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Abstract

Mutual exclusion is the problem such that at most one thread, process, node
or any execution entity is allowed to enter its critical section to acquire the
permission of using some shared resources, such as shared memory in con-
current and/or distributed systems. Mechanisms or protocols that solve the
problem are called mutual exclusion protocols. It is important to guarantee
that these protocols enjoy the mutual exclusion property and some other de-
sired properties as well. In formal method, theorem proving is one promising
technique that can be used to formally verify such problems. This tech-
nique especially shows its power when dealing with infinite-state systems,
which model checking, although is the most well-known technique in formal
method, however, cannot be used.

This thesis uses observational transition systems (OTSs) as state ma-
chines and CafeOBJ as a formal specification language to formalize systems
(or protocols). Then, we can check whether protocols satisfy some properties
by formally verifying that OTSs enjoys such properties. Formal verification,
which uses theorem proving as the underlying technique, is essentially done
by simultaneous structural induction on a state variable. The verification
is conducted in three ways: (1) by writing what are called proof scores
and executing them with CafeInMaude, (2) by using CafeInMaude Proof
Assistant (CiMPA) to write what are called proof scripts, and (3) by using
CafeInMaude Proof Generator (CiMPG) to generate proof scripts from proof
scores. CafeInMaude is a tool to introduce CafeOBJ specifications into the
Maude system. CiMPA and CiMPG are two extension tools of CafeInMaude.
Three ways of verification all have advantages as well as disadvantages. By
conducting formal verification in three ways, we triple-check the correctness
of our proofs.

Two mutual exclusion protocols: A-Anderson that is an abstract version
of Anderson protocol, and MCS are used as two case studies to illustrate the
verification techniques. We formally prove that A-Anderson and MCS enjoy
the mutual exclusion property. In both case studies, the most intellectual task
is lemma conjecture, which is also considered as one of the most challenging
problems in theorem proving. This thesis focuses on invariant properties,
which are the most basic and important among various kinds of properties.
During each invariant proof, we need to conjecture some auxiliary lemmas
that are also invariants on the fly. Once we have constructed some good
lemmas, the proof can be accomplished straightforwardly; otherwise, it may
become unreasonably tough. This thesis also proposes a lemma conjecture



technique that is called Lemma Weakening (LW). The usefulness of LW is
demonstrated in the latter case study when conducting formal verification of
MCS protocol. Briefly, without the use of LW, we would not have been able
to complete the formal proof that MCS enjoys the mutual exclusion property.

Keywords: proof score, algebraic specification language, mutual exclusion
protocol, lemma weakening
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Chapter 1

Introduction

1.1 Motivation

Software quality assurance has been considering as an important phase in
the software development process life cycle. Ensuring the reliability of a
software system is not only a challenging task but also time-, cost-, and
effort-consuming. Many approaches could be collaboratively used to guar-
antee that software systems are truly reliable. One of them is formal verifi-
cation. This approach uses a state machine to formalize the target system
as a mathematical model, and the requirements of that system can be rep-
resented as the properties of its formalized state machine. Then, systems
verification can be conducted as formal verification of state machine proper-
ties. Model checking and theorem proving are two major formal verification
techniques, which have been advocating by many researchers. The former
can be automatically conducted but basically cannot be used for systems
that have an infinite number of states (infinite-state systems) due to state
explosion problem. The latter can directly deal with infinite-state systems
but it requires human interaction. Conducting theorem proving to formally
verify that a system enjoys some desired properties, it often requires us to
conjecture some other auxiliary lemmas. This task, which is called lemma
conjecture, however, is always considered as one of the most challenging tasks
in theorem proving.

Mutual exclusion is the problem such that at most one thread, process,
node or any execution entity is allowed to enter its critical section to acquire
the permission of using some shared resources, such as shared memory in
concurrent and/or distributed systems. Mechanisms or protocols that solve
the problem are called mutual exclusion protocols. For example, variants of
MCS list-based queuing lock protocol (MCS protocol, or simply MCS) [1]
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have been used in Java virtual machines. Therefore, guaranteeing that these
protocols enjoy some properties, especially, the mutual exclusion property
is an important problem; otherwise, it can lead to some serious incidents.
For example, on August 14, 2003, a software bug caused by race condition
made a widespread power outage throughout parts of the Northeastern and
Midwestern United States, and the Canadian province of Ontario 1. This ac-
cident led to a series of other services interrupted such as telephone networks,
cellular service, water supply, flights landing, etc. The technique presented
in this thesis can be used to check that race condition bug.

1.2 The overview of method

The verification techniques presented in this thesis use theorem proving as
the underlying technique. Observational transition systems (OTSs) [2, 3] are
used to formalize systems (or protocols) as state machines. CafeOBJ [4],
which is an algebraic specification language, is used to specify the OTSs.
Formal verifications of invariant properties, which are the most basic and
important among various kinds of properties, can be done by writing what
are called proof scores in CafeOBJ and executing them with CafeOBJ. Proof
scores are essentially developed by simultaneous structural induction on a
state variable of the OTS.

CafeInMaude [5] is the second implementation of CafeOBJ in addition
to the original implementation, which was done in Common Lisp. CafeIn-
Maude introduces CafeOBJ specifications into the Maude [6] system. It
comes with two extension tools CafeInMaude Proof Assistant (CiMPA) and
CafeInMaude Proof Generator (CiMPG) [7]. This thesis presents the formal
verification in three ways:

(1) by writing proof scores and executing them with CafeInMaude,

(2) by using CafeInMaude Proof Assistant - CiMPA, and

(3) by using CafeInMaude Proof Generator - CiMPG.

CiMPA is a proof assistant that allows users to write what are called proof
scripts in order to prove invariant properties on their CafeOBJ specifications.
CiMPG provides a minimal set of annotations for identifying proof scores and
generating CiMPA scripts for these proof scores. Although the proof score
approach (1) is flexible to conduct in a sense of theorem proving, it is also

1https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/

BlackoutFinal-Web.pdf
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easy to overlook some cases, leading to incorrect proofs. Using CiMPA (2) to
develop the proof by writing proof scripts can get out of this disadvantage.
However, it is often the case that CiMPA is not flexible enough to conduct
formal verification even though it is not subject to human errors as the proof
score approach. CiMPG (3) allows users to combine the flexibility of the proof
score approach and the reliability of CiMPA. Given proof scores that should
be slightly annotated, CiMPG generates proof scripts for CiMPA. Feeding
the generated proof scripts into CiMPA, if CiMPA successfully discharges
all goals, the proof scores are correct for the goals. By conducting formal
verification in three ways, we triple-check the correctness of our proofs.

There are two mutual exclusion protocols that are used as case studies to
demonstrate three verification techniques. The first case study is conducted
with an abstract version of Anderson protocol [8], which is called A-Anderson
protocol. The second case study presents formal verification with the MCS
protocol. We formally verify that both A-Anderson and MCS enjoy the
mutual exclusion property.

In both case studies, the most intellectual task is lemma conjecture. This
is not surprise since lemma conjecture is always considered as one of the most
challenging problems in theorem proving. For each invariant proof, we need
to conjecture some lemmas that are also invariants on the fly during the proof.
Once some good lemmas are constructed, the proof can be accomplished
straightforwardly; otherwise, it may become unreasonably tough. This thesis
also proposes a lemma conjecture technique by weakening lemmas. Thus, the
technique is called Lemma Weakening (LW). To the best of our knowledge,
John Rushby [9] is only the researcher who has used a special form of lemmas
weakening called disjunctive invariants. Our way to weaken lemmas is more
generic than the Rushby’s disjunctive invariants. The usefulness of LW is
demonstrated in the second case study when conducting formal verification
of MCS protocol. While proving that MCS enjoys the mutual exclusion
property, we have realized that LW can make the proof attempt converge
that otherwise did not seem to converge in a reasonable amount of time.

1.3 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 - Preliminaries gives some common notions and back-
ground knowledge that related to formal verification, such as OTSs,
invariants, proof score, etc.
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• Chapter 3 - Formal verification of an abstract version of An-
derson protocol presents three ways to formally verify that A-Anderson
protocol enjoys the mutual exclusion property.

• Chapter 4 - Formal verification of MCS protocol presents the for-
mal verification that MCS protocol enjoys the mutual exclusion prop-
erty along with the usefulness of LW technique in the proof.

• Chapter 5 - Related work mentions some related work.

• Chapter 6 - Conclusion summarizes the contribution of this thesis
and mentions some future work.

All the specifications, proof scores, proof scripts, etc. presented in this
thesis are available at https://gitlab.com/duongtd23/ms-thesis20.

4
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Chapter 2

Preliminaries

This chapter gives some common notions and background knowledge which
are requirements for the rest of the thesis. We first present the definition
of OTSs. Then, we show the basic syntax of CafeOBJ through a simple
example. After that, we give descriptions for CafeInMaude, CiMPA, and
CiMPG.

2.1 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted Υ and that
each data type used in OTSs is provided. The data types include Bool for
Boolean values. A data type is denoted D with a subscript such as Do1 and
Do.

Definition 2.1. An OTS S is 〈O, I, T 〉 such that

• O: A finite set of observers. Each observer o : ΥDo1 . . . Dom →
Do is a function that takes one state and m (≥ 0) data values and
returns one data value. The equivalence relation (υ1 =S υ2) between
two states υ1, υ2 ∈ Υ is defined as (∀o ∈ O)(∀x1 ∈ Do1) . . . (∀xm ∈
Dom) (o(υ1, x1, . . . , xm) = o(υ2, x1, . . . , xm)).

• I: The set of initial states such that I ⊆ Υ.

• T : A finite set of transitions. Each transition t : ΥDt1 . . . Dtn → Υ
is a function that takes one state and n (≥ 0) data values and returns
one state, provided that t(υ1, y1, . . . , yn) =S t(υ2, y1, . . . , yn) for each
[υ] ∈ Υ/=S , each υ1, υ2 ∈ [υ] and each yi ∈ Dti for i = 1, . . . , n. Each
transition t has the condition c-t : ΥDt1 . . . Dtn → Bool, which is
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called the effective condition of t. If c-t(υ, y1, . . . , yn) does not hold,
then t(υ, y1, . . . , yn) =S υ.

A pair (υ, υ′) of states is called a transition instance and υ′ is called a suc-
cessor state of υ with respect to (wrt) S if there exists t ∈ T such that
υ′ =S t(υ, y1, . . . , yn) with yi ∈ Dti where i ∈ {1, . . . , n}. Such a pair (υ, υ′)
may be denoted υ →S υ

′ to emphasize that υ directly goes to υ′ by one step.
Each state that is reachable from an initial state through transitions is

called a reachable state.

Definition 2.2. Given an OTS S, reachable states wrt S are inductively
defined:

(i) Each υ ∈ I is reachable wrt S.

(ii) For each t ∈ T and each yk ∈ Dtk where k ∈ {1, . . . , n}, t(υ, y1, . . . , yn)
is reachable wrt S if υ ∈ Υ is reachable wrt S.

RS is used to denote the set of all reachable states wrt S.

Predicates whose types are Υ → Bool are called state predicates. State
predicates may have universally quantified variables. State predicates that
hold in all reachable states wrt S are invariants wrt S.

Definition 2.3. A state predicate ρ : Υ → Bool is called an invariant wrt
S if ρ(υ) is true for all υ ∈ RS , i.e. (∀υ ∈ RS) ρ(υ).

All properties presented in this thesis are invariants.

Definition 2.4. A state predicate ρ : Υ → Bool is called an inductive
invariant wrt S if it satisfies the following two conditions:

1. (∀υ ∈ I) ρ(υ)

2. (∀t ∈ T )(∀υ ∈ Υ)(∀y1 ∈ Dt1) . . . (∀yn ∈ Dtn) (ρ(υ)⇒ ρ(t(υ, y1, . . . , yn)))

Informally, we can say that state predicates that are preserved by all transi-
tions are inductive invariants. Inductive invariants wrt S are invariants wrt
S but not vice versa.
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2.2 CafeOBJ

CafeOBJ [4] is an algebraic specification language that can be used to spec-
ify various kinds of systems and verify their properties. It provides many
advanced features such as the flexible mix-fix syntax, the powerful and clear
typing system with ordered sorts (or types), parameterized modules and
views for instantiating the parameters. The following SIMPLE-NAT module
simply defines natural numbers with only the plus operator between two
natural numbers in CafeOBJ:

mod SIMPLE-NAT {

[ Zero NzNat < Nat ]

op 0 : -> Zero {constr}

op s : Nat -> NzNat {constr}

op _+_ : Nat Nat -> Nat

vars M N : Nat

eq 0 + M = M .

eq s(M) + N = s(M + N) .

}

The module first introduces three sorts (types) Zero, NzNat, and Nat corre-
spond to zero, non-zero numbers, and natural numbers (either zero or non-
zero), respectively. The order between them is also indicated such that Zero
and NzNat are sub-sorts of Nat. It means that any terms of sort Zero or sort
NzNat also belong to sort Nat but not vice versa. op, vars, and eq denote
operator, variables, and equation, respectively. In an operator declaration,
a list of sort names before “->” designates its arity, while the sort name
after “->” designates its coarity. Operators 0 and s are introduced with at-
tribute constr, stating that they are constructors of sorts Zero and NzNat,
respectively. This concept plays an important role in theorem proving even
though for CafeOBJ, it is just a comment. 0 represents zero, and it is a fresh
constant of sort Zero since the operator is declared with the empty arity. s

is the successor function of natural numbers, taking a natural number and
returning a non-zero natural number (successor of a natural number n is
n+ 1). 0 and s are declared in standard operator declarations (e.g, we write
s(0)), while _+_ is introduced as an infix operator, thanks to the mid-fix
syntax of CafeOBJ. Two underscores in _+_ represent two natural numbers
that are inputs of the plus operator (e.g., we write 0 + s(0)). The semantic
of operators is defined by the last two equations.

To formally verify some desired properties of the systems, users can write
what are called proof scores in CafeOBJ and executing them with CafeOBJ.
Let us consider again the above example, we can write proof scores to prove
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that the plus function is associative, that is (I + M) + N = I + (M + N)

with arbitrary I, M, and N of sort Nat. The proof is done by applying induction
on I. The following open-close proof fragment corresponds to the base case:

open SIMPLE-NAT .

ops m n : -> Nat . -- fresh constants

red (0 + m) + n = 0 + (m + n) . -- check base case

close

where -- denotes a comment in CafeOBJ starting from there to the end
of that line, open makes the given module available, close stops the use
of the module. The first statement between open-close declares two fresh
constants of sort Nat representing two arbitrary natural numbers. Then, the
second statement uses the red command to reduce a term standing for the
base case. Feeding this open-close fragment into CafeOBJ, CafeOBJ returns
true, indicating that we have all done with the base case. The open-close
proof fragment above is called as the proof score.

Then, the following proof score standing for the induction case:

open SIMPLE-NAT .

ops i m n : -> Nat . -- fresh constants

eq (i + M) + N = i + (M + N) . -- induction hypothesis

red (s(i) + m) + n = s(i) + (m + n) . -- check induction case

close

The second statement represents the induction hypothesis, that is, with a
natural number i, the associative property holds. The last statement tries to
reduce the induction case, that is, if the associativity holds for i, it should also
hold for s(i) (or i + 1). Feeding the proof score into CafeOBJ, CafeOBJ
returns true. We have completely proved that the plus function of two
natuaral numbers is associative.

The proof of associative property, however, is just a very simple example
since the proof is directly accomplished by only two open-close fragments.
In other non-trivial verification problems including two case studies in this
thesis, it often requires us to conduct case splitting or to conjecture some
other lemmas to complete the proofs. The former creates a big number of
open-close fragments as well as lines of code. The latter, as we mentioned, is
always considered as one of the most challenging tasks in theorem proving.
We will see more details about these problems in Chapter 3 and Chapter 4.

8



2.3 CafeInMaude, CiMPA and CiMPG

CafeInMaude [5] is a tool to introduce CafeOBJ [4] specifications into the
Maude [6] system. It can be regarded as the second implementation of
CafeOBJ in addition to the original one, which was done in Common Lisp.
This second implementation has a number of advantages. It improves the
performance of some CafeOBJ commands, such as search. It makes CafeOBJ
environment easily extensible. That is, it allows us to change the syntax of
existing features as well as to introduce new syntax, to add new commands,
etc. just by using Maude code, thanks to Maude meta-level features and
Full Maude. Using CafeInMaude, we can load the module SIMPLE-NAT in
Sect. 2.2 into Maude environment. We can also execute the proof scores
with CafeInMaude instead of CafeOBJ to prove the associative property of
the plus operator.

Figure 2.1: The relation between proof score, proof script, CiMPA, and
CiMPG

CafeInMaude is introduced with two extension tools: CiMPA and CiMPG.
The former is a proof assistant of CafeInMaude that allows users to write
what are called proof scripts to prove invariant properties on their CafeOBJ
specifications. The latter is a proof generator of CafeInMaude that provides a
minimal set of annotations for identifying proof scores and generating CiMPA
scripts for these proof scores. Given a specification in CafeOBJ, to check
the satisfiability of some desired properties, users can choose to write proof
scripts and executing them with CiMPA. If CiMPA finishes successfully, then
the properties are proved; otherwise, we need to revise the proof scripts and
make the verification attempt again. However, it is often the case that work-
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ing with proof scores is easier and more flexible. Therefore, users can decide
to write proof scores, then use CiMPG to generate proof scripts for CiMPA.
Note that proof scores are subject to human errors such that users can over-
look some cases, leading to incorrect proofs. CiMPA can get rid of this kind
of flaw. If CiMPA does not work on the proof scripts successfully, the proof
scores have something wrong and we need to revise the proof scores, making
our verification attempt again. Figure 2.1 graphically describes the relation
between the proof score, proof script, CiMPA, and CiMPG.
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Chapter 3

Formal verification of an
abstract version of Anderson
protocol

This chapter presents three ways to formally verify that an abstract version
of Anderson protocol enjoys the mutual exclusion property. We first give
the details of the Anderson protocol and its abstract version in Sect. 3.1
and Sect. 3.2, respectively. Sect. 3.3 describes how to fomally specify the
protocol in CafeOBJ. Then, three last sections present three ways of formal
verification.

3.1 Anderson protocol

Anderson protocol [8] is a mutual exclusion protocol. The protocol uses a
finite Boolean array whose size is the same as the number of processes par-
ticipating in the protocol. It also uses the modulo operation of natural num-
bers and an atomic operation fetch&incmod. fetch&incmod takes a natural
number variable x and a non-zero natural number constant N and atomically
does the following: setting x to (x+1) % N, where % is the modulo operation,
and returning the old value of x.

Suppose that there are N processes participating in the protocol. The
pseudo-code of Anderson protocol for each process p can be written as follows:

Loop “Remainder Section”
rs : place[p] := fetch&incmod(next ,N );
ws : repeat until array [place[p]];

“Critical Section”
cs : array [place[p]], array [(place[p] + 1) %N ] := false, true;
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Suppose that each process is located at rs, ws or cs and initially located
at rs. place is an array whose size is N and each of whose elements stores
one from {0, 1, . . . ,N − 1}. Initially, each element of place can be any from
{0, 1, . . . ,N − 1} but is 0 in this thesis. Although place is an array, each
process p only uses place[p], and then we can regard place[p] as a local variable
to each process p. array is a Boolean array whose size is N . Initially, array [0]
is true and array [j] is false for any j ∈ {1, . . . ,N − 1}. next is a natural
number variable and initially set to 0. fetch&incmod(next ,N ) atomically
does the following: setting next to (next + 1) % N and returning the old
value of next . x, y := e1, e2 is a concurrent assignment that is processed as
follows: calculating e1 and e2 independently and setting x and y to their
values, respectively.

Figure 3.1: The change of state of Anderson when a process p moves to rs
from cs

Fig. 3.1 graphically visualizes the change of state when a process p moves
to rs from cs. The state, which is represented by the right circle, is the
successor state of the one which is represented by the left circle. Note that
we use pc[p] to denote the location of process p. The changes are highlighted
by red color. Since array in Anderson is finite, in the figure, we use a circle
(precisely half of a circle) to represent it.

3.2 A-Anderson protocol

It is challenging to formally verify that Anderson protocol enjoys desired
properties, such as the mutual exclusion property, in a sense of theorem
proving. This is because the protocol uses a finite array and the modulo
operation of natural numbers. Briefly, these reasons make it so difficult for
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us to conjecture some good lemmas to complete the proof. Then, we make
an abstract version of the protocol, which is called A-Anderson protocol.
In A-Anderson, we use an infinite Boolean array instead of a finite one,
fetch&inc instead of fetch&incmod, and no longer use the modulo operation.
The assumption that there are N process participating in the protocol is
also removed now. It means that the number of process participating in
A-Anderson can be infinite.

The pseudo-code of A-Anderson protocol for each process p can be written
as follows:

Loop “Remainder Section”
rs : place[p] := fetch&inc(next);
ws : repeat until array [place[p]];

“Critical Section”
cs : array [place[p] + 1] := true;

where fetch&inc is an atomic operation, taking only one parameter next,
and atomically does the following: setting next to next + 1 and returning
the old value of next . We also suppose that each process is located at rs, ws
or cs and initially located at rs. Initially, each element of place can be any
natural number but is 0 in this thesis, array [0] is true, array [j] is false for
any non-zero natural number j and next is 0.

Figure 3.2: The change of state of A-Anderson when a process p moves to rs
from cs

Fig. 3.2 graphically visualizes the change of state when a process p moves
to rs from cs. The state, which is represented by the right circle, is the
successor state of the one which is represented by the left circle. Let us repeat
again that we use pc[p] to denote the location of process p and red color is
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used to indicate the changes. Since array in A-Anderson now becomes an
infinite array, we represent it in the straight form with infinity on the right
side.

3.3 Specification of A-Anderson protocol in

CafeOBJ

In order to specify A-Anderson protocol in CafeOBJ, we first need to define
the module LABEL. This module is in charge of defining process locations,
i.e., rs, ws and cs. The definition starts with mod! to indicate that it has
tight (initial) semantics. This module defines the sort Label and declares
three constructors (denoted by the constr attribute): rs, ws, cs. It also
defines three equations for the equality predicate to indicate that each label
is not equal to any others.

mod! LABEL {

[Label]

ops rs ws cs : -> Label {constr} .

eq (rs = ws) = false .

eq (rs = cs) = false .

eq (ws = cs) = false .

}

The module SIMPLE-NAT below is in charge of defining natural numbers.
In contrast to the module LABEL, this module is defined with keyword mod*,
which indicates that it has loose semantics. It first introduces three sorts
SZero, SNzNat and SNat represent zero, non-zero numbers and numbers (ei-
ther zero or non-zero), respectively. The operation s is in charge of defining
the successor function of a number, that is it takes a natural number as the
input and returns a non-zero number (successor of a natural number n is
n + 1). The first three equations define some inequalities. For instance, the
first equation says that zero is different from any non-zero number. Then,
SIMPLE-NAT declares a predicate “<” that is in charge of defining less-than
comparison between two natural numbers. For example, the first equation
following the predicate declaration indicates that any natural number is not
less than zero.

mod* SIMPLE-NAT {

[ SZero SNzNat < SNat ]

op 0 : -> SZero {constr}
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op s : SNat -> SNzNat {constr}

vars I J L : SNat

vars K G H : SNzNat

eq (0 = K) = false .

eq (0 = s(I)) = false .

eq (I = s(I)) = false .

pred _<_ : SNat SNat .

eq (I < 0) = false .

eq (0 < K) = true .

eq (I < s(I)) = true .

eq (I < s(s(I))) = true .

eq (I < I) = false .

ceq (I < s(J)) = true if I < J .

ceq (s(I) < J) = false if (I < J) = false .

eq (s(I) = s(J)) = (I = J) .

ceq (I < s(0)) = false if (I = 0) = false .

ceq (I < s(J)) = false if (I = J) = false and (I < J) = false .

ceq (s(I) < s(J)) = true if I < J .

ceq (I = J) = true if ((I < J) = false and (J < I) = false) .

}

Then, the module ANDERSON specifies the behavior of the protocol as an
OTS SADS. It first imports two modules LABEL, SIMPLE-NAT, and defines
the sorts Sys and Pid representing the set of reachable states and the set of
process identifiers, respectively as follows:

mod* ANDERSON {

pr(LABEL + SIMPLE-NAT)

[Sys] [Pid]

Each state of A-Anderson protocol can be characterized by the following
pieces of information: the location of each process, the value stored in next ,
the value stored in each element of place and the value stored in each element
of array . Therefore, we use the following observation functions:

op pc : Sys Pid -> Label .

op next : Sys -> SNat .

op place : Sys Pid -> SNat .

op array : Sys SNat -> Bool .

where Bool is the sort of Boolean values. We do not use any infinite arrays in
the specification. Instead, we use the observation function array to observe
the value stored in each element that is given to array as its second argument.

A constructor is used to represent an arbitrary initial state as follows:
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op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values observed by the
four observation functions in an arbitrary initial state as follows:

eq pc(init,P) = rs .

eq next(init) = 0 .

eq place(init,P) = 0 .

eq array(init,I) = (if I = 0 then true else false fi) .

where P is a CafeOBJ variable of Pid and I is a CafeOBJ variable of SNat.
We use three transition functions that are also constructors:

op want : Sys Pid -> Sys {constr}

op try : Sys Pid -> Sys {constr}

op exit : Sys Pid -> Sys {constr}

The three transition functions capture the actions that each process moves
to ws from rs, tries to move to cs from ws and moves back to rs from cs,
respectively. The reachable states are composed of the four constructors.

Each of the three transition functions is defined in terms of equations,
specifying how the values observed by the four observation functions change.
Let S be a CafeOBJ variable of Sys, P & Q be CafeOBJ variables of Pid and
I & J be CafeOBJ variables of SNat.

want is defined as follows:

ceq pc(want(S,P),Q) = (if P = Q then ws else pc(S,Q) fi)

if c-want(S,P) .

ceq place(want(S,P),Q) = (if P = Q then next(S) else

place(S,Q) fi) if c-want(S,P) .

ceq next(want(S,P)) = s(next(S)) if c-want(S,P) .

eq array(want(S,P),I) = array(S,I) .

ceq want(S,P) = S if c-want(S,P) = false .

where c-want(S,P) is pc(S,P) = rs. s of s(next(S)) is the successor func-
tion of natural numbers. The equations say that if c-want(S,P) is true, the
location of P changes to ws, the location of each other process Q does not
change, the P’s place changes to next , each other process Q’s place does not
change, next is incremented and array does not change in the state denoted
want(S,P); if c-want(S,P) is false, nothing changes.

try is defined as follows:
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ceq pc(try(S,P),Q) = (if P = Q then cs else pc(S,Q) fi)

if c-try(S,P) .

eq place(try(S,P),Q) = place(S,Q) .

eq array(try(S,P)) = array(S) .

eq next(try(S,P),I) = next(S) .

ceq try(S,P) = S if c-try(S,P) = false .

where c-try(S,P) is

pc(S,P) = ws and array(S,place(S,P)) = true

The equations say that if c-try(S,P) is true, the location of P changes
to ws, the location of each other process Q does not change, place does not
change, array does not change and next does not change in the state denoted
try(S,P); if c-try(S,P) is false, nothing changes.

exit is defined as follows:

ceq pc(exit(S,P),Q) = (if P = Q then rs else pc(S,Q) fi)

if c-exit(S,P) .

eq place(exit(S,P),Q) = place(S,Q) .

eq next(exit(S,P)) = next(S) .

ceq array(exit(S,P),I) = (if I = s(place(S,P)) then true

else array(S,I) fi) if c-exit(S,P) .

ceq exit(S,P) = S if c-exit(S,P) = false .

}

where c-exit(S,P) is pc(S,P) = cs. The equations say that if c-exit(S,P)
is true, the location of P changes to rs, the location of each other process Q

does not change, place does not change, next does not change, the Ith ele-
ment of array is set true if I equals s(place(S,P)) and each other element
of array does not change in the state denoted exit(S,P); if c-exit(S,P) is
false, nothing changes.

3.4 Formal verification with proof scores

3.4.1 The mutual exclusion property

One desired property A-Anderson protocol should satisfy is the mutual ex-
clusion property. To specify the property, the following module ADS-INV is
introduced:
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mod ADS-INV {

pr(ANDERSON)

var S : Sys .

vars P Q : Pid .

vars G H : SNzNat .

vars I J K : SNat .

op mutex : Sys Pid Pid -> Bool

eq mutex(S,P,Q) =

((pc(S,P) = cs and pc(S,Q) = cs) implies (P = Q)) .

}

The mutual exclusion property is formalized as the following invariant
wrt SADS: (∀υ ∈ RSADS

)(∀p, q ∈ Pid) mutex(υ, p, q). Let us use “the proof
of mutex wrt SADS” (and “to prove mutex wrt SADS”) to mean the proof of
(∀υ ∈ RSADS

)(∀p, q ∈ Pid) mutex(υ, p, q) (and to prove (∀υ ∈ RSADS
)(∀p, q ∈

Pid) mutex(υ, p, q)). This calling is applied for not only SADS or mutex, but
also other OTSs as well as other similar CafeOBJ operators invi that takes
one state variable and zero or more data values and returns a Boolean value
in this thesis. We may omit “wrt S” if S is clear from the context. Note
that, initially, ADS-INV only has mutex that is used to formalized the mutual
exclusion property, but while conducting the formal verification, we gradually
conjecture lemmas and add them to ADS-INV on the fly.

Figure 3.3: The proof of mutex wrt SADS

The proof of mutex wrt SADS is essentially done by applying structural
induction on the state variable. The approach is graphically depicted in
Fig. 3.3. There are four cases to tackle: base case (1) and three induction
cases (2), (3), (4). In (1), we need to show that mutex holds in any initial
states. In (2), (3) and (4), we want to prove that if mutex holds in state υ, it
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Table 3.1: Case splittings for case (2) in the proof of mutex wrt SADS

(2.1.1) pc(s,r) = rs, q = r

(2.1.2.1) pc(s,r) = rs, (q = r) = false, p = r

(2.1.2.2) pc(s,r) = rs, (q = r) = false, (p = r) = false

(2.2) (pc(s,r) = rs) = false

also holds in the successor states υ′, υ′′ and υ′′′ of υ, where υ′, υ′′ and υ′′′ are
made by transitions when an arbitrary process r moves to ws from rs, tries
to move to cs from ws and moves to rs from cs, respectively.

Firstly, the proof score of the base case (1) init is as follows:

open ADS-INV .

ops p q : -> Pid .

red mutex(init,p,q) .

close

Feeding the proof score into CafeInMaude, CafeInMaude returns true mean-
ing that the case is discharged.

Next, let us consider case (2). What to prove is mutex(want(s,r),p,q),
where s is a fresh constant of Sys representing an arbitrary state and p,
q & r are fresh constants of Pid representing arbitrary process IDs. The
induction hypothesis is mutex(s,P,Q) for all process IDs P & Q. Let us note
that s is shared by mutex(want(s,r),p,q) and mutex(s,P,Q), while the
variables P and Q can be replaced with any terms of Pid, such as p and q.
Unlike the base case (1), case (2) can not be discharged directly, instead, it
requires us to conduct case splitting. We first split case (2) into two sub-
cases: (2.1) pc(s,r) = rs and (2.2) (pc(s,r) = rs) = false. Case (2.2)
can be discharged, its proof score is as follows:

open ADS-INV .

op s : -> Sys .

ops p q r : -> Pid .

eq (pc(s,r) = rs) = false .

red mutex(s,p,q) implies mutex(want(s,r),p,q) .

close

Feeding the proof score into CafeInMaude, true is returned.
Case (2.1) needs to be split into two sub-cases: (2.1.1) q = r and (2.1.2)

(q = r) = false. Case (2.1.1) can be discharged, while we need to split
case (2.1.2) into two sub-cases one more time: (2.1.2.1) p = r and (2.1.2.2)
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Table 3.2: Case splittings for case (3) in the proof of mutex wrt SADS

(3.1.1.1) pc(s,r) = ws, q = r, p = r

(3.1.1.2.1.1)
pc(s,r) = ws, q = r, (p = r) = false,
array(s,place(s,r)) = true, pc(s,p) = cs

(3.1.1.2.1.2)
pc(s,r) = ws, q = r, (p = r) = false,
array(s,place(s,r)) = true, (pc(s,p) = cs) = false

(3.1.1.2.2)
pc(s,r) = ws, q = r, (p = r) = false,
array(s,place(s,r)) = false

(3.1.2.1.1.1)
pc(s,r) = ws, (q = r) = false, p = r,
array(s,place(s,r)) = true, pc(s,q) = cs

(3.1.2.1.1.2)
pc(s,r) = ws, (q = r) = false, p = r,
array(s,place(s,r)) = true, (pc(s,q) = cs) = false

(3.1.2.1.2)
pc(s,r) = ws, (q = r) = false, p = r,
array(s,place(s,r)) = false

(3.1.2.2.1) pc(s,r) = ws, (q = r) = false, (p = r) = false, p = q

(3.1.2.2.2.1)
pc(s,r) = ws, (q = r) = false, (p = r) = false,
(p = q) = false, array(s,place(s,r)) = true

(3.1.2.2.2.2)
pc(s,r) = ws, (q = r) = false, (p = r) = false,
(p = q) = false, array(s,place(s,r)) = false

(3.2) (pc(s,r) = ws) = false

(p = r) = false. Both sub-cases now can be discharged. The case split-
tings for case (2) also can be seen through Table 3.1.

So far, we have completely resolved two cases (1) and (2) in the proof of
mutex wrt SADS. These are two simple cases since case (1) is discharged di-
rectly and case (2) is discharged just after three times of case spitting without
using any other invariants as lemmas. Unfortunately, it is not simple likewise
to discharged case (3). In case (3), we need to prove mutex(try(s,r),p,q),
where s is a fresh constant of Sys and p, q & r are fresh constants of Pid. Ta-
ble 3.2 shows the case splittings for case (3) in the proof of mutex wrt SADS.
For example, the open-close fragment of case (3.1.1.2.1.1) is as follows:

open ADS-INV .

op s : -> Sys .

ops p q r : -> Pid .

eq pc(s,r) = ws .
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eq q = r .

eq (p = r) = false .

eq array(s,place(s,r)) = true .

eq pc(s,p) = cs .

red mutex(s,p,q) implies mutex(try(s,r),p,q) .

close

Feeding the fragment into CafeInMaude, CafeInMaude returns false. Case
(3.1.1.2.1.1) says that process p is located at cs, process r (or q since q = r)
is located at ws and array(s,place(s,r)) is true. In that case, process r

can move to cs, breaking the property concerned since there are two processes
p and r located at cs. Therefore, we need to conjecture a lemma to discharge
case (3.1.1.2.1.1). Such a lemma can be conjectured from the assumptions
made in case (3.1.1.2.1.1). We have conjectured inv1 as such a lemma. inv1
is declared in the module ADS-INV as follows:

eq inv1(S,P,Q) = ((array(S,place(S,P)) = true and

pc(S,P) = ws and (P = Q) = false) implies (pc(S,Q) = cs or

(pc(S,Q) = ws and array(S,place(S,Q)) = true)) = false) .

where S is a CafeOBJ variable of Sys, P and Q are CafeOBJ variables of Pid.
The red command in the above open-close fragment now becomes as follows:

red inv1(s,r,p) implies mutex(s,p,q) implies mutex(try(s,r),p,q) .

CafeInMaude now returns true for the proof score fragment.
The proof of case (3.1.2.1.1.1) needs the use of inv1(s,r,q) as a lemma.

The remaining sub-cases of case (3) (in Table 3.2) can be discharged without
any lemmas.

Table 3.3: Case splittings for case (4) in the proof of mutex wrt SADS

(4.1.1) pc(s,r) = cs, q = r

(4.1.2.1) pc(s,r) = cs, (q = r) = false, p = r

(4.1.2.2) pc(s,r) = cs, (q = r) = false, (p = r) = false

(4.2) (pc(s,r) = cs) = false

Case (4) can be discharged likewise by applying case splittings as shown in
Table 3.3. Let us repeat again that s is a fresh constant of Sys, while p, q & r

are fresh contants of Pid, and in (4) we need to prove mutex(exit(s,r),p,q).
All of the sub-cases can be discharged straightforwardly, without any lemmas.
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3.4.2 The other lemmas

Since the proof of mutex uses inv1 as a lemma, we need to prove that inv1
is also an invariant wrt SADS to complete the formal verification. The proof
of inv1 requires four other invariants that are inv2, inv3, mutex and inv6.
The proof of inv3 uses another invariant inv4 as a lemma. The proof of
inv4 uses another invariant inv5 as a lemma. inv2 and inv5 can be proved
independently without the use of any other lemmas. The proof of inv6 uses
inv1, inv4, mutex and inv7 as lemmas. The proof of inv7 uses inv2, inv6
and inv8 as lemmas. The proof of inv8 uses inv2 as a lemma. These
invariants are declared in the module ADS-INV as follows:

eq inv2(S,P) = ((pc(S,P) = cs) implies

(array(S,place(S,P)) = true)) .

eq inv3(S,P,Q) = ((place(S,P) = place(S,Q) and

(P = Q) = false) implies (place(S,P) = 0)) .

eq inv4(S,P) = (place(S,P) = next(S) implies (next(S) = 0)) .

eq inv5(S,P) = (place(S,P) < s(next(S))) = true .

eq inv6(S,P) = ((pc(S,P) = ws and array(S,place(S,P)) = true)

or pc(S,P) = cs) implies array(S,next(S)) = false .

eq inv7(S) = array(S,s(next(S))) = false .

eq inv8(S,I,J) = (array(S,J) = true and I < s(J)) implies

array(S,I) = true .

where s in s(next(S)) and s(J) is the successor function of natural numbers.
Let us note that although the proof of mutex uses inv1 as a lemma and the
proof of inv1 uses mutex as a lemma, our argument is not circular. We use
simultaneous induction to conduct our proof. The correctness of this method
has been formally proved in the papers [2, 3].

To prove each invariant for an OTS by writing proof scores, we first use
simultaneous induction on states and do the following: for the base case,
it is usually straightforward to discharge the case, and for each induction
case, we conduct case splittings and use instances of induction hypotheses
(or lemmas) as premises of implications.

It took much less than 1s to run all proof scores with CafeInMaude so
as to formally verify that A-Anderson protocol enjoys the mutual exclusion
property. The experiment used a computer that carried 3.4GHz micropro-
cessor and 32GB main memory. The same computer was used to conduct
the other experiments mentioned in the thesis.

22



3.5 Formal verification with CiMPA

We have presented in the previous section the proof score approach proving
that A-Anderson protocol enjoys the mutual exclusion property. The proof
score approach is flexible in a sense of theorem proving. The approach,
however, has a disadvantage. Proof scores are subjected to human errors.
From the previous section, it can be seen that humans can overlook some
cases, but they are not pointed out. Using CiMPA can help us get out of
this disadvantage.

The proof score approach to formal verification does not require to ex-
plicitly construct proof trees. The outcomes of the approach are open-close
fragments that correspond to leaf parts of proof trees. Conducing formal
verification by writing proof scores, however, we implicitly construct proof
trees. Once we have completed formal verification by writing proof scores
and executing them with CafeInMaude, we must be able to conduct the for-
mal verification with CiMPA. We partially describe the formal verification
with CiMPA that A-Anderson enjoys the mutual exclusion property.

We first introduce the goals to prove for CiMPA with the command :goal

as follows:

open ADS-INV .

:goal{

eq [inv1 :nonexec] : inv1(S:Sys,P:Pid,Q:Pid) = true .

eq [inv2 :nonexec] : inv2(S:Sys,P:Pid) = true .

eq [inv3 :nonexec] : inv3(S:Sys,P:Pid,Q:Pid) = true .

eq [inv4 :nonexec] : inv4(S:Sys,P:Pid) = true .

eq [inv5 :nonexec] : inv5(S:Sys,P:Pid) = true .

eq [inv6 :nonexec] : inv6(S:Sys,P:Pid) = true .

eq [inv7 :nonexec] : inv7(S:Sys) = true .

eq [inv8 :nonexec] : inv8(S:Sys,I:SNat,J:SNat) = true .

eq [mutex :nonexec] : mutex(S:Sys,P:Pid,Q:Pid) = true .

}

where :nonexec instructs CafeInMaude not to use the equations as rewrite
rules.

Then, we select S with the command :ind on as the variable on which
we start proving the goals by simultaneous induction:

:ind on (S:Sys)

:apply(si)

where si stands for simultaneous induction. The command :apply(si)

starts the proof by applying simultaneous induction on S, generating four
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Table 3.4: Sub-goals of 3-9

3-9-1-1-1 csb3_9_1, csb3_9_2, csb3_9_3

3-9-1-1-2 csb3_9_1, csb3_9_2, ¬csb3_9_3

3-9-1-2 csb3_9_1, ¬csb3_9_2

3-9-2 ¬csb3_9_1

Table 3.5: Sub-goals of 3-9-1-1-2

3-9-1-1-2-1-1 csb3_9_4, csb3_9_5

3-9-1-1-2-1-2 csb3_9_4, ¬csb3_9_5

3-9-1-1-2-2 ¬csb3_9_4

sub-goals: 1, 2, 3 and 4 corresponding to exit, init, try and want. Note
that, the order between four sub-goals is different from that in the proof score
approach since CiMPA generates them in alphabetical order. Each sub-goals
consists of nine equations to prove, corresponding to inv1, ..., mutex. We
skip the sequence of commands that discharge the first two sub-goals for
exit and init. We partially describe how to discharge the third sub-goal
for try. To this end, the first command used is as follows:

:apply(tc)

where tc stands for theorem of constants. The command generates nine
sub-goals as follows:

3-1. > TC eq [inv1 :nonexec]:

inv1(try(S#Sys,P#Pid),P@Pid,Q@Pid) = true .

...

3-9. TC eq [mutex :nonexec]:

mutex(try(S#Sys,P#Pid),P@Pid,Q@Pid) = true .

where seven more equations should be written in the place ..., the > symbol
indicates that this is the current goal. The command :apply(tc) replaces
CafeInMaude variables with fresh constants in goals. S#Sys and P#Pid are
fresh constants introduced by :apply(si), while P@Pid and Q@Pid are fresh
constants introduced by :apply(tc).

Let us consider goal 3-9, to discharge goal 3-9, we first use the following
commands:
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:def csb3_9_1 = :ctf {eq pc(S#Sys,P#Pid) = ws .}

:apply(csb3_9_1)

:def csb3_9_2 = :ctf {eq Q@Pid = P#Pid .}

:apply(csb3_9_2)

:def csb3_9_3 = :ctf {eq P@Pid = P#Pid .}

:apply(csb3_9_3)

Based on the three equations, four sub-goals are generated as in Ta-
ble 3.4. In the table, we use the names of equations (where based on
them we apply case splitting) such as csb3_9_1, csb3_9_2 to express for
the corresponding equation holds. For example, csb3_9_1 expresses for
pc(S#Sys,P#Pid) = ws, and ¬csb3_9_1 expresses for (pc(S#Sys,P#Pid) =

ws) = false. For sub-goal 3-9-1-1-1 (three equations hold), we use the fol-
lowing commands:

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The induction hypothesis is instantiated by replacing the variables P:Pid

and Q:Pid with the fresh constants P@Pid and Q@Pid and the instance is
used as the premise of the implication. Then, :apply(rd) is used to check if
the current goal can be discharged. The goal is discharged in this case. The
goal corresponds to case (3.1.1.1) in the previous section.

The current goal is now switched to 3-9-1-1-2. We then use the following
commands:

:def csb3_9_4 = :ctf [ array(S#Sys,place(S#Sys,P#Pid)) .]

:apply(csb3_9_4)

:def csb3_9_5 = :ctf {eq pc(S#Sys,P@Pid) = cs .}

:apply(csb3_9_5)

Based on one Boolean term and one equation, three sub-goals are gener-
ated as in Table 3.5. In the table, we use csb3_9_4 to express for array(S#Sys,
place(S#Sys,P#Pid)) = true, and ¬csb3_9_4 to express for array(S#Sys,
place(S#Sys,P#Pid)) = false. For sub-goal 3-9-1-1-2-1-1 (the Boolean
term is true and the equation holds), we use the following commands:

:imp [inv1] by {P:Pid <- P#Pid ; Q:Pid <- P@Pid ;}

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)
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The lemma inv1 is instantiated by replacing the variables P:Pid and Q:Pid

with the fresh constants P#Pid and P@Pid, respectively, then the instance
is used as a part of the premise of the implication. Next, the induction
hypothesis is instantiated by replacing the variables P:Pid and Q:Pid with
the fresh constants P@Pid and Q@Pid, respectively, and the instance is also
used as a part of the premise of the implication. After that, :apply(rd)

is introduced to check if the current goal can be discharged. The goal is
discharged in this case. The goal corresponds to case (3.1.1.2.1.1) in the
proof score approach presented in Sect. 3.4. The remaining goals can be
resolved likewise.

When CiMPA is used to formally verify invariant properties for an OTS,
what to do is essentially the same as we do formal verification by writing
proof scores. The difference is, obviously, we need to use the commands
given by CiMPA when conducting formal verification with CiMPA.

It took about 22s to run the proof scripts with CiMPA so as to formally
verify that A-Anderson protocol enjoys the mutual exclusion property.

3.6 Formal Verification with CiMPG

After writing proof scores to prove that A-Anderson protocol enjoys the
mutual exclusion property, we can confirm that the proof scores are correct
by doing the formal verification with CiMPA as described in the last section.
Although we are able to conduct the formal verification with CiMPA once
we have completed formal verification by writing proof scores, it would be
preferable to automatically confirm the correctness of proof scores. CiMPG
makes it possible to automatically confirm the correctness of proof scores by
generating proof scripts for CiMPA from the proof scores.

To use CiMPG, we need to add one more open-close fragment to the proof
scores. The open-close fragment is as follows:

open ADS-INV .

:proof(ander)

close

where ander is just an identifier, can be replaced by another one that is more
preferred.

Furthermore, we need to add :id(ander) in each open-close fragment.
For example, the open-close fragment of case (3.1.1.2.1.1) introduced in
Sect. 3.4 becomes as follows:
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open ADS-INV .

:id(ander)

op s : -> Sys . ops p q r : -> Pid .

eq pc(s, r) = ws .

eq q = r .

eq (p = r) = false .

eq array(s,place(s,r)) = true .

eq pc(s,p) = cs .

red inv1(s,r,p) implies mutex(s, p, q)

implies mutex(try(s, r), p, q) .

close

Feeding the annotated proof scores into CiMPG, CiMPG generates the
proof scripts for CiMPA. The generated proof scripts are quite similar to
the one written manually. Feeding the generated proof scripts into CiMPA,
CiMPA discharges all goals, confirming that the proof scores are correct. In
A-Anderson case study, CiMPG took about 626s to generate the proof scripts
from the correct proof scores.

This chapter has presented three ways of formal verification that A-
Anderson protocol enjoys the mutual exclusion property. Each of the three
verification techniques has advantages as well as disadvantages, but by con-
ducting formal verification in three ways, we triple-check the correctness of
our proof. We can summarize what has been presented in this chapter as
well as some lessons learned from the case study as follows:

• Once we have completely conducted formal verification by writing proof
scores, it is rather straightforward to develop the verification with proof
scripts and CiMPA.

• Although CiMPG can automatically generate the proof scripts for CiMPA
from proof scores, it takes time to do so. However, in the case study, 10
minutes waiting is still acceptable, at least in comparison with writing
proof scripts manually.

• Abstraction makes it possible to achieve formal verification. Three
verification techniques helped us complete the formal verification of
A-Anderson, but could not achieve the same result with Anderson.
However, we have successfully used “simulation-based verification for
invariant properties [10]” so as to formally verify that Anderson enjoys
the mutual exclusion property even though this part is not presented
in this thesis.

27



• Auxiliary lemmas are required in all three ways of formal verification.
Lemma conjecture is the most intellectual task while conducting for-
mal verification of A-Anderson. In the upcoming chapter, a lemma
conjecture technique will be introduced.
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Chapter 4

Formal verification of MCS
protocol

This chapter describes how to formally verify that MCS protocol enjoys the
mutual exclusion property. We first present a lemma conjecture technique
called Lemma Weakening (LW). Then, the usefulness of this technique is
demonstrated along with the formal verification of MCS.

4.1 Lemma Strengthening (LS) and Lemma

Weakening (LW)

Suppose that we want to prove that a state predicate p is an invariant wrt
an OTS S. It is often the case that p is not inductive and then there is a
transition instance that does not preserve p such that p(υ) holds but p(υ′)
does not, where υ → υ′ is a transition instance, which is shown in Fig. 4.1 (a),
where ∆p is {υ ∈ Υ | p(υ)}. This is the reason why invariant proofs become
non-trivial or even can become very hard. If we can successfully show that
the source υ is not reachable wrt S, then we do not need to consider the
transition instance, being able to discharge the case. One possible way to do
so is to find pstr that is stronger than p such that pstr(υ) does not hold and
to prove that pstr is an invariant wrt S, which is shown in Fig. 4.1 (b). If pstr
is inductive wrt S, we do not need to use any more lemmas. This approach
has been summarized as the proof rule Inv by Manna and Pnueli [11].

To prove that p is an invariant of S (or a state machine), in general, we
need to find an inductive invariant q wrt S such that q(υ) ⇒ p(υ) for all
states υ ∈ Υ. In practice, q is often in the form p ∧ p′, and p′ is often in
the form q1 ∧ . . . ∧ qn. q1, . . . , qn are the lemmas of the proof that p is an
invariant wrt S. It is often the case that we do not know any of q1, . . . , qn
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Figure 4.1: The reason why invariant proofs become non-trivial and two
approaches to tackling the non-trivial situation

in advance. We need to gradually conjecture q1, . . . , qn one by one when we
encounter the situation shown in Fig. 4.1 (a). For example, in the previous
Chapter, to prove that mutex is an invariant wrt SADS, it requires to use
inv1 as a lemma, and during the proof of inv1, we conjecture some more
other lemmas. mutex corresponds to p, while mutex ∧ inv1 ∧ . . .∧ inv8

corresponds to the inductive invariant q. qi(υ) for the source υ needs not to
hold but does not need to be properly stronger than p because p∧q1∧ . . .∧qn
is surely stronger than p. In general, when we have conjectured up to qk, we
do not know how many more lemmas we need to conjecture.

The reason why invariant proofs become non-trivial or even can become
very hard is because there exists a transition instance υ → υ′ as shown in
Fig. 4.1 (a). The proof rule Inv gets rid of such a transition instance as shown
in Fig. 4.1 (b). Another possible way to get rid of such a transition instance
is to find pwk that is weaker than p such that pwk(υ

′) holds and to prove that
pwk is an invariant wrt S, which is shown in Fig. 4.1 (c). Even though pwk is
an invariant wrt S, however, it does not guarantee that p is an invariant wrt
S. This is because ∆p may not contain all reachable states in RS . Therefore,
the second approach is not used to prove that p is an invariant wrt S. This
might be the reason why the second approach has been rarely used. Although
the second approach is not very useful for p, it may be useful for some qi, a
lemma of the proof that p is an invariant wrt S. In this thesis, strengthening
lemmas qi is called Lemma Strengthening (LS), while weakening lemmas qi
is called Lemma Weakening (LW).

While proving that MCS enjoys the mutual exclusion property, we have
encountered a situation where use of only LS did not seem to make the proof
converge. We got over the situation by using LW to weaken some lemmas.
Note that we have used both LS and LW for the proof that MCS enjoys the
mutual exclusion property. We will describe in which way LW makes the
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proof attempt converge in Sect. 4.4. Two upcoming sections describe MCS
and formal specification of SMCS that formalizes the protocol.

4.2 MCS list-based queuing lock protocol

MCS is a mutual exclusion protocol invented by Mellor-Crummey and Scott [1].
Variants of MCS have been used in Java VMs and therefore the 2006 Edsger
W. Dijkstra Prize in Distributed Computing went to their paper [1]. This
protocol has the following properties:

• it guarantees FIFO ordering of lock acquisitions;

• it spins on locally-accessible flag variable only;

• it requires a small constant amount of space per lock; and

• it works equally well (requiring only O(1) network transactions per lock
acquisiion) on machines with and without coherent caches.

The pseudo-code of MCS protocol for each process p can be written as follows:

rs : “Remainder Section”
l1 : nextp := nop;
l2 : predep := fetch&store(glock , p);
l3 : if predep 6= nop {
l4 : lockp := true;
l5 : nextpredep := p;
l6 : repeat while lockp ; }
cs : “Critical Section”
l7 : if nextp = nop {
l8 : if comp&swap(glock , p, nop)
l9 : goto rs;
l10 : repeat while nextp = nop; }
l11 : locknextp := false;
l12 : goto rs;

There is one global variable glock shared by all processes participating in
MCS protocol. Its value is a process ID (Pid) or nop, a dummy process
ID. glock basically refers to the bottom element if the queue is not empty.
Each process p maintains three local variables nextp, lockp and predep whose
types are Pid, Bool and Pid, respectively. Initially, glock, nextp, lockp and
predep are nop, nop, false and nop, respectively. nextp and predep are used
to construct a global queue of processes (or process IDs). Basically, nextp
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Figure 4.2: The change of state of MCS when a process p moves to l3 from
l2

refers to the next element of the queue if p is in the queue. Note that nextp
may be nop even though p is not the bottom element of the queue. predep
refers to the predecessor element of the queue. lockp is the local lock on
which process p is spinning while lockp is true to wait for entering the critical
section.

MCS uses two non-trivial atomic instructions: fetch&store and comp&swap.
For a variable x and a value α, fetch&store(x, α) atomically does the follow-
ing: x is set to α and the old value of x is returned. For a variable x and
values α, β, comp&swap(x, α, β) atomically does the following: if x equals α,
then x is set to β and true is returned; otherwise false is just returned.

Fig. 4.2 graphically visualizes the change of state of MCS when a process
p moves to l3 from l2. In the state υ, which is represented by Fig. 4.2 (a),
processes p, q, and r, located at l2, l5, and cs, respectively; glock is q; next
of r is q; and prede of q is r. When process p moves to l3, glock is set to
itself, and its prede is set to q (depicted in Fig. 4.2 (b)).

4.3 Specification of MCS protocol in CafeOBJ

In order to specify MCS protocol in CafeOBJ, we first need to define the
module LABEL, which is in charge of defining process locations. This module
first introduces the sort Label and declares fourteen constructors (denoted
by the constr attribute): rs, l1, l2, l3, l4, l5, l6, cs, l7, l8, l9, l10, l11
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and l12. It also defines many equations for the equality predicate to indicate
that each label is not equal to any others.

mod! LABEL {

[Label]

ops l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 rs cs : -> Label

{constr} .

eq (l1 = l2) = false . eq (l1 = l3) = false .

...

eq (l1 = rs) = false . eq (l1 = cs) = false .

eq (l2 = l3) = false . eq (l2 = l4) = false .

...

eq (l2 = cs) = false . eq (l3 = l4) = false .

...

eq (l12 = cs) = false . eq (rs = cs) = false .

}

where many other equations should be written in the place ..., constr

indicates that rs, l1, l2,..., l12 are constructors of sort Label.
The module PID is in charge of defining process identifiers. Sort Pid

represents the (correct) process identifiers, while sort Nop expresses for the
erroneous identifiers which are the dummy processes. Sort Pid&Nop is a
supersort of sorts Pid and Nop. The module also states that any correct
identifier is different from nop.

mod* PID {

[Nop Pid < Pid&Nop]

op nop : -> Nop {constr} .

var P : Pid .

eq (P = nop) = false .

}

Finally, the module MCS specifies the behavior of the protocol as an OTS
SMCS. It first imports two modules LABEL, PID, and defines the sort Sys

representing the set of reachable states as follows:

mod* MCS {

pr(LABEL + PID)

[Sys]

Each state of MCS protocol can be characterized by the following pieces of
information: the value of glock; the location, next process, previous process,
lock value of each process. Therefore, the following observation functions are
used:
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op glock : Sys -> Pid&Nop .

op pc : Sys Pid -> Label .

op next : Sys Pid -> Pid&Nop .

op prede : Sys Pid -> Pid&Nop .

op lock : Sys Pid -> Bool .

since the values of glock, next_p, prede_p can be nop, thus we need to use
sort Pid&Nop instead of sort Pid. Then, a constructor is used to represent
an arbitrary initial state as follows:

op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values observed by the
five observation functions in an arbitrary initial state as follows:

eq glock(init) = nop .

eq pc(init,P) = rs .

eq next(init,P) = nop .

eq prede(init,P) = nop .

eq lock(init,P) = false .

where P is a CafeOBJ variable of Pid. Fourteen following functions specify
the transitions of MCS:

-- moves to l1 from rs

op want : Sys Pid -> Sys {constr} .

-- moves to l2 from l1

op stnxt : Sys Pid -> Sys {constr} .

-- moves to l3 from l2

op stprd : Sys Pid -> Sys {constr} .

-- moves to l4 or cs from l3

op chprd : Sys Pid -> Sys {constr} .

-- moves to l5 from l4

op stlck : Sys Pid -> Sys {constr} .

-- moves to l6 from l5

op stnpr : Sys Pid -> Sys {constr} .

-- tries to move to cs from l6

op chlck : Sys Pid -> Sys {constr} .

-- moves to l7 from cs

op exit : Sys Pid -> Sys {constr} .

-- moves to l8 or l11 from l7

op chnxt : Sys Pid -> Sys {constr} .

-- moves to l9 or l10 from l8

op chglk : Sys Pid -> Sys {constr} .
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-- moves to rs from l9

op go2rs : Sys Pid -> Sys {constr} .

-- tries to move to l11 from l10

op chnxt2 : Sys Pid -> Sys {constr} .

-- moves to l12 from l11

op stlnx : Sys Pid -> Sys {constr} .

-- moves to rs from l12

op go2rs2 : Sys Pid -> Sys {constr} .

Each of the above fourteen functions is followed by a comment line that
describes the corresponding transition of a process it captured. For example,
if a process p is located at l1 in state s, then stnxt(s, p) denotes the state
just after p has executed the statement at l1 and moves to l2 from l1. The
reachable states are composed of these fourteen transition functions plus init
function.

Each of the fourteen transition functions is defined in terms of equations,
specifying how the values observed by the five observation functions change.
Let S be a CafeOBJ variable of Sys, P & Q be CafeOBJ variables of Pid.

want transition is defined as follows:

eq glock(want(S,P)) = glock(S) .

ceq pc(want(S,P),Q) = (if P = Q then l1 else pc(S,Q) fi)

if pc(S,P) = rs .

eq next(want(S,P),Q) = next(S,Q) .

eq lock(want(S,P),Q) = lock(S,Q) .

eq prede(want(S,P),Q) = prede(S,Q) .

ceq want(S,P) = S if (pc(S,P) = rs) = false .

the equations say that if the location of process P currently is rs, then P’s
location changes to l1, the location of each other process Q does not change;
next, lock, prede of every processes and glock do not change. If currently
process P is not located at rs, nothing changes.

In the same way, chlck transition is defined as follows:

eq glock(chlck(S,P)) = glock(S) .

ceq pc(chlck(S,P),Q)

= (if P = Q then

(if lock(S,P) then l6 else cs fi)

else

pc(S,Q) fi)

if pc(S,P) = l6 .

eq next(chlck(S,P),Q) = next(S,Q) .

eq lock(chlck(S,P),Q) = lock(S,Q) .

eq prede(chlck(S,P),Q) = prede(S,Q) .

ceq chlck(S,P) = S if (pc(S,P) = l6) = false .
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the equations say that if currently the location of process P is l6 and lock

of P is true, then P’s location changes to cs. next, lock, prede of every
processes and glock do not change. If currently process P is not located at
l6, nothing changes.

The remaining transitions can be defined likewise. All of them can be
found at the webpage presented in Chapter 1.

4.4 Formal verification with proof scores

This section presents the proof score approach to formal verification that
MCS protocol enjoys the mutual exclusion property. Since the complete
proof is quite long, we will only present here a part of it. We will separately
describe the use of LS and LW in the verification.

4.4.1 Use of Lemma Strengthening (LS)

Similar to the A-Anderson case study, we introduce the module MCS-INV to
specify the mutual exclusion property. The module is as follows:

mod MCS-INV {

pr(MCS)

var S : Sys

vars P Q : Pid

op mutex : Sys Pid Pid -> Bool

eq mutex(S,P,Q) =

((pc(S,P) = cs and pc(S,Q) = cs) implies (P = Q)) .

}

The equation mutex says that there is always at most one process located at
the critical section at any given time.

mutex(S,P,Q) is proved for all reachable states S and all process IDs P

& Q by structural induction on S. There are fifteen cases to tackle including:
(1) init, (2) want, (3) stnxt, (4) stprd, (5) chprd, (6) stlck, (7) stnpr,
(8) chlck, (9) exit, (10) chnxt, (11) chglk, (12) go2rs, (13) chnxt2, (14)
stlnx, (15) go2rs2. Similar to the A-Anderson case study, the base case (1)
init can be discharged straightforwardly. Considering case (2), we need to
prove mutex(want(s,r),p,q), where s is a fresh constant of Sys representing
an arbitrary state and p, q and r are fresh constants of Pid representing arbi-
trary process IDs. The induction hypothesis is mutex(s,P,Q) for all process
IDs P & Q. Let us repeat again that s is shared by mutex(want(s,r),p,q)

and mutex(s,P,Q), while the variables P and Q can be replaced with any

36



Table 4.1: Case splittings for case (2) in the proof of mutex wrt SMCS

(2.1.1) pc(s,r) = rs, q = r

(2.1.2.1) pc(s,r) = rs, (q = r) = false, p = r

(2.1.2.2) pc(s,r) = rs, (q = r) = false, (p = r) = false

(2.2) (pc(s,r) = rs) = false

terms of Pid, such as p and q. Case (2) is discharged by splitting it into four
sub-cases as shown in Table 4.1.

It is not always straightforward likewise to discharged the thirteen re-
maining cases. We are required either to split cases much more times or
to conjecture new lemma to discharge a case. The former creates a huge
number of open-close fragments as well as lines of code. The latter is always
considered as one of the most challenging tasks in theorem proving. Next,
let us consider case (5) as the evidence for this argument.

Table 4.2: Case splittings for case (5) in the proof of mutex wrt SMCS

(5.1.1.1) pc(s,r) = l3, p = r, q = r

(5.1.1.2.1.1)
pc(s,r) = l3, p = r, (q = r) = false,
prede(s,r) = nop, pc(s,q) = cs

(5.1.1.2.1.2)
pc(s,r) = l3, p = r, (q = r) = false,
prede(s,r) = nop, (pc(s,q) = cs) = false

(5.1.1.2.2)
pc(s,r) = l3, p = r, (q = r) = false,
(prede(s,r) = nop) = false

(5.1.2.1.1.1)
pc(s,r) = l3, (p = r) = false, q = r,
prede(s,r) = nop, pc(s,p) = cs

(5.1.2.1.1.2)
pc(s,r) = l3, (p = r) = false, q = r,
prede(s,r) = nop, (pc(s,p) = cs) = false

(5.1.2.1.2)
pc(s,r) = l3, (p = r) = false, q = r,
(prede(s,r) = nop) = false

(5.1.2.2) pc(s,r) = l3, (p = r) = false, (q = r) = false

(5.2) (pc(s,r) = l3) = false

In case (5), what we need to prove is mutex(chprd(s,r),p,q), where s is
a fresh constant of Sys and p, q & r are fresh contants of Pid. Table 4.2 shows
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the case splittings for case (5). Let us consider sub-case (5.1.1.2.1.1). In
(5.1.1.2.1.1), mutex(s,p,q) reduces to true, whille mutex(chprd(s,r),p,q)
reduces to false, and then mutex(s,p,q) implies mutex(chprd(s,r),p,q)

reduces to false. The pair of states s and chprd(s,r) is a transition in-
stance as shown in Fig. 4.1 (a). We need to conjecture and use a lemma to
discharge (5.1.1.2.1.1).

One possible lemma conjectured most straightforwardly can be constructed
by combining the equations that characterize (5.1.1.2.1.1) with conjunction,
negating the whole formula and replacing the fresh constants s, p, q & r

with variables S, P, Q & R [12]. Since the formula constructed is in the form
(not P = R) or F that is equivalent to (P = R) implies F . Thus, the
lemma constructed is F in which R is replaced with P , which is equivalent
to the following:

eq inv1’(S,P,Q) = ((pc(S,P) = l3 and prede(S,P) = nop and

(P = Q) = false) implies (pc(S,Q) = cs) = false) .

Since inv1’(s,p,q) reduces to false, we can use inv1’ as a lemma to
discharge (5.1.1.2.1.1) as follows:

red inv1’(s,p,q) implies mutex(s,p,q) implies mutex(chprd(s,r),p,q) .

In the proof of inv1’, however, we encounter a sub-case (1’.8.1.1.2.2.1.1)
in which CafeInMaude returns false for its proof score. The open-close
fragment is as follows:

open MCS-INV .

op s : -> Sys .

ops p q r : -> Pid .

eq pc(s,r) = l6 .

eq p = r .

eq (q = r) = false .

eq lock(s,r) = false .

eq pc(s,q) = l3 .

eq prede(s,q) = nop .

red inv1’(s,p,q) implies inv1’(chlck(s,r),p,q) .

close

By applying the same technique that has been explained above to conjec-
ture inv1’, we can conjecture another lemma to discharge (1’.8.1.1.2.2.1.1)
as follows:

eq inv1’’(S,P,Q) = ((pc(S,Q) = l3 and prede(S,Q) = nop and (P = Q)

= false) implies (pc(S,P) = l6 and lock(S,P) = false) = false) .
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The conditional part of inv1’’ is exactly the same as that of inv1’. The
reason why we use the forms of inv1’ and inv1’’ is because we emphasize
what are shared by inv1’ and inv1’’. The proof of inv1’’ needs yet another
lemma whose conditional part is exactly the same as that of inv1’. We need
several different lemmas when we only use the most straightforward lemmas.
Therefore, we strengthen them to obtain the following lemma:

eq inv1(S,P,Q) = ((pc(S,Q) = l3 and prede(S,Q) = nop and

(P = Q) = false) implies ((pc(S,P) = cs or pc(S,P) = l7 or

pc(S,P) = l8 or pc(S,P) = l10 or pc(S,P) = l11 or

(pc(S,P) = l6 and lock(S,P) = false)) = false)) .

And the red command in the open-close fragment of case (5.1.1.2.1.1) now
becomes as follows:

red inv1(s,p,q) implies mutex(s,p,q) implies mutex(chprd(s,r),p,q) .

The proof of inv1 needs totally less lemmas than that of inv1’. More
precisely, the set of lemmas that need to be used in the proof of inv1 is a
subset of those in the proof of inv1’.

Table 4.3: Case splittings for case (8) in the proof of mutex wrt SMCS

(8.1.1.1) pc(s,r) = l6, p = r, q = r

(8.1.1.2.1) pc(s,r) = l6, p = r, (q = r) = false, lock(s,r) = true

(8.1.1.2.2.1)
pc(s,r) = l6, p = r, (q = r) = false,
lock(s,r) = false, pc(s,q) = cs

(8.1.1.2.2.2)
pc(s,r) = l6, p = r, (q = r) = false,
lock(s,r) = false, (pc(s,q) = cs) = false

(8.1.2.1.1) pc(s,r) = l6, (p = r) = false, q = r, lock(s,r) = true

(8.1.2.1.2.1)
pc(s,r) = l6, (p = r) = false, q = r,
lock(s,r) = false, pc(s,q) = cs

(8.1.2.1.2.2)
pc(s,r) = l6, (p = r) = false, q = r,
lock(s,r) = false, (pc(s,q) = cs) = false

(8.1.2.2) pc(s,r) = l6, (p = r) = false, (q = r) = false

(8.2) (pc(s,r) = l6) = false

The proof of case (8) also requires another lemma. Table 4.3 shows the
case splittings for case (8). Let us repeat again that s is a fresh constant
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of Sys, while p, q & r are fresh contants of Pid, and in case (8) we need to
prove mutex(chlck(s,r),p,q). Sub-case (8.1.1.2.2.1) uses inv6(s,q,p) as
a lemma, and sub-case (8.1.2.1.2.1) uses inv6(s,p,q) as a lemma. inv6 is
declared in the module MCS-INV as follows:

eq inv6(S,P,Q) = ((pc(S,Q) = l6 and lock(S,Q) = false and

(P = Q) = false) implies ((pc(S,P) = cs or pc(S,P) = l7 or

pc(S,P) = l8 or pc(S,P) = l10 or pc(S,P) = l11 or

(pc(S,P) = l6 and lock(S,P)= false)) = false)) .

Since inv1 and inv6 are used in the proof of mutex wrt SMCS, they need
to be proved that they are also invariants wrt SMCS to complete the formal
verification. The proof of inv1 uses inv2, inv3 and inv4 as lemmas. The
proof of inv2 uses inv4 as a lemma. The proof of inv3 uses only inv5 as
a lemma and vice versa. The proof of inv4 and inv6 use inv1, inv3 and
inv7 as lemmas. The proof of inv7 uses inv1, inv3 and inv6 as lemmas.
The remaining invariants are declared in module MCS-INV as follows:

eq inv2(S,P,Q) = ((pc(S,P) = l3 and prede(S,P) = nop and pc(S,Q) = l3

and (P = Q) = false) implies (prede(S,Q) = nop) = false) .

eq inv3(S,P) = (pc(S,P) = l5 implies lock(S,P) = true) .

eq inv4(S,P) = ((pc(S,P) = l11 or pc(S,P) = l10 or pc(S,P) = l8 or

pc(S,P) = l7 or (pc(S,P) = l6 and lock(S,P) = false) or

(pc(S,P) = l3 and prede(S,P) = nop) or pc(S,P) = cs) implies

(glock(S) = nop) = false) .

eq inv5(S,P,Q) = ((next(S,Q) = P and (P = Q) = false and

(pc(S,Q) = l12 or pc(S,Q) = l1 or pc(S,Q) = rs) = false) implies

(pc(S,P) = l6 and lock(S,P) = true and prede(S,P) = Q)) .

eq inv7(S,P,Q) = (((pc(S,Q) = l11 or pc(S,Q) = l10 or pc(S,Q) = l8

or pc(S,Q) = l7 or pc(S,Q) = cs) and (P = Q) = false) implies

((pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or pc(S,P) = l10 or

pc(S,P) = l11 or (pc(S,P) = l6 and lock(S,P) = false)) = false)) .

Let us partially give the explanation for inv4. inv4 says that if there exists
a process P located at cs, or l7, or l8, or l10, or l11, or l6 with lock of
P is false, or l3 with prede of P is nop; then glock can not be nop. The
remaining lemmas can be understood likewise. Let us repeat again that we
did not come up with the seven lemmas from the beginning, but we have
gradually constructed each of them while conducting formal verification. For
example, in the proof of mutex, inv1 is constructed; or inv2 together with
inv3 and inv4 are constructed when we try to prove inv1.
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4.4.2 Use of Lemma Weakening (LW)

While proving that MCS enjoys the mutual exclusion property, use of LS
(but not use of LW), together with case splitting, etc., did not seem to make
our proof attempt converge. Use of LW made it converge. We illustrate the
use of LW in the two cases in details.

Case 1

Initially, we used the following inv40 instead of inv4:

eq inv40(S,P) = ((pc(S,P) = l3 or pc(S,P) = l4 or pc(S,P) = l5 or

pc(S,P) = l6 or pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or

pc(S,P) = l10 or pc(S,P) = l11) implies (glock(S) = nop) = false) .

inv40 is obtained by strengthening inv4. Let us note that 40 in the notation
inv40 does not mean that there are 40 or more invariants that have been
conjectured. We put confidence in that whenever there exists a process P

located at l3 or l6 (or cs, or l7, or l8, or l10, or l11 as well), glock can
not be nop. Thus, we strongly believe that strengthening inv4 to obtain
inv40 is the correct way to complete the formal verification (similar to the
way we strengthen inv1’ and inv1’’ to obtain inv1). Accordingly, we
believe that inv40 is truly an invariant wrt SMCS. Let us consider a sub-case
of the induction case chglk for the proof attempt of inv40. The open-close
fragment of the sub-case is as follows:

open MCS-INV .

op s : -> Sys . ops p r : -> Pid .

eq pc(s,r) = l8 . eq (p = r) = false .

eq glock(s) = r . eq pc(s,p) = l3 .

red inv40(s,p) implies inv40(chglk(s,r),p) .

close

Let υ40 be an arbitrary state in which the four equations used in the fragment
hold. CafeInMaude returns false for the fragment. This is why we need a
lemma to discharge the sub-case. By strengthening the lemma constructed
straightforwardly from the four equations used in the fragment, we obtain
the following lemma:

eq inv41(S,P,Q) = ((pc(S,P) = l3 or pc(S,P) = l4 or pc(S,P) = l5 or

pc(S,P) = l6 or pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8 or

pc(S,P) = l10 or pc(S,P) = l11) and glock(S) = Q and

(P = Q) = false) implies (pc(S,Q) = cs or pc(S,Q) = l7 or

pc(S,Q) = l8 or pc(S,Q) = l10 or pc(S,Q) = l11 or

(pc(S,Q) = l6 and lock(S,Q) = false)) = false .
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inv41 can be used as a lemma to discharge the sub-case. During the proof
of inv41, we encounter three sub-cases of the induction case stlnx. One of
the three sub-cases has the open-close fragment as follows:

open MCS-INV .

eq pc(s,r) = l11 .

eq next(s,r) = q .

eq glock(s) = q .

eq pc(s,p) = l3 . eq pc(s,q) = l6

eq lock(s,q) = true .

eq (p = r) = false . eq (q = r) = false . eq (p = q) = false .

red inv41(s,p,q) implies inv41(stlnx(s,r),p,q) .

close

The nine equations characterize the sub-case. The other two sub-cases are
characterized by almost the same equations. The only difference is pc(s,p) = l3,
instead of which pc(s,p) = l4 and pc(s,p) = l5 hold for the other two sub-
cases, respectively. Let υ41 be an arbitrary state that corresponds to any of
the three sub-cases. The proofs of each three sub-cases reduces to false,
and then we need a lemma to discharge the three sub-cases. By applying the
same technique that has been explained above to construct inv41, we obtain
the following lemma:

eq inv42(S,P,Q,R) = ((pc(S,R) = cs or pc(S,R) = l7 or pc(S,R) = l8

or pc(S,R) = l10 or pc(S,R) = l11 or (pc(S,R) = l6 and lock(S,R)

= false)) and glock(S) = Q and next(S,R) = Q and (P = R) = false

and (Q = R) = false and (P = Q) = false) implies (pc(S,P) = l3 or

pc(S,P) = l4 or pc(S,P) = l5 or pc(S,P) = l6) = false .

inv42 can be used as a lemma to discharge the three sub-cases. While proving
inv42, we encounter three sub-cases of the induction case stlnx. One of the
three sub-cases has the following open-close fragment:

open MCS-INV .

eq pc(s,t) = l11 .

eq next(s,t) = r .

eq next(s,r) = q .

eq glock(s) = q .

eq pc(s,p) = l3 . eq pc(s,q) = l6 . eq pc(s,r) = l6 .

eq lock(s,q) = true . eq lock(s,r) = true .

eq (p = t) = false . eq (q = t) = false . eq (r = t) = false .

eq (p = r) = false . eq (q = r) = false . eq (p = q) = false .

red inv42(s,p,q) implies inv42(stlnx(s,r),p,q) .

close
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Figure 4.3: States υ41, υ42, υ43 & υ4n

The other two sub-cases are characterized by almost the same equations.
The only difference is pc(s,p) = l3, instead of which pc(s,p) = l4 and
pc(s,p) = l5 hold for the other two sub-cases, respectively. Let υ42 be an
arbitrary state that corresponds to any of the three sub-cases. CafeInMaude
returns false for all three sub-cases, and then we need a lemma to discharge
the three sub-cases.

What if we keep on doing the proof attempt as we did? Let us partially
visualize υ41 as shown in Fig. 4.3 (a). Fig. 4.3 (a) visually says that q is lo-
cated at l6, r is located at l11, nextr is q, lockq is true and glock is q. Let us
partially visualize υ42 as shown in Fig. 4.3 (b). The difference between υ41 and
υ42 can be visually observed from Fig. 4.3 (a) and (b). One process located
at l6 is inserted between the two processes in Fig. 4.3 (a) and its lock is true,
although t is used in Fig. 4.3 (b) instead of r in Fig. 4.3 (a). If we conjecture
a lemma, say inv43, that can be used to discharge the three sub-cases that
correspond to υ42 as we conjecture inv41 and inv42, we encounter some sub-
cases in which inv43(s,p,q,r,t) implies inv42(stlnx(s,w),p,q,r,t)

reduces to false while proving inv43. Let υ43 be an arbitrary state that
corresponds to any of the sub-cases. Fig. 4.3 (c) shows the diagram that par-
tially visualizes υ43. The difference between Fig. 4.3 (b) and (c) is essentially
the same as that of Fig. 4.3 (a) and (b). One more process located at l6
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such that its lock is true is inserted into the structure constructed with next
variables. The structure virtually forms the queue in which processes that
want to enter the critical section wait. If we repeat what we did, we will
encounter the situation that can be partially visualized as shown in Fig. 4.3
(d), which suggests that this way to conjecture lemmas never converges.

There must be a generic lemma that is stronger than inv41, inv42, etc.,
but we could not construct such a generic one. Instead, we made inv40

weaker, constructing inv4. By observing some graphical animations of MCS,
we realized that there exists at most one process p except for processes q such
that (1) q is located at l3 and predeq is not nop and (2) q is located at l6
and lockq is true in extended CS region, where extended CS region consists
of cs, l7, l8, l10, l11, l3 and l6 [13]. From this observation, we conjectured
that whenever there exists such a process p in extended CS region, the vir-
tual queue at least consists of p as an element, which implies that glock
is not nop. This is inv4 that is weaker than inv40. Tackling the induc-
tion case chglk for the proof of inv4, we encounter a sub-case in which
inv4(s,p) implies inv4(chglk(s,r),p) reduces to false. The sub-case
has the following open-close fragment:

open MCS-INV .

op s : -> Sys . ops p r : -> Pid .

eq pc(s,r) = l8 . eq (p = r) = false .

eq glock(s) = r . eq pc(s,p) = l3 .

eq prede(s,p) = nop .

red inv4(s,p) implies inv4(chglk(s,r),p) .

close

This sub-case is quite similar to the one of inv40, which has been presented at
the beginning of this section. The only difference between the sub-cases of the
inv4 and inv40 is the existence of prede(s,p) = nop in the sub-case of inv4.
The sub-case of inv4 can be discharged by using inv1 as a lemma. The proof
of inv4 needs inv3 and inv7 as lemmas as well. Note that υ40 is not only the
sub-case in which inv40(s,p) implies inv40(tMCS(s, r),p) reduces to
false, where tMCS is a transition of SMCS, but also there are eight more sub-
cases such that the term (or formula) reduces to false. The eight more sub-
cases are characterized by almost the same equations of υ40, except the only
difference is pc(s,p) = l4, pc(s,p) = l5, pc(s,p) = l6, pc(s,p) = cs,
pc(s,p) = l7, pc(s,p) = l8, pc(s,p) = l10 and pc(s,p) = l11 hold for
the eight sub-cases, respectively, instead of pc(s,p) = l3 in υ40. We need to
conjecture new lemmas for the first three sub-cases like υ40, while the latter
five sub-cases can be discharged by using inv7 as a lemma.
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We strongly believe that inv40 as well as inv41 and inv42 are invariants
wrt SMCS. We were, however, not able to construct any generic lemma that is
stronger than all of inv41, inv42, etc., and therefore we have not successfully
completed the proof of inv40. Accordingly, we cannot guarantee that inv40
is actually an invariant wrt SMCS.

Case 2

Let us consider the lemma inv50 obtained by deleting (P = Q) = false

from inv5:

eq inv50(S,P,Q) = ((next(S,Q) = P and

(pc(S,Q) = l12 or pc(S,Q) = l1 or pc(S,Q) = rs) = false) implies

(pc(S,P) = l6 and lock(S,P) = true and pred(S,P) = Q)) .

inv50 is stronger than inv5 or equivalently inv5 is weaker than inv50. Since
next variables are used to virtually construct a queue of process IDs, we put
confidence in that nextp never has p as its value. Therefore, we also strongly
believe that inv50 is an invariant wrt SMCS if inv5 is an invariant wrt SMCS.
We realized, however, that their proofs are totally different when we tried to
prove that inv50 is an invariant wrt SMCS.

The proof of inv5 only uses inv3 as a lemma and the proof of inv3 only
uses inv5 as a lemma. On the other hand, the proof of inv50 requires two
more lemmas inv51 and inv53 in addition to inv3. The proof of inv51

requires inv3, inv50, inv52 and inv53 as lemmas. The proof of inv52

requires inv53 as a lemma. inv51, inv52 and inv53 are as follows:

eq inv51(S,P,Q) = ((next(S,Q) = nop) = false and (P = Q) = false and

(pc(S,P) = l1 or pc(S,P) = l12 or pc(S,P) = rs) = false and

(pc(S,Q) = l1 or pc(S,Q) = l12 or pc(S,Q) = rs) = false)

implies (next(S,P) = next(S,Q)) = false .

eq inv52(S,P) = ((next(S,P) = P) = false) .

eq inv53(S,P) = ((prede(S,P) = P) = false) .

Since we suppose that each of nextp and predep for every process p is initially
set to nop, nextp variables are used to virtually construct a queue and predep
variables are used to enqueue process IDs as elements into the virtual queue,
we are sure that nextp never has p as its value and predep never has p as
its value. We realized, however, that it is not that straightforward to prove
inv53. The proof of inv53 requires a new lemma inv54 whose proof needs
five more new lemmas inv55, inv56, inv57, inv58 and inv59 to complete
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the proof of inv53. inv54, inv55, inv56, inv57, inv58 and inv59 can be
found at the webpage presented in Chapter 1. Let us repeat again that 59

in the notation inv59 does not mean that there are 59 invariants that have
been conjectured while conducting formal verification of MCS.

4.5 Formal verification with CiMPA

This section presents how to write proof scripts for CiMPA to formally prove
that MCS protocol enjoys the mutual exclusion property. Since the complete
proof is quite complicated (consists of more than 2300 lines of code), we only
partially describe the proof for a sub-goal, which corresponds to case (8) in
Sect. 4.4.

The proof first starts by introducing the goals to prove for CiMPA with
the command :goal as follows:

open MCS-INV .

:goal{

eq [inv1 :nonexec] : inv1(S:Sys,P:Pid,Q:Pid) = true .

eq [inv2 :nonexec] : inv2(S:Sys,P:Pid,Q:Pid) = true .

eq [inv3 :nonexec] : inv3(S:Sys,P:Pid) = true .

eq [inv4 :nonexec] : inv4(S:Sys,P:Pid) = true .

eq [inv5 :nonexec] : inv5(S:Sys,P:Pid,Q:Pid) = true .

eq [inv6 :nonexec] : inv6(S:Sys,P:Pid,Q:Pid) = true .

eq [inv7 :nonexec] : inv7(S:Sys,P:Pid,Q:Pid) = true .

eq [mutex :nonexec] : mutex(S:Sys,P:Pid,Q:Pid) = true .

}

Let us repeat again that :nonexec indicates that nine equations must not
be used for reduction. Then, we can apply induction on S:Sys by using:

:ind on (S:Sys)

:apply(si)

The commands start the proof by simultaneous induction on S, generating
fifteen sub-goals corresponding to fifteen constructors (init and fourteen
transitions) in alphabetical order. Each of fifteen sub-goals consists of eight
equations corresponding to eight invariants, which are needed to prove. Since
the complete proof is quite long, we skip the list of commands that discharge
the first sub-goal for chglk. We only partially describe how to discharge the
second sub-goal for chlck.

After applying the theorem of constants, let us consider the following
sub-goal:
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2-8. TC

eq [mutex :nonexec]: mutex(chlck(S#Sys,P#Pid),P@Pid,Q@Pid) = true .

S#Sys and P#Pid are fresh constants introduced by :apply(si), while P@Pid
and Q@Pid are fresh constants introduced by :apply(tc). Goal 2-8 corre-
sponds to case (8) in the proof mutex wrt SMCS as presented in Sect. 4.4.
Similar to the proof score approach, in order to discharge goal 2-8, it is also
neccessary to conduct case splittings, which are similar to those in Table 4.3.
We introduce the following commands:

:def csb2 = :ctf {eq pc(S#Sys,P#Pid) = l6 .}

:def csb2_1 = :ctf {eq P@Pid = P#Pid .}

:def csb2_2 = :ctf {eq Q@Pid = P#Pid .}

:apply(csb2)

:apply(csb2_1)

:apply(csb2_2)

Based on three equations, four sub-goals are generated:

• 2-8-1-1-1 corresponds to case (8.1.1.1) in Table 4.3,

• 2-8-1-1-2 corresponds to three cases (8.1.1.2.*) in Table 4.3,

• 2-8-1-2 corresponds to four cases (8.1.2.*) in Table 4.3,

• 2-8-2 corresponds to case (8.2) in Table 4.3.

Sub-goal 2-8-1-1-1 can be discharged by the following commands:

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The sub-goal is discharged in this case. The current goal now changes to
2-8-1-1-2. To discharge 2-8-1-1-2, we need to conduct case splitting again.
The following commands are introduced:

:def csb2_3 = :ctf [ lock(S#Sys,P#Pid) .]

:apply(csb2_3)

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

:def csb2_4 = :ctf {eq pc(S#Sys,Q@Pid) = cs .}

:apply(csb2_4)

:imp [inv6] by {P:Pid <- Q@Pid ; Q:Pid <- P@Pid ;}

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

:imp [mutex] by {P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)
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Based on csb2_3 and csb2_4, 2-8-1-1-2 is split into three sub-goals that
correspond to (8.1.1.2.1), (8.1.1.2.2.1) and (8.1.1.2.2.2) in Table 4.3. It re-
quires to use invariant inv6 as a lemma to discharge the second sub-goal.

The remaining goals can be discharged likewise. It took about 27 minutes
to run the proof scripts with CiMPA so as to formally verify that MCS
protocol enjoys the mutual exclusion property.

4.6 Formal verification with CiMPG

As explained in the A-Anderson case study, after conducting formal verifica-
tion by writing proof scores, we can automatically confirm the correctness of
the proof scores by using CiMPG to generate proof scripts for CiMPA. Note
that, auxiliary lemmas are required in all three ways of formal verification.
This is the reason why lemma conjecture is considered as one of the most in-
tellectual/challenging tasks in theorem proving, and LW technique is helpful
in formal verification of MCS.

What we need to do are exactly the same as what have been presented in
Sect. 3.6. Firstly, in each open-close fragement of the proof scores, we need
to add an anotation, e.g., :id(mcs). Then, we ask CiMPG to generate the
proof scripts by adding one more open-close fragment as follows:

open MCS-INV .

:proof(mcs)

close

Feeding these annotated proof scores into CiMPG, CiMPG generates the
proof scripts for CiMPA. Feeding the generated proof scripts into CiMPA,
CiMPA discharges all goals, confirming that the proof scores are correct.

In MCS case study, it took about 13 hours and 40 minutes to generate
the proof scripts with CiMPG. This may be due to the huge proof scores as
the input. Thus, one piece of our future work is to reduce the time of CiMPG
in generating proof scripts.

In conclusion, we can summarize what has been presented in this chapter
as follows:

• Three ways of formal verification that MCS protocol enjoys the mutual
exclusion property. Similar to the A-Anderson case study in Chapter 3,
each of the three verification techniques has advantages as well as dis-
advantages. That is the same point. However, in the MCS case study,
the time for CiMPG to generate proof scripts from proof scores is much
longer than that of the A-Anderson case study.
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• The Lemma Weakening (LW) technique. LW replaces a lemma qi with
q′i such that qi(s) implies q′i(s) for all state s of a state machine M .
Auxiliary lemmas are required in all three ways of formal verifications.
However, without using LW, we could not have conjectured some good
enough lemmas to complete the formal verification of MCS. Accord-
ingly, we would not have been able to complete the formal verification
of MCS without the use of LW.
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Chapter 5

Releated work

The details of the implementation of CafeInMaude has been presented in
paper [5]. In that paper, Riesco, et al. have shown the improvement of
the performance of some commands through several case studies with some
CafeOBJ specifications. The experiments illustrate that some analyses that
could not be performed in CafeOBJ become possible with CafeInMaude. In
our experience, it always took less time to execute proof scores with CafeIn-
Maude than that with CafeOBJ. Based on CafeInMaude, Riesco, et al. [7]
have continued to develop two extension tools CiMPA and CiMPG. Paper [7]
has presented the algorithms behind CiMPA and CiMPG. Qlock protocol,
which is an abstract version of Dijkstra’s binary semaphore, has been used
as a case study to illustrate how to use CiMPA and CiMPG. The paper has
also shown the performance of CiMPG in generating proof scripts from the
correct proof scores for some protocols.

Anderson protocol has been formally specified in CafeOBJ and semi-
formally verified with CafeOBJ [14]. Proof scores have been partially written
and then all necessary lemmas have not been conjectured and used. They
have used a simulation relation between Ticket protocol and Anderson pro-
tocol, where the former is abstract, while the latter is concrete. But, they
have not used any precise definitions of simulation relations.

Wang [15] has proved that it is impossible to automatically prove that
concurrent software systems in which multiple processes run algorithms on
data structures with pointers enjoy desired properties if there are an arbi-
trary number of processes. Then, a new approximation method has been
proposed to formally verify such software systems. The key idea is to con-
struct a finite collective image set (CIS) whose elements are reachable state
representations (or global data-structure image - GDSI). The verification can
be done by enumerating all GDSIs reachable from the initial state. He has
used the proposed method to prove that a revised version of MCS protocol
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enjoys desired properties. The proofs described in the paper, however, are
in Mathematical argumentation but not formal. It would at least not be
straightforward to develop a tool that fully supports his verification tech-
nique.

Rushby [9] has demonstrated that use of disjunctive invariants q1 ∨ . . . ∨
qn makes invariant verification easier for synchronous concurrent (and/or
distributed) systems. His technique proves that p ∧ (q1 ∨ . . . ∨ qn) is an
inductive invariant wrt a system so as to prove that p is an invariant wrt
the system. LW, together with LS, can be regarded as a generalized version
of his technique. Instead of p ∧ q1 ∧ . . . ∧ qi ∧ . . . ∧ qn, we prove that p ∧
q1 ∧ . . . ∧ q′i ∧ . . . ∧ qn′ is an inductive invariant wrt a system, where q′i is
weaker than qi (and n′ is much less than n in our case study). q′i may be in
the form q′i1 ∨ . . . ∨ q′im. We have demonstrated that LW can be effective for
asynchronous concurrent (and/or distributed) systems as well.

Kim, et al. [16] have used the methodology of certified concurrent abstrac-
tion layers to conduct a case study in which they prove that MCS enjoys the
lockout freedom property (a liveness property) as well as the mutual exclu-
sion property (a safety property). They have defined five layers such that the
lowest one is the implementation of MCS in C/assembly languages and the
higher ones are more abstract than the implementation. They have formally
proved with Coq, a proof assistant, that each layer except for the highest one
contextually refines the one-step higher layer. Their paper mainly focuses on
their contextual refinement approach to integration of the verified algorithm,
such as MCS, into a larger system, such as an OS.

To prove that p is an invariant wrt S, our method tries to find an inductive
invariant q wrt S such that q(υ) ⇒ p(υ) for all states υ ∈ Υ. The model
checking algorithm IC3 [17] also can be used for discovering the inductive
invariants. Given a finite-state transition system S and a property P that
we want to check whether P is invariant for the system S or not, IC3 will
gradually refine P , eventually producing either an inductive strengthening of
P or a counterexample trace. However, IC3 can not be used to check that
the state machine formalizes MCS satisfies the mutual exclusion property or
not. The reason is that IC3 only can accept finite-state systems, can not
deal with infinite-state systems such as the state machine formalizes MCS.
That is the disadvantage of any model checking techniques/tools that we
mentioned at the very beginning of the thesis. Our method presented in this
paper bases on theorem proving that can get rid of this disadvantage.

Ogata and Futatsugi [18] have reported on a case study in which they
have semi-formally (but not formally) verified that MCS enjoys the mutual
exclusion property and the lockout freedom property in CafeOBJ, although
they claimed that their verification is formal. Since their proofs are semi
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formal, however, they may have overlooked several subtle cases and then do
not discuss anything about what we have encountered. Tam and Ogata [19]
have used MCS as a case study to demonstrate the usefulness of their tool
called SMGA in helping humans perceive characteristics (or properties) of
the state machine formalizes the protocol. Such characteristics have also
confirmed by Maude model checking. However, model checking can only
guarantee that the characteristics are correct with a fixed and often small
number of processes but normally can not do so with an infinite or even a
big number of processes due to state explosion. Theorem proving can get rid
of this disadvantage.

In the paper [20], the simulation-based verification for invariant properties
in the OTS/CafeOBJ method has been proposed. Alternating Bit Protocol
(ABP), a communication protocol, together with two more abstract protocols
are used to illustrate the method. However, the paper concludes that it is
not very beneficial to use the simulation-based verification technique in order
to formally verify that ABP enjoys desired invariant properties. In contrast,
we found that the simulation-based verification technique is powerful since
it helped us successfully verified that Anderson protocol enjoys the mutual
exclusion property. However, this thesis does not describe the part in details.

In addition to CafeOBJ or proof score approach, there are several other
languages as well as methods or tools that allow us to conduct formal ver-
ification. ACL2 [21] is a well-known formal specification and verification
language. It has been used successfully in many formal verification prob-
lems. However, in comparison with CafeOBJ, ACL2 seems not as flexible
as CafeOBJ. For example, ACL2 syntax only allows prefix expression, while
CafeOBJ provides mix-fix syntax (prefix, infix, and postfix all are allowed).
Leino [22] has developed a language and verifier called Dafny and illustrated
its features through a case study. Dafny is dedicated to formal verification of
programs, while our research is dedicated to formal verification of designs (or
specifications). Bae, et al. [23] have proposed several abstraction techniques,
which are essentially based on narrowing technique, collapsing an infinite
state space to a finite one. The techniques have been implemented in the
Maude system and two model checking case studies have been conducted.
In practice, how to use abstraction techniques correctly is a nontrivial task,
somewhat likewise the way we need to find generic lemmas in our OTS/proof
score method.
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Chapter 6

Conclusion

This thesis has presented the formal verifications that A-Anderson and MCS
protocols enjoy the mutual exclusion property in three ways: by writing proof
scores and executing them with CafeInMaude, with a proof assistant CiMPA,
and with a proof generator CiMPG. Through two case studies, we can sum-
marize some lessons learned. Once we have completely conducted formal
verification by writing proof scores, it is rather straightforward to write the
proof scripts for CiMPA. Although CiMPG can automatically generate the
proof scripts for CiMPA from proof scores, it takes time to do so.

The most intellectual task in both verification case studies is lemma con-
jecture. Auxiliary lemmas are required in all three ways of verification. For
each non-trivial invariant proof, we need to gradually conjecture lemmas that
are also invariants during the proof. In the second case study with MCS pro-
tocol, we have demonstrated the power of LW, which is a lemma conjecture
technique. We were not able to complete the formal proof that MCS enjoys
the mutual exclusion property without the use of LW. We had stuck in the
proof attempt of inv40 for several months until we came up with inv4 that is
weaker than inv40. inv4, together with inv5, made us successfully complete
the formal proof that MCS enjoys the mutual exclusion property. In fact,
we cannot always conjecture the best lemma every time we need to use a
lemma. The first lemma we construct may be too weak or strong. Therefore,
we may need to strengthen or weaken it. Accordingly, it is natural that it is
necessary to use LW as well as LS. To the best knowledge of ours, however,
LW has been rarely used in formal methods.

One piece of our future work is to come up with a systematic or hope-
fully automatic technique to conjecture lemmas that can be used to tackle
a large class of systems verification problems even though it is a challenging
problem. One possible way to do so is based on LW as well as LS. We will
consult some systematic and/or automatic ways to use LS, such those used
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by Creme [24], an automatic invariant prover for OTSs specified in Maude.
We also aim to develop a tool that automatically generates proof scores for
formal systems specifications and formal property specifications such that
the tool can scale. Another piece of our future work is to prepare a gentle
guide for non-experts to writing proof scripts for CiMPA from their experi-
ences of writing proof scores. Finally, we also aim to come up with better
annotations to proof scores for CiMPG to more efficiently generate the proof
scripts from annotated proof scores.
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