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Abstract. Multi-Car Elevator (MCE) that has several elevator cars in a
single shaft attracts attention for improvement of transportation in high-
rise buildings. However, because of lack of experience of such novel sys-
tems, design of controller for MCE is very difficult engineering problem.
One of the promising approaches is application of evolutionary optimiza-
tion to from-scratch optimization of the controller through discrete event
simulation of the MCE system. In the present paper, the authors pro-
pose application of evolutionary multi-objective optimization to design
of traffic-sensitive MCE controller. The controller for MCE is optimized
for different traffic conditions in multi-objective way. By combining the
multi-objective optimization with the exemplar-based policy (EBP) rep-
resentation that has adequate flexibility and generalization ability as a
controller, we can successfully design a controller that performs well both
in the different traffic conditions and works adequately by generalization
in the conditions not used in the optimization process.

1 Introduction

The elevator system is a critical component of high-rise buildings, and its de-
sign and control have been studied for many years. The control of cooperating
elevator cars for efficient service of passengers is known as “the elevator group
control problem”. This problem is recognized as a difficult control task, involving
stochastic, online scheduling with high combinatorial complexity and real-time
response requirements. Since no effective analytical solution has been found to
date, current commercial systems are controlled by using a combination of heuris-
tic and artificial intelligence methods [Kim et al., 1998][Beielstein et al., 2003]
[Zhou et al., 2005].

Recently, with increasing building heights and more complex usage pat-
terns, multi-car elevators (MCEs) consisting of several cars in a single eleva-
tor shaft, usually driven by linear motors, are receiving increasing interest as
high-performance transportation systems [Kita et al., 2002] [Sudo et al., 2002].
However, the accumulated knowledge for conventional elevators is not readily
applicable to MCEs, which exhibit distinctly different behavior.



The most promising approach for MCE control appears to be simulation-
based optimization, in which the policy of controller is represented by a func-
tion model and the parameters are optimized through a simulation. Sudo et
al. have shown that the approach with genetic algorithms (GAs) is hopeful
[Sudo et al., 2002] [Takahashi et al., 2003]. In those researches, MCE control is
performed by assigning a hall-call to a certain car, with using the linear-sum
weights [αi]. When a new call occurs, for all available cars, several feature val-
ues [wk

i ] expressing the state of the car k are calculated. Then the car with the
minimum linear-weighted sum

∑
αiw

k
i is assigned.

In [Ikeda et al., 2006], an exemplar-based policy representation (EBP)
[Ikeda, 2005] is employed as a non-linear controller for MCE systems. An advan-
tage of EBP to the controller of linear-sum type is the ability to control flexibly
according to the current situation, and the result of numerical experiments has
shown its superiority in MCE control.

In those simulation-based researches, the policy of control with adjustable
parameters has been evaluated and optimized in a single traffic situation. So,
there is no guarantee that the optimized policy works adequately in the other
situations, such as in the other building or in the other traffic condition which
changes largely depending on such as time-of-day. For practical use, considering
the cost and difficulty of detecting and switching the policy depending on the
situations, it is preferable that one policy works adequately in various situations
as much as possible. In large part of conventional control methods, the current
situation is detected by the set of rules such as fuzzy rules, and the corresponding
control policy tuned separately is performed. Normally the rules are written out
by experts and so very expensive.

In this paper, we employ the multi-objective optimization approach
[Deb et al., 2000] [Obayashi and Sasaki 2004] in order to obtain the traffic-
sensitive controller for MCE. In this approach, the policy with parameters is
evaluated in multiple situations, the objective functions are defined respectively,
and multi-objective optimization method is applied. The advantages of EBP for
this approach are the ability to control flexibly according to the situation and
the ability to generalize it.

This paper is organized as follows. In Section 2, a brief overview of the MCE
system and its controller are shown. In Section 3, the simulation-based policy
optimization of MCE controller, single-objective and multi-objective, are ex-
plained. In Section 4, experiments are done and the result is analyzed, and in
Section 5, the paper is concluded.

2 MCE System and Controllers
2.1 Multi-Car Elevator Systems

The almost same MCE system described in [Takahashi et al., 2003] is considered
in this study. The elements comprising the system are as follows (see Fig. 1).

Floors The lowest level of the building is assumed to be the sole point of
entry (and exit) to the building, and thus experiences the highest traffic (10



Fig. 1. MCE system

times higher than other floors in this simulation). The lowest floor is called “the
terminal floor”. The other floors are assumed to be identical in terms of traffic
demand, and are called “general floors”.

Elevator Shafts Shafts represent the space in which elevator cars (or cages)
move. In the present simulation, the building has 4 shafts.

Elevator Cars Each elevator shaft is considered to host two cars, which can
only move vertically and cannot pass each other. Furthermore, to avoid collision
and dead lock, cars in a single shaft are not allowed to approach each other
simultaneously. These constraints make efficient control of MCEs difficult to
achieve.

Registration of Destination Floor It is assumed that the passengers register
their destination floors not in the car but in the hall, and that passengers are
guided to the car serving their need.

Zone Operation For ease of operation, the floors are divided into upper and
lower zones. The upper car in each shaft serves only the traffic demands whose
origin or destination is in the upper zone. The lower car serves only the lower
zone.

Garage Floor To allow the upper car to serve the terminal floor, a garage floor
at which the lower car stops is introduced below the terminal floor.

2.2 MCE Controller

In [Sudo et al., 2002], [Takahashi et al., 2003], [Ikeda et al., 2006] and this pa-
per, MCE control is performed by assigning a hall call to a certain car. When a
new call occurs, the call is assigned to a car by the following procedure:

1. For each shaft, the car that can serve the call is nominated, according to the
definition of the service zone.



2. For all the nominated cars, several feature values expressing the state of the
car are calculated. In this paper, Nfeatures =4 features [wk

1 , wk
2 , wk

3 , w
(k)
4 ] are

utilized where k is the car index. wk
1 is the estimated waiting time of the new

call if assigned, wk
2 is the estimated maximum load of the car if assigned,

and wk
3 is the estimated delay time when the car pass through the call and

the next car serves it. Finally w
(k)
4 is the feature expressing the degree of

current traffic, which is calculated by
∑

k wk
1 and

∑
k wk

2 . The feature w
(k)
4

is common to all the cars. All the features are normalized so that almost all
features are distributed in [0, 1].

3. The preferences of cars are evaluated using the calculated feature values (or
feature vectors), and the most preferable car is assigned to the call.

This decision of the car based on the feature values at the Step 3. in the above
procedure is the central issue of design problem, and we have proposed the
following two methods.

2.3 Linear-Sum Policy Controller

In this controller, given feature vectors are evaluated by a linear-weighted sum
function, that has been used in [Sudo et al., 2002] [Takahashi et al., 2003]. Given
weights αi, the car with the minimum weighted sum k∗ = arg mink

∑4
i=1 αiw

k
i

is assigned to the given call. For example, if (α1, α2, α3, α4) = (1, 0, 0, 0), the
policy assigns the earliest car to a call. And if (α1, α2, α3, α4) = (0, 1, 0, 0), the
policy assigns the lightest car.

This approach, referred to as the linear-sum policy (LSP), is very simple and
easy to implement. However, it is unable to make decisions flexibly depending
on the state common to all the cars, such as whether the traffic is light or heavy.
In other words, the weights of each feature value in the LSP approach are fixed,
and do not vary according to the situation.

2.4 Exemplar-Based Policy Controller

In [Ikeda et al., 2006], an exemplar-based policy (EBP) representation was em-
ployed as a non-linear evaluator of candidate feature vectors.

An EBP consists of a set of exemplars, and an exemplar is defined as the
pair of feature vectors (v1

j , v2
j )∈R

Nfeatures ×R
Nfeatures , meaning “to assign the call

to the car with the feature vector v1
j is better than to assign it to the car with

v2
j ”. When a set of candidate feature vectors C = {wc}c is given, a tournament

is created, and |C|−1 competitions based on the set of exemplars are conducted,
finally the car corresponding to the winning vector is assigned to a given hall
call. In this procedure, only the set of nearer exemplars to the feature vectors
are referred (For detail, see Appendix A).



3 Simulation-based Policy Optimization

It is assumed that the zone boundary is fixed, and that the calculation of feature
vectors is also fixed. Then, optimization of the controller is performed in terms
of the parameters of the policy selecting the most preferable vector from the
candidates. The parameters are optimized through a simulation of the MCE
and a Genetic Algorithm (GA).

3.1 Evaluation using MCE Simulation

For this simulation, the same simulator used in [Takahashi et al., 2003] is em-
ployed. This simulator is based on the discrete event model called the Ex-
tended State Machine (ESM), which models the system using finite state ma-
chines with timers, among which messages are exchanged for synchronization
[Kita et al., 2002][Mimaki et al., 1999]. In the ESM model, each of the elevator
cars and the corresponding doors is represented by an ESM.

Table 1. Specifications of building and MCE

Item Value

No. of Floors 30
Zone boundary : the lowest floor of the upper zone 16
No. of Elevator Shafts 4
No. of Cars/Shaft 2

Floor Height 4.34 m
dv2/d2t of Car 2.0 m/s3

Max. Car Acceleration 1.1 m/s2

Max. Load (persons/car) 20
Time Needed for

Opening Doors 1.8 s
Closing Doors 2.4 s

Riding/Leaving 1.2 s/person
Passenges to serve (/hour) 750 to 2250
Traffic distribution (Terminal Floor ↔ General

Floor : General Floor ↔ General Floor) (10:1)

For evaluating and selecting in a GA, the fitness of a solution (policy) is
defined by the averaged squared waiting time (ASWT) over the period of sim-
ulation (90 min in this case). To reduce the effect of transient stage of traffic,
simulation result for a certain period (30 min) is excluded from evaluation. The
specifications of the building considered in the simulation are listed in Table
1. Simulations were performed using a supercomputer Fujitsu HPC2500 of Ky-
oto University, using 32 CPUs among 128 CPUs in a node in a master-slave
architecture for parallel computing.



3.2 Obtaining Traffic Sensitive Controller through Single and Multi
Objective Optimization

Now, the purpose of optimization is defined as obtaining the control policy of
MCE, which performs adequately in the wide-range conditions, i.e. from the
light traffic (1000 persons/hour) to the heavy traffic (2000 persons/hour).

An important ability expected for the policy representation is the condition-
sensitive control. Unfortunately, it is unable for LSP to make decisions flexibly
depending on the condition, whether the traffic is light or heavy. Another im-
portant ability is the generalization. Strictly, this purpose can be formalized
as the 1001-objective optimization problem, min{ASWT i(x)}1000≤i≤2000, where
ASWT i(x) is the ASWT of the policy x when i passengers occur per hour. How-
ever, evaluations of 1001-objective functions are very expensive and not neces-
sarily required if generalization ability is expected for the policy representation.

For comparison study of combination of the controller representation and the
type of GA, we employ two styles of controllers EBP and LSP, and compared
five types of GAs to optimize their policies.

One GA, we call GA1000, is carried out to attain the policy for light traffic
situation (1000 persons/hour), only the ASWT for the situation (ASWT1000) is
used for selection. In the same way, GA1500 is a GA in which only the ASWT1500

is used for selection, and GA2000 is a GA in which only the ASWT2000 is used.
By applying such single-objective optimization, the optimized policy is expected
to perform well at least in the considered situation.

In GA1000, GA1500 and GA2000, only one fitness function is considered and the
others are ignored. In GAmoop, both of ASWT1000 and ASWT2000 are referred,
and multi-objective optimization method is carried out. Generally, the purpose of
multi-objective optimization is not to attain “the best solution” but to attain the
set of non-dominated (Pareto) solutions. However, if the policy representation
has enough condition-sensitive control ability, the optimized policy will perform
well at both of light and heavy traffics.

In GAcomb, the combined single fitness ASWTcomb = 2 × ASWT1000 +
ASWT2000 is used for selection. GAcomb is the GA to attain one of Pareto solu-
tions using a fixed tradeoff rate. So, this is a single-objective optimization but
two situations are considered as GAmoop.

The characteristics of GAs we employ are summarized in Table 2.

Table 2. Characteristics of five GAs we employ

Name use ASWT1000 use ASWT1500 use ASWT2000 optimization method

GA1000 yes no no single objective

GA1500 no yes no single objective

GA2000 no no yes single objective

GAcomb yes no yes single objective (combined)

GAmoop yes no yes multi objective



3.3 GA for Single Objective Optimization

The parameters to be optimized for LSP is the set of weights αi ∈ R
Nfeatures , and

the parameters to be optimized for EBP is the set of exemplars that one of them
is (v1

j , v2
j )∈R

Nfeatures × R
Nfeatures . The common framework of GA

[Ikeda and Kobayashi, 2002] is used for EBP and LSP single optimization as
follows:

1. Parameters such as Npop are fixed (see Table 3). In this research, they were
selected by some exploratory experiments.

2. As the population, Npop solutions are initialized. If LSP, each solution,
Nfeatures weights, αi ∈ R

Nfeatures is randomly generated. If EBP, each solu-
tion Ei, set of Nexemplars exemplars are randomly generated. An exemplar
ei,j ∈ Ei = (v1

i,j , v
2
i,j) is generated such that v1

i,j + v2
i,j ∈ [0, 2]Nfeatures and

v2
i,j−v1

i,j ∈ [−1, 1]Nfeatures .
3. Npop solutions are randomly ordered, s1, s2, ..., sNpop . Then Npop pairs (s1,

s2), (s2, s3), ..., (sNpop , s1) are passed to the following alternation procedure.
(a) Parents (p1, p2) are given.
(b) Children are reproduced by applying the crossover operator Nchildren

times. For LSP, UNDX [Ono 1997] is used as crossover operator of real
value vectors, and mixture of exemplars [Ikeda et al., 2006] is used for
EBP (For detail, see Appendix B).

(c) The evaluation value for each policy of the family (p1 and children) is
calculated by simulation of the MCE. To reduce the random fluctuation
of evaluation values, Nsims simulation runs are performed independently
and the average of the evaluation criterion is used. Such a GA is referred
to as a Nsims-sample GA.

(d) The policy p∗ having the best evaluation value (lowest ASWT1000,
ASWT1500, ASWT2000 or ASWTcomb) in the family is selected, and p1

in the population is replaced by p∗.
4. Step 3. is repeated Ngenerations times, after which the final result, trained MCE

control policy is obtained.

3.4 GA for Multi Objective Optimization

As GAmoop, a common framework of multi-objective optimization is used for
both of EBP and LSP. Considering the noisy fitness evaluation and then uncer-
tainty of ranking, NSGA-II [Deb et al., 2000] with some minor modification is
employed as follows:

1. Parameters are fixed (see Table 3).
2. As the population, Npop solutions are initialized by the same procedure to

Section 3.3.
3. Nchildren solutions are reproduced by applying the crossover operator (used

in Section 3.3). In this step, parents are randomly selected for each repro-
duction.



Table 3. Notation and parameter values used in optimization

Symbol Explanation Value

Npop Number of solutions (policies) in a population 30(single-objective),
60(multi-objective)

Nchildren Number of children produced per reproduction step 6(single-objective),
150(multi-objective)

Nsims Number of simulations for one evaluation 4(EBP), 8(LSP)

Ngenerations Number of generations 80(EBP), 40(LSP)

Nexemplars Number of exemplars in a EBP 900

kNN Localization parameter (the smaller, the localized) 30

Ei The ith EBP, the set of exemplars of the ith policy -

ei,j The jth exemplar of Ei -

4. Npop + Nchildren solutions are evaluated, i.e. ASWT1000 and ASWT2000 are
calculated by Nsims simulation runs each.

5. For each solution, the dominance-rank and the crowding-distance are calcu-
lated. As the crowding-distance, the Euclid distance to the nearest solutions
with even-or-better rank is used.

6. The best Npop solutions are selected to survive. The solution with the lower
rank wins, and the solution with the smaller distance wins if draw in their
ranks. Further, when draw in both ranks and distances, their distances to
the second nearest solutions are compared.

7. Step 3. to Step 6. are repeated Ngenerations times, after which the final result,
trained MCE control policies with varieties are obtained.

Please note, though the different parameters are used, the total evaluation
times are of the same numbers for EBP/LSP and for single-objective/multi-
objective optimization.

4 Experiments

The specifications of the building considered in the experiments are listed in
Table 1, and the parameters used for the GAs are shown in Table 3.

We employed two styles of controllers, EBP and LSP, and five types of GAs,
GA1000, GA1500, GA2000, GAcomb and GAmoop. To assess the performance of the
optimization procedure, five independent GA trials with different random seeds
were conducted for each series.

4.1 Evolution process

Measured by a single criterion : Figure 2(left) shows the evolution processes
of GA1000, GAcomb and GAmoop for EBP. The average ASWT1000 of a period is
calculated for each trial, and their averages and standard deviations are shown.
Figure 2(right) shows the evolution processes of GA2000, GAcomb and GAmoop



Fig. 2. Evolution process of EBP, ASWT1000(left) and ASWT2000(right)

for EBP. We can find that the GAs for one criterion, GA1000 and GA2000 are
superior to others in their niches. But the averages of GAcomb and GAmoop were
also soundly decreasing, this means that both ASWT1000 and ASWT2000 were
simultaneously improved.

Fig. 3. Evolution processes of LSP, ASWT1000(left) and ASWT2000(right)

Figure 3 shows the evolution processes of LSP. Like as the case of EBP,
that GA for one criterion, GA1000 and GA2000 are superior to others in their
niches, and their ASWT was decreasing over generations. However, especially
in ASWT1000 (left figure), the averaged performances of policies of GAcomb and
GAmoop were getting worse. This suggests that performance of ASWT1000 was
sacrificed for the improvement of ASWT2000. In other words, both ASWT1000

and ASWT2000 couldn’t be simultaneously improved in LSP framework.

Measured by two criteria : In Figure 4, the sets of solutions in a period of a
trial of GAmoop, LSP and EBP, are plotted. Triangles shows the sets of perfor-
mances (x, y) = (ASWT1000, ASWT2000) of EBP, generation 10 and generation



80. From the figure, both criterions are simultaneously improved. On the other
hand, circles show the set of performances of LSP, generation 10 and generation
40. The improvement is little, and the slight slide to right(ASWT1000 worse) and
down(ASWT2000 better) can be observed.

Fig. 4. Performance plot of solutions in a period of GAmoop

4.2 Performance Comparison of Policies Obtained

In this section, we focus on the performances of “elite” solutions of the evolved
ones, instead of the averaged performances. About GA1000, GA1500, GA2000 and
GAcomb, all individuals are carefully (30 times for each) re-evaluated per 10
generations. Their temporal elites are re-evaluated (180 times for each) and
finally the elite of the trial is selected. By this selection, totally 40 solutions are
given (LSP/EBP, five trials, four GAs).

About GAmoop, all individuals of the final generations are re-evaluated 30
times, and three elites, the solution with the best ASWT1000, ASWT2000,
ASWTcomb are selected. By this selection, totally 30 solutions are given (LSP/
EBP, five trials, three solutions each) with few duplications.

All elites are again re-evaluated 300 times for the comparison.

Comparison of Four GAs : Figure 5(left) shows the performances (x, y) =
(ASWT1000, ASWT2000) of LSP. Pareto curve is very usual as multi-objective
problems. In more detail, there observed three groups of LSP. One is such as
(α1, α2, α3, α4) = (1, 5, 0, 0), they prefer to assign the lighter car, and perform
well at the heavy traffic (right bottom) . One other is such as (α1, α2, α3, α4) =
(1, 0, 1, 0), they avoid assigning the near-followed car in order to maintain an ad-
equate distance between cars. The last is such as (α1, α2, α3, α4) = (1,−1, 0, 0),
they prefer to assign the heavier car in order to bias the loads to keep an ade-
quate distance, and perform well at the light traffic (left top). We can conclude



that LSP has no condition-sensitive ability, and there is no versatile policy in
LSP.

Fig. 5. Performance plot of elite solutions, LSP(left) and EBP(right)

Figure 5(right) shows the performances (ASWT1000, ASWT2000) of EBP. In
contrast to the case of LSP, the elites of GAcomb and GAmoop are better as GA1000

in ASWT1000 and better as GA2000 in ASWT2000. This fact suggests that such
EBP can automatically detect the current situation (for example from the fourth
feature) and make decision depending on it, by its localizing mechanism. In other
words, EBP has the enough condition-sensitive control ability.

GA1500 works not so bad, but its performance is worse than GAcomb and
GAmoop. This fact suggests that the training in the two conditions helps the
generalization ability of EBP.

Performance in Wide-Range Traffic : To show the generalization ability
of policies, seven delegates are selected from elites, LSP/EBP elites of GA1000,
GA1500 (EBP only), GA2000 and GAmoop. They are re-evaluated in several traffic
situations, from 750 persons/hour to 2250 persons/hour. Their performances of
a traffic are measured by the overrun ratio of ASWT to the best of the seven
delegates in the traffic.

Figure 6(left) shows the performances of LSP. In this case, as the prediction
from Figure 5(left), the elite from GAmoop is not versatile but just intermediate
performance.

Figure 6(right) shows the performances of EBP. The elite from GA1000 works
well at traffic is light, but the performance is increasingly worse when the traffic is
heavier. The elite from GA2000 has the opposite problem. The elite from GA1500

performs not so bad for all conditions, and the elite from GAmoop performs better
than it in almost all conditions.

Through the experiments, the localization ability of EBP for condition-
sensitive control, and the generalization ability for unknown conditions has been
shown. By the multi-objective optimization with ASWT1000 and ASWT2000,



Fig. 6. Comparison of elites from GA1000, GA1500, GA2000 and GAmoop, LSP(left) and
EBP(right), in wide-range traffics

the EBP is optimized as well as both of GA1000 and GA2000, further, the EBP
performs well also in the conditions that has not been experienced.

5 Conclusion

We presented a multi-objective optimization approach for learning condition-
sensitive policy, and showed its effectiveness on the difficult problem of control-
ling multi-car elevators. The policy with parameters was evaluated in two traffic
situations, and the objective functions were defined respectively, and a multi-
objective optimization method was applied. We compared conventional linear-
sum policy expression and exemplar-based policy (EBP) expression, and com-
pared the multi-objective optimization approach and single-objective approach
only for single situation. As the result, it was found that the EBP obtained by
the multi-objective optimization worked adequately for wide-range situations.
This fact suggests that EBP has the localization ability for condition-sensitive
control, and the generalization ability for unknown conditions.

For practical use, the policy should be applicable to much wider situations,
such as weekday and holiday, beginning of office hours, lunch hour and clock-out
hours. For this demand, two subjects for future work exist. One is to improve
the localization ability of EBP to detect the situation and the generalization
ability to perform well in intermediate situations which are not tested. Another
is to modify the multi-objective optimization method for such problem that has
many objectives and the evaluation value is noisy.
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A. Selection of the Best Feature Vector
When the feature vectors are given, an EBP selects the best one from them using
exemplars as following procedure [Ikeda et al., 2006] (see Fig. 7).

1. Exemplars E ={(v1
j , v2

j )}j are given, where v1
j , v2

j ∈R
Nfeatures .

2. Feature vectors corresponding to possible cars, candidates, C = {wc}c are
given to be evaluated, where wc∈R

Nfeatures .



3. An unbiased tournament for C is randomly created (the transitive law may
not necessarily hold in this competition procedure).

4. A pair of competitors wc1 ∈ C and wc2 ∈ C are taken by following the
tournament.

5. For each exemplar (v1
j , v2

j ) ∈ E, the distance to the competitors

distj =|wc1+wc2

2 − v1
j +v2

j

2 | is calculated.
6. Elocal ∈E, the top kNN exemplars nearest within distj are selected (kNN is

the localization parameter).
7. For each exemplar (v1

j , v2
j )∈Elocal, the direction

−−−−→
v2

j − v1
j and the inner prod-

uct IPj =
−−−−→
v2

j − v1
j · −−−−−−→wc2 − wc1 are calculated. When IPj > 0, the exemplar

suggests that “wc1 is better than wc2”.
8. The number of exemplars in Elocal for which IPj > 0, i.e. | {(v1

j , v2
j ) ∈

Elocal, IPj > 0}| is counted. When the number is larger than |Elocal|/2, wc1

survives the competition (otherwise the opposite judgment is obtained).
9. After |C|−1 competitions have been completed, the winner is selected.

Fig. 7. Selection of the most preferable vector from candidates

B. Crossover operator for EBP-GA
The crossover operator produces a new set of exemplars using parents. In this
paper, Nfusion =36 exemplars are newly created by a procedure called “fusion”,
and the rest exemplars are copied from parents. The crossover operation is per-
formed as follows.

1. The parents Ep1 and Ep2 are given, and Ec is initialized as an empty set.
2. An exemplar ep1,j ∈Ep1 is selected randomly, and the exemplar ep2,j∗∈Ep2

nearest to ep1,j in Ep2 is selected.
3. The rates 0 < α < 1 and β = 1−α are fixed. For the exemplars ep1,j =

(v1
p1,j , v

2
p1,j) and ep2,j∗ = (v1

p2,j∗, v
2
p2,j∗), an exemplar e = (αv1

p1,j +βv1
p2,j∗,

αv2
p1,j +βv2

p2,j∗) is newly created and added to Ec.
4. Steps 2. and 3., fusion procedure, are repeated Nfusion times.
5. An exemplar e∈Ep1∪Ep2 is selected randomly. If e /∈ Ec, e is added to Ec.
6. Step 5. is repeated until |Ec|=Nexemplars .


