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Abstract

In the Internet era, the amount of data over networks is growing rapidly
day by day, and people are getting easier to access information and knowl-
edge. On the other hand, a number of cybercrimes are on the rise due to
the availability of the data. Criminals try attacking network systems to gain
unauthorized information. Therefore, a critical problem is how to secure the
data on the Internet. The most common security mechanism is a firewall,
which is used to control network traffic by defining the rules and filtering data
packets based on those rules. However, the growth of sophisticated attacks
requires complicated rulesets to prevent, which will slow down the filtering
process, causes the bandwidth bottleneck, and decrease the performance of
the network system. BFA is a research, which tried to address that problem
by introducing the regular expression matching algorithm to take advantage
of parallel computations on multi-core platforms. Unfortunately, the task of
each parallel process is quite hard, so the method is not suitable to use with
large rulesets. In our research, we focus on improving the BFA method by
proposing enhancement of the matching algorithm to utilize parallel process-
ing by using Single Instruction, Multiple Thread model on a GPGPU device.
Our method implemented on GPGPU reduces matching time dramatically
50 to 215X compared with the previous one on the host, depending on the
complicated level of the ruleset.
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Chapter 1

Introduction

1.1 Problem statements
Regular expression matching is a technique that can detect the same lan-
guage expressions using given patterns. Firewalls use that technique to de-
termine data packets over the network, whether it contains malicious code
or not. However, with the development of technology, there are more and
more sophisticated attacks. Therefore, the matching system requires a large
number of patterns to check data. As a consequence, since the firewall needs
to check many patterns, it takes up much storage space and computational
resources. A bottleneck may occurs and causes the decreasing of the system
performance.

There is a research named bit-based finite automaton (BFA) [3], which
used the nondeterministic finite automaton (NFA) to match strings. BFA
can handle complex rulesets and state transitions by taking advantage of
parallel computation on multi-core platform.

The weakness of BFA is that when the ruleset is getting more complex,
the task of each central processing unit (CPU) core will be heavy and make
the matching process become slower.

This research focuses on solve that problem of BFA.

1.2 Research objective
We are trying to increase the throughput of matching engine by researching
some studies which are good at making use of parallel computation. BFA is
our choice since it shows some potential for increasing throughput of match-
ing engine. The previous section shows the problem of BFA, which is the
task explosion for each core if the ruleset is more complicated. The size of
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state matrices will be huge when the number of states increases. Using a
core to perform many matrix multiplications is not suitable.

In this research, we aim to reduce the matching time by split and balance
the work of each core, increase the performance of the matrix multiplication
process.

1.3 Approach
Our approach is moving the matching phase from CPU to general-purpose
computing on graphics processing unit (GPGPU). Since CPU and GPGPU
are independent of each other, the filtering packet process will not block
other processes on the CPU, and it will help increase the performance of the
network system. The CPU will receive packets from the Internet and send
them to GPGPU, GPGPU performs the matching phase and send the results
back to CPU. In the end, CPU will decide to drop or forward the packets.

Besides that, we improve the matching algorithm to be suitable with
GPGPU architecture, which has a large number of cores but the clock speed
of each core is very low. The enhanced algorithm split the matrix multipli-
cation process into many tiny independent tasks that fit processing units on
the GPGPU device to utilize parallel processing.

1.4 Goal of the research
The Internet network speed has been increase significantly over time from
10 Mbps to 100 Gbps. Therefore, in order to protect a network system, the
ideal firewall need to filter the packet in the same speed with the network
speed. However, the filtering packet process speed depends on the demand
for security level. For example, a home network will use a simple ruleset to
filter. On the other hand, a business network need to use complex ruleset to
protect the network. The previous survey [5] showed that with the ruleset
containing 7,700 states, the throughput of regular expression matching engine
using NFA on GPUs is under 50 Mbps (0.9 Mbps on CPUs). According to
the result, most of the matching engines are not suitable for applying to
reality. We hope that our study can break the limit of previous studies, so
that the matching engine using regular expression can be put into practice.
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1.5 Research Scope
Our main target focuses on improving non-deterministic finite automaton
representation for being suitable with the parallel architecture of GPGPU
devices, which can handle a large amount of packets data using complex
rulesets in order to perform regular expression matching.

1.6 Thesis Organization
This section provides an overview of our thesis structure.

In this chapter, we introduce our research, which consists of the prob-
lems we aim to solve, the scope of the study. Furthermore, we brief on the
objectives and our approach to deal with the issues.

In Chapter 2, we show the basic knowledge about the techniques and
devices which we use in this research.

Chapter 3 mentions some related works which implemented NFA machine
on GPGPU devices to examine network packets. We use them as competitors
with our work. The last research in this chapter, which is bit-based finite
automaton [3], is a foundation for our study.

In Chapter 4, we go into detail about the problems of the original work
and our solution to increasing the performance of the system. After that,
the analysis and implementation will be shown to explain our work.

Chapter 5 describes the environment which we use to implement and
evaluate our study. Besides that, we show the comparison results with the
competitor and explain that results.

Finally, we show our achievements in the summary part and a plan for
future work in the last chapter.
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Chapter 2

Background

2.1 Introduction
Regular expression matching is a basic mechanism of deep packet inspection.
It is used to examine network packets transferring over the Internet in order
to avoid cyber attacks. Non-deterministic finite automaton is a memory effi-
cient method to implement regular expression matching due to the flexibility
of the machine. However, that characteristic brings significant challenges to
have a good matching engine implementation on GPGPU since the diver-
gences occur when a machine has many transitions triggered by an input.
Furthermore, since the machine has to check the pattern storing in memory,
memory accessing is an important matter which we need to consider. Base
on the survey [5], the matching performance of the engine implemented on
GPGPU when using large complex ruleset does not exceed 0.3 Gbps.

2.2 Regular expression matching

2.2.1 Regular expression
Regular expression was defined in [6], which illustrates strings or ordered
pairs of strings. They are often used to represent patterns for matching text
by using a sequence of symbols. Each symbol has its literally or special
meaning.

Table 2.1 shows common metacharacters that often be used in the regular
expression and corresponding meanings. Metacharacters make the regular
expression more flexible since a metacharacter has a specific meaning and
can match with one or more characters. For example, “[a-e]” match all lower
case letters from “a” to “e”.
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Table 2.1: Common metacharacters are used in regular expression

In the network field, a regular expression can be used to represent the
unique characteristics of application protocols, malicious strings, data con-
tained inside network packets. Therefore, regular expression matching is
widely used as firewall mechanism, specially deep packet inspection engines
and applications.
For instance, a regular expression “[\x22 \x27] \s*or \s* \d+ \x3d” will filter
the packet containing a SQL injection pattern like “′or 1 = 1”.

2.2.2 Non-deterministic finite automaton
A finite automaton [7] is a computational model consisting of a finite number
of states and transitions between pairs of states. A transition represents a
change from one state to another in response to some conditions.

Oven 
off

Oven 
on

Turn on

Timer expired

Figure 2.1: Simple state machine model of an oven

Figure 2.1 shows an instance of a state machine model, when turning on
the oven, it will change from off state to on state. That is a transition caused
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by a condition “turn on”. When the timer expired, the state of the oven will
change from on to off.

There are two kinds of finite automaton, which are nondeterministic finite
machine and deterministic finite machine. A deterministic finite machine is
a machine that can determine exactly a destination state from a source state
and a condition. On the other hand, in a non-deterministic finite automaton
model, when a condition triggers transitions, a source state can move to none,
one or many destination states. Our research focuses on solving the problem
of the non-deterministic computation model.

As the definition from [8], NFA is a 5-tuple M = (Q,Σ, δ, q, F ), where

• a set of states Q

• a set of symbols Σ

• a transition function δ : Q × Σ → P (Q), P (Q) is a notation for the
power set of Q 1

• a start (or initial) state q, which is an element of Q

• a set of accept states F (a subset of Q)

NFA has a further generalization, called NFA with ε-moves (NFA-ε),
which accepts an empty string ε as valid input. However, since NFA-ε is
equivalent to NFA (NFA-ε can transform to NFA, and vice versa [9]), we
only work with NFA in this research.

The nondeterministic finite automaton M can accept string s if for any
symbol in s, M can move to the states which belong to the set of accept
states F If the above conditions are not satisfied, M rejects the string s.

The figure 2.2 shows an instance of NFA, which is created from three
regular expression rules. If “a” is an input symbol, it can trigger changes:
(0) to (0), (0) to (1), (0) to (2), (11) to (14). If the machine reaches an accept
state such as (10), (11), (12), a match is found between a input string and a
pattern.

1The power set of Q is set of all subsets of Q
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Figure 2.2: A NFA accepting regular expressions of abcd+, ab[c-z]e+, bc+da

2.3 GPGPU Architecture
A graphics processing unit (GPU) is a particular electronic circuit, which is
designed for accelerating the creation of images in a frame buffer that images
are used for output to display equipment such as a monitor, mobile phone’s
screen,... In order to deal with enormous elements of graphic images, GPU
uses a large number of cores working at the same time for computation and
rendering. Its parallel architecture helps GPU more useful than the CPU.

CPU focuses on reducing the latency when process a task, so CPU uses
a small number of cores that have a high clock speed. On the other hand,
GPU uses a huge number of low clock speed cores in order to process many
tasks in parallel, which will increase the throughput of the system.

Ordinarily, the GPU aims at rendering graphics; a specialized GPU was
created to handle tasks that were formerly the domain of CPU, named
GPGPU. GPGPU uses Single instruction, multiple thread (SIMT) com-
putation model, which means an instruction can run by many threads at
the same time. This model is beneficial for data parallelism, which is sep-
arating data into many small parts and process them using the same set of
instructions.

Details of the physical architecture of a GPGPU instance are shown in
figure 2.3. In this GP100 instance, there are 60 Streaming Multiprocessor
(SM) containing many computational resources. A steaming multiprocessor
can handle many tasks using multi-warp2. Each warp contains scheduler,

2Warp is a set of 32 threads
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instruction buffer, register file, computation units; therefore they can work
independently with each other. Warp scheduler manages all the tasks of a
warp in order to make a schedule for multi-thread. Hence, the number of
parallel flows which a device can handle is equal with the number of its warps.

Figure 2.3: Pascal GP100 SM unit architecture (quoted from [1])

There are many software platforms that are used to program for GPGPUs
such as Nvidia Compute Unified Device Architecture (CUDA) (specific for
NVIDIA GPUs), OpenMP (Open Multi-Processing), OpenCL (Open Com-
puting Language). In this research, we use CUDA to implement our program
since it is optimized for Nvidia devices. Figure 2.4 shows a logical design
example which user can use to interact with the hardware. A kernel is a
function that GPGPU will process. Users can assign tasks to resources using
“grid”. A “grid” can divide into many blocks, and each block contains many
threads. Depending on user needs, thread blocks can be created as 1D, 2D,
or 3D logical grids. In the figure, the first kernel uses a 2 dimensions grid,
which contains six blocks organized, each block has 15 threads. There is
some logical type of memory:

• Global memory: the largest and slowest memory type which can be
accessed by all of threads
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• Constant memory and texture memory: specific memory types serve
to store constant variables or read-only variables. They have smaller
space but faster than global memory

• Shared memory: the highest speed shared memory between threads of
a block, which has the smallest storage space

• Local memory: A memory space that resides in global memory, it exists
only inside a thread view and cannot be accessed by other threads.

Since the GPGPU memory is independent with the host memory, data needs
to be initialed and move from host to device before initialing a kernel. It will
cost more additional time than only using the CPU.

Figure 2.4: Logical GPGPU architecture (quoted from [2])

2.4 Summary
In this chapter, we introduced about some basic knowledge which we used
in our study. It contains definition and application of the regular expres-
sion matching, or more specifically, the non-deterministic finite automaton.
Besides that, we mentioned about the architecture of GPGPU, which is a
device we used to implement and evaluate our research.
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Chapter 3

Related Works

3.1 Introduction
In this chapter, we mention some well-known studies which have successfully
increased performance of the matching engine using regular expression.There
are many studies which have tried to address the problem of nondeterministic
finite automaton in many ways such as parallel computation, representation
format, · · · . Each study has achieved its improvements.

3.2 NFA pattern matching on multi-core pro-
cessors

3.2.1 SR-NFA on Multi-core systems
SR-NFA [10] is a study based on modular nondeterministic finite automaton
[11]. The pattern is represented by two matrices. A matrix is used to rep-
resented ε-transitions between pairs of states. Another records the trigger
symbols accepts by all of the states.

To handle complex ruleset, the authors separate a complicated SR-NFA
into many simple SR-NFA segments. In addition, the ruleset is classified into
two categories:

• A simple set: a set of rules which can be created deterministic finite
automaton without state explosion

• A complex set: a set of rules which cannot be created deterministic
finite automaton due to enormous number of states

10



Both sets have complied to many SR-NFA segments. Depend on an input
symbol, a small number of segments corresponding to the type of the symbol
will be used to check.

Using Snort ruleset containing 1134 rules, SR-NFA obtains around 2.2
Gbps throughput.

3.2.2 BFA - bit-based finite automation
This method was proposed by Zhe Fu et al. in 2019 [3], which is designed
to accelerate the matching process of non-deterministic automaton on multi-
core platform. All of state transitions in the NFA is represented by bit
vectors. Then the state transition procedure transforms into a Boolean vector
multiplies by Boolean matrices.

Figure 3.1: An instance of BFA machine for “ab.*cd” (quoted from [3])

After generating NFA graph from the regular expression, it will be en-
coded into s × s Boolean matrices (s is the number of states). A number
of matrices is equal with the number of transition symbols, normally BFA
will have 256 matrices corresponding to 256 ASCII characters. Each row in
a matrix represents a state in NFA, and a transition will be represented by
a bit 1. For example, in figure 3.1, “ab.*cd” has been transformed to NFA
diagram, then it is encoded into 4 Boolean matrices corresponding to 4 trig-
ger symbols (a, b, c, d). The machine starts from the state (0); if it receives
character “a”, the machine can move to (1) and stay at (0), therefore the
matrix “a” will have bit 1 at first and second positions, other positions will
be 0.
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Figure 3.2: Example of BFA transition after receving “c” character

An instance of transition process is depicted in figure 3.2. For example, a
current state vector is [10100] which means that states (0),(2) are activated.
When the machine receives “c” as an input symbol, the new state vector
will be calculated by taking the current state vector multiplies with Boolean
matrix of “c”. The result is activated states triggered by “c”, which are
(0),(2),(3).
The multiplication process can be accelerated using the algorithm from [12],
which is scanning bit 1s in the current state vector (first position and third
position in the figure), then choosing rows in the matrix corresponding to
the positions of bit 1s (first row and third row) and “OR” them together. A
result vector will be the result of the multiplication.

Algorithm 1 describes the state transition algorithm(multiply a vector
by a matrix algorithm) that is used in BFA. The algorithm takes an idea
from [12], which is a fast Boolean multiplication method. The input of the
algorithm contains bit vector vi, input character k, and transition tables
B (normally 256 Boolean matrices corresponding to 256 ASCII characters).
The first step is finding all the positions of bit 1 inside the bit vector vi and
store them in set variable. Then, a “for” loop is created to process all the
position in pos_set, vi+1 is calculated by taking corresponding row in matrix
of character k and perform AND operation with vi+1, the final value of vi+1

will be the result of multiplication between vector vi and matrix of character
k.
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Algorithm 1: Optimized vector multiplies with matrix
Input : bit vector vi, input character k, transition tables B
Output: bit vector vi+1

1 pos_set ← FindBit1Position(vi)
2 vi+1 ← {0}
3 for each pos in pos_set do
4 vi+1 ← vi+1 ∨ B(pos, k)
5 end
6 return vi+1

3.3 NFA pattern matching on GPUs

3.3.1 iNFAnt - NFA implemented on GPGPUs
Niccolo’ Cascarano et al. proposed iNFAnt, an implementation of NFA
on GPGPU devices to filter network packet. In this research, a transi-
tion (an edge of NFA graph) will be store in a pair “{source, destination}”.
The system store lists of pairs sorted by the trigger symbol. Figure 3.3
shows an example of iNFAnt representation, symbol “a” will trigger 3 tran-
sitions (1→2),(3→4),(5→2); therefore “a” points to a list containing 3 pairs
(1,2),(3,4),(5,2).

Figure 3.3: Symbol-first representation (quoted from [4])

A current active state set and a future state set are represented by bit
vectors stored in shared memory on the GPGPU device. Each bit denotes

13



Figure 3.4: State transition algorithm

a state, and an active state will set as 1; otherwise, it will be 0. Figure
3.4 describe depict transition algorithm in detail. A “while” loop is created
to process all the input character sequentially until “input” is empty. A
persistent vector denotes all the persistent states which are not reset after
activating. Line 6 to line 12 will be done by exploiting parallelism. When
examining a character, each transition pair will be assigned to a thread. If
a bit “source” is set in the current vector, then the bit “destination” will be
set in the future vector using atomic operation1 to avoid memory conflict.
After examining all the transition pairs of a trigger symbol, the future state
vector will be set as the new current vector for the next symbol. When the
input stream is empty, the algorithm returns the current state vector as the
final state of the machine.

3.3.2 iNFAnt2
iNFAnt2 which is an enhanced version of iNFAnt, is proposed by Jack Wad-
den et al. [13]. This version contains some modifications:

• Mark accept states using negative ID numbers.

• Can process multi-byte character set.
1An atomic operation guarantees that a race condition will not happen when many

parallel threads try to read and write memory.
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• Store lists of NFA transition in the GPGPU texture memory which is
good for read-only data.

With the purpose of improve the performance of iNFAnt2, the authors
used some new capabilities of instruction-level profiling of NVIDIA Maxwell
architecture. Furthermore, iNFAnt2 can report the ID of the rule of each
detected match.

Since this work is well-known research in regular expression matching
implemented on GPGPU device field, we use it as the competitor with our
work to evaluate the performance of NFA matching engine.

3.3.3 Virtual-NFA - GPU-based NFA implementation
Virtual-NFA [14] is a study of Yuan Zu et al. The authors detected a draw-
back of iNFAnt [4], which is that the number of transitions needed to be
examined for one trigger symbol normally much larger than the number of
states which actually activate. Hence, it has been shown that most of the
threads will take responding for source states which are not activated. It
wastes so many computational resources in the original iNFAnt design.

To reduce the number of wasted examination, the authors create an array
to store all the active states at a time. The idea is that all each thread will
examine an element of active state array, it can reduce wasted computation
than examine all the transitions of the character. However, a race condition
may occur when threads try to write the new active state into the active state
array. To solve this issue, they defined a concept of compatible groups to store
states of the machine, which satisfy that members belonging to one group
cannot activate simultaneously. A compatible group takes responsibility for
an active state. Therefore, when threads set new active states to the array,
they will not access the same element since the new states cannot belong to
the same group.

In reality, a number of compatible groups can be large than number of
threads; therefore, the authors proposed virtual-NFA, which is transformed
from an original NFA. All the states in virtual-NFA belong to super compati-
ble groups, a super compatible group is created from many small compatible
groups. As a consequence, some of the members in a super group can be
activated simultaneously. Therefore they used the term virtual states to rep-
resent distinct statuses of the super group.

According to their experiment results, when using Snort rulesets contain-
ing the number of rules in a range from 16 to 36, the study can improve the
matching speed by 29 to 46 times compared with the original iNFAnt.
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3.3.4 Throughput optimizations of NFA processing on
GPUs

Hongyuan Liu et al. have been noticed that the problems of NFA implemen-
tation on GPUs are the movement of data and compute utilization. Hence,
their recent study [15] introduced some ways to improve the throughput of
the NFA matching process using GPUs, which are shown below:

• Using new data structure to store NFA pattern. A state is represented
by a node structure containing:

– An 256-bit array of matchset, each bit will be an ASCII character,
a bit is set if it triggers a transition.

– Four outgoing edges in a 64-bit integer
– 8-bit array of attributes: 3 bits are used to record start state,

accept state and always-active state; other 2 bits are used for
compression.

This node data structure is mapping one-one to threads. Each thread
will iterate all the input symbols; if there is any match with its struc-
ture, it will write the active state into a shared array variable to inform
other threads in the same thread block.

• Compressing matchsets (reducing number of checking the array of trig-
ger symbols): when the arrays have special attributes such as contain-
ing a continuous set of bit 1s or continuous set of bit 0s; such set will
be marked by the first element and the last element. When a thread
examines a matchset which has that attribute, it can examine in that
range instead of checking all the bits.

• Since it is challenging to have enough threads for assigning node data
structure, the authors examine the behavior of states and determine
which states have high activity frequency and which states have low
activity frequency. Based on that behaviour, high-frequency states will
be mapped one-one to threads, the low-frequency states will be stored
in a list, and a thread takes responsibility for one or many elements in
the list (depending on the available computational resource).

Overall, this study archived better performance compared with iNFAnt
[4] (around 23.5 times speed up) and Virtual-NFA [14] (around 5 times speed
up).
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3.4 Summary
This chapter discussed about some previou studies which tried to address the
problem of nondeterministic finite automaton. According to the experiment
results, we can see the improvements made by the above mentioned stud-
ies. They took advantages of parallel computation, as well as some special
characteristics of nondeterministic finite automaton to increase the matching
performance. Their proposed methods can boost the throughput of matching
engine to 50 Mbps on GPUs (0.9 Mbps on CPUs) .However, these results are
not good enough to implement into practice. Therefore, we research to find
another way to boost regular expression matching process. We realized that
BFA has some potential to improve the performance of matching system.
Therefore, we proposed the modification and discuss it in the next chapter.
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Chapter 4

Proposed Method and
Implementation

4.1 Introduction
In this chapter, we present the details of problem that the original study
has. After that, we show our modification to address that issue and how we
implement the solution on a GPGPGU device. Besides that, we analyze the
complexity of both original and modified algorithms to verify the truth of
the solution.

4.2 Problems of the original work
Figure 4.1 shows the processing flow of the BFA method. The algorithm de-
clares a initial vector v0, c0, c1, c2, · · · , cz−1 are denoted the input characters.
After receiving the input, they will be separated into many small parts cor-
responding to the number of cores n on multi-core platform. Each core will
calculate z

n
matrix multiplications in sequence. When all of the cores finish

computing the multiplications, n result matrices are collected, and a core will
perform the multiplications between the initial vector v0 and the matrices.
Since matrix multiplication does not have the commutative property, all of
them will be calculated in order of the input stream.

The detail of the algorithm is shown in algorithm 2. The algorithm
inputs are a BFA tuple B = (Q,Σ,B, v0, vf ) and input stream. The input
stream C will be separated into n parts. From line 2 to line 7, n “for” loops
are created to compute the matrix multiplications in parallel. n cores will
perform matrix multiplications at the same time, Mi are temporary variables
initialized as identity matrices to store multiplications results. From line 9
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Figure 4.1: Processing flow of BFA

19



Algorithm 2: Parallel state transition on multi-core platform
Input : BFA B = Q,Σ, B, v0, vf , input data C = c0c1c2...cz−1,

number of threads n
Output: bit vector vz

1 //perform optimized BMM on each core
2 for each i in [1 · · ·n] parallel do
3 mi ← Is×s //initialize mi as an identity matrix
4 index ← z/n × (i− 1) //index of the first symbol for a thread
5 for each k in [0 · · · z/n] do
6 mi ← mi × Mindex+k

7 end
8 end
9 //get the final vz

10 vz ← v0 × M0

11 for each i in [1 · · ·n] do
12 vz ← vz × mi

13 end
14 return vz

to line 11, the initial vector v0 will multiply with each matrix Mi and store
in the variable vn. After that, the algorithm returns the final state vector vn,
which describes the state of the machine after receiving all the characters.

The matrix multiplication, which is described in Algorithm 3, is per-
formed by iterating over all of the rows in the first matrix m . For each row,
the algorithm 1 will be use to calculate multiplication between a temporary
vector tmp and the second matrix M1. Each multiplication result vector will
be a row in the result matrix m.

However, we notice that when the size of ruleset increases (denoted by
s), the size of the matrix increase in exponential function (s2). It causes slow
multiplication time since the complexity of matrix multiplication is O(s3).
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Algorithm 3: Matrix multiplication
Input : matrices m, M1

Output: matrix m
1 for each row in m do
2 pos_set ← FindBit1Position(row)
3 tmp ← {0}
4 for each pos in pos_set do
5 tmp ← M1[pos] ∨ tmp
6 end
7 m[row] ← tmp

8 end
9 return m

4.3 The modification

Figure 4.2: Modification to processing flow

We realize that the Boolean matrix multiplication can be separated into
many independent tasks. Figure 4.2 shows the processing flow for the transi-
tions phase. Matrix C0,matrix C1,· · · ,matrix Cz denote the Boolean matrices
of input characters C0, C1, · · · , Cz. An initial vector v0 multiplies with each
input character’s matrix sequentially, and a multiplication can be calculated
in parallel by many threads.

To be more convenient for computation, we cast the Boolean matrices to
the integer matrices. Figure 4.3 describes the detail of our modified algo-
rithm. We create n threads, which equal to the number of integer elements
in the state vector. A “for” loop is used to process the input stream (line
1). Each element will be assigned to a thread. Firstly, all the threads will
examine their number to find positions of bit 1 inside an initial state vector
and store them in a shared variable pos_set at line 2. After that, the ma-
chine takes the row rowpos in a matrix corresponding to each position in the
pos_set and performing the “OR” operation between the row and a tempo-
rary state vector temp. The final value of the temporary state vector will be
the initial state vector for the next input character. We use syncThreads()
function on line 3 and line 8 to avoid conflict when accessing shared variables.
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Figure 4.3: Modified parallelize BFA algorithm on a GPGPU device

The algorithm 4 shows details of how to find positions of bit 1s in an
integer. Input is a number, and output is a set of positions where bits set to
1. We use the GPGPU device function “__ffs” to find the position of the
least significant bit 1. The “while” loop in line 3 is used to examine all the bit
of the number. After founding the first position, we keep it in a temporary
variable tmp and perform shift right operation to remove the first bit 1 from
the number. The shared variable index is used to synchronize memory access
between threads; when a thread found one position, it will store the position
tmp − 1 at indexth element of pos_set, then index is increased by 1 using
“atomicAdd” function, which is a CUDA device function used to guarantee
that there is only one thread can modify memory content at a time.
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Algorithm 4: Finding bit 1 positions
1 !htbp Input : integer number num

Output: position set pos_set
2 int pos, index ← 0
3 int tmp ← 0
4 while num != 0 do
5 \\Find the position of the least significant bit set to 1
6 pos ← __ffs(num)
7 tmp ← pos + tmp
8 num ← num >> pos
9 atomicAdd(&index, 1)

10 pos_set[index - 1] ← tmp - 1
11 end
12 return pos_set

4.4 Complexity analysis
In this section, we will show the proof that our work is better than the
original one.

We denote:

• s: number of states

• n: number of threads

• z: number of characters which need to be examined

Both the original work and our method use the result from [12], which
proved that product of two s× s Boolean matrices uses an expected number
of operations of O(s2). For the worst case, it will need cs3 operations (c
is a constant), however it rarely occurs. Therefore, s × s Boolean matrix
multiplication can be calculated using O(s2+ε) elementary operations1 for
any ε > 0, asymptotically in s.

Firstly, we analyze the original BFA method. A Boolean matrix size is
s2, hence the running time which needs to compute a matrix multiplication
is O(s2+ε) with (ε > 0). There are z characters, then the complexity is
O(s2+ε× z). n threads perform the multiplications in parallel. Therefore the
running time of the first phase, in theory, will be:

O(
s2+ε × z

n
)

1Elementary operations are comparisons, additions, multiplications.
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After performing all the matrix multiplications, n results will be multiplied by
a state vector. Each vector-matrix multiplication needs O(s1+ε) (inheriting
from matrix multiplication result), then the complexity is O(s1+ε × n).
Therefore, the running time of BFA method is:

O(
s2+ε × z

n
+ s1+ε × n) with ε > 0 (4.1)

Secondly, we consider the modified BFA method. Since we only use the
multiplications between a vector and a matrix, it takes O(s1+ε × z) running
time to transition z characters. However, as the parallel calculation of n
threads, the complexity of whole process will decrease:

O(
s1+ε × z

n
) with ε > 0 (4.2)

From equation (4.1) and equation (4.2), it is clear that the running time
of our modified BFA method is shorter than the original one when s, z, n
are increasing. Using those equations, we calculate the approximate speedup
ratio by equation (4.3)2. Algorithm complexity represents a rough number of
instructions that need to execute a program based on the value of the input.
Clock frequency shows the reverse of the time for a core executes one cycle.
Therefore, the speedup ratio approximately equals to the ratio between both
algorithm complexity times by the difference of clock frequency between CPU
core and GPGPU core (some other factors will be omitted by the division).

Speedup ratio =
(4.1)

(4.2)
× Clock frequency of GPGPU core

Clock frequency of CPU core

=

s×z
ncpu

+ ncpu

z
ngpgpu

× Clock frequency of GPGPU core

Clock frequency of CPU core
(4.3)

4.5 Implementation
As the equations from the previous section, we realize that when increasing
the number of threads, the running time will reduce. That is the reason
why we choose a GPGPU device, which can create many parallel threads to
implement our method. The implementation is based on the open-source of
the regular expression processor designed by M. Becchi [16].

2Since there are many factors that affect the performance of programs, the speedup
ratio is for reference only
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Figure 4.4: An overview of the matching system

Figure 4.4 shows two main phases in our system. A pre-processing phase
is used to generate pattern structure from rulesets and store it on GPGPU de-
vice’s memory; regular expression set will be used to generate NFA machine,
then the machine is encoded to BFA form containing 256 binary matrices on
CPU and BFA matrices will move to store in GPGPU memory in order to
serve for matching processing. Another phase is the matching phase, which
will match the input stream with a given pattern to detect malicious code.

4.5.1 Pre-processing phase
Regarding the pre-processing phase, here are the steps to prepare for the
matching phase:

• Construct NFA from regular expression data sets: s = number of total
states.

• Create transition square matrices size (s× s), each row of matrix is a
bit vector.

• Padding p bit 0s to make size of each row is the blocks of 32 bits.

• Cast each block becomes integer to create s+p
32

integer numbers.
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• Transfer 256 integer matrices size (s× s+p
32

) to GPGPU memory.

4.5.2 Matching phase
In the matching phase, since the number of computation threads created by
the GPGPU device is vast, GPGPU can process many packets at the same
time. We decide to send packets in a batch to cut down the data transferring
time between the host and the GPU device, and the number of thread blocks
equals the number of packets in the batch, it means that packets and thread
blocks are mapping 1 to 1. The input stream will be forwarded from CPU to
GPGPU after the CPU receive data from the Internet. The GPGPU device
will perform the matching process by calculating the state vector for each
character and comparing the final state vector with the given accept vector
to determine whether there is any match. After that, GPGPU sends results
back to CPU and CPU will decide to forward or drop packets.
In order to reduce the global memory accessing time, we store state vector
and indexes of the position set in the shared memory of GPGPU device, BFA
pattern, and other variables are stored in global memory.

4.6 Summary
In this chapter, we already explained the problems of BFA on CPUs, which
is assigning hard work for each core. The solution is reducing the task and
making use of massive threads on a GPGPU device. The analysis has proved
that our solution has a lower complexity than the original BFA. The imple-
mentation of both the pre-processing phase and the matching phase are also
presented in this chapter. Besides that, based on the complexity, we show
the equation for calculating the speedup ratio to determine the theoretical
performance of the solution. The speedup ratio depends on the number of
states in BFA and the device used to experiment. Based on the given rule-
sets, we estimate that the speedup ratio ranges in 10 to 160. We will verify
it in the next chapter.
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Chapter 5

Evaluation

5.1 Introduction
In this chapter, we perform some experiments to evaluate our study. The
environment used to set up will be shown. After that, we present the de-
tails of test cases for comparing with the original work and the competitor
implemented on GPGPUs. The result and comparison will be analyzed.

5.2 Experimental environment
To evaluate our work, we set up our system on K20 server which has speci-
fication as follow:

• CPU: Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz

• RAM: 64 GB

• GPU: NVIDIA Tesla K20m-PCIE-5Gb (Base clock: 706MHz)

The rulesets used to test are Snort34 and Dotstar which we take from [3].
The complexity level depends on number of transition between states. The
more transaction ruleset has, the more complex it is.

Snort34[3] Dotstar[3]
Number of states 883 11,191
Complexity Low High

Table 5.1: The detail of rulesets used for the evaluation
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5.3 Comparing with the original BFA method

5.3.1 Experiment results
In order to compare with the original BFA method, we set up two test cases
[17].

The first test is comparing with the original BFA implementation on CPU
with our work on GPGPU. The input is a packet which has 16,000 bytes.
The transfer time is determined by measuring the time from GPGPU device
receives the input data until it sends the matching result back to CPU.

BFA (CPU) Modified BFA (GPGPU)
Transferring time (s) 0 0.001

Matching time (s)

0.033 0.041 883

Number of states2.272 0.045 5181
5.160 0.047 8996
10.529 0.049 11194

Table 5.2: Matching time comparison with the original method on CPU

The result is shown on table 5.2. When using the ruleset containing 883
states, the speed of the modified BFA is slower than the original one since
this ruleset is the simplest set. Although our work has an additional time
which is the transfer time, the matching time is much better than the original
one when using complex rulesets. The gap of matching time is more larger
when the ruleset is more complex.

We measured the matching time in microsecond (µs). However, according
to the experiment results, we realize that the error rate is high. The digit
of millisecond (ms) is the same between several experimental runs. There-
fore, to increase the precision of the result, we use second (s) as the unit of
measurement with 3 digits after decimal point.

The second test is comparing both implementations on a GPGPU device.
Since the original method is not suitable for GPGPU architecture, and we
want to keep the basic idea of BFA, the test is set up simply with a small
input data containing 64 bytes.
Table 5.3 shows the result of the test. Due to the low clock speed of GPGPU
cores, when we force a core to compute a matrix multiplication, the process-
ing time takes much longer than the modified one. The results are measured
in millisecond to show the different between them.

28



BFA Modified BFA

Matching time Snort34 871.192 ms 0.465 ms
Dotstar 141,118.937 ms 1.046 ms

Table 5.3: Matching time comparison with the original method on GPGPU

5.3.2 Comparing theoretical and experimental perfor-
mance
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Figure 5.1: The change in speedup ratio over number of states

The figure 5.1 describe the different in speedup ratio between theoretical
result calculated by equation (4.3) and experiment result. The number of
CPU cores ncpu is 16; the number of GPGPU cores ngpgpu is 32 since although
the number of threads used to process is large, they are grouped into many
warps, all of the warps are executed by a SM using scheduling mechanism.
The graph show the wide gap between theory and reality when changing
number of states. The gap ranges from 1.4 to 16 times. There are many
factors that affect the execution time of the program such as:

29



• Memory speed: the random-access memory speed is 1600 MT/s1, and
the speed of K20 memory is 5200 MT/s.

• Number of instructions: the complexity of a algorithm represent the
difference in number of step to execute program based on the size of
input. However, there are many instructions which do not depend on
the size of input, they is not mentioned in the complexity equation.
Therefore, the complexity cannot show exactly the difference between
two algorithms.

• Built-in instructions: Built-in instructions is set of instructions that
created for specific device to serve a purpose. In our work and previ-
ous work, we used some built-in instructions to process bits in integers.
Hence the differences between CPU and GPGPU instruction set archi-
tecture cause the different in running time.

• Parallel model: Although the number of threads is given, it is not clear
that how many threads run in parallel or they run in multi-threading,
which are managed by schedulers.
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Figure 5.2: The change in matching time over number of states

We verify our complexity equation of the original BFA in chapter 4 by
figure 5.2. In equation 4.1, it is easy to see that the complexity of running

1MT/s stands for megatransfers per second
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time depends on the number of states that follow an exponential function.
We vary the number of states from 883 to 11,191. The figure shows the
matching time is larger after each tick; therefore, it follows an exponential
function as the equation.

5.4 Comparing with iNFAnt2
iNFAnt2 is a well-known method used for regular expression matching on
a GPGPU device. Therefore, we choose it as the competitor to our work.
There are two test cases.

The first one is the matching time comparison when varying the size of the
packet (input data for a thread block) from 5,000 bytes to 30,000 bytes per
packet, the number of packets is 100. Figure 5.3 shows the experiment results
with Snort34 and Dotstar rulesets. When using simple ruleset (Snort34), the
matching time of iNFAnt2 is shorter than the modified BFA since the number
of each character’s transitions is small, the modified BFA will create fewer
threads. As a consequence, the number of parallel computations will less
than iNFAnt2. However, in the case of using Dotstar ruleset, which has high
complexity, our work archive a significantly better result due to the task of
each thread in iNFAnt2 is harder. The matching time of the modified BFA
when using Dotstar ruleset is from 25.269ms to 147.062ms; iNFAnt2 is from
45.092ms to 267.949ms.

The second test case is varying the number of thread blocks (number
of packets in a batch) when the size of the packet is fixed at 20,000 bytes.
The result is depicted in figure 5.4. Similar to the first experiment, our
work obtains a better result when using a high complexity pattern and a
worse result when using the simple one. There are some periods in which
the matching time does not change so much, due to the parallel computation
threshold of the GPGPU device (K20). When the number of thread blocks
is below the threshold, the device can process in parallel, so the time will not
increase. After the number of thread blocks exceeds the device’s threshold,
some packets need to wait until enough computational resources are ready
to be re-assigned; hence the processing time will increase.

To find the lower bound that our study will have better performance
than the competitor, we use the experiment’s results to draw figure 5.5. As
depicted in the figure, approximately 4,000 states is a threshold which makes
our work better in term of matching time.
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Figure 5.3: Comparison between iNFAnt2 and Modified BFA using
GPGPU device

The change in matching time over size of packet
Number of packets (Thread blocks): 100
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5.5 Summary
In this chapter, we show the experiment results that we obtained from many
test cases. The results show that when using the simple ruleset, our method
has higher matching time that means lower performance than the original
work on the host and the competitor on GPGPUs. However, when using com-
plex ruleset which has large number of states as well as number of transitions,
the modified BFA has greater performance compared with the original one
and iNFAnt2. The matching time reduces by 50 to 215 times compared with
the original BFA on the host. The theoretical speedup ratio is different than
the experiment results since some reasons which we have already analysed.
Comparing with the iNFAnt2, the matching performance is higher about 29%
when using the complex ruleset.

35



Chapter 6

Conclusion and future work

6.1 Conclusion
In this research, we proposed an enhanced version of the bit-base finite au-
tomaton method, which can take advantage of data parallel computation on
a GPGPU device. When comparing with the original method on multi-core
platforms, our improvement increases the matching performance by 50 to 215
times, depending on the ruleset. For the comparison with iNFAnt2 [13], the
matching of our study is lower about 29% when the ruleset contains more
than 11,194 states. Hence, our method will reduce the possibility of system
bottleneck by moving the packet filtering phase to GPGPU device, which will
help CPU to have more available resources for other tasks. Furthermore, the
results show potential for scalability since the performance only depends on
the device’s computational resources. This method will show the best per-
formance in case the network system needs to process protocol streams in
continuous flows using complex ruleset to avoid cybercrime.

6.2 Future work
Although we obtains better results than previous works, the throughput of
the matching engine is about 24.3 Mbps which is lower compared with some
recent studies [5]. We notice that the limit of our work is memory con-
sumption. Since the Boolean matrices are sparse, it wastes a huge amount
of device memory to store very little useful information, and the situation
becomes worse when the ruleset is more complex. Consequently, computa-
tional resources become idle. Our approach is matrix compression, which
can reduce the size of sparse matrices. However, the compressed matrix is
not easy to perform matrix multiplication in parallel. We will research to
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adapt the matrix compression method to our work in the hope of reducing
memory consumption but still taking advantage of parallel computation.
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