and Home Gateway Exchanged Packets

53

The information of the host PC in Figure. 3.20 is as bellow

• Model : Cisco UCS C200 M2 (Group L)

• CPU: Intel (R) Xeon (R) CPU X5670 (2.93 GHz/ 6 Cores)

• Number of CPU: 2

• Memory: 8GB Registered DIMM x 6 = 48GB

• HDD: 500GB x 2

• Docker Version: 17.12.0-ce, build c97c6d6

• Docker Images: Ubuntu 18.04 LTS

The CPU and memory usage of the containerized ECHONET Lite device emulator is
shown in Figure. 4.8. Only one CPU core is used to deploy the experiment, and the CPU
usage is about 0.14 percent each. Furthermore, an emulated device requires about 100
MB of memory.

0 2 4 6 8 10 12
Time (Every 10 Minutes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CP
U

Us
ag

e
(%

)

CPU Usage of Device Emulator Containers

192.168.2.103
192.168.2.102

(a) CPU Usage

0 2 4 6 8 10 12
Time (Every 10 Minutes)

0

20

40

60

80

100

M
em

or
y

Us
ag

e
(M

B)

Memory Usage of Device Emulator Containers

192.168.2.103
192.168.2.102

(b) Memory Usage

Figure 4.7: CPU and Memory Usage of Deployed Containers

Faulty Device Simulation

In this scenario, following emulated lighting devices have been deployed

• A normal device (IP: 192.168.2.98)

• A crashed device that drop 100 percent of incoming and outgoing packets (IP:
192.168.2.97)

• A device with response fault that does not support properties of normal device (IP:
192.168.2.96)

• A device with timing fault that causes a 1300 ms delay (IP: 192.168.2.95)

54

• A device with omission fault that drops 50 percent of incoming and outgoing packets
(IP: 192.168.2.94)

• A device with drop rate 50 percent and delay 1000 ms (IP: 192.168.2.111)

0 20 40 60 80 100
Request No.

0

100

200

300

400

500

Re
po

ns
e

Ti
m

e
(m

s)

192.168.2.98

(a) Normal Device

0 20 40 60 80 100
Request No.

4800

4900

5000

5100

5200

Re
po

ns
e

Ti
m

e
(m

s)

192.168.2.97

(b) Crashed Device

0 5 10 15 20 25 30
Request No.

20

40

60

80

100

Pa
ck

et
 S

ize

Average Transmitted Packet Size

DataLoss
Normal

(c) Data Missing Device

0 20 40 60 80 100
Request No.

1300

1400

1500

1600

1700

1800

Re
po

ns
e

Ti
m

e
(m

s)

192.168.2.95

(d) Timing Error Device

0 20 40 60 80 100
Request No.

0

1000

2000

3000

4000

5000

Re
po

ns
e

Ti
m

e
(m

s)

192.168.2.94

(e) Omission Fault Device (Drop rate 50%)

0 20 40 60 80 100
Request No.

1000

1500

2000

2500

3000

3500

4000

4500

5000

Re
po

ns
e

Ti
m

e
(m

s)

192.168.2.111

(f) Drop rate 30% and Delay 1000 ms

Figure 4.8: Faulty Device and Normal Device Comparison

The response time for the first 100 requests from the HGW of emulated devices are
visualized in Figure. 4.8. The response timeout is 5000 ms that is applied in the case

55

of no response. In Figure. 4.8 (b), the response time is 5000 ms for all requests which
mimics the crashed fault. In Figure. 4.8 (c), the packet size of the normal device, and
a device with missing data fault is visualized. Obviously, the packet size of the faulty
device is smaller than the normal device. In Figure. 4.8 (d), the response time equals to
Added Delay Time (1300 ms) + Normal Response Time. In Figure. 4.8 (e) and
(f), the response timeout is reported with a rate which mimics the omission fault.

4.1.7 Conclusion

The proposed ECHONET Lite device emulator is able to simulate the behaviors of real
commercial devices. Faulty devices are extended from normal devices by applying the fault
model [73]. Experiment results verified the correct operations of the DE in simulating
normal and faulty devices. By utilizing the docker platform, automatic and scalable
deployment is achievable. The CPU usage and memory usage of the DE is about 0.15
% and 100 MB, respectively, for an ECHONET Lite node. Therefore, the simulation
of the experiment facility with about 300 devices, namely iHouse in Section. 3.5.3 can
be deployed in a normal PC that has 32 GB of memory. Even though the DE does not
support the graphic user interface (GUI), it supports interaction with emulated devices
via the file system.

4.2 Home Network Simulation

Smart home simulators and testbeds have been introduced to provide materials for re-
searchers in the field of ambient assisted living to develop and evaluate their solutions.
Since simulators reduce costs in terms of money and time, researchers are utilizing sim-
ulators to develop services to enhance user comfort, save energy, and detect abnormal
behaviors in daily living activities, etc. However, available smart home simulators seem
to focus on device state transitions to analyze user activities and behaviors. Simulators
that can generate network traffic have not been fulfilled so far. In this section, a home
network simulator that can generate network traffic of devices in the IoT area network is
proposed.

4.2.1 Related Work

In [75],[76] and [77], author presented an interactive smart home simulator which provides
a configurable virtual smart space for the dataset generation purposes. However, these
simulators focus on providing time-series data of devices in smart homes, and from these
device state transitions, a dataset for user activity recognition could be generated. It lacks
to consider the network traffic from devices, as well as abnormal behaviors of devices, are
not taking into consideration.

In [78], a simulated 3D smart home is proposed. It allows simulating operations and
communications of devices in smart homes. It simulates devices’ communication using
UPnP protocol and supports a flexible mechanism to add more devices by connecting
real devices into the virtual space. However, abnormal behaviors of devices are not yet
considered, and it is possible to capture the traffic from real devices only.

56

4.2.2 Deployment Options

Essentially, there are two types of traffic which can be generated

• Machine Generated Traffic (MGT): the traffic generated only by the device in-
teractions such as periodic data communication from sensors to report its measured,
periodic request from HGW for network status monitoring, and so on.

• Human Generated Traffic (HGT): the traffic generated by the interfering of
humans with devices such as turning on/ off a device, activating the human detection
sensor, and so on.

Basically, network traffic is generated by having a network of devices and HGW deployed.
The generated traffic is captured via network traffic capture tools such as TCPDump
4, Wireshark 5, and so on. The MGT simulation is simply done by (i) defining devices
in terms of name, number, and configuration, (ii) configuring the HGW by specifying
operation scenarios, (iii) deploying devices, and (iv) setting a traffic monitor to collect
generated network traffic. Therefore, the MGT simulation is achievable with the DE and
the proposed HGW in Section 4.1.2 and Section 3.2.

The HGT simulation is more complicated because humans involve in the loop. The
simulator in [79] supports human interaction by providing an avatar so that users can
control devices using the avatar. However, it is impossible to ask participants to control
the avatar in order to reproduce their daily behaviors. Simulating human behaviors to
support an autonomous avatar can close the gap. To build the avatar that can reflect
human activity, it is required to have (i) an accurate virtual model of the target house,
and (ii) simulated devices must have an accurate position as well as the area of effect. The
HGT simulation requires a GUI extension for Human Activity Simulation of the MGT
simulation.

4https://www.tcpdump.org/
5https://www.wireshark.org/

57

Packets

Hardware

ECHONET Lite
Home Gateway

Docker Engine

Emulated
Device 1

Emulated
Device 2

Emulated
Device n ...

Operating System

ECHONET Lite
Network

Network
Traffic
Capture

Hardware

Operating System

GUI
Device
Control
Signal

a) Machine Generated Traffic Simulation
b) Human Activity

Simulation

Figure 4.9: Human Generated Traffic Simulation

The overview of the MGT simulation and HGT simulation is shown in Figure. 4.9.
Essentially, in the MGT simulation, the traffic is generated by the interaction between
the HGW and emulated devices, and the network traffic is collected as packets by the
Network Traffic Capture (NTC). Since a device will send a packet to notify its status
changed event to the network, the HGT simulation produces network traffic by controlling
device status according to the output from the Human Activity Simulation (HAS).

(a) Smart Home Floor Map (b) Human Activity Simulation GUI

Figure 4.10: Mapping target smart home floor map into Simulation GUI

The HAS is implementing by mapping between a target home environment floor map
(physical space) into a virtual space using building information modeling (BIM) [80]
technologies to ensure accurate visualization. Then, devices are deploying into the virtual
environment, and these virtual devices are reflected corresponding into emulated devices
of the MGT simulation (Figure. 4.9 (a)). Next, an autonomous avatar of humans is
setting and moving in the virtual space. Whenever the avatar interacts with a device,

58

the HAS sends a request to control the emulated devices based on the mapping between
virtual devices and emulated devices. Since HGT is relying on human interaction, and
MGT is reflecting operational aspects of networks, MGT simulation is using to generate
the network traffic dataset. However, HGT is extensible from the MGT simulation and
can be implemented as future work.

4.2.3 Network Traffic Dataset Generation

For the purposes of generating a network traffic dataset, the ECHONET Lite HN sim-
ulation has been deployed. Devices in the simulator are ECHONET Lite devices, and
those devices are reflecting real operating devices from a testbed called the iHouse. Em-
ulated device properties and initial data are loaded by values taken from the devices in
the iHouse. Besides mapping real physical devices into emulated devices, faulty devices
are emulated as:

• Missing Data: Devices that do have mandatory properties specified in the speci-
fication.

• Delay: Devices that have additional delay time before sending a packet. Delay
time varies from 200 ms to 4500 ms.

• Packet Drop: Devices that drop the outgoing packet with a configurable rate. The
drop rate varies from 5% to 99%.

• Delay&PacketDrop: Devices that suffer from both delay and packet drop faults.

• AllErrorCombined: Devices that suffer from all of the above faults.

The summaries of devices of the simulator is in Table 4.4.

59

Table 4.4: Device Configuration of the Home Network Simulator

Device
Object

Total
Normal
Devices

Faulty Device

Missing
Data

Delay
Packet
Drop

Delay&
Packet
Drop

AllError
Combined

AirConditioner 12 6 1 1 2 1 1
AirSpeedSensor 1 1 0 0 0 0 0

DoorLock 2 1 0 1 0 0 0
ElectricCurtain 8 4 1 1 1 1 0
ElectricWindow 16 8 1 2 1 3 1

FireSensor 2 1 0 0 1 0 0
HotWaterPot 2 1 0 0 0 1 0

HumanDetectionSensor 50 25 2 9 4 6 4
HumiditySensor 24 12 1 3 3 3 2

IlluminanceSensor 23 11 1 3 3 3 2
InterCom 2 1 0 0 1 0 0
Lighting 38 19 2 4 4 5 4

OpenCloseSensor 22 11 2 1 2 4 2
Radio 2 1 0 0 0 1 0

Refrigerator 2 1 0 0 1 0 0
RiceCooker 2 1 0 0 0 0 1

Stove 2 1 1 0 0 0 0
TemperatureSensor 24 12 1 3 3 3 2

TV 4 2 0 1 1 0 0
WaterFlowRateSensor 8 4 0 2 2 0 0

Total 246 123 13 31 29 31 19

A total of 246 device objects are simulated by 138 ECHONET Lite nodes.
The HGW configuration is as below:

• The HGW sends a Node Finding Message to the multicast address of the network
during start-up time.

• The HGW identifies and manages devices which replied to the Node Finding Mes-
sage.

• The HGW sends requests to get managed device information includes a request to
get the Profile Object and a request to get the Device Object at an interval of every
10 seconds.

• The HGW sends the Node Finding Message to the multicast address of the network
at the interval of every 2 minutes in order to detect newly joined devices and
left-the-network devices.

The HN simulator is deployed and exchanged packets of the IoT area network are
captured. The network traffic dataset includes:

• The captured packets in the pcap format.

• IP address of devices and device information such as Device name, faulty device or
not, fault category, and fault description.

60

• The deployment script and docker images to configure and deploy the device emu-
lator.

• The configuration and deployment scripts of the HGW.

4.2.4 Conclusion

The HN simulator has been introduced to generate the network traffic of the IoT area net-
work based on the ECHONET Lite protocol. The proposed simulator is able to simulate
the machine-generated traffic and is extensible to support the human-generated traffic
as well. The IoT network traffic dataset that includes captured packets of the deployed
simulated environment is released together with device configuration and the script to
regenerate the captured packets if needed. By using the HN simulator with configura-
tion as in Table 4.4, the amount of 12674778 network packets has been collected during
approximately 22 hours of deployment.

4.3 Summary

A network traffic dataset is an essential part of building AI-based solutions to provide
OAM services for smart homes. Testbeds, simulations, and synthesis can generate data.
However, the simulation seems to be the most appropriate solution with lower costs in
terms of time and money to have the data. There have been many smart home simula-
tions in the literature. However, they are focusing on ambient assisted living applications
to improve user comfort. The IoT area network simulator is a need in order to gener-
ate network traffic data include traffic from normal devices and faulty devices. There
are two primary components of the HN simulator: (i) the HGW and (ii) devices that
connect to the HGW. Since the ECHONET Lite HGW architecture and implementation
have been explained in chapter 3, the device simulation and the deployment of the HN
simulator are explained. The device simulation supports flexible and scalable deployment.
The emulated devices are operating in the same manner to commercial devices, and the
faulty devices are simulated based on the fault model for the distributed system includes
crash fault, omission fault, timing fault, and response fault. The proposed device em-
ulator memory usage is less than 100 MB and approximately 0.15% of CPU for an
ECHONET Lite node. Over 22 hours of deployment, 12674778 exchanged packets of
the machine-generated traffic are captured by the HN simulator. The human-generated
traffic simulation will be extended in future work.

61

Chapter 5

Machine Learning based Solutions
for Smart Homes

By deploying the network simulator that includes the proposed HGW, normal device
emulator, and faulty device emulator, network traffic data is collected in the form of raw
captured packets. Data preparation is an essential part that requires to clean the input
data and extract meaningful features from data.

5.1 Overview

The performance of ML algorithms heavily depends on the input data set. Raw packet
capture data sets can be used to analyze the behaviors of a network for the purpose of
network forensics and training. Network data that is used to build ML solutions are in the
form of SNMP MIB [81], Cisco NetFlow [82], and IP Flow Information Export (IPFX)
[83]. Since flow-based approaches for anomaly detection and traffic classification show the
potential to achieve low time and memory overhead [84], [85], the transformation from
raw capture packets into flow-based network traffic is desired.

A flow reflects the connection information between two devices, like sensors, actuators,
and the HGW. Generally, a flow is identified by source IP address, source port, destination
IP address, destination port, protocol, and all packets which share these same properties
are aggregated into one flow within a time window. For example, a complete flow in an
online youtube video streaming section consists of all packets sent from the host to the
youtube server. It includes session setup, data exchange, and session finish. Netflow [82]
aggregates these flows into one single flow record until an active or inactive timeout is
reached.

62

Table 5.1: Typical Attributes of a flow record with an example

Attribute Data Type Example
Start Time timestamp 2019-10-30 21:12:23.289
Duration time 0.389 second
Protocol categorical UDP

Source IP Address categorical 192.168.2.254
Source Port numeric 3610

Destination IP Address categorical 192.168.2.100
Destination Port numeric 3610

Bytes numeric 128
Packets numeric 2

Table 5.1 shows the typical attributes of an unidirectional flow record. The exemplary
values for an ECHONET Lite flow record where a device with the IP address 192.168.2.254
sent two packages of a total of 128 bytes to a device with the IP address 192.168.2.100)
during the period of 389 ms are also included.

Unlike the unidirectional flow represents packets flowing in one direction only, a bidi-
rectional (Biflow) [86] represents packets flowing on two directions between endpoints
on a network. The Biflow more accurately describes behaviors and gives more insight
information of a network system [86], [87].

t0 A

Source IPTime

B

Destination
IP

3610

Source
Port

... 3610

Destination
Port

t1 B

Source IPTime

A

Destination
IP

3610

Source
Port

... 3610

Destination
Port

Time

t0 3610 3610

Source IPStart
Time

Destination
IP

Source
Port

Destination
Port

A ... B t1 - t0
Duration

Unidirectional
Flow

Bidirectional Flow

Figure 5.1: Bidirectional Flow Conceptual Diagram

63

The conceptual diagram of mapping from unidirectional flows, which have the same
value of 5-tuple of source IP address, source port, destination IP address, destination
port, protocol but with the reversion of the source address and the destination address, is
shown in Figure. 5.1. The direction of a Biflow can be decided by the time order or by
the client-server relation based on endpoint identifications. The bidirectional flow record
provides information about client-server interactions.

5.2 Related Work

A network traffic flow generator, namely NetFlowMeter [88], [89], has been widely applied
to generate bidirectional flows of network traffic data sets such as data set for android
malware [90], data set for DDos attack detection [91], data set for intrusion detection [92],
and so on.

The NetFlowMeter is a Java-based open-source bidirectional flow generator that takes
the capture packets from a pcap file or performs the live packet capture and aggregates
those packets into a list of Biflow in the timely order. The NetFlowMeter is able to
export 83 features of a flow such as Number of packets in forward direction, Number of
packets in backward direction, interaction duration, etc. The NetFlowMeter support both
UDP and TCP flows while UDP flows are terminated by the flow timeout, TCP flows
are terminated by the FIN packet. Apparently, the flow timeout can be applied for both
TCP and UDP flow by an adjustable value. However, the situation is different in the IoT
Area Network where devices are usually low-power devices with the wake-up mechanism.
It means that for power saving purposes, devices sleep all the time and wake-up to answer
requests, then quickly terminate the session ((in seconds, milliseconds)) and switch to
the sleep mode. While video streaming or gaming devices where the session is long and
devices keep the connection for a long period of time (in minutes, hours). Moreover, the
connection direction of the NetFlowMeter is decided by a timely order only. However, in
the IoT Area Network, it is required to have the direction decided by the initiator (the
HGW). Therefore, a network flow calculator for the IoT Area Network is desired.

5.3 Network Flow Calculator

The overview of the proposed network flow calculator (flowCal) for the IoT Area Network
is illustrated as in Figure. 5.2.

64

Timestamp

srcPort

srcIP txPacketsdstIP txBytes rxPackets rxBytes txData rxData FlowType Duration

srcIP: Source IP Address
srcPort: Source Port
dstIP: Destination IP Address
dstPort: Destination Port

txPackets: Number of packets in the forward direction
txByte: Number of bytes in the forward direction
rxPackets: Number of packets in the backward direction
rxByte: Number of bytes in the backward direction

Timestamp: The time when the first packet was sent
FlowType: Type of flow either unicast flow or multicast flow
Duration: Total time of the flow (Delta time between first sent packet and last received packet)

Output

Network Traffic Flow
Calculator

List of Bidirectional Flow

Input
Initiator

IP Address

Network Traffic

...dstPort

Figure 5.2: Network Traffic Flow Calculator Overview

The flowCal takes the network traffic in the form of captured packets as the input and
extracts unidirectional flows. Then, bidirectional flows are aggregated from extracted uni-
directional flows and the IP address of initiator to determine the direction of bidirectional
flows. Since a session is usually initiated by the HGW and the direction of bidirectional
flows are assigned by the initiator, the IP address of initiator is the IP address of the
HGW. Furthermore, besides sending unicast requests to target devices in order to collect
device sources, the HGW sends multicast requests in order to detect newly joined devices
or expired devices (as stated in Section 3.3.3). Therefore, there are two types of flow:
the multicast flow and the unicast flow. Basic attributes of a bidirectional flow that is
exported using the flowCal is as in Table 5.2.

Table 5.2: Basic attributes of exported bidirectional flows with an example

Attribute Short name Data Type Example
Timestamp Timestamp Time 2019-10-30 21:12:23.289
Source IP Address srcIP String 192.168.2.254
Source Port srcPort Integer 3610
Destination IP Address dstIP String 192.168.2.103
Destination Port dstPort Integer 3610
Sent Packet Count txPackets Integer 2
Sent Bytes txBytes Integer 68
Received Packet Count rxPackets Integer 2
Received Bytes rxBytes Integer 88
Sent Data txData Hexa String String in hexa format
Received Data rxData Hexa String String in hexa format
Flow Type FlowType Boolean Unicast
Duration Duration Float 348.3 ms

The Timestamp is the time when the first packet has been sent, and the Duration
is the delta time to complete the session (delta time between the time of the first sent

65

packet and the time of the last received packet). Other attributes which are derivable
from basic attributes such as

• Minimum size of sent packets

• Maximum size of sent packets

• Mean size of sent packets

• Standard deviation of size of sent packets

• Minimum size of received packets

• Maximum size of received packets

• Mean size of received packets

• Standard deviation of size of sent packets

could be calculated and included in the output.
The solution to aggregate multicast and unicast flows is visualized in Figure. 5.3 and

Figure. 5.4 respectively.

t0 A

srcIPTime

Multicast
IP

dstIP

3610

srcPort

3610

dstPort

1 14 Hexa
String

t1 B A3610 3610 1 18 Hexa
String

t2 C A3610 3610 1 18 Hexa
String

...

tn D A3610 3610 1 18 Hexa
String

Timeout

0
txPackets txBytes txData

Time

Timestamp srcIP:
srcPort txPacketsdstIP:

dstPort txBytes rxPackets rxBytes txData rxData Flow
Type Duration

t0
A:

3610 1B: 3610 14 1 18 Hexa
String

Hexa
String Multicast t1 - t0

t0
A:

3610 1C: 3610 14 1 18 Hexa
String

Hexa
String Multicast t2 - t0

t0
A:

3610 1D: 3610 14 1 18 Hexa
String

Hexa
String Multicast TimeOut

Figure 5.3: Bidirectional Multicast Flow Aggregation

66

t0 A

srcIPTime

B

dstIP

3610

srcPort

3610

dstPort

1 54 Hexa
String

t1 A B3610 3610 1 91 Hexa
String

t2 A C3610 3610 1 54 Hexa
String

t7 B A3610 3610 1 97 Hexa
String

Timeout

0
txPackets txBytes txData

Time

Timestamp srcIP:
srcPort txPacketsdstIP:

dstPort txBytes rxPackets rxBytes txData rxData Flow
Type Duration

t0
A:

3610 1B: 3610 54 0 0 Hexa
String Null Unicast Timeout

t1
A:

3610 1B: 3610 91 1 97 Hexa
String

Hexa
String Unicast t7 - t1

t2
A:

3610 1C: 3610 54 2 120 Hexa
String

2 Hexa
String Unicast t4 - t2

t3 C A3610 3610 1 104 Hexa
String

t4 C A3610 3610 1 16 Hexa
String

Smaller
than

Timeout

Figure 5.4: Bidirectional Unicast Flow Aggregation

5.4 Experiment

5.4.1 Data Processing and Labeling

The aggregated bidirectional flows are able to reflect device behaviors. As statistical, the
more flows collected, the better judgment of device behaviors. Therefore, we can cluster
flows of a device for a day or a week for the training data set. However, in real-world
deployment, to make a prediction using the model trained with the previous data, it is
required to collect the same numbers of flow in real-world deployment, and it creates
a huge delay time in collecting data for the adjustment. This section discusses how to
choose numbers of observations and numbers of features from an observation that fully
reflects device behaviors in an appropriate time window.

Apparently, devices in the IoT Area Network perform periodical tasks such as peri-
odically sending device information, periodically querying device status, the machine-
generated traffic contains the repeated patterns. Since we can assume that the flows are
independent for each repeated period, a cluster of flows, which are collected during a re-
peated period, is used as a data unit to train the model and also to predict device behavior
even though in the real deployment. For example, in the data set collected by deploying
the HN simulator in Section 4.2.3, the HGW periodically multicasts the Node Finding
Message at the rate of 2 minutes. Therefore, all extracted flows between two multicast
requests could be clustered into a vector that reflects device behavior. Furthermore, in a
real deployment, it takes a time of 2 minutes to collect flows from the target device in
order to make the judgment.

67

A flow contains 11 attributes as in Table 5.1, and features that characterize devices are
extracted from these attributes. Since Timestamp, Source IP address, Source port, Desti-
nation IP address, and Destination port are trivial attributes, remaining 8 attributes Sent
Packet Count, Sent Bytes, Received Packet Count, Received Bytes, Sent Data, Received
Data, Flow Type, and Duration are extracted as features and organized as an input vector
to represent for devices in investigating ML methods.

The dimension of the input vector is calculated by the Equation 5.1.

Input Vector Dimension = Numbers of Flow×Numbers of Selected Features
(5.1)

Because the input vector represents a device identified by the IP address, it can be
labeled using data set descriptions described device configurations.

The conceptual diagram which summaries Input and Output of the pre-processing
process is illustrated in Figure 5.5.

IP Address Fault Type Fault
Description

A Delay 1000 ms

...

Device Configuration

Biflow

Aggregated Bidirectional Flows

txPackets txBytes rxPackets rxBytes txData rxData Flow
Type Duration

Flow 1

txPackets txBytes rxPackets rxBytes txData rxData Flow
Type Duration

Flow n

Device A Vector 1 Label: Delay (1000ms)

INPUT OUTPUT

txPackets txBytes rxPackets rxBytes txData rxData Flow
Type Duration

Flow n+1

txPackets txBytes rxPackets rxBytes txData rxData Flow
Type Duration

Flow n +n

...

Device A Vector 2 Label: Delay (1000ms)

...
...

Figure 5.5: Data Pre-Processing Conceptual Diagram

5.4.2 Results

The packet capture data generated in Section is used as the data set in this experiment.
The .pcap file of 12674778 packets which collected during over the period of 22 hours is
extracted into bidirectional flows by utilizing the network flow calculator in Section 5.3.
The HGW is configured to send the multicast request at an interval of 2 minutes, and
send to unicast to each device at an interval of 10 seconds. The maximum number of
multicast flows and unicast flows which are used as input data is as in equation 5.2 and
equation 5.3 respectively.

138(node)× 30(request/hour)× 22(hours) = 91080(multicast flows) (5.2)

68

138(node)× 360(request/hour)× 22(hours) = 1092960(unicast flows) (5.3)

During the period of 2 minutes in between two multicast requests, the maximum number
of flows of a node is following the equation 5.4

(1(node)× 6(request/minute)× 2(minutes)) + 1 = 13(flows) (5.4)

However, it might not be possible to collect 13 flows from faulty devices since they
may drop some requests. Some ML techniques such as SVM and ANN require the input
as a fixed-length vector. Therefore, we need to pad dumb flows, which contain all zero
values to the devices so that all the devices have the same number of flows. Since all
bidirectional flows collected from the period of 2 minutes are combined to make a sample
to train the model, each device will have 660 samples, and the total numbers of the data
set are 91080 sample. We split 80% of samples (72864 samples) into the training set and
the rest of 20% into the testing set (18216 samples). Each sample is represented by a
vector with 8(features/flow)× 13(flow) = 104 dimensions.

Data Normalization

Data normalization is an essential step during data preparation to scale the data and
speed up the training process [93]. In general, there are two common approaches in data
normalization includes:

• Min-Max Normalization: To scale all features of a sample to the same scale. How-
ever, it is not good tot handle outliers.

• Z-Score Normalization: It is good to handle outliers. However, it does not guarantee
all features have the same scale.

As features from the bidirectional flows are not in the same in nature (e.g. packet count
and packet size), Z-Score Normalization is used to normalize samples of the data set. The
formula for Z-Score normalization is in equation 5.5

V alue−Mean

StandardDeviation
(5.5)

By the Z-Score normalization, if a value is greater than mean, it will be a positive number.
If it is smaller than mean, it will be a negative number. If it is equal to mean, it will be
normalized to 0.

69

Data Distribution Result

10 5 0 5 10 15

5

0

5

10

15

Training dataset
Normal
Data miss
Drop rate
Delay
Combine

Figure 5.6: Data Distribution with PCA

Because a sample is represented by a 104-dimension vector, it is impossible to visualize
the data distribution. However, the Principal Component Analysis (PCA) [94] could be
used to reduce the dimension of data. PCA is a simple and popular method to reduce
dimension and avoid information loss from data [95]. The PCA is apply to reduce the
104-dimension vector into 2-dimension vector in order to visualize data distribution.
Some samples are selected and visualized as in Figure. 5.6. Data points of devices that
have a delay (timing fault) are separated into the points of normal devices. We can use
a line to separate the delay samples from the normal samples. The distances of the delay
samples respect to its delayed time. The data points of devices have the omission fault
(packet drop) are mixed up with normal devices.

5.5 Summary

This section describes the way to build ML-based solutions for the IoT Area Network in
smart homes. The data preparation is an essential part that requires to clean the input
data and extract features related to problems from a massive amount of data. The network
flow calculator, namely Flowcal, has been proposed in order to extract bidirectional flows
from capture packets that can collect by deploying the HN simulator. TheFlowcal, which
is customized for the IoT Area Network, is able to appoint the flow initiator and also
handle multicast flows.

The Flowcal is applied to extract bidirectional flows from the data set provided in
Section 4.2.3. Then, data sample to train and test the ML-based models has been cal-
culated. A data sample is a 104-dimension vector that includes eight features from each

70

flow combined with 13 flows for each multicast cycle. The total numbers of 91080 sam-
ples that represent for 138 nodes (384 objects) during the 22 hours of deployment are
collected. Those samples are split into training data set and testing data set by the
80%(training):20%(testing) ratio. An example of data distributions is visualized by ap-
plying the PCA to reduce the data dimension. It showed that data points of devices have
the omission fault are mixed up with normal devices.

71

Chapter 6

Application: Machine Learning
Based Network Traffic Classification

Since detecting problems is a starting point to build an automated OAM solution and
network traffic data could be used to diagnose the health of a smart home network, a
network traffic classification application for anomaly detection is implemented based on
data generated from the proposed framework to verify the usability of the generated data

6.1 Machine Learning Methods

In this dissertation, we investigate three machine learning methods: Decision Tree,
Support Vector Machine, and Artificial Neural Network.

• Decision Tree is widely used to demonstrate the rule-based approach [96].

• Support Vector Machine is the best linear classifier approach [97].

• Artificial Neural Network is a general non-linear classifier that achieves huge success
in many real-world problems [98].

6.1.1 Decision Tree

The Decision Tree (DT) is a tree-like model that supports decision-making processes. DT
belongs to the category of supervised learning mostly used for classification. The goal
of DT is to generate a model that can classify the value of a target sample by learning
decision rules from extracted features of the training data. In the DT model, data samples
flow from the root through internal nodes to the leaves. Leaves are the final prediction of
the class. Each node is a condition to check the target sample. The condition is tested
on a feature of the target sample at a node. The result of the checking process drives
the sample to the next node until reaching a leaf. Because conditions on attribute are
interpretable, they can be used as rules to classify the data samples. An example of using
DT for decision making is illustrated in Figure. 6.1

72

DSunny Cloudy Rainy

Outlook

YES

High Normal

Humidity

YESNO

Strong Weak

Wind

NO NO

Play Football
or

Not?

Figure 6.1: An example of applying Decision Tree for decision making

The advantages of DT [96] are:

• Easy to understand and envisage the tree structure.

• Data preparation processes such as normalization, dummy padding are not required.

• Support multiple outputs classification.

• Results are easily explainable and interpretable since DT uses the white-box model.

Some disadvantages of DT are:

• Easy to overfit with a data set.

• DT is not stable as a small variation in the data set might change the tree completely.

• DT requires a balanced data set in order to deal with the bias.

• DT does not generalize well to unseen samples when deploying to the real environ-
ments.

73

6.1.2 Support Vector Machine

The Support Vector Machine (SVM) [99] is originally a binary classifier that tries to find
a decision boundary that separates two categories in the data set. The decision boundary
determined by SVM has the largest margin to the closest data points of both categories.
For the multi-class problem, techniques such as one-against-all [100], pairwise, all-
at-once [101] and error-correcting-output[102] could be used. In this dissertation,
one-against-all is used for linear SVM classifier. In the case of linear SVM, the decision
boundaries are hyperplanes. The predictions produced by linear SVM have higher con-
fidences than other hyperplanes found by other linear classification methods. For the
case of binary linear SVM, the predicted label is the sign of the linear combination of:
Data Sample X =< x1, x2, x3... > and Weight W =< w1, w2, w3... >. The weight
represents for the hyperplane as the decision boundary and the margin is 1

|w| . We can
assume that the label y ∈ -1,1 in the case of binary linear SVM. The prediction is correct
if it has the same sign with the ground truth label in equation 6.1:

yk(w × xk) >= 1 (6.1)

SVM tries to find w that separates the data points completely and has the largest
margin as in equation 6.2.

min(
|w2|

2
) s.t. ∀k, yk(w × xk) >= 1 (6.2)

In the case that the data set is inseparable, the soft margin technique could be applied
in order to tolerate the separation errors. For the multi-class problem with n class, we
will need n hyperplanes in the one-against-all manner

The advantages of the SVM [103] include:

• Work well in high dimensional spaces

• Achieve the memory efficient as it uses support vectors as inputs for the decision
function.

• Achieve flexibility in choosing or customizing kernel functions.

Some disadvantages of SVM are:

• It causes over-fitting easily if the number of features is much greater than the number
of samples.

• It requires proper configurations of several key parameters to achieve a satisfactory
result.

6.1.3 Artificial Neural Network

The Artificial Neural Network (ANN)[104] is a biologically-inspired programming paradigm
which learns from observational data. ANN uses the examples to infer rules for determin-
ing the classes automatically. The conceptual diagram of the AAN is visualized in Figure.
6.2.

74

Input
Layer

Hidden
Layer

Output
Layer

Figure 6.2: Conceptual Diagram of the Artificial Neural Network

The ANN contains multiple layers of interconnecting nodes. An ANN has three main
layers: one input layer, one output layer, and one or more hidden layers in the middle.
The first layer is the input layer, which takes the value of the input data sample. The last
layer is the output layer, which is the predictions of the ANN. The hidden layer hi take
the output of its previous layer hi−1, multiplies with the weight wi and then produces
output by an activation function σ as in equation 6.3

hi = σ(zi) = σ(wi × hi−1) (6.3)

We can view ANN as a function f ’ that tries to approximate the real hidden underlying
a function f mapping the data point to its class. The function f ’ is parameterized by the
weights of the hidden layers of ANN. A loss function is applied to measure the distance
between the predicted results and the ground truths. The training process of the ANN

75

means minimizing this loss function. Theoretically, an ANN can approximate any con-
tinuous function of the input space. Hence, the ANN is chosen as a generalized method
to demonstrate the non-linear classifier problems.

Some advantages of ANN include:

• Is able to deal with non-linear classifier problems

• Is able to work with incomplete information

The disadvantages of AAN are:

• It is unable to explain results interfered by the ANN.

• Different random weight initialization may lead to different performances.

6.2 Experiment

In this section, we investigate the capabilities of machine learning on predicting whether
a device from the IoT Area Network is a faulty device or not based on the traffic captured
from the home network simulator. The ML techniques such as Decision Tree, Support
Vector Machine, and Artificial Neural Network are investigated on predicting the behav-
iors of the devices. This study aims to stimulate and predict the unseen possible abnormal
behaviors of the devices deploying in smart homes.

6.2.1 Results

All experiments are conducted based on the previous data using the computer infrastruc-
ture of startBED Hokuriku 1. The configuration information of the computer that uses
to train and test ML models during the experiment is as

• Model : Cisco UCS C200 M2 (Group L)

• CPU: Intel (R) Xeon (R) CPU X5670 (2.93 GHz/ 6 Cores)

• Number of CPU: 2

• Memory: 8GB Registered DIMM x 6 = 48GB

• HDD: 500GB x 2

• Operating System: Ubuntu 16.04.6 LTS

• Python version 3.6

The average accuracy of predicting six classes of traffic includes Normal, Response
Fault, Timing Fault, Omission Fault, Combined of Timing and Omission Fault,
and All Fault Combined after running ten times without data normalization is:

• Decision Tree : 93.23%

1http://starbed.nict.go.jp/en/equipment/index.html

76

• Support Vector Machine : 66.30%

• Artificial Neural Network: 91.86%

and with data normalization is:

• Decision Tree : 93.33%

• Support Vector Machine : 89.64%

• Artificial Neural Network: 96.72%

Decision Tree

Table 6.1: Decision Tree Without Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 9030 11 1 135 0 0
Response
Fault

6 1052 0 6 0 0

Timing
Fault

1 0 2013 86 158 3

Omission
Fault

242 8 7 1819 32 20

Combined of
Timing and
Omission

1 0 55 83 2085 170

All Fault
Combined

0 0 2 71 143 1114

Table 6.2: Decision Tree With Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 9025 11 2 139 0 0
Response
Fault

5 1054 0 6 0 0

Timing
Fault

16 0 2028 71 146 0

Omission
Fault

243 8 6 1815 34 22

Combined of
Timing and
Omission

1 0 56 76 2093 169

All Fault
Combined

0 0 3 67 144 1117

77

Results of the decision tree on the testing data set without and with data normalization
are summarised in Table 6.1, and Table. 6.2. Basically, data normalization did not
improve the accuracy much. Without data normalization, the accuracy of predicting
normal device is 98.40%, device with response fault is 98.97%, device with timing fault
is 89.70%, device with omission fault is 85.30%, device with timing and omission fault is
87.40%, and device with all faults is 83.92%. After the data normalization, the accuracy
of predicting normal device is 98.34%, device with response fault is 99.06%, device with
timing fault is 89.69%, device with omission fault is 85.29%, device with timing and
omission fault is 88.09%, and device with all faults is 83.98%.

Support Vector Machine

Table 6.3: Support Vector Machine Without Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 8248 314 2 613 0 0
Response
Fault

152 904 0 9 0 0

Timing
Fault

378 0 1252 586 94 26

Omission
Fault

1202 95 125 586 94 26

Combined of
Timing and
Omission

717 95 345 209 902 127

All Fault
Combined

354 0 220 119 360 277

78

Table 6.4: Support Vector Machine With Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 8905 50 28 188 5 1
Response
Fault

32 1031 1 0 0 0

Timing
Fault

0 0 1981 12 142 23

Omission
Fault

244 74 137 1524 76 74

Combined of
Timing and
Omission

29 47 155 105 1932 127

All Fault
Combined

4 0 22 160 65 1081

Results of applying the SVM on the testing data set without and with data normalization
are summarised in Table 6.3, and Table. 6.4. The data normalization process much
improved the accuracy. Without data normalization, the accuracy of predicting normal
device is 90.27%, device with response fault is 85.12%, device with timing fault is
55.37%, device with omission fault is 25.92%, device with timing and omission fault is
37.96%, and device with all faults is 20.83%. After the data normalization, the accuracy
of predicting normal device is 97.04%, device with response fault is 96.90%, device with
timing fault is 87.62%, device with omission fault is 71.61%, device with timing and
omission fault is 81.31%, and device with all faults is 81.28%. The SVM made wrong
prediction for omission fault because it is not a linear distribution.

79

Artificial Neural Network

Table 6.5: Artificial Neural Network Without Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 9143 11 2 18 3 0
Response
Fault

8 1050 0 7 0 0

Timing
Fault

2 0 2100 5 137 17

Omission
Fault

15 15 26 1820 115 137

Combined of
Timing and
Omission

1 0 163 115 1911 204

All Fault
Combined

0 0 2 149 341 837

Table 6.6: Artificial Neural Network With Normalization Confusion Matrix

Ground
Truth

Normal
Response

Fault
Timing
Fault

Omission
Fault

Combined of
Timing and
Omission

All Fault
Combined

Normal 9165 2 0 7 0 3
Response
Fault

3 1061 0 0 0 0

Timing
Fault

5 0 2149 0 83 23

Omission
Fault

27 7 4 1926 132 32

Combined of
Timing and
Omission

7 1 31 34 2212 110

All Fault
Combined

0 1 1 62 27 1238

The ANN is configured to have one hidden layer with 100 nodes, the sigmoid activation
function, and the mean square error loss function. Results of applying ANN on the
testing data set without and with data normalization are summarised in Table 6.5, and
Table. 6.6. The data normalization process slightly improved the accuracy. Without data
normalization, the accuracy of predicting normal device is 99.63%, device with response
fault is 98.68%, device with timing fault is 92.88%, device with omission fault is 85.53%,
device with timing and omission fault is 80.43%, and device with all faults is 62.93%.
After the data normalization, the accuracy of predicting normal device is 99.87%, device

80

with response fault is 99.72%, device with timing fault is 95.05%, device with omission
fault is 85.18%, device with timing and omission fault is 93.1%, and device with all
faults is 93.1%. The ANN made wrong prediction for omission fault because it is similar
to a fault that combines both the omission fault and the timing fault.

6.3 Summary

Three ML methods include Decision Tree (DT), Support Vector Machine, and Artifi-
cial Neural Network (ANN) are investigated for the experiments. Performances of those
method with and without data normalization are summarized in Table 6.2, Table 6.4,
Table 6.6, Table 6.1, Table 6.3, and Table 6.5. All three models achieve high accuracy in
classifying normal devices and devices with response fault from the rest of faulty devices.
However, the accuracy of detecting omission fault devices and devices with three errors
combined is low. The ANN achieves the best performance (average accuracy 96.72%) with
data normalization. The DT achieves the best performance (average accuracy 93.23%)
without data normalization.

81

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation is motivated by the problem that there is no data set to build AI in-
tegrated network management solutions for the IoT Area Network. In the scope of this
dissertation, (i) a network traffic generation framework can generate traffic data of smart
home networks, and (ii) implementations of ML techniques to verify the usability and
reliability of the generated traffic dataset have been introduced. The home network sim-
ulator which is a main component of the proposed framework is configurable in order to
create various types of network traffic for data set generation purposes. The summarized
of this dissertation is as follows:

• Home Gateway (HGW) plays a vital role in the IoT area network, which is a central
point to manage and represent for devices in the network. Thus, network traffics
between HGW and devices is used to diagnose the health of devices in the network.
In chapter 3, concepts and implementations of the HGW have been introduced. The
HGW covers all requirements stated in the ITU-T Y.2070, and ITU-T Y.4113 in-
cludes operation, management, and integration with service platforms outside of the
home network. The implementation of the ECHONET Lite HGW has been intro-
duced. Two HGWs include ECHONET Lite-universAAL (elite4u), and ECHONET
Lite-oneM2M (eIPE) have been deployed and tested. The eIPE can facilitate a net-
work of ECHONET Lite devices into the oneM2M ecosystem, which is fundamental
to build the Service Platform for smart homes. The elite4u integrated networks
of ECHONET Lite devices into an ambient assisted living (AAL) platform, which
enables AAL services for smart homes. The elite4u is the main component of the
human-robot-environment interaction in the CARESSES project.

• The device emulator, which is proposed in Chapter 4, is the last part of the device-
gateway interaction for network traffic generation. Since it is impossible to have a
faulty commercial device to collect the abnormal network traffic, the device emulator
is the answer to this problem. Firstly, the simulation of standard industrial devices is
guarantee by the proposed device emulator. The experiment that involves simulated
devices and real commercial devices was conducted. The result shows the same
network traffic and behaviors of simulated and industrial devices. The faulty devices
are implemented by extending a fault model for the distributed system. Totally four
types of fault include crash fault, omission fault, timing fault, and response fault

82

are simulated. By utilizing the docker platform, the device emulator achieved the
automatic and scalable deployment. The memory usage 100MB and CPU usage
(0.15%) for a node are suitable to deploy on a large scale.

• Finally, in chapter 5 and chapter 6, the evaluation of network traffic generated by
deploying the proposed simulator has been done. The network traffic in the data
set that is in the form of captured packets is aggregated into bidirectional flows to
reflect the device-gateway interactions by the proposed Flowcal. The network flow
calculator, namely Flowcal, which is customizing for the IoT Area Network, supports
the appointment of flow direction initiator and multicast flows. Three ML methods
include decision tree (DT), support vector machine (SVM), and artificial neural
network (ANN) have been investigated. The ANN achieves the best performance
(average accuracy 96.72%) with data normalization, and the DT achieves the best
performance (average accuracy 93.23%) in predicting device faults based on network
traffic. without data normalization.

7.2 Future Work

To use AI integrated solution for network management, a high-performance computer to
deploy the application is required. Since it is not realistic to have a high power computer
in the home network, the integration with high reliability, availability, and scalability
platform that support a big data analytics framework such as PNDA 1 is desired as
future work. The mechanism to re-train the model with online data collection is also
extensible as future work.

1http://pnda.io/

83

Bibliography

[1] A. H. Maslow. A theory of human motivation. Psychological Review, 50(4):370–396,
July 1943.

[2] Mukhtiar Memon, Stefan Rahr Wagner, Christian Fischer Pedersen, Femina Has-
san Aysha Beevi, and Finn Overgaard Hansen. Ambient assisted living healthcare
frameworks, platforms, standards, and quality attributes. In Sensors, 2014.

[3] Cisco visual networking index: Forecast and trends, 2017–2022 white paper. Tech-
nical report, Cisco, 02 2019.

[4] L. Andersson, H. van Helvoort, R. Bonica, D. Romascanu, and S. Mansfield. Guide-
lines for the use of the ”oam” acronym in the ietf. BCP 161, RFC Editor, June
2011.

[5] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten. An overview of opera-
tions, administration, and maintenance (oam) tools. RFC 7276, RFC Editor, June
2014.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[7] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks, 2015.

[8] International Telecommunication Union. SERIES J: CABLE NETWORKS AND
TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS: Architecture of MediaHomeNet, 07 2007.

[9] Network management system : Best practices white paper. Cisco, 2018.

[10] Annie Ibrahim Rana and Brendan Jennings. Semantic aware processing of user
defined inference rules to manage home networks. Journal of Network and Computer
Applications, 79:68–87, February 2017.

[11] W. De Donato, A. Pescapé, and A. Dainotti. Traffic identification engine: an open
platform for traffic classification. IEEE Network, 28(2):56–64, March 2014.

84

[12] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1):16, Jun 2018.

[13] Y. Roh, G. Heo, and S. E. Whang. A survey on data collection for machine learning:
A big data - ai integration perspective. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2019.

[14] Krzysztof Grochla and Leszek Naruszewicz. Testing and scalability analysis of net-
work management systems using device emulation. In Andrzej Kwiecie’n, Piotr
Gaj, and Piotr Stera, editors, Computer Networks, pages 91–100, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[15] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine learning for networking:
Workflow, advances and opportunities. IEEE Network, 32(2):92–99, March 2018.

[16] A. Eswaradass, Xian-He Sun, and Ming Wu. Network bandwidth predictor (nbp):
a system for online network performance forecasting. In Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’06), volume 1, pages 4
pp.–268, May 2006.

[17] P. Cortez, M. Rio, M. Rocha, and P. Sousa. Internet traffic forecasting using neural
networks. In The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pages 2635–2642, July 2006.

[18] P. Bermolen and D. Rossi. Support vector regression for link load prediction. In 2008
4th International Telecommunication Networking Workshop on QoS in Multiservice
IP Networks, pages 268–273, Feb 2008.

[19] Samira Chabaa, Abdelouhab Zeroual, and Jilali Antari. Identification and pre-
diction of internet traffic using artificial neural networks. Journal of Intelligent
Learning Systems and Applications, 02(03):147–155, 2010.

[20] Yan Zhu, Guanghua Zhang, and Jing Qiu. Network traffic prediction based on
particle swarm bp neural network. JNW, 8:2685–2691, 2013.

[21] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu. Inter-data-center network traffic pre-
diction with elephant flows. In NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, pages 206–213, April 2016.

[22] Zhitang Chen, Jiayao Wen, and Yanhui Geng. Predicting future traffic using hidden
markov models. In 2016 IEEE 24th International Conference on Network Protocols
(ICNP), pages 1–6, Nov 2016.

[23] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Yanhui Geng, Li Chen, K. Chen,
and Hao Jin. Online flow size prediction for improved network routing. In 2016
IEEE 24th International Conference on Network Protocols (ICNP), pages 1–6, Nov
2016.

[24] C. S. Hood and C. Ji. Proactive network-fault detection [telecommunications]. IEEE
Transactions on Reliability, 46(3):333–341, Sep. 1997.

85

[25] Okuthe P. Kogeda and Johnson I. Agbinya. Prediction of faults in cellular networks
using bayesian network model. 2007.

[26] A. Snow, P. Rastogi, and G. Weckman. Assessing dependability of wireless networks
using neural networks. In MILCOM 2005 - 2005 IEEE Military Communications
Conference, pages 2809–2815 Vol. 5, Oct 2005.

[27] Yong Wang, Margaret Martonosi, and Li-Shiuan Peh. Predicting link quality us-
ing supervised learning in wireless sensor networks. SIGMOBILE Mob. Comput.
Commun. Rev., 11(3):71–83, July 2007.

[28] Xu Lu, Huiqiang Wang, Renjie Zhou, and Baoyu Ge. Using hessian locally linear
embedding for autonomic failure prediction. In 2009 World Congress on Nature
Biologically Inspired Computing (NaBIC), pages 772–776, Dec 2009.

[29] Zhilong Wang, Min Zhang, Danshi Wang, Chuang Song, Min Liu, Jin Li, Liqi Lou,
and Zhuo Liu. Failure prediction using machine learning and time series in optical
network. Opt. Express, 25(16):18553–18565, Aug 2017.

[30] S. Rao. Operational fault detection in cellular wireless base-stations. IEEE Trans-
actions on Network and Service Management, 3(2):1–11, April 2006.

[31] Karwan Qader, Mo Adda, and Mouhammd Al-Kasassbeh. Comparative analysis of
clustering techniques in network traffic faults classification. International Journal of
Innovative Research in Computer and Communication Engineering, 5(4):6551–6563,
6 2017. DOI not working: 10.15680/IJIRCCE.2017.0504001.

[32] U. S. Hashmi, A. Darbandi, and A. Imran. Enabling proactive self-healing by
data mining network failure logs. In 2017 International Conference on Computing,
Networking and Communications (ICNC), pages 511–517, Jan 2017.

[33] H. Hajji. Statistical analysis of network traffic for adaptive faults detection. IEEE
Transactions on Neural Networks, 16(5):1053–1063, Sep. 2005.

[34] Xu Lu, Huiqiang Wang, Renjie Zhou, and Baoyu Ge. Using hessian locally linear
embedding for autonomic failure prediction. In 2009 World Congress on Nature
Biologically Inspired Computing (NaBIC), pages 772–776, Dec 2009.

[35] The cost of security breaches. Technical report, Kaspersky Lab, 2015.

[36] A. L. Buczak and E. Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys Tutorials,
18(2):1153–1176, Secondquarter 2016.

[37] S. Hettich and S. D. Bay. The uci kdd archive [http://kdd.ics.uci.edu], 1999.

[38] International Telecommunication Union. Requirements and architecture of the home
energy management system and home network services, 01 2015.

[39] Home-network topology identifying protocol (htip). Technical report, Telecommu-
nication Technology Committee, May 2017.

86

[40] Y. Mihara, T. Yamazaki, and A. Takehiro. Designing htip: Home network topology
identifying protocol. In 2011 IEEE International Conference on Communications
(ICC), pages 1–6, June 2011.

[41] Customer support functions for home network service platform. Technical report,
Telecommunication Technology Committee, February 2016.

[42] International Telecommunication Union. Requirements of the network for the In-
ternet of things, 09 2016.

[43] C. Pham, Y. Lim, and Y. Tan. Management architecture for heterogeneous iot
devices in home network. In 2016 IEEE 5th Global Conference on Consumer Elec-
tronics, pages 1–5, Oct 2016.

[44] Masaki Umejima. Japan’s power meter deployment with echonet lite over ipv6. New
Breeze - Quarterly of the ITU Association of Japan, 27(2):12–13, April 2015.

[45] ECHONET CONSORTIUM. Detailed Requirements for ECHONET Device objects,
August 2017.

[46] Hiroyuki Fujita, Hiroshi Sugimura, Takashi Murakami, and Masao Isshiki. Devel-
opment of echonet lite packet sending and receiving tool, ssng for iphone. Technical
Report 14, Kanagawa Institute of Technology, may 2016.

[47] S. Saito, N. Ishikawa, and Y. Tsuchiya. Development of echonet lite-compliant home
appliances control system using pucc protocols from smart devices. In 2015 IEEE
39th Annual Computer Software and Applications Conference, volume 3, pages 200–
204, July 2015.

[48] oneM2M. oneM2M-TS 0023 Home Appliances Information Model and Mapping,
September 2017.

[49] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erd-
mann, and I. Horrocks. The semantic web: the roles of xml and rdf. IEEE Internet
Computing, 4(5):63–73, Sept 2000.

[50] Laura Daniele, Frank den Hartog, and Jasper Roes. Study on semantic assets for
smart appliances interoperability. Technical report, TNO, 2015.

[51] SmartM2M. Reference ontology and onem2m mapping. Technical Report ETSI TS
103 264 V1.1.1, ETSI, 11 2015.

[52] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing? International Journal of Human-Computer Studies, 43(5):907 – 928, 1995.

[53] Francisco Jose Garcia-Penalvo Juan Garcia and Roberto Theron. A survey on
ontology metrics. In Knowledge Management, Information Systems, E-Learning,
and Sustainability Research, pages 22–27. Springer Berlin Heidelberg, 2010.

[54] S. Staab and A. Maedche. Axioms are objects, too - ontology engineering beyond
the modeling of concepts and relations. Technical report, 2000.

87

[55] ECHONET CONSORTIUM. Part V ECHONET Lite System Design Guidelines,
May 2016.

[56] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. Semantics
based requirements and framework of the Internet of things, February 2016.

[57] Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, and Khalil Drira. Towards
Semantic Data Interoperability in oneM2M Standard. IEEE Communications Mag-
azine, 53(12):pp. 35–41, December 2015.

[58] S. Sicari, A. Rizzardi, A. Coen-Porisini, L. A. Grieco, and T. Monteil. Secure om2m
service platform. In 2015 IEEE International Conference on Autonomic Computing,
pages 313–318, July 2015.

[59] Sten Hanke, Christopher Mayer, Oliver Hoeftberger, Henriette Boos, Reiner
Wichert, Mohammed-R. Tazari, Peter Wolf, and Francesco Furfari. universaal an
open and consolidated aal platform. In Ambient Assisted Living, pages 127–140.
Springer Berlin Heidelberg, 2011.

[60] Tom Zentek, Can Oliver Yumusak, Christian Reichelt, and Asarnusch Rashid.
Which aal middleware matches my requirements? an analysis of current middleware
systems and a framework for decision-support. In Ambient Assisted Living, pages
111–125. Springer International Publishing, 2015.

[61] Panou Maria, Cabrera Maria F., Bekiaris Evangelos, and Touliou Katerina. Ict ser-
vices for prolonging independent living of the elderly with cognitive impairments, in
life concept. 8th Forum Italiano dell’Ambient Assisted Living (ForitAAL), 217(As-
sistive Technology):6592013663, 2015.

[62] Laura Fiorini, Grazia D’Onofrio, Raffaele Limosani, Daniele Sancarlo, Antonio
Greco, Francesco Giuliani, Antonio Kung, Paolo Dario, and Filippo Cavallo. Accra
project: Agile co-creation for robots and aging. 2017.

[63] Diletta Romana Cacciagrano Rosario Culmone Luca Tesei Leonardo Vito
Flavio Corradini, Emanuela Merelli. Activage: proactive and self-adaptive social
sensor network for ageing people. In The European Research Consortium for Infor-
matics and Mathematics, pages 36–37, 2011.

[64] Y. Lim, S. Y. Lim, M. Dat Nguyen, C. Li, and Y. Tan. Bridging between universaal
and echonet for smart home environment. In 2017 14th International Conference
on Ubiquitous Robots and Ambient Intelligence (URAI), pages 56–61, June 2017.

[65] V. C. Pham, Y. Lim, Y. Tan, and N. Y. Chong. Support for echonet-based smart
home environments in the universaal ecosystem. In 2018 IEEE International Con-
ference on Consumer Electronics (ICCE), pages 1–4, Jan 2018.

[66] Ha-Duong Bui, Cu Pham, Yuto Lim, Yasuo Tan, and Nak Young Chong. Integrating
a humanoid robot into echonet-based smart home environments. In Social Robotics,
pages 314–323, Cham, 2017. Springer International Publishing.

88

[67] Barbara Bruno, Nak Young Chong, Hiroko Kamide, Sanjeev Kanoria, Jaeryoung
Lee, Yuto Lim, Amit Kumar Pandey, Chris Papadopoulos, Irena Papadopoulos,
Federico Pecora, Alessandro Saffiotti, and Antonio Sgorbissa. The caresses eu-japan
project: making assistive robots culturally competent, 2017.

[68] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and Franois
Yergeau. Extensible markup language (xml) 1.0, 2000.

[69] Thaha Muhammed and Riaz Shaikh. An analysis of fault detection strategies in
wireless sensor networks. Journal of Network and Computer Applications, 78:267–
287, 01 2017.

[70] Zainib Noshad, Nadeem Javaid, Tanzila Saba, Zahid Wadud, M.Q. Saleem, Mo-
hammad Alzahrani, and Osama Sheta. Fault detection in wireless sensor networks
through the random forest classifier. Sensors, 19:1568, 04 2019.

[71] Abhishek Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults detection
methods and prevalence in real-world datasets. TOSN, 6, 01 2010.

[72] Tusher Chakraborty, Akshay Uttama Nambi, Ranveer Chandra, Rahul Sharma,
Manohar Swaminathan, Zerina Kapetanovic, and Jonathan Appavoo. Fall-curve:
A novel primitive for iot fault detection and isolation. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’18, pages 95–
107, New York, NY, USA, 2018. ACM.

[73] Flavin Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, February 1991.

[74] Babak Bashari Rad, Harrison Bhatti, and Mohammad Ahmadi. An introduction to
docker and analysis of its performance. IJCSNS International Journal of Computer
Science and Network Security, 173:8, 03 2017.

[75] A. Helal, K. Cho, W. Lee, Y. Sung, J. W. Lee, and E. Kim. 3d modeling and
simulation of human activities in smart spaces. In 2012 9th International Confer-
ence on Ubiquitous Intelligence and Computing and 9th International Conference
on Autonomic and Trusted Computing, pages 112–119, Sep. 2012.

[76] J. Synnott, L. Chen, C. D. Nugent, and G. Moore. The creation of simulated
activity datasets using a graphical intelligent environment simulation tool. In 2014
36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pages 4143–4146, Aug 2014.

[77] Nasser Alshammari, Talal Alshammari, Mohamed Sedky, Justin Champion, and
Carolin Bauer. Openshs: Open smart home simulator. Sensors, 17(5), 2017.

[78] Hiroshi Nishikawa, Shinya Yamamoto, Morihiko Tamai, Kouji Nishigaki, Tomoya
Kitani, Naoki Shibata, Keiichi Yasumoto, and Minoru Ito. Ubireal: Realistic
smartspace simulator for systematic testing. In UbiComp, 2006.

89

[79] Jumphon Lertlakkhanakul, Sun-Hwie Hwang, and Jin-Won Choi. Avatar expression
agent in virtual architecture. In Andy Dong, Andrew Vande Moere, and John S.
Gero, editors, Computer-Aided Architectural Design Futures (CAADFutures) 2007,
pages 361–372, Dordrecht, 2007. Springer Netherlands.

[80] Salman Azhar. Building information modeling (bim): Trends, benefits, risks, and
challenges for the aec industry. Leadership and Management in Engineering, 11:241–
252, 07 2011.

[81] D. Harrington, R. Presuhn, and B. Wijnen. An architecture for describing simple
network management protocol (snmp) management frameworks. STD 62, RFC
Editor, December 2002. http://www.rfc-editor.org/rfc/rfc3411.txt.

[82] B. Claise. Cisco systems netflow services export version 9. RFC 3954, RFC Editor,
October 2004. http://www.rfc-editor.org/rfc/rfc3954.txt.

[83] B. Claise. Specification of the ip flow information export (ipfix) protocol for the
exchange of ip traffic flow information. RFC 5101, RFC Editor, January 2008.
http://www.rfc-editor.org/rfc/rfc5101.txt.

[84] Ludovic Noirie, Emmanuel Dotaro, Giovanna Carofiglio, Arnaud Dupas, Pascal
Pecci, Daniel Popa, and Georg Post. Semantic networking: Flow-based, traffic-
aware, and self-managed networking. Bell Labs Technical Journal, 14(2):23–38,
August 2009.

[85] J. Park, H. Tyan, and C. . J. Kuo. Internet traffic classification for scalable qos
provision. In 2006 IEEE International Conference on Multimedia and Expo, pages
1221–1224, July 2006.

[86] B. Trammell and E. Boschi. Bidirectional flow export using ip flow information
export (ipfix). RFC 5103, RFC Editor, January 2008. http://www.rfc-editor.

org/rfc/rfc5103.txt.

[87] P. Minarik, J. Vykopal, and V. Krmicek. Improving host profiling with bidirectional
flows. In 2009 International Conference on Computational Science and Engineering,
volume 3, pages 231–237, Aug 2009.

[88] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of tor traffic using time based features. In ICISSP,
pages 253–262, 2017.

[89] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of encrypted and vpn traffic using time-related.
In Proceedings of the 2nd international conference on information systems security
and privacy (ICISSP), pages 407–414, 2016.

[90] Laya Taheri, Andi Fitriah Abdul Kadir, and Arash Habibi Lashkari. Extensible
android malware detection and family classification using network-flows and api-
calls. In 2019 International Carnahan Conference on Security Technology (ICCST),
pages 1–8. IEEE, 2019.

90

http://www.rfc-editor.org/rfc/rfc3411.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc5101.txt
http://www.rfc-editor.org/rfc/rfc5103.txt
http://www.rfc-editor.org/rfc/rfc5103.txt

[91] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A Ghorbani. Devel-
oping realistic distributed denial of service (ddos) attack dataset and taxonomy. In
2019 International Carnahan Conference on Security Technology (ICCST), pages
1–8. IEEE, 2019.

[92] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. In ICISSP,
pages 108–116, 2018.

[93] Matej Slapnik, Darja Istenič, Marina Pintar, and Andrej Udovč. Extending life
cycle assessment normalization factors and use of machine learning – a slovenian
case study. Ecological Indicators, 50:161–172, March 2015.

[94] Hervé Abdi and Lynne J. Williams. Principal component analysis. WIREs Comput.
Stat., 2(4):433–459, July 2010.

[95] Chandrika Kamath. Scientific Data Mining. Society for Industrial and Applied
Mathematics, January 2009.

[96] José Marcio Luna, Efstathios D. Gennatas, Lyle H. Ungar, Eric Eaton, Eric S.
Diffenderfer, Shane T. Jensen, Charles B. Simone, Jerome H. Friedman, Timothy D.
Solberg, and Gilmer Valdes. Building more accurate decision trees with the additive
tree. Proceedings of the National Academy of Sciences, 116(40):19887–19893, 2019.

[97] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do
we need hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research, 15:3133–3181, 2014.

[98] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in ar-
tificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018.

[99] Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28,
July 1998.

[100] Gidudu Anthony, Hulley Gregg, and Marwala Tshilidzi. Image classification using
svms: One-against-one vs one-against-all, 2007.

[101] S. Mu, C. Yin, and S. Tian. A novel all-at-once learning method for multi-class
support vector machine. In 2010 3rd International Congress on Image and Signal
Processing, volume 4, pages 1543–1546, Oct 2010.

[102] Wies law Chmielnicki and Katarzyna Stapor. A new approach to multi-class svm-
based classification using error correcting output codes. In Robert Burduk, Marek
Kurzyński, Micha l Woźniak, and Andrzej Żo lnierek, editors, Computer Recognition
Systems 4, pages 499–506, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[103] L Auria and R Moro. Advantages and disadvantages of support vector machines.
Credit Risk Assessment Revisited: Methodological Issues and Practical Implications,
pages 49–68, 2007.

91

[104] Kevin L. Priddy and Paul E. Keller. Artificial Neural Networks: An Introduction
(SPIE Tutorial Texts in Optical Engineering, Vol. TT68). SPIE- International So-
ciety for Optical Engineering, 2005.

92

Publications and Awards

Journals

[1] Van Cu Pham, Yoshiki Makino, Khoa Pho, Yuto Lim, and Yasuo Tan: IoT Area
Network Simulator For Network Dataset Generation, Special issue of Ubiquitous
Computing Systems (IX), Journal of Information Processing. (Submitted, Under
Review)

[2] Van Cu Pham, Yuto Lim, Antonio Sgorbissa,and Yasuo Tan: An Ontology-driven
ECHONET Lite Adaptation Layer for Smart Homes, Journal of Information Pro-
cessing,vol 27, pp360-368, May 2019. https://doi.org/10.2197/ipsjjip.27.

360.

International Conference papers

[3] Van Cu Pham, Yuto Lim, Ha Duong Bui, Yasuo Tan, Nak Young Chong and Anto-
nio Sgorbissa: An Experimental Study on Culturally Competent Robot for Smart
Home Environment, The 34th International Conference on Advanced Information
Networking and Applications (AINA).(Accepted, to be published)

[4] Van Cu Pham, Yuto Lim, and Yasuo Tan: An onem2m interworking proxy entity for
echonet lite protocol, 2019 IEEE 8th Global Conference on Consumer Electronics,
pp1-5, Oct 2019.

[5] Van Cu Pham, Yoshiki Makino, Yuto Lim, and Yasuo Tan: Semantic service gate-
way for echonet based smart homes, 2019 22nd Conference on Innovation in Clouds,Internet
and Networks and Workshops (ICIN), pp175-179, Feb 2019. https://doi.org/10.
1109/ICIN.2019.8685883.

[6] Van Cu Pham, Yuto Lim, and Yasuo Tan: A platform for integrating alexa voice
service into echonet-based smart homes, 2018 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW), pp1-5, May 2018. https://doi.org/

10.1109/ICCE-China.2018.8448893.

[7] Van Cu Pham, Yuto Lim, Yasuo Tan, and Nak Young Chong: Support for echonet-
based smart home environments in the universaal ecosystem, 2018 IEEE Inter-
national Conference on Consumer Electronics (ICCE), pp1-4, Jan 2018. https:

//doi.org/10.1109/ICCE.2018.8326218.

93

https://doi.org/10.2197/ipsjjip.27.360
https://doi.org/10.2197/ipsjjip.27.360
https://doi.org/10.1109/ICIN.2019.8685883
https://doi.org/10.1109/ICIN.2019.8685883
https://doi.org/10.1109/ICCE-China.2018.8448893
https://doi.org/10.1109/ICCE-China.2018.8448893
https://doi.org/10.1109/ICCE.2018.8326218
https://doi.org/10.1109/ICCE.2018.8326218

[8] Ha-Duong Bui, Van Cu Pham, Yuto Lim, Yasuo Tan, and Nak Young Chong: In-
tegrating a humanoid robot into echonet-based smart home environments, 9th In-
ternational Conference on Social Robotics, pp314-323, 2017.

[9] Van Cu Pham, Tan Le, Yuto Lim, and Yasuo Tan: An architecture for supporting
ras on linux-based iot gateways, 2017 IEEE 6th Global Conference on Consumer
Electronics, pp1-5, Oct 2017. https://doi.org/10.1109/GCCE.2017.8229234.

[10] Van Cu Pham, Yuto Lim, and Yasuo Tan: Management architecture for heteroge-
neous IoT devices in home network, 2016 IEEE 5th Global Conference on Consumer
Electronics, pp1-5, Oct 2016. https://doi.org/10.1109/GCCE.2016.7800448.

Japan Domestic Conference papers

[11] Van Cu Pham, Yoshiki Makino, and Yasuo Tan: Support for ECHONET Lite Pro-
tocol in the oneM2M Ecosystem, IEICE General Conference 2019, Mar 2019.

[12] Van Cu Pham, Yuto Lim, and Yasuo Tan: Integrating Alexa Voice Service Into
ECHONET-based Home Networks, IEICE General Conference 2018, Mar 2018.

[13] Van Cu Pham, Yuto Lim, and Yasuo Tan: Cloud-based Solution for Connecting
Multiple Home Networks using universAAL Space Gateway, IEICE Society Confer-
ence 2017, Sep 2017.

[14] Van Cu Pham, Yuto Lim, and Yasuo Tan: Management Architecture for Hetero-
geneous IoT Devices in Home Network, Joint Conference of Hokuriku Chapters of
Electrical Societies 2016 (JHES), Sep 2016.

Workshops

[15] Van Cu Pham, Yoshiki Makino, and Yasuo Tan: Support for ECHONET Lite Pro-
tocol in the oneM2M Ecosystem, oneM2M Industry Day Kanazawa, Dec 2018.

[16] Van Cu Pham, Yuto Lim, and Yasuo Tan: Integration of ECHONET Lite Protocol
into The universAAL Platform, JAIST World Conference 2018, Feb 2018.

Awards

• Best English Paper Award in 2017, IEICE Technical Committee on Information and
Communication Management (ICM), March 2018, Okinawa, Japan.

• Best Poster Award, JAIST World Conference 2018, February 2018.

94

https://doi.org/10.1109/GCCE.2017.8229234
https://doi.org/10.1109/GCCE.2016.7800448

Appendices

Appendix A: XML Device Object Configuration

Listing 7.1: Device Object Configuration of A Toshiba LEDD85021N-LS

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>
2 <dev i c e>
3 <p r o f i l e>
4 <property epc=”80”>
5 <const>31</ const>
6 </ property>
7 <property epc=”82”>
8 <const>010 a0100</ const>
9 </ property>

10 <property epc=”83”>
11 <const>fe00001bb86b233e44ad00000000000000</ const>
12 </ property>
13 <property epc=”8A”>
14 <const>00001b</ const>
15 </ property>
16 <property epc=”8D”>
17 <const>623836623233336534346164</ const>
18 </ property>
19 <property epc=”9D”>
20 <const>01d5</ const>
21 </ property>
22 <property epc=”9E”>
23 <const>0280 bf</ const>
24 </ property>
25 <property epc=”9F”>
26 <const>0 e8082838a8d9d9e9fbfd3d4d6d7f0</ const>
27 </ property>
28 <property epc=”BF”>
29 <const>8001</ const>
30 </ property>
31 <property epc=”D3”>
32 <const>000001</ const>
33 </ property>
34 <property epc=”D4”>
35 <const>0002</ const>
36 </ property>
37 <property epc=”D5”>
38 <const>01029001</ const>
39 </ property>
40 <property epc=”D6”>
41 <const>01029001</ const>

95

42 </ property>
43 <property epc=”D7”>
44 <const>010290</ const>
45 </ property>
46 <property epc=”F0”>
47 <const>42</ const>
48 </ property>
49 </ p r o f i l e>
50 <ob j e c t c e o j=”0290”>
51 <property epc=”80” get=” enabled ” no t i f y=” enabled ” s e t=” enabled ”>
52 < f i l e>
53 <value default=”31”>192 .168 .2 .90/029001/0 x80</ value>
54 <no t i f y>192 .168 .2 .90/029001/0 x80not i f y</ no t i f y>
55 <block>192 .168 .2 .90/029001/0 x80block</ block>
56 </ f i l e>
57 </ property>
58 <property epc=”81” get=” enabled ” no t i f y=” enabled ” s e t=” enabled ”>
59 < f i l e>
60 <value default=”08”>192 .168 .2 .90/029001/0 x81</ value>
61 <no t i f y>192 .168 .2 .90/029001/0 x81not i f y</ no t i f y>
62 <block>192 .168 .2 .90/029001/0 x81block</ block>
63 </ f i l e>
64 </ property>
65 <property epc=”82” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
66 < f i l e>
67 <value default=”00004200”>192 .168 .2 .90/029001/0 x82</ value>
68 <block>192 .168 .2 .90/029001/0 x82block</ block>
69 </ f i l e>
70 </ property>
71 <property epc=”86” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
72 < f i l e>
73 <value default=”0200001 b0000”>192 .168 .2 .90/029001/0 x86</ value>
74 <block>192 .168 .2 .90/029001/0 x86block</ block>
75 </ f i l e>
76 </ property>
77 <property epc=”88” get=” enabled ” no t i f y=” enabled ” s e t=” d i s ab l ed ”>
78 < f i l e>
79 <value default=”42”>192 .168 .2 .90/029001/0 x88</ value>
80 <no t i f y>192 .168 .2 .90/029001/0 x88not i f y</ no t i f y>
81 <block>192 .168 .2 .90/029001/0 x88block</ block>
82 </ f i l e>
83 </ property>
84 <property epc=”89” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
85 < f i l e>
86 <value default=”0000”>192 .168 .2 .90/029001/0 x89</ value>
87 <block>192 .168 .2 .90/029001/0 x89block</ block>
88 </ f i l e>
89 </ property>
90 <property epc=”8A” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
91 < f i l e>
92 <value default=”00001b”>192 .168 .2 .90/029001/0x8A</ value>
93 <block>192 .168 .2 .90/029001/0 x8Ablock</ block>
94 </ f i l e>
95 </ property>
96 <property epc=”8B” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
97 < f i l e>
98 <value default=”000001”>192 .168 .2 .90/029001/0x8B</ value>

96

99 <block>192 .168 .2 .90/029001/0 x8Bblock</ block>
100 </ f i l e>
101 </ property>
102 <property epc=”8C” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
103 < f i l e>
104 <value default=”4c4544442d4c543120202020”>192 .168 .2 .90/029001/0

x8C</ value>
105 <block>192 .168 .2 .90/029001/0 x8Cblock</ block>
106 </ f i l e>
107 </ property>
108 <property epc=”8D” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
109 < f i l e>
110 <value default=”303030303030303030303030”>192 .168 .2 .90/029001/0

x8D</ value>
111 <block>192 .168 .2 .90/029001/0 x8Dblock</ block>
112 </ f i l e>
113 </ property>
114 <property epc=”8E” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
115 < f i l e>
116 <value default=”07dd0511”>192 .168 .2 .90/029001/0x8E</ value>
117 <block>192 .168 .2 .90/029001/0 x8Eblock</ block>
118 </ f i l e>
119 </ property>
120 <property epc=”8F” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
121 < f i l e>
122 <value default=”42”>192 .168 .2 .90/029001/0 x8F</ value>
123 <block>192 .168 .2 .90/029001/0 x8Fblock</ block>
124 </ f i l e>
125 </ property>
126 <property epc=”9D” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
127 < f i l e>
128 <value default=”05808188 f e f f ”>192 .168 .2 .90/029001/0x9D</ value>
129 <block>192 .168 .2 .90/029001/0 x9Dblock</ block>
130 </ f i l e>
131 </ property>
132 <property epc=”9E” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
133 < f i l e>
134 <value default=”0 a 8 0 8 1 8 f f 4 f 6 f 7 f 8 f d f e f f ”>192 .168 .2 .90/029001/0x9E

</ value>
135 <block>192 .168 .2 .90/029001/0 x9Eblock</ block>
136 </ f i l e>
137 </ property>
138 <property epc=”9F” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
139 < f i l e>
140 <value default=”1801018100880081808101010101838383”>

192 .168 .2 .90/029001/0 x9F</ value>
141 <block>192 .168 .2 .90/029001/0 x9Fblock</ block>
142 </ f i l e>
143 </ property>
144 <property epc=”B4” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
145 < f i l e>
146 <value default=”6400”>192 .168 .2 .90/029001/0xB4</ value>
147 <block>192 .168 .2 .90/029001/0 xB4block</ block>
148 </ f i l e>
149 </ property>
150 <property epc=”F2” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” d i s ab l ed ”>
151 < f i l e>

97

152 <value default=”640042”>192 .168 .2 .90/029001/0 xF2</ value>
153 <block>192 .168 .2 .90/029001/0 xF2block</ block>
154 </ f i l e>
155 </ property>
156 <property epc=”F4” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
157 < f i l e>
158 <value default=”30”>192 .168 .2 .90/029001/0 xF4</ value>
159 <block>192 .168 .2 .90/029001/0 xF4block</ block>
160 </ f i l e>
161 </ property>
162 <property epc=”F6” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
163 < f i l e>
164 <value default=”42”>192 .168 .2 .90/029001/0 xF6</ value>
165 <block>192 .168 .2 .90/029001/0 xF6block</ block>
166 </ f i l e>
167 </ property>
168 <property epc=”F7” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
169 < f i l e>
170 <value default=”00”>192 .168 .2 .90/029001/0 xF7</ value>
171 <block>192 .168 .2 .90/029001/0 xF7block</ block>
172 </ f i l e>
173 </ property>
174 <property epc=”F8” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
175 < f i l e>
176 <value default=”00”>192 .168 .2 .90/029001/0 xF8</ value>
177 <block>192 .168 .2 .90/029001/0 xF8block</ block>
178 </ f i l e>
179 </ property>
180 <property epc=”FD” get=” enabled ” no t i f y=” d i s ab l ed ” s e t=” enabled ”>
181 < f i l e>
182 <value default=”140008”>192 .168 .2 .90/029001/0xFD</ value>
183 <block>192 .168 .2 .90/029001/0 xFDblock</ block>
184 </ f i l e>
185 </ property>
186 <property epc=”FE” get=” enabled ” no t i f y=” enabled ” s e t=” enabled ”>
187 < f i l e>
188 <value default=”30”>192 .168 .2 .90/029001/0xFE</ value>
189 <no t i f y>192 .168 .2 .90/029001/0 xFEnotify</ no t i f y>
190 <block>192 .168 .2 .90/029001/0 xFEblock</ block>
191 </ f i l e>
192 </ property>
193 <property epc=”FF” get=” enabled ” no t i f y=” enabled ” s e t=” enabled ”>
194 < f i l e>
195 <value default=”31”>192 .168 .2 .90/029001/0xFF</ value>
196 <no t i f y>192 .168 .2 .90/029001/0 xFFnotify</ no t i f y>
197 <block>192 .168 .2 .90/029001/0 xFFblock</ block>
198 </ f i l e>
199 </ property>
200 </ ob j e c t>
201 </ dev i ce>

98

Appendix B: Proposed HGW and CARESSES System

Figure 7.1: Proposed Home Gateway in the CARESSES Ecosystem

The proposed HGW implementation plays an important role for the robot-human-environment
interaction of the CARESSES project. The HGW provides APIs for other application to
interacts with devices of smart home via Local Area Network and cloud server.

Appendix C: Device Configuration Information

Table 7.1: Home Network Simulator Device Description

IPAddress DeviceObject ErrorDetail ErrorClass

192.168.2.100 TemperatureSensor NoError Normal

192.168.2.100 HumiditySensor NoError Normal

192.168.2.100 IlluminanceSensor NoError Normal

192.168.2.101 TemperatureSensor NoError Normal

192.168.2.101 HumiditySensor NoError Normal

192.168.2.101 IlluminanceSensor NoError Normal

192.168.2.102 TemperatureSensor NoError Normal

192.168.2.102 HumiditySensor NoError Normal

192.168.2.102 IlluminanceSensor NoError Normal

192.168.2.103 TemperatureSensor NoError Normal

192.168.2.103 HumiditySensor NoError Normal

192.168.2.103 IlluminanceSensor NoError Normal

192.168.2.104 TemperatureSensor NoError Normal

192.168.2.104 HumiditySensor NoError Normal

99

192.168.2.104 IlluminanceSensor NoError Normal

192.168.2.105 TemperatureSensor NoError Normal

192.168.2.105 HumiditySensor NoError Normal

192.168.2.105 IlluminanceSensor NoError Normal

192.168.2.106 TemperatureSensor NoError Normal

192.168.2.106 HumiditySensor NoError Normal

192.168.2.106 IlluminanceSensor NoError Normal

192.168.2.107 TemperatureSensor NoError Normal

192.168.2.107 HumiditySensor NoError Normal

192.168.2.107 IlluminanceSensor NoError Normal

192.168.2.108 TemperatureSensor NoError Normal

192.168.2.108 HumiditySensor NoError Normal

192.168.2.108 IlluminanceSensor NoError Normal

192.168.2.109 TemperatureSensor NoError Normal

192.168.2.109 HumiditySensor NoError Normal

192.168.2.109 IlluminanceSensor NoError Normal

192.168.2.110 TemperatureSensor NoError Normal

192.168.2.110 HumiditySensor NoError Normal

192.168.2.110 IlluminanceSensor NoError Normal

192.168.2.111 HumanDetectionSensor NoError Normal

192.168.2.111 HumanDetectionSensor NoError Normal

192.168.2.112 HumanDetectionSensor NoError Normal

192.168.2.112 HumanDetectionSensor NoError Normal

192.168.2.112 HumanDetectionSensor NoError Normal

192.168.2.113 HumanDetectionSensor NoError Normal

192.168.2.113 HumanDetectionSensor NoError Normal

192.168.2.114 HumanDetectionSensor NoError Normal

192.168.2.114 HumanDetectionSensor NoError Normal

192.168.2.115 HumanDetectionSensor NoError Normal

192.168.2.115 HumanDetectionSensor NoError Normal

192.168.2.116 HumanDetectionSensor NoError Normal

192.168.2.116 HumanDetectionSensor NoError Normal

192.168.2.117 HumanDetectionSensor NoError Normal

192.168.2.117 HumanDetectionSensor NoError Normal

192.168.2.118 HumanDetectionSensor NoError Normal

192.168.2.118 HumanDetectionSensor NoError Normal

192.168.2.119 HumanDetectionSensor NoError Normal

192.168.2.119 HumanDetectionSensor NoError Normal

192.168.2.120 HumanDetectionSensor NoError Normal

192.168.2.120 HumanDetectionSensor NoError Normal

192.168.2.121 HumanDetectionSensor NoError Normal

192.168.2.121 HumanDetectionSensor NoError Normal

192.168.2.122 HumanDetectionSensor NoError Normal

192.168.2.122 HumanDetectionSensor NoError Normal

192.168.2.123 Lighting NoError Normal

192.168.2.123 Lighting NoError Normal

192.168.2.124 Lighting NoError Normal

192.168.2.124 Lighting NoError Normal

100

192.168.2.125 Lighting NoError Normal

192.168.2.125 Lighting NoError Normal

192.168.2.126 Lighting NoError Normal

192.168.2.126 Lighting NoError Normal

192.168.2.127 Lighting NoError Normal

192.168.2.127 Lighting NoError Normal

192.168.2.128 Lighting NoError Normal

192.168.2.128 Lighting NoError Normal

192.168.2.129 Lighting NoError Normal

192.168.2.129 Lighting NoError Normal

192.168.2.130 Lighting NoError Normal

192.168.2.131 Lighting NoError Normal

192.168.2.131 Lighting NoError Normal

192.168.2.132 Lighting NoError Normal

192.168.2.132 Lighting NoError Normal

192.168.2.143 WaterFlowRateSensor NoError Normal

192.168.2.143 WaterFlowRateSensor NoError Normal

192.168.2.144 WaterFlowRateSensor NoError Normal

192.168.2.144 WaterFlowRateSensor NoError Normal

192.168.2.145 TemperatureSensor NoError Normal

192.168.2.145 HumiditySensor NoError Normal

192.168.2.145 AirSpeedSensor NoError Normal

192.168.2.147 InterCom NoError Normal

192.168.2.147 FireSensor NoError Normal

192.168.2.148 DoorLock NoError Normal

192.168.2.151 OpenCloseSensor NoError Normal

192.168.2.151 OpenCloseSensor NoError Normal

192.168.2.152 OpenCloseSensor NoError Normal

192.168.2.152 OpenCloseSensor NoError Normal

192.168.2.153 OpenCloseSensor NoError Normal

192.168.2.153 OpenCloseSensor NoError Normal

192.168.2.154 OpenCloseSensor NoError Normal

192.168.2.154 OpenCloseSensor NoError Normal

192.168.2.155 OpenCloseSensor NoError Normal

192.168.2.156 OpenCloseSensor NoError Normal

192.168.2.156 OpenCloseSensor NoError Normal

192.168.2.157 ElectricCurtain NoError Normal

192.168.2.158 ElectricCurtain NoError Normal

192.168.2.159 ElectricWindow NoError Normal

192.168.2.160 ElectricWindow NoError Normal

192.168.2.161 ElectricWindow NoError Normal

192.168.2.163 ElectricWindow NoError Normal

192.168.2.164 ElectricWindow NoError Normal

192.168.2.166 ElectricWindow NoError Normal

192.168.2.167 ElectricWindow NoError Normal

192.168.2.168 ElectricWindow NoError Normal

192.168.2.170 AirConditioner NoError Normal

192.168.2.171 AirConditioner NoError Normal

101

192.168.2.172 AirConditioner NoError Normal

192.168.2.173 AirConditioner NoError Normal

192.168.2.174 AirConditioner NoError Normal

192.168.2.175 AirConditioner NoError Normal

192.168.2.183 ElectricCurtain NoError Normal

192.168.2.184 ElectricCurtain NoError Normal

192.168.2.200 Refrigerator NoError Normal

192.168.2.201 HotWaterPot NoError Normal

192.168.2.203 Stove NoError Normal

192.168.2.204 RiceCooker NoError Normal

192.168.2.205 TV NoError Normal

192.168.2.206 TV NoError Normal

192.168.2.207 Radio NoError Normal

192.168.2.99 TemperatureSensor Delay:500 Delay

192.168.2.99 HumiditySensor Delay:500 Delay

192.168.2.99 IlluminanceSensor Delay:500 Delay

192.168.2.98 TemperatureSensor Delay:1000 Delay

192.168.2.98 HumiditySensor Delay:1000 Delay

192.168.2.98 IlluminanceSensor Delay:1000 Delay

192.168.2.97 TemperatureSensor Delay:2000 Delay

192.168.2.97 HumiditySensor Delay:2000 Delay

192.168.2.97 IlluminanceSensor Delay:2000 Delay

192.168.2.96 TemperatureSensor MissingData MissingData

192.168.2.96 HumiditySensor MissingData MissingData

192.168.2.96 IlluminanceSensor MissingData MissingData

192.168.2.95 TemperatureSensor Drop:10 PacketDrop

192.168.2.95 HumiditySensor Drop:10 PacketDrop

192.168.2.95 IlluminanceSensor Drop:10 PacketDrop

192.168.2.94 TemperatureSensor Drop:50 PacketDrop

192.168.2.94 HumiditySensor Drop:50 PacketDrop

192.168.2.94 IlluminanceSensor Drop:50 PacketDrop

192.168.2.93 TemperatureSensor Drop:80 PacketDrop

192.168.2.93 HumiditySensor Drop:80 PacketDrop

192.168.2.93 IlluminanceSensor Drop:80 PacketDrop

192.168.2.92 TemperatureSensor Drop:30—Delay:1500 Delay&PacketDrop

192.168.2.92 HumiditySensor Drop:30—Delay:1500 Delay&PacketDrop

192.168.2.92 IlluminanceSensor Drop:30—Delay:1500 Delay&PacketDrop

192.168.2.91 TemperatureSensor Drop:60—Delay:200 Delay&PacketDrop

192.168.2.91 HumiditySensor Drop:60—Delay:200 Delay&PacketDrop

192.168.2.91 IlluminanceSensor Drop:60—Delay:200 Delay&PacketDrop

192.168.2.90 TemperatureSensor Drop:90—Delay:800 Delay&PacketDrop

192.168.2.90 HumiditySensor Drop:90—Delay:800 Delay&PacketDrop

192.168.2.90 IlluminanceSensor Drop:90—Delay:800 Delay&PacketDrop

192.168.2.89 TemperatureSensor Drop:10—Delay:900—MissingData AllErrorCombined

192.168.2.89 HumiditySensor Drop:10—Delay:900—MissingData AllErrorCombined

192.168.2.89 IlluminanceSensor Drop:10—Delay:900—MissingData AllErrorCombined

192.168.2.88 HumanDetectionSensor Delay:300 Delay

192.168.2.88 HumanDetectionSensor Delay:300 Delay

102

192.168.2.87 HumanDetectionSensor Delay:800 Delay

192.168.2.87 HumanDetectionSensor Delay:800 Delay

192.168.2.87 HumanDetectionSensor Delay:800 Delay

192.168.2.86 HumanDetectionSensor Delay:1800 Delay

192.168.2.86 HumanDetectionSensor Delay:1800 Delay

192.168.2.85 HumanDetectionSensor Delay:3800 Delay

192.168.2.85 HumanDetectionSensor Delay:3800 Delay

192.168.2.84 HumanDetectionSensor MissingData MissingData

192.168.2.84 HumanDetectionSensor MissingData MissingData

192.168.2.83 HumanDetectionSensor Drop:20 PacketDrop

192.168.2.83 HumanDetectionSensor Drop:20 PacketDrop

192.168.2.82 HumanDetectionSensor Drop:60 PacketDrop

192.168.2.82 HumanDetectionSensor Drop:60 PacketDrop

192.168.2.81 HumanDetectionSensor Drop:40—Delay:1000 Delay&PacketDrop

192.168.2.81 HumanDetectionSensor Drop:40—Delay:1000 Delay&PacketDrop

192.168.2.80 HumanDetectionSensor Drop:80—Delay:400 Delay&PacketDrop

192.168.2.80 HumanDetectionSensor Drop:80—Delay:400 Delay&PacketDrop

192.168.2.79 HumanDetectionSensor Drop:10—Delay:3000 Delay&PacketDrop

192.168.2.79 HumanDetectionSensor Drop:10—Delay:3000 Delay&PacketDrop

192.168.2.78 HumanDetectionSensor Drop:30—Delay:1200—MissingData AllErrorCombined

192.168.2.78 HumanDetectionSensor Drop:30—Delay:1200—MissingData AllErrorCombined

192.168.2.77 HumanDetectionSensor Drop:50—Delay:500—MissingData AllErrorCombined

192.168.2.77 HumanDetectionSensor Drop:50—Delay:500—MissingData AllErrorCombined

192.168.2.76 Lighting Delay:100 Delay

192.168.2.76 Lighting Delay:100 Delay

192.168.2.75 Lighting Delay:1200 Delay

192.168.2.75 Lighting Delay:1200 Delay

192.168.2.74 Lighting MissingData MissingData

192.168.2.74 Lighting MissingData MissingData

192.168.2.73 Lighting Drop:80 PacketDrop

192.168.2.73 Lighting Drop:80 PacketDrop

192.168.2.72 Lighting Drop:15 PacketDrop

192.168.2.72 Lighting Drop:15 PacketDrop

192.168.2.71 Lighting Drop:20—Delay:3500 Delay&PacketDrop

192.168.2.71 Lighting Drop:20—Delay:3500 Delay&PacketDrop

192.168.2.70 Lighting Drop:70—Delay:3100 Delay&PacketDrop

192.168.2.70 Lighting Drop:70—Delay:3100 Delay&PacketDrop

192.168.2.69 Lighting Drop:55—Delay:1200 Delay&PacketDrop

192.168.2.68 Lighting Drop:25—Delay:700—MissingData AllErrorCombined

192.168.2.68 Lighting Drop:25—Delay:700—MissingData AllErrorCombined

192.168.2.67 Lighting Drop:40—Delay:1700—MissingData AllErrorCombined

192.168.2.67 Lighting Drop:40—Delay:1700—MissingData AllErrorCombined

192.168.2.66 WaterFlowRateSensor Delay:200 Delay

192.168.2.66 WaterFlowRateSensor Delay:200 Delay

192.168.2.65 WaterFlowRateSensor DropRate:60 PacketDrop

192.168.2.65 WaterFlowRateSensor DropRate:60 PacketDrop

192.168.2.64 TemperatureSensor Drop:50—Delay:1900—MissingData AllErrorCombined

192.168.2.64 HumiditySensor Drop:50—Delay:1900—MissingData AllErrorCombined

103

192.168.2.64 IlluminanceSensor Drop:50—Delay:1900—MissingData AllErrorCombined

192.168.2.63 InterCom Droprate:85 PacketDrop

192.168.2.63 FireSensor Droprate:85 PacketDrop

192.168.2.62 DoorLock Delay:4000 Delay

192.168.2.61 OpenCloseSensor MissingData MissingData

192.168.2.61 OpenCloseSensor MissingData MissingData

192.168.2.60 OpenCloseSensor Drop:5—Delay:1800 Delay&PacketDrop

192.168.2.60 OpenCloseSensor Drop:5—Delay:1800 Delay&PacketDrop

192.168.2.59 OpenCloseSensor Drop:35—Delay:800 Delay&PacketDrop

192.168.2.59 OpenCloseSensor Drop:35—Delay:800 Delay&PacketDrop

192.168.2.58 OpenCloseSensor Drop:45—Delay:50—MissingData AllErrorCombined

192.168.2.58 OpenCloseSensor Drop:45—Delay:50—MissingData AllErrorCombined

192.168.2.57 OpenCloseSensor Delay:1500 Delay

192.168.2.56 OpenCloseSensor Drop:65 PacketDrop

192.168.2.56 OpenCloseSensor Drop:65 PacketDrop

192.168.2.55 ElectricCurtain Delay:4500 Delay

192.168.2.54 ElectricCurtain Drop:75 PacketDrop

192.168.2.51 ElectricWindow MissingData MissingData

192.168.2.50 ElectricWindow Delay:2500 Delay

192.168.2.49 ElectricWindow Delay:4900 Delay

192.168.2.48 ElectricWindow Drop:17—Delay:3100 Delay&PacketDrop

192.168.2.47 ElectricWindow Drop:30—Delay:250 Delay&PacketDrop

192.168.2.46 ElectricWindow Drop:50—Delay:2700 Delay&PacketDrop

192.168.2.45 ElectricWindow Drop70—Delay:2700—MissingData AllErrorCombined

192.168.2.44 ElectricWindow Drop:25 PacketDrop

192.168.2.43 AirConditioner MissingData MissingData

192.168.2.42 AirConditioner Drop:30 PacketDrop

192.168.2.41 AirConditioner Drop:95 PacketDrop

192.168.2.40 AirConditioner Delay:200 Delay

192.168.2.39 AirConditioner Drop:10—Delay:4000 Delay&PacketDrop

192.168.2.38 AirConditioner Drop:10—Delay:4000—MissingData AllErrorCombined

192.168.2.53 ElectricCurtain Drop:85—Delay:2200 Delay&PacketDrop

192.168.2.52 ElectricCurtain MissingData MissingData

192.168.2.37 Refrigerator Drop:40 PacketDrop

192.168.2.36 HotWaterPot Drop:60—Delay:800 Delay&PacketDrop

192.168.2.35 Stove MissingData MissingData

192.168.2.34 RiceCooker Drop:60—Delay:800—MissingData AllErrorCombined

192.168.2.33 TV Delay:3000 Delay

192.168.2.32 TV Drop:65 PacketDrop

192.168.2.31 Radio Drop:65—Delay:3900 Delay&PacketDrop

104

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Introduction
	Overview
	Motivation
	Main Contributions
	Outline

	Background and State of the Art
	Background
	Home Network
	Network Management
	Policy-based Network Management
	ML-based Network Management

	State of the Art
	Machine Learning for Networking
	Standardization Activities in Home Network

	Summary

	Service Gateway Architecture for Service Simulations
	Target Home Network: IoT Area Network
	Target Home Network Protocol: The ECHONET Lite

	Home Gateway Architecture
	Home Gateway Adaptation Layer
	Related Work
	Ontology Based Data Model
	Adaptation Layer Architecture
	ECHONET Lite Adaptation Flowchart

	Integration Layer: oneM2M Integration
	oneM2M and oneM2M Interworking Proxy Entity
	oneM2M Based ECHONET Ontology
	Integration Layer Architecture: ECHONET Lite Interworking Proxy Entity
	Implementation
	Demonstration
	Conclusion

	Integration Layer: universAAL Integration
	universAAL Platform
	Implementation
	Experiment
	Conclusion

	Summary

	Device Emulator
	Device Simulation
	Related Work
	Device Emulator
	Faulty Device Simulation
	Implementation
	Deployment
	Experiment and Evaluation
	Conclusion

	Home Network Simulation
	Related Work
	Deployment Options
	Network Traffic Dataset Generation
	Conclusion

	Summary

	Machine Learning based Solutions for Smart Homes
	Overview
	Related Work
	Network Flow Calculator
	Experiment
	Data Processing and Labeling
	Results

	Summary

	Application: Machine Learning Based Network Traffic Classification
	Machine Learning Methods
	Decision Tree
	Support Vector Machine
	Artificial Neural Network

	Experiment
	Results

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Publications and Awards

