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Abstract

In the early 1990s, the whole society had no idea about what is the
Internet was or what it could do. Just several years later, it had exploded
onto computers all over the world. It was a new evolutionary step for society.
This also led to the explosion of information. Day by day, increasing amounts
of data, humans have to process huge amounts of information every day.
To save time and effort, support system such as information extraction and
response system that can help humans select information from a large number
of documents is essential. Since the 1960s, scientists have been interested
in building question answering (QA) system for assisting people in finding
information as well as questions that need to be answered. Typically, two
early QA systems during this time period were BASEBALL [1] and LUNAR
[2]. Both QA systems were very successful in their own domain. LUNAR
has proved the usability of the QA system by answering exactly 90% of the
questions in its domain posed by people did not have any experiment on the
system. Therefore, people do not need to read and understand too many
sources of information to come to a conclusion. They can rely on QA system
to get answers.

QA system is divided into two types: open and close domain system.
Open-domain is the system that can answer questions on many different
topics in society. However, the amount of data for this system must be huge
and varied on many topics. Not only that, but the growth of social networks
has also increased a large number of fake data. This makes finding and
processing information more challenging than ever. The close domain is a
system used to respond to specific topics, so building data is quite natural
because we can quickly check the accuracy of the data.

Thanks to the stable development of hardware, the recent success of
deep learning (DL) is unbelievable. From categorizing objects in images and
speech recognition to captioning images, understanding visual scenes, sum-
marizing videos, translate language, paint, even produce pictures, speech,
sounds, music and also in QA task. This is evidenced by the results of recent
state-of-the-art deep learning architecture on open domain datasets beyond
human performance.

In this study, We focus on two main things: developing a QA system for
improving the health of the society by answering questions regarding nutri-
tion and exercise, testing and slightly improving the performance of current
state-of-the-art deep learning architectures on complex structure dataset by
curriculum learning [3]. The results show that although these architectures



can surpass human performance in easily structured datasets, they perform
poorly performance in complex structured datasets.

Keywords: Deep Learning, Question Answering, Performance, Hard-
ware, Health, Nutrition, Exercise.
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Chapter 1

Introduction

1.1 Problem Statement

Question answering (QA) is a computer science discipline within the fields
of information retrieval and natural language processing (NLP), which is
concerned with building systems that automatically answer questions raised
by humans in natural language. QA can be found in many areas of NLP,
including Natural language database systems, spoken dialogue systems, etc.
There are two main types of questions in the QA task: factoid, which provides
concise facts, and non-factoid is a big term that covers all questions answering
topics beyond factoid question-answering. One of the most important factor
that promotes the development of QA is the dataset. Historically, large open-
domain has driven fields forward. One of the most famous datasets for QA
task right now is The Standford Question Answering Dataset (SQuAD) [4]
with more than 100,000 examples (triple of context, question, and answer) for
factoid QA. In the other hand, The Whyset [5] dataset, which was used for
why QA with 850 Japanese why-question and their top-20 answers passage
17,000 question-passage pairs for non-factoid. Thanks to these data sets and
modern hardware, the development of machine learning models have been
phenomenal in recent years. Despite the outstanding developments, there
are still many issues in machine comprehension (MC) task.

• The main challenge of QA, and also NLP task is ambiguity. For ex-
ample, existing a lot of words has different meanings depending on the
context, leading to ambiguity on lexical, syntactic, and semantic levels.

• The second is synonymy, and we can express one meaning can express
on different ways base on a specific context. For instance, a bat can
describe the animal and baseball bat, but they cannot interchangeable
in all context.
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• Currently research, they usually focus on a specific type of question.
For example, some research focus on factoid questions, some focus on
why and yes-no questions.

• On Social media, there are a lot of fake and lack information articles
on various topic. This the big challenge, because fake data might fool
deep learning architecture and the prediction from the model would be
wrong.

One of the approaches that we can deal with ambiguity is how we embed
the data. Word embedding: word to vector shows that we can use a vector to
present words in a way that captures semantic or meaning-related between
words. One thing to realize is that one of the most popular pre-trained word
vectors is Glove [6], which provides context-free embedding (static), cannot
solve the ambiguity. But with text embedding such as ELMO [7], which use
LSTM to give contextualized embeddings (dynamic), and also BERT [8] can
deal with some cases of ambiguity. For instance, take these two sentences
”I like apple” and ”I like apple macbook”. Word embedding will give the
same embedding for the word ”apple”, but BERT will give a different one
on context. For fake news problem, current research has released some DL
model for fake news detection, and we can use this model to filter the fake
articles. For why, how, yes-no question, we can extract the longer answer in
the context, or we can generate the answer base on the context. Although
many methods have been developed, they still cannot solve the problem
thoroughly.

1.2 Objectives

The main purpose of our research is to create a QA system for the health
domain called FitQA system. As the first step, we want to test the per-
formance of current state-of-the-art deep learning model. Then we prepare
FitQA with various types of questions. For further development, we will
enhance the system with the capability of expert knowledge and reasoning.

1.3 Originality

There currently lacks researches achieving high-performance QA systems for
specific domains, for instance, health, which can deal with complex data
with expert knowledge and reasoning. Just for answer candidate extraction,
current state-of-the-art DL architectures is extremely low with 47.3% F1
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score on our complex structure dataset, despite achieving 93.16% F1 score
on SQuAD factoid dataset. While our focus is health care systems, our
approach could be adapted to other domains with similar characteristics
(data complexities required expert knowledge and reasoning).

1.4 Thesis Outline

The specific content of this thesis is described as below:

• Chapter 2: Related Works and Background : We introduce an
overview of related datasets, which help us come up with an idea to
build FitQA, and some basic knowledge about Deep Learning networks.

• Chapter 3: Methodology: We show the detailed information of
FitQA, state-of-the-art DL architectures and the training strategy that
we applied in our experiments.

• Chapter 4: Experiments: In this chapter, experimental settings,
evaluation metrics, tuning hyper-parameter and results are described.

• Chapter 5: Discussion and Future Works: We give not only
several important information about limitation of current state-of-the-
art DL architectures but also several possible methods for future work
for our task.
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Chapter 2

Background and Related
Datasets

2.1 Related Datasets

Dataset is the most important part of machine learning systems. With a
quality data set, the machine learning model can learn the important infor-
mation contained in the data and can operate effectively. We will introduce
some of the most popular datasets for QA system as following.

2.1.1 SQuAD dataset

Standford Question-Answering Dataset (SQuAD) [4] is a dataset for the
QA system developed by Standford University. SQuAD contains more than
100,000 questions raised on Wikipedia articles. The answer for every sin-
gle question is a small paragraph in the passage. Three steps build sQuAD:
searching and filtering articles, crowdsourcing question-answers base on these
articles, and conducting more answers.

• Searching and filtering articles: They used Project Nayuki’s 1.
Wikipedia to obtain the most 10,000 quality articles from English
Wikipedia. After that, they randomly picked 536 articles on various
topic and extracted 23,215 paragraphs from these articles. Finally, they
separated these paragraphs into training, development, test set to the
ratio 8:1:1.

• Crowdsourcing: Firstly, they collect the answers by Daemo [9] and

1https://www.nayuki.io/page/computing-wikipedias-internal-pageranks
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Amazon Mechanical Turk 2. For every single paragraph, crowdwork-
ers had to raise and answer about five questions base on paragraph’s
content. Moreover, crowdworkers must raise the questions by themself,
the paraphrase is not allowed.

• Additional Answers: For enhancing the quality of SQuAD, they
asked crowdworker to give more answers for each question in devel-
opemt and test set by selecting the shortest answer as could as possible
in the passage.

Figure 2.1 can illustrate the structure of question-answer pairs and passage
after being processed of SQuAD dataset.

SQuAD is a quality dataset, and many researchers had focused on de-
veloping DL models based on this data set. The results of these DL models
almost passed human performance. This is the reason made Standford uni-
versity upgraded SQuAD to the second version called SQuAD v2 [10]. In
this version, except for the data from version 1, they added about 50,000
questions could not be answered into this dataset. This improvement made
the performance of DL models at that time dropped 20%. The detailed of
these adversarial examples are described as Figure 2.2.

2.1.2 NewsQA dataset

NewsQa [11] is a dataset developed by Microsoft. With more than 10,000
news articles from Cable News Network (CNN) 3, they created more than
100,000 question-answering pairs with an answer is contained within its ar-
ticle. They made NewsQA as follows:

• Article Curation: They retrieved a huge number of articles (90,266
articles) from CNN by the system of Hermann [12]. Then randomly
picked 12,744 articles and separated them into training, development
and test set to ratio 9:0.5:0.5.

• Question Collection: They want NewsQA to look more natural and
challenge, then the questioners do not have a full article to refer and
raise questions. With the only headline and some summary informa-
tion, questioners had to raise questions without word overlap with sum-
mary information and at least three questions per article.

2https://www.mturk.com/
3https://edition.cnn.com/
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Figure 2.1: Question-answer pairs for a passage in SQuAD dataset

Figure 2.2: Types of 100 negative examples from development set of SQuAD
2.0
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Figure 2.3: Quantity Comparison of the Reasoning mechanisms between
NewsQA and SQuAD

• Answer Collection: The Answerers are provided with full informa-
tion about the articles. Their task is to answer the questions that are
raised by Questioners. For every question, the answer is acknowledged
if two Answerers choose it.

• Validation: To be sure to make a quality dataset. They had one more
crowdsourcing, who is provided full articles, questions and answers.
Their mission is to choose the best answer or remove all inappropriate
answers.

They evaluate the complexity of NewsQA using the following criteria:

1. Word Matching: The duplication between words in questions and
context. The more keywords in the question appear in the context
mean this question is easy to extract.

2. Paraphrasing: Having at least one sentence look similar to the ques-
tion.

3. Inference: This type is not easy to extract from the context. It must
be inferred from information scattered throughout the context.

4. Synthesis: The answer is synthesized from a lot of information in the
context.
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Figure 2.4: Reasoning Analysis of TriviaQa
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5. Ambiguous/Insufficient: The answer is not in the context, or there
is no way to answer this kind of question.

We can check the number of these types and the comparison between NewsQa
and SQuAD is showed in Figure 2.3

2.1.3 Trivia dataset

Trivia dataset contains 650,000 question-answer-evidence triples. From these
triples, Trivia dataset has about 95.000 question-answer pairs. Data collec-
tion process:

• Question-answer pairs collection: They crawled from 14 websites
which contain trivia and quiz. After that, filtering short questions
because these questions are too easy to answer.

• Evidence Collection: Evidence is collected by two method:

1. Assuming question as a query and using Bing4 to obtain top 10
websites contain the possible answer for the question.

2. Applying TAGME [13] to find important words link question to
Wikipedia pages and crawl the whole content as evidence docu-
ments.

• Finally, filtering and removing irrelevant articles.

The reasoning used to answer the questions from Trivia dataset is shown as
Figure 2.4

2.2 Background Knowledge

The Transformer [14] is a deep DL architecture introduced in 2017. Like
recurrent neural network (RNNs), Transformer are developed to handle se-
quential data, such as natural language, for tasks such as translation and QA.
The special improvement thing of Transformer is that it does not require that
the data be processed in order. There are also other advantages that make
the Transformer successful in recent years. Thanks to these achievements, we
have applied transformers to our experiments and the following we describe
in detail the Transformer forming ideas and break Transformer down to see
how it works.

4https://www.bing.com/
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Figure 2.5: Illustration of Sequence-to-Sequence model

2.2.1 Sequence-to-sequence model

Sequence-to-sequence (S2S) [15] learning is introduced by Ilya Sutskever in
2014. This model focus on map the input and output whether they do not
have the same length. For example, the input sentence ”How old are you?”
has 4 word and the output sentence ”年はお幾つですか？” has 8 charaters.
The model contain 3 pieces: encoder, context (encoder) vector and decoder.
We can check the high-level look of S2S through Figure 2.5 5

1. Encoder

• A list of some common recurrent units such as Long short-term
memory (LSTM) [16] or Gated recurrent units (GRUS) [17] for
better result. Where every single cell take a piece of the input sen-
tence and obtain the information of that piece and feed it foward
to the next cell.

• In QA task, the input sentence is the list of tokens from the ques-
tion.

• The formula below show us how to calculate the hidden state:

ht = f(W (hh)ht−1 +W hxxt) (2.1)

where:

– W hh is weight of recurrent cell.

5https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-
sequence-model-679e04af4346

10



– W x is weight of input cell.

– ht is current state.

– ht−1 is previous state.

– xt is current input state.

2. Context Vector

• The output vector of the last cell in encoder is context vector,
which represent for the whole sentence.

• This context vector feed into the first cell of decoder.

3. Decoder:

• The same with the Encoder, decoder has a list of recurrent units
to predict the final output yt at current state t.

• In QA task, each cell of decoder takes output vector of previous
state and the word is extracted from the corresponding answer.

• the current hidden state is calculated as formual below:

ht = f(W hhht−1) (2.2)

• And the output of the current state is calculated as following:

yt = softmax(W hyht) (2.3)

where:

– W hy is weight at output state.

– softmax is take a vector as input and give a probability as
output.

2.2.2 Attention Mechanism

The big problem of S2S model is when it has to handle to the long sentence.
The model can not keep the information of very first work in the sentence.
It means that the context vector as the input of the decoder may miss some
information. This causes the system to make a false prediction.

The attention mechanism [18] is introduced in 2014. This method helps
the S2S model hold the information in the context vector better. As content
in Figure 2.6, before passing to the decoder, the context vector seems to
be linked to all the words in the input. So the decoder can have better
information for predicting the result.
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Figure 2.6: Bidirectional recurrent network with Attention Mechanism by
Bahdanau et al., 2015

Demonstration Firstly, we assume that the input is a sentence x has n
words and the output is a sentence y has m words.

x = [x1, x2, x3, ..., xn] (2.4)

y = [y1, y2, y3, ..., yn] (2.5)

Second, for the model S2S, we use bidirectional recurrent network such as
LSTM, GRU, etc. Figure 2.6 show that this bidirectional recurrent network

has 2 hidden state vector
−→
h t and

←−
h t. The most simple way to keep informa-

tion from two vector is concatenate them together. The ideal of this method
is to keep information of the next word and previous word at the current
state.

hi = [
−→
h i;
←−
h i], i ∈ [1, ..., n] (2.6)

The context vector is obtained by:

ct =
n∑
i=1

αt,ihi, t ∈ [1, ...,m] (2.7)

αt,i = align(yt, xi) =
exp(score(st−1, hi))∑n
i′=1 exp(score(st−1, hi′ ))

(2.8)

where align is alignment model calculate the compatibility between position
of input i and the position of output t. And the score function:

score(st, hi) = v>a tanh(Wa[st;hi]) (2.9)

12



Figure 2.7: Sample is obtained by alignment model

where va and Wa is learnt from alignment model and tanh is non-linear
activation function.

Through Figure 2.7 [18], We can see the close connection between input
and output when attention is applied for machine translation task.

2.2.3 Transformer

Transformer is DL architecture that avoiding recurrence and not basing com-
pletely on attention mechanism to obtain context vector. It completely bases
on self-attention to calculate representation of its input and output without
using RNNs or Convolution Neural Networks (CNN) [19]. We describe in
detailed Transformer as below.

Overview of Transformer

The main parts of Transformer are a stack of encoder and decoder. Stack of
encoder contains layers of the encoder, and every single layer encoder has two
layer within it. First one is self-attention layer, and the second one is a feed-
forward neural network (FFNN). The decoder also has the same structure.
However, between self-attention and FFNN decoder has an additional layer

13



Figure 2.8: High-level look of Transformer model

that is encoder-decoder attention. This layer takes the information from
encoder and help decoder memorizes relevant pieces of information from the
input sentence. Figure 2.8 6 can illustrate the flow of transformer model from
input to the output.

Self-Attention

Self-Attention mechanism is a method to help the encoder to check all the
other words of the input for figure out relevant parts in the sentence. This
method can improve the current word has better embedding. For example,
we have a sentence:

Mary can not go to work because she catches a cold.

Without information from other words, ”she” here can not have any relation
to Mary. This is the reason that self-attention is needed for embedding words
form sentence.

To calculate self-attention for each word in the given sentence, we can
refer to this formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.10)

where:

• Q: Query matrix.

• K: Key matrix.

• V : Value matrix.

6http://jalammar.github.io/illustrated-transformer/
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Figure 2.9: Process of calculating self-attention score

• softmax: generalized logistic function.

• dk: the dimension of three vector Q, K.

To obtain Q, K and V vector, we sequential multiply the embedding matrix
(X) to matric WQ ,WK and W V , which are pre-trained matrices. Since we
have done with matrices, we can apply the formula (2.10) to calculate the
attention score for the current position. The process of calculating attention
score is showed as Figure 2.9 7

Multi-Headed Attention

As Figure 2.9, this is just one head from many h head (h = 8 in Ashish
Vaswani paper [14]) . It means that with the input sentence, we calculate
eight times with eight different sets of WQ ,WK and W V . This following

7http://jalammar.github.io/illustrated-transformer/
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Figure 2.10: Multi-head attention illustration

formula calculates Multi-head attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(WQ
i , KW

K
i , V W

V
i )

(2.11)

where WO is a weight matrix that was trained parallel with the model. We
can have a high-level look of attention layer of Transformer through Figure
2.10 8.

Decoder

The output of the final layer of encoder stack is matrix K and V. These
matrices will be used by encoder-decoder attention layer within the decoder.
The same to encoder stack, decoder stack also have six layers, multi-headed
attention is also applied. The different between encoders and decoders is the
encoder-decoder attention layer. This layer works the same way as multi-
headed attention. However, instead of creating K and V matrix, they take
K and V matrix from the encoders.

8http://jalammar.github.io/illustrated-transformer/
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Figure 2.11: The similarity between words in GLoVe

Final layers

The output of the final decoder layer from decoder stack is a tensor of floats.
We feed it into FFNN, and the output of this layer is a vector with dimension
equal to the number of words that model learn from the dataset. In the other
hand, it is vocabulary size. Every single element corresponding to the score
of the word in our vocabulary. The final layer is the softmax layer, which
converts elements score to probability. The word with the highest probability
is taken as the output of the model.

2.2.4 Word Embedding Recap

As background knowledge, before feeding into DL model, we need the em-
bedding layer to convert text into a number. Some word embedding such as
Word2Vec [20] or GloVE [6] show that we can represent a word as a vector
of number. For example, the vector representation for the word ”King” com-
pare to ”man” and ”woman” as Figure 2.11 can illustrate that these vector
has some relation between them. But the weakness of these pre-trained em-
bedding is they present the same vector for one word in every context. For
example, we have two sentences:

He is the king

and

This chess piece is king

The word ”king” in the two sentences is totally different. One is a human,
and one is from chess and GloVe or Word2Vec present this word all the same.
To overcome this weakness, every word has to have a different vector in a

17



Figure 2.12: Example of ELMO for creating embedding for a word

different context. A deep contextual word representation called ELMO [7] is
introduced in 2018, not like GloVe or Word2vec, ELMO creates an embedding
for every single word in the sentence by using bi-directional LSTM to look
for the whole sentence and allocate the vector embedding for this word. Base
on model and attention mechanism, the word embedding from ELMO hold
not only the information of the next word but also the information from the
previous word. We can see how ELMO give an embedding for ”stick” as the
Figure 2.12 9

2.2.5 Bidirectional Encoder Representations from Trans-
formers (BERT)

BERT basically is separated into two part: pre-training and fine-tuning.
When pre-training, the architecture is trained on a huge number of training
data which do not contain the label. Fine-tuning, it means BERT takes all
the parameters which is trained in a various number of training examples,
then these parameters are trained again with training examples which contain
label from the specific task. This approach is a significant method to improve
the performance of smaller tasks which have a limitation of training data.

9http://jalammar.github.io/illustrated-bert/
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Figure 2.13: The progress of vectorizing input sentence

BERT Embedding

The architecture of BERT base on Transformer. BERT also contains a stack
of encoders and decoders. The main purpose of encoder is to convert the
input into a vector representation, and the decoder is to predict the result
specific task. Since the pre-trained part is to trains and generates vector
representation for the input text, the decoder only is enough. Before feeding
into BERT, we have to do some pre-processing step:

1. Tokenization: The very first step is to split the input sentence into
words, remove noise from data such as ”/, * , etc”. from the dataset.

2. Token embedding: In there work, they use WordPiece [21] to convert
token into vector. Moreover, they add token [CLS] stands for classifi-
cation as the first token of the sentence, and [SEP] token as the ending
token of the sentence.

3. Segment Embeddings: To distinguish which sentence that words
belong to, they use the additional embedding to each word to identify
whether A or B is the sentence which contains that word.

4. Positional Embedding: The last embedding is used to indicate word
position in the sentence.

5. Final representation: After conducting three embeddings, the rep-
resentation for a word from the sentence is a vector by summing three
embedding vectors. The input sentence representation is showed as
Figure 2.13 [8].
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Masked Language Modeling (MLM)

This approach making BERT becomes special in NLP community. Instead of
embedding from right-to-left or left-to-right, BERT randomly converts word
token into [MASK] token with probability equal to 15%. The mission of the
model is to predict what is the [MASK] token corresponding to which word.
The problem is [MASK] token does not apply in the fine-tuning process but
the pre-training process. This reason makes some incompatible from pre-
training to fine-tuning process. The solution for this issue is with tokens are
replaced by [MASK]:

1. 80% from 15% tokens are converted into [MASK] token.

2. 10% from 15% tokens are converted into any word.

3. 10% from 15% tokens stay the same.

Next sentence Prediction

BERT not only uses [MASK] token to improve the quality of embedding but
also uses next sentence prediction (NSP) to enhance the performance of tasks
which need reading comprehension such as QA task. During the pre-training
process, the model takes pairs of sentences A and B as input and try to
predict whether B is the next sentence of A.

As the above information, We have mentioned about [SEP] token. During
the pre-training process, BERT splits two sentences by [SEP] token and feed
into the model as follow:

• The probability of the next sentence is the right next sentence is 50%.

• The probability of the next sentence is a random sentence in our dataset
is 50%.

BERT has to predict whether the second sentence is the next sentence of the
first sentence. For example, the input of next sentence and not next sentence
are shown as Figure 2.14 10

BERT using MLM and NSP at the same time. The reason for this method
is to reduce the loss during the training process.

10https://towardsml.com/
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Figure 2.14: Example of Next sentence Prediction

How to use BERT for QA Task

The QA task basically is that QA system takes the question and relevant
article and give an answer as the output of the system. We fine-tune by
letting BERT takes not only question and article but also the starting and
ending position of the answer which contains within the article. To predict
the answer, BERT has 2 vector S and E (as Start/End Span in Figure 2.15
[8]) stand for start position and ending position. The probability of picking
these position is explored by applying softmax function to all the words in
the article, and the following formula calculates the probability:

Pi =
eS·Ti∑
j e

S·Tj
(2.12)

where Ti is a vector representation of position being calculated, Tj is the
other vector representation position in the article. After obtaining the set
of candidate span, the score for each pair of starting and ending point is
computed by S · Ti + E · Tj and the pair has highest one under condition j
>= i is chosen as the output of the model.

2.2.6 ALBERT

The success of BERT shows that the pre-training step on huge dataset has
significant improvement on almost NLP tasks like QA or translation. How-
ever, there is a weakness still exist in BERT, the serious of them is typically
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Figure 2.15: Illustrion of BERT fine-tuning QA task
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Model Parameters Layers Hidden Embedding Parameter-sharing
BERTbase 108M 12 768 768 False
BERTlarge 334M 24 1024 1024 False
ALBERTbase 12M 12 768 128 True
ALBERTlarge 18M 24 1024 128 True
ALBERTbase 60M 24 2048 128 True
ALBERTbase 235M 12 4096 128 True

Table 2.1: Comparison between BERT and ALBERT

running time, and the number of parameters needs to train. One of the mod-
els with many training parameters is GPT-2 [22] with more than 1.5 billion
parameters. In 2020, OpenAI release GPT-3 [23], the currently hugest model
with more than 175 billion parameters need to train. With a large number
of parameter, a lot of GPUs or TPUs can not tackle this kind of models like
this because of memory limitation. To handle this problem, Google releases
A Lite BERT (ALBERT) [24], an improved model of BERT, which can train
fewer parameters without reducing its performance compare to BERT. We
will discuss the main cores of ALBERT make it special as following.

Factorized Embedding Parameterization

Some improvement models like XLNet [25] or RoBERTa [26] still use Word-
Piece as word embedding for their models. We assume that WordPiece has
embedding size equal to E, hidden layer size is H (E = H in BERT), and
the vocabulary size of WordPiece is 30,000. If we want to train the model
deeper, we have to increase the H size and because E = H, so the size of
embedding also increases, equivalent to 30,000E.

The main ideal of ALBERT is to reduce the parameters need to train.
Instead of setting E = H, ALBERT has constant E = 128 (as Table 2.1 [24]),
the number of parameters will be significant reduced by this method. For ex-
ample, we assume that HB = 768 EB = 768 stand for hidden and embedding
size for BERT and HA = 768 EA = 128 stand for hidden and embedding size
for ALBERT. We can have a size comparison of there parameter as follow:

PB = 30, 000HBEB = 23040000 (2.13)

PA = 30, 000EA + EAHA = 3938304 (2.14)

As we can see from the above example, BERT has more than 19101696
parameter need to train compare to ALBERT.
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Cross-layer Parameter Sharing

There are several work relate to parameter sharing such as Universal Trans-
fomer [27] or Deep Equilibrium Models (DQE) [28] for transformer architec-
ture. The main ideal is to share the parameter through specify layer such as
feed forward network or attention layer parameters. In ALBERT, they share
all the parameter in all layers.

With two central cores, the number of parameters reduces almost 18 times
compared to BERT.

2.2.7 RoBERTa

RoBERTa [26] is the transformer architecture base on BERT and having
several improvements make it out-performance of BERT in some tasks.

Training Data

Comparing to BERT which only train on BOOKCORPUS [29] dataset (16GB
of text), RoBERTa train with 160GB of text in various of datasets such as:

• The same with BERT, BOOKCORPUS is also used to train RoBERTa.

• CC-News (76GB of text), which is obtained from CommonCrawl
News [30] dataset, is a dataset with more than 60M articles.

• OpenWebText [31] with more than 38GB text which is crawled on
Reddit 11.

• The last dataset is used to train RoBERTa is STORIES [32].

Dynamic Masking

As we mentioned above in section 3.2.1, BERT uses [MASK] token once
when pre-processing data. The issue is when we train the model with a lot
of epochs, there may be cases that have the same mask position in the same
sentence.

To tackle this problem, RoBERTa duplicates training data by ten times
and they expect that the [MASK] token will be in different position. This
adjustment can help performance of RoBERTa increases by 2 % compare to
BERT on SQuAD 2.0 [10].

11Reddit.com
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Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE
Our reimplementation (with NSP loss)

SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2
SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0

Our reimplementation (without NSP loss)
FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6

BERTBASE 88.5/76.3 84.3 92.8 64.3
XLNetBASE(K = 7) -/81.3 85.8 92.7 66.1
XLNetBASE(K = 6) -/81.0 85.6 93.4 66.7

Table 2.2: Performance comparison between training approaches on SQuAD,
MNLI-m, STT-2 and RACE dataset

Different Training Objective

There are several research concern about NSP from BERT where it is nec-
essary [33] [25]. To explore this problem, RoBERTa is trained in different
ways such as:

• Segment pair and NSP: The same way BERT, input of the model
is a pair of processed tokens. Each element of pair can have more than
one sentence.

• Sentence pair and NSP: Instead of multiple sentences like Segment
pair type, the input is just exactly one sentence for each element of
pair.

• Full sentence without NSP: The input is not a pair, it is a list
of sentences which are randomly picked or consecutive sentences from
different articles.

• Doc sentence without NSP: The same way with Full sentence type
but sentences are in the same article.

After obtaining result from these setting above as Table 2.2, they conclude
that the input with multiple sentences is better and NSP loss is not necessary
in for downstream tasks.
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Chapter 3

Methodology

In this chapter, we introduce FitQA, the dataset we build for heath domain,
the recap and new era of embedding, several state-of-the-art architectures
base on Transformer and Curriculum learning, a training strategy for DL
architectures, to enhance the performance of these architectures. We show
the illustration of the whole system as Figure 3.1.

3.1 FitQA

FitQA is a QA dataset for health domain, and it contains all most 700
question-answer pairs. The answer for each question may be an entity, span,
sentence or sentences in the context. We built FitQA by these steps below:

26



Q: Are Testosterone Boosters Safe?

FitQA SystemAnswer

Always read reviews before purchas
ing, and choose a testosterone boos
ter from a reputable, established su
pplement company. Only take the r
ecommended dose, and keep your
doctor in the loop about what you'r
e taking if you have other health co
ncerns or take medications.

Database
Fitness 
Corpus

QA 
Model

Transformer 
Model

Curriculum 
Learning

Squad 
dataset

FitQA
dataset

(1)

(2)

Figure 3.1: Illustration of FitQA System

• Article and Question Collection: First, we search for websites
which contain various articles relate to nutrition and training. Af-
ter taking time for searching, we figure out that bodybuilding 1 and
t-nation 2 website contain a huge number of articles related to these
topics. We crawl all the articles from this site in February 2020. In the
other hand, t-nation owns a forums 3 for everyone to discuss a health
topic, and it has a thousand question from different users. We crawled
about 10,000 questions from this forums

• Articles Selection: From two sets of articles and questions, we apply
elastic search 4 to look for what is the most articles that users usually
concern and look for information. As a result, we can obtain about 200
articles from a set of 10,000 questions.

• Context Creation: Some articles have really long content and cover
several different contexts. We decide to split the article by its section,
and one section is on context.

• Question and Answer Curation: FitQA is built for health. Then

1https://www.bodybuilding.com/en-JP/index
2https://www.t-nation.com/
3https://forums.t-nation.com/
4https://www.elastic.co/
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# Words Proportion Example
1-10 17.7% Question: What is the main ingredient in

most fat burners?
Answer: Caffein

11-20 22.7% Question: Does caffeine really stimulate
fat loss?
Answer: These work, and they do increase
energy expenditure which leads to fat loss.

21-30 12% Question: How can i control hunger?
Answer: I drink sparkling water through-
out the day. Not only does it keep you
hydrated, but it also reduces hunger and
sugar cravings.

31-40 10% Question: Is pepper good for heart?
Answer: The November 2013 issue of Cell
Biochemistry and Biophysics reported that
black pepper has beneficial effects on blood
pressure. It also reduces inflammation,
which is a big factor in heart disease.

41-50 12.8% Question: Can I build muscle on keto
diet?
Answer: It’s possible, but not easy, likely,
or ideal. I could walk from my house (in
Georgia) all the way to San Diego, but it
would be much faster if I took a flight. Hy-
pertrophy while on keto is kind of like that.

>51 24.8% Question: Can carrot reduce the risk of
cancer?
Answer: They found that the more of-
ten men ate carrots, and the greater the
amount of carrots eaten, the less likely they
were to get prostate cancer. They even
came up with some definitive numbers: For
every 10 grams of carrots consumed each
day, men reduced their risk of developing
prostate cancer by 5%.

Table 3.1: Statistics Length and QA pairs From FitQA
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we want the information must be detailed in answer. We realize that
questions raise by users from t-nation forum are hard for DL models
to extract the answer from the context. These kind of questions are
not clear, it needs to be deduced or world knowledge to answer. So we
built the dataset by raising the question around the context that the
answer can be an entity, a short span in context, a sentence or maybe
sentences.

FitQA almost has the same format with SQuAD 2.0 dataset, the different
and challenges that make FitQA different from SQuAD 2.0 are as below:

• The average length of context in FitQA is double of that in SQuAD
2.0.

• The average length of answers in FitQA is ten times longer than SQuAD
2.0.

The state-of-the-art models are overwhelming human performance, and the
dataset must be harder and more challenges to be able to achieve some
important achievements in machine comprehension task. There are some
participants in this case, NewsQA [11] have more challenges than SQuAD
[4] by having less word matching examples(7.1%), more paraphrasing exam-
ple(7.3%) and more synthesis and inference examples(13.4%). On the other
hand, TriviaQA has 69% questions that have different syntactic structure,
and 41% of them have lexical different. Moreover, the information needed
to answer the question is scattered over multiple sentences. Base on these
ideals, we increase the complexity of FitQA by the diversity in answer length,
we show statistics length and several examples from FitQA in Table 3.1. To
test the performance of state-of-the-art models, we create the test set by
picking 100 examples with varied length, and the rest is for the training set.

3.2 Curriculum Learning

We examine some previous work and propose a useful method for handling
the long article and also answer. Curriculum learning [3] is a learning strategy
in machine learning, we let the DL model learn with easy examples first and
then gradually handles harder cases. Several works have shown that this
problem can be overcome by using this learning strategy. As a result of
Cao Liu [34] in his natural answer generation task, curriculum learning can
increase his model performance by 6.8% and 8.7% in the accuracy for easy
and hard questions.
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Figure 3.2: Probability of picking example through epoch

In our question-answering task, we defined the complexity by the length
of the answer. We assume that an example containing a short answer is easy,
and an example having a long answer is difficult. We want models to learn
from easy to difficult sample and also from the difficult to easy sample. We
give every single example a score equal to its answer length. After that, we
sort the list of examples in ascending order by scores to pop the sample by its
index easily. The formula and pseudo-code of curriculum learning(Algorithm
1) to calculate the probability of picking an example Index from n examples
as below:

indexij = bnxtiijc (3.1)

xij ∼ U [0, 1) (3.2)

where ti is the temperature of epoch ith obtained by:

ti = γαi (3.3)

αi =
2(1− i)

Nepochs − 1
+ 1 (3.4)

where γ is a temperature base, Nepochs is the total number of training epoch.
The temperature base γ reflects how high the probability of picking a long
or short example through the epoch.

We illustrate the probability of picking example curriculum learning as
Figure 3.2. In the first epoch, we can easily see that the possibility of picking
the examples with the short answer is high and it is pretty low with cases
have a long answer. In the second epoch, the probability of picking example
is the uniform distribution. In the last epoch, the probability of picking
the examples with the long answer is hugely higher than the short answer
examples.
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Result: Sample by length
Input:
The list of nsample samples is sorted in ascending order:SL;
γ is temperature base ;
Nepochs is total number of epoch;
Output:;
The list of nsample samples is arranged by curriculum learning:OL;
Function: curriculum learning(SL,γ,Nepochs):
OL ← {}
for i = 1 to Nepochs do

tempLi = SL
αi =

2(1−i)
Nepochs−1 + 1

ti = γαi

for j = 0 to nsample do
xij = random(0,1)
indexij = length(tempLi)
OL.push(tempLi[indexij ]) tempLi.pop(indexij)

end

end
Algorithm 1: Curriculum learning pseudo-code.

In the next chapter, we will describe in detailed how we apply curriculum
learning to these state-of-the-art transformer model, assessments and analysis
of results.
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Chapter 4

Experiments and Results

4.1 Experiment Settings

From SQuAD and NewsQA leaderboard, there are some approaches perform
better performance, but all of them are built base on the pre-trained model.
To test FitQA for the machine comprehension task, we compare the per-
formance of four common pre-trained deep learning models: bidirectional
encoder representations from Transformers (BERT), two versions of a Lite
BERT (ALBERT), and RoBERTa. We describe details of all the pre-trained
models as below:

1. bert-base-uncased : 12 layers, 768 hidden, 12 heads, 110M parameters,
and trained on low-cased English text.

2. albert-base-v1: 12 layers, 768 hidden, 128 embedding, 12 heads, 11M
parameter.

3. albert-base-v2: 12 layers, 4096-hidden, 128 embedding, 64-heads, 223M
parameters.

4. roberta-base:12-layers, 768 hidden, 12-heads, 125M parameters RoBERTa
using the BERT-base architecture.

We conduct experiments on SQuAD, FitQA. Performance on these datasets
is measured by exact match(EM) and per answer token-based F1 score, which
was published by Rajpurkar [4]. The detailed settings are described as below:

1. FitQA uniform: Using four pre-trained models to test the perfor-
mance on FitQA with the probability of picking an example is the
uniform distribution.
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FitQA SQuAD 2.0+FitQA
Model uniform uniform

EM(%) F1(%) EM(%) F1(%)
albert-base v1 11.1 34.9 16.9 42.5
albert-base v2 12.1 37.8 15.3 42.5

bert-base-uncase 6.9 31.1 17.8 45.0
roberta-base 5.6 25.1 14.1 42.7

Table 4.1: F1 and Exact Match(EM) scores on FitQA with MAL=30 and
without curriculum learning

SQuAD 2.0+FitQA SQuAD 2.0+FitQA SQuAD 2.0+FitQA
Model γ = 2 γ = 3 γ = 5

EM(%) F1(%) EM(%) F1(%) EM(%) F1(%)
albert-base v1 15.3 43.1 16.7 44.0 15.0 42.1
albert-base v2 14.3 43.5 14.4 43.2 17.0 45.6

bert-base-uncase 17.8 45.0 17.0 44.2 16.7 46.1
roberta-base 14.3 45.5 14.7 42.3 14.4 43.8

Table 4.2: F1 and Exact Match(EM) scores on FitQA with MAL=30

2. SQuAD 2.0 + FitQA uniform:: We use four pre-trained models
fine-tune SQuAD 2.0 first, then fine-tune FitQA with the probability
of picking example is the uniform distribution.

3. SQuAD 2.0 + FitQA γ=2,3,5: We use 4 pre-trained models fine-
tune SQuAD 2.0 with uniform distribution first, then sequentially ap-
plying curriculum learning with γ=2,3,5 on FitQA training set. Finally
fine-tuning on this processed training set and test the performance.

We repeat these experiments two time with maximum answer length (MAL)
sequentially equal to 30 and 60. The illustration of the whole process of
applying curriculum learning to FitQA to obtain processed data which use
to train transformer architectures.

4.2 Experimental Results

According to information from SQuAD 2.0 leaderboard, the best performance
that Albert single can archive is 88.592% EM score and 91.286% F1 score.
However, in section 3.1, we showed that the length of some examples in FitQA
are extremely long and diverse. This is the reason makes four state-of-the-art
models can not work well on FitQA. The result in Table 4.1, albert-base-v2
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FitQA SQuAD 2.0+FitQA
Model uniform uniform

EM(%) F1(%) EM(%) F1(%)
albert-base v1 8.8 38.6 18.3 51.3
albert-base v2 17.0 47.3 21.2 54.2

bert-base-uncase 6.9 31.1 17.0 52.6
roberta-base 4.9 30.9 19.0 52.7

Table 4.3: F1 and Exact Match(EM) scores on FitQA with MAL=60

SQuAD 2.0+FitQA SQuAD 2.0+FitQA SQuAD 2.0+FitQA
Model γ = 2 γ = 3 γ = 5

EM(%) F1(%) EM(%) F1(%) EM(%) F1(%)
albert-base v1 15.7 51.3 16.7 50.8 17.0 51.4
albert-base v2 16.7 51.5 19.3 52.0 18.3 53.0

bert-base-uncase 15.4 51.4 20.33 53.9 17.7 52.1
roberta-base 18.0 53.3 20.3 53.7 19.0 55.3

Table 4.4: F1 and Exact Match(EM) scores on FitQA with MAL=60

has the best result but only 37.8% F1 score and 12.1% on EM. SQuAD
2.0 is the most similar dataset to FitQA. To maximize the performance, we
firstly train all models on SQuAD 2.0 and fine-tune FitQA. After training
on SQuAD and fine-tune FitQA the performance increase 5.68% on EM and
8.9%F1 score on average. Next, we mute the shuffling feature, then apply
curriculum learning to the training set. We start with temperature base γ = 2
and MAL=30. As the results in Table 4.1, curriculum learning made average
F1 score from 43.2% to 44.3%. Especially, it can increase the performance
of roberta-base by 2.8%. With γ = 3, there is no significant improvement.

We increase γ base γ to 5, and we can get the best results with 46.1%
and 45.6% on bert-base-uncase and albert-base-v2.

Next, we want the model to face the harder challenge by increasing MAL
to 60. As we can see in Table 4.2, The models without fine-tune SQuAD
2.0 has performance increases by 4.75% on F1 score, and 0.5% on EM score
compare to MAL = 30. After using a model which fine-tuned SQuAD, we
can see the significant increment of performance of these models on FitQA.
The performance increases 15.7% on F1 score and 9.5% on EM score. Next,
we apply curriculum learning on these models. With γ equal to 2, there is
no improvement. As the results in Table 4.2, we can see roberta-base with
curriculum learning (γ = 5) has the highest performance model with 55.3%
on F1 score. In the other hand, bert-base-uncased with curriculum learning
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bert-base-uncase albert-base-v2 bert-base-uncase
Length γ = 5 γ = 5 uniform

EM(%) F1(%) EM(%) F1(%) EM(%) F1(%)
1-10 41.7 62.4 47.9 58.5 50 63.4
11-20 37.0 59.1 40.7 64.0 38.8 57.0
21-30 20.5 52.9 10.3 46.3 20.5 50.9
31-40 0.0 43.4 0.0 48.3 0.0 44.8
41-50 0.0 34.6 0.0 35.0 0.0 30.4
51-60 0.0 37.7 0.0 40.9 0.0 34.2
61-70 0.0 34.7 0.0 32.4 0.0 37.7
>70 0.0 23.8 0.0 21.4 0.0 24.3

Table 4.5: F1 and Exact Match(EM) scores on best settings base on length
with MAL=30

albert-base-v2 roberta-base bert-base-uncase
Length uniform γ = 5 γ=3

EM(%) F1(%) EM(%) F1(%) EM(%) F1(%)
1-10 35.4 49.4 47.9 67.9 29.1 47.5
11-20 37.0 63.9 25.9 62.2 44.4 59.9
21-30 46.2 67.2 35.9 61.5 30.8 65.0
31-40 30.3 61.2 15.1 53.4 21.1 57.5
41-50 0.0 44.5 0.0 46.1 0.0 46.9
51-60 0.0 56.6 0.0 56.9 0.0 56.8
61-70 0.0 47.2 0.0 41.8 0.0 50.0
>70 0.0 35.8 0.0 36.3 0.0 41.6

Table 4.6: F1 and Exact Match(EM) scores on best settings base on length
with MAL=60
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(λ= 3) and albert-base-v2 without curriculum learning (fine-tune SQuAD
version) are also have excellent performance. So we will take three models
to analyze their results.

4.3 Result Analysis

With MAL=30, bert-base-uncased and albert-base v2 with temperature base
γ = 5 seems to be the best for FitQA, so we analyze the results and compare
them to bert-base-uncase without curriculum learning. As a result of Table
4.5, we show the accuracy of the answer group was mentioned in Table 3.1.

By comparing the results from these settings, we expect to determine that
curriculum learning is useful for extracting more text or capture more related
information to answer the question. In lengths from 0 to 10 words, we can see
there is no significant change between all settings. Starting from 11 words,
we can see that these results go beyond the uniform distribution setting.
With temperature base γ = 5 from Table 4.5, we can see bert-base-uncase
works well in lengths from 11 to 60 words, and the performance in this range
increase 2.08% on average compare to uniform distribution bert-base-uncase.

Albert-base-v2 can also perform well in this range with 3.44% increase in
total. TABLE 4.6 summarizes overall statistics of 3 best settings on FitQA
with MAL=60. It is worth discussing these interesting facts revealed by the
results of bert-base-uncased . The test in range 41 to more than 70 words
found differences from bert-base-uncase compare to albert-base-v2 with 2.8%
improvement on F1 score.

One limitation is found in these experiments. From TABLE 4.8, the most
extended answer can be extracted is 50 words. It means for the examples
have the answer more than 50 words, the EM score will be zero. Not only
that, but it is also hard to extract long answer correctly from the context,
and some answers are a subset of gold answers. This is the reason leads EM
score to 0 in some evaluations. We show several examples to demonstrate for
this limitation in Table 4.7. Models extract the answers is acceptable, but
not enough in these cases.

As the results are shown in Table 4.5 and Table 4.6, we have succeeded
in improving the length that the model can extract by applying curriculum
learning on the training set. This success leads to an increase in F1 score.
The problem is all the state-of-the-art models perform poorly under long
answer form dataset. The best result that these models can get is just 21.2%
on EM and 55.3% on F1 score.
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Question Gold Answer Predicted Answer
Are Testos-
terone Boosters
Safe?

Always read reviews before pur-
chasing, and choose a testos-
terone booster from a reputable,
established supplement company.
Only take the recommended dose,
and keep your doctor in the loop
about what you’re taking if you
have other health concerns or
take medications.

Always read reviews before pur-
chasing, and choose a testos-
terone booster from a reputable,
established supplement company.

what is the dif-
ference between
brown fat and
white fat?

Both types store energy, but
white fat cells each contain only
one droplet of fat, while brown
fat contains lots of tiny droplets
of fat. Brown fat also contains
tons of the brownish cellular or-
ganelles known as mitochondria,
which use the droplets of fat to
create energy and, as a byprod-
uct of creating energy, heat.

Both types store energy, but
white fat cells each contain only
one droplet of fat, while brown
fat contains lots of tiny droplets
of fat.

Table 4.7: 2 Examples for the most limitation of FitQA

Model Total Tokens Longest Answer Shortest Answer
bert-base-uncase γ = 5,MAL=30 1462 28 1
albert-base-v2 γ = 5,MAL=30 1384 28 1

bert-base-uncase uniform,MAL=30 1271 28 1
albert-base-v2 uniform,MAL=60 2255 46 1

roberta-base γ = 5,MAL=60 1980 42 1
bert-base-uncase γ = 3,MAL=60 2330 50 1

Table 4.8: Total number of tokens, longest and shortest answer that models
can extract from 100 examples of test set
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Chapter 5

Conclusion

In our research, we provide the experiments on complex structure dataset
FitQA with different state-of-the-are Transformer models. The results prove
that curriculum learning can slightly improve performance of Transfomer
model. Our experiments indicate that even state-of-the-art models which
out-performance human performance on open domain datasets such as SQuAD,
they still perform poorly on difficult questions like why, how and yes-no ques-
tions. For future work, we want to improve the quality and also quantity of
FitQA, research for new methods to significantly improve the performance
of DL models on FitQA and apply this QA system on practical application.
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