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Abstract

This dissertation focuses on several topics for categorical and mixed data clustering. It

provides a thorough background, theoretical models and empirical studies of the pro-

posed frameworks. Key concepts and terminologies are also introduced. First, we de-

sign a novel clustering algorithm for categorical data. The algorithm uses a kernel-based

method for the formation of cluster centers. This approach provides an interpretation

of cluster centers being consistent with the statistical interpretation of the cluster means

in numeric data clustering. In addition, taking the underlying distribution of categor-

ical attributes into consideration, we define an information-theoretic based measure

of dissimilarity for categorical data. This dissimilarity measure is used for computing

the distance between categorical objects and cluster centers. The kernel-based method

and information-theoretic based measure will be further used for clustering steps of all

proposed frameworks in the dissertation. Second, we design an integrated framework

for clustering categorical data with missing values. The proposed model can impute

missing values occurring in data objects and assign them into appropriate clusters. For

the imputation, we use a decision tree-based method to fill in missing values within

data. This method has shown to be suitable for categorical data since it can find the set

of complete objects that are highly correlated with the data object having missing val-

ues. From that, appropriate values are selected for missing positions. The kernel-based

method and information-theoretic based measure are used for clustering steps. Third,

we extend the second model to solve the problem of clustering mixed numeric and cat-

egorical data with missing values. For the imputation, the model splits an input data set

into two sub-datasets based on their data types. The decision-tree based method is also

used for imputing missing values inside objects constituted by categorical attributes.

The missing values in numeric attributes are imputed by using the mean of correspond-
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ing attributes from the correlated set. For the clustering, we use the mean and the

kernel-based method to define cluster centers for numeric and categorical attributes,

respectively. The squared Euclidean and information-theoretic based dissimilarity mea-

sure is used to calculate distances for numeric and categorical attributes, respectively.

Fourth, we design a framework to address the limitation of random initialization in

categorical data clustering. Specifically, a maximal frequent itemset mining approach

is used to find the sets of correlated itemsets (patterns). Each pattern describes the

largest set of categories occurring in the corresponding categorical object. The group of

data objects containing each pattern is considered as an initial cluster. The kernel-based

method and information-theoretic based measure are used for clustering steps. Fifth,

we design a framework to estimate the optimal number of clusters (k) in categorical

data clustering. The silhouette analysis-based approach is used to evaluate different

clustering results so as to choose the best k for each data set. The kernel-based method

and information-theoretic based measure are used for clustering steps. All proposed

frameworks are tested on real benchmark data sets from open access data repositories.

We compare them with previous clustering algorithms in terms of clustering quality and

computational complexity by using several internal and external validation metrics. In

general, the proposed frameworks can enhance clustering results and can be used to

perform clustering tasks for any real categorical and mixed data sets as long as their

formats match the input requirement of algorithms.

Keywords: clustering, partitional clustering, categorical data, mixed data, missing

values, kernel-based method, information-theoretic based dissimilarity,

cluster center initialization, optimal number of clusters
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Chapter 1

Introduction

1.1 Research Background
The quick growth of information technologies and data acquisition technologies allows

people to collect large amounts of data every day from different sources such as sen-

sors, internet, satellites, applications, devices and other automatic equipment. The data

reflect the behavior of analyzed systems, thus they may contain useful information and

knowledge. To successfully obtain knowledge from large databases, a framework using

many tools and results of other science fields called knowledge discovery in databases

(KDD) has been used. KDD is a process of using data mining methods to find useful

information and patterns in data. This task also has a variety of names such as knowl-

edge extraction, information discovery, and data pattern recognition. However, the term

data mining (DM) has been mostly used by statisticians, data analysts, and information

systems managers. Data mining is the application of specific algorithms for extracting

patterns from data. Figure 1.1 shows the general process of KDD [2]. It is a whole

process to discover knowledge from data, while data mining is a step of this process. To

ensure that useful knowledge is derived from the data, other additional steps such as

data selection, preprocessing, transformation, and results interpretation are conducted

in the KDD process.

Clustering is one of the important data mining methods for discovering knowledge

in multivariate and multidimensional data. The goal of clustering is to identify patterns

or groups of similar objects within a data set. The methodology consists of various algo-

1
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Interpretation/
Evaluation

Data mining

Data transformation

Data preprocessing

Data selection

Target data

Preprocessed data

Transformed data

Patterns

Knowledge

Data

Figure 1.1: A general structure of Knowledge discovery in databases

rithms each of which seeks to organize a given data set into homogeneous subgroups,

or clusters [63]. A cluster is generally considered as a group of objects in which each

object is close to a central point of the cluster and that members of different clusters are

far away from each other. In other words, those objects within each cluster are more

closely related to one another than objects assigned to other different clusters. The ob-

jects may be words, text, images, database records, nodes in a graph, or any collection

in which individuals are described by a set of features or distinguishing relationships. In

the literature, clustering algorithms fall into the group of unsupervised machine learn-

ing, “unsupervised” because they are not guided by a priori ideas of which variables or

samples belong in which clusters, and “learning” because the machine algorithms learn

how to cluster [69].

The problem of clustering has been widely studied in data mining and machine

learning literature since it can be applied to intermediate steps for other fundamental

data mining problems and numerous application domains such as scientific data explo-

ration, information retrieval and text mining, web analysis, marketing, collaborative

filtering, customer segmentation, data summarization, dynamic trend detection, mul-

timedia data analysis, medical diagnostics, biological data analysis and social network

2
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(b) Scatter plot of clustering results

Figure 1.2: k-means clustering for the Brown data set

analysis [15]. For example, clustering can be used in marketing to segment the market

into homogeneous groups by identifying subgroups of customers with similar profiles. A

market researcher may group consumers who seek similar benefits from a product so he

can communicate with them better or provide appropriate advertising. A market ana-

lyst may be interested in grouping financial characteristics of companies so he is able to

relate them to their stock market performance. In health-care research, clustering can

be used to classify patients into subgroups according to their gene expression profile

and identify the molecular profile of patients with good or bad prognostic, as well as for

understanding the disease. In bioinformatics and genetics research, clustering can be

used to identify groups of genes with similar patterns of expression, and this can help

provide answers to questions of how gene expression is affected by various diseases and

which genes are responsible for specific hereditary diseases. For instance, Figure 1.2a

shows the scatter plots on two features (diau g and Elu 120) of the Brown data set,

which contains 186 gene expressions of baker’s yeast. Figure 1.2b shows three groups

of instances by using k-means algorithm on the two features.

Clustering methods may belong to several broad categories as shown in Fig 1.3. In

technique-based methods, distance-based algorithms are often desirable due to their

simplicity and ease of implementation to a wide variety of scenarios. In addition, they

are popularly used in the literature since they can be applied with almost any data type,

as long as an appropriate distance function is created for that data type. Therefore,

3
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the problem of clustering can be reduced to the problem of finding a distance function

for that data type [4]. Distance-based methods can be generally divided into two cate-

gories: hierarchical methods and partitional (flat) methods. Hierarchical methods aim

to construct a tree (dendrogram) depicting specified relationships among the objects in

the data set. Hierarchical methods can be divided into two paradigms: agglomerative

(bottom-up) and divisive (top-down) clustering. Agglomerative clustering begins with

each object being its own cluster. These clusters are then successively merged until

only a single cluster remains. Divisive clustering begins with all objects as members of

a single cluster. That cluster is then split into two separate clusters. Every successive

cluster is performed in the same manner until each object is its own cluster. Partitional

methods (also called as non-hierarchical or partitioning methods) split the data into a

predetermined number k of groups or clusters, which together satisfy the requirements

of a partition: each group must contain at least one object and each object must belong

to exactly one group [70]. The advantage of partitional algorithms is that they are lin-

ear in the number of data points, scales well to large data sets and can be adapted to

parallelization frameworks [7].

K-means [84] is the most widely used partitional clustering algorithm. The proce-

dure aims to partition objects into a predetermined number of clusters. It is often used

for large-scale clustering projects due to its simplicity and efficiency [63]. However, one

of the major limitations of k-means is its ability to deal with nonnumerical attributes.

Specifically, it can not be applied directly to categorical data, which is common in many

real applications. This is because real data sets containing attributes such as age group,

blood type, race, sex and zip code are inherently discrete and do not take on a natural

ordering. To tackle this problem, a data transformation based method can be used to

first transform categorical data into a new feature space, and then apply k-means to the

newly transformed space to obtain the final results. However, this method has proven

to be very ineffective and does not produce good clusters [97]. Thus, categorical data

and mixed numeric and categorical data lead to challenges for clustering algorithms.

First, a new similarity measure needs to be defined for categorical data since the stan-

dard similarity or distance functions for numeric data can no longer be used. Second,

the representatives such as the means or medians for numeric data need to be appro-
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Figure 1.3: A classification of clustering algorithms

priately modified for discrete data [4].

During the last two decades or so, several attempts have been made to remove the

numeric-only limitation of k-means algorithm and make it applicable to clustering for

categorical data (so-called k-means-like methods) [18, 20, 25, 26, 59, 60, 68, 71, 72,

89–92, 99]. While these k-means-like algorithms use a similar clustering procedure

to the k-means algorithm, they are different in the way of defining cluster centers (or

cluster representatives) and distance measures for categorical data. The general process

of these algorithms is as follows:

â Step 1: Start with the fixed number of clusters and select an initial partition of the

objects.

â Step 2: After determining the cluster centers, assign each object to the object’s

nearest cluster center.
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â Step 3: Determine the new cluster centers, or centroids of the clusters, based on

the new partition created by the completion of step 2.

â Step 4: Repeat steps 2 and 3 until an optimum value of the objective function is

achieved.

It is worth noting that both k-means and k-means-like algorithms find a local rather than

a global optimum. The targets of these algorithms are to define (1) a cluster center that

can represent categorical or mixed features (2) a distance measure that can deal with

categorical features or combination of numeric and categorical features, and (3) a cost

function, which is minimized iteratively, that can handle categorical or mixed data. In

general, most of the partitional clustering algorithms optimize the following objective

function:
n∑
i=1

d(xi, Ci) (1.1)

where n is the number of data instances in the data set, Ci is the cluster center

nearest to data point xi and d(,) is a distance measure between xi and Ci.

1.2 Research Motivations
The motivations of this dissertation are based on the following observations:

â Clustering is one of the most popular research topics in data mining and knowl-

edge discovery in databases. As mentioned before, its applications have been used

in a wide range of areas and can be adapted to other research topics. Although

the literature on clustering abounds, there is no perfect model for all clustering

tasks. In addition, from both research and application viewpoints, the interest

in clustering seems to be unwaning. Thus, we also focused on this topic for the

dissertation.

â Categorical data and mixed numeric and categorical data are very common in real

applications such as marketing, finance, medical and health care. However, it is

challenging to directly use operations such as summation or averaging to compute

the distance or dissimilarity measures for these kinds of data since their feature
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values are not inherently ordered. Several methods have transformed categorical

features into binary features. However, data transformation may lead to loss of

information and result in misleading outcomes. Therefore, in the dissertation, we

focused on categorical and mixed data clustering and find the other solution for

measuring the similarity between categorical or mixed features.

â Partitional clustering algorithms are popularly used in clustering since they are

linear to the size of the data sets and surely converge at a local optimum. They

are also easy to implement since all they need are a distance function and a forma-

tion of cluster representatives. Inspired by their advantages, we used partitional

methods for the design of proposed algorithms in the dissertation.

â In the era of information technology, missing values may occur frequently in the

databases due to different mechanisms. Unfortunately, they may hide the true

answers underlying in the data and reduce the performance of algorithms. Before

clustering, an easy way is to pre-process the data sets so that they contain no

missing values inside. However, pre-processing may be inconvenient for users and

lead to a potentially biased data set when using inappropriate methods. Thus, we

focused on the problem of clustering categorical and mixed data having missing

values. The objective is to design a framework that can impute missing values and

perform the clustering in a common process.

â Cluster center initialization and estimating the number of clusters are existing

challenges of partitional clustering algorithms. Most of algorithms use a random

selection method for cluster center initialization. However, this method may lead

to different clustering results on different runs of the algorithms and bad results

may be obtained in some cases. Thus, it is difficult to rely on such clustering re-

sults. In addition, most of algorithms work under the assumption that the number

of clusters is known in advance. However, it is hard to guarantee that the cho-

sen number of clusters corresponds to the natural number of clusters in the data

and an unsuitable choice may influence the interpretation of the results. Thus,

we focused on solving the two well-known problems of the partitional clustering

algorithms for categorical data.
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1.3 Research Topics

Clustering topics

Topic 5: Estimating the optimal number of clusters
in categorical data clustering

Topic 4: Improving cluster center initialization for
categorical data clustering

Topic 3: Clustering mixed data with missing values

Topic 2: Clustering categorical data with missing
values

Topic 1: Designing a k-means-like algorithm for cat-
egorical data clustering

Figure 1.4: Clustering tasks in the dissertation

In this dissertation, we focused on five topics regarding clustering for categorical

and mixed data as shown in Figure 1.4. The main tasks of these topics are highlighted

as follows:

â Topic #1: For this topic, we proposed a novel k-means-like approach for cluster-

ing categorical data, making use of an information theoretic-based dissimilarity

measure and a kernel-based method for representation of cluster means for cate-

gorical objects. Such an approach allows us to formulate the problem of clustering

categorical data in the fashion similar to k-means clustering, while a kernel-based

definition of centers also provides an interpretation of cluster means being con-

sistent with the statistical interpretation of the cluster means for numeric data.

In order to demonstrate the performance of the new clustering method, a series

of experiments on real data sets from UCI Machine Learning Repository was con-

ducted and the obtained results were compared with several previously developed

algorithms for clustering categorical data.

â Topic #2: For this topic, we proposed a framework for clustering categorical data

with missing values. The proposed method can impute missing values occurring

in data objects and then assign them into appropriate clusters. For the imputa-

tion step, we used a decision tree-based method to fill in missing values. For the

8
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clustering step, we used a kernel-based method to define cluster centers and an

information theoretic-based dissimilarity measure to quantify the differences be-

tween data objects and cluster centers. We then proposed an algorithm named

clustering categorical data with missing values (k-CCM) for this task. An exper-

imental evaluation was performed on real data sets with missing values to com-

pare the performance of the proposed algorithm with other popular clustering

algorithms in terms of clustering quality.

â Topic #3: For this topic, we proposed a framework for clustering mixed numeric

and categorical data with missing values. It integrates the imputation and cluster-

ing steps into a single process, which results in an algorithm named clustering

mixed numeric and categorical data with missing values (k-CMM). To impute

missing values in mixed data, it employs the decision tree-based method to find

the set of correlated data objects. To form centers of clusters, it uses the mean for

numeric attributes and a kernel-based method for categorical attributes. To quan-

tify the distances between data objects and cluster centers, it uses the squared

Euclidean and an information-theoretic based dissimilarity measure for numeric

and categorical attributes, respectively. To reduce the complexity of k-CMM, a

dissimilarity measure was developed to select highly relevant values for the im-

putation. An extensive experimental evaluation was conducted on both synthetic

and real data sets to compare the clustering quality of k-CMM with state-of-the-

art clustering algorithms. The execution time, memory usage and scalability of

k-CMM were also evaluated for the various number of clusters or data sizes.

â Topic #4: The performance of a partitional clustering algorithm is sensitive to

the choice of initial cluster centers. An improper choice may lead to poor clus-

tering results. This topic addresses the problem of the random initialization in

categorical data clustering from the view of pattern mining. Specifically, a maxi-

mal frequent itemset mining approach was utilized to find a set of initial clusters.

For the clustering step, we used a kernel-based method to define cluster centers

and an information-theoretic based dissimilarity measure to determine the dis-

tance between data objects and cluster centers. We then proposed an algorithm

named pattern based clustering for categorical data (k-PbC) that takes advantage

9
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of non-random initialization to improve clustering quality. A comparative experi-

ment was performed on real categorical data sets to compare the performance of

the proposed algorithm with previous clustering algorithms in terms of clustering

quality.

â Topic #5: Determining the number of clusters (say k) is a major challenge in par-

titional clustering. For this topic, we proposed a silhouette analysis based frame-

work to estimate the optimal k, namely k-SCC. For the clustering, the framework

also uses the kernel based method and an information-theoretic based distance

measure for the assignment and update steps. The framework then calculates the

average silhouette values (asv) for different clustering results obtained from the

clustering step and select the best k that yields the highest asv. The experiments

were performed on both real-life and synthetic data sets to evaluate the effec-

tiveness of k-SCC. In addition, the proposed framework was applied to classify

unlabeled Sake wine data set as a case study.

1.4 Research Contributions
The contributions of this dissertation are summarized as follows:

â The dissertation deals with several challenges of categorical and mixed data clus-

tering. The first challenge is to find innovative ways to define a novel measure of

similarity between categorical features, and to form cluster centers (representa-

tives). To address this challenge, the dissertation introduces a new information-

theoretic based dissimilarity measure and a kernel density estimation based method

to improve the performance of the clustering algorithm. The second and third

challenges are to solve the problem of clustering categorical and mixed data hav-

ing missing values, which are common in many real applications. To address these

challenges, the dissertation introduces an integrated framework that combines the

imputation and clustering steps into a common process. It means that users do

not need to pre-process or impute missing values in data sets in advance before

using clustering. The fourth challenge is to enhance the initialization of cluster

centers because the random initialization method leads to different results for dif-
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ferent runs of the algorithm and bad results may be obtained in some cases. To

address this challenge, the dissertation finds initial groups of correlated objects by

using a pattern mining approach. The fifth challenge is to suggest the best suit-

able (optimal) number of clusters (k) for each data set. To address this challenge,

the dissertation uses the silhouette coefficient to compute the average silhouette

values for a range of k and choose the best one that yields the highest value.

â The dissertation provides a thorough background and theoretical frameworks for

the corresponding topics. It then proposes algorithms and conducts extensive ex-

periments to evaluate the performance of each algorithm on synthesis or real data

sets. It also compares the proposed algorithms with previous clustering algorithms

in terms of clustering quality by using several internal or external validation met-

rics. The proposed algorithms can be used to perform clustering tasks for any real

categorical and mixed data sets as long as their formats match the input require-

ment of algorithms.

â The dissertation also contributes to knowledge science. It is obvious that the pro-

posed frameworks belong to a branch of data mining, which is a step of the KDD

process. Particularly, the proposed frameworks aim to reveal groups or clusters

of similar entities in data. In other words, they help to find non-trivial or hidden

patterns in data collected in databases and discover knowledge from them. More-

over, the proposed methods can be utilized in any steps of other research topics

for the clustering task.

1.5 Dissertation Outline
The outline of this dissertation is shown in Figure 1.5. It contains eight chapters and

the contents of chapters are briefly described as follows:

â Chapter 1 introduces the background, motivation and contribution of this re-

search, as well as the topics conducted in the dissertation.

â Chapter 2 states the preliminaries of the categorical and mixed data clustering

problem, in which the terminologies, definitions and problem statements are given

11



Chapter 1 1.5. DISSERTATION OUTLINE

Organization of dissertation
Chapter 1: Introduction

Chapter 2: Background and Literature Review

Chapter 3: A k-means-like method for clustering categorical data

Chapter 4: Clustering categorical data with missing values

Chapter 5: Clustering mixed numeric and categorical data with missing values

Chapter 6: Improving cluster center initialization

Chapter 7: Estimating the optimal number of clusters

Chapter 8: Conclusion

Figure 1.5: Structure of the dissertation

in detail.

â Chapter 3 proposes a k-means-like framework for categorical data clustering,

which uses a kernel-based method and an information-theoretic based dissimi-

larity measure to perform clustering. The theoretical framework and comparative

experiment are presented and discussed in detail.

â Chapter 4 proposes a framework for clustering and dealing with the missing values

in categorical data. The theoretical framework and comparative experiment are

presented and discussed in detail.

â Chapter 5 proposes a framework for clustering and dealing with the missing values

in mixed numeric and categorical data. The theoretical framework and compara-

tive experiment are presented and discussed in detail.

â Chapter 6 proposes a framework for improving the cluster center initialization in

categorical data clustering. The theoretical framework and comparative experi-

ment are presented and discussed in detail.

â Chapter 7 proposes a framework to determine the optimal number of clusters in

categorical data clustering. The theoretical framework and comparative experi-

ment are presented and discussed in detail.
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â Chapter 8 draws a summary of this dissertation and outlines research directions

for future works.

13



Chapter 2

Background and Literature Review

2.1 Terminologies
The following terminologies used in this dissertation have been defined in several pre-

vious works [2, 63, 87].

â Object (or instance, record, observation, entity): is the item for clustering which

corresponds to a data table row.

â Feature (or variable, attribute): corresponds to a data table column where the

feature values can be compared to each other. For example, in categorical features,

feature values are coincident or not, while in quantitative features (integer or

continuous features), their values can be averaged or summed over any subset of

objects.

â Binary feature: is the character-string feature that has only two possible values

such as “male” or “female”, “yes” or “no”. It can be coded to “0” or “1” and called

a dummy variable.

â Nominal feature: has a fixed number of values and cannot be usefully ordered. It

is a general version of the binary feature which typically coded alphanumerically.

â Ordinal feature: is the character-string feature whose values are linearly ordered.

For example, a feature named performance may contains values such as “excel-

lent”, “good”, “fair”, “poor”, “bad”, or a feature named opinion may contain values

14
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in the range of “strongly disagree” to “strongly agree”.

â Integer feature: contains non-negative numbers and can be used as a count.

â Continuous feature: can be specified as numeric or decimal depending upon the

precision required.

â Data: relates to a database, data structure, similarity or dissimilarity matrix.

â Data table (or data matrix): is a two-dimensional array whose rows correspond

to objects, columns to features and entries to feature values at objects.

2.2 Preliminaries

Table 2.1: List of notations

k , a predefined number of clusters
Dcat , a categorical data set
Dnum , a numerical data set
xi , a categorical object in Dcat
Aj , jth attribute of Dcat
Cl , lth cluster
nl , the number of objects in Cl
Zl , the center of cluster Cl
X l
j , the random variable associated with observations in Cl
Oj , the set of categories at jth attribute of Dcat
Olj , the set of categories at jth attribute of cluster Cl
oij , a category at ith element and jth attribute of Dcat
olij , a category at ith element and jth attribute of Cl
zlj , the value at jth attribute of the center Zl

This section presents the fundamental definitions for the problem of clustering cate-

gorical data which has been the subject of several prior studies [18, 20, 25, 26, 59, 68,

71, 72, 89–92, 99]. LetA= {A1,A2, . . . ,Am} be a set of m distinct categorical features,

each of which is associated with a finite set Oj (1 ≤ j ≤ m) as its domain such that

DOM(Aj) = Oj (|Oj| > 1 discrete values). A categorical data set is a set of n categor-

ical objects (instances) Dcat = {x1, x2, . . . , xn}, where each categorical object xi ∈ Dcat
(1 ≤ i ≤ n) is a tuple xi = (xi1, xi2, . . . , xim) ∈ O1 × O2 × · · · × Om. In other words,
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Dcat can be represented by an n ×m matrix (n � m), where n and m are the number

of instances and features in data set Dcat, respectively. Rows will always correspond to

objects, columns to features. The element at position (i, j) (1 ≤ i ≤ n, 1 ≤ j ≤ m) of

the matrix indicates the value of the object xi at the attribute jth, such that xij ∈ Oj.

For example, Table 2.2 shows a categorical data set that contains ten objects with four

categorical attributes.

Regarding the clustering problem discussed in this dissertation, we considered two

types of data: numeric and categorical. The domain of numeric attributes consists of

continuous real values. Thus, a distance measure such as Euclid distance or Manhattan

distance can be used. A domain is defined as categorical if it is finite and unordered

(nominal feature) so that only a comparison operation is allowed in this domain. It

means, for any a, b of this domain, we have either a = b or a 6= b.

Table 2.2: A categorical data set

Object A1 A2 A3 A4

x1 yellow small stretch adult
x2 yellow small stretch child
x3 purple small dip adult
x4 purple small dip child
x5 yellow small stretch adult
x6 yellow small stretch child
x7 purple small dip adult
x8 yellow small dip child
x9 yellow large stretch adult
x10 yellow large stretch child

Definition 1 (Clusters) Given a categorical data set Dcat = {x1, . . . , xn}. Let C = {C1,

C2, . . . , Ck} be a set of k disjoint subsets that contain the indices of objects in Dcat. These

subsets become clusters of Dcat if they satisfy the two following conditions:

Cl ∩ Cl
′ = ∅ ∀ l 6= l′⋃k

l=1 Cl = Dcat

Example 1 Assume that objects in Table 2.2 are assigned into two sets. Then, C1 =

{x1, x2, x5, x6, x8} and C2 = {x3, x4, x7, x9, x10} are two clusters of Dcat, while C3 = {x1,
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x2, x5, x6, x8, x9, x10}, C4 = {x3, x4, x7, x9, x10} are not.

Definition 2 (Relative frequency) Given a categorical data set Dcat, the relative fre-

quency of the category oij at the jth attribute of Dcat is denoted and defined as:

f(oij) =
#(oij)

n
(2.1)

where #(oij) is the number of objects that contain oij at the jth attribute of Dcat.

Given cluster a Cl and a category olij (1 ≤ i ≤ nl, 1 ≤ j ≤ m) at the jth attribute of Cl,

the relative frequency of olij in Cl is denoted and defined as:

fl(o
l
ij) =

#l(o
l
ij)

nl
(2.2)

where #l(o
l
ij) is the number of objects that contain olij in Cl at the jth attribute.

Example 2 In table 2.2, the relative frequency of category “stretch” in the attribute A3

is 6
10

, while its relative frequency in C1= {x1, x2, x5, x6, x8} is 4
5
.

The key points when designing a partitional clustering algorithm are (1) using an ap-

propriate method for representing cluster centers and (2) choosing a suitable distance

measure for a specific data type. In this dissertation, we used a kernel density estimation

based (kernel-based) approach and an information-theoretic based dissimilarity mea-

sure for the formation of cluster centers and distance function, respectively. They will

be the core functions for the clustering algorithms proposed in the remaining chapters

of the dissertation. From the statistical point of view, the center of a numeric cluster is

the expectation of a continuous random variable associated with the data, based on the

assumption that the variable follows a Gaussian distribution. Following this perspective,

the center of a categorical cluster can be estimated by using the kernel-based method,

called the probabilistic center. This method is a variation on Aitchison & Aitken’s kernel

function [8] to estimate the probability density function of each attribute in the center.

Definition 3 (Kernel-based method) Let X l
j and p(X l

j ) denote a random variable as-

sociated with observations xij (1 ≤ i ≤ nl) occurring in cluster Cl at the jth attribute and

its probability of density, respectively. Let Olj and λl ∈ [0, 1] denote the set of categories
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occurring at the jth attribute of Cl such that Olj =
⋃nl

i=1 xij and the unique smoothing

bandwidth for cluster Cl, respectively. Using a kernel-density estimation method (KDE),

p(X l
j ) is defined on the kernel function, given by K(X l

j , o
l
ij). For each value olij in Olj

(1 ≤ i ≤ nl), the variation on Aitchison & Aitken’s kernel function is denoted and

defined as:

K(X l
j , o

l
ij, λl) =


1− |O

l
j |−1
|Ol

j |
λl if X l

j = olij

1
|Ol

j |
λl otherwise

(2.3)

The kernel density estimator of p(X l
j ) is denoted and calculated as in the following

form (see [112]):

p̂(X l
j , λl, Cl) =

∑
olij∈Ol

j

fl(o
l
ij)K(X l

j , o
l
ij, λl) (2.4)

Definition 4 (Smoothing bandwidth parameter) Let there be a cluster Cl, a smooth-

ing bandwidth parameter using the least-squares cross-validation is used to minimize

the total error of the resulting estimation over data objects in this cluster [20, 92]. The

optimal smoothing parameter for Cl is denoted and defined as:

λl =
1

(nl − 1)

∑m
j=1(1−

∑
olij∈Ol

j
[fl(o

l
ij)]

2)∑m
j=1(

∑
olij∈Ol

j
[fl(olij)]

2 − 1
|Ol

j |
)

(2.5)

Definition 5 (Cluster Center) Let Olj denote a set of categories occurring at the jth

attribute of a given cluster Cl = {x1, x2, . . . , xnl
}, where xi = (xi1, xi2, . . . , xim) (1 ≤

i ≤ nl). The center of Cl is denoted and defined as:

Zl = {zl1, zl2, . . . , zlm} (2.6)

where the value at jth element of Zl is a probability distribution on Olj estimated by

a kernel-based method using Eq. (2.4) and is defined as follows:

zlj = [P lj(ol1j),P lj(ol2j), . . . ,P lj(ol|Ol
j |j

)] (2.7)

The value of each categorical value olij (1 ≤ i ≤ |Olj|) is measured by using Eqs.
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(2.2), (2.3) and (2.4) as follows:

P lj(olij) =


λl

1
|Ol

j |
+ (1− λl)fl(olij) if olij ∈ Olj

0 otherwise
(2.8)

Example 3 Assume that objects in Table 2.2 are assigned into two clusters C1 = {x1,

x2, x5, x6, x8} and C2 = {x3, x4, x7, x9, x10}. Then, their cluster centers are defined

as Z1 =
{
{“yellow” : 1.0}, {“small” : 1.0}, {“stretch” : 0.8, “dip” : 0.2}, {“adult” : 0.4,

“child” : 0.6}
}

, and Z2 =
{
{“purple” : 0.6, “yellow” : 0.4}, {“small” : 0.6, “large” : 0.4},

{“dip” : 0.6, “stretch” : 0.4}, {“adult” : 0.6, “child” : 0.4}
}

, respectively.

Similarity measures
for categorical data

Group 3: sim(i, j)=

{
x (0 ≤ x ≤ 1) if i = j

y (0 ≤ y ≤ 1) if i 6= j

Group 2: sim(i, j)=

{
1 if i = j

x (0 ≤ x < 1) if i 6= j

Group 1: sim(i, j)=

{
x (0 < x ≤ 1) if i = j

0 if i 6= j

Figure 2.1: A taxonomy of similarity measures for categorical data

In recent years, many researchers have introduced similarity measures for categori-

cal data [16, 20, 33, 58–60, 81, 92, 99]. Figure 2.1 shows a classification of similarity

measures for categorical data. Generally, these distance metrics can be classified into

three groups. In the first group, if two attribute values are similar, then possible values

other than zero is assigned for the similarity, otherwise, zero is assigned for the similar-

ity. In the second group, if two attribute values are similar, then one is assigned for the

similarity, otherwise, possible values other than one is assigned for the similarity. In the

third group, different values are assigned when matching and mismatching occur [33].

In 1998, Dekang Lin proposed a similarity measure that mimics the idea from informa-

tion theory. This similarity belongs into the third group. It defines the similarity as the

ratio between the common and different information such that less frequent item has

a higher information gain. Several works then extended Lin’s similarity for categorical

data [16, 92]. This dissertation also used an information-theoretic based dissimilarity

measure to estimate distances between objects and cluster centers or between objects.
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Theorem 1 (Similarity theorem for the probabilistic model) In [81], Lin developed

an information-theoretic framework for similarity within which a formal definition of

similarity can be derived from a set of underlying assumptions. Basically, Lin’s definition

of similarity is stated in information theoretic terms, as quoted “the similarity between

A and B is measured by the ratio between the amount of information needed to state

the commonality of A and B and the information needed to fully describe what A and B

are.” Formally, the similarity between A and B is generally defined as:

sim(A,B) =
logP (common(A,B))

logP (description(A,B))
(2.9)

where P (s) is the probability of a statement s, and the information contained in

s is measured by [− logP (s)]. To show the universality of the information theoretic

definition of similarity, Lin [81] also discussed it in different settings, including ordinal

domain, string similarity, word similarity and semantic similarity.

In 2008, Boriah et al. [16] applied Lin’s framework to the categorical setting and

proposed a similarity measure for categorical data as follows. Let Dcat be a data set

consisting of objects defined over a set of m categorical attributes with finite domains

denoted by O1,. . . ,Om, respectively. For each j = 1, . . . ,m, the similarity between two

categorical values oij, oi′j ∈ Oj is defined by:

simj(oij, oi′j) =

2 log fj(oij) if oij = oi′j

2 log(fj(oij)) + fj(oi′j) otherwise
(2.10)

where fj(x) = #(x)
|Dcat| , and #(x) being the number of objects in Dcat having the category

x at jth attribute. In fact, Boriah et al. [16] also proposed another similarity mea-

sure derived from Lin’s framework and conducted an experimental evaluation of many

different similarity measures for categorical data in the context of outlier detection.

It should be emphasized here that the similarity measure simj(·, ·) does not satisfy

the Assumption 4 assumed in Lin’s framework [81], which states that the similarity

between a pair of identical object is 1. Particularly, the range of simj(oij, oi′j) for oij=

oi′j is [−2 log |Dcat|, 0], with the minimum being attained when oij occurs only once and

the maximum being attained when Oj = {oij}. Similarly, the range of simj(oij, oi′j) for
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oij 6= oi′j is [−2 log |Dcat|
2
, 0], with the minimum being attained when oij and oi′j each

occur only once, and the maximum value is attained when oij and oi′j each occur |Dcat|
2

times, as pointed out in [16]. Based on the general definition of similarity given in 2.9

and its application to similarity between ordinal values briefly discussed in [81], we

introduced another similarity measure for categorical values as follows.

Definition 6 (Dissimilarity between two categories) Let there be two categories oij

and oi′j occurring in two objects xi and xi′ at the jth attribute. The similarity between

them is denoted and defined as:

simj(oij, oi′j) =
2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(2.11)

where f(oij, oi′j) =
#(oij ,oi′j)

|Dcat| , #(oij, oi′j) is the number of objects in data set Dcat that

receive the value belonging to {oij, oi′j} at the jth attribute.

The dissimilarity between oij and oi′j at the jth attribute is measured as:

dsimj(oij, oi′j) = 1− simj(oij, oi′j) = 1− 2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(2.12)

Example 4 The dissimilarity of categories “yellow” and “yellow” at the attribute A1 of

objects x1 and x2 in Dcat is dsimj(“yellow”, “yellow”) = 1- simj(“yellow”, “yellow”) =

1 - 2 log f(“yellow”, “yellow”)
log f(“yellow”)+log f(“yellow”) = 1 - 2 log 7

10

log 7
10

+log 7
10

= 0, while the dissimilarity of “yellow” and

“purple” in objects x1 and x3 is dsimj(“yellow”, “purple”) = 1 - simj(“yellow”, “purple”)

= 1 - 2 log f(“yellow”, “purple”)
log f(“yellow”)+log f(“purple”) = 1 - 2 log 10

10

log 7
10

+log 3
10

= 1.

Definition 7 (Dissimilarity between objects and cluster centers) Given a categorical

object xi = (xi1, xi2, . . . , xim) and a cluster Cl with its center is Zl = {zl1, zl2, . . . , zlm}. Let

Olj denote a set of categories occurring at the jth attribute of Zl (i.e. zlj). The dissimilar-

ity between xi and Zl at the jth attribute is calculated by accumulating the probability

distribution on Olj and the dissimilarity between jth component xij of the object xi and

the jth component zlj of the center Zl. Mathematically, the definition can be formulated

as follows:

disj(xi,Zl) =
∑
olij∈Ol

j

P lj(olij)dsimj(xij, o
l
ij) (2.13)
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The dissimilarity between xi and cluster center Zl can be formulated as:

dis(xi,Zl) =
m∑
j=1

disj(xi,Zl) (2.14)

From Eq. 2.14, if xi and Zl contain identical categories at each attribute or Zl con-

tains only xi, then the dissimilarity between them is zero. If categories at each attribute

of xi and Zl are totally different, then the upper bound dissimilarity between them

equals to the number of features.

Example 5 Given two clusters C1 = {x1, x2, x5, x6, x8} and C2 = {x3, x4, x7, x9, x10} and

their cluster centers Z1 =
{
{“yellow” : 1.0}, {“small” : 1.0}, {“stretch” : 0.8, “dip” : 0.2},

{“adult” : 0.4, “child” : 0.6}
}

and Z2 =
{
{“purple” : 0.6, “yellow” : 0.4}, {“small” : 0.6,

“large” : 0.4}, {“dip” : 0.6, “stretch” : 0.4}, {“adult” : 0.6, “child” : 0.4}
}

, respectively.

The dissimilarity between object x1 and Z1 is dis(x1,Z1) = 0 + 0 + 0.2 + 0.6 = 0.8,

while the dissimilarity between object x1 and Z2 is dis(x1,Z2) = 0.6 + 0.4 + 0.6 + 0.4

= 2.0.

The algorithm for categorical data clustering can be formulated in terms of an optimiza-

tion problem as follows:

F(U ,Z) =
k∑
l=1

n∑
i=1

ui,l × dis(xi,Zl) (2.15)

subject to 
∑k

l=1 ui,l = 1 1 ≤ i ≤ n

ui,l ∈ {0, 1} 1 ≤ l ≤ k, 1 ≤ i ≤ n

(2.16)

where U = [ui,l]n×k is the partition matrix in which ui,l takes value 1 if object xi is in

cluster Cl and 0 otherwise.

2.3 Validation Metrics
The cluster validation metrics measure the goodness of clustering results. Generally,

these metrics can be categorized into 3 groups: internal validation metrics, external
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validation metrics and relative validation metrics. The first validation group uses the

internal information of the clustering process to evaluate the goodness of a clustering

structure without reference to external information. The second validation group com-

pares the results of a cluster analysis to an externally provided class labels (ground-truth

or gold standard classes). It measures how well cluster labels produced by clustering

algorithms match to ground-truth labels. This approach is mainly used for selecting the

right clustering algorithm for a specific data set. The third validation group evaluates

the clustering structure by varying different parameter values for the same algorithm

[69]. In the scope of this dissertation, the internal and external validation metrics are

used for the assessment.

2.3.1 Internal validation metrics
An internal validation metric called silhouette coefficient [25, 98] was used to evaluate

how well data objects are clustered by determining how close each object in one cluster

is to objects in the neighboring clusters. The average silhouette value is mainly used in

Chapter 7. However, we also used it to evaluate clustering results in Chapter 6. For the

sake of brevity, in this section, we defined the average silhouette value for categorical

data clustering as follows.

Definition 8 (Dissimilarity of two categorical objects) Given two objects xi = (xi1,

xi2, . . . , xim) and xi′ = (xi′1, xi′2, . . . , xi′m), the distance between xi and xi′ is denoted

and defined as:

dis_objs(xi, xi′) =
m∑
j=1

dsimj(xij, xi′j) (2.17)

Definition 9 (Silhouette value for categorical objects) Given a categorical object xi

belonging to cluster Cl (i ≤ nl). Let intra_dis(xi) denote the average distance of the xi

to all other members of the same cluster Cl. Let Cl′ and dis(xi, Cl′) denote some cluster

other than Cl and the average distance of the xi to all members of Cl′, respectively. Let

compute the average distances dis(xi, Cl′) for all clusters Cl′ other than Cl and choose

inter_dis(xi) = minCl′ 6=Cl dis(xi, Cl′). If cluster Cl′′ (1 ≤ l′′ ≤ k) satisfies the condition

that inter_dis(xi) = dis(xi, Cl′′) then Cl′′ is selected as the second-best cluster and the
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neighbor of xi. The silhouette value of xi is formulated by:

sil(xi) =
inter_dis(xi)− intra_dis(xi)

max{intra_dis(xi), inter_dis(xi)}
(2.18)

Generally, sil(xi) measures how well object xi is classified into cluster Cl. Its value is

in the range [−1, 1]. High positive values of sil(xi) mean that the within dissimilarity

intra_dis(xi) is much smaller than the smallest between dissimilarity inter_dis(xi) and

thus xi is well-clustered. Conversely, high negative values of sil(xi) means that xi is

poor-clustered. If sil(xi) is about zero, it means that xi lies between two clusters.

Definition 10 (Average silhouette value) Given a set of k clusters C = {C1, C2, . . . , Ck},

the average silhouette value is calculated by averaging the silhouette values of all ob-

jects in C:

avg_sil =

∑n
i=1 sil(xi)
n

(2.19)

2.3.2 External validation metrics
We first used three external validation metrics including accuracy, precision, recall to

measure the performance of proposed algorithms. The accuracy, precision, recall are

defined as in [68, 71, 88, 89]. These metrics are derived from information retrieval.

Given a set of k classes yielded by a clustering method, objects in the cluster Cl (1 ≤

l ≤ k) are assumed to be classified either correctly or incorrectly with respect to a given

class of objects. Let al, bl and cl denote the number of correctly classified objects, the

number of incorrectly classified objects and the number of objects in a given class but

not in the cluster Cl, respectively. The clustering accuracy (AC), precision (PR) and

recall (RE) are defined as follows:

AC =

∑k
l=1 al
n

(2.20)

PR =

∑k
l=1(

al
al+bl

)

k
(2.21)
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RE =

∑k
l=1(

al
al+cl

)

k
(2.22)

To compute the AC, PR and RE values, we had to compute a confusion matrix to

match the predicted cluster labels to ground-truth labels. In the dissertation, we used

the same way as in [89] to find the best confusion matrix. Specifically, we evaluated k!

mapping between the set of predicted labels and ground-truth. We then used the Hun-

garian algorithm [75] to find the best mapping and corresponding confusion matrix.

The following example shows how to compute the AC, PR and RE.

Assume that data objects in Tables 2.2 are partitioned into two clusters, where their

ground-truth and predicted labels are shown in Table 2.3. The best confusion matrix

Table 2.3: Ground-truth and predicted labels

Object ID 1 2 3 4 5 6 7 8 9 10
Ground-truth labels t t f f t t f t f f

Predicted labels 2 2 1 1 1 2 1 2 2 2

is selected by evaluating mappings from the set of predicted labels {1, 2} to the set of

ground-truth labels {t, f}. For example, the mapping {1 → t, 2 → f} produces the

confusion matrix as shown in Table 2.4. The value in each cell of this table shows

Table 2.4: The confusion matrix corresponding to the mapping {1→ t, 2→ f}

t f
1 1 3
2 4 2

the number of pairs (predicted, ground-truth) appearing in Table 2.3. The sum of each

column is the number of objects in the corresponding class label (column), and the sum

of each row is the numbers of objects assigned to corresponding predicted label (row).

The values of AC, PR and RC are calculated as follows:

AC =
1 + 2

10
= 0.3000

PR =

(
1

1+3
+ 2

4+2

)
2

= 0.2917

RE =

(
1

1+4
+ 2

3+2

)
2

= 0.3000
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Similarly, the mapping {1→ f, 2→ t} produces the confusion matrix as shown in Table

2.5. Then the values of AC, PR and RC are calculated as follows:

Table 2.5: The confusion matrix corresponding to the mapping {1→ f, 2→ t}

t f
1 1 3
2 4 2

AC =
3 + 4

10
= 0.7000

PR =

(
3

1+3
+ 4

4+2

)
2

= 0.7083

RE =

(
4

1+4
+ 3

3+2

)
2

= 0.7000

which is the best confusion matrix and the AC, PR and RE of this case are selected as

the final results.

Other three external validation metrics including Purity, Normalized Mutual Infor-

mation (NMI) and Adjusted Rand Index (ARI) were used to evaluate how well the as-

signment of objects to clusters matches their original class information. The definitions

of these criteria are given in [85] as below.

Let there be a data set Dcat of n instances. Let C = {C1, C2, . . . , Ck} denote the set

of clusters created by a clustering algorithm and Q = {Q1,Q2, . . . ,Qk′} denote the set

of ground-truth classes in Dcat. For the Purity metric, each cluster Cl (1 ≤ l ≤ k) is

assigned to the majority class Ql′ (1 ≤ l′ ≤ k′) that occurs most frequently in Cl. The

Purity is then calculated by counting numbers of members of the majority class for all

clusters and dividing them by n. This metric’s values are in the range of [0, 1] in which

zero indicates a bad clustering and one indicates a perfect clustering.

Purity(C,Q) =
1

n

∑
l

max
l′
|Cl ∩Ql′ | (2.23)

In some cases, the large number of clusters (say k) may lead to high Purity results.

For this reason, it can not be used to trade off clustering quality against k. The NMI met-

ric gives an insight into clustering quality, which is independent from k. It determines
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the average mutual information between any pairs of C and Q. This metric’s values

are in the range of [0, 1] in which the maximum value is obtained if generated clusters

match the original partitions completely.

NMI(C,Q) =

∑k
l=1

∑k′

l′=1 |Cl ∩Ql′| log
n|Cl∩Ql′ |
|Cl||Ql′ |√∑k

l=1 |Cl| log |Cl|
n

∑k′

l′=1 |Ql′ | log
|Ql′ |
n

(2.24)

Let p denote the number of pairs of objects that belong to the same cluster in C and

same class in Q. Its expected value is measured by E[p] = nC∗nQ
n(n−1)/2 , where nC and nQ

denote the number of pairs of objects from the same clusters in C and the same classes

in Q, respectively. The maximum value of p is measured by max(p) = 1
2
(nC + nQ). The

ARI [61] estimates the agreement of C and Q in regard to the hypothetical value of p

obtained when C and Q are two random, independent partitions [92]. It measures the

deviation of p from its expected value as below:

ARI(C,Q) =
p− E[p]

max(p)− E[p]
(2.25)

This metric’s values are in range of [−1, 1]. If ARI is one, identical partitions are

obtained.

2.4 Literature Review

2.4.1 K -means algorithm
K-means [84] is one of the top ten algorithms in data mining [117]. It partitions a

given data set into k clusters such that objects within the same cluster are as similar

as possible (high intra-class similarity), whereas objects from different clusters are as

dissimilar as possible (low inter-class similarity). It starts either by assigning objects to

one of k clusters and then computing k cluster centers or by choosing k representative

objects as the initial centers, which correspond to the mean of points assigned to the

clusters. Iteratively, k-means computes the distance of each object to its current cluster

center. It then reassigns each object to its nearest cluster center so that the error sum

of squares (ESS) (also called as the sum of squared error (SSE)) is reduced in magni-
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tude. The cluster centers are updated after each reassignment. The procedure stops

when no further reassignment reduces the value of ESS [63, 97]. Given a dataset Dnum
={x1, . . . , xn} of n instances and m features, assume that instances in Dnum are assigned

into k clusters, then the ESS in k-means is formulated by:

F(U ,Z) =
k∑
l=1

n∑
i=1

m∑
j=1

uil × d(xij, zlj) (2.26)

where U = [uil]n×k be a partition matrix that satisfies:

uil ∈ {0, 1}∑k
l=1 uil = 1(1 ≤ i ≤ n)

and Z = {Zl, l = 1, . . . , k} be a set of cluster centers where each element is composed

by a set of m values, each being the mean of an attribute in Zl:

zlj =

∑
xi∈Zl

xij

|Zl|

and d(·, ·) is the squared Euclidean metric of two attribute values. K-means aims at

minimizing the ESS score and it often terminates at a local minimum of ESS.

The problem F can be solved by iteratively solving two problems:

â Fix Z = Ẑ then solve the reduced problem F(U , Ẑ) to find Û .

â Fix U = Û then solve the reduced problem F(Û ,Z).

Basically, the k-means algorithm iterates through a three-step process until F(U ,Z)

converges to some local minimum:

1. Select an initial Z(0) = Z(0)
1 , Z(0)

2 , . . . , Z(0)
k and set t = 0.

2. Keep Z(t) fixed and solve F(U ,Z(t)) to obtain U (t). That is, having the cluster

centers, we then assign each object to the cluster of its nearest cluster center.

3. Keep U (t) fixed and generate Z(t+1) such that F(U (t),Z(t+1)) is minimized. That is,

construct new cluster centers according to the current partition.
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4. In the case of convergence or if a given stopping criterion is fulfilled, output the

result and stop. Otherwise, set t = t+ 1 and go to step 2.

In the numerical clustering problem, the Euclidean norm is often chosen as a natural

distance measure in the k-means algorithm. With this distance measure, we calculated

the partition matrix in step 2 as below, and the cluster center is computed by the mean

of cluster’s objects.

if dis(xi,Zl) ≤ dis(xi, Zl′) then

ui,l = 1, and ui,l′ = 0, for 1 ≤ l′ ≤ k, l 6= l′

The main advantages of k-means are easy to implement and extremely efficient for deal-

ing with large data sets. However, as an inherent downside, k-means can not directly

handle categorical data with nonnumerical attributes. Such data is very common in

many real applications such as health care, online shopping and retail.

2.4.2 Extensions of k-means for Categorical Data

K -modes Algorithm

To deal with the challenge of k-means for categorical data, many algorithms have been

proposed in the ways that keep the same scheme and characteristics of k-means, while

removing the numerical-only limitation and making them applicable for categorical

data. K-modes is probably pioneer algorithm for this topic [60]. It uses the simple

matching measure (also called as the Hamming distance) to count the number of mis-

matches between two objects. Given two objects x1 and x2 consisting of m categorical

attributes, then the distance between them is measured by:

dis(x1, x2) =
m∑
j=1

δ(x1j, x2j) (2.27)

where

δ(x1j, x2j) =

0 if x1j = x2j

1 otherwise
(2.28)

It uses a frequency-based method which employs the mode in each attribute to define

cluster centers. K-modes can also be considered as an optimization problem as the
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form of (2.26) where Z be a set of mode vectors and each element Zl is composed by

m values (zl1, z
l
2, . . . , z

l
m), each being the mode of an attribute. K-modes keeps the same

advantage as well as weak features of k-means. Its performance is also affected by

object order and the way to initiate cluster modes [17, 60]. In other words, the locally

optimal solutions produced in k-modes are sensitive to initialization methods.

K -representatives Algorithm

Instead of using the modes to form cluster centers, k-representatives [99] uses the no-

tion of representatives for clusters. Particularly, each attribute of a representative is a

distribution of categories occurring in that attribute. The dissimilarity between each

object and representative is measured by the multiplication of relative frequencies of

categories within the cluster and the simple matching measure between categories. The

formulation of representatives and distance function are defined as in the following.

Again, let Cl = {x1, . . . , xp} be a cluster of categorical objects and xi = (xi1, . . . , xim),

(1 ≤ i ≤ p), p = nl. For each j = 1, . . . ,m, letOlj denote the set forming from categorical

values x1j, . . . , xpj. Then, the representative of Cl is defined by Zl = {zl1, zl2, . . . , zlm},

where:

zlj =
{(
olij, fl(o

l
ij)
)
|olij ∈ Olj

}
(2.29)

where fl(o
l
ij) is the relative frequency of category olij within Cl and is defined as in

Eq. 2.2. More formally, each zlj is a distribution on Olj defined by relative frequencies of

categorical values appearing within the cluster.

Then, the dissimilarity between object xi = (xi1, . . . , xim) (1 ≤ i ≤ p) and represen-

tative Zl is defined based on the simple matching measure δ (Eq. 2.28) by:

dis(xi,Zl) =
m∑
j=1

∑
olij∈Ol

j

fl(o
l
ij)× δ(xij, olij) (2.30)

As such, the dissimilarity dis(xi,Zl) is mainly dependent on the relative frequencies of

categorical values within the cluster and simple matching between categorical values.
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K -centers Algorithm

More generally, Chen and Wang [20] proposed the k-centers algorithm by using the

kernel-based method to define cluster centers, called the probabilistic centers. It incor-

porates a built-in feature weighting in which each attribute is automatically assigned

with a weight to measure its contribution to the clusters. To estimate the distance

between data objects and cluster centers, it uses the simple matching as an indicator

function to represent each data object by a set of vectors and the Euclidean norm to

quantify the dissimilarity.

Specifically, the center of a cluster Cl is defined as:

Zl = {zl1, zl2, . . . , zlm} (2.31)

in which the jth element zlj is a probability distribution on Oj estimated by a kernel

density estimation method [8]. More particularly, let denote X l
j a random variable

associated with observations xij, for i = 1, . . . , nl, appearing in Cl at the jth attribute,

and p(X l
j ) is its probability density. Using the kernel density estimation method (KDE),

p(X l
j ) is defined on the kernel function, given by L(X l

j , oij, λl). Let Oj be the set forming

from categorical values oij (1 ≤ i ≤ n) occurring at the jth attribute of the data set Dcat.

The variation on Aitchison and Aitken’s kernel function is defined as:

L(X l
j , oij, λl) =


1− |Oj |−1

|Oj | λl if X l
j = oij

1
|Ol

j |
λl otherwise

(2.32)

where λl ∈ [0, 1] is the unique bandwidth for cluster Cl and is defined as in Eq. 2.5.

It is worth noting here that the kernel function L(X l
j , oij, λl) is defined in terms of the

cardinality of the whole domainOj but not in terms of the cardinality of the sub-domain

Olj of the given cluster Cl.

The kernel estimator of p(X l
j ) is calculated as:

p̂(X l
j , λl, Cl) =

1

nl

nl∑
i=1

L(X l
j , xij, λl)

= fl(X l
j ) +

(
1

|Oj|
− fl(X l

j )

)
λl

(2.33)
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The probabilistic center of a categorical cluster in Eq. 2.31 can be estimated based

on Eq. 2.33 as:

zlj =
[
P lj(o1j),P lj(o2j), . . . ,P lj(o|Oj |j)

]
where:

P lj(oij) = p̂(oij, λl, Cl)

= λl
1

|Oj|
+ (1− λl)fl(oij)

(2.34)

As mentioned in [20], the probabilistic center at an attribute of the cluster can be

viewed as a Bayes-type probability estimator. Specifically, the first term of Eq. 2.34,

which is a weighted average of a uniform probability, roles as a prior, while the sec-

ond term, which is a frequency estimator, roles as the posterior. When λl = 0, the

center degenerates to the pure frequency estimator, which is originally used in the k-

representatives algorithm to define the center of a categorical cluster.

To measure the distance between a data object and its center, each data xi is repre-

sented by a set of vectors {yij}mj=1 as defined below:

yij =
[
I(xij = o1j), . . . , I(xij = olj), . . . , I(xij = o|Oj |j)

]
(2.35)

where I(·) is an indicator function whose value is either 1 or 0, indicating whether

xij is the same as olj ∈ Oj or not. The dissimilarity on the jth attribute is measured by:

disj(xi,Zl) =
∥∥yij − zlj∥∥2 (2.36)

where the Euclidean norm ‖a‖2 of a vector a = 〈a1, . . . , al, . . . 〉 is calculated by ‖a‖2
=
√∑

l al
2

It can be seen that k-centers uses a different way to calculate the dissimilarities

between objects and cluster centers, but the idea of comparing two categorical values

is still based on the simple matching method (represented by indicator function I(·)).

The remains of k-centers mimic the idea of k-means algorithm.
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A k-means-like method for clustering

categorical data

3.1 Introduction
During the last decades, data mining has emerged as a rapidly growing interdisciplinary

field, which merges together databases, statistics, machine learning and other related

areas in order to extract useful knowledge from data [53]. Clustering is one of the

fundamental tasks in data mining and machine learning that aims at partitioning a set

of data objects into multiple clusters, so that objects within a cluster are similar to

one another but dissimilar to objects in other clusters. Dissimilarities and similarities

between objects are assessed based on those attribute values describing the objects and

often involve distance measures. Clustering has been widely applied in a variety of

fields, ranging from medical sciences, economics, computer sciences, engineering to

social sciences and earth sciences. There is a vast body of knowledge in the area of

clustering and there have been attempts to analyze and categorize them for a large

number of applications [7, 15, 37, 118, 119]. However, clustering of massive data sets

with categorical and mixed-type data is still a challenge in many applications of big data

mining.

Additionally, according to [78], unsupervised learning will become far more impor-

tant in the longer term, because labeling data is both costly and time-consuming, and

sometimes impossible especially in the context of big data. As an important branch in
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unsupervised learning, clustering has recently reemerged as an active research topic in

big data mining. Particularly, it can be considered as an important tool for analyzing

the massive volume of data generated by modern applications: having big data clus-

tered/grouped in a compact format that is still an informative version of the entire data

[37]. There are difficulties in applying clustering techniques to big data due to new

challenges that are raised with big data [102]. Especially, big data mining adds to clus-

tering the complications of very large data sets with many attributes of different types

[15].

Typically, in clustering, objects can be considered as vectors in n-dimensional space,

where n is the number of features. When objects are described by numerical features,

the similarity between objects can be defined based on distance measures such as Euclid

distance or Manhattan distance. However, such distance measures are not applicable

for categorical data which contains values, for instance, from gender, locations, etc.

Clustering data with categorical attributes has increasingly gained considerable atten-

tion in the research community [44, 48, 51, 52, 59, 60, 99]. As for categorical data, the

simple matching measure is most naturally used to define the similarity between objects

[59]. However, this metric does not distinguish between the different values taken by

the attribute, since we only measure the equality between pairs of values, as argued in

[62].

The classical k-means algorithm [84] is probably the most popular and widely used

clustering technique. Numerous k-means-like algorithms have been also proposed in

the literature; each of which typically uses different similarity measures [74]. The

k-means-like algorithms are easy to implement, linear time complexity in size of the

data, and almost surely convergence to local optima [101]. Consequently, k-means-like

algorithms are very efficient for handling large data sets. However, working only on

numerical data prohibits them from being used for clustering categorical data. Despite

recent efforts, the challenge in clustering categorical and mixed data in the context of

big data still remains due to the lack of an inherently meaningful measure of similarity

between categorical objects and the high computational complexity of existing cluster-

ing techniques.

So far, numerous attempts have been made in order to overcome the numerical-only
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limitation of the k-means algorithm, making it applicable for categorical data clustering,

such as k-modes algorithm [60] and k-representatives algorithm [99], k-centers algo-

rithm [20]. Particularly, in the k-modes algorithm [59], the simple matching similarity

measure is used to compute the distance between categorical objects, and “modes” are

used instead of “means” for cluster centers. The mode of a cluster is a data point, in

which the value of each attribute is assigned the most frequent value of the attribute’s

domain set appearing in the cluster. Furthermore, Huang [60] also combined the k-

modes algorithm with k-means algorithm in order to deal with mixed numerical and

categorical databases. It is worth, however, noting that in k-modes algorithm a cluster

can have more than one mode and, therefore, the performance of k-modes algorithm

depends strongly on the selection of modes during the clustering process. This obser-

vation had motivated the authors in [99] to introduce a new notion of “cluster centers”

called representatives for categorical objects and develop a so-called k-representatives

algorithm for clustering categorical data. In particular, the representative of a cluster

is defined by making use of the distributions of categorical values appearing in clus-

ters. Then, the dissimilarity between a categorical object and the representative of a

cluster is easily defined based on relative frequencies of categorical values within the

cluster and the simple matching measure between categorical values. In such a way,

the k-representatives algorithm is also formulated in a similar fashion to the k-means

algorithm. In fact, it has been shown that the k-representatives algorithm is very ef-

fective for clustering categorical data [88]. More recently, Chen and Wang [20] have

proposed a new kernel density-based method for defining cluster centers in central clus-

tering of categorical data. Then the so-called k-centers algorithm that incorporates the

new formulation of cluster centers and the weight attributes calculation scheme has

been also developed. The experimental results have shown that the k-centers algorithm

has good performance especially for the task of recognizing biological concepts in DNA

sequences.

While the above-mentioned k-means based algorithms use a similar clustering pro-

cedure to the k-means algorithm, they are different in the way of defining “cluster

center” or “similarity measure” for categorical data. In this chapter, we proposed a new

extension of the k-means algorithm for clustering categorical data. In particular, as for
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measuring dissimilarity between categorical objects, we made use of the information-

theoretic definition of similarity proposed in [81], which is intuitively defined based on

the amount of information contained in the statement of commonality between values

in the domain set of a categorical attribute. On the other hand, the definition of cluster

centers is generalized using the kernel-based density estimates for categorical clusters

as similarly considered in [20], instead of using the frequency estimates as originally in

[99]. We then developed a new clustering method by incorporating a feature weight-

ing scheme that automatically measures the contribution of individual attributes to the

formation of the clusters.

3.2 The Proposed Clustering Method
Basically, the clustering method proposed in this chapter follows a general procedure

for clustering categorical data outlined as follows.

1. Based on kernel smoothing techniques [8, 112], we developed a kernel-based

method for representation of cluster centers for categorical objects. Such a kernel-

based approach could provide an interpretation of cluster centers being consistent

with the statistical interpretation of the cluster means for numerical data.

2. Taking the underlying distribution of categorical attributes into consideration, we

defined an information-theoretic based measure of dissimilarity for categorical

data. This dissimilarity measure will be further extended for computing the dis-

tance between categorical objects and cluster centers.

3. Under the above considerations, we can formulate the problem of clustering cat-

egorical data in the fashion similar to partitioning-based clustering. Eventually,

we can also investigate incorporating weighting schemes introduced in [58] into

partitioning-based clustering for categorical and mixed data.

In particular, we now introduce a new extension of the k-means clustering for cate-

gorical data by combining a kernel-based estimation method of cluster centers and an

information-theoretic based dissimilarity measure for categorical objects as defined in

Definitions 2.6 and 2.14, respectively.
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Again, For each cluster Cl, let us define the center of Cl as:

Zl = {zl1, zl2, . . . , zlm} (3.1)

where zlj is a probability distribution on Olj estimated by a kernel density estimation

method that can be obtained as:

zlj = [P lj(ol1j),P lj(ol2j), . . . ,P lj(ol|Ol
j |j

)] (3.2)

where

P lj(olij) =


λl

1
|Ol

j |
+ (1− λl)fl(olij) if olij ∈ Olj

0 otherwise
(3.3)

and

λl =
1

(nl − 1)

∑m
j=1(1−

∑
olij∈Ol

j
[fl(o

l
ij)]

2)∑m
j=1(

∑
olij∈Ol

j
[fl(olij)]

2 − 1
|Ol

j |
)

(3.4)

Adapted from Huang’s W-k-means algorithm [58], we also used a weighting vector

W = [w1, w2, . . . , wm] for m attributes and β being a parameter for attribute weight,

where 0 ≤ wj ≤ 1 and
∑

j wj = 1. The principal for attribute weighting is to assign a

larger weight to an attribute that has a smaller sum of the within cluster distances and

a smaller one to an attribute that has a larger sum of the within cluster distances. More

details of this weighting scheme can be found in [58]. Then, the weighted dissimilarity

between data object xi and a cluster Zl, is denoted and defined by:

dis∗(xi,Zl) =
m∑
j=1

wβj disj(xi,Zl)

=
m∑
j=1

wβj
∑
olij∈Ol

j

P l
j(o

l
ij)dsimj(xij, o

l
ij)

(3.5)

where

dsimj(oij, oi′j) = 1− simj(oij, oi′j) = 1− 2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(3.6)
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The clustering algorithm now aims to minimize the following objective function:

F(U ,Z,W) =
k∑
l=1

n∑
i=1

m∑
j=1

ui,l × wβj × dis∗j(xi,Zl) (3.7)

subject to: ∑k
l=1 ui,l = 1, 1 ≤ i ≤ n

ui,l ∈ 0, 1, 1 ≤ i ≤ n, 1 ≤ l ≤ k∑m
j=1wj = 1, 0 ≤ wj ≤ 1

U=[ui,l]n×k is a partition matrix.

The proposed clustering algorithm is then formulated as below.

Algorithm 1: THE PROPOSED CLUSTERING ALGORITHM

input : Dcat: a categorical data set, k: a user-specified number of clusters
output: k clusters of Dcat

1 Select an initial Z(0) = {Z(0)
1 , . . . ,Z(0)

k }, set t = 0, λj= 0 for j = 0, . . . , k, set
W(0) =

[
1
m
, . . . , 1

m

]
2 repeat
3 Keep Z(t) andW(t) fixed, generate U (t) to minimize the distances between

objects and cluster centers using Eq. (3.5)
4 Keep U (t) fixed, update Z(t+1) using Eq. (3.1)
5 GenerateW(t+1) as done in [58]
6 t = t+ 1

7 until The partitions does not change.

3.3 Experimental Studies
In this section, we provided experiments conducted on ten data sets obtained from the

UCI Machine Learning Repository [34] to compare the clustering performances of k-

modes, k-representatives, and the proposed clustering method (denoted by New). In

addition, in order to see the effectiveness and efficiency of the new dissimilarity measure

and our modification of the kernel-based concept of cluster centers, we also conducted

experiments for two modified versions of k-representatives and the proposed clustering

method, respectively. In the modified version of k-representatives (denoted by M-k-

representatives), we simply replaced the simple matching dissimilarity measure used
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in k-representatives with the information-theoretic based dissimilarity measure defined

by Eq. 2.14. For the modified version of the proposed clustering method (denoted by

M-k-centers), we used the information-theoretic based dissimilarity measure defined by

Eq. 2.14 in combination with the concept of cluster centers defined by Chen and Wang

[20]. That is, M-k-centers is as Algorithm 1 formulated above but with the cluster

centers being updated by Eq. 2.34 instead of Eq. 2.8.

3.3.1 Data sets
The main characteristics of the used data sets are summarized in Table 3.1. These data

sets are chosen to test our algorithm because of their public availability and since all

attributes can be treated as categorical ones.

Table 3.1: Categorical data sets for the experiment

# Data set # instances # attributes # classes
1 Balance scale 625 4 3
2 Breast cancer 286 9 2
3 Car evaluation 1,728 6 4
4 Lenses 24 4 3
5 Mushroom 8,124 22 2
6 Nursery 12,960 8 5
7 Soybean (small) 47 35 4
8 Soybean (large) 683 35 19
9 Tictactoe 958 9 2
10 Tae 151 6 3

1. Balance scale data set was generated to model psychological experimental results.

Each example is classified as having the balance scale tip to the right, tip to the

left, or be balanced.

2. Breast cancer data set was obtained from the University of Wisconsin hospitals.

Each instance has one of two possible classes: benign or malignant.

3. Car evaluation data set was derived from a simple hierarchical decision model

originally developed for the demonstration of DEX (M. Bohanec, 1990). Each

instance belongs to one of four classes: unacc, acc, good and vgood.
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4. Lenses data set is used for fitting contact lenses. All instances in this data set is

classified into three classes: contact lenses, soft contact lenses, no contact lenses.

5. Mushroom data set records drawn from the Audubon Society Field Guide to North

American Mushrooms in 1981. It includes descriptions of hypothetical samples

corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Fam-

ily. Each species is identified as edible or poisonous.

6. Nursery data set was derived from a hierarchical decision model originally devel-

oped to rank applications for nursery schools. All instances in this data set belong

to five classes: not_recom, recommend, very_recom, priority, spec_prior.

7. Soybean (large) is the research of R.S. Michalski and R.L. Chilausky in 1980.

It contains 307 instances with 35 attributes. All instances are classified into 19

classes.

8. Soybean (small) is a small subset of the original soybean database. It contains 47

instances and classified into 4 classes.

9. Tictactoe data set encodes the complete set of possible board configurations at the

end of tic-tac-toe games, where “x” is assumed to have played first. It contains

958 instances that belong to two classes: positive and negative.

10. Tae data set consists of the evaluation of teaching performance over three regular

semesters and two summer semesters of 151 teaching assistant assignments at

the Statistics Department of the University of Wisconsin-Madison. All instances

belong to three classes: low, medium and high.

3.3.2 Experimental Results
Evaluating the clustering quality is often a hard and subjective task [62]. Generally,

objective functions in clustering are purposely designed so as to achieve high intra-

cluster similarity and low inter-cluster similarity. This can be viewed as an internal

criterion for the quality of a clustering [85]. However, as observed in the literature,

good scores on an internal criterion do not necessarily translate into good effectiveness
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in an application. Here, by the same way as in [62], we used three external criteria

to evaluate the results: Purity (Eq. 2.23), Normalized Mutual Information (NMI) (Eq.

2.24) and Adjusted Rand Index (ARI) (Eq. 2.25). These methods make use of the

original class information of each object and the cluster to which the same objects have

been assigned to evaluate how well the clustering result matches the original classes.

Table 3.2: Purity results of compared algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New
1 Balance scale 0.5446 0.5708 0.5731 0.5752 0.5777
2 Breast cancer 0.7028 0.7028 0.7098 0.7028 0.7028
3 Car evaluation 0.7005 0.7047 0.7052 0.7050 0.7058
4 Lenses 0.6429 0.6949 0.7032 0.7051 0.7061
5 Mushroom 0.8818 0.7312 0.8861 0.7235 0.8876
6 Nursery 0.4377 0.4425 0.4403 0.4311 0.4686
7 Soybean (small) 0.9854 1.0000 1.0000 0.9873 0.9877
8 Soybean (large) 0.6107 0.7139 0.7113 0.7159 0.7181
9 Tictactoe 0.6534 0.6534 0.6534 0.6534 0.6556

10 Tae 0.4268 0.4583 0.4692 0.4696 0.4702

The experiments were run on a VPC cluster [38]. Each node is equipped with an

Intel Xeon E5-2680v2@2.80GHz×20, 64 GB of RAM, running Red Hat Enterprise Linux

6.4. The proposed algorithm was implemented in Python using PyCharm. For each

categorical data set, we ran 300 times per algorithm. We provided the parameter k

equals to the number of classes in each data set. The performance of three evaluation

metrics is calculated by the average after 300 times of running. The weighting exponent

β was set to 8 as experimentally recommended in [58].

Table 3.3: NMI results of compared algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New
1 Balance scale 0.0277 0.0434 0.0460 0.0477 0.0485
2 Breast cancer 0.0040 0.0018 0.0576 0.0042 0.0052
3 Car evaluation 0.0509 0.1269 0.1240 0.1256 0.1273
4 Lenses 0.1780 0.3312 0.3504 0.3558 0.3597
5 Mushroom 0.1937 0.2077 0.5310 0.5446 0.5383
6 Nursery 0.0593 0.0948 0.0941 0.0798 0.0993
7 Soybean (small) 0.9690 1.0000 1.0000 0.9802 0.9824
8 Soybean (large) 0.6085 0.7491 0.7509 0.7495 0.7552
9 Tictactoe 0.0179 0.0087 0.0373 0.0375 0.0391

10 Tae 0.0429 0.0730 0.0834 0.0858 0.0859

As we can see from Tables 3.2, 3.3 and 3.4, the proposed clustering method pro-

duces the best results in eight out of ten data sets in Purity and NMI indexes, and in
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seven out of ten data sets in Adjusted Rand Index. In these tables, boldfaced numbers

indicate the best performances among compared algorithms for each data set. Compar-

ing the performance of k-representatives and M-k-representatives, we can see that the

new dissimilarity measure has yielded better results, especially in NMI and Adjusted

Rand Index. Similarly, by comparing the performance of M-k-centers and the proposed

algorithm, it is shown that our kernel-based concept of cluster centers has significantly

improved the clustering performance in comparison to the kernel-based concept of clus-

ter centers previously defined in [7]. In conclusion, the new approach has been proved

to enhance the performance of previously developed k-means-like algorithms for clus-

tering categorical data.

Table 3.4: Adjusted Rand Index results of compared algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New
1 Balance scale 0.0300 0.0459 0.0486 0.0490 0.0506
2 Breast cancer 0.0019 -0.0030 0.1351 0.0021 0.0055
3 Car evaluation 0.0280 0.0562 0.0529 0.0562 0.0644
4 Lenses 0.0508 0.1596 0.1760 0.2259 0.2164
5 Mushroom 0.2357 0.2357 0.5963 0.5924 0.6009
6 Nursery 0.0496 0.0576 0.0591 0.0491 0.0610
7 Soybean (small) 0.9585 1.0000 1.0000 0.9733 0.9763
8 Soybean (large) 0.3759 0.4675 0.4679 0.4686 0.4767
9 Tictactoe 0.0217 0.0218 0.0357 0.0359 0.0377

10 Tae 0.0192 0.0412 0.0477 0.0475 0.0477

3.3.3 Significant Analysis

Dense Large

Sparse Small

Figure 3.1: Types of data set in the experiment

In this section, we analysed the significance of the clustering results obtained in

the previous section. Figure 3.1 shows the types of data sets used in the experiment.

Particularly, we evaluated the efficiency of the New algorithm on large-dense, small-

dense, large-sparse, small-sparse data sets. Table 3.5 shows the summary of Purity, NMI
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and ARI results of New algorithm proposed in this chapter. It can be observed that New

algorithm has the highest values for all Purity, NMI and ARI metrics on eight over ten

data sets: Balance scale, Car evaluation, Lenses, Mushroom, Nursery, Soybean (large),

Tae and Tictactoe. From the practical viewpoint, the proposed algorithm can work well

on both dense data sets such as Mushroom, Soybean (large) and sparse data sets such

as Balance scale, Car evaluation, Lenses and Tae. In addition, it is also efficient on

large data sets such as Mushroom, Nursery or small data sets such as Balance scale, Car

evaluation, Soybean (large), Tictactoe, Lenses and Tae. Moreover, it performs well on

large-dense data set such as Mushroom, large-sparse data set such as Nursery, small-

dense data set such as Soybean (large) and small-sparse data set such as Balance scale,

Lense, Tae. For Breast cancer and Soybean (small), each attribute domain contains less

categorical values. In addition, the same values in each attribute tend to concentrate on

the objects of the same class label. Also, objects are quite similar in several attributes.

They are not so different in each selection of random initialization. Therefore, the

frequency-based method and simple matching measure seem to be more efficient than

other algorithms on those kinds of data sets.

Table 3.5: Significant analysis of New algorithm

# Data set
Purity NMI ARI

1st rank 2nd rank 1st rank 2nd rank 1st rank 2nd rank
1 Balance scale X X X
2 Breast cancer X X X
3 Car evaluation X X X
4 Lenses X X X
5 Mushroom X X X
6 Nursery X X X
7 Soybean (small) X X X
8 Soybean (large) X X X
9 Tictactoe X X X

10 Tae X X X

3.4 Conclusion
In this chapter, we have introduced a new k-means-like method for clustering categor-

ical data based on an information-theoretic based dissimilarity measure and a kernel
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density estimate-based concept of cluster centers for categorical objects. Several vari-

ations of the proposed clustering method have been also examined. The experimental

results on real data sets from UCI Machine Learning Repository have shown that the

proposed clustering method outperformed the k-means-like algorithms previously de-

veloped for clustering categorical data.
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Clustering Categorical Data with

Missing Values

4.1 Introduction
Data mining techniques are designed to discover novel, useful, and unexpected pat-

terns in databases, which can then be used for taking strategic decisions. Clustering,

also called cluster analysis, segmentation analysis, taxonomy analysis, or unsupervised

classification, is a method of creating groups of objects, or clusters, in such a way that

objects in one cluster are very similar and objects in different clusters are quite distinct.

It is one of the most important topics in data mining. The goal of clustering is to assign

data points with similar properties to the same groups and dissimilar data points to

different groups [43]. From a machine learning perspective, clusters correspond to hid-

den patterns, the search for clusters is unsupervised learning, and the resulting system

represents a data concept. Therefore, clustering is an unsupervised learning of a hidden

data concept [15].

In general, clustering algorithms can be classified into two categories: hierarchical

clustering and partitional clustering. A hierarchical clustering is a set of nested clusters

where lower-level clusters are sub-clusters of higher-level clusters [109]. There are

two types of hierarchical algorithms: divisive (top-down) hierarchical clustering and

agglomerative (bottom-up) hierarchical clustering. In a divisive hierarchical algorithm,

the algorithm starts with one large cluster containing all the data points in the data

45



Chapter 4 4.1. INTRODUCTION

set and continues splitting clusters. In an agglomerative hierarchical algorithm, the

algorithm starts with clusters each containing one data point and continues merging

clusters. Unlike hierarchical algorithms, partitional algorithms create a one-level non-

overlapping partitioning of the data points. For large data sets, hierarchical methods

become impractical because the complexity of hierarchical algorithms is O(n3) for CPU

time and O(n2) for memory space, while non-hierarchical methods generally have a

time and space complexity of order n, where n is the number of data points in the

data set [120]. Moreover, partitional clustering algorithms have shown their efficiency

because their computational complexities are linearly proportional to the size of the

data sets, they often terminate at a local optimum. Clustering algorithms are very highly

associated with data types. Categorical data, which is also referred to as nominal data,

appears popularly in many real-life applications. Categorical attributes are simply used

as name, gender, age group, and educational level, etc. Designing partitional clustering

algorithms for categorical data has attracted the attention of many researchers over the

last two decades.

Nowadays, with the rapid development of information technology, data can be col-

lected from various sources such as sensors, digital devices, machines and humans.

They have made the amount of data quickly increase in a short time. However, col-

lecting data is not always an easy task and may lead to missing values due to different

mechanisms. There are many reasons that can lead to the problem of missing data.

Missing data can be caused by human error, equipment malfunctions, system generated

errors, the inconsistency between other recorded data and thus deleted, data not en-

tered due to misunderstanding, certain data may not be considered important at the

time of entry, changes of the data. Missing values also occur due to observing condi-

tions, instrument sensitivity limitations, and other real-life considerations and so on.

Unfortunately, missing values may hide a true answer underlying the data. Further-

more, it may reduce the performance of algorithms.

It can be easily seen that many categorical data from the UCI Machine Learning

Repository [34] and the CMU data sets archive [115] contain missing values. Moreover,

some existing frameworks for clustering categorical data such as [23] strongly suggest

that users should consider filling in the missing data themselves in a way that makes
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Figure 4.1: Categorical data sets with missing values

sense for the problem at hand. This is especially important in the case of many missing

values. This observation motivates a design of an algorithm for clustering categori-

cal data with missing values. Generally, there are two ways to facilitate a clustering

algorithm to run over categorical data sets with missing values. The first way is to

pre-process data sets so that they only consist of complete values and then run the clus-

tering algorithm. The second way is to develop a clustering algorithm that can deal

with incomplete data sets. In this research, we focused on the latter way. More specif-

ically, we developed a center-based algorithm that can run over incomplete categorical

data sets without a pre-processing procedure. The key contributions of this chapter are

summarized as follows:

â Based on the imputation method proposed in [24], we designed a new measure to

quantify the similarity between an object with missing values and an object with

no missing values. By using our proposed measure and the IS measure [107], we

can find the most similar object with no missing values for an object with missing

values. From that, the appropriate values can be chosen for imputation.

â We designed an integrated framework that combines imputation and clustering

steps into a common process.

â We proposed a new categorical clustering algorithm named k-CCM that takes into

account the advantages of missing values imputation to improve the performance

of clustering algorithm.
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â We carried out an extensive experimental evaluation on benchmark data sets from

the UCI Machine Learning Repository [34] and the CMU data sets archive [115] to

evaluate the performance of the proposed algorithm in terms of clustering quality.

The rest of this chapter is organized as follows. In the second section, related work is

reviewed. In the third section, preliminaries and the problem statement are introduced.

In the fourth section, a new clustering algorithm for categorical data with missing values

is proposed. Next, the fifth section describes an experimental evaluation. Finally, the

last section draws a conclusion.

4.2 Related work
The details of clustering methods for categorical data clustering are provided in section

2.4. Data now can be easily collected thanks to the development of information tech-

nologies and data acquisition technologies. However, they may contain missing values

due to different mechanisms. Generally, there are three basic types of missing data [82]:

missing completely at random (MCAR), missing at random (MAR) and not missing at

random (NMAR). Methods to handle missing data also have vast variations and these

choices are often made based on the data missing mechanism. The methods to deal

with missing values can be classified into two groups: pre-replacing methods that re-

place missing values before the data mining process, and embedded methods that deal

with missing values during the data mining process [42]. Several methods have been

proposed to deal with missing data such as case deletion methods, imputation methods

and non-imputation methods [1].

Imputation of missing values is an important task for improving the quality of the

data mining results. Some of these methods are: expectation maximization imputation

(EMI), decision tree-based methods, similarity-based imputation, k-decision tree-based

imputation, k-nearest neighbor-based imputation, genetic algorithm and correlation-

based imputation [24]. For imputation categorical data with missing values, Fujikawa et

al. proposed two algorithms named Natural Cluster Based Mean-and-Mode (NCBMM)

and attribute Rank Cluster Based Mean-and-Mode (RCBMM) [42]. The NCBMM can

be applied to supervised data where missing value attributes can be either categorical
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or numeric. The RCBMM can be applied to both supervised and unsupervised data by

filling up missing values for categorical attributes independently with the class attribute.

In 2013, Rahman proposed DMI and SiMI algorithms [96]. The DMI uses the de-

cision tree and majority class voting method in the decision tree leaves to impute for

categorical missing values. The SiMI uses the decision forest algorithm and the most

frequent values method to impute for categorical missing values.

In 2016, Deb et al. proposed an imputation method named DSMI [24] that exploits

the within-record and between-record correlations to impute missing data of numerical

or categorical values. The DSMI algorithm first utilizes the decision tree to find the set of

correlated records. Then, it uses the IS measure and the weighted similarity measure to

exploit the correlation between missing and non-missing attributes within a record. The

missing values are imputed by random sampling from a list of potential imputed values

based on their degree of affinity. By modifying this imputation method, we integrated

the imputation step into the clustering step to make it applicable to clustering categor-

ical data with missing values. The next section introduces preliminary definitions and

problem statement.

4.3 Preliminaries and problem statement
The clustering step of the proposed algorithm in this chapter uses a kernel-based method

and an information-theoretic based dissimilarity measure as defined in section 2.2 of

Chapter 2. Given a categorical data set Dcat = {x1, x2, . . . , xn} of n categorical objects

where xi = {xi1, xi2, . . . , xim} is a set of m categorical values at the ith element of Dcat.

In other words, Dcat is an n ×m matrix (n � m), where n and m are the numbers of

objects and attributes in Dcat, respectively. The element at position (i, j) (1 ≤ i ≤ n,

1 ≤ j ≤ m) of the matrix stores the value of the ith object at the jth attribute, such that

xij ∈ Oj (|Oj| > 1)) discrete values as the domain of the jth attribute. Note that if a

categorical value in Dcat is a missing value, then it is represented as “?” or “ ” (empty).

For the sake of brevity, we denoted a categorical object/data set without missing values

as a complete object/data set, while a categorical object/data set with missing values is

denoted as an incomplete object/data set.
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In 2016, Deb et al. used two measures, namely IS measure (ISM) and weighted sim-

ilarity measure (WSM), to exploit the correlations between categorical values within

an object and between objects in a data set. The ISM was first introduced by Tan et al.

[107]. It computes the correlations between attributes and values of different attributes

in an object. The WSM [49] computes the similarity between two values of an attribute

in two different objects. It first builds graphs from related objects to calculate the di-

rect relationship (called the first-level similarity) and transitive relationship (called the

second-level similarity). Then, the WSM between two categorical values of an attribute

is the weighted sum of the first level and second level similarity. Following this way, the

WSM between two objects is calculated by averaging the weighted similarity measure

of each attribute of the two objects. However, the computational cost of constructing

graphs and calculating WSM is very high when dealing with high-dimensional data sets

or data sets containing multiple missing values. To address this issue, we extended the

information-theoretic based similarity measure Eq. (2.11) to make it applicable to mea-

suring the similarity between complete and incomplete objects. We proposed a missing

and complete similarity measure, namely MCS. The details of IS and MCS measures are

as follows.

ISM contains the product of two quantities: interest factor and support count that

compute the correlations between values of different attributes in an object. In other

words, the ISM takes into account both the interestingness and significance of a pattern.

Another interpretation of the ISM is as the geometric mean of confidence of rules that

can be generated from two items, that is:

IS(A,B) =
√

Confidence(A⇒ B)× Confidence(B ⇒ A) (4.1)

where the Confidence(A ⇒ B) = P (A,B)/P (A), P (A) = #A/n, #A and n be the

number of data objects that contain A and the number of data objects in the data set,

respectively.

Definition 11 (IS measure [24]) Given a categorical data set Dcat = {x1, x2, . . . , xn}.

Let there be a set T that contains both complete and incomplete categorical objects in

Dcat. Let A′ = {A′1, A
′
2, . . . , A

′

m′
} and A′′ = {A′′1 , A′′2 , . . . , A′′

m′′
} (A′ ,A′′ ⊂ A;m

′
,m

′′
<

m) be two sets of categorical attributes that contain missing values and non-missing
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values in T , respectively. For all a′ = {a′1, a
′
2, . . . , a

′
n} ∈ A

′
1 × A

′
2 × · · · × A

′

m′
and a

′′ =

{a′′1 , a
′′
2 , . . . , a

′′
n} ∈ A

′′
1 ×A

′′
2 ×· · ·×A

′′

m′′
, the IS measure between a′ and a′′ is defined as:

IS(a
′
, a
′′
) =

Support(a′ , a′′)√
Support(a′)× Support(a′′)

(4.2)

Where Support(a′ , a′′) = #(a
′
,a
′′
)

|T | , #(a
′
, a
′′
) is the number of objects that contain both

a
′ and a′′.

The second measure is the missing-complete similarity measure (MCS). We extended

the information-theoretic based similarity measure Eq. (2.11) to make it applicable for

measuring the proximity of complete and incomplete objects.

Definition 12 (Missing-complete similarity measure (MCS measure)) Let there be

a set T that contains both complete and incomplete objects. Let there be two categorical

values oij and oi′j appearing in T at the jth attribute. The similarity between them is

defined as:

simmis
j (oij, oi′j) =


2 log fT (oij ,oi′ j)

log fT (oij)+log fT (o
i
′
j
)

if oij 6=? and oi′j 6=?

0 otherwise
(4.3)

where fT (oij) =
#T (oij)

nT
, #T (oij) denotes the number of oij appearing in T and nT

denotes the number of objects in T .

Let xi = (xi1, xi2, . . . , xim) and xi′ = (xi′1, xi′2, . . . , xi′m) be the complete and incomplete

categorical object, respectively. The MCS between xi and xi′ is then defined as follows

:

MCS(xi, xi′ ) =
m∑
j=1

simmis
j (xij, xi′j) (4.4)

Based on these definitions, the clustering algorithm for categorical data sets with

missing values now aims to minimize the following objective function:

F(U ,Z) =
k∑
l=1

n∑
i=1

ui,l × dis(xi,Zl) (4.5)
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subject to 
∑k

l=1 ui,l = 1 1 ≤ i ≤ n

ui,l ∈ {0, 1} 1 ≤ l ≤ k, 1 ≤ i ≤ n

(4.6)

where U = [ui,l]n×k is the partition matrix (ui,l takes value 1 if object xi is in cluster Cl
and 0 otherwise).

4.4 The proposed k-CCM algorithm
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Figure 4.2: The flowchart of the k-CCM algorithm for categorical data with missing
values

The proposed k-CCM algorithm is based on the general framework depicted in Fig-

ure 4.2. According to this model, a full categorical data set is divided into two sub-

datasets: complete data set and missing data set. The first data set is used to perform

the clustering process, while the second data set is used for the imputation process. For

every incomplete object in the second data set, the algorithm uses a decision tree-based

imputation approach to build decision trees for each missing attributes of this object.

The incomplete object is then assigned to the corresponding tree’s leaf. Once a missing

object is assigned to a leaf node, the missing values in the incomplete object are im-

puted using objects that are found in the leaf node. Then, the imputed object is put into
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the first data set and removed from the second data set. Next, the algorithm performs

clustering tasks by assigning objects in the first data set into appropriate clusters and

update centers of clusters. That process is repeated until the second data set is empty.

If the termination condition is not met, the algorithm performs the clustering process

until all clusters are convergent. Finally, it returns k clusters.

Algorithm 2: THE k-CCM ALGORITHM

input : Dcat: a categorical database, k: a user-specified number of clusters
output: k clusters of Dcat

1 Scan Dcat once to split it into two sub-datasets, Dcat = D1 (complete data set) +
D2 (incomplete data set)

2 Randomly initiate k cluster centers from D1: Z(0) = {Z(0)
1 , . . . ,Z(0)

k }
3 U ← ∅, t = 0
4 foreach object xi in D2 do
5 Categorical_Imputation(xi, D1)
6 D1 = D1 ∪ {xi}, D2 = D2 \ {xi}
7 Keep Z(t) fixed, generate U (t) to minimize the distance between objects and

cluster modes using Eq. (2.14)
8 Keep U (t) fixed, update Z(t) using Eq. (2.6)
9 t = t+ 1

10 end
11 while Clusters are not convergent do
12 Keep Z(t) fixed, generate U (t) to minimize the distance between objects and

cluster centers using Eq. (2.14)
13 Keep U (t) fixed, update Z(t) using Eq. (2.6)
14 t = t+ 1

15 end
16 return k clusters;

The pseudo code of the k-CCM algorithm is shown in Algorithm 2. It initially scans

the categorical database Dcat once to divide this data set into two sub-datasets, namely

D1 and D2, which are the complete and incomplete data sets, respectively (line 1).

First, k-CCM randomly initiates k cluster centers from D1 (line 2). Each cluster center

is formed by the Eq. (2.6). The set U is initiated to store the partition matrix (line

3). In the next step, the algorithm scans all objects in D2 to impute missing values and

assign objects to clusters (lines 4-10). For each object xi in D2, it calls the Categori-

cal_Imputation procedure to fill in missing values inside xi (line 5). The algorithm then

puts xi into D1 and removes it from D2 (line 6). Next, it assigns objects in D1 into appro-

priate clusters and updates cluster centers (lines 7-8). A similar process is performed for
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Algorithm 3: CATEGORICAL_IMPUTATION PROCEDURE

input : xi: a missing categorical object, D1: the set of complete categorical objects
output: the imputed categorical object xi

1 Ac ← ∅, DTSet← ∅, NodeSet← ∅, Ωi ← ∅
2 Put attributes having missing values in xi to Ac
3 foreach attribute Aci in Ac do
4 if DTSet does not contain DT for Aci then
5 Build a decision tree DT that uses Aci as class attribute from D1

6 DTSet← DT

7 end
8 end
9 foreach decision tree DT in DTSet do

10 Assign xi into leaf nodes of corresponding decision tree DT
11 NodeSet← chosen leaf nodes
12 end
13 Group objects in NodeSet into one collection T
14 Find objects in T that match with the maximum number of non-missing attribute(s) in xi,

and let N be the number of such objects
15 for i = 1 to N do
16 Ωi ← possible imputed value(s) from the ith matched object
17 Calculate the IS measure by Eq. (4.1) for Ωi

18 Calculate the MCS measure by Eq. (4.3) between the ith matched object and xi
19 Calculate the affinity degree δi for Ωi based on IS and MCS
20 end
21 Impute missing value(s) for xi by using random sampling from the set of possible

imputed values {Ω1, . . . ,ΩN} based on the sampling probabilities specified by the set of
affinity degrees {δ1, . . . , δN}

22 return k clusters;

all incomplete objects in the D2. Then, the k-CCM performs the clustering step until all

clusters are convergent (lines 11-15). Finally, it returns k clusters as the desired output

(line 16).

Algorithm 3 shows the pseudo code of Categorical_Imputation procedure. The input

of this procedure is a missing categorical object xi and the complete data set D1. The

procedure first finds attributes containing missing values (called as missing attributes)

and puts them into the set Ac (line 1). For each missing attribute Aci in Ac, the proce-

dure checks if there exists any decision tree (DT) that uses Aci as the class attribute. If

there is no such DT, then a DT that uses Aci as the class attribute is constructed from

the complete data set D1. This process is repeated until all missing attributes in Aci
have their corresponding DTs (lines 3-8). Next, object xi is assigned to the leaf nodes

of the trees with the same class attribute as the missing attribute. Once xi is assigned
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into appropriate leaves, each leaf node consists of objects from D1 and xi that are cor-

related together (lines 9-12). Each leaf node in DT is represented as a list of objects.

We used the same manner as the DSMI algorithm [24]. That is, if an object has more

than one missing value fallen into multiple leaves, the algorithm will merge these leaves

and group objects into the same collection (line 13). To impute the missing values in

xi, the algorithm searches for objects in the node which have the maximum number

of non-missing attributes in common to the complete object (line 14). Then, the at-

tribute values in these objects corresponding to the missing attributes in the missing

object are taken to be the possible imputed values. For each such object, the procedure

finds possible imputed values and calculate the IS and MCS measures for these values.

The affinity degree of possible imputed values is given by the average of the IS and

MCS measures computed for each possible imputed values (lines 15-20). Once affinity

degrees of possible imputed values are obtained, the procedure assigns actual imputed

values by random sampling from the list of possible imputed values based on their affin-

ity degrees (line 21). According to [24], random sampling ensures that uncertainty and

randomness in attribute values are accounted for and helps to reduce systematic bias

in the imputed data set. Finally, the procedure return the imputed objected xi without

having missing values (line 22).

4.5 Comparative Experiment
Experiments were performed to evaluate the performance of k-CCM on a VPC cluster

[38]. Each node is equipped with an Intel Xeon E5-2680v2@2.80GHz×20, 64 GB of

RAM, running Red Hat Enterprise Linux 6.4. The proposed algorithm was implemented

in Python using PyCharm. The performance of the proposed k-CCM algorithm was com-

pared with five partitional clustering algorithms: k-modes [59], k-representatives [99],

M-k-representatives, M-k-centers and New [92]. Standard benchmark data sets were

used for the experiment. Breast cancer, mushroom, soybean, sponge and congressional

voting records (voting records) were obtained from the UCI Machine Learning Reposi-

tory [34], while gsssex survey, runshoes and negotiation were obtained from the CMU

data sets archive [115]. The characteristics of these data sets are shown in Table 4.1.

55



Chapter 4 4.5. COMPARATIVE EXPERIMENT

They have varied characteristics. By using these data sets, the performance of the pro-

posed algorithm and the compared algorithms are evaluated for the main types of data

encountered in the real-life world. For each algorithm, we ran 300 times per data set.

Table 4.1: Characteristics of the experimental data sets

# Data set #objs #attrs #missing attrs #missing objs #missing values #classes
1 Breast cancer 286 9 2 9 9 2
2 Gsssex survey 159 9 1 6 6 5
3 Mushroom 8,124 22 1 2,480 2,480 2
4 Negotiation 92 6 4 17 26 6
5 Runshoes 60 10 1 14 14 7
6 Soybean 307 35 34 41 712 19
7 Sponge 76 45 1 22 22 12
8 Voting records 435 16 16 203 392 2

0.0

2.5

5.0

7.5

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(a) Breast cancer

0

2

4

6

20 40 60 80 10
0

12
0

14
0

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(b) Gss Sex Survey

0

500

1000

1500

2000

2500

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(c) Mushroom

0

10

20

20 40 60 80

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(d) Negotiation

0

5

10

20 40 60

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(e) Run shoes

0

200

400

600

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(f) Soybean

0

5

10

15

20

10 20 30 40 50 60 70

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(g) Sponge

0

100

200

300

400

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

Number of categorical objects

C
u

m
u

la
ti

ve
 s

u
m

 o
f 

m
is

si
n

g 
va

lu
es

(h) Voting

Figure 4.3: Missing values in experimental data sets

For the experiment, we used three metrics: Purity, Normalized Mutual Information

(NMI) and Adjusted Rand Index (ARI) as defined in section 2.3.2 to evaluate the per-

formance of the proposed algorithm. The Purity, NMI and ARI results of the k-CCM

and compared algorithms are shown in Tables 4.2, 4.3 and 4.4, respectively. In these

tables, boldfaced numbers indicate the best performances among compared algorithms

for each data set. It can be observed that k-CCM has better results than compared al-

gorithms in most cases. For Purity, it outperforms other algorithms on Breast cancer,

Gsssex survey, Negotiation, Runshoes, Sponge and Voting records data sets. On Mush-

room, k-representatives has a higher result when compared to k-CCM. However, the
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NMI and ARI results of k-CCM are better than those of k-representatives. The New al-

gorithm outperforms other algorithms on the Soybean data set for all metrics. Similar

results can be observed for the NMI and ARI metrics. In general, the proposed algo-

rithm takes advantage of the imputation method and thus improves the performance of

clustering process.

Table 4.2: Purity results of clustering algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New k-CCM
1 Breast cancer 0.7028 0.7028 0.7030 0.7028 0.7028 0.7098
2 Gsssex survey 0.7799 0.7814 0.7802 0.7803 0.7803 0.7816
3 Mushroom 0.8818 0.8876 0.8858 0.7235 0.7312 0.8861
4 Negotiation 0.4692 0.4829 0.4469 0.4517 0.4645 0.5002
5 Runshoes 0.4613 0.4591 0.4725 0.4725 0.4798 0.4851
6 Soybean 0.6107 0.7139 0.6955 0.6924 0.7181 0.6957
7 Sponge 0.9211 0.9211 0.9211 0.7159 0.9211 0.9214
8 Voting records 0.8581 0.8764 0.8713 0.8760 0.8775 0.8805

Table 4.3: NMI results of clustering algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New k-CCM
1 Breast cancer 0.0040 0.0018 0.0047 0.0042 0.0040 0.0057
2 Gsssex survey 0.0536 0.0606 0.0430 0.0428 0.0630 0.0634
3 Mushroom 0.5446 0.5383 0.5310 0.1937 0.2077 0.5492
4 Negotiation 0.0939 0.1342 0.1193 0.1039 0.1193 0.1353
5 Runshoes 0.2158 0.2192 0.2224 0.2246 0.2267 0.2289
6 Soybean 0.6085 0.7552 0.7314 0.7243 0.7509 0.7555
7 Sponge 0.0668 0.0638 0.0765 0.0748 0.0887 0.0770
8 Voting records 0.4359 0.4990 0.4961 0.4950 0.4947 0.5002

Table 4.4: Adjusted Rand Index results of clustering algorithms

# Data set k-modes k-representatives M-k-representatives M-k-centers New k-CCM
1 Breast cancer 0.0019 -0.0030 0.1351 0.0021 0.0055 0.1351
2 Gsssex survey 0.0066 0.0135 0.0168 0.0140 0.0171 0.0171
3 Mushroom 0.5924 0.5952 0.5963 0.2357 0.2527 0.6009
4 Negotiation 0.0143 0.0267 0.0105 0.0111 0.0193 0.0155
5 Runshoes 0.0381 0.0320 0.0385 0.0335 0.0385 0.0392
6 Soybean 0.3759 0.4767 0.4163 0.4167 0.4686 0.4167
7 Sponge -0.0173 -0.0176 -0.0024 -0.0030 0.0190 -0.0007
8 Voting records 0.5119 0.5658 0.5504 0.5540 0.5644 0.5779

4.5.1 Significant Analysis
In this section, we analysed the significance of the clustering results of k-CCM obtained

in the previous section. We considered the same types of data sets as shown in Figure
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3.1. Particularly, we evaluated the efficiency of k-CCM algorithm on large-dense, small-

dense, large-sparse, small-sparse data sets. Table 4.5 shows the summary of Purity, NMI

and ARI results of k-CCM proposed in this chapter. It can be observed that k-CCM has

the highest values for at least two of three metrics on five over eight data sets: Breast

cancer, Gsssex survey, Mushroom, Runshoes, Voting records; and highest values for two

metrics: Negotiation data set. On Sponge, k-CCM has the highest value for Purity value,

while achieving the second highest values for NMI and ARI. On Soybean, k-CCM has

the highest value for NMI value, while not achieving good results for Purity and ARI.

Generally, from the practical results, we can see that k-CCM can work well on small-

sparse data sets such as Breast cancer, Gsssex survey, Runshoes, Negotiation and Voting

records. It also can work well with large-dense data set such as Mushroom. However,

for small-dense data sets such as Soybean and Sponge, k-CCM does not seem to be

working very well on those kinds of data sets. Algorithms other than k-CCM consider

missing values as new categories when forming cluster centers. Also, the simple match-

ing measure considers two missing values as identical. Regarding the degree of missing

values, when missing values spread in most attributes such as in the case of Soybean or

when the number of missing values is highly proportional to the size of data set such as

in the case of Sponge, other algorithms such as k-representatives outperform k-CCM.

Table 4.5: Significant analysis of the k-CCM algorithm

# Data set
Purity NMI ARI

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank
1 Breast cancer X X X
2 Gsssex survey X X X
3 Mushroom X X X
4 Negotiation X X X
5 Runshoes X X X
6 Soybean X X X
7 Sponge X X X
8 Voting records X X X

4.6 Conclusion
In this chapter, we have proposed an algorithm named k-CCM for clustering categorical

data sets with missing values. The proposed algorithm integrates the imputation step

and clustering step into a common process. In this way, all incomplete objects are
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first imputed and then assigned into appropriate clusters. In particular, we extended a

decision tree-based imputation method [24] to fill in missing values. For clustering, we

used a kernel density estimation approach to define cluster centers and an information-

theoretic based dissimilarity measure to quantify the difference between objects and

cluster centers. An extensive experimental evaluation was conducted on benchmark

categorical data sets to evaluate the performance of the proposed algorithm. According

to the experimental results, the designed algorithm has a comparative result in terms

of clustering quality when compared to the other five algorithms. Thus, the imputation

step can improve the quality of the clustering.
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Chapter 5

Clustering Mixed Numeric and

Categorical Data with Missing Values

5.1 Introduction
The basic problem of clustering may be stated as “Given a set of data points, partition

them into a set of groups which are as similar as possible” [3]. In other words, cluster-

ing aims to divide the set of objects into homogeneous groups in which two arbitrary

objects belonging to the same group are more similar to each other than two arbitrary

objects belonging to different groups [116]. It can be applied in many areas of engineer-

ing and sciences such as life sciences, behavioral and social sciences, medical sciences,

earth sciences, engineering sciences, information, policy and decision sciences [9]. Fig.

5.1 proposes a classification of distance-based clustering algorithms. It consists of two

categories: hard clustering and fuzzy clustering (or soft clustering). In the first category,

a data point belongs to one and only one cluster, while in the second category, a data

point may belong to two or more clusters with some probabilities.

Distance-based clustering
Fuzzy clustering

Hard clustering
Partitional clustering

Hierarchical Clustering
Agglomerative Clustering

Divisive Clustering

Figure 5.1: A classification of distance-based clustering algorithms

There are two types of hard clustering methods: hierarchical clustering and parti-
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tional clustering. Hierarchical clustering methods produce a nested series of partitions

based on a criterion for merging or splitting clusters based on similarity. It does not

require to predetermine the number of clusters to be produced. There are two types

of hierarchical clustering: agglomerative and divisive clustering. The former initially

considers each data object as a cluster of its own. It then successively merges the most

similar clusters until there is just one single big cluster. In contrast to the former, the

later initially considers all objects as one cluster. It then successively divides the most

heterogeneous clusters until all data objects are in their own cluster. The result of hier-

archical clustering is a tree-based representation of the objects, which is also known as

a dendrogram. Partitional clustering methods group a given data into a user-specified k

clusters by optimizing a certain objective function (usually locally) that captures a local

and global structure of grouping. They start with an initial assignment and then use

an iterative relocation procedure to move data objects from one cluster to another to

optimize the objective function. They have been widely used in several real applications

because of their simplicity and their competitive computational complexity.

Clustering algorithms are associated with certain types of data. The numeric data

are represented by continuous values, whereas the categorical data, which are a spe-

cial case of the discrete type, can have only a finite number of values. The categorical

data appear frequently in many real-life applications. For example, they can be used as

name, gender, age group, educational level, and blood type. The mixed data sets con-

tain both numeric and categorical values. Real-life data are often of mixed types. For

example, medical data include categorical values such as nationality, gender, job, edu-

cation, marital status, and smoking or non-smoking in addition to numeric values such

as age, height, weight, and salary. Retail purchase transactions consist of categorical

values such as categories of items, types and customers’ locations and numeric values

such as quantity, unit profit, and price. Many researchers have focused on designing

algorithms for clustering mixed data during the last two decades.

Most clustering algorithms handle either only categorical data or numeric data. Be-

fore using such type of algorithms, data preprocess such as discretization or one-hot

encoding is performed to convert the numeric data to categorical data, and vice versa.

However, the discretization process leads to loss of information because the membership
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degree of a value to discretized values is not taken into account, while it is challenging

to give correct numeric values to categorical values if these values have no intrinsic

order. For example, encoding the color attribute that contains categorical values such

as red, green and blue to integer values one, two and three will not be appropriate

since these values have the same order. Moreover, the inappropriate transformation

may impair the information inherent in the values, resulting in misleading outcomes

[6, 57, 80].

In the era of information technology, data can be collected from various sources such

as sensors, digital devices, machines, and humans. These sources have generated large

amounts of data in a short time. However, collecting data is not always an easy task and

may lead to missing values in data (simply called missing data or missing values) due to

different mechanisms. Missing data can be caused by human error, equipment malfunc-

tions, system generated errors, inconsistency between other recorded data thus deleted,

data not entered due to misunderstanding, certain data not be considered significant at

the time of entry and changes of the data. Missing data also occurs due to observing

conditions, instrument sensitivity limitations, and other real-life considerations. Unfor-

tunately, these may hide the correct answer underlying the data. Furthermore, they

may reduce the performance of algorithms. This forces researchers who want to use

a statistical analysis that requires complete data to choose between imputing data or

discarding missing values. However, simply discarding missing data is not a reasonable

practice, as valuable information may be lost and inferential power compromised. It

can even cause selection bias in some cases. In addition, deleting observations with

missing values may result in very few observations remaining in the data when there

is a large number of predictive variables that contain missing values. As a result, it is

advisable to impute the data before any analysis is performed [111].

Many data sets from the UCI Machine Learning Repository [34] contain missing

values. Fig. 5.2 shows the Hepatitis and Horse colic data sets with the missing rates

are approximately 6% and 20%, respectively. In addition, existing frameworks and

packages for clustering categorical and mixed data strongly recommend that data sets

should be filled in a way that makes sense for the problem at hand, especially in the

case of many missing values [23]. The above observations motivated the design of an
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Figure 5.2: data sets with missing values

algorithm that can cluster mixed numeric and categorical data having missing values. In

general, existing algorithms use two approaches for clustering missing data. For the first

approach, data sets are pre-processed so that these do not contain any missing values

and then inputted to the clustering algorithms. For the second approach, clustering

algorithms are designed to work directly with incomplete data sets. In this research, we

used the second approach for the proposed algorithm. Specifically, we embedded the

imputation process into the clustering process so that users do not need to preprocess

data sets such as filling missing values and discretization the data beforehand. The

contribution of this chapter is to design a new framework for solving the problem of

clustering missing mixed data. It then proposes an algorithm that takes advantage of

missing values imputation to improve the quality of clustering results.

This chapter is structured as follows. Section 2 reviews previous works related to

clustering and missing values imputation. Section 3 gives the preliminaries and defi-

nitions. Section 4 describes the proposed k-CMM algorithm. Section 5 discusses the

experimental results. Finally, section 6 draws a conclusion and outlines directions for

future work.
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5.2 Literature review and related work

5.2.1 Partitional clustering algorithms for categorical and

mixed data
This section introduces a brief review of methods for clustering categorical and mixed

data. The details are provided in section 2.4. K-means algorithm [84] splits a nu-

merical data set into a predetermined number k of clusters. This algorithm consists

of two phases: initialization phase and iteration phase. In the initialization phase, the

algorithm randomly assigns objects into k clusters. In the iteration phase, it uses the

Euclidean to compute the distance between objects and cluster centers and then assigns

them into the nearest clusters. The main steps of k-means algorithm are as follows. It

first randomly selects k of the objects in a data set Dnum, each of which initially repre-

sents a cluster mean or center. For each of the remaining objects, an object is assigned to

the cluster to which it is the most similar, based on the distance between the object and

the cluster mean. The algorithm then iteratively improves the within-cluster variation.

For each cluster, it computes the new mean using the objects assigned to the cluster in

the previous iteration. All the objects are then reassigned using the updated means as

the new cluster centers. The iterations continue until the assignment is stable, i.e., the

clusters formed in the current round are the same as those formed in the previous round

[53]. K-means algorithm has some remarkable properties: it is efficient in clustering

large data sets, since its computational complexity is linearly proportional to the size of

the data sets; it often terminates at a local optimum; the clusters have convex shapes,

such as a ball in three-dimensional space, the performance is dependent on the initial-

ization of the centers [43]. However, working only on numerical data prohibits some

applications of k-means algorithm where categorical and mixed data are involved. The

traditional approach to converting categorical data into numeric values does not pro-

duce meaningful results in the case where categorical domains are not ordered [60].

Several k-means-like algorithms have been proposed to address the limitation of

k-means algorithm [20, 26, 59, 68, 90, 92, 99]. K-modes algorithm [59] can be con-

sidered as a pioneering work for clustering categorical data. The main idea of this al-
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gorithm is to specify the number of clusters and then to select k initial modes, followed

by allocating every object to the nearest mode. It uses the modes to represent clusters

and a frequency-based method to update modes in the clustering process. The mode

of a cluster is a data point whose attribute values are assigned by the most frequent

values of the attribute’s domain set appearing in the cluster. Since k-modes comes from

k-means algorithm, it can also be treated as an optimization problem. It also has the

same properties as those of k-means algorithm, except that it works only on categorical

data.

In 2004, San et al. proposed k-representatives algorithm [99]. The Cartesian prod-

uct and union operations are utilized to form centers of clusters. It uses the relative

frequencies of categorical values within the cluster and the simple matching measure

between categorical values to quantify the distance between objects. The main pro-

cedure of k-representatives is performed in the same manner as k-modes algorithm.

K-populations algorithm [72] extends k-modes by using the notion of population that

describes the information distributed in the cluster to represent the centroid of each

cluster. The population is a set of pairs that contain categorical values and their con-

fidence degrees for each attribute. The soft decision minimizes the uncertainty and

imprecision in the representation of cluster centroids.

In 2013, Chen et al. proposed k-centers algorithm [20]. It uses the kernel density

estimation approach to form centers of clusters. Moreover, to measure the individual

contribution of each attribute for clusters, it uses a built-in feature weighting in which

categorical attributes are assigned with weights. The dissimilarity is measured by using

the simple matching as an indicator function to represent each data object by a set of

vectors and the Euclidean norm. In 2016, Nguyen et al. proposed a new extension of

the k-means clustering algorithm for categorical data by combining a modified concept

of cluster centers based on the kernel-based estimation method and the information-

theoretic based dissimilarity measure [91, 92]. More specifically, it extends the kernel

function for cluster centers (proposed in k-centers algorithm) regarding the cardinality

of an attribute’s sub-domain of a given cluster instead of using the whole domain of

attribute.

For clustering mixed numeric and categorical data, Huang also proposed k-prototypes
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algorithm [60]. The clustering process of k-prototypes algorithm is similar to k-means

algorithm except that it uses k-modes approach to updating the categorical attribute val-

ues of cluster prototypes. To quantify the distance between objects, it uses the squared

Euclidean distance and the simple matching for numeric attributes and categorical at-

tributes, respectively. Several works [6, 66, 80] was then proposed by improving k-

prototypes algorithm. Given a set of n mixed objects, which are described by attributes

Ar1, Ar2, . . . , Arp, Acp+1, . . . , Acm. The objective function for k-prototypes is as follows:

F(U,Z) =
k∑
l=1

(F rl + F cl ) (5.1)

where F rl =
∑n

i=1 ui,l
∑p

j=1(xi,j−zl,j)2 and F cl = γ
∑n

i=1 ui,l
∑m

j=p+1 δ(xi,j, zl,j), where

γ is a balance weight used to avoid favoring either type of attribute.

5.2.2 Imputationmethods for categorical andmixed data

with missing values
Missing data are common in real-life applications. It is worth to remind that there are

three basic types of missing data [82]: missing completely at random (MCAR), missing

at random (MAR) and not missing at random (NMAR). Methods to handle missing data

also have a large variation, and these choices are often made based on the missing data

mechanism. The methods to deal with missing values can be classified into two groups:

pre-replacing methods that replace missing values before the data mining process, and

embedded methods that deal with missing values during the data mining process [42].

Several methods have been proposed to deal with missing data such as case deletion

methods, imputation methods and non-imputation methods [1].

In general, missing data imputation is defined as a procedure of completing the miss-

ing values with plausible values that are estimated based on the observed data (called

complete data) in the given data set [121]. Missing data imputation has attracted more

attention of researchers in the past few years. Many methods have been proposed to

replace missing values. Table 5.1 shows a brief literature review of imputation methods

for numeric and categorical data.
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Table 5.1: The literature review of imputation methods

Method Type of data Cost Related sources

Mean/mode-based imputation numeric, categorical, mixed low [42]
Regression-based imputation numeric, categorical low [47, 104, 123]
Decision tree-based imputation categorical, mixed middle [24, 96]
Nearest neighbor-based imputation numeric, categorical, mixed high [22, 46, 67, 121]
ANN-based imputation numeric high [45, 103, 104]
Clustering-based imputation numeric, categorical, mixed high [12, 42, 67, 122]
Hybrid model-based imputation numeric high [12, 100]

The simplest imputation method is to replace missing values with the mean and

mode of the known values in the complete instances for missing numeric and categorical

attribute, respectively. One of the most popular techniques in the statistics-based impu-

tation method is regression-based imputation. Each missing attribute is approximated

with the regression function. Several methods have been used to impute missing values

such as multiple linear regression and logistic regression for numeric data, multinomial

logistic regression for categorical data with more than two categorical values [104].

Decision tree (DT) based imputation is a method to replace missing values in cat-

egorical and mixed data. For numeric attributes in mixed data, this method quantizes

them by the square root of their domain size or using discretization. The DT based

method schemes to first partition a full data set into two sub-datasets: incomplete data

set that contains data objects with any missing values and complete data set that con-

tains data objects without any missing values. Several DTs are then built in the complete

data set using the attributes having missing values in the incomplete data set as class

attributes. Afterward, each data object in the incomplete data set is assigned to the leaf

nodes of the corresponding DTs. Finally, missing values are imputed using the informa-

tion from the correlated data objects in the leaf nodes of DTs.

The nearest neighbor based imputation (NNI) fills in missing values in attributes of

an object by using the information of corresponding attributes of its k nearest neighbors.

The mean value and the most frequent value among all neighbors are usually used

to impute for missing values in numeric and categorical attributes, respectively. This

method can be used for both numeric and categorical data by using an appropriate

distance function. The cost of the NNI method can be expensive for large data set since

it must perform an exhaustive search in the data set for each missing data object [100].
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The artificial neural network is another method for handling missing values. Espe-

cially, the multilayer perceptron neural network (MLP) has been widely used for this

method. The most common way is to build the training process on the whole portion of

the input data set. The generated neural network then imputes missing values using the

trained network. There are several ways to train the model. The first way is to build the

training process for each attribute on the complete data. Particularly, for each attribute,

networks are trained on data objects for which the target value is not missing and then

the generated networks are used to fill in missing values. The second way is to build

the training process of the network with the entire data set, using both complete and

missing data. In this way, the numbers of neurons in the input and output layers of MLP

are the same as the number of attributes in data set. MLP based imputation is mainly

used for imputing numeric data in which numeric attributes are normalized to ensure

that all attributes have the same importance in the model. The MLP based imputation

can be used for categorical data. However, categorical attributes must be codified by

vectors of dummy variables zero and one [104].

Clustering can be used for missing value imputation. The main idea of the clustering-

based imputation is to assign both missing and complete data objects into clusters. From

that, each missing data object is imputed by using the information of similar objects to

that object in the same cluster. The other way is to combine clustering and nearest

neighbors to cluster data and then select the closest neighbor with the missing object

from centroids of resulted clusters. Missing values are imputed with the values from

corresponding attributes in a selected neighbor [67]. The fuzzy clustering also can be

used for imputation purposes. Specifically, fuzzy clustering such as the c-means is ap-

plied to input data to separate data objects into clusters. Note that, in fuzzy clustering,

each data object has a degree of membership between zero and one indicating which

clusters it belongs to. Missing values of a data object are then imputed with plausible

values that are generated by applying regression models to the data objects belong to a

set of fuzzy clusters [100].

Hybrid-based imputation is a technique that combines several methods in a model

to improve the quality of imputation. Aydilek et al. combined the fuzzy c-means, sup-

port vector regression and genetic algorithm to estimate missing values [12]. Sefidian
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et al. combined the fuzzy c-means and the local mutual information based feature se-

lection to select only highly relevant features in each cluster. The regression model is

then applied to the selected features to estimate the missing values [100]. Moreover,

other imputation methods such as expectation maximization based imputation, genetic

algorithm based imputation, fuzzy-rough sets based imputation and correlation-based

imputation can be used for imputing missing values. The cost of imputation methods in

Table 5.1 is referenced from [42, 100].

Recently, Deb et al. proposed the DSMI algorithm [24]. This algorithm is based on

the procedure of the decision tree-based imputation that has been mentioned above to

handle missing values. After all objects in the incomplete data set are assigned into

corresponding DTs, correlated data objects are identified from leaf nodes of DTs. For

each data object in the incomplete data set, a table is populated using this object and

correlated data objects from the complete data set. Candidates for missing values to be

imputed are extracted from the complete data objects of each table. If there are multiple

candidates, DSMI uses the IS measure and the Weighted Similarity measure (WSM) to

compute the correlation between each candidate and the missing object. Finally, it uses

random sampling from the list of candidates based on their degree of affinity to choose

actual imputed values for imputation. The DSMI is efficient for imputing missing values

in traffic accident data. However, two limitations can be observed from this algorithm.

The first problem is that the DSMI focuses mainly on categorical attributes and it is not

clear how to handle numeric attributes. The second problem is that the computational

cost of constructing graphs and calculating WSM is very high when dealing with high-

dimensional data sets or data sets containing multiple missing values. Our imputation

method is based upon the DSMI algorithm. However, we modified it to address the

above limitations and then integrated the imputation step into the clustering step to

result in an algorithm that can cluster categorical or mixed data with missing values.

The following sections define the problem of clustering mixed data with missing values

and then propose an algorithm named k-CMM.
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5.3 Preliminaries and problem statement
The problem of clustering mixed data has been the subject of several prior studies [60,

66, 80]. Let Ar = {Ar1,Ar2, . . . ,Arp} be the set of p numeric attributes where the domain

of Arα (1 ≤ α ≤ p), denoted by DOM(Arα), is represented by continuous values. Let

Ac = {Ac1,Ac2, . . . ,Acq} be the set of q categorical attributes where the domain of Acβ
(1 ≤ β ≤ q), denoted by DOM(Acβ), is represented by a finite and unordered set that

contains only singletons. Let A={A1,A2, . . . , Am} such that A = Ar∪Ac and m = p+q

be the set of m distinct attributes where the jth attribute Aj (1 ≤ j ≤ m) is either a

numeric attribute or a categorical attribute. A mixed numeric and categorical object

(mixed object or mixed record) is a tuple of the form 〈id, x〉 where id is its unique

identifier and x is represented by a tuple t ∈ DOM(A1) × DOM(A2) × · · · × DOM(Am).

For the simplicity, a mixed object x having id = i is denoted as xi. A mixed data set

Dmix = {x1, x2, . . . , xn} is a set of n mixed objects where xi = {xi1, xi2, . . . , xim} is a

set of m mixed numeric and categorical values at the ith element of Dmix. In other

words, Dmix is an n × m matrix (n � m), where n and m are the number of objects

and attributes in data set Dmix, respectively. The element at position (i, j) (1 ≤ i ≤ n,

1 ≤ j ≤ m) of the matrix stores the value of the object ith at the attribute jth, such that

xij ∈ DOM(A) = DOM(Ar) ∪ DOM(Ac). Note that if a categorical value in Dmix is a

missing value, then it is represented as “?” or “” (empty). For example, Table 5.3 shows

a mixed data set with six attributes: the first four attributes are categorical, while the

last two attributes are numeric. It contains fifteen objects with eight missing values and

used for the running example. For the sake of brevity, a mixed object with and with

no missing value is denoted as the incomplete and complete object, respectively; while

a mixed data set with and with no missing values is denoted as the incomplete and

complete data set, respectively.

Definition 13 (Clusters) Let there be a mixed data set Dmix and a set C = {C1, C2, . . . ,

Ck} that contains k disjoint subsets. Cl (1 ≤ l ≤ k) is called a cluster of Dmix iff for every

Ci ∈ C (1 ≤ i ≤ k ∧ i 6= l), Cl ∩ Ci = ∅ and Dmix =
⋃k
l=1 Cl. The number of data objects in

the cluster Cl is denoted by nl.

Example 6 In the data set shown in Table 5.3, assume that there are three subsets of
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Table 5.2: Table of notation

Symbol Description
k number of clusters
xi mixed object with index i
xri numeric object with index i
xci categorical object with index i
Xj random variable
Dmix mixed data set
Aj jth attribute of Dmix
Arj jth numeric attribute of Dmix
Acj jth categorical attribute of Dmix
Cl lth cluster
Zl center of cluster Cl
xij value appears at the ith element and jth attribute of Dmix
ōlij numeric value appears at the ith element and jth attribute of cluster Cl
olij categorical value appears at the ith element and jth attribute of cluster Cl
Oj set of categorical values appears at the jth attribute of Dmix
Olj set of categorical values appears at the jth attribute of cluster Cl
zrlj value of the jth numeric attribute in the center Zl
zclj value of the jth categorical attribute in the center Zl

Table 5.3: A mixed numeric and categorical data set with missing values

Object
Attribute A1 A2 A3 A4 A5 A6

x1 d b f e 7 14
x2 b b c e 6 13
x3 b b c e 2 13
x4 a b a b 5 13
x5 c a f d 2 14
x6 d b f ? ? 14
x7 a a c e 1 14
x8 b a ? ? ? 12
x9 c b a c 5 14
x10 b ? d e 5 7
x11 d a d c 10 13
x12 d b d d 3 12
x13 ? b a e 2 ?
x14 a a d d 2 18
x15 b a f e 2 14

Dmix: C1= {x1, x2, x3, x5, x7, x15}, C2 = { x4, x6, x8, x9, x10, x11, x12, x13, x14 }, C3 = {

x1, x2, x3 }. Then, {C1, C2} are clusters of Dmix, while {C1, C3}, {C2, C3} and {C1, C2, C3}

are not.
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Definition 14 (Relative frequency of a categorical value) Let there be a cluster Cl
and a categorical value olij appearing in Cl at the jth categorical attribute, the relative

frequency of olij in Cl is denoted and defined as:

fCl(o
l
ij) =

#l(o
l
ij)

nl
(5.2)

where #l(o
l
ij) is the number of categorical values olij appearing in the cluster Cl at

the jth attribute.

The relative frequency of olij in the data set Dmix at the jth categorical attribute is

denoted and defined as:

f(olij) =
#(olij)

|Dmix|
(5.3)

where #(olij) is the number of categorical values olij appearing in data set Dmix at

the jth attribute.

Example 7 In the data set shown in Table 5.3, assume that cluster C1 = {x1, x2, x3, x5,

x7, x15}, then the relative frequency of the categorical value “b” in the attribute A1 is

fC1(b)=
3
6

= 0.5.

In this chapter, to represent the center of a cluster, we used the mean for numeric

attributes and the variation on Aitchison & Aitken’s kernel function [8] to estimate the

probability density function of each categorical attribute in the center.

Definition 15 (The mean of numeric attributes in a cluster) Let there be a cluster

Cl that contains p numeric attributes Ar = {Ar1,Ar2, . . . ,Arp} and Zl is the center of Cl.

The mean of each attribute Arj (1 ≤ j ≤ p, p < m) in the cluster Cl is defined and

denoted as:

zrlj =
1

nl

nl∑
i=1

ōlij (5.4)

Example 8 In the data set shown in Table 5.3, assume that cluster C1 = {x1, x2, x3, x5,

x7, x15}, then mean value of the attribute A6 is zr16 = (14+13+13+14+14+14)
6

= 13.67.

Recall that a density estimator is an algorithm which takes a d-dimensional data set

and produces an estimate of the d-dimensional probability distribution which that data
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is drawn from [114]. Kernel density estimation (KDE) is a method of estimating the

probability distribution of a random variable based on a random sample.

Definition 16 (Center of cluster) Let there be a cluster Cl = {x1, x2, . . . , xnl
} where

xi = (xi1, xi2, . . . , xim), m = |A|. The center of Cl is then defined as:

Zl = {zl1, zl2, . . . , zlm} (5.5)

where the jth attribute zlj (1 ≤ j ≤ m) is either zrlj or zclj . Specifically, if the jth

attribute of Zl is a numeric attribute, then its representative is calculated by using the

Definition 15 (Eq. 5.4). Otherwise, the representative of a categorical attribute of Zl
is the probability distribution on Olj estimated by the kernel density estimation method

using Eq. (2.4), which is defined as:

zclj = [P lj(ol1j),P lj(ol2j), . . . ,P lj(ol|Ol
j |j

)] (5.6)

where the probabilistic value of a categorical value olij (1 ≤ l ≤ nl) can be estimated

as:

P lj(olij) =


λj

1
|Ol

j |
+ (1− λj)fCl(olij) if olij ∈ Olj

0 otherwise
(5.7)

Example 9 In the data set shown in Table 5.3, assume that cluster C1 = {x1, x2, x3,

x5, x7, x15}. Then the center Z1 of C1 at the categorical attributes A1, A2, A3, A4 and

numeric attributes A5, A6 are {“d”: 0.2069, “b”: 0.3793, “c”: 0.2069, “a”: 0.2069},

{“b”: 0.5, “a”: 0.5}, {“f”: 0.5, “c”: 0.5}, {“e”: 0.6724, “d”: 0.3275}, 3.5556, 14.1111,

respectively.

Previous studies have used several methods to quantify the dissimilarity between a

mixed object and its center [60, 66, 80]. Particularly, distance measures such as the

Euclidean, Manhattan, Minkowski, and Mahalanobis [43] can be applied for numeric

attributes, while the simple matching dissimilarity measure [58–60, 99], the Euclidean

norm [20] and the information-theoretic based dissimilarity measure [92] can be ap-

plied for categorical attributes. In this chapter, we used the squared Euclidean and the

information-theoretic based dissimilarity measure to quantify the dissimilarity between
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numeric and categorical attributes in mixed objects, respectively. The information-

theoretic definition of similarity [81] is applicable for domains that have probabilistic

models.

Definition 17 (Dissimilarity measure for categorical attributes) Let there be two cat-

egorical values olij and ol
i
′
j

at the jth attribute. The similarity between them is defined

as:

simj(o
l
ij, o

l
i′j

) =
2 log f(olij, o

l
i′j

)

log f(olij) + log f(ol
i′j

)
(5.8)

where f(olij, o
l
i′j

) =
#(olij ,o

l

i
′
j
)

|Dmix| with #(olij, o
l
i′j

) is the number of mixed objects in data set

Dmix that receives the categorical values belonging to {olij, oli′j} at the jth attribute, while

f(olij) is measured by the Eq. 5.3.

The dissimilarity measure between two categorical values olij and ol
i′j

at the jth at-

tribute can be defined as:

dsimj(o
l
ij, o

l
i′j)

) = 1− simj(o
l
ij, o

l
i′j

) = 1−
2 log f(olij, o

l
i′j

)

log f(olij) + log f(ol
i′j

)
(5.9)

Example 10 In the data set shown in Table 5.3, we omit four incomplete objects from

the data set. The dissimilarity of categorical values “d” and “b” in the attribute A1 is

dsim1(“d”,“b”) = 1− 2×log( 6
11

)

log( 3
11

)+log( 3
11

)
= 0.5335.

Definition 18 (Dissimilarity between an object and a cluster) Let there be a cluster

Cl and a mixed object xi = (xi1, xi2, . . . , xim). The dissimilarity between xi and the

center Zl = {zl1, zl2, . . . , zlm} at the jth attribute is defined as:

disj(xi,Zl) =

(xij − zrlj )2 if Aj is a numeric attribute∑
olij∈Ol

j
P lj(olij)dsimj(xij, o

l
ij) if Aj is a categorical attribute

(5.10)

Specifically, the dissimilarity between xi and Zl at the jth attribute is measured based

on the type of this attribute. For numeric attributes, the squared Euclidean distance is

used to quantify the distance between the mean of clusters and the numeric value of

mixed objects. For categorical attributes, the proximity is measured by accumulating

the probability distribution onOlj and the dissimilarity between jth component xij of the

object xi and the jth component zclj of the center Zl. Finally, the dissimilarity between
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mixed object xi and cluster center Zl is defined as follows:

dis(xi,Zl) =
m∑
j=1

disj(xi,Zl) (5.11)

Example 11 In the data set shown in Table 5.3, assume that cluster C1 = {x1, x2, x3,

x5, x7, x15} and its cluster Z1 is
{

{“d”: 0.2069, “b”: 0.3793, “c”: 0.2069, “a”: 0.2069},

{“b”: 0.5, “a”: 0.5}, {“f”: 0.5, “c”: 0.5}, {“e”: 0.6724, “d”: 0.3275}, 3.5556, 14.1111
}

.

The dissimilarity between x1 = {d, b, f, e, 7, 14} and Z1 is dis(x1,Z1) = 0.3818 + 0.5 +

0.3155 + 0.2489 + 11.8642 + 0.0123 = 13.3227.

In the following, two measures for the imputation step are presented. The first measure

is the IS measure (ISM). It is used to evaluate the degree of associations between two

sets of categorical values in a data object. The ISM was first introduced by Tan et al.

[107]. It contains the product of two quantities: interest factor and support count that

compute the correlations between values of different attributes in an object as defined

in Eq. 4.2.

Definition 19 (IS measure [24]) Let there be a set T that contains both complete

and incomplete categorical objects. Let A′ = {A′1, A
′
2, . . . , A

′

m′
} and A′′ = {A′′1 , A′′2 ,

. . . , A′′
m′′
} (A′ ,A′′ ⊂ A;m

′
,m

′′
< m) be two sets of categorical attributes that contain

missing values and non-missing values in T , respectively. For all a′ = {a′1, a
′
2, . . . , a

′
n}

∈ A′1×A
′
2× · · · ×A

′

m
′ and a′′ = {a′′1 , a

′′
2 , . . . , a

′′
n} ∈ A

′′
1 ×A

′′
2 × · · · ×A

′′

m′′
, the IS measure

between a′ and a′′ is defined as:

IS(a
′
, a
′′
) =

Support(a′ , a′′)√
Support(a′)× Support(a′′)

(5.12)

Where Support(a′ , a′′) = #(a
′
,a
′′
)

|T | , #(a
′
, a
′′
) is the number of mixed objects that contain

both a′ and a′′.

The second measure is the missing-complete similarity measure (MCS). We extend the

information-theoretic based similarity measure Eq. (5.8) to make it applicable for mea-

suring the proximity of complete and incomplete objects.
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Definition 20 (Missing-complete similarity measure (MCS measure)) Let there be

a set T that contains both complete and incomplete objects. Let there be two categorical

values olij and ol
i′j

appearing in T at the jth attribute. The similarity between them is

defined as:

simmis
j (olij, o

l
i′j

) =


2 log fT (olij ,o

l

i
′
j
)

log fT (olij)+log fT (ol
i
′
j
)

if olij 6=? and ol
i′j
6=?

0 otherwise
(5.13)

where fT (olij) =
#T (olij)

nT
, #T (olij) denotes the number of olij appearing in T and nT

denotes the number of objects in T .

Let xi = (xi1, xi2, . . . , xim) and xi′ = (xi′1, xi′2, . . . , xi′m) be the complete mixed object

and incomplete mixed object, respectively. The MCS between xi and xi′ is then defined

as follows :

MCS(xi, xi′ ) =
m∑
j=1

simmis
j (xid, xi′d) (5.14)

where the jth attributes of xi and xi′ are categorical attributes.

Example 12 This example illustrates how to impute missing values in categorical at-

tributes using the IS and MCS measures. The subset that contains complete categorical

objects extracting from Table 5.3 is shown in Table 5.4. Assume that the incomplete

Table 5.4: The complete categorical data set extracting from Table 5.3

Object
Attribute Ac1 Ac2 Ac3 Ac4

xc1 d b f e
xc2 b b c e
xc3 b b c e
xc4 a b a b
xc5 c a f d
xc7 a a c e
xc9 c b a c
xc11 d a d c
xc12 d b d d
xc14 a a d d
xc15 b a f e

categorical object xc6 = 〈d, b, f, ?〉 in Table 5.3 is chosen for imputation. The DT that
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uses the attribute Ac4 as the class attribute is built for xc6 based on the data set in Table

5.4 (Fig. 5.3). The object xc6 is then assigned to leaf 7. The set of complete categorical 
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Figure 5.3: Tree for the missing attribute Ac4 in xc6

objects that are correlated with xc6 are {xc1, xc2, xc3, xc7, xc15}. The set of categorical values

in the complete attributes Ac1, Ac2, Ac3 contains {d, b, f}, {b, b, c}, {a, a, c} and {b, a, f}.

The set of categorical values in the incomplete attribute Ac4 contains {e}. The possible

imputed value is only e. Thus it is chosen for imputing the missing value in xc6, i.e.,

xc6 = 〈d, b, f, e〉.

Next, assume that the incomplete categorical object xc8 = 〈b, a, ?, ?〉 in Table 5.3 is

chosen for imputation. There are two missing values in xc8 at the attributes Ac3 and Ac4.

Therefore, two DTs that use the attribute Ac3 and Ac4 as the class attributes are built for

xc8 based on the data set in Table 5.4 (Fig. 5.4), respectively. For the missing value in
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Figure 5.4: Trees for the incomplete categorical object xc8

the attribute Ac3, the object xc8 is assigned to leaf 8 of the tree 5.4a. The set of complete

categorical objects that are correlated with xc8 contains {xc5, xc15}. For the missing value

in the attribute Ac4, the object xc8 is assigned to leaf 1 of the tree 5.4b. The set of com-
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plete categorical objects that are correlated with xc8 contains {xc2, xc3, xc15}. Because xc8

falls into multiple leaves, the objects from all these leaves are grouped in one collection.

Thus, the set of correlated objects are {xc2, xc3, xc5, xc15}. The set of categorical values in

the complete attributes Ac1, Ac2 contains {b, b}, {c, a}, {b, a}, while the set of categorical

values in the incomplete attribute Ac3 and Ac4 contains {c, e}, {f, d} and {f, e}. The IS

and MCS measures for each pair of categorical values in the complete attributes and in-

complete attributes are: IS({b, b},{c, e}) = 0.5√
0.5×0.5 = 1, IS({c, a},{f, d}) = 0.25√

0.25×0.25 = 1,

IS({b, a},{f, e}) = 0.25√
0.25×0.25 = 1, MCS(xc2, x

c
8) = MCS(xc3, x

c
8) = 2 log 0.8

log 0.8+log 0.8
+ 2 log 1

log 0.4+log 0.6

+ 0 + 0 = 1, MCS(xc5, x
c
8) = 2 log 1

log 0.2+log 0.8
+ 2 log 0.6

log 0.6+log 0.6
+ 0 + 0 = 1, MCS(xc15, x

c
8) =

2 log 0.8
log 0.8+log 0.8

+ 2 log 0.6
log 0.6+log 0.6

+ 0 + 0 = 2. The affinity degree of possible imputed values

is calculated by the average of the IS and MCS measures for each pair of categorical

values in the complete attributes and incomplete attributes. Thus, δ({c, e}) = (1+1)/2

= 1, δ({f, d}) = (1+1)/2 = 1, δ({f, e}) = (1+2)/2 = 1.5. The actual imputed values is

chosen by random sampling according to the affinity degrees. Specifically, the sampling

probabilities of {c, e}, {f, d}, {f, e} are 0.2857, 0.2857 and 0.4286, respectively. Thus, the

{f, e} has its probability of been chosen as the actual imputed values for xc8.

Based on the above definitions, the problem of clustering for mixed numeric and cate-

gorical data sets with missing values aims to minimize the following objective function:

F(U ,Z) =
k∑
l=1

n∑
i=1

ui,l × dis(xi,Zl) (5.15)

subject to 
∑k

l=1 ui,l = 1 1 ≤ i ≤ n

ui,l ∈ {0, 1} 1 ≤ l ≤ k, 1 ≤ i ≤ n

(5.16)

where U = [ui,l]n×k is the partition matrix, ui,l takes value 1 if object xi is in cluster Cl
and 0 otherwise.

5.4 The proposed k-CMM algorithm
The general framework of the proposed k-CMM algorithm is represented in Fig. 5.5. Ac-

cording to this flowchart, k-CMM algorithm performs three phases: initialization phase,
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Figure 5.5: The flowchart of k-CMM algorithm for mixed data with missing values

imputation phase and clustering phase. In the initialization phase, a full mixed data set

with missing values is divided into two sub-datasets: complete data set and missing data

set, denoted as D1 and D2, respectively. Each complete object in D1 is then split into

two sub-objects based on the type of attributes. Specifically, the algorithm separately

extracts numeric values and categorical values from mixed objects and puts them into

two sub-sets Dr1 and Dc1, respectively. The same step is applied for missing objects in

D2. The numeric values and categorical values are put into two sub-sets Dr2 and Dc2,

respectively. Next, the algorithm randomly initializes k clusters from the complete set

D1. For every incomplete categorical object in the set Dc2, denoted as xci , the algorithm

uses a decision tree-based imputation approach to build a DT for each missing attribute

of xci . Particularly, each missing attribute is considered as a class attribute to construct

a DT from the complete categorical data set Dc1. The incomplete categorical object xci is

then assigned to the corresponding tree’s leaf that contains a set of correlated objects

with xci . Once xci is assigned to a leaf node, the missing values in this object are imputed

using the possible imputed values from the correlated objects that are found in the leaf

node. In addition, the missing numeric object that has the same id as xci ; i.e., xri in

Dr2, is imputed by using the means of values in the numeric attributes of the complete

numeric objects in Dr1 which have the corresponding ids with those of correlated objects

obtained in the previous step. After that, the imputed objects xri and xci are merged
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to form the complete mixed numeric and categorical object, denoted as xi. It is worth

to note that the order of attributes of xi after merging is the same as that of mixed

objects in the original data set Dmix. Object xi is then put into the D1 data set, xri and

xci are eliminated from the Dr2 and Dc2, respectively. Next, the algorithm performs the

clustering phase by assigning objects in the D1 data set into appropriate clusters and

updating centers of clusters. The imputation phase is repeated until the Dc2 is empty. If

the termination condition is not met, the algorithm performs the clustering phase until

all clusters are stable. Finally, it returns k clusters.

Algorithm 4: k-CMM ALGORITHM

input : Dmix: a mixed database, k: a user-specified integer number to specify the
number of clusters

output: k clusters of Dmix
1 Scan Dmix once to split it into two sub-datasets, Dmix = D1 (complete data set) +
D2 (incomplete data set)

2 Extract mixed attributes of complete objects in D1 to single typed objects such that
A = Ar ∪ Ac, Dr1 contains numeric objects and Dc1 contains categorical objects

3 Extract mixed attributes of missing objects in D2 to single typed objects such that
A = Ar ∪ Ac, Dr2 contains numeric objects and Dc2 contains categorical objects

4 Randomly initiate k cluster centers from D1 Z(0) = {Z(0)
1 , . . . ,Z(0)

k }
5 U ← ∅, t = 0
6 foreach object xci in Dc2 do
7 IDList, xci = Categorical_Imputation(xci , Dc1)
8 xri = Numeric_Imputation(xri , Dr1, IDList)
9 xi = merge xri and xci

10 D1 = D1 ∪ {xi}, Dr2 = Dr2 \ {xri}, Dc2 = Dc2 \ {xci}
11 Keep Z(t) fixed, generate U (t) to minimize the distance between objects and

cluster centers using Eq. (5.11)
12 Keep U (t) fixed, update Z(t) using Eq. (5.5)
13 t = t+ 1

14 end
15 while Clusters are not convergent do
16 Keep Z(t) fixed, generate U (t) to minimize the distance between objects and

cluster mode using Eq. (5.11)
17 Keep U (t) fixed, update Z(t) using Eq. (5.5)
18 t = t+ 1

19 end
20 return k clusters;

The pseudo code of k-CMM algorithm is shown in Algorithm 4. k-CMM first scans

the mixed data set Dmix to divide it into two sub-datasets, namely D1 and D2, which are
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the complete and incomplete data sets, respectively (line 1). It then extracts separately

mixed objects in D1 and D2 to single typed objects. More specifically, complete numeric

objects, complete categorical objects, missing numeric objects, missing categorical ob-

jects are stored in Dr1, Dc1, Dr2, and Dc2, respectively (lines 2 and 3). Next, the algorithm

randomly initiates k cluster centers from D1 (line 4). Each center is represented by the

Eq. (5.5). Two variables U and t are created to store clusters and count for the number

of iterations of the clustering process (line 5). In the next step, k-CMM scans all ob-

jects in Dc2 to impute missing values inside these objects and assign them into clusters

(lines 6-14). For each object xci in Dc2, k-CMM calls the Categorical_Imputation and

Numeric_Imputation procedures to replace missing values in missing categorical object

and missing numeric object, respectively.

The pseudo code of the Categorical_Imputation procedure is shown in Algorithm 5.

The input of this procedure is a missing categorical object xci and the set of complete

categorical objects Dc1. It first creates four variables Ac, DTSet, NodeSet, and Ωi to

temporally store missing attributes, decision trees, sets of correlated objects and sets

of possible imputed values during the imputation process, respectively (line 1). It then

searches for attributes that contain missing values (missing attributes for shortly) and

puts them into the set Ac (line 2). For every missing attribute Aci in Ac, the procedure

checks if there exists a DT that uses the Aci as the class attribute of this DT. If there is

no such DT, the procedure builds a DT by using the missing attribute Aci as the class

attribute and complete categorical objects from Dc2 to generate decision rules. In this

research, we used C4.5 [64] to generate the DTs. This process is performed until all

missing attributes in Aci have their corresponding DTs (lines 3-8). The resulting DTs are

then put into the DTSet. After constructing the DTs, object xci is assigned to the leaf

node of the tree that has decision rule(s) corresponding to the values of xci . When xci

is assigned to the appropriate leaves, each leaf node consists of complete categorical

objects from Dc1 that are correlated with xci . The resulting nodes are put into the set

NodeSet (lines 9-12). Each leaf node in the NodeSet is represented as a list of objects.

If xci falls into multiple leaves, the procedure will merge these leaves and group objects

into one collection T (line 13). In the next step, the procedure chooses complete objects

in T that have the maximum number of complete attributes in common to the xci . In
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Algorithm 5: CATEGORICAL_IMPUTATION PROCEDURE

input : xci : a missing categorical object, Dc1: the set of complete categorical
objects

output: IDList: the list of id numbers of correlated objects with xri , the imputed
categorical object xci

1 Ac ← ∅, DTSet← ∅, NodeSet← ∅, Ωi ← ∅
2 Put attributes having missing values in xci to Ac
3 foreach attribute Aci in Ac do
4 if DTSet does not contain decision tree DT for Aci then
5 Build a decision tree DT that uses Aci as class attribute from Dc1
6 DTSet← DT

7 end
8 end
9 foreach decision tree DT in DTSet do

10 Assign xci into leaf nodes of corresponding decision tree DT
11 NodeSet← chosen leaf nodes
12 end
13 Group objects in NodeSet into one collection T
14 Find objects in T that match with the maximum number of complete attribute(s)

in xci , and let N be the number of such objects, put their ids into IDList
15 for i = 1 to N do
16 Ωi ← possible imputed value(s) from the ith matched object
17 Calculate the IS measure by Eq. (5.12) for Ωi

18 Calculate the MCS measure by Eq. (5.13) between the ith matched object and
xci

19 Calculate the affinity degree δi for Ωi based on IS and MCS
20 end
21 Impute missing value(s) for xci by using random sampling from the set of possible

imputed values {Ω1, . . . ,ΩN} based on the sampling probabilities specified by
the set of affinity degrees {δ1, . . . , δN}

22 return IDList, xci ;

addition, the id of the most closely correlated objects with xci are put into the IDList.

This list is later used in the Numeric_Imputation procedure (line 14). The categorical

values in these selected objects corresponding to the missing attributes in the xci are

then taken to be the possible imputed values. The procedure then calculates the IS and

MCS measures for possible imputed values in each complete object, using Eqs. 5.12

and 5.13, respectively. Next, each list of possible imputed values is associated with an

affinity degree given by the average of the IS and MCS values (lines 15-20). When

affinity degrees of possible imputed values are determined, the procedure assigns actual

imputed values by using random sampling from the list of possible imputed values based
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on their affinity degrees (line 21). Finally, it returns the IDList and the complete xci in

which all missing values are imputed (line 22).

Algorithm 6: NUMERIC_IMPUTATION PROCEDURE

input : xri : a missing numeric object, Dr1: the set of complete numeric objects,
IDList: the list of id numbers of correlated objects with xri

output: the imputed numeric object xri
1 Ar ← ∅
2 Put attributes having missing values in xri to Ar
3 Get the set of correlated numeric objects in Dr1 that have the id in IDList,

denoted as CorrSet
4 foreach attribute Ari in Ar do
5 Replace the missing value by mean of numeric values in Ari of CorrSet, using

Eq. (5.4)
6 end
7 return xri ;

The pseudo code of the Numeric_Imputation procedure is shown in Algorithm 6.

The input of this procedure is a missing numeric object xri , the set of complete numeric

objects Dr1 and the list of ids of correlated objects with xri that is obtained in Algorithm

5. The procedure first finds attributes that contain missing values and puts them into

the set Ar (line 2). It then extracts a list of correlated objects with xri based on the ids

in IDList and puts these objects into CorrSet (line 3). For each missing attribute Ari
in Ar, the procedure replaces the missing values in this attribute by using the mean of

numeric values appearing at the same attribute of complete objects in CorrSet, using

Eq. 5.4 (lines 4 to 6). Finally, it returns the complete object xri in which all missing

values are imputed (line 7).

After all missing values are imputed in the first algorithm, k-CMM merges xri and xci

into a mixed complete object xi such that the order of attributes of xi is the same as that

of objects in the original data set (line 9). It then adds the xi into D1 and removes xri

and xci from Dr2 and Dc2, respectively (line 10). In the next step, k-CMM assigns objects

in D1 into appropriate clusters and updates cluster centers (lines 11-13). The algorithm

works in the same manner for all incomplete objects in theDc2 andDr2. If the termination

condition is not met, k-CMM performs the clustering phase until all clusters are stable

(lines 15-19). Finally, it returns k clusters as the desired output (line 20).

In general, the main flow of clustering missing categorical data shown in Chapter 4
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resembles clustering missing mixed data, except that we change methods to represent

the centers of clusters, quantify the distances and impute only for missing categorical

values. It is worth to note that clustering for missing mixed data is nontrivial and more

challenging than clustering for missing categorical data. It is because different attributes

in mixed data need to be treated in a heterogeneous way. Thus, the framework for

mixed data needs to be designed in a way that explicitly accounts for the underlying

heterogeneity. It handles four main tasks: missing numeric data imputation, missing

categorical data imputation, numeric data clustering and categorical data clustering,

while the framework for categorical data handles two tasks of clustering and imputation

for categorical type.

5.5 Comparative Experiment
Experiments were performed to evaluate the performance of the proposed k-CMM on a

high-performance computing servers VPC cluster [38]. Each node is equipped with an

Intel Xeon Gold 6130 2.1GHz (16 Cores×2), 64 GB of RAM, running CentOS 7.2. The

proposed algorithm was implemented in Python using PyCharm. The source code and

data sets are provided at https://goo.gl/twPGZX. The performance of k-CMM algorithm

is compared with k-prototypes algorithm [60]. Each algorithm was run ten trials for

each data set. The overall performances were then calculated by averaging the results

of all trials.

5.5.1 Data sets
The performances of the algorithms have been compared on both synthetic and real

data sets. The synthetic data set SD2K is the first 2,000 rows of the SD10K data set

generated by the Dataset Generator [47]. It contains 2,000 instances consisting of four

categorical attributes and two numeric attributes. The instances are classified into two

classes: c1 and c2 with the distributions are 51% and 49%, respectively. Moreover, eight

benchmark mixed data sets with missing values were used for the experiment. The

characteristics of these data sets are shown in Tables 5.5 and 5.6. They are real-life data

sets having various characteristics that were obtained from the UCI Machine Learning

84

https://goo.gl/twPGZX


Chapter 5 5.5. COMPARATIVE EXPERIMENT

Table 5.5: Characteristics of the datasets

# Dataset #instances #num attrs #cat attrs #classes
1 Credit approval 690 6 9 2
2 Cylinder bands 540 20 19 2
3 Dermatology 366 33 1 6
4 Heart disease 303 5 8 5
5 Hepatitis 155 6 13 2
6 Horse colic 299 11 16 2
7 Postoperative patient 90 1 7 3
8 Sponge 76 3 42 2
9 SD2K 2,000 2 4 2

Table 5.6: Missing values information inside data sets

# Data set #missing attrs #missing objs #missing values
1 Credit approval 7 37 67
2 Cylinder bands 28 263 999
3 Dermatology 1 8 8
4 Heart disease 2 6 6
5 Hepatitis 15 75 167
6 Horse colic 19 293 1,602
7 Postoperative patient 1 3 3
8 Sponge 1 22 22
9 SD2K 6 911 1,136

Repository [34].

1. Credit approval is a mixed data set that concerns credit card applications where

attribute names and values have been changed to meaningless symbols to protect

the confidentiality of the data. The instances are classified into two classes: “+”

(approval) and “-” (disapproval). Missing values appear in both numeric and

categorical attributes.

2. Cylinder bands is a mixed data set for the classification task to classify a process

delay known as cylinder banding in rotogravure printing is banded or not. Missing

values appear in 19 numeric attributes and nine categorical attributes.

3. Dermatology is a mixed data set that contains instances of dermatology cancer

occurrences defined by 34 attributes. The family history attribute is a categorical

feature that has the value 1 if the disease has been observed in the family, and

0 otherwise. Other attributes are given a degree in the range of 0 to 3 where

85



Chapter 5 5.5. COMPARATIVE EXPERIMENT

0

20

40

60

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

Number of objects

C
um

ul
at

iv
e 

su
m

 o
f m

is
si

ng
 v

al
ue

s

(a) Credit approval
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(b) Cylinder bands
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(c) Dermatology
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(d) Heart disease
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(e) Hepatitis
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(f) Horse colic
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(g) Postoperative patient
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(h) Sponge
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(i) Synthetic SD2K

Figure 5.6: Cumulative sum of missing values in data sets

0 indicates that the feature was not present, “3” indicates the largest amount

possible, and “1”, “2” indicate the relative intermediate values. The instances are

classified into six classes representing six kinds of dermatology diseases. Missing

values appear only in one numeric attribute.

4. Heart disease is a mixed data set for the classification task to classify the presence

of heart disease in the patients. The class attribute is integer valued from 0 (no

presence) to 4. It contains 76 attributes, but a subset of 14 of them was mostly

used. In this work, we used the Heart disease data set generated at the Cleveland

clinic for the experiment. This data set contains 303 instances defined by 13

attributes. The instances are classified into two classes: 0 (normal) and 1 to 4
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(people with different degrees of heart disease). Missing values appear in two

categorical attributes.

5. Hepatitis is a mixed data set for the classification tasks to classify the status of

patients who have hepatitis based on their hepatitis information such as bilirubin,

albumin, sgot and prothrombin time. The instances are classified into two classes:

died or not. Missing values appear in five numeric attributes and ten categorical

attributes.

6. Horse colic is a mixed data set for the classification task to predict if a horse can

survive based upon past medical conditions. The training set that contains 299

instances is used for the experiment. The instances are classified into two classes:

1 (yes) and 2 (no) indicating if the lesion is surgical or not. Missing values appear

in seven numeric attributes and twelve categorical attributes.

7. Postoperative Patient is a mixed data set for the classification task to determine

where patients in a postoperative recovery area should be sent to next. The in-

stances are classified into three classes: “I”, “S” and “A” that correspond to pa-

tient sent to intensive care unit, patient prepared to go home and patient sent

to general hospital floor, respectively. Missing values appear only in the numeric

attribute.

8. Sponge is a mixed data set for clustering task to assign Atlantic Mediterranean ma-

rine sponges into several groups. The instances are classified into twelve groups

induced by the donor’s conceptual clustering algorithm. In our work, we used the

last attribute as the class attribute and relabeled the majority values 1 as “P” (pos-

itive) and “N” (all others as negative). All missing values appear in a categorical

attribute.

Note that, the number of attributes of each data set shown in Table 5.5 is the sum of

the number of numeric attributes and the number of categorical attributes (excluding

the class attribute). By using these data sets, the performance of k-CMM algorithm is

evaluated for the different types of data encountered in real-life applications.

1https://www.openml.org/d/1001
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5.5.2 Experimental results
We used three metrics: Purity, Normalized Mutual Information (NMI) and Adjusted

Rand Index (ARI) to evaluate the quality of clustering results. These metrics use class

information in original data sets, which can be called as the gold standard [85], and

clustering results generated by an algorithm to measure how well the output clusters

match the gold standard classes. Particularly, we omitted the class attributes in data sets

during the clustering process and used them later for evaluating the clustering results.

The definitions of these metrics are defined in Section 2.3.2.

Table 5.7: Comparison of the Purity results between k-CMM and k-prototypes

# Data set k-prototypes k-CMM
1 Credit approval 0.562 0.6581
2 Cylinder bands 0.6625 0.6678
3 Dermatology 0.354 0.306
4 Heart disease 0.541 0.548
5 Hepatitis 0.794 0.794
6 Horse colic 0.635 0.685
7 Postoperative patient 0.7176 0.711
8 Sponge 0.921 0.921
9 SD2K 0.679 0.6904

The purity results of k-CMM are compared with k-prototypes. Results (Table 5.7)

show that k-CMM outperforms k-prototypes for five data sets: Credit approval, Cylinder

bands, Heart disease, Horse colic, and SD2K, while k-prototypes outperforms k-CMM

on the Dermatology, Postoperative patient data sets. They have the same results on the

Hepatitis and Sponge data sets. In general, k-CMM works well on data sets having more

missing values such as the Cylinder bands, Horse colic, and SD2K data sets. Regarding

the degree of missing values, it can be observed that the purity results of k-CMM are

higher in case of data sets having missing values on both numeric and categorical at-

tributes such as Credit approval, Cylinder bands, Hepatitis, and Horse colic, or in case of

data sets having missing values only on categorical attributes such as Heart disease and

Sponge data sets. In the case of the Dermatology and Postoperative patient data sets,

the purity results of k-prototypes are higher than k-CMM because the missing values ap-

pear only on numeric attributes. Particularly, if no missing values appear on categorical

attributes, then missing numeric values are imputed using the means of corresponding
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numeric attributes for each data set.

k-CMM was also compared with k-prototypes in terms of NMI for nine data sets.

NMI results of the compared algorithms are shown in Tables 5.8. Particularly, k-CMM

outperforms k-prototypes in most cases except for the Cylinder bands and SD2K data

sets. Regarding the degree of missing values, it can be observed that the NMI results of

k-CMM on data sets in which missing values appear on many categorical attributes such

as Credit approval and Hepatitis are much higher than the NMI results of k-prototypes.

Table 5.8: Comparison of the average NMI results between k-CMM and k-prototypes

# Data set k-prototypes k-CMM
1 Credit approval 0.016 0.1003
2 Cylinder bands 0.1576 0.1376
3 Dermatology 0.0952 0.101
4 Heart disease 0.056 0.0593
5 Hepatitis 0.0041 0.0127
6 Horse colic 0.011 0.0214
7 Postoperative patient 0.0335 0.0369
8 Sponge 0.015 0.0156
9 SD2K 0.251 0.2406

Table 5.9: Comparison of the average ARI results between k-CMM and k-prototypes

# Data set k-prototypes k-CMM
1 Credit approval 0.004 0.1144
2 Cylinder bands 0.1056 0.0707
3 Dermatology 0.0306 0.066
4 Heart disease 0.076 0.0874
5 Hepatitis 0.0326 0.046
6 Horse colic -0.025 0.006
7 Postoperative patient 0.0197 -0.014
8 Sponge 0.009 0.013
9 SD2K 0.129 0.134

Two algorithms were also compared in terms of ARI for the nine data sets. The

results are shown in Tables 5.9. Particularly, k-CMM outperforms k-prototypes in most

cases except for the Cylinder bands and Postoperative patient data sets. Regarding the

degree of missing values, k-CMM works well on data sets having missing values only on

categorical attributes or where missing values occur in categorical attributes more than
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numerical attributes.

5.5.3 Significant Analysis

Table 5.10: Significant analysis of the k-CMM algorithm

#
Data set

Purity NMI ARI
1st rank 2nd rank 1st rank 2nd rank 1st rank 2nd rank

1 Credit approval X X X
2 Cylinder bands X X X
3 Dermatology X X X
4 Heart disease X X X
5 Hepatitis X X X
6 Horse colic X X X
7 Postoperative patient X X X
8 Sponge X X X
9 SD2K X X X

In this section, we analysed the significance of the clustering results of k-CMM ob-

tained in the previous section. We considered the proportion of categorical and nu-

merical attributes inside data sets. We denoted data sets having more missing values

in categorical attributes than numerical attributes as cat-mixed data sets, while those

having more missing values in numerical attributes than categorical attributes as num-

mixed data sets. Table 5.10 shows the summary of Purity, NMI and ARI results of k-CMM

proposed in this chapter. It can be observed that k-CMM has the highest values for all

Purity, NMI and ARI metrics on five over nine data sets: Credit approval, Heart disease,

Hepatitis, Horse colic, Sponge; and highest values for two metrics on two over nine

data sets: Dermatology and SD2K. On Cylinder bands, k-CMM has the highest value

for Purity value. On Postoperative patient, it has the highest value for NMI value. It

can be observed that the ARI results of k-CMM are low on data sets in which missing

values appear only in numerical attributes or spread on many numeric and categorical

data such as Postoperative patient and Cylinder bands data sets. Generally, from the

practical results, it can be observed that k-CMM can work well on cat-mixed rather than

num-mixed data sets. k-CMM also can work well for both real or synthetic data sets.

It means that the imputation method used in k-CMM is suitable for imputing missing

categorical attributes and thus enhances the performance of the clustering algorithm.
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5.5.4 Execution time
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Figure 5.7: Average runtimes for various number of clusters

In this section, the average execution time of k-CMM was evaluated for the various

number of clusters for nine mixed data sets. The results are shown in Figure 5.7. In

each of these figures, the vertical axis and horizontal axis represent the execution time

in seconds and the number of clusters, respectively. For all data sets, when the number

of clusters is increased, the time required for clustering them also increases. On Credit

approval, k-CMM takes on average 350.2538 (s), 397.8415 (s), 431.0505 (s), 440.5416

(s) and 452.5545 (s) for 2, 3, 4, 5 and 6 clusters, respectively. On SD2K, k-CMM

takes on average 7384.7626 (s), 8970.0156 (s), 9740.4216 (s), 9836.2261 (s) and

10011.9882 (s) for 2, 3, 4, 5 and 6 clusters, respectively. Similar results are observed
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for the other data sets.

5.5.5 Memory usage

2 3 4 5 6

0.32

0.34

0.36

0.38

M
em

or
y

us
ag

e
(M

B
)

Credit approval

2 3 4 5 6

0.94

0.96

0.98

Cylinder bands

2 3 4 5 6

0.17

0.18

0.19

0.2

Dermatology

2 3 4 5 6

0.18

0.19

0.2

M
em

or
y

us
ag

e
(M

B
)

Heart disease

2 3 4 5 6

0.5

0.52

0.54

Hepatitis

2 3 4 5 6

0.46

0.48

0.5

0.52

Horse colic

2 3 4 5 6

0.1

0.11

0.12

Number of clusters

M
em

or
y

us
ag

e
(M

B
)

Postoperative patient

2 3 4 5 6

0.45

0.5

0.55

Number of clusters

Sponge

2 3 4 5 6

0.52

0.53

0.53

0.54

Number of clusters

SD2K

Figure 5.8: Average memory usage for various number of clusters

The average memory usage of the proposed k-CMM algorithm was also evaluated for

the various number of clusters for nine mixed data sets. The results are shown in Figure

5.8 in terms of memory usage in megabytes (vertical axes) for the various number of

clusters (horizontal axes). In general, the memory usage increases when the number of

clusters is increased in most cases and k-CMM also has linear scalability for all data sets.

On Credit approval, k-CMM takes on average 0.3214 (MB), 0.3515 (MB), 0.3695 (MB),

0.3768 (MB) and 0.3818 (MB) for 2, 3, 4, 5 and 6 clusters, respectively. On Cylinder

bands, k-CMM takes on average 0.928 (MB), 0.9499 (MB), 0.9511 (MB), 0.9634 (MB)
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and 0.9768 (MB) for 2, 3, 4, 5 and 6 clusters, respectively. Similar results are observed

for other data sets.

5.5.6 Scalability

100 200 300 400 690
0

100

200

300

400

1.22 2.41
26.61

61.98

350.25

A
ve

ra
ge

ru
nt

im
e

(s
)

Credit approval

100 200 300 400 540
0

1,000

2,000

3,000

4,000

5,000

6,000

52.79 264.42
840.64

1,716.93

5,165.45

Cylinder bands

100 200 250 300 366
0

10

20

30

40

50

5.67

12.35
15.18

37.74

45.86

Dermatology

100 150 200 250 303
0

5

10

15

20

0.63 0.92

4.97
6.3

17

A
ve

ra
ge

ru
nt

im
e

(s
)

Heart disease

30 60 90 120 155
0

10

20

30

40

0.93
4.75

11.03

21.42

36.13

Hepatitis

100 150 200 250 299

50

100

150

200

250

28.71

55.47

111.89

166.69

232.21
Horse colic

50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.15 0.17
0.21

0.37 0.37

Instance count

A
ve

ra
ge

ru
nt

im
e

(s
)

Postoperative patient

45 50 60 70 76
5

10

15

20

25

30

35

10.07
12

18.37

25.69

32.11

Instance count

Sponge

400 800 1200 1600 2000

0.2

0.4

0.6

0.8

1
·104

158.7
741.5

2,011.28

4,175.37

7,431.08

Instance count

SD2K

Figure 5.9: Average runtimes when varying the database size

Another experiment was performed to assess the scalability of k-CMM algorithms.

The execution times of k-CMM were measured while varying the number of instances

for the nine mixed data sets. The results are shown in Figure 5.9. In this figure, vertical

axes indicate the average execution times in seconds, while horizontal axes represent

the number of instances used. In general, k-CMM has linear scalability for all data

sets. On Credit approval, k-CMM takes on average 1.2233 (s), 2.4053 (s), 26.6075 (s),

61.9798 (s) and 350.2538 (s) for 100, 200, 300, 400 and 690 instances, respectively.

Similar results are observed for other data sets.

Moreover, the memory usage of k-CMM was also measured on the mixed data set

while varying the number of instances. The results are shown in Figure 5.10. In this
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Figure 5.10: Average memory usage when varying the database size

figure, vertical axes indicate the average memory usage in megabytes, while horizontal

axes represent the number of instances used. In general, k-CMM also has linear scala-

bility for all data sets. On Credit approval, k-CMM takes on average 0.1221 (MB), 0.14

(MB), 0.3081 (MB), 0.3298 (MB) and 0.3214 (MB) for 100, 200, 300, 400 and 690

instances, respectively. Similar results are observed for other data sets.

5.6 Conclusion
Missing values appear commonly in data sets and can significantly affect the efficacy

of the research study. It can be seen that many mixed numeric and categorical data

sets in real-life applications contain missing values. It is also worth to remark that clus-

tering is one of the most popular tasks in data mining, and clustering mixed data sets

into meaningful groups is practically useful because frequently encountered objects in

real-life data sets are mixed objects. This chapter has addressed the above two issues
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by proposing an algorithm named k-CMM for clustering mixed numeric and categorical

data sets with missing values. It integrates the imputation and clustering steps into a

common framework to improve clustering results. In the imputation step, it first uses

the decision-tree based method to find the set of correlated objects. It then uses the

IS and MCS measures to search for possible imputed values from the correlated set to

impute for missing values in categorical attributes. The missing values in numeric at-

tributes are imputed using the mean of corresponding attributes from the correlated

set. In the clustering step, k-CMM uses the kernel density estimation approach and the

mean to define cluster centers for numeric and categorical attributes, respectively. In

addition, to quantify the proximity between data objects, it uses the squared Euclidean

and the information-theoretic based dissimilarity measure for numeric and categorical

attributes, respectively. Experimental results have shown that k-CMM is more efficient

than k-prototypes in terms of clustering quality in most cases. It means that the imputa-

tion method used in the paper can enhance clustering results. Generally, k-CMM has a

comparative performance in terms of Purity, NMI and ARI. Moreover, we also evaluated

the runtime, memory consumption, and scalability of k-CMM. Results show that k-CMM

is scalable with respect to the number of instances.
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Chapter 6

An Improved Cluster Center

Initialization for Categorical Data

Clustering

6.1 Introduction
Clustering has a long history in data mining and knowledge discovery. It is a common

data mining tool employed in many fields ranging from computer science, engineering,

medical science to social science and economics. Generally, clustering aims at parti-

tioning a set of data objects into several groups such that objects inside a group are

very similar, but are very dissimilar to objects in other groups [53]. In the literature,

distance-based clustering is preferable thanks to its ease of understanding and imple-

mentation. The algorithms of this branch can be generally categorized into two groups:

hierarchical and partitional (partitioning) clustering. Partitional clustering is different

from hierarchical clustering in pre-determining the number of clusters to be grouped.

Thus, its performances are depended on and influenced by the choice of initial cluster

centers and the number of clusters [97]. This chapter focuses on the former factor due

to the following reasons. First, initialization methods have a strong impact on clustering

results. Most algorithms use random initialization because of simplicity. Nevertheless, a

limitation of this method is in producing different results for different runs of the algo-

rithms. Among these results, low clustering quality may occur. Second, it is difficult to
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comprehend non-repeatable results because inappropriate choices may lead to highly

undesirable cluster structures. The randomly initial choices are proper in the case that

selected initial clusters are similar to the real clusters existing in data sets [18, 68, 71].

Third, it is recommended that clustering algorithms should be run multiple times from

different random configurations to find the lowest minimum of within-cluster variation.

However, such approaches would have been time-consuming to meet the convergence

criteria, and final results may still be bad. These reasons motivate the design of a non-

random initialization framework in this work for categorical data clustering.

Frequent Itemset Mining (FIM) aims to discover association rules between items

in transaction data sets [5]. It has become a popular research topic in data mining.

Although it was initially designed to find useful patterns and analyze sales data, it can

be more generally considered as the task of finding groups of attribute values frequently

co-occur in data sets [40]. However, finding a large number of itemsets that may contain

much redundancy in some cases is an inherent limitation of FIM algorithms. Thus,

many extensions to the task of FIM have been proposed to address this limitation such

as discovering closed itemsets, maximal itemsets, and generator itemsets. Maximal

frequent itemsets (MFIs) are the set of frequent itemsets that do not have supersets

that are frequent [40, 50]. Obviously, MFIs are the largest FIs. Mining MFIs is often

faster than mining the full set of FIs. This chapter applies an MFI-based approach to

form initial clusters. The reasons for using this technique are based on the following

observations:

Observation 1 A categorical data set can be considered as a data set of customer trans-

actions in which each transaction is described by items (categorical values) bought by

customers. In other words, the pattern mining techniques can be adapted to categorical

data clustering problem and vice versa.

Observation 2 A frequent pattern appears in a transaction data set such that its sup-

port is larger than or equal to a given a minimum support threshold (minsup). Partic-

ularly, if minsup is set to ∆, then at least ∆ transactions contain that frequent pattern.

It means that categorical objects corresponding to these transactions contain the same

sets of categorical values (categories) and thus make them more similar (correlated)

than other data objects. These instances can be merged to form an initial cluster for the
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clustering algorithm.

Observation 3 Two categorical objects are more similar if they have more categories in

common. The MFI can be used in this case since it represents the largest set of categories

in each object. In addition, mining MFIs is often faster and more concise than mining

the full set of frequent itemsets. Thus, MFI mining (MFIM) does not require much time

consuming when applied to the clustering problem.

The following points are the main contributions of this chapter:

• To our best knowledge, this is the first study that considers the combination of

frequent pattern mining and partitional clustering. The target is to design a non-

randomized method for clustering algorithm by exploiting the pattern mining ap-

proach instead of picking objects randomly to form initial clusters.

• We propose an algorithm named Pattern Based Clustering for categorical data

(k-PbC) that takes the advantages of non-randomized initialization to improve

clustering results. k-PbC uses an MFIM algorithm to find a list of MFIs for the

initial clusters. It is worth mentioning that there is always only a correct answer

to an MFIM task for a given transaction data set and a threshold value. Hence,

any MFIM algorithm can be adapted to the k-PbC algorithm. In this chapter, the

FPMAX algorithm [50] is extended to find patterns that contain the largest sets

of categories frequently co-occurring in a categorical data set. Objects containing

the same patterns are merged to form an initial cluster. The way of forming initial

clusters and strategy to avoid the overlaps between them are given in detail in

section 6.3. For clustering, k-PbC uses a kernel density estimation method for the

formation of cluster centers and an information-theoretic based distance method

to estimate the dissimilarities between cluster centers and data objects.

• An extensive experiment was conducted on real data sets to evaluate the perfor-

mance of k-PbC for both internal and external validation metrics. Experimental

results show that the proposed initialization step can enhance clustering results

and the proposed algorithm outperforms state-of-the-art categorical data cluster-

ing algorithms.
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The remainder of this chapter is structured into following sections. Section 6.2 reviews

related work. Section 6.3 gives preliminary definitions. Section 6.4 proposes the k-

PbC algorithm. Section 6.5 describes experimental results. Finally, Section 6.6 draws a

conclusion.

6.2 Related work

K-means-like algorithms
Fuzzy clustering

Hard clustering

Random initialization

k-modes [60]

k-representatives [99]

k-centers [20]

M-k-representatives [91, 92]

M-k-centers [91, 92]

New [91, 92]

Non-random initialization

Cao’s algorithm [18]

Bai’s algorithm [14]

Khan’s algorithm [71]

Distance algorithm [68]

Entropy algorithm [68]

CD-Clustering algorithm [89]

Figure 6.1: A taxonomy of k-means-like algorithms

The details of related clustering methods for categorical data clustering are pro-

vided in section 2.4. In the numerical setting, a variety of initialization methods were

proposed to improve the performance of k-means [19]. K-means++ [11] addresses

the problem of random initialization of k-means. It guarantees to yield an O(logk) ap-

proximation to the optimal k-means solution. Its workflow can be expressed as follows.

It first chooses an initial center C1 uniformly at random from the data set Dnum. Then,

each remaining cluster center Cl (2 ≤ l ≤ k) is selected from the remaining objects

x′ ∈ Dnum with a probability d(x′)2∑n
i=1 d(xi)

2 , where d(x) be the shortest distance from x to

the previously selected centers. In other words, k-means++ randomly chooses an ob-

ject as a new center with probability proportional to its squared distance d(x). It repeats

the previous step until k centers are chosen and then performs the clustering using the

standard k-means. It was proven to improve both the accuracy and runtime of k-means.

However, this method was designed for numerical data and may not work well for the
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categorical data setting.

Several initialization methods were proposed to improve clustering results. In k-

modes [60], Huang introduced two initialization methods. The first one selects the first

k instances from data set for forming k initial modes. However, it only works in case the

selected instances are picked from k disjoint clusters. The second one first calculates

the frequencies of categories in attributes and uses an array to keep this information in

descending order of frequency. The most frequent categories in attributes are selected

to form k modes. To avoid empty clusters, for each initial mode, it selects the data object

which is most similar to that mode and replaces it with the object as an initial mode.

The second initialization method can yield better clustering results when compared to

the first method since the former diversifies initial modes. However, it lacks a uniform

criterion in the selection of initial clusters [18].

In 2009, Cao et al. introduced a method that determines the average density of

objects and the distance between objects to initialize cluster centers [18]. Specifically,

it uses the frequency of categories to define the average density of an object. The first

cluster center is formed by selecting the object which has the maximum density. It then

extends the MaxMin algorithm in the combination of objects’ density and the distance

between objects for remaining clusters. The clustering algorithms are then used the

initialization approach in combination with k-modes and fuzzy k-modes. In 2012, Bai

et al. proposed an extension of Cao’s initialization method [14]. The first cluster center

is selected by using distances between objects and the center of the whole data set.

Thus, it can avoid choosing the boundary objects among clusters. The selected object

is called a cluster exemplar, which is integrated with the neighbor objects around it to

generate candidates. Finally, the algorithm uses several criteria to select initial cluster

centers from the list of candidates.

In 2013, Khan et al. proposed an algorithm [71] that uses categories present in

different attributes to perform multiple clustering on a given data set. It first selects the

most relevant attributes, called prominent attributes, and uses an unsupervised learning

approach to compute the rank of significant attributes. It then creates initial cluster cen-

ters called deterministic modes by running multiple clustering on selected attributes. In

2016, Jiang et al. improved k-modes by two initialization methods [68]. Both methods
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aim to ensure the initial cluster centers are not outliers by determining the outlierness

degrees of data objects. They use the distance-based and entropy-based outlier detec-

tion techniques to achieve this purpose.

Recently, Nguyen improved k-modes by using the community detection technique

for the initialization step [89]. Specifically, the algorithm named CD-Clustering first

employs the Louvain community detection technique to create an unweighted graph

from a given data set. It then uses the Hamming distance and a threshold to discover

highly homogeneous groups (cohesive groups of nodes) from data. The threshold R

is determined by the distance distribution and the number of clusters k. The top k

communities in descending order of size are used for k initial modes. CD-Clustering

was proven to outperform the random k-modes [60], Cao’s method [18] and Khan’s

method [71]. However, this algorithm faces difficulties in finding top k communities

when the intra/inter cluster distance gap and the number of clusters are both small

[89].

6.3 Preliminaries

Table 6.1: List of notations

k , a pre-defined number of clusters
Dcat , a categorical data set
S , a transaction data set
xi , a categorical object in Dcat
Tq , a transaction in S
Aj , the jth attribute of Dcat
Cl , the lth cluster
nl , the number of objects in Cl
Zl , the center of cluster Cl
X l
j , the random variable associated with observations in Cl
Oj , the categories set appeared in Dcat at the jth attribute
Olj , the categories set appeared in cluster Cl at the jth attribute
oij , a category at the ith element and jth attribute of Dcat
olij , a category at the ith element and jth attribute of Cl
zlj , a category appeared in the center Zl at the jth attribute

Let A ={A1,A2, . . . ,Am} be a set of m distinct categorical attributes (features),
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each of which is associated with a finite set Oj (1 ≤ j ≤ m) as its domain such that

DOM(Aj) = Oj (> 1 discrete values). A categorical data set Dcat = {x1, x2, . . . , xn}

is a set of n categorical objects (instances), where each object xi ∈ Dcat (1 ≤ i ≤ n)

is a tuple xi = (xi1, xi2, . . . , xim) ∈ O1 × O2 × · · · × Om. In other words, Dcat can be

represented by a data matrix with n rows and m column (n� m), and each element at

position i (1 ≤ i ≤ n) and j (1 ≤ j ≤ m) of the matrix contains the value of the object

xi at the attribute jth such that xij ∈ Oj.

Table 6.2: A categorical data set

Object A1 A2 A3 A4

x1 yellow small stretch adult
x2 yellow small stretch child
x3 purple small dip adult
x4 purple small dip child
x5 yellow small stretch adult
x6 yellow small stretch child
x7 purple small dip adult
x8 yellow small dip child
x9 yellow large stretch adult
x10 yellow large stretch child

Table 6.3: The equivalent transaction data set

TID Transaction

T1 {yellow,small,stretch,adult}
T2 {yellow,small,stretch,child}
T3 {purple,small,dip,adult}
T4 {purple,small,dip,child}
T5 {yellow,small,stretch,adult}
T6 {yellow,small,stretch,child}
T7 {purple,small,dip,adult}
T8 {yellow,small,dip,child}
T9 {yellow,large,stretch,adult}
T10 {yellow,large,stretch,child}

A categorical data set can be considered as a transaction data set where each instance

is a transaction and each category is an item bought by a customer. The problem of FIM

is defined as in [40]. Given a set of items I = {i1, i2, . . . , iω}. X is called an itemset if

it contains a subset of items in I. Moreover, if X contains k items, i.e. |X| = k, then

it is called a k-itemset. A transaction Tq is also a set of items in I such that Tq ⊆ I,

where q (1 ≤ q ≤ n) is the unique identifier of T as its transaction identifier (TID). A

transaction data set S = {T1, T2, . . . , Tn} consists of n transactions. Table 6.2 presents a

data set having ten categorical objects described by four attributes. Table 6.3 shows the

equivalent transaction data set converted from Table 6.2. It contains ten transactions,

each of which is a set of items which correspond to categories in the categorical data

set.

Definition 21 (Frequent itemset) Given an itemset X and a transaction data set S.
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The support of X is the number of transactions that contain it, denoted by:

sup(X) = |{T |X ⊆ T ∧ T ∈ S}| (6.1)

If the support of X is no less than a user-specified minimum support threshold

minsup, then X is called a frequent itemset (FI). The list of FIs is defined as:

FIs = {X|sup(X) ≥ minsup} (6.2)

Example 13 Assum that minsup = 4, the set of 14 FIs discovered from Table 6.3 is{
〈dip〉 : 4, 〈dip, small〉 : 4, 〈child〉 : 5, 〈child, yellow〉 : 4, 〈child, small〉 : 4, 〈adult〉 :

5, 〈adult, small〉 : 4, 〈stretch〉 : 6, 〈stretch, small〉 : 4, 〈stretch, yellow, small〉 : 4,

〈stretch, yellow〉 : 6, 〈yellow〉 : 7, 〈yellow,small〉 : 5, 〈small〉 : 8
}

, where the number

besides each MFI is its support.

Definition 22 (Maximal frequent itemset) A maximal frequent itemset is a frequent

itemset that has no frequent supersets. The list of MFIs is defined as:

MFIs = {X|X ∈ FIs ∧ @Y ∈ FIs such that X ⊂ Y } (6.3)

MFIs are the largest FIs. The set of MFIs is a subset of the set of FI (MFIs ⊆ FIs).

The goal of MFIM is to find all MFIs in a given transaction data set.

Example 14 Table 6.4 shows all MFIs discovered from Table 6.3 for minsup from one

to ten. The number besides each MFI is its support.

The key points when designing a partitional clustering algorithm are using an appro-

priate method for cluster centers and choosing a suitable distance measure for a specific

data type. For the first point, recent methods for categorical data consider the cluster

centers as the expectation of a random variable associated with the data, in the assump-

tion that this variable follows a Gaussian distribution from the statistical point of view.

The goal is to find a method that can guarantee the consistency in the statistical inter-

pretation of the cluster centers for categorical data as the means for numerical data.
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Table 6.4: The sets of MFIs for various minimum support threshold values

minsup MFIs minsup MFIs

1

〈child,large,stretch,yellow〉: 1
〈adult,large,stretch,yellow〉: 1
〈child,dip,purple,small〉: 1
〈child,dip,small,yellow〉: 1
〈adult,dip,purple,small〉: 2
〈child,small,stretch,yellow〉: 2
〈adult,small,stretch,yellow〉: 2

6
〈small〉: 8
〈stretch,yellow〉: 6

2

〈large,stretch,yellow〉: 2
〈child,dip,small〉: 2
〈dip,purple,small〉: 2
〈child,small,stretch,yellow〉: 2
〈adult,small,stretch,yellow〉: 2

7
〈yellow〉: 7
〈small〉: 8

3

〈dip,purple,small〉: 3
〈child,small,yellow〉: 3
〈child,stretch,yellow〉: 3
〈adult,stretch,yellow〉: 3
〈adult,small〉: 4
〈small,stretch,yellow〉: 4

8 〈small〉: 8

4

〈dip,small〉: 4
〈child,yellow〉: 4
〈chid,small〉: 4
〈adult,small〉: 4
〈small,stretch,yellow〉: 4

9 ∅

5

〈child〉: 5
〈adult〉: 5
〈small,yellow〉: 5
〈stretch,yellow〉: 6

10 ∅

This chapter also uses a kernel-based method to define cluster centers, called proba-

bilistic cluster centers. This method estimates the probability density function of each

attribute in cluster centers, which is derived from Aitchison & Aitken’s kernel function

[8]. The detail of the probabilistic center used the kernel density estimation approach

is defined in Section 2.2. For the sake of brevity, we restated these definitions as the

following.

Definition 23 (Cluster Center) Let Olj denote the categories set appeared in Cl = {x1,

x2, . . . , xnl
} at the jth attribute, where xi = (xi1, xi2, . . . , xim) (1 ≤ i ≤ nl). The center
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of Cl is denoted and defined as:

Zl = {zl1, zl2, . . . , zlm} (6.4)

where the value at jth element of Zl is measured by a kernel-based method using

Eq. (2.4) as a probability distribution on Olj:

zlj = [P lj(ol1j),P lj(ol2j), . . . ,P lj(ol|Ol
j |j

)] (6.5)

and the value of each categorical value olij (1 ≤ i ≤ |Olj|) is formulated by the combi-

nation of Eqs. (2.2), (2.3), (2.4) as the following:

P lj(olij) =


λl

1
|Ol

j |
+ (1− λl)fl(olij) if olij ∈ Olj

0 otherwise
(6.6)

Designing dissimilarity measures for categorical data has been considered in many pre-

vious works [16, 33]. In 1998, Dekang Lin proposed a similarity measure inspired by

the idea of information theory in which less frequent words have a higher information

gain [81]. This measure describes the relationship between the common and different

information components. Particularly, the information-theoretic based similarity of xi

and xi′ is estimated by the ratio between the amount of information needed to state

the commonality of xi and xi′ and the information needed to fully describe what xi and

xi′ are. Several studies proposed information-theoretic based dissimilarity (ITBD) mea-

sures based on [81] for categorical data [16, 91, 92]. This measure is also used in this

chapter for distance calculation.

Definition 24 (Categories dissimilarity) Let there be categories oij and oi′j appeared

in xi and xi′ at the jth attribute, respectively. The information-theoretic based similarity

of the two categories is measured as:

simj(oij, oi′j) =
2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(6.7)

where f(oij, oi′j) =
#(oij ,oi′j)

|D| , #(oij, oi′j) indicates the number of objects in Dcat at the
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jth attribute having the value in {oij, oi′j}.

The dissimilarity of oij and oi′j is formulated by:

dsimj(oij, oi′j) = 1− simj(oij, oi′j) = 1− 2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(6.8)

Definition 25 (Dissimilarity between objects and cluster centers) Let there be an

object xi = (xi1, xi2, . . . , xim) and a cluster Cl with its center is Zl = {zl1, zl2, . . . , zlm}. Let

Olj be the categories set appeared in zlj. The dissimilarity at the jth attribute of xi and Zl
is calculated by accumulating probability values of categories in Olj and dissimilarities

between category xij of xi and categories at the jth component ‡lj of Zl. Mathematically,

the definition can be formulated by:

disj(xi,Zl) =
∑
olij∈Ol

j

P lj(olij)dsimj(xij, o
l
ij) (6.9)

The dissimilarity between xi and cluster center Zl can be formulated by:

dis(xi,Zl) =
m∑
j=1

disj(xi,Zl) (6.10)

From Eq. 6.10, if xi and Zl contain identical categories at each attribute or Zl
contains only xi, then the dissimilarity between them is zero. If categories at each

attribute of xi and Zl are totally different, then the dissimilarity between them equals

to the number of features.

The algorithm for categorical data clustering can be considered as the following opti-

mization function:

F(U ,Z) =
k∑
l=1

n∑
i=1

ui,l × dis(xi,Zl) (6.11)

subject to ui,l ∈ {0, 1} 1 ≤ l ≤ k, 1 ≤ i ≤ n∑k
l=1 ui,l = 1 1 ≤ i ≤ n

(6.12)

where Z is the set of cluster centers formed by Eq. 6.4, U = [ui,l]n×k is the partition

matrix where ui,l = 1 if xi belongs to Cl and 0 otherwise.
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6.4 The k-PbC algorithm
Figure 6.2 shows the general process of k-PbC algorithm. According to the model, k-PbC

consists of two phases. For the initialization phase, it uses an MFIM algorithm to mine

MFIs in the converted transaction data set. The top k MFIs with high support values

and long sizes are selected from the obtained set. The reason for this choice is to find

high correlated objects to form initial groups of objects. For each MFI in the top-k set,

k-PbC tracks the set of transactions where that itemset occurs. Next, an overlap filter

and an initial assignment strategy are used to remove the overlapping between groups

and assign remaining objects in the data set into k initial groups, respectively. These

steps guarantee that the initial groups will become clusters as the definition 1. For

the clustering phase, the assignment and update steps are performed in turn to assign

objects in Dcat into k clusters until convergence.

Algorithm 7: THE k-PbC ALGORITHM

input : k: the number of clusters, Dcat: a categorical data set
output: k clusters

1 Perform the Initiate_Centers(Dcat, k) procedure (Algorithm 8) to form k initial
cluster centers such that Z(0) = {Z(0)

1 , . . . ,Z(0)
k }

2 i = 0, U ← ∅
3 while clusters are not stable do
4 Fix Z(i) and find U (i) to minimize F(U (i),Z(i))

5 Fix U (i) and update Z(i) to minimize F(U (i),Z(i))
6 i = i + 1

7 end
8 return k clusters;

The pseudo-code of k-PbC algorithm is presented in Algorithm 7. It takes a categor-

ical data set Dcat and a pre-defined parameter k as the input. k-PbC first performs the

Initiate_Centers procedure to form k initial cluster centers (line 1). It is worth noting

again that most of the previous works simply used the random method for their initial-

ization. However, such a way yields different results for different runs on the same data

set and poor results may occur in some cases. Thus, Initiate_Centers is an important

step for the whole model since it takes advantage of non-random initialization to im-

prove clustering results. After forming k initial clusters, k-PbC defines centers for these
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Figure 6.2: The flowchart of k-PbC algorithm

clusters by using Eq. (6.4). For each data object in Dcat, k-PbC calculates the distance

between that object and k clusters by using the Eq. (6.10) and then assigns it to the

nearest cluster (line 4). In the next step, cluster centers are updated by using Eq. (6.4)

(lines 5). It repeatedly operates the assignment and update steps in the same manner

until all clusters are stable (lines 3-6). Finally, it outputs k clusters (line 7).
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Algorithm 8: THE INITIATE_CENTERS PROCEDURE

input : Dcat: a categorical data set, k: the number of clusters, minsup: an optional minimum
support threshold

output: k initial clusters

1 Items← ∅, map_Items_TIDs← ∅
2 Convert categorical data set Dcat into the form of the transaction data set S
3 foreach transaction Ti in S do
4 foreach item iq in Ti do
5 /* Collect all distinct items and calculate their supports by using the

dictionary Items 〈key : iq, value : its support〉 */
6 new_support← 0
7 if iq 6∈ Items then
8 Items← (iq, 1)
9 end

10 else
11 new_support← support of iq + 1
12 Items← (iq, new_support)
13 end
14 /* Map each item in data set S to all transaction IDs that contain it by

using the dictionary
map_Items_TIDs 〈key : iq, value : the set of transaction IDs that contain iq〉 */

15 TID_Set← ∅
16 if iq 6∈ map_Items_TIDs then
17 map_Items_TIDs← (iq, {∅})
18 end
19 else
20 TID_Set← value of iq in map_Items_TIDs
21 Put ID of Ti into TID_Set
22 map_Items_TIDs← (iq, T ID_Set)
23 end
24 end
25 end
26 if the input parameter minsup is omitted then
27 Calculate average minimum support minsup = 1

|Items|
∑

∀iq∈S sup(iq)

28 end
29 Initiate the FP-tree T and its corresponding header table
30 Perform the FPMAX(T) algorithm (Algorithm 9) and put all MFIs into MFI_List
31 Sort MFI_List in descending order of length of itemsets and their supports
32 Choose top k MFIs in MFI_List
33 foreach MFI in top k MFIs do
34 foreach item iq in MFI do
35 Get the corresponding value of iq in map_Items_TIDs
36 end
37 Intersect value sets of all items in MFI to get a common set that contains this MFI pattern
38 end
39 Remove overlaps between k initial groups by calling the OVERLAP_FILTER procedure (Algorithm

10)
40 Assign remaining objects in S into k initial groups by calling the INITIAL_ASSIGNMENT procedure

(Algorithm 11)
41 return k initial clusters;

Algorithm 8 shows the pseudo-code of the INITIATE_CENTERS procedure. It takes a

categorical data set Dcat, a pre-defined number of cluster k and an optional minimum
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support threshold (minsup) as the input. The procedure first creates two dictionaries

named Items and map_Items_TIDs. The former keeps the information of all distinct

items and their supports, while the latter keeps the information of transaction IDs that

contain each item. In the pre-processing step, the procedure converts the categorical

data set Dcat into a transaction data set S (line 2). If categorical attributes contain

similar categories, the index of each attribute is concatenated to the last position of

categories to ensure that the mining process performs properly. Next, the procedure

scans the transaction database to collect all distinct items and calculate their support

(lines 5-13). This information is then used to perform the maximal frequent itemset

mining algorithm. In addition, the procedure also tracks all transaction IDs containing

each item (lines 14-25). This information is latter used for the matching step. If the

minsup is omitted, then the algorithm will automatically determine this value for the

mining process. For mining frequent itemsets without support threshold, [21] pointed

out that algorithms should start from the frequent item at the middle position of the

header table, then from this point move up to the top of the table, and from the next

point of the middle item move down to the bottom of the table. This choice is better

than starting from the top (top-down) or the bottom (bottom-up) of the header table.

Inspired by this idea, this chapter estimates the minsup by averaging the supports of all

1-itemset in Items (lines 26-28). The minsup is then used for the mining process. In

the next step, the procedure sorts frequent items in descending order of their supports

and creates the header table of frequent items as well as initiates the FP-tree(line 29).

Such information is then used to perform the FPMAX algorithm [50] to find the set of

MFIs.

FPMAX algorithm was proposed by Grahne and Zhu [50] based on the famous al-

gorithm FP-growth. FP-growth [54] falls into the group of pattern-growth approach,

which aims to reduce the cost of data set scanning. It utilizes a tree structure named

FP-tree to maintain FIs in a data set, where the root node is the topmost node of the

tree and its children are item prefix subtrees associated with a frequent-item header table.

Each branch in the FP-tree keeps an FI, while nodes along the branch contain items in

the FI and they are sorted in descending order of their frequencies, where least frequent

items are kept at leaves. The item prefix subtree contains nodes with three fields includ-

110



Chapter 6 6.4. THE K-PBC ALGORITHM

ing item-name, count, node-link. The frequent-item header table (header table) contains

rows with two fields including item-name and head of node-link pointing to the first node

of the same item-name in the FP-tree. FP-growth uses two database scans to mine all

FIs. The initial FP-tree associated with its header table of frequent items is created in the

first scan. The first FP-tree containing all frequency information of the original data set

is constructed in the second scan. FP-growth uses conditional pattern base (or projected

database [40]) to restrict the original data set to those transactions containing a given

itemset. Mining FIs in the original data set then becomes mining the FP-tree of the pro-

jected database. Specifically, for each frequent item in the header table, a new FP-tree is

constructed based on the frequency information in the subset of transactions containing

that item. This process recursively performs on the current FP-tree until the resulting

smaller tree has only a single path. Such single paths then generate FIs. FPMAX extends

FP-growth to mine all MFIs. It also uses the pattern-growth approach to perform the

mining process. Algorithm 9 shows the pseudo-code of this algorithm. In the first data

set scan, FPMAX constructs the FP-tree as the first step. To form the conditional pattern

base for every recursive call of the algorithm, it uses a linked list named Head to keep

all items necessary for this process. In the initial call of FPMAX, both Head and FP-tree

does not contain items which form a subset of existing MFI. If the FP-tree contains a

single path, the union of items in this path and items in Head is an MFI. FPMAX uses

the maximal frequent itemset tree (MFI-tree) to keep MFIs (lines 1-2). This tree resem-

bles the FP-tree structure. Its header table contains items with the same order as that

of FP-tree. A newly discovered FI is inserted into the MFI-tree if it has no super-set in

the tree. In the next step, each item in the header table of FP-tree is put into the Head

of MFI-tree if the former tree does not contain a single-path (lines 4-5). The algorithm

then constructs the head-conditional pattern base for items in Head (line 6). FPMAX

constructs the FP-tree for the new Head and calls recursively to find new MFIs on that

FP-tree if the union of a new Head and all frequent items in the head-conditional pattern

base has no super-sets from existing MFIs (lines 7-15). The details of how to construct

the FP-tree, MFI-tree and FPMax can be referred to [50]. The output of FPMAX is put

into a list named MFI_List that contains MFIs and their corresponding supports (line

30). Next, the MFI_List is sorted in descending order of length of itemsets. If there
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Algorithm 9: THE FPMAX ALGORITHM

Input : an FP-tree FPT
Output: List of MFIs

1 if FPT has a single path SP then
2 Put Head ∪ SP into MFI-tree
3 else
4 foreach frequent item fi in header-table of FPT do
5 Insert fi into Head
6 Build the head-conditional pattern base of the new Head
7 Tail = frequent items in head-conditional pattern base
8 Call subset_checking(Head ∪ Tail)
9 if Head ∪ Tail is not in MFI-tree then

10 Construct the FP-tree FPTHead

11 Call FPMAX(FPTHead)
12 end
13 Eliminate fi from Head

14 end
15 end

are multiple MFIs of the same length, the procedure sorts them according to the de-

scending order of their supports. The target is to find a large combination of categories

that occur in multiple categorical objects (line 31). The procedure selects top k MFIs

from MFI_List (line 32). For each MFI, the procedure performs the matching step to

find the set of transaction IDs that contain this pattern (lines 33-38). Specifically, for

each item iq of a selected MFI, the procedure gets the corresponding value that is the set

of transaction IDs containing iq in map_Items_TIDs. Then it takes the intersection of

these value sets to get a common set that contains the whole MFI. After this step, k ini-

tial groups may contain the same transaction IDs and thus the overlaps between them

need to be removed. To solve this problem, the algorithm calls the OVERLAP_FILTER

procedure (Algorithm 10) (line 39).

The input of the OVERLAP_FILTER procedure is k initial groups of transaction IDs

collected from the previous step. The procedure performs two loops to remove the

overlap between pairs of initial groups. The outer loop considers each group Gl (1 ≤

l ≤ k − 1), while the inner loop traverses remaining groups Gj (l + 1 ≤ j ≤ k). At

each iteration of the second loop, the procedure finds the intersection of groups Gl

and Gj called Overlap_Set, then removes Overlap_Set from Gj and temporarily puts

it into the set named Union_Set. The procedure performs other iterations of the inner
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Algorithm 10: THE OVERLAP_FILTER PROCEDURE

input : k initial groups of transaction IDs
output: k groups without overlaps

1 foreach group Gl in range l ∈ [1, k − 1] do
2 Union_Set← ∅
3 foreach group Gj in range j ∈ [l + 1, k] do
4 Overlap_Set← Intersection of Gl and Gj
5 Remove Overlap_Set from Gj
6 Put Overlap_Set into Union_Set
7 end
8 Remove Union_Set from Gl
9 end

10 return k initial groups without overlap;

loop to remove the overlap of Gl and Gj (lines 3-7). At the end of the inner loop, the

Union_Set contains the overlaps between group Gl and the remaining groups Gj. The

procedure then removes it from Gl (line 8). The procedure handles other groups in the

outer loop in the same manner until all groups are not overlapping. Finally, it returns

k initial groups without overlap between them. However, one problem may occur after

this step. That is the union of k groups maybe not equal to the whole data set which

leads to a conflict of cluster definition (1). To address this issue, the INITITE_CENTERS

procedure calls the INITIAL_ASSIGNMENT procedure to initially assign remaining objects

to k groups (Algorithm 11) (line 40).

Algorithm 11: THE INITIAL_ASSIGNMENT PROCEDURE

input : k initial groups without overlap, Dcat: a categorical data set
output: k initial clusters

1 Generate k representatives from k initial groups
2 foreach object xi in Dcat do
3 if i 6∈ k initial groups then
4 Calculate distance from xi and k representatives
5 Assign i into the nearest group
6 end
7 end
8 return k initial clusters;

The input of this algorithm is k initial non-overlapping groups and the original cat-

egorical data set Dcat. The procedure uses the same ways as in k-representatives al-

gorithm [99] for the formation of cluster centers and distance function. At first, the

procedure generates k representatives of k initial groups (line 1). Specifically, the rep-
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resentative of a group Gl is defined by Ql = (q1, q2, . . . , qm) where:

qj =
{(
oij, foij

)
|oij ∈ Dj

}
(6.13)

where foij and Dj are the relative frequency of category oij (Eq. 2.2) and the set formed

from categories appearing at the jth attribute of Gl, respectively. For each data object

xi = (xi1, xi2, . . . , xim) (1 ≤ i ≤ nl) that does not belong to any group, the procedure

calculates the distance from xi to k representatives (line 4) by the following dissimilarity

measure:

d(xi, Ql) =
m∑
j=1

∑
oij∈Dj

foij × δ(xij, oij) (6.14)

where δ(xij, oij) is the simple matching distance measure as defined in Eq.2.28. Based

on the distances from xi to representatives of k initial groups, the procedure will assign

this object to the nearest group (line 5). Other remaining objects in Dcat are performed

in the same manner until they belong to one and exactly one group (lines 2-7). From

now on, the k initial groups are called k initial clusters (line 41).

6.5 Comparative Experiment

6.5.1 Data sets
This section presents a performance comparison of k-PbC and other ten clustering algo-

rithms: k-means++ [11], Cao’s algorithm (Cao) [18], Khan’s algorithm (Khan) [71],

Distance and Entropy algorithms [68], k-modes [60], k-representatives (k-reps) [99],

M-k-Centers (Mod-2) and New (Mod-3) [91, 92] and CD-Clustering [89]. The k-PbC, k-

means++, Cao’s algorithm, k-modes, k-representatives, Mod-2 and Mod-3 were written

in Python, Khan’s algorithm was written in Java and obtained from [18], CD-Clustering

was written in C++ and obtained from [89]. For the experiment, we used a VPC

cluster equipped with an Intel Xeon Gold 6130 2.1GHz (16Cores×2), 64 GB of RAM,

running CentOS 7.2 for each CPU node. The source code and data sets are provided

at https://github.com/ClarkDinh/k-PbC. The experimental data sets in Table 6.5 were

collected from the UCI Machine Learning Repository [34]. Since k-modes, k-reps, Mod-
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2 and Mod-3 use the random initialization to form cluster centers, each of them was

run 100 trials for each data set, and the overall result was calculated by averaging the

results of all trials. The k-means++, Cao’s algorithm, Khan’s algorithm, CD-Clustering

and k-PbC have repeatable clustering results, so each of them was run one time for

each data set. The experimental data sets were converted to numerical data sets by

using one-hot encoding for k-means++ because it only deals with numerical data. For

the evaluation, we used both internal and external validation metrics in the comparative

experiment.

Table 6.5: Characteristics of the experimental data sets

# Data set #instances #attributes #Classes
1 Balance scale 625 4 3
2 Breast cancer 699 9 2
3 Car evaluation 1,728 6 4
4 Chess 3,196 36 2
5 Dermatology 366 34 6
6 Lung cancer 32 56 3
7 Lymphography 148 18 4
8 Mushroom 8,124 22 2
9 Nursery 12,960 8 5
10 Solar flare 1,066 12 3
11 Soybean 683 35 19
12 Soybean-small 47 21 4
13 Splice 3,190 60 3
14 Tic-tac-toe 958 9 2
15 Vote 435 16 2
16 Zoo 101 16 7

1. Balance scale (balance) contains 625 instances with four attributes. It was gener-

ated to model psychological experimental results. Objects are classified into three

groups as having balance scale tip to: left (46 %), right (46 %), or be balanced (8

%). No missing values occur in this data set.

2. Breast cancer (breast) contains 699 instances with nine attributes. It was collected

from the University of Wisconsin Hospitals from 1989 to 1991. Objects are clas-

sified into two groups: benign (65.5%) and malignant (34.5%). Missing values

occur in 16 instances of this data set.
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3. Car evaluation (car) contains 1,728 instances with six attributes: buying, doors,

lug_boot, maint, persons, safety. It was derived from a simple hierarchical decision

model to evaluate cars according to two concept structures including price and

technical characteristics. Objects are classified into four groups: v-good (3.762%),

good (3.993 %), acc (22.222 %), unacc (70.023 %). No missing values occur in

this data set.

4. Chess (King-Rook vs. King-Pawn) (chess) contains 3,196 instances with 36 at-

tributes. It was originally generated and described by Alen Shapiro. Objects are

classified into two groups: White can win (52%) or White cannot win (48%). No

missing values occur in this data set.

5. Dermatology (derma) contains 366 instances with 33 features. It was collected

to diagnose the erythema-squamous diseases in dermatology. Objects are classi-

fied into six groups: pityriasis rubra pilaris (5.46%), cronic dermatitis (14.21%,

pityriasis rosea (13.39%), lichen planus (19.67%), seboreic dermatitis (16.67%),

psoriasis (30.6%). Missing values occur in eight attributes.

6. Lung contains 32 instances with 56 attributes. It describes three types of patholog-

ical lung cancers. Objects are classified into three groups corresponding to three

types of disease: type 1 (9 instances), type 2 (13 instances), type 3 (10 instances).

Missing values occur in attributes #5 and #39.

7. Lymphography domain (lymph) contains 148 instances with 18 attributes. It was

collected from the University Medical Centre, Institute of Oncology, Ljubljana,

Yugoslavia. This is one of three domains (Breast cancer and primary-tumor data

sets) provided by the Oncology Institute. Objects are classified into four groups:

normal find (1.4 %), fibrosis (2.7 %), malign lymph (41.2 %) and metastases

(54.7 %). No missing values occur in this data set.

8. Mushroom (mush) contains 8,124 instances with 22 attributes. It describes the

hypothetical samples of 23 species of Agaricus and Lepiota mushrooms. Objects

are classified into two groups: edible (51.8 %), poisonous (48.2 %). Missing

values occur only in attribute #11 (2,480 values).
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9. Nursery contains 12,960 instances with eight attributes. It comes from a hierarchi-

cal decision model originally created to rank nursery school applications in Ljubl-

jana, Slovenia during the 1980s. Objects are classified into five groups: not_recom

(33.333 %), spec_prior (31.204 %), priority (32.917 %), very_recom (2.531 %),

recommend (0.015 %). No missing values occur in this data set.

10. Solar flare (solar) contains 1,066 instances (flare.data2) with 10 attributes. Each

instance describes captured features for one active region on the sun. From all

these predictors three classes of flares are predicted, which are represented in the

last three columns. In this chapter, we used the last column as the ground-truth.

Thus, the data set contains 12 attributes in total. No missing values occur in this

data set.

11. Large soybean (soy-1) contains 307 and 376 instances for the training and test

sets with 35 attributes. It describes the information on soybean disease diagnosis.

Objects are classified into 19 groups. Missing values occur in most attributes,

except the attribute #12.

12. Small soybean (soy-2) contains 47 instances with 35 attributes, which comes from

the large soybean data set. In the experiment, we used 21 non-singleton attributes

as in [89]. Objects are classified into four classes: D1 (10 instances), D2 (10

instances), D3 (10 instances), D4 (17 instances). No missing values occur in this

data set.

13. Molecular Biology (splice) contains 3,190 instances with 60 attributes. Originally,

it was designed for the purpose of evaluating hybrid learning algorithms that use

examples to inductively refine pre-existing knowledge. Objects are classified into

three groups: EI (25%), IE (25%), Neither (50%). No missing values occur in this

data set.

14. Tic-tac-toe Endgame (tic) contains 958 instances with nine attributes. It includes

the complete set of possible board configurations at the end of Tic-tac-toe games.

Objects are classified into two groups: positive (65.3%) and negative (34.7%). No

missing values occur in this data set.
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15. Congressional voting records (vote) contains 435 instances with 16 attributes.

Objects are classified into two groups: democrat (45.2%) and republican (54.8%).

Missing values occur in all attributes of this data set.

16. Zoo contains seven classes of animals. It contains 101 instances with 17 instances.

In this chapter, we remove the first attribute since it contains only distinct animal

names. Objects are classified into seven groups. No missing values occur in this

data set.

6.5.2 Validation metrics

Internal validation metrics

We used an internal validation metric called the silhouette coefficient [25, 98] to eval-

uate how well data objects are clustered by determining how close each object in one

cluster is to objects in the neighboring clusters. For each data set, we set the number of

clusters as the number of classes in the ground-truth. To calculate the average silhouette

value for each algorithm, we first compute a pairwise distance matrix for objects in Dcat.

This is a symmetric matrix that is later used to calculate the intra and inter distances

between objects. It is worth noting that the avg_sil results rely on the distance metrics

applied to perform clustering and calculate the pairwise distance matrix. To compute

the pairwise distance matrix in the experiment, the Euclidean distance was used for

k-means++; the simple matching distance was used for k-modes, k-representatives,

Cao’s method and Khan’s methods; the ITBD measure (Eq. 2.17) was used for Mod-2,

Mod-3 and k-PbC. Table 6.6 shows the average silhouette results of algorithms. It can

be observed that k-PbC has higher results than those of other algorithms in most cases.

It means that the kernel-based method and the ITBD measure used in k-PbC are more

efficient than the frequency-based method and the simple matching in k-representatives

and k-modes. In addition, k-PbC yields better clustering results when compared to the

methods of Cao and Khan. It also outperforms Mod-2 and Mod-3 although they use

similar ways to define cluster centers and determine distance. It means that the initial-

ization phase improves the performance of k-PbC and makes them more efficient than

other algorithms.
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Table 6.6: Average silhouette values

Data sets #Clusters k-means++ k-modes k-reps Cao’s method Khan’s method Mod-2 Mod-3 k-PbC
Balance scale 3 0.1743 0.0764 0.1122 0.0759 0.0805 0.1127 0.1128 0.1308
Breast cancer 2 0.5962 0.1577 0.3928 0.3876 0.1183 0.5428 0.5427 0.5422
Car evaluation 4 0.1568 0.0717 0.1609 0.0757 0.0644 0.1768 0.1763 0.2005
Chess 2 0.1097 0.1426 0.1918 0.1754 0.1457 0.1956 0.1933 0.2081
Dermatology 6 0.2405 0.0653 0.1837 0.1457 0.0921 0.2625 0.2662 0.2924
Lung cancer 3 0.0819 0.0687 0.1001 0.068 0.0841 0.1353 0.1330 0.1072
Lymphography 4 0.1704 0.1023 0.1583 0.0702 0.1389 0.1816 0.1829 0.1991
Mushroom 2 0.2725 0.2316 0.2558 0.2517 0.2355 0.2541 0.2481 0.2969
Nursery 5 0.1301 0.2491 0.1271 0.0571 0.0555 0.1483 0.1468 0.1757
Solar flare 3 0.4426 0.0566 0.3310 0.2415 0.1512 0.3088 0.3086 0.3172
Soybean 19 0.2189 0.1933 0.3228 0.291 0.2185 0.3498 0.3501 0.3782
Soybean-small 4 0.3204 0.3335 0.4292 0.4752 0.4484 0.4498 0.4498 0.5169
Splice 3 0.0700 0.0169 0.0374 0.0204 0.0218 0.0349 0.0360 0.0700
Tic-tac-toe 2 0.1009 0.1029 0.1357 0.1013 0.1009 0.1477 0.1462 0.1595
Vote 2 0.2650 0.4877 0.4956 0.4893 0.4856 0.5107 0.5146 0.5146
Zoo 7 0.4157 0.4024 0.4598 0.4826 0.5528 0.4773 0.4709 0.5614

External validation metrics

We first used three external validation metrics including accuracy, precision, recall to

measure the performance of k-PbC and compared algorithms. The definitions of these

metrics are given in section 2.3.1. Tables 6.7, 6.8 and 6.9 show the AC, PR and RE

of algorithms, respectively. In these tables, the bold-faced numbers indicate the best

performances among the compared algorithms for each data set. It can be observed that

k-PbC outperforms other compared algorithms in most cases. For clustering accuracy, it

has better results than those of compared algorithms except for Car evaluation, Chess,

Solar flare and Tic-tac-toe data sets. On Chess, Solar flare and Tic-tac-toe data sets,

similar categories spread in different attributes of the data sets, Khan’s algorithm is thus

more efficient than other algorithms since it can choose significant attributes before

performing multiple clustering on the selected attributes. Similar results are observed

for clustering precision and recall. In general, with the initialization step, the proposed

k-PbC algorithm can enhance clustering results and is more efficient than using the

random initialization method. It outperforms other initialization methods in most cases.

We also compared the AC, PR and RC of k-PbC with the Distance and Entropy

algorithms [68]. To avoid incorrect implementation and make a fair assessment, we

used several experimental results provided in [68] for these two algorithms. The results

are shown in Table 6.10. It can be observed that k-PbC has better results than those of

Distance and Entropy algorithms on Breast cancer, Lung cancer and Vote data sets.

They have the same results on Soybean-small data set. Moreover, Distance and Entropy
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Table 6.7: Clustering accuracy of compared algorithms

Data sets k-means++ k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC
Balance scale 0.5168 0.4497 0.4342 0.3760 0.4192 0.4310 0.4323 0.4129 0.5680
Breast cancer 0.9585 0.7043 0.8949 0.9113 0.6323 0.9576 0.9570 0.9514 0.9614
Car evaluation 0.2789 0.3592 0.3811 0.4936 0.3576 0.3725 0.3831 0.3125 0.3640
Lung cancer 0.5313 0.5188 0.5400 0.5313 0.4375 0.5022 0.4922 0.5938 0.6875
Chess 0.5116 0.5465 0.5367 0.5663 0.7040 0.5279 0.5385 0.5156 0.5047
Dermatology 0.7404 0.5375 0.7161 0.5874 0.6175 0.7280 0.7404 0.8552 0.9645
Lymphography 0.3176 0.4379 0.5301 0.3514 0.5068 0.5433 0.5341 0.5000 0.5946
Mushroom 0.7093 0.7291 0.7897 0.8754 0.8288 0.7474 0.7682 0.7244 0.8861
Nursery 0.2409 0.3324 0.3161 0.3673 0.2804 0.3165 0.3128 0.4156 0.4492
Solar flare 0.4540 0.4524 0.5087 0.5432 0.6463 0.5526 0.5579 0.4343 0.5901
Soybean 0.5183 0.4439 0.6025 0.5754 0.4612 0.6242 0.6225 0.6852 0.6881
Soybean-small 0.7234 0.7657 0.8834 1.0000 0.9787 0.9070 0.8666 1.0000 1.0000
Splice 0.3937 0.4054 0.5430 0.4009 0.4279 0.6496 0.6741 0.7260 0.7746
Tic-tac-toe 0.5585 0.5675 0.5605 0.6106 0.6347 0.5625 0.5598 0.6044 0.6326
Vote 0.8690 0.8622 0.8751 0.8644 0.8506 0.8764 0.8764 0.8713 0.8805
Zoo 0.7723 0.6868 0.6986 0.6733 0.8614 0.7601 0.7524 0.8218 0.8911

Table 6.8: Clustering precision of compared algorithms

Data sets k-means++ k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC
Balance scale 0.4896 0.3993 0.4276 0.3282 0.3609 0.4177 0.4238 0.3751 0.4825
Breast cancer 0.9571 0.7163 0.9182 0.9292 0.5535 0.9466 0.9459 0.9470 0.9517
Car evaluation 0.2789 0.2868 0.3488 0.3826 0.2415 0.3407 0.3440 0.3125 0.3704
Lung cancer 0.5333 0.5349 0.5937 0.5468 0.4468 0.5726 0.5515 0.5980 0.7421
Chess 0.5110 0.7018 0.5416 0.5796 0.5312 0.5326 0.5425 0.5162 0.5095
Dermatology 0.7583 0.5077 0.6603 0.5604 0.6841 0.6696 0.6589 0.7543 0.9612
Lymphography 0.3147 0.3906 0.4659 0.2698 0.4226 0.4750 0.4599 0.4724 0.4752
Mushroom 0.7740 0.7496 0.8018 0.9019 0.8688 0.7586 0.7781 0.7990 0.9000
Nursery 0.2323 0.2905 0.2995 0.2978 0.2304 0.2954 0.2930 0.6494 0.4352
Solar flare 0.3381 0.3355 0.3400 0.3381 0.3361 0.3415 0.3403 0.3377 0.3425
Soybean 0.5659 0.3894 0.6216 0.6133 0.4342 0.6401 0.6432 0.7574 0.6956
Soybean-small 0.7569 0.7576 0.8769 1.0000 0.9773 0.9060 0.8522 1.0000 1.0000
Splice 0.3377 0.4095 0.5960 0.4518 0.4260 0.6655 0.6898 0.7198 0.7815
Tic-tac-toe 0.5509 0.5540 0.5521 0.5859 0.6071 0.5604 0.5597 0.5746 0.6396
Vote 0.8636 0.8573 0.8705 0.8568 0.8484 0.8724 0.8724 0.8670 0.8762
Zoo 0.6948 0.5523 0.5788 0.5996 0.7390 0.6518 0.6193 0.5688 0.7503

outperform k-PbC on Mushroom and Zoo data sets, respectively. They can detect and

remove the outliers appeared inside data sets and thus improve clustering results.

We also used three other external validation metrics called Purity, Normalized Mu-

tual Information (NMI) and Adjusted Rand Index (ARI) to measure how well the as-

signment of objects to clusters matches their original class information. The definitions

of these criteria are given in Definitions 2.3.2

The Purity, NMI and ARI results are shown in figures 6.3, 6.4, 6.5. Generally, k-PbC

produces better results in most data sets. For purity, it outperforms other algorithms

on Balance scale, Breast, Car evaluation, Dermatology, Lung cancer, Lymphography,

Mushroom, Nursery, Large soybean, Soybean small, Splice, Vote and Zoo data sets. It
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Table 6.9: Clustering recall of compared algorithms

Data sets k-means++ k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC
Balance scale 0.4585 0.3852 0.4039 0.3228 0.3541 0.3957 0.4009 0.3540 0.4673
Breast cancer 0.9506 0.6951 0.8535 0.8773 0.5336 0.9637 0.9632 0.9550 0.9656
Car evaluation 0.3554 0.3034 0.3794 0.4875 0.2499 0.3650 0.3639 0.4114 0.4465
Lung cancer 0.5581 0.5350 0.5380 0.5507 0.4470 0.4595 0.4512 0.6208 0.6900
Chess 0.5110 0.6962 0.5389 0.5537 0.5540 0.5296 0.5394 0.5162 0.5091
Dermatology 0.7649 0.4735 0.6811 0.5260 0.6165 0.6960 0.6943 0.8189 0.9679
Lymphography 0.3425 0.4569 0.5746 0.2955 0.4451 0.5438 0.5328 0.6255 0.5579
Mushroom 0.7002 0.7256 0.7858 0.8709 0.8228 0.7472 0.7686 0.7151 0.8829
Nursery 0.2061 0.2581 0.2551 0.2273 0.2044 0.2516 0.2426 0.2569 0.3370
Solar flare 0.4841 0.3924 0.4884 0.4310 0.4379 0.4923 0.4807 0.4775 0.4467
Soybean 0.5539 0.3945 0.6141 0.5372 0.4593 0.6190 0.6153 0.7462 0.6875
Soybean-small 0.7574 0.7691 0.8786 1.0000 0.9853 0.9006 0.8567 1.0000 1.0000
Splice 0.3366 0.4205 0.6163 0.4379 0.4472 0.7015 0.7291 0.7722 0.8421
Tic-tac-toe 0.5560 0.5579 0.5559 0.5917 0.6129 0.5652 0.5644 0.5785 0.6538
Vote 0.8822 0.8751 0.8898 0.8730 0.8672 0.8921 0.8920 0.8863 0.8960
Zoo 0.7080 0.5936 0.6129 0.6233 0.7648 0.6503 0.6494 0.6860 0.7860

Table 6.10: The comparison of AC, PR, RC of k-PbC and algorithms in [68]

Data set
AC PR RC

Distance Entropy k-PbC Distance Entropy k-PbC Distance Entropy k-PbC
Breast cancer 0.9242 0.9328 0.9614 0.9309 0.9424 0.9517 0.9009 0.9094 0.9656
Lung cancer 0.5313 0.6250 0.6875 0.6569 0.6833 0.7421 0.5274 0.5932 0.6900
Mushroom 0.8941 0.8876 0.8861 0.9138 0.9095 0.9000 0.8903 0.8835 0.8829
Soybean-small 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Vote 0.8690 0.8690 0.8805 0.8630 0.8630 0.8762 0.8811 0.8811 0.8960
Zoo 0.8911 0.9010 0.8911 0.7695 0.8906 0.7503 0.8146 0.8432 0.7860

Balance Breast Car Chess Derma Lung Lymph Mush Nursery Solar Soy-1 Soy-2 Splice Tic Vote Zoo

0

0.5

1

Pu
ri

ty

k-means++ k-modes Cao’s method Khan’s method k-representatives Mod-2 Mod-3 k-PbC

Figure 6.3: Purity results

has similar results on Solar flare and Tic-tac-toe data sets. On Chess, Khan’s algorithm

outperforms other algorithms. Similar results can be observed for the NMI and ARI

metrics. Generally, the proposed approach has been proven to enhance clustering results

in terms of both internal and external metrics.
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Figure 6.4: NMI results
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Figure 6.5: ARI results

6.5.3 Significant Analysis
In this section, we analysed the significance of the clustering results of k-PbC obtained

in the previous section. We considered the significance of the results on both internal

and external validation metrics. Table 6.11 shows the summary of accuracy, precision,

recall and average silhouette values results of k-PbC proposed in this chapter. It can be

observed that k-PbC has the highest values for four metrics on six over sixteen data sets:

Dermatology, Mushroom, Soybean-small, Splice, Vote, Zoo. It has the highest values for

three metrics on three over sixteen data sets: Lung cancer, Lymphography and Tic-tac-

toe. For Balance scale, Breast cancer, Nursery and Soybean, it has the highest values

on two metrics. Thus, it can be seen that k-PbC can work well on a variety of data

sets. On Car evaluation, Chess and Solar flare, k-PbC does not seem to be working
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well when compared to Cao’s and Khan’s methods. Table 6.12 shows the summary of

Purity, NMI and ARI results of k-PbC. It can be observed that it has the highest values

for three metrics on almost data sets, except for the Chess data set. As discussed above,

when similar categories spread in different attributes of the data sets such as in the case

of Chess, Khan’s algorithm is more efficient than other algorithms since it can choose

significant attributes before performing multiple clustering on the selected attributes.

Generally, the practical results show that the initialization method used in k-PbC can

enhance clustering results.

Table 6.12: Significant analysis of k-PbC on three other external validation metrics

#
Data set

Purity NMI ARI
1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

1 Balance scale X X X
2 Breast cancer X X X
3 Car evaluation X X X
4 Lung cancer X X X
5 Chess X X X
6 Dermatology X X X
7 Lymphography X X X
8 Mushroom X X X
9 Nursery X X X

10 Solar flare X X X
11 Soybean X X X
12 Soybean-smal X X X
13 Splice X X X
14 Tic-tac-toe X X X
15 Vote X X X
16 Zoo X X X

6.6 Conclusion
This chapter has solved the problem of random initialization in categorical data cluster-

ing by proposing an algorithm named k-PbC. It uses a maximal frequent pattern mining

based approach to generate initial cluster centers. Particularly, it extends the FPMAX

algorithm [50] in the way that the minimum support threshold does not need to be

specified in advance. The set of maximal frequent itemsets found in the equivalent

transaction data set represents the largest set of categories occurring in categorical ob-

jects. The group of object IDs containing each maximal frequent pattern is then taken

for an initial cluster after removing overlaps between obtained groups. For clustering,

k-PbC uses the kernel-based method for the formation of cluster centers and the ITBD
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measure for distance calculation. The comparative results have revealed that the pro-

posed algorithm has improved clustering results in terms of both internal and external

validation metrics.
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Chapter 7

Estimating the Optimal Number of

Clusters in Categorical Data

Clustering

7.1 Introduction
Clustering is an important task in data mining and knowledge discovery. It has been

widely used in a diversity of fields ranging from data exploration, information retrieval,

text mining, web analysis to computational biology, medical diagnostics, marketing,

social science and many others [15]. It also can be used to discover hidden patterns

and joined as a step in other fundamental research topics. Basically, clustering aims

at identifying groups of homogeneous objects from a data set. A group of objects or a

cluster contains several objects such that they are similar to other objects in the same

cluster and dissimilar to objects in other clusters.

In the literature, clustering algorithms can be grouped by several criteria as shown in

Figure 1.3. In general, they may be classified by clustering types: hard vs. soft cluster-

ing, flat vs. hierarchical clustering, model-based vs. cost-based clustering; by data types:

interval scaled, nominal, ordinal, image; or by regime: parametric vs. non-parametric

clustering [56]. In the branch of flat clustering, partitional clustering algorithms use a

specific distance function to assign objects in a given data set into homogeneous clus-

ters by iteratively reducing an objective function and gradually improving the quality of
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clusters [97].

In distance-based clustering, k-means [84] is popularly used thanks to its simplicity

and efficiency. It uses the mean to represent cluster centers and a distance metric such

as Euclidean to determine distances between objects and cluster centers. It has a linear

scale to the size of data sets and can be applied to any steps of other research topics.

However, as its drawback, k-means can not be used to cluster directly for categorical and

mixed data sets that appear common in many real-life applications. To overcome the

limitation of k-means while keeping its benefits, several methods have been proposed

to make applicable for categorical data, so-called k-means-like algorithms [20, 25, 26,

59, 60, 90–92, 99]. These algorithms keep the same scheme of k-means, but difference

in the use of distance metrics and cluster center representations.

Two major factors that may affect the performance of partitional clustering algo-

rithms are forming initial cluster centers and determining the number of clusters (k)

[97]. The former factor has been discussed in the previous chapter. For the latter factor,

existing algorithms specify k in advance. Nevertheless, a fixed and inaccurate k is hard

to predict the actual k for a given data and may reduce the interpretation of clustering

results. In addition, the under-estimation and over-estimation of k are considerably

influencing on clustering quality [80]. Hence, determining the optimal k is an impor-

tant and non-trivial task in partitional clustering. This chapter focuses on this problem

by proposing a framework to estimate k in categorical data clustering. The following

points are the main contributions of this chapter:

â We proposed a silhouette based framework for estimating the optimal number of

clusters in categorical data clustering, namely k-SCC. The proposed framework

performs the clustering process in a range of user-specified minimum and maxi-

mum of k to select the best k that yields the highest average silhouette value. It

uses the kernel-based method and an information-theoretic based distance mea-

sure to perform the clustering process.

â The proposed framework was tested on both synthetic and real-life data sets from

the UCI Machine Learning repository. In addition, it was used to classify objects

in a real-life Sake wine data set as a case study.

The remainder of this chapter is structured into following sections. Section 7.2 reviews
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related work. Section 7.3 gives preliminary definitions. Section 7.4 proposes the k-

SCC algorithm. Section 7.5 describes experimental results. Finally, Section 7.6 draws a

conclusion.

7.2 Related work
The details of related clustering methods for categorical data clustering are provided in

section 2.4. Here we remarked several important points of partitional algorithms for

this field. In the numerical setting, k-means [84] is a popularly used algorithm in the

branch of partitional clustering. The workflow of k-means is as follows. It first selects k

objects from a given data set as the initial clusters. It then performs the assignment step

to assign all objects to the nearest clusters by using a distance metric such as Euclidean,

Cosine and Manhattan. In the next step, k-means updates the cluster means based on

the new partition matrix. It performs the assignment and update steps in turn until all

clusters are convergent. Generally, it reduces the objective function:

F(U ,Z) =
k∑
l=1

n∑
i=1

m∑
j=1

uil × d(xij, zlj) (7.1)

where n and m be the number of objects and attributes in the data set, U = [uil]n×k is a

partition matrix such that
∑k

l=1 uil = 1 and uil ∈ {0, 1}; Z be a set of k cluster centers,

each contains the means of values inside the cluster at m attributes, d(·, ·) is a distance

metric. K-means is widely used since it is easy for implementation and interpretation,

as well as efficient for large-scale data sets. However, the limitation of k-means is

incapable of dealing with categorical data that is common in many applications.

To address the limitation of k-means, several algorithms were proposed for categor-

ical data, so-called k-means-like algorithms. These algorithms keep the advantages of

k-means and make applicable for categorical data. One of the pioneer algorithms in

this field is the k-modes algorithm [59, 60]. It uses mode instead of mean to represent

cluster centers. Moreover, it uses the simple matching measure as the distance function.
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Let two categories ai and aj. The simple matching for ai and aj is defined as:

δ(ai, aj) =

0 if ai = aj

1 if ai 6= aj

(7.2)

K-representatives [99] considers categories inside an attribute as a distribution and

defines the representative of a cluster by using the relative frequency associated with

categories in the cluster. It measures the distance between objects and representatives

as the multiplication of the simple matching by relative frequencies of categories in

the representative for all attributes. K-centers [20] considers the cluster center as a

probabilistic center by using the kernel-based method. For distance measure, it uses

the simple matching as an indicator function to represent each data object by a set

of vectors and then uses the Euclidean norm to estimate the distance between object

and cluster center. Recently, [25, 26, 90–92] have improved previous categorical data

clustering algorithms by using the kernel-based method and an information-theoretic

based distance (ITBD) measure. In [91, 92], we introduced three algorithms. The M-

k-representatives (Modified-1) improves k-representatives by using the ITBD instead of

the simple matching measure. The M-k-centers (Modified-2) uses the ITBD instead of

the Euclidean norm and keeps the same cluster centers definition as in [20]. The New

algorithm (Modified-3) uses the ITDB in the combination with the modified version of

[20] for cluster centers using the kernel-based method. The New algorithm outperforms

the other two improved versions.

Rousseeuw proposed the silhouette coefficient [98] as the graphical aid to the inter-

pretation and validation of clustering analysis. It measures the goodness of a clustering

structure by considering both the inter-cluster and intra-cluster distances of all objects

within clusters. The way of calculating this coefficient is as follows. Given a cluster-

ing result containing k clusters, for each object xi, it first calculates the intra_dis(xi)

by averaging the distances from xi to all objects inside the same cluster. In addition,

it calculates the inter_dis(xi) by averaging the distances from xi to all objects in the

neighbour cluster of xi. The intra_dis(xi) and intra_dis(xi) are then used for estimating

the silhouette value of xi. The average silhouette value is determined by averaging the

silhouette values of all objects in the data set. In clustering, the average silhouette value
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can be used as an internal validation metric as in Section 2.3.1. In the numeric data

setting, [13, 113] estimated the number of clusters by using the silhouette coefficient.

However, in the categorical data setting, to our best knowledge, no prior work focused

on this method. In this chapter, we used the silhouette coefficient to determine the

optimal number of clusters for a given categorical data set by selecting the k that yields

the highest average silhouette value.

7.3 Preliminaries
The clustering framework proposed in this chapter used the kernel-based method for

the representation of cluster centers and an information-theoretic based dissimilarity

measure for calculating distances between objects and cluster centers. The detail of

these definitions is shown in Section 2.2 of Chapter 2. Again, given a categorical data

set Dcat described by n instances and m attributes. Each object xi ∈ Dcat (1 ≤ i ≤ n) is a

tuple of m values xi = (xi1, xi2, . . . , xim) ∈ A1 ×A2 × · · · ×Am, where Aj is an attribute

characterized by Oj as its domain such that DOM(Aj) = Oj (> 1 values). Moreover, let

oij (1 ≤ i ≤ |Oj|) denote a category in Oj. The following table presents a categorical

data set containing ten objects described by six features.

Table 7.1: A categorical data set

Obj
Attr A1 A2 A3 A4 A5 A6

x1 a1 d2 b3 e4 a5 c6
x2 d1 a2 a3 b4 c5 a6
x3 d1 d2 d3 c4 c5 a6
x4 b1 e2 c3 e4 a5 c6
x5 a1 d2 a3 a4 a5 e6
x6 a1 a2 c3 e4 a5 c6
x7 b1 e2 e3 e4 a5 c6
x8 d1 c2 d3 e4 a5 c6
x9 d1 c2 d3 e4 a5 c6
x10 d1 d2 b3 b4 c5 a6

In this chapter, we also used the kernel-based method to represent cluster centers,

called the probabilistic center [20, 26, 90, 92]. Particularly, given a cluster Cl, then its

center is defined as Zl =
{
zlj
}m
j=1

, each element is a vector in the probability space, Olj
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is the sample space, P lj is the probability measure defined on Cl. For easy tracking, we

restated these definitions like the following.

Given a cluster Cl = {x1, x2, . . . , xnl
} where xi = (xi1, xi2, . . . , xim) (1 ≤ i ≤ nl).

The center of Cl is defined as:

Zl = {zl1, zl2, . . . , zlm} (7.3)

where zlj is defined as:

zlj = [P lj(ol1j),P lj(ol2j), . . . ,P lj(ol|Ol
j |j

)] (7.4)

and the probability of each category olij (1 ≤ i ≤ |Olj|) is measured as:

P lj(olij) =


λl

1
|Ol

j |
+ (1− λl)fl(olij) if olij ∈ Olj

0 otherwise
(7.5)

In this chapter, we also used the information-theoretic based dissimilarity measure for

determining the distance between objects and cluster centers. First, the similarity of

two categorical values oij and oi′j is measured as:

simj(oij, oi′j) =
2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(7.6)

where f(oij, oi′j) =
#(oij ,oi′j)

|D| denotes the relative frequency of the set {oij, oi′j} at the

jth attribute of Dcat. The dissimilarity between is then quantified as:

dsimj(oij, oi′j) = 1− simj(oij, oi′j) = 1− 2 log f(oij, oi′j)

log f(oij) + log f(oi′j)
(7.7)

Again, we defined the distance between two categorical objects xi = (xi1, xi2, . . . , xim)

and xi′ = (xi′1, xi′2, . . . , xi′m) as follows:

dis_objs(xi, xi′) =
m∑
j=1

dsimj(xij, xi′j) (7.8)

In this chapter, for the purpose of measuring the average silhouette values for each
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clustering structure, we first computed the pairwise distance matrix using the information-

theoretic based distance measure (Eq. 7.8). The distance matrix for data objects in data

set 7.1 is shown in Table 7.2, which is a symmetric matrix where dis_objs(xi,xi′) =

dis_objs(xi′,xi) and dis_objs(xi,xi) = 0 (1 ≤ i, i′ ≤ n). This matrix is later used to

calculate the intra and inter distances between objects.

Table 7.2: The pairwise distance matrix of objects in Table 7.1

1 2 3 4 5 6 7 8 9 10
1 0.0000 4.3518 3.7898 1.4107 2.308 1.4107 1.3645 1.7617 1.7617 3.3256
2 4.3518 0.0000 1.4872 4.2182 3.1476 3.7875 4.172 3.6046 3.6046 1.0262
3 3.7898 1.4872 0.0000 4.4165 2.9759 4.4165 4.3866 3.2191 3.2191 0.8917
4 1.4107 4.2182 4.4165 0.0000 2.9497 0.8614 0.3845 1.6281 1.6281 4.383
5 2.308 3.1476 2.9759 2.9497 0.0000 2.5191 2.9035 3.2858 3.2858 2.9827
6 1.4107 3.7875 4.4165 0.8614 2.5191 0.0000 1.2458 1.6281 1.6281 4.383
7 1.3645 4.172 4.3866 0.3845 2.9035 1.2458 0.0000 1.5983 1.5983 4.3368
8 1.7617 3.6046 3.2191 1.6281 3.2858 1.6281 1.5983 0.0000 0.0000 3.7694
9 1.7617 3.6046 3.2191 1.6281 3.2858 1.6281 1.5983 0.0000 0.0000 3.7694

10 3.3256 1.0262 0.8917 4.383 2.9827 4.383 4.3368 3.7694 3.7694 0.0000

The distance between an object xi = (xi1, xi2, . . . , xim) and the centerZl = {zl1, zl2, . . . , zlm}

at the jth attribute is measured as:

disj(xi,Zl) =
∑
olij∈Ol

j

P lj(olij)dsimj(xij, o
l
ij) (7.9)

The distance between xi and Zl for all attributes is formulated as:

dis(xi,Zl) =
m∑
j=1

disj(xi,Zl) (7.10)

The clustering algorithm proposed in this chapter tries to solve the cost function:

F(U ,Z) =
k∑
l=1

n∑
i=1

ui,l × dis(xi,Zl) (7.11)

subject to ui,l ∈ {0, 1}∑k
l=1 ui,l = 1

(7.12)

To measure the goodness of the structure produced by a clustering algorithm, we

used the average silhouette value which is defined in detail in Eqs (2.18) and (2.19).
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C 

Figure 7.1: The silhouette value of object xi

Figure 7.1 shows an example of how to calculate the silhouette value for data object xi.

Assume that data objects in a given categorical data set are assigned into three clusters

A, B, C, where xi belongs to cluster A. To calculate its silhouette, the algorithm needs

to determine the average distance from xi to all objects in the same cluster A, so-called

intra-cluster distance of xi. In addition, it finds the neighbouring cluster other than

cluster A that has the shortest average distance to xi, so-called inter-cluster distance of

xi. Again, the silhouette value of xi is denoted and defined as:

sil(xi) =
inter_dis(xi)− intra_dis(xi)

max{intra_dis(xi), inter_dis(xi)}
(7.13)

sil(xi) measures how closely xi is matched to data within its cluster (intra-cluster)

and how loosely xi is matched to data of the neighbouring cluster (inter-cluster).

The average silhouette values for all objects assigned to k clusters is formulated as

follows:

avg_sil =

∑n
i=1 sil(xi)
n

(7.14)

The goal of determining the optimal k in categorical data clustering for a given data

set is to find the k whose clustering structure yields the maximum average silhouette

value defined in Eq. (7.14).
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7.4 The proposed algorithm
Fig. 7.2 shows the general framework for the proposed k-SCC algorithm. The frame-

work first assigns objects in a given data set into k clusters. It then computes the avg_sil

for the clustering results obtained from the current k. The avg_sil of each k is put into

the set SilSet that maintains the average silhouette values for the whole process. The

framework finally selects the k that produces the corresponding maximum avg_sil value

in SilSet as the optimal number of clusters for the input data set.

Algorithm 12: THE k-SSC ALGORITHM

input : Dcat: a categorical data set, kmin, kmax: minimum and maximum number
of cluster

output: the optimal k and corresponding k clusters of Dcat
1 k = kmin, SilSet← ∅
2 Compute the pairwise distance matrix for objects in Dcat
3 while k ≤ kmax do
4 Generate k initial cluster centers Z(0) = {Z(0)

1 , . . . ,Z(0)
k }

5 i = 0, U ← ∅
6 while clusters are not stable do
7 Fix Z(i) and find U (i) to minimize F(U (i),Z(i))

8 Fix U (i) and update Z(i) to minimize F(U (i),Z(i))
9 i = i + 1

10 end
11 Calculate the avg_sil for the current clustering result
12 SilSet← avg_sil, k = k + 1

13 end
14 return kopt clusters such that skopt = max (SilSet);

Algorithm 14 shows the pseudo code of k-SCC algorithm. It takes a data set Dcat
and two user-specified parameters kmin and kmax as the inputs. k-SCC will find the

optimal number of clusters in the range [kmin, kmax]. By default, kmin is set to 2, while

kmax is set to n − 1. The empty set SilSet is generated to keep the avg_sil produced

by clustering results at each k (line 1). k-SCC computes the pairwise distance matrix

for all object pairs in Dcat (line 2). The matrix is later used to compute the intra_dis

and inter_dis of clusters. For each k in the range of kmin and kmax, k-SCC performs

the assignment and update steps to assign objects into k clusters (lines 4-9). It first

randomly selects k objects from the data set to form k clusters. It then computes the
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distance between objects and clusters to assign objects into the nearest clusters. In other

words, the algorithm finds a new partition matrix which indicates the membership of

each object to k clusters. In the next step, it updates k cluster centers from the obtained

partition matrix. k-SCC iteratively performs the two previous steps until all clusters are

stable, which means that objects in clusters do not further change their membership

values. The clustering results are then used to calculate the average silhouette values.

For every object in each cluster, its silhouette value is determined by using the Eq. 7.13.

k-SCC calculates the average silhouette values for all objects in the data set by using

Eq. 7.14 and keeps it in the SilSet (lines 11-12). The algorithm performs in the same

manner for other k. Finally, it selects the k that yields the maximum average silhouette

value in the SilSet. This k can be considered as the most appropriate number of clusters

for the data set Dcat (line 14).

7.5 Comparative Experiment

7.5.1 Data sets

Table 7.3: Characteristics of the experimental datasets

# dataset #instances #attributes #classes type
1 Car evaluation 1,728 6 4 real-life
2 Chess 3,196 36 2 real-life
3 Connect-4 10,000 42 3 real-life
4 Nursery 12,960 8 5 real-life
5 Soybean (small) 47 35 4 real-life
6 Spect heart 267 22 2 real-life
7 Tic-tac-toe 958 9 2 real-life
8 SD5k 5,000 6 4 synthetic
9 SD10k 10,000 6 2 synthetic

The experiment was conducted to evaluate the performance of k-SSC on both real-

life and synthetic data sets. Table 7.3 shows the characteristics of these data sets. The

first seven data sets are real-life data collected from the UCI machine learning repository

[34], while the last two data sets were generated by [86]. We compared k-SSC with k-

modes [59], Modified-3 [92] and another version of k-SCC, namely k-SCC+, using the
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simple matching distance instead of information-theoretic based distance to compute

the distance matrix. We used Python for implementing algorithms, source code and

data sets can be found at http://bit.ly/2HiwgKl. Experiments were run in a VPCC cluster

[38]. We ran 100 times for the initialization step and selected the best one for each data

set.

7.5.2 Experimental results
For each data sets, we measured the average silhouette values by varying the number

of clusters. Particularly, we set kmin = 2 and kmax = 10, the optimal k was selected from

this range. Figure 7.3 shows the comparative results, in which horizontal and vertical

axes indicate the number of clusters and corresponding average silhouette values, re-

spectively. It can be observed that k-SCC achieves higher average silhouette values than

those of other compared algorithms for all data sets. Specifically, k-SCC outperforms k-

modes for all data sets. Hence, the kernel-based method and the information-theoretic

based distance used in k-SCC are more efficient than the mode and simple matching dis-

tance used in k-modes. k-SCC is also better than Modified-3 in most cases. Moreover, in

terms of computation complexity, the runtime of k-SCC is lower than Modified-3 since

it does not use the feature weighting scheme as in Modified-3. For the comparison of

k-SCC and k-SCC+, the former outperforms the latter for most data sets. Thus, the

information-theoretic based distance is more efficient than the simple matching mea-

sure. On Chess, the peak average silhouette values are at k = 2 and k = 3. It suggests

that we may assign objects in this data set into two or three clusters. On Connect-4, the

peak average silhouette value is at k = 3, thus we may assign objects in this data set

into 3 groups. On SD5K, the highest average silhouette value is at k = 4, thus we may

assign the data set into four groups. The remaining data sets have similar observations.
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Figure 7.3: Average silhouette for various number of clusters

7.5.3 A case study: Sake wine data set
For the experiment, we also used a real-life data set collected from Fujinami lab 1. It

is a data set of 68 Sake wine instances described by eight attributes including initial

taste and aftertaste. The taste was measured by the TS-5000Z sensing system. This

sensor uses a similar way as the human tongue to convert the taste into numerical data.

It measures two kinds of tastes: initial taste and aftertaste. The former is the taste

perceived when wine first enters the mouth including astringency, bitterness, saltiness,

sourness, sweetness and umami, while the latter is the persistent taste remaining in the

1http://www.jaist.ac.jp/ fuji/index.html

138



Chapter 7 7.5. COMPARATIVE EXPERIMENT

5 24 43 1 68 65 66 67 30 47 2 59 3 4 48 51 49 50 27 61 44 54 31 41 9 12 62 6 8 15 19 42 28 45 10 60 23 40 11 34 18 14 64 32 55 25 33 17 16 57 29 52 26 13 38 39 46 7 35 37 20 22 21 36 63 53 56 58

0
2

4
6

8
10

12

H
ei

gh
t

Figure 7.4: Hierarchical clustering on Sake wine data using Complete-lingkage

mouth after the wine has been drunk including aftertaste from astringency and richness.

To validate the results, we used the complete-linkage hierarchical clustering to classify

the Sake wine data set. The clustering result is shown in Figure 7.4. If we cut the

dendrogram at the height of ten, nine or eight, then we obtained two, three and four

clusters, respectively. To apply the k-SCC on the Sake data set, we first converted the

original numeric data into categorical form by using the Kansei words with five linguistic

grades: very low, low, neither, high, very high. Specifically, each attribute was first

discretized into five scales and each scale in the attribute was then mapped with the

corresponding grade. Table 7.4 and Figure 7.5 show the average silhouette values and

silhouette plots on the Sake data set with the k in the range of [2, 10], respectively. It can

be seen that k-SCC outperforms other algorithms in most cases, with the peak average

silhouette value is at k = 3 or 4. Thus, we may partition the Sake data into three or

four clusters, which are matched to the results obtained in Figure 7.4.
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Figure 7.5: Silhouette plots of Sake wine data set for k in range of [2,10]

Table 7.4: Average silhouette values on the Sake wine data set

k
Algos

k-modes Modified-3 k-SCC+ k-SCC

2 0.1461 0.2501 0.2014 0.2501
3 0.1405 0.2744 0.2096 0.2811
4 0.1562 0.2252 0.1584 0.2585
5 0.1351 0.2511 0.1923 0.2451
6 0.1736 0.2135 0.1879 0.2200
7 0.1778 0.2556 0.2128 0.2328
8 0.1512 0.2028 0.2204 0.2217
9 0.1168 0.2168 0.1968 0.2288
10 0.1412 0.1469 0.2148 0.1924
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7.6 Conclusion
This chapter proposed a silhouette coefficient based approach to determine the number

of clusters in categorical data clustering. An algorithm named k-SCC has been intro-

duced for this task. k-SCC used the kernel-based method and an information-theoretic

based distance for clustering step. The information-theoretic based dissimilarity is also

used to compute the pairwise distance matrix for calculating average silhouette val-

ues. We conducted the experiment on both synthetic and real-life data sets. Results

show that k-SCC outperforms compared algorithms in estimating k for a given data set.

The limitation of the proposed framework is that it strongly depends on the distance

measure used in computing the intra_dis and inter_dis of average silhouette values.
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Conclusion and Future Work

8.1 Conclusion
Categorical data are common in many types of real data sets such as health care, market

basket, marketing, retail, and social fields. The attributes of these data sets are inher-

ently discrete and do not take on a natural ordering. In many cases, the data sets may

be mixed, in which some attributes are numerical, whereas other attributes are cate-

gorical. Categorical and mixed data sets lead to numerous challenges for partitional

clustering algorithms. First, new distance measures need to be defined for categorical

and mixed data. Second, statistics such as the mean or median are naturally defined for

numerical data but need to be appropriately modified for discrete data. The problem

becomes more difficult when dealing with mixed data since the different attributes now

need to be treated in a heterogeneous way, as well as the similarity functions need to

explicitly account for the underlying heterogeneity.

Generally, the dissertation has focused on several problems of categorical and mixed

data clustering. First, we designed a k-means-like method for categorical data cluster-

ing. Second, we designed a framework for dealing with both clustering and missing

values in categorical data. Third, we extended the second framework and designed

a framework for clustering mixed numeric and categorical data with missing values.

Fourth, we designed a framework to address the limitation of the random initialization

in categorical data clustering. Finally, we designed a framework to estimate the optimal

number of clusters in categorical data clustering.
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Particularly, Chapter 3 introduces a novel algorithm for categorical data clustering.

The proposed algorithm uses a kernel density estimation based method to represent

cluster centers. Such a method is applicable for categorical data setting while main-

taining consistency with the statistical interpretation of the cluster means for numerical

data. In addition, it uses an information-theoretic based dissimilarity to compute the

distance between categorical objects and cluster centers. This distance metric is based

upon the concept of information theory to measure the similarity of two information

components, making use of the logarithm function to calculate the real value in such a

way that less frequent words have a higher information gain. The proposed method was

tested on several data sets from the UCI Machine Learning Repository and compared

with previous algorithms for clustering categorical data. The results have revealed that

the proposed method outperforms previous methods and can efficiently cluster for pure

categorical data sets. The kernel-based technique and the information-theoretic based

dissimilarity proposed in this chapter were later used to perform clustering steps for the

next chapters.

It can be seen that data now can be obtained from different sources by humans or

devices thanks to the rapid development of information technologies and data acquisi-

tion technologies. However, collecting data is not always an easy task and may lead to

missing values in data due to different mechanisms. Unfortunately, the missing values

can cause bad effects on the analysis results. Thus, in Chapter 4, we focused on the

problem of clustering categorical data having missing values. We designed an integrated

framework that can do both imputation and clustering a categorical data set with miss-

ing values. The proposed framework uses a decision tree-based method to fill in missing

values in advance before clustering. This method has shown to be suitable for categor-

ical data since it can find the set of data objects that are highly correlated with each

data objects having missing values. From that, the appropriate values can be chosen

for the imputation. It then uses the kernel-based method and the information-theoretic

based dissimilarity for the formation of clustering. The proposed k-CCM method was

tested on several data sets from the UCI Machine Learning Repository and compared

with previous algorithms in terms of clustering quality. The results have revealed that

k-CCM can improve the clustering results by taking advantage of imputation steps for
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missing values.

It is worth to note again that clustering for missing mixed data is nontrivial and

more challenging than clustering for missing categorical data. It is because different at-

tributes in mixed data need to be treated in a heterogeneous way. Thus, the framework

for mixed data needs to be designed in a way that explicitly accounts for the underlying

heterogeneity. It handles four main tasks: missing numeric data imputation, missing

categorical data imputation, numeric data clustering and categorical data clustering,

while the framework for categorical data handles two tasks of clustering and imputa-

tion for categorical type. Thus, in Chapter 5, we extended the method proposed in

Chapter 4 and made it applicable for clustering mixed numeric and categorical data

having missing values. For the imputation step, the proposed k-CMM algorithm also

uses the decision-tree based method to find the set of correlated objects and chooses

possible imputed values from the correlated set to impute for missing values in categor-

ical attributes. The missing values in numeric attributes are imputed using the mean

of corresponding attributes from the correlated set. For the clustering step, it uses the

mean and the kernel-based method to define cluster centers at numeric and categorical

attributes, respectively. In addition, to quantify the proximity between data objects, it

uses the squared Euclidean and the information-theoretic based dissimilarity measure

for numeric and categorical attributes, respectively. Experimental results have shown

that k-CMM is more efficient than k-prototypes in terms of clustering quality in most

cases in terms of clustering quality. Moreover, we also evaluated the runtime, mem-

ory consumption, and scalability of k-CMM. Results show that k-CMM is scalable with

respect to the number of instances.

The performance of a partitional clustering algorithm is sensitive to the choice of

initial cluster centers. An improper choice may lead to poor clustering results. Thus,

in Chapter 6, we addressed the problem of random initialization in categorical data

clustering from the view of pattern mining. Specifically, we used a maximal frequent

itemset mining approach name FPMax to find the sets of correlated itemsets. These

sets of maximal frequent itemsets found in the equivalent transaction data set represent

the largest sets of categories occurring in categorical objects. The group of object IDs

containing each maximal frequent pattern is then taken for an initial cluster. For the
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clustering step, we used the kernel-based method and the information-theoretic based

dissimilarity measure. The proposed k-PbC algorithm was tested on benchmark data

sets from the UCI Machine Learning Repository. The comparative results have revealed

that k-PbC has improved clustering results in terms of both internal and external vali-

dation metrics.

The problem of estimating the number of clusters (say k) is one of the major chal-

lenges for the partitional clustering. Thus, in Chapter 7, we proposed an algorithm

named k-SCC to estimate the optimal k in categorical data clustering. For the clustering

step, we used the kernel-based method to define cluster centers and the information-

theoretic based dissimilarity to measure the distance between cluster centers and data

objects. The silhouette analysis-based approach is then used to evaluate the quality

of different clustering obtained in the former step to choose the best k. The experi-

ments were conducted on both synthetic and real data sets to evaluate the performance

of k-SCC algorithm. Experimental results show that k-SCC outperforms the compared

algorithms in determining the number of clusters for each data set.

8.2 Limitations
There are several inherent limitations of the dissertation as shown in the following

discussions.

â First, despite the fact that partitional clustering algorithms have proved to be effi-

cient and had the competitive computational complexity compared to other clus-

tering methods, they fail to perform clustering on very large-scale data sets and

do not scale with a huge volume of data. The clustering frameworks proposed

in the dissertation also face this challenge and take time-consuming on large-

scale datasets. To deal with this challenge, they need to be designed in ways that

can take advantages of acceleration techniques such as parallel methods and data

reduction-based methods.

â Second, although the kernel-based method and the information-theoretic based

dissimilarity can enhance clustering results, they are more complex than other

traditional methods such as “mode” and the simple matching measure. Thus,
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finding simple ways to reduce complexity while maintaining the efficiency of the

clustering algorithms is not a trivial task.

â Third, the data sets used in the dissertation were mainly collected from the UCI

Machine Learning repository [34]. Although the performances of the proposed

algorithms were evaluated for the main types of data encountered in real-life,

more real data sets in other fields such as retail, finance and health care should be

used as specific domains and case studies for proposed algorithms.

8.3 Future Work
The directions for future research are planned as follows:

â Big data clustering: We plan to extend the proposed methods for clustering

large-scale data sets and big data. Specifically, accompany with the advantages

of multi-core processors and graphics processing units (GPU), data mining and

analysis applications on large-scale databases have more abilities to improve their

performance by adapting the distributed or parallel computing techniques. Thus,

we aim to propose parallel methods to improve the existing methods proposed in

the dissertation in terms of computational complexity and scalability.

â Dynamic and distributed data clustering: The proposed methods in the dis-

sertation can only handle the static and centralized data sets. Thus, we plan to

propose approaches for the problems raised in the dissertation on the dynamic

and distributed environment.

â Uncertainty in clustering and Fuzzy clustering:

– In principle, uncertainty may concern all aspects of the learning process. The

data that can not be precisely classified or can not be presented as precise

numbers are called fuzzy or non-precise. In future work, we may concern

about designing clustering algorithms for uncertain data and observations.

– In fuzzy (soft) clustering, each data object may belong to two or more clusters

with different membership values. In many situations, fuzzy clustering is
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more natural than hard clustering since data objects may contribute to more

than one cluster. Thus, we intend to extend clustering algorithms in the

dissertation to the topics of fuzzy clustering.

â Hierarchical clustering: In some cases, especially for small and medium-scale

data sets, hierarchical clustering is still useful and efficient. Thus, we will de-

sign hierarchical clustering algorithms for categorical and mixed data, or combine

hierarchical and partitional clustering together.

â Developing more efficient algorithms: We plan to improve existing proposed

algorithms in terms of clustering quality, computational complexity and scalability.

â Missing data imputation methods: The imputation methods for categorical and

mixed data also need to be improved to reduce computational complexity. As used

in Chapter 6, the association rule mining can be used to find the set of correlated

objects inside the data. In that sense, we intend to use it for imputing missing

values in categorical data by finding the set of complete objects correlated with

each incomplete object. From that, possible values can be selected for the impu-

tation. The imputation method can then be applied for the problem of clustering

categorical or mixed data with missing values.

â Specific domain: The clustering methods proposed in the dissertation can be

applied in any steps of other research topics or used for clustering specific domains

such as market segmentation and health care. We plan to propose a method for

patient similarity for treatment regimen discovery.

â Application point of view: We intend to develop several packages in R for clus-

tering topics proposed in the dissertation.
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