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Attention-model Guided Image Enhancement for Robotic Vision
Applications

Ming Yi, Wanxiang Li, Armagan Elibol, and Nak-Young Chong

Abstract— Optical data is one of the crucial information
resources for robotic platforms to sense and interact with the
environment being employed. Obtained image quality is the
main factor of having a successful application of sophisticated
methods (e.g., object detection and recognition). In this paper, a
method is proposed to improve the image quality by enhancing
the lighting and denoising. The proposed method is based on a
generative adversarial network (GAN) structure. It makes use
of the attention model both to guide the enhancement process
and to apply denoising simultaneously thanks to the step of
adding noise on the input of discriminator networks. Detailed
experimental and comparative results using real datasets were
presented in order to underline the performance of the proposed
method.

I. INTRODUCTION

Lately, robots have been taking place in daily life more and
more. Cameras are one of the most widely used sensors in
almost all robotic platforms. Optical data obtained are crucial
for further complex tasks such as mapping, localization,
object detection and recognition, and several others. While
capturing an image, lighting is one of the main factors that
play an essential role in obtained image quality. The image
quality would be adversely affected by noise and low contrast
when it is acquired in low-light environments. Such issues
would degrade the image quality drastically, thus both the
performance and the outcome of the aforementioned complex
tasks. Hence, it is needed to develop a method to recover
details for images acquired under low-light environments.
Although some methods have been proposed, low-light image
enhancement is still a challenging task as it needs to manip-
ulate color, contrast, brightness, and noise simultaneously by
only using a given low-quality input image.

Recently, methods using deep-learning algorithms have
been proposed for low-light image enhancement. Wei et
al. [1] proposed to obtain low-/normal-light image pairs by
using different camera settings to train the deep neural net-
work named RetinexNet. Retinex-based methods are aimed to
recover the contrast through the estimated illumination map.
However, two essential problems remain; Firstly, these meth-
ods have not considered non-uniform lighting like fusion-
based methods. Secondly, these methods have been focused
on restoring brightness and contrast; however, the influences
of noise were neglected. The noise in the original input
dark images is non-negligible, and the noise in an output
contrast-enhanced image is inevitable. Some methods were
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proposed to overcome the low-light image noise problem
and obtain a sharper output image. They include a denoising
process directly as a separate component in their enhancement
pipeline. In these methods, there are usually two main ideas
to deal with the problem; the first one is applying denoising
before contrast enhancement while the second one is applying
the enhancement before denoising. However, it is a dilemma
to make a simple cascade of the denoising and enhancement
procedures. For example, denoising before enhancement is
likely to cause blurring problems, and enhancement before
denoising would cause a noise amplification problem. In
order to overcome the aforementioned problems, in this
paper, we propose an attention-guided Generative Adversarial
Network (GAN) model to solve the noise problem and non-
uniform lighting problem simultaneously. An attention-map
network based on the U-Net architecture is proposed to guide
the generator of the proposed GAN model to recover details
hindered by non-uniform lighting in under-exposed and/or
over-exposed areas of the input images. Moreover, we derive
global and local discriminators from guiding the denoising
according to adding random noise in the training process. Our
proposal is built upon the recent method EnlightenGAN [2].
Differently, we propose to use a more sophisticated and
accurate model for generating attention maps, and we also
propose to add noise to the discriminators during training
in order to improve the overall performance and perform
denoising simultaneously.

II. RELATED WORKS

We present a brief overview of related works in two main
categories; Low-light Enhancement and Image Denoising.

A. Low-light Enhancement

Several algorithms based on deep learning have been pro-
posed and found themselves with overwhelming advantages.
Fu et al. [3] proposed a weighted minimization algorithm
in order to estimate both reflectance and illumination from
an input image. Guo et al. [4] developed a structure-aware
smoothing model to improve the illumination consistency
of images. Lore et al. [5] proposed a deep AutoEncoder
approach to extract and learn features from low-light images
and then enhance those images. Li et al. [6] proposed the
LightenNet, which aims at generating a mapping function
between the weakly illuminated image and the corresponding
illumination map to obtain the enhanced image. Meanwhile,
Wei et al. [1] proposed a deep Retinex decomposition method,
which can learn to decompose the observed image into
reflectance and illumination in a data-driven way without



decomposing further the image of ground truth. The authors
aimed to improve the algorithm to make the process of image-
brightening more effective [7].

B. Image Denoising

Image denoising is one of the core research areas in image
processing. Many solutions have been presented using meth-
ods such as total-variation [8], wavelet-domain processing
[9], sparse coding [10], nuclear norm minimization [11],
and 3D transform-domain filtering (BM3D) [12]. Especially,
BM3D is a state-of-the-art classic technique for denoising.
It uses Wiener filter over patches and makes the denoised
patches connected back to the first images via a voting
instrument, which removes the noise out from the considered
area. Some denoising applications based on deep learning
have also been developed [13], [14], [5]. An evaluation
study with real data showed that BM3D outperformed recent
techniques on real images[15]. Nevertheless, most of the
existing methods, such as joint denoising and demosaicing
[16], [17] have been evaluated on artificial datasets, which are
image-sets with added Gaussian noise or Poisson noise rather
than real images collected in extreme low-light conditions.

III. PROPOSED METHOD

We proposed a method based on the one in [2] to enhance
the noisy image obtained under low- and/or non-uniform
lighting conditions. Main goal is to improve the capability
of robotic platforms on more complicated tasks (e.g., object
detection). The proposed method uses GAN architecture, and
it adopts a U-Net model as an attention-map generator to
guide the generator. The global-local discriminator structure
is used to direct the generator to focus on both global and
local information. By adding random noise to the input of
discriminators, it was also possible to train the generator to
enhance not only lighting but also denoising. The overview
of the proposed GAN architecture is denoted in Fig.1.

A. Attention Model

The attention model can direct the generator to focus on
the important information of an image. We used the naive
attention model based on the gray image of the input image
using the illumination map algorithm [18] as in [2]. However,
the performance of the naive attention model is inefficient in
some situations (i.e., the case in Fig. 2), especially when the
input image is exceptionally dark. In order to improve the
performance, we adopt U-Net [19] as it performed well on
semantic segmentation, image restoration, and enhancement.
U-Net is employed in our method to generate the attention
map. To train the U-Net, we used the output of the illu-
mination map algorithm [18]. This provides to enhance the
underexposed areas and avoid over-enhancing the normally
exposed areas. The output of U-Net is an attention map
indicating the regional underexposure level. An example is
shown in Fig. 3.

To obtain the correct attention map, we use the L2 error
metric to measure the prediction error as:

LA = ||FA(I)−G)||2 (1)

where I is the input image, and FA(I) is the predicted attention
map.

G = 1−L (2)

where L is the normalized illumination map of the input RGB
image. The illumination map is determined by:

L = (0.299×R+0.587×G+0.114×B) (3)

B. Attention-Guided Generator

Under-exposure images may still have some bright regions,
and this means that equally processing every region in an
image may not enhance the image. Hence, the ideal situation
should be enhancing the dark regions more than bright
regions. Motivated by this, we propose to adopt an attention-
guided generator constructed by U-Net. The generated atten-
tion map is used to guide the generator.

C. Global-Local Discriminators

In order to achieve our goal, the generator has to output the
normal light images that have a minimal distance to the real
distributions under the guide of the discriminator. However,
in practice, using one discriminator using the naive method
judging by the image-level often fails on spatially-varying
light images [2], [20]. We consider using a global-local
discriminator structure [2], [20] in order both to improve the
illumination of the whole image and to enhance local regions
adaptively. We have an image-level global discriminator to
guide the overall brightening. We use a local discriminator
to enhance local regions by taking randomly cropped local
patches from the output of the generator and real normal
light images trying to identify whether real (i.e., the patch
is from the real normal light images) or fake (i.e., the
patch is from images generated by the generator). By using
both the global and the local discriminator, the network can
ensure that all local patches of enhanced images look like
realistic normal-light ones and this allows the system to work
appropriately for overexposed or underexposed images. In
order to endow denoising capability to the generator, we
propose to add random noise to the input of both Global
and Local discriminators. This noise addition would allow the
generator not only to generate images with better illumination
but also to remove the noise and artifacts. One alternative
would be adding another discriminator. However, having
more discriminators may cause instabilities on the generator
and make the training process more difficult. The following
loss functions for the global discriminator D and the generator
G are used [2]:

LGlobal
D = Exr∼Preal [(DRa(xr,x f )−1)2]

+Ex f∼P f ake [DRa(x f ,xr)
2]

(4)

LGlobal
G = Ex f∼P f ake [(DRa(x f ,xr)−1)2]

+Exr∼Preal [DRa(xr,x f )
2]

(5)

where DRa is the function of the discriminator defined
by sigmoid function. For the local discriminator, randomly
cropped 5 patches from the output and real images were used



Fig. 1: Structure of the proposed GAN architecture

(a) Input Image (b) Output Illumination Map

Fig. 2: Output of naive attention model

each time and the original LSGAN [21] was adopted as the
adversarial loss, defined as follows:

LLocal
D = Exr∼Preal−patches [(D(xr)−1)2]

+Ex f∼P f ake−patches [(D(x f )−0)2]
(6)

LLocal
G = Exr∼P f ake−patches [(D(x f )−1)2] (7)

D. Self Feature Preserving Loss

The perceptual similarity is used in order to preserve the
textures and structures between input images and output
images. The perceptual similarity proposed by Johnson et
al. [22] calculates the perceptual loss by inputting two images
into the pre-trained VGG. The VGG provides features so
that the distance between images in the feature space can
be obtained. Jiang et al. [2] proposed to use the Preserving
Loss on input low-light images and its enhanced normal-light

(a) Input Image (b) Output Attention Map

Fig. 3: Output of U-Net based attention map extraction

output images to make the training process unpaired and keep
the textures and structures feature. The self feature preserving
loss LSFP is defined as the mean difference of feature maps
provided by VGG network:

LSFP(IL) =
1

Wi, jHi, j

Wi, j

∑
x=1

Hi, j

∑
y=1

(φi, j(IL)−φi, j(G(IL)))2, (8)

where IL and G(IL) are input and output image of the
generator while φi, j is the feature map of i-th max pooling and
j-th convolutional layer and it is provided by VGG network.
Wi, j and Hi, j denote the width and height of the feature map.
The overall loss function for training Pre-processing Module
is thus written as:

Loss = LGlobal
G +LLocal

G +LGlobal
SFP +LLocal

SFP (9)



IV. EXPERIMENTAL RESULTS

We conducted two sets of experiments to evaluate the
performance of our proposed method. The first set is to
evaluate the enhancement and denoising quality of the output
images using the proposed pre-processing module while the
second set is to evaluate the object detection accuracy using
YOLO-V3 [23] object detection network. For the training
process, the proposed module has the capability of using
unpaired datasets. In this paper, we opted to use the final
dataset used in the EnlightenGAN [2] containing 914 low
light and 1016 normal light images from several datasets
released from [1], [24] and HDR sources [25], [26]. For test,
besides using the test set from the final dataset in [2] (includes
148 paired low/normal light images), we also test our model
using the real-world low-light images from the public NPE
dataset that includes 8 low light images [27], LIME dataset
that includes 10 low light images [4], MEF dataset that
includes 17 low light images [28], DICM dataset that includes
69 low light images [29] and VV dataset that includes 24
low light images [30]. Since both the paired and unpaired
the datasets were used, both referenced and no-referenced
image evaluation methods were used. For paired images, we
used referenced well-known image quality metrics, PSNR
and SSIM. For unpaired images, we used no-referenced
image evaluation methods, namely Perception-based Image
Quality Evaluator(PIQE) [31] and Blind/Referenceless Image
Spatial Quality Evaluator(BRISQUE) [32]. The proposed pre-
processing module was trained for 200 epochs, first 100
epochs using the learning rate of 1×10−4, and the second 100
epochs with the rate linearly decayed to 0. Adam optimizer is
used as the optimizer of neural networks, and every training
epoch batch size is set to 12 RGB images with a resolution
of 320×320. A dropout layer was used with the dropout rate
at 0.7. Moreover, batch normalization is used in most layers
in order to perform a stable training process.

A. Comparison using Full-Reference Image Quality Assess-
ment

We used SSIM and PNSR for the full-reference image
quality assessment on the Final Dataset in [2]. Obtained
results are presented in Table I. The numbers provided
in Table I are mean values obtained through using the
whole dataset. The row "Without Adding Noise" presents the
obtained result of the proposed framework trained without
adding random noise on the inputs of discriminators. From
the result, it can be seen that the proposed method provided
better mean values than other tested methods. Fig. 4 shows
an example input image and resulting images with tested
methods as well as its ground truth image.

B. Comparison using No-Reference Image Quality Assess-
ment Methods

DICM[29], LIME [4], MEF [28], NPE [27] and VV[30]
Datasets were used for comparison using no-reference image
quality assessment methods, namely PIQE and BRISQUE.
Default pre-trained PIQE and BRISQUE models were used
in MATLAB c© environment for the evaluations. Mean values

TABLE I: Comparison using Full-Reference Quality Methods

Method
Metric PSNR SSIM

Input Image 10.370 0.300
BIMEF [33] 18.040 0.757
Dong [34] 16.952 0.670
LIME [4] 14.695 0.610
MF [35] 17.677 0.720
MultiscaleRet [36] 12.204 0.511
NPE [27] 17.824 0.667
SRIE [3] 16.650 0.705
RetinexNet [1] 11.100 0.535
EnlightenGAN [2] 17.314 0.757
Without Adding Noise 17.499 0.752
Proposed Method 18.180 0.766

of obtained results for each dataset and method are presented
in Tables II and III. From the result of PIQE and BRISQUE

TABLE II: Comparative Results using PIQE Score

Method
Dataset LIME DICM MEF NPE VV

Original 32.971 35.367 42.827 35.564 25.154
BIMEF 36.228 36.676 34.386 33.351 21.327
Dong 38.449 36.087 37.044 31.927 18.462
LIME 41.032 41.339 40.024 36.807 21.797
MF 36.381 35.833 34.132 34.335 21.367
MultiScaleRet 40.342 40.199 38.441 35.716 19.909
NPE 36.481 37.179 35.825 31.968 19.504
SRIE 34.799 39.355 37.787 35.382 23.182
RetinexNet 43.118 37.927 41.216 34.499 32.509
EnlightenGAN 34.226 33.438 32.257 33.960 25.490
Proposed Method 31.802 31.231 31.037 33.114 24.335

TABLE III: Comparative Results using BRISQUE Score

Method
Dataset LIME DICM MEF NPE VV

Original 25.142 28.115 29.066 25.137 29.380
BIMEF 23.245 26.811 19.287 24.517 22.444
Dong 26.223 26.733 26.495 23.168 29.665
LIME 22.309 26.884 24.058 26.134 26.203
MF 22.323 25.672 22.619 26.292 22.780
MultiScaleRet 22.699 26.010 23.014 24.205 23.270
NPE 22.157 25.316 23.769 24.462 22.818
SRIE 24.181 27.698 22.088 25.635 24.435
RetinexNet 25.648 26.657 26.037 26.873 20.391
EnlightenGAN 20.134 26.282 23.641 27.340 19.305
Proposed Method 20.558 24.395 21.582 23.552 17.591

evaluations, the proposed method performs better than the
majority of the tested existing methods.

C. Object Detection Experiments

In order to verify that the proposed module helps to im-
prove the object detection performance, the object detection
module (same as YOLO V3 [23]) is trained with COCO [37]
dataset for 100 epochs with a batch size of 8 RGB images
of 416× 416 using Adam optimizer and learning rate of
1×10−4. We input low-light images (referred to as original),
ground truth images, enhanced low-light images (referred to
the as enhanced original), and enhanced ground truth images
into the object detection module, and the obtained results
are given in Table IV. The last row of the table shows
the result of the original low-light images and ground truth



(a) Input Image (b) BIMEF (c) Dong (d) LIME

(e) MF (f) MultiScaleRet (g) NPE (h) SRIE

(i) RetinexNet (j) EnlightenGAN (k) Proposed (l) Ground Truth

Fig. 4: Sample input image, its ground truth and resulting images using different tested methods and the proposed one.

images. In the table, the "Total" column shows the output
counts of the object detection network; the column Correct
shows the total number of correctly detected objects while the
column "Incorrect" represents the total number of the wrong
detection. From the table, it can be seen that the proposed

TABLE IV: Object Detection Performance Comparison

Method
Data Enhanced Original Enhanced Ground Truth

Total Correct Incorrect Total Correct Incorrect
Dong 171 162 9 158 148 10
BIMEF 176 165 11 198 187 11
EnlightenGAN 175 168 7 183 170 13
Proposed Method 170 164 6 195 188 7
Original Data 96 91 5 197 188 9

pre-processing module helps to improve the performance of
object detection module. We also present the results of object
detection on images obtained by applying a pre-processing
module to the ground truth images. From the results, it
can be seen that the proposed method maintains the image
quality similar level without causing any artifacts due to over
enhancement. Some examples of object detection results are
given in Fig. 5.

V. CONCLUSIONS

In this paper, a novel method based on GAN to improve
image quality is proposed. The proposed method makes use
of attention models to guide the enhancement process in order
to detect and perform enhancement on local-regions where
it is most needed. It also applies denoising simultaneously
improving the lighting. Different experiments were carried
out on several datasets, and comparative results with exist-
ing methods were reported. The proposed method showed
promising performance.
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