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Abstract—We propose a flexible non-parallel voice conversion
(VC) system that is capable of both performing speaker adap-
tation and controlling speaker individuality. The proposed VC
framework aims to tackle the inability to arbitrarily modify
voice characteristics in the converted waveform of conventional
VC model. To achieve this goal, we use the speaker embedding
realized by a Variational Autoencoder (VAE) instead of one-
hot encoded vectors to represent and modify the target voice’s
characteristics. Neither parallel training data, linguistic label nor
time alignment procedure is required to train our system. After
training on a multi-speaker speech database, the proposed VC
system can adapt an arbitrary source speaker to any target
speaker using only one sample from a target speaker. The speaker
individuality of converted speech can be controlled by modifying
the speaker embedding vectors; resulting in a fictitious speaker
individuality. The experimental results showed that our proposed
system is similar to conventional non-parallel VAE-based VC and
better than the parallel Gaussian Mixture Model (GMM) in both
perceived speech naturalness and speaker similarity; even when
our system only uses one sample from target speaker. Moreover,
our proposed system can convert a source voice to a fictitious
target voice with well perceived speech naturalness of 3.1 MOS.

Index Terms—Voice conversion, speaker embedding, voice
characteristics control, variational autoencoder, non-parallel data

I. INTRODUCTION

Voice conversion (VC) is a special type of voice transforma-
tion (VT) whose aim is to manipulating speaker characteristics
in the speech signal while preserving linguistic information
[1]. This technique is beneficial in many practical applica-
tions such as intelligibility enhancement for speech disorder
patients, or enhancing Human-Machine Interface experience.
VC approaches can be categorized into 2 groups: rule-based
approaches and statistical approaches.

Rule-based approaches [2]–[4] aim to modify acoustic fea-
tures that correspond to the speaker individuality such as
fundamental frequency (F0) and formants by some manually
derived rules. However, since different rules must be applied
for different speakers, these approaches are impractical and
less preferred than statistical approach.

On the other hand, statistical approaches use machine
learning technique to modify the acoustic features. These
approaches are more flexible to adapt to new speaker than
rule-based method. The most straight-forward statistical ap-
proach for VC is to perform mapping from source acoustic
features to target acoustic features. This approach requires

a parallel training data, in which the source and target ut-
terances contain identical linguistic information so that the
differences in speaker voice characteristics could be learned.
The conventional method for this approach is using Gaussian
Mixture Model (GMM) to model the joint probability of
source and target acoustic features [5]. However, synthesized
speech using GMM-based method often suffered from over-
smoothing degradation. Therefore, lately, Deep Neural Net-
work (DNN) has been employed to perform the mapping task.
With sufficient training data, DNN-based model outperforms
GMM-based model in both speech naturalness and target
similarity.

Despite the simplicity of mapping approach, parallel train-
ing data is often expensive to obtain. Therefore, a new set
of method that can perform speaker adaptation using non-
parallel data has been investigated. The first non-parallel
VC method utilize an Eigen GMM-based model to describe
speaker characteristic as combinations of base speakers [5].
However, although the speaker adaptation phase can work with
non-parallel data, it requires parallel-data in the training phase.
Later, various methods were proposed that can use non-parallel
data in both training phase and adaptation phase. Some of
the most popular methods are Restricted Boltzmann machine
(RBM), Variational Autoencoder (VAE), and Generative Ad-
versarial Network (GAN). All these three methods share the
same principle of disentangling speaker-related information
and linguistic information from speech waveform.

However, most prior non-parallel VC methods only focus on
categorized speaker adaptation since a target voice is required
as a reference to perform voice conversion. In other words,
controllability of the degree of speaker individuality has not
been much interested. These limitations restricted the use
of VC system in some situations, such as in a storyteller
system, when collecting utterances from a large number of
target voices is unrealistic. In this situation, the VC system
with the controllable voice characteristics is desirable as it
can freely manipulate the source voice to generate any new
fictitious voice without the recordings from the target speakers.
Moreover, most VC model requires retraining when adapting
to an unseen-target speaker. The controllability can also avoid
this problem as the VC model can synthesize waveform with
the desired voice characteristics extracted from the reference
utterance. This controllability is also beneficial in many other
voice transformation fields such as emotional voice conver-



sion, voice dubbing in movie post-production, creating new
voices for text-to-speech system, speech enhancement, and
voice editing software.

To achieve this goal, we propose a new VC framework
based on VAE that can simultaneously disentangle speaker-
related information with linguistic information and discover
the latent structure of speaker characteristic. After training
on a multi-speaker dataset, a speaker embedding (SE) that
represents voice characteristics is obtained. By manipulating
the speaker embedding vector, we can obtain the synthesized
waveform with desired voice characteristics. In this paper, we
show that VC system using VAE with SE input (SE-VAE) has
comparable performance as using VAE with one-hot encoded
input (OH-VAE).

The significant of our proposed VC system are:

• Controlling the characteristics of converted voice using
non-parallel training data.

• Performing speaker adaptation using a minimum of one
utterance from target speaker.

• Converting waveform from both seen- and unseen-source
speaker to unseen-target speaker and fictitious speaker.

II. VOICE CONVERSION WITH VARIATIONAL
AUTOENCODER

Proposed by Kingma et al. and Rezende et al. [9], VAE is a
powerful probabilistic model that can uncover the latent struc-
ture of the data. Previous research showed the interpolability
of VAE-based latent representation [10], [11]

Assume that the latent variable Z represent the linguistic
information conveyed in acoustic features X follows normal
distribution N (0, I) that independent with the speaker in-
formation. The encoder part of VAE estimates the posterior
pθ(Z|X) = N (µ(X), σ(X)). Then the latent variable Z is
sampled from the posterior as z ∼ p(Z|X). However, back-
propagation is impossible if Z is directly sampled from
the posterior pθ(Z|X). Therefore, reparameterization trick is
applied by sampling an independent variable ϵ from normal
distribution N (0, I) and then performing scale and shift oper-
ation. In summary, the procedure of estimating latent variable
Z is as follows:

µ = fenc µ(X)

σ = fenc σ(X)

ϵ ∼ N (0, I)

Z = µ+ σ ◦ ϵ

(1)

To reconstruct the input acoustic feature X, beside the lin-
guistic information in latent variable Z, additional variable y
that contains speaker information is introduced. The variable
y can be expressed as a one-hot encoded vector that represents
speaker identity. From variable Z and y, the decoder part of
the VAE then reconstruct the acoustic features X.

X = fdec(Z,Y) (2)

Fig. 1. Overview of proposed VC system

The encoder and decoder are jointly trained by maximizing
the objective function defined as:

Lobj = DKL(pθ(z|x)||p(z)) + Ez∼pθ(z|x,y)(p(x|z)), (3)

where DKL is the Kullback-Leibler divergence between the
estimated posterior pθ(z|x, y) and the true prior distribution
p(z). Since p(z) is assumed to follow normal distribution, the
DKL can be expressed in closed form as:

DKL(pθ(z|x)||p(z)) = −1

2

∑
(1 + log σ2 − µ2 + σ2) (4)

The second term in the righ-hand side of Eq. 3 is the
reconstruction loss. Assuming that the acoustic feature X also
follows Gaussian distribution, the term Ez∼pθ(z|x)(p(x|z, y))
can be described by a simple mean-square difference between
reconstructed acoustic feature and original acoustic feature.

Ez∼pθ(z|x)(p(x|z)) = −1

2

∑
(X −X)2 (5)

III. PROPOSED METHOD

A. Infer Speaker Embedding using Back-propagation

In conventional VAE-based VC, speaker identity is repre-
sented as a one-hot vector. However, this type of encoding
does not include any other information on the speaker’s
voice characteristics such as gender or age. To overcome this
problem, we use a different interpretation of speaker identity
by letting the model self-derived the most suitable speaker
embedding during the training process. Let y is the one-
hot vector represent speaker identity, the speaker embedding
vector s is:

s = W · y⊺ +B, (6)

where W and B is a learnable kernel and bias in a fully-
connected NN layer. In this interpretation, the one-hot encoded
vector y acts as a switch to select correspond row vector in ma-
trix W. With this interpretation, 2 speakers with similar voice
characteristics may have almost identical speaker embedding.

This interpretation can be expanded into by adding more
layer and applying non-linear activation such as tanh or
sigmoid. In this case, the speaker embedding s is

s = Wn · ...f(W1 · f(W0 · y⊺ +B0) +B1)...+Bn, (7)

where f is a non-linear function. Although this interpretation
is convenient to explain voice characteristics, however, the



Fig. 2. Multi-scale architecture with dilated residual CNN block

speaker embedding is only available for speakers in the train-
ing set. Therefore, to perform voice conversion on a new target
speaker that is not in the training set, a speaker embedding
model is trained to predict the corresponding speaker embed-
ding from acoustic features. The learned speaker embeddings
obtained after training VAE model are used as the ground
truth. After the speaker embedding model is trained, a speaker
embedding vector from new target speaker can be estimated
using only a few seconds of their recording (10 seconds in our
experiments).

B. Modulation Loss
To improve the naturalness of the synthesized speech, we

also incorporate the Modulation Spectrum (MS) loss in the
proposed model because of its beneficial effect on speech
naturalness. Similar to [12], the MS of parameter sequence
x is defined as follows:

s(X) =
[
s(1)⊤, · · ·, s(d)⊤, · · ·, s(D)⊤

]
s(d) = [sd(0), · · ·, sd(f), · · ·, sd(Ds)]

sd(f) = |FFT (x(d)|
(8)

where D is the number of channel of x, Ds is the number of
frame of X, sd(f) is the FFT of channel d at frequency bin
f .

The modified log-likelihood function for the VAE model
considering the modulation spectrum is defined as follow:

Lms(θ, ϕ;xn) = −DKL(qϕ(zn|xn)||p(zn))
+log pθ(xn|zn,yn) + w.log p(s(x)|zn,A(X))

(9)

The final term in Eq. 9 explicitly constrains the model to
increase the log-likelihood of the modulation spectrum condi-
tioned on the given latent variable zn and speaker identity yn.
Furthermore, we also assume that the modulation spectrum
has a Gaussian distribution with a diagonal covariance matrix:
s(x) ∼ N(s(x)|s(x), diag(σs)). Therefore, the final log-
probability term in Eq. 9 can be expressed in the following
closed form:

log p(s(x)|zn,A(X)) =

−1

2

∑(
log(2πσ2

s) +
(s(x)− s(x))2

σ2
s

) (10)

C. Network Architecture
Fig. 1 illustrates an overview of our proposed SE-VAE VC

model. The encoder and decoder network utilize the multi-
scale Convolutional Neural Network (CNN) architecture [13]

as shown in Fig. 2. In addition to the basic VAE framework,
the auxiliary gate variable g is introduced to control the
amount of the speaker individuality in the output features.
The reason for this controlling is that some speech segments,
such as silence, may not contain any speaker individuality.
By introducing the gating variable, the model can ignore
these segments by outputting the gate variable g = 0. The
gating variable is inferred directly on the input features by the
individuality detector block.

IV. EXPERIMENTS
A. Dataset

We used the VCTK corpus [14], which contains 44 hours
of recordings from 109 English speakers. We divided the
data into 2 subsets: training set (containing 100 speakers) and
testing set. The testing set consisted of 2 groups of utterances.
One group contains utterances from 9 held out speakers from
the training set (unseen speakers). The second group contains
2 held out utterances of each speaker from the training set
(seen speakers).

As speech features, we used WORLD vocoder [16] to
extract F0, spectral sequence, and aperiodicity from speech
waveform. Then the spectral sequence is transformed to 60th-
order Mel-cepstral coefficients (MCC). Since the spectral
envelope from WORLD vocoder is very smooth, high-order
cepstral coefficients, which capture the fine fluctuation in the
spectral envelope, can be neglected during the conversion pro-
cess. Therefore, we used only the 1st to 31th MCC coefficients
along with interpolated F0 and voice/unvoiced flag as the input
features.

For the proposed system, the VC model and speaker embed-
ding model are trained separately. We first train the VC model
to obtained the speaker embedding table. Then we trained
the speaker embedding model to map from speech features
to embedding vector. Both VC model and speaker embedding
model are trained on the same training set.

For the baseline models, the GMM-based VC (denoted as
GMM) used in Voice Conversion Challenge 2018 and the
VAE-based VC model that uses the fixed one-hot encoded
speaker vector (OH-VAE) [10] is used. For the baseline
onehot-VAE model, we keep most of the model architecture
identical to the proposed model for a fair comparison. Since
the baseline model cannot convert voice to unseen target
speaker, we only evaluate the baseline model in seen source
to seen target (seen-seen) and unseen source to seen target



Fig. 3. Learned speaker embedding map of VCTK dataset

Fig. 4. Blue: Position of source speaker embedding vector, Red: Position of
selected target speaker embedding vector for synthesizing fictitious voices

(unseen-seen) conversion scenarios. To perform voice con-
version, the baseline VAE model uses the one-hot encoded
vector, while the proposed model uses the speaker embedding
extracted from a 10-second utterance of the target speaker. For
each source-target speaker pair, we trained a separate GMM-
based VC model using 100 pair of parallel utterances.

B. Speaker Embedding Space

After the VC model is trained, we visualize the speaker
embedding space by analyzing the speaker embedding using
Principle Component Analysis (PCA). As shown in Fig. 3,
the speakers are well separated by genders, with all female
speakers lie on the left and male speakers lie on the right.
This indicates that the model can learn meaningful voice
characteristics of the speakers.

C. Fictitious Speaker

We input the speaker embedding vector that is sampled from
the speaker embedding space to obtain the fictitious voices
that are not available in the training data. To evaluate the

TABLE I
RESULT OF MOS TEST FOR SPEECH NATURALNESS IN INTRA-GENDER

AND CROSS-GENDER CONVERSION

GMM OH-VAE SE-VAE (proposed)

F-F 1.55±0.32* 3.06±0.67 3.14±0.40
M-M 1.66±0.43* 3.31±0.71 3.30±0.74
F-M 1.34±0.24* 2.25±0.35 2.23±0.42
M-F 1.48±0.28* 2.88±0.45 2.72±0.57

All 1.51±0.16* 2.88±0.32 2.85±0.32

naturalness of the fictitious voices, we synthesized 9 utterances
from a female speaker in VCTK dataset (seen speaker) with
the position on speaker embedding space shown in Fig. 4.

D. Subjective Evaluations

To evaluate the quality of the converted waveform, we
conducted two listening test: the speech naturalness test and
speaker similarity test. Eight listeners (6 males, 2 females)
with normal hearing ability enrolled in these tests. All the
listeners rate the same sets of test stimuli.

1) Speech naturalness test: We measure the naturalness of
converted speech from the baseline models and the proposed
model using Mean-Opinion Score evaluation in 5 test scenar-
ios: 1) seen-seen, 2) unseen-seen, 3) seen-unseen, 4) unseen-
unseen and 5) fictitious target speaker. Two target speakers (1
male (M), 1 female (F)) were selected for each test scenarios
except scenario 5. For each target speakers, all the models will
perform both intra-gender (M-M, and F-F) and cross-gender
(M-F, and F-M) conversion with the same source speakers.
The listeners are instructed to concentrate on the quality of the
speech and rate the sample using 5 point-scale that consisted
of “bad” (1), “poor” (2), “fair” (3), “good” (4) and “excellent”
(5). The order of test stimuli is randomized for each speaker.
The result shown in TABLE I and Fig. 5 indicates that the
speech waveform generated from the proposed model have
higher naturalness than those generated from the GMM-based
model in all conversion scenarios. When compared with the
onehot-VAE model, the proposed model can synthesize wave-
form with equivalent naturalness, although only one utterance
from the target speaker is required as the reference. The results
in TABLE I marked with an asterisk are significantly different
(p < 0.05) as compared to the proposed SE-VAE model.
Moreover, the generated speech of fictitious speakers also has
fair naturalness of 3.1 MOS.

2) Speaker similarity test: In this experiment, the speaker
similarity between the converted waveform and the target
waveform is evaluated in 4 test scenarios: 1) seen-seen, 2)
unseen-seen, 3) seen-unseen and 4) unseen-unseen. The lis-
teners are given a reference utterance from target speaker and
several converted utterances from different source speakers.
All the test stimuli are identical to the test stimuli in natural-
ness test. The listeners were instructed to concentrate on the
voice characteristics and ignore any distortion or degradation
in the test stimuli. Then the listener judges the voice similarity
between the converted utterances with the reference utterance



Fig. 5. Result of MOS test for speech naturalness when adapting from
seen/unseen-source to seen/unseen-target speaker with 95% confidence in-
terval

TABLE II
RESULT OF MOS TEST FOR SPEAKER SIMILARITY IN INTRA-GENDER AND

CROSS-GENDER CONVERSION

GMM OH-VAE SE-VAE (proposed)

F-F 2.07±0.53 2.18±0.62 2.39±0.65
M-M 2.11±0.62 2.89±0.98 2.54±0.72
F-M 1.77±0.44 2.18±0.69 1.82±0.72
M-F 1.52±0.27* 2.93±0.82 2.57±0.62

All 1.87±0.25* 2.54±0.41 2.33±0.35

using the 5-point scale “not at all similar” (1), “slightly
similar” (2), “moderately similar” (3), “very similar” (4) and
“extremely similar” (5). The result of the similarity test is
reported in TABLE II and Fig. 6, with the asterisk indicates
that the different is statistically significant (p < 0.05) as
compared to the proposed SE-VAE model. From the result, it
is clear that there is no difference between the proposed SE-
VAE model and OH-VAE, despite the lacks of a large number
of training examples from target speaker in the proposed
scheme. The overall performance of the proposed VC system
is significantly better than the GMM-based VC.

V. CONCLUSIONS

Our proposed method provides a flexible way to con-
trol speaker individuality of converted speech by modifying

Fig. 6. Result of MOS test for speaker similarity when adapting from
seen/unseen-source to seen/unseen-target speaker with 95% confidence in-
terval

speaker embedding vectors. Although only a single utterance
is required as the reference, the subjective test results have
shown that the proposed model can convert speech with better
perceived naturalness and speaker similarity to the baseline
GMM-based model and comparable to the onehot-VAE model.
Moreover, since the proposed model can synthesize arbitrary
voices with good naturalness, it can be beneficial in various
practical application to generate unseen voices. However, we
also acknowledge that this technology can be used for the
malicious purpose (i.e. voice impersonation) as the proposed
model can mimic any voice with only a few seconds of
recording. Therefore, countermeasure methods for speaker
spoofing attack must also be studied in parallel with this study.
The speech samples of this study can be found at 1.
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