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Abstract:

Hierarchical interconnection networks have raised a great interest in the research com-
munity in the last few years and are an emerging standard in the design of interconnection
networks for massively parallel computers. In particular, it is suitable for the realization
of 3D-wafer stacked implementations.

In this thesis, we propose a new hierarchical interconnection network, called the Hier-
archical Torus Network (HTN), as an interconnection network for large scale 3D multi-
computers. It consists of Basic Modules (BMs) which are 3D-tori (m x m x m) and are
hierarchically interconnected by 2D-tori (n x n). Both the BMs and the interconnection
at higher levels are toroidally connected, hence the name Hierarchical Torus Network
(HTN). Architectural details of the HTN and its addressing and routing of messages have
also been discussed. We have explored various aspects such as network diameter, cost,
average distance, bisection width, peak number of vertical links, and VLSI layout area of
the HTN and compared them with those for several commonly used networks for parallel
computers. It is shown that the HTN possesses several attractive features including small
diameter, small average distance, small number of wires, a particularly small number of
vertical links, and an economic layout area.

Wormhole routing is an emerging switching technique for the current generation of
multicomputers. We have also used wormhole routing for switching because it requires a
small number of buffers and can control data flow in a pipelined fashion, reducing com-
munication overhead. Deadlock-free routing is the most critical issue in wormhole-routed
networks and is achieved by using virtual channels. However, the hardware cost increases
as the number of virtual channels increases. Deadlock-free routing with a minimal number
of virtual channels is needed. In this thesis, we present a deadlock-free routing algorithm
for the Hierarchical Torus Network with a minimum number of virtual channels. Dynamic
communication performance is simulated for this network. We compare the communica-
tion performance of a wormhole-routed HTN with several other networks and show the
superiority of the HTN over those networks for parallel computers. Redundancy and yield
of HTN are also indicated. Finally, we discuss mapping of advanced application, namely
bitonic merge, Fast Fourier Transform (FFT), and finding the maximum value on HTN.
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Chapter 1

“A journey of a thousands miles must begin
with a single step.”
— Lao-tzu

Introduction

1.1 Introduction

Ever since conventional serial computers were invented, their speed has steadily increased
to match the needs of emerging applications. However, the fundamental physical limi-
tation imposed by the speed of light makes it impossible to achieve indefinitely further
improvements in the speed of such computers. A natural way to circumvent this situation
is to use an ensemble of processors.

Areas requiring great computational speed include numerical modeling and simulation
of scientific and engineering problems. These include modeling large DNA structures,
global weather forecasting, modeling motion of astronomical bodies, pollution monitor-
ing, fusion energy research, artificial intelligence, and computer vision. In order to solve
these grand challenge problems, the goal has been to obtain computer systems capable
of computing at the teraflops (10'? floating-point operations per second) level. Even the
smallest of these problems requires gigaflops (10° floating-point operations per second)
of performance for hours at a time. The largest problems requires teraflops performance
for more than a thousand hours at a time. Computations must be completed within
a ‘reasonable’ time period. Obviously, an execution time of 1 year is always unreason-
able. Thus, we need not only teraflops performance but also we need petafloaps (10"
floating-point operations per second) or exafloaps (10'® floating-point operations per sec-
ond) of performance. This requires current supercomputer technologies to be upgraded
into massively parallel and distributed systems, which satisfy the continuously increas-
ing demand for computing power. The interconnection network is the key element for
building massively parallel computers consisting of thousands or millions of processors.
A major issue in designing such large-scale multiprocessor systems is the construction of
a flexible interconnection network to provide efficient inter-processor communication.

Mature 3-Dimensional (3D) Integrated Circuit (IC) technology has been employed in
the development of commercial 3D memory systems. A current challenge is to produce a
3D computer and 3D stacked implementations have been proposed as a new technology
for massively parallel computers. Little et al. [1] developed a 3D computer consisting of
a 32 x 32 cellular array and organized as a 5-wafer stack. The stack comprised two types
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of wafers called accumulator and shifter. The die size of the array was about 1 square
inch, and the throughput at 10 MHz, was 600 MOPs (Million Operations per Second).
This prototype of a wafer stacked implementation showed that the stacked silicon plane
organization provided extremely short paths through the logic sets on various planes of
the stack. Furthermore this prototype demonstrated that the technological problems of
vertical interconnects could be surmounted. Further development on vertical interconnects
was reported by Campbell et al. [2] and Carson [3]. Recently, Kurino et al. [4] have
suggested a highly practical 3D construction technology.

A major obstacle in the design of future 3D computers is the cost in terms of area for
vertical interconnects. Each vertical interconnect has an area of 300um x 300um. Thus,
unconstrained use of interconnects is prohibited. Clearly, an interconnection philosophy
which minimizes these vertical links can contribute to the success of a 3D implementation.
Jain et al. presented a hierarchical interconnection network called TESH (Tori connected
mESHes) [5-8], and they concluded that a hierarchical interconnection network minimizes
the vertical links for efficient 3D stacked implementations.

An interconnection network [9,10] is described by its topology, routing algorithm, and
flow control mechanism. The topology of the network is the arrangement of its nodes and
channels in a graph. Network topology refers to the static arrangement of channels and
nodes in an interconnection network, the road-map over which packets travel. Selecting
the network topology is the first step in designing a network because the routing strategy
and flow control method depend heavily on the topology.

The processing nodes of a massively parallel computer exchange data and synchronize
with one another by passing messages over an interconnection network. The interconnec-
tion network is often the critical component of a large parallel computer because perfor-
mance is very sensitive to network latency and throughput. The performance of message
passing in multicomputers [15] depends on the routing and switching technique employed
in their interconnection network. An efficient and fast switching technique is a basic
requirement for getting good performance from an interconnection network. Switching
is the mechanism that removes data from an input channel and places data in an out-
put channel. Network latencies are highly dependent on switching technique. Wormbhole
(WH) [31][32][37] routing has been a popular switching technique in the new generation
multicomputers because of its low network latency and lower hardware requirement. In
wormhole switching, a message is split up into several flow control digits called flits, which
are buffered at each node. When the header flit can not be routed due to the contention in
the network, the flow control within the network blocks the message, effectively dilating
its length until a link become free. In wormhole switching it is impossible for flits of other
packets to cross the path of the current packet.

Routing [9, 10, 34] is the process of determining and prescribing the path or method
to use for forwarding message i.e., deciding which output channel an incoming packet is
transmitted on. It is the action of moving information across the interconnection net-
work from a source to destination. Flow control [9] deals with the allocation of channels
and buffers to a packet as it travels along a path through the interconnection network.
A virtual channel [9,38] is a logical channel with its own flit buffer, control and data
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path. Virtual channels can be used to implement a deadlock-free routing algorithm to
increase network throughput. Additional virtual channels can be used to avoid congestion
in the network, but require physical channel bandwidth. The trade-off between increased
network throughput and longer communication latency should be considered when decid-
ing whether to use virtual channels. Additional virtual channels increase the switching
complexity, which in turn slightly increases network latency.

Massively parallel computer systems usually have stringent requirements for reliability
because of the large investments in such systems as well as the nature of the applications
for which they are likely to be used. Fault tolerant [10] networks are essential to the
reliability of massively parallel computer systems. A fault-tolerant network has the ability
to route information even if certain network components fail. The techniques often used
for network fault tolerance are either software-based or hardware-based. In the software-
based technique, an adaptive routing algorithm is used, which makes use of multiple paths
for a given pair of source and destination to avoid faulty components. In the hardware-
based technique, the network is enhanced by additional hardware and provides enough
redundancy [42] in the original network design to tolerate a certain number of faults.

Performing a computational problem efficiently on a multicomputer network is a com-
plex task, even when the parallelism in the problem has already been identified. One
of the problems that arises in this context is designing parallel algorithms so that their
communication requirements can be efficiently supported by the underlying interconnec-
tion network. It should be noted that this problem arises because of the limitations of
the interconnection network itself, and therefore have a direct influence on the choice
of an interconnection network for a given application. Thus, the suitability of a given
interconnection network for certain application can often be estimated by studying how
efficiently common operations such as sorting, computing the maximum value, bitonic
merge, divide-and-conquer, FFT, and broadcasts can be performed on the given network.

1.2 Motivations and Goal

As sequential computers are reaching their limits, a common approach to enhancing their
performance is to design parallel computers with off-the-shelf components to exploit the
parallelism in problems. Parallel processing with hundreds or thousands of micropro-
cessors has become a viable alternative to conventional supercomputers and mainframes
employing a handful of expensive processors. Several commercial machines with hundreds
or thousands of processors have reached the market place in the past decade or two. The
complexity of an interconnection network often determines the size of a parallel computer
that can be constructed. Likewise, the attainable performance of a parallel computer is
ultimately limited by the characteristics of the interconnection network. Apparently, one
of the critical design issues of parallel computers is the interconnection network which is
the backbone for these parallel computers.

Hundreds of different types of networks have been proposed in the past decades. No
single network is optimal in all aspects of network performance. Designing new networks
remains a topic for intensive investigation, given that there is no clear winner among



1.2 Motivations and Goal 4

existing designs. Careful designers would try to achieve the best out of a good trade-
off. However, even such a trade-off can lead to different results in different situations
due to emphasis on different parameters. For example, in a non-VLSI environment, the
overall performance of the mesh, the tree and the Cube Connected Cycles (CCC) is in
ascending order while in VLSI implementation where layout area and wire length are two
important parameters, the overall comparison of the above three networks shows that
the reverse is true. Thus, the design of interconnection networks is still a very active
research area. We believe that this research will continue for decades since parallel and
distributed computers are the only solutions for the computational problems challenging
human beings in the twenty-first century.

Hierarchical interconnection networks [16] have attracted considerable attention in the
research community during the past few years as a means of communication for multi-
processor systems. A hierarchical design approach allows the network to be constructed
incrementally starting from one or more basic modules. Hierarchical interconnection net-
works are intuitively appealing when a large number of nodes are to be connected. For
very large scale system, the number of links needed with a conventional network struc-
ture such as mesh, torus, and hypercube may become prohibitively large. Hierarchical
interconnection networks exploit the locality that exists in communication patterns to
allow reduction in the required number of links. Various hierarchical network have been
proposed such as TESH [5-8], H3D-Torus [17], H3D-Mesh [18] and so on.

The critical issue in designing interconnection network is to provide efficient inter-
processor communication. An interconnection network should transfer a maximum num-
ber of messages in the shortest time with minimum cost and maximal reliability. There-
fore, the main task of an interconnection network is to transfer information from the
source node to the destination node while considering the following points:

e latency as small as possible.
e as many concurrent transfer as possible.

e cost as low as possible.

It has already been shown that a toroidal network has better dynamic communica-
tion performance than a mesh network. This is the key motivation for us to consider a
hierarchical interconnection network where each level of the network has a toroidal in-
terconnection. Therefore, the first goal of this thesis is to propose a new hierarchical
interconnection consisting of a toroidal network.

Although the theoretical foundations for constructing large interconnection networks
for massively parallel computer system have existed for a long time, the state of the hard-
ware technology has not allowed cost-effective realization until the last decade. However,
recent advances in VLSI technology overcome this drawback. Recent progress in VLSI
technology achieves VLSI systems on stacked silicon planes. On a stacked silicon plane,
part of a massively parallel computer is implemented and these silicon planes are then
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interconnected. Jain et al. [5-8] have pointed out that hierarchical interconnection net-
works are suitable for 3D stacked implementations. Hence, the second goal of this thesis
is to analyze the network performance of 3D-wafer stacked implementations.

Interconnection networks are used by the nodes of parallel computer systems to ex-
change data and synchronize with each other. Network performance is often critical, as
the performance of a massively parallel computer system is sensitive to network latency
and throughput. For a network to have good performance, low latency and high through-
put must be achieved. Reducing network latency and increasing network throughput is
crucial for improving the performance of an interconnection network. Thus, the third
goal of this thesis is to evaluate the dynamic communication performance of the proposed
network along with several other commonly used networks.

As the interconnection network is a critical component of a multicomputer system,
methods of achieving fault tolerance in the network has special significance. The failure
of a network component can often bring down the entire system, unless adequate measures
are provided to tolerate such faults. So, the fourth goal of this thesis is to analyze the
fault tolerance performance of the proposed network.

In conclusion, the main goal of this thesis is to develop and analyze an efficient hierar-
chical interconnection network for massively parallel computer systems.

1.3 Contribution of the Thesis

In this thesis, we have proposed a new hierarchical interconnection network called Hierar-
chical Torus Network (HTN). The basic idea behind this network is that it is a hierarchical
interconnection network, where each level is connected as toroidal interconnections.

The contribution of this thesis can be summarized as follows:

e Introduce a new hierarchical interconnection network called HTN for massively par-
allel computers. Topological properties and the architectural structure of a HTN
are also presented.

e Describe various aspects of network features for 3D wafer stacked implementation.
Wafer stacked implementation issues for HTN is also described.

e Provide a deadlock-free routing algorithm for HTN. Virtual channels are used to
achieve a deadlock-free routing algorithm. Hardware cost increases along with an
increase in the number of virtual channels. An investigation into the minimum
number of virtual channels for deadlock-free routing algorithm for HTN is also
carried out.

e Simulate the dynamic communication performance of the HTN as well as for sev-
eral commonly used networks for parallel computers. We have conducted several
experiments and compared the dynamic communication performance to show the
superiority of the HI'N over other networks.
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e Present the fault tolerance aspects of HTN. Tolerating faults is the key to system
survival. Hardware-based fault tolerance techniques provide enough redundancy in
the original network design to tolerate a certain number of faulty nodes. Redun-
dancy and yield of HTN are also pointed out.

e Discuss mapping of advanced applications namely bitonic merge algorithm, FFT,
and finding the maximum value on HTN.

1.4 Synopsis of the Thesis

After this introductory chapter, the remaining chapters of this thesis are organized as
follows:

e Before proposing a new hierarchical interconnection network, it is very important
to study existing network topologies, as well as studying how they can be changed
into hierarchical interconnection networks. In chapter 2, we deal with different
network topologies and provides an overview of the properties of many widely-used
interconnection network topologies. Different hierarchical interconnection networks
are also addressed in chapter 2. This chapter is the literature survey.

e In chapter 3, we present a new hierarchical interconnection network called Hierar-
chical Torus Network (HTN). This chapter covers the basic issues in this thesis. It
also deals with the topological properties of interconnection networks. This chapter
discuses many properties and technology-independent measures commonly used to
evaluate and compare different network topologies, and provides a detailed analysis
of these properties for HIN. We then discuss various aspects of network features
for 3D wafer stacked implementation.

e Because interconnection networks are used for communication between nodes, rout-
ing is probably the most important problem in analyzing interconnection networks.
In chapter 4, we describe the design and implementation issues of deadlock-free
routing algorithm in interconnection networks. Some of the basic issues addressed
in the chapter include: wormhole routing, virtual channels and channel dependency
graphs. Descriptions are mainly provided for developing deadlock-free routing al-
gorithms for HTN. Investigation of the minimum number of virtual channels for
deadlock-free routing of HTN is also pointed out.

e Chapter 5 is dedicated to performance evaluation. Performance evaluation tech-
niques are needed to estimate the performance of a network before it is constructed,
compare two or more networks, evaluate design trade-offs, and determine the opti-
mal value of the design parameters. Emphasis is placed in dynamic communication
performance and interpretation of simulation results. The interconnection network
is a critical component of a multicomputer system and must therefore be designed
with some degree of fault tolerance. Fault tolerance in the interconnection network



enables the system to survive the loss of one or more components without a disrup-
tion in its operation. Fault tolerance aspects of HT'N are also the subject of chapter
5. For a network to be useful, it must accommodate a large class of applications.
Finally, we discuss some advanced applications such as bitonic merge, FFT, and
finding the maximum value on HTN at the end of this chapter.

e In chapter 6, we finally conclude this thesis paper with some perspectives. Con-
tinuing further research on those directions would be worthwhile.



Chapter 2

“It would appear that we have reached the lim-
its of what it is possible to achieve with such
statements, as they tend to sound pretty silly
n 5 years.”

— John Von Neumann

Interconnection Network for
Massively Parallel Computers

2.1 Introduction

In a message-passing multicomputer [15], multiple computers or nodes are connected by an
interconnection network and operate under an integrated operating system. Each node is
directly connected to a subset of other nodes in the network. Each node is a programmable
computer with its own processor, local memory, and other supporting devices. A common
component of these nodes is a router, which handles message passing among nodes. Each
router has direct links to the router of its neighbors. Usually, two neighboring nodes
are connected by a pair of unidirectional channels in opposite directions. A bidirectional
channel may also be used to connect two neighboring nodes. In this thesis, henceforth,
unless specified, the term computer or processor refers to a node.

The research literature on interconnection networks includes a large number of exam-
ples, ranging from a simple bus to hierarchical interconnection networks. Interconnection
networks can be broadly divided into two classes: static and dynamic. In the static (or
direct) networks, point to point links interconnect the network nodes in some fixed topol-
ogy. In the dynamic (or indirect) network processing nodes are not directly connected.
The communication between any two nodes has to be carried through some switches.
In this thesis paper, we have concentrated only on static interconnections. Static net-
works are also known as direct networks. In this paper, unless and otherwise specified,
the interconnection network means direct network. Direct networks have been a popular
interconnection architecture for constructing massively parallel computers.

An interconnection network is described by its topology, routing algorithm, and flow
control mechanism. The topology of the network is the arrangement of its nodes and
channels in a graph, in which vertices represent nodes and edges represent communication
links. Network topology refers to the static arrangement of channels and nodes in an
interconnection network, the roadmap over which packets travel. Selecting the network
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topology is the first step in designing a network because the routing strategy and flow
control method depend heavily on the topology.

As the focus of this thesis is on interconnection network, this chapter gives a survey
on major interconnection networks proposed through the years and pointing out their
potential shortcomings. The rest of this chapter is organized as follows: Section 2.2
outlines the architecture and properties of the most common interconnection network
topologies. Hierarchical interconnection networks are the subject of Section 2.3. Finally,
conclusions are pointed out in Section 2.4.

2.2 Network Topologies

Several interconnection network topologies have been proposed and studied by researchers
as possible candidates for multiprocessor and multicomputer interconnection. These in-
clude ring, tree, mesh, torus, hypercube, star graph and many variants of these networks.

With different topologies, researchers are trying to balance performance in different
issues and cost parameters. In these topologies, messages may have to traverse some in-
termediate nodes before reaching the destination node. The routing algorithm determines
the paths for message transmissions. Some important interconnection network topologies
and their properties have been discussed in this section.

2.2.1 Completely-Connected Network

In a Completely-connected network [12], each node has a direct communication link to
every other node in the network. Figure 2.1 illustrates a completely-connected network
of eight nodes. This network is ideal in the sense that a node can send a message to
another node in a single step, since a communication link exists between them. The main
disadvantages of a completely-connected network is that the basic cost is high, since there
is a large number of communication links.

Figure 2.1: A completely-connected network of eight nodes
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2.2.2 Star-Connected Network

In a Star-connected network [12], one node acts as the central node. Every other node
has a communication link connecting it to this node. Figure 2.2 shows a star-connected
network of nine nodes. Communication between any pair of nodes is routed through the
central node. Hence, the central node is a bottleneck in the star topology.

@)

O

Figure 2.2: A star-connected network of nine nodes

2.2.3 Linear Array and Ring

In a linear array [12] interconnection network, each node (except the nodes at the ends)
has a direct communication link to two other neighboring nodes. It is a simple way to
connect nodes in an interconnection network. Figure 2.3.(a) illustrates a four node linear
array. A wraparound connection is often provided between the nodes at the ends. A
linear array with a wraparound connection is referred to as a ring [12] network. Figure
2.3.(b) shows a ring of four nodes. One way of communicating a message between nodes
is by repeatedly passing it to the node immediately to the right or left, depending on
which direction yields a shorter path, until it reaches its destination. These networks
are inherently unreliable as a failure of a single node or link disconnects the network.
The usefulness of these topologies is limited to small networks because both the average
distance and message densities increase linearly with the number of nodes.

0000 OO OH

(a) Linear Array (b) Ring

Figure 2.3: A four-node linear array and ring network
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2.2.4 Mesh and Torus Network

The 2D-mesh [12] is an extension of the linear array to two dimension. In a 2D-mesh,
each node has a direct communication link connecting it to four neighboring nodes except
for the nodes on the edges. They only have three neighbors or just two neighbors if
they are on the edge or on a corner, respectively. Figure 2.4.(a) illustrates a 2D-mesh of
sixteen nodes. If both dimensions of the mesh contain an equal number of nodes, then
it is called a square mesh; otherwise it is called a rectangular mesh. Often, the nodes at
the periphery are connected by wraparound connections. Such a mesh is called a torus
[9,12], as shown in Fig. 2.4.(b). Unlike the mesh, every node in the torus has exactly four
neighbors. Common extensions of the 2D-mesh and 2D-torus include 3D-mesh and 3D-
torus networks. Figure 2.4.(c) and 2.4.(d) illustrate a 3D-mesh and a 3D-torus network,
respectively. A message from one node to another can be routed either in the mesh or
in the torus by first sending it along one dimension and then along the other dimension
until it reaches its destination.

o o 0 o
oo 0 o
oo 0 o
o0 0 o
(a) 2D-mesh (b) 2D-torus

<N

SN S

(c) 3D-mesh (d) 3D-torus

Figure 2.4: Mesh and torus networks.
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2.2.5 Hypercube

A hypercube [12,20] is a multidimensional mesh of nodes with exactly two nodes in each
dimension. In a hypercube interconnection network, two nodes are connected by a direct
link if and only if the binary representation of their labels differ at exactly one bit position.
The distance between two nodes along a shortest path is the Hamming distance between
their binary position. A message can be routed from a source node to a destination node
by passing the message along dimensions if the Hamming distance is one. Hypercube
interconnection allows efficient implementation of a large number of parallel algorithms.
The main problem of this network is that the number of connections per node increases
with the network size.

Figure 2.5: A hypercube network of sixteen nodes

2.2.6 k-ary n-cube

A k-ary n-cubes [26] is defined as a cube with n dimensions and & nodes in each dimension.
Here, let n be the dimension of the cubes, k be the radix, and N be the total number
of nodes. Dimension, radix, and number of nodes are related by the equation N = k™.
A binary n-cube is an example of a k-ary n-cube. Tori are the isomorphic with k-ary
n-cubes. 2D-torus and 3D-torus are k-ary 2-cubes and k-ary 3-cubes, respectively. k-ary
n-cube network is also known as n-dimensional k-torus [27]. In recent literature, the k-
ary n-cube refers to the n-dimensional torus with £ nodes in every dimension. Figure 2.6
shows different k-ary n-cube networks. Figure 2.6.(b) is a binary 4-cube networks and
2.6(a), 2.6(c), and 2.6(d) are the isomorphic of k-ary n-cubes.

2.2.7 'Tree network

A tree network [9,12] is one in which there is only one path between any pair of nodes.
This topology has a root node connected to a certain number of descendant nodes. Each
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OO0,

(a) 4-ary 1-cube
(Ring)

(b) 2-ary 4-cube

OO,
(OO0,
(OO, (5]
A R

(c) 4-ary 2-cube (d) 4-ary 3-cube
(2D-Torus) (3D-Torus)

Figure 2.6: Different k-ary n-cube networks

Figure 2.7: Tree topology
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of these nodes is in turn connected to a disjoint set of descendants. A node with no
descendants is a leaf node. A characteristic property of trees is that every node except the
root node has a single parent node. To route a message in a tree, the source node sends the
message up the tree until it reaches the node at the root of the smallest subtree containing
both the source and destination nodes. Then the message is sent down the tree toward
the destination node. In a tree topology, both the diameter and the average distance
grows logarithmically with respect to the number of nodes. However, the message density
increases more rapidly with uniform traffic. Tree networks suffer from a communication
bottleneck at higher levels of the tree. Additionally, there are no alternative paths between
any pair of nodes. The most important benefit of tree network is that the cost is O(N).
Figure 2.7 illustrates a binary tree network of 7 nodes.

2.3 Hierarchical Interconnection Network

Interconnection networks usually suffer from Little’s Law: low cost implies low perfor-
mance and high performance is obtained at high cost [16]. However, hierarchical intercon-
nection networks [16] provide high performance at low cost by exploring the locality that
exists in communication patterns of massively parallel computers. A hierarchical inter-
connection network provides a plausible alternative way in which several topologies can
be integrated together. Hierarchical interconnection networks have attracted considerable
attention in the research community during the past few years as a means of communi-
cation for multiprocessor systems. They take advantage of the locality of reference in the
communication pattern.

For massively parallel computers with millions of nodes, the large diameter of conven-
tional topologies is intolerable. Hierarchical interconnection networks are a cost-effective
way to interconnect a large number of nodes. They are also suitable for 3D stacked im-
plementations. A lot of hierarchical interconnection networks have been proposed for this
type of massively parallel computer. Most of the networks are viewed as a hierarchy of
conventional topologies. A hierarchical interconnection network allows the network to
be constructed incrementally starting from one or more basic modules. Some important
hierarchical interconnection network and their properties are discussed in this section.

2.3.1 Cube-Connected Cycle

A cube-connected cycles [22] can be considered as an n-dimensional hypercube of virtual
nodes, where each virtual node is a ring with n nodes, for a total of n2" nodes. Simply,
a node of the hypercube is replaced with an n-node ring such that the n links incident
to the original node are distributed among the nodes in the ring. Each node in the ring
is connected to a single dimension of the hypercube. Figure 2.8 illustrates a 24-node
cube-connected cycles network. In this figure, two links are connected to neighbors in the
ring, and one link is connected to a node in another ring through one of the dimensions
of the hypercube.
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Figure 2.8: Cube-connected cycles of 24 nodes

2.3.2 Star Graph Network

A star graph [21] can be informally described as follows. The vertices of the graph are
labeled by permutations of n different symbols, usually denoted as 1 to n. A permutation
is connected to every other permutation that can be obtained from it by interchanging the
first symbol with any of the other symbols. A star graph has n! nodes and node degree is
equal to (n—1). Figure 2.9 shows a star graph obtained by permutations of four symbols.
Although a star graph has a lower diameter than a hypercube of similar size, routing is
more complex.

2.3.3 Recursive Diagonal Torus

The name Recursive Diagonal Torus (RDT) 23] itself expresses its characteristics clearly.
This novel class of network is composed of a series of recursively structured meshes (tori)
with increasing size in the diagonal directions. At first, a 2-dimensional square mesh
(torus) will serve as the basis of RDT. Figure 2.10 shows an RDT network structure. It
is a class of network which makes use of the advantages of mesh structures and greatly
improves the performance of meshes when the number of nodes reaches tens of thousands
of nodes.

2.3.4 Shifted Recursive Torus

The Shifted Recursive Torus (SRT) [24] consisting of mesh-tori and bypasses the links to
shift the tori recursively. The simplest torus interconnection is a ring network. To improve
the performance of ring networks, bypass links are added to the ring network under the
network constraint that every node has fixed number of links. Figure 2.11 shows a basic
interconnection of a standard 1D-SRT consisting of 32 nodes. 1D-SRT can be extended
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Figure 2.9: Star graph network
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Figure 2.10: Recursive diagonal torus network
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to 2D-SRT. The SRT can achieve a smaller diameter with limited number of links per
node than the hypercube. It is also an wire-efficient network for VLSI implementation.

@ Level-0 Node © Level-3 Node
OLevel-1Node @ Level-4 Node
@ Level-2 Node @ Level-5 Node

Figure 2.11: Standard 1D-SRT consisting of 32 nodes.

2.3.5 TESH Network

The TESH (Tori connected mESHes) [5-8] is a hierarchical interconnection network. It
consists of a Basic Module (BM), which is a mesh connection of (2™ x 2™) nodes. Suc-
cessively higher level networks are built by recursively interconnecting lower-level subnet-
works in the form of a 2D-torus. Figure 2.12 illustrates the Level-2 interconnection of
a TESH consisting of a 2D-torus (4 x 4) with 16 BMs. It has been shown that TESH
possesses several attractive features including small diameter and small numbers of wires,
and a particularly small number of vertical links.

2.3.6 H3D-Torus Network

The Hierarchical 3-Dimensional torus (H3D-torus) [17] network is defined as a hierar-
chical interconnection network, which consists of Basic Modules (BM) and the BMs are
hierarchically interconnected by a 3D-torus (n x n x n) for higher-level interconnection.
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Figure 2.12: Level-2 interconnection of TESH network
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Figure 2.13: Interconnection of a Level-2 H3D-torus network
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The BM of the H3D-torus is a 3D-mesh (m x m x m). Figure 2.13 illustrates the intercon-
nection of a Level-2 H3D-torus network. As shown in Fig. 2.13, Level-2 interconnects the
BMs as (4 x 4 x 4) 3D-torus connection. The Level-3 interconnection is also a 3D-torus
connection of 64 Level-2 modules.

2.3.7 H3D-Mesh Network

The Hierarchical 3-Dimensional mesh (H3D-mesh) [18] network is defined as a hierar-
chical interconnection network, which consists of Basic Modules (BM) and the BMs are
hierarchically interconnected by a 2D-mesh (n x n) for higher-level interconnection. The
BM of the H3D-mesh is a 3D-torus (mxmxm). Figure 2.14 illustrates the interconnection
of a Level-2 H3D-mesh network. As shown in Fig. 2.14, the mesh at Level-2 interconnects

the BMs in a (4 x 4) 2D-mesh. The Level-3 interconnection is also a 2D-mesh connection
of 16 Level-2 modules.
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Figure 2.14: Interconnection of a Level-2 H3D-mesh network

Beside these, a lot of hierarchical interconnection networks have been proposed in the
literature. For example, Complete Connection of torus hyperCube (CCTCube), Crossed
Cube, dBCube, De-Brujin Network, Hyper deBrujin, de-Brujin Connected Torus (BCT),
Enhanced Hypercube, Extended Hypercube, Hierarchical Hypercube, Twisted Hyper-
cube, Fibonacci Cube, Polymorphic torus, Ring Tree on Mesh (RTM), and so on.

2.4 Conclusions

In this chapter, we have presented different network topologies including a hierarchical
interconnection network. It can be seen that the topological properties of each inter-
connection network is different from the others, and they are trying to make a trade-off
between performance and cost in different aspects. No single network is optimal in all
aspects of network performance. Thus, the design of a new interconnection network is an
important issue for massively parallel computer system and certainly worthy of research
effort.



Chapter 3

“I do not know what I may appear to the world,
but to myself I seem to have been only like a
boy playing at the seashore, and diverting my-
self in now and then finding a smoother peb-
ble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before

me.
— Sir Isaac Newton

Hierarchical Torus Network

3.1 Introduction

Hundreds of interconnection networks have been proposed in the past decade. Some
networks are better than other in some aspects, but worse in others. There is no one
ultimate network which is better than all others in all aspects. Designing new networks
still remains a topic for intensive investigation, given that there is no clear winner among
existing ones. Careful designers would try to achieve the best out of a good trade-off. But
even such a trade-off can lead to different results due to emphasis on different parameters
in different situations. For example, in a non-VLSI environment, the overall performance
of mesh, tree and Cube Connected Cycles (CCC) is in ascending order while in VLSI
implementation where layout area and wire length are two important parameters, the
overall comparison of the above three networks shows that the reverse is true [13].

Although the theoretical foundations for constructing large scale interconnection net-
works have existed for a long time, the state of hardware technology did not allow their
cost-effective realization. Recent progress in VLSI technology can achieve a VLSI system
on stacked silicon planes. A 3D stacked implementation has been proposed as a new tech-
nology for the realization of massively parallel computers. A part of a massively parallel
computer is implemented on a silicon plane and some of these planes are interconnected
by vertical links. Jain et al. [5-8] have pointed out that hierarchical interconnection
networks are suitable for 3D stacked implementations.

In this chapter, we propose a new hierarchical interconnection network called Hierar-
chical Torus Network (HTN). Architectural details of the HTN and its addressing and
routing are discussed. We also explore various aspects of showing the superiority of the
HTN over several commonly used networks for parallel computers.
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This chapter is organized as follows: Section 3.2 discusses the architecture of HT'N,
including addressing and routing. A brief discussion on static network performance of the
network is given in Section 3.3. VLSI implementation issues including 3-D construction
are addressed next in Section 3.4. Finally, some concluding remarks are given in Section
3.5.

3.2 Architecture of the HTN

Hierarchical Torus Network (HTN) is a hierarchical interconnection network, which con-
sists of Basic Modules (BM) where the BMs are hierarchically interconnected for higher
level networks. The BM consists of a 3D-torus network. In this thesis paper, henceforth,
unless specified, BM refers to a Level-1 network. Successive higher level networks are
built by recursively interconnecting lower level subnetworks in a 2D-torus. Both the BMs
and the interconnection of higher levels have a toroidal interconnection. Hence the name
Hierarchical Torus Network. Figure 3.1 shows the interconnection philosophy of HTN.
This figure illustrates the interconnection of a Level-2 HTN by the basic modules, where
the BM is a 3D-torus of 4 x 4 x 4 and Level-2 network is a 2D-torus of 4 x 4.

Ja—> [+ I l)
| | | ]
WV Level-2 Gate PE d - a— a— D
B Level-3 Gate PE I I I I
A Lcvel-4 Gate PE d - . | N
& Level-5 Gate PE I I I I
— X-link x
b Ylink « — — —BMp

Figure 3.1: Interconnection of HTN

3.2.1 Basic Module

According to the definition, the basic module of the HTN is a 3D-torus network of size
(m x m xm), where m is a positive integer. m could be any value, however, the preferable
one is m = 2P, where p is a positive integer.

The BM has some free ports at the contours of the xy-plane. These free ports are used
for higher level interconnection. As seen in Fig.3.2, all ports of the interior PEs are used
for intra-BM connections. The exterior PEs, however, have either one or two free ports.
These free ports and their associated links are used for inter-BM interconnections to form
higher level networks. PEs at the contours of an xy-plane are assigned to higher levels as
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Figure 3.3: Interconnection of a Level-2 HTN

gate nodes. Four links in the North (N), South (S), East (E), and West (W) directions
on each contour are interconnected with higher levels. As shown in Fig.3.2, the BM has
four links in each direction as defined by:

o _ [ 005,015,025, 035; 00w, 10w, 20w, 30 (3.1)
| 305,31, 32y, 335; 035, 135, 235, 335 '

where, G is the gate node. This equation represents the free links of the BM which is
used for higher level connection. Two digits represents PEs at the contours of an zy-
plane, where the first digit representing the z-axis and the second digit representing the
y-axis. The suffix is used to represents which direction of links is used for higher level
connection. N-direction and S-direction links are used in the y-axis interconnection of
Level-2. Similarly, the z-axis of Level-2 uses the E-direction and W-direction links.



3.2 Architecture of the HTN 23

3.2.2 Higher Level Interconnection

According to the interconnection philosophy of the Hierarchical Torus Network (HTN),
successive higher level networks are built by recursively interconnecting lower level sub-
networks in a 2D-torus of size (n x n), where n is also a positive integer. If n = 4, a
Level-2 subnetwork, for example, can be formed by interconnecting 16 BMs. As shown in
Fig. 3.3, each BM is connected to its logically adjacent BMs.

The torus at Level-2 interconnects between the gate nodes in the S-direction and the
gate nodes in the N-direction, and between the gate nodes in the E-direction and the gate
nodes in the W-direction. The links at Level-2 interconnects gate nodes [00g, 01, 025, 03]
and gate nodes [30y,31y,32y,33x], and between gate nodes [00y, 10y, 20y, 30yy/] and
gate nodes [03p, 13, 235, 335].

Similarly, a Level-3 subnetwork can be formed by interconnecting 16 Level-2 subnet-
works, and so on. Thus, Level-L is interconnected as an (n x n) 2D-torus, where Level-
(L — 1) is used as subnets of Level-L. Since the Level-3 interconnection includes many
BMs as subnets, reasonable numbers of BMs are selected to make the 2D-torus of Level-2
modules. Basic modules with the same co-ordinate position in each Level-2 subnetworks
are interconnected by a 2D-torus in a Level-3 interconnection. A similar interconnection
rule is applied for higher levels. Figure 3.4 shows the interconnection of Level-3 HTN. As
mentioned earlier, a Level-2 network is used as the subnet module of a Level-3 network.
In this connection, the first basic module i.e., the BMy, from every Level-2 network is
selected for the interconnection of a Level-3 HTN.
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Figure 3.4: Interconnection of a Level-3 HTN

A basic module with m = 4 and the higher levels with n = 4 are perhaps the most
interesting one because it has better granularity than the larger sizes. With m = 8, the
size of the basic module becomes (8 x 8 x 8) with 512 nodes. Correspondingly, with n = 8
the second level would have 64 basic modules. In this case, the total number of nodes
in Level-2 network is 32768. Clearly, the granularity of the family of networks is rather
coarse. In addition to this, the matter of redundancy and reconfiguration becomes more
difficult.
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Note that the choice of the subnetworks to build a higher level is quite natural. This
choice maintains the regularity of the structure of the network and, for reasons which will
become apparent in the next section, makes addressing convenient. Several lemmas are
stated below, without proof. The proofs are straightforward, and are omitted for brevity.

Lemma 3.1 A (m x m x m) basic module has 4 X m? free ports for higher level inter-
connection.

It is useful to note that for each higher level interconnection, a BM must use 4m(29)
of its free links. 2m(27) free links for y-direction interconnections and 2m(27) free links
for z-direction interconnections. Here, ¢ € {0,1,.....,p}, is the inter-level connectivity,
where p = |logy*]. ¢ = 0 leads to minimal inter-level connectivity, while ¢ = p leads to
maximum inter-level connectivity. As shown in Fig.3.2, for example, the (4 x 4 x 4) BM
has 64 free ports. If we chose ¢ = 0, then 16 of the free ports and their associated links are
used for each higher level interconnection. According to the interconnection philosophy
of the higher level network, if ¢ = 0, as seen in Fig. 3.2, free ports and their associated
links of each contours of the zy-plane are used for each higher level network.

Lemma 3.2 The highest level network which can be built from (m x m xm) basic module
18 Lipgy = 2P79+ 1.

Setting ¢ = 0, for example, leads to the highest possible level that (m x m x m) can
be interconnected to. The limitation of maximum possible highest level network is not a
serious constraint. For the case just considered (4 x 4 x 4 BM with ¢ = 0) a network built
with the highest level, Level-5, consists of 4.2 millions PEs.

Lemma 3.3 The total number of nodes in a network having (m x m x m) BMs and
(n xn) higher level is N = [m3 X nQ(L’"“’_l)]. Lz = (2P79+ 1) denotes the highest level
of the network.

Thus, the maximum number of nodes which can be interconnected by the HTN is
N = [m3 X n2(2p_q)].

3.2.3 Addressing and Routing

PEs in the BM are addressed by three base-m numbers, the first representing the x-axis,
the second representing the y-axis, and the last representing the z-axis. PEs at Level-
L are addressed by two base-n numbers, the first represents the z-axis and the second
represents the y-axis. As shown in Fig. 3.2 PEs in the BM are addressed three base-4
digits since it is a (4 x 4 x 4) basic module. The address of a PE at Level-L is represented
as shown in Eq. 3.2

e (az)(ay)(as) (as,ay,a, =0,1,...,m—1) if L=1,ie, BM
N (a¥)(al)  (ak,al =0,1,...,n —1) if L>2

Yyt

(3.2)
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More generally, in a Level-L HTN, the node address is represented by:
A = AbALTIALZ A%ATAC

= Qp Qp1 Q-2 Qp—3 «en ... as as ap Qg
= G2 G2r,—1 Q2r—2 A2[—3 ... ... az az ap Go
= (azL a2L—1) (a2L—2 G2L—3)

. (a4 a3) (az a1 ap) (3.3)

Here, the total number of digits is n = 2L, where, L is the level number and n is the
position of the node in the network. The first group contains three digits and the rest
of the groups contain two digits. Groups of digits run from group number 1 for Level-1,
i.e., the basic module, to group number L for the L-th level. In particular, i-th group
(ag; agi—1) indicates the location of a Level-(i — 1) subnetwork within the i-th group to
which the node belongs to; « =1, 2, ... ... , L. In a two level network, for example, the
address becomes (a4 az as a; ag). The last group of digits (a4 a3) identifies the BM to
which the node belongs to and the first group of digits (ay a1 ay) identifies the node within
that basic module.

Routing of messages in the HTN is performed from the top level to the bottom level.
That is, it is first done at the highest level network, then, after the packet reaches its
highest level sub-destination, routing is continued within the subnetwork to the next
lower level sub-destination. This process is repeated until the packet arrives at its final
destination. When a packet is generated at a source node, the node checks its destination.
If the packet is destined to the current BM, the routing is performed within the BM only.
If the packet is addressed to another BM, the source node sends the packet to the outlet
node which connects the BM to the level at which the routing is performed.

Suppose a packet is to be transported from a source node 0000000 to destination node
1131230. In this case, we see that routing should first be done at Level-3, therefore the
source node sends the packet to the Level-3 outlet node 0000130, whereupon the packet is
routed at Level-3. After the packet reaches the (1, 1) Level-2 network, then routing within
that network is continued until the packet reaches the BM (3,1). Finally, the packet is
routed to its destination node (2, 3,0) within that BM.

In general, multiple paths exist for routing a packet in the network. Routing a packet
at a given level can be performed in different ways. These multiple paths can be useful
for an adaptive routing algorithm, where the router may use information about the state
of the network and act accordingly. However, we will consider a simple deterministic
routing algorithm. Routing at the higher level is performed firstly in the y-direction and
then in the z-direction. In BM the routing order is initially in the z-direction, next in the
y-direction and finally in the z-direction.

Routing in the HTN is strictly defined by the source node address and the destination
node address. Let a source node address be s,, s, 1,5, 9, ..., S1, So, a destination node
address be d,,, d,, 1,d, o, ...,d,dy, and a routing tag be t,,t, 1,t, o, ...,t1,ty, where, t; =
d; — s;. The source node address of HTN is expressed as s = (SorSor, 1), .., (S2, 51, So)-
Similarly, the destination node address is expressed as d = (dordar_1), ..., (da, dy, dp).
Figure 3.5 shows the routing algorithm for the HTN.
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Routing Algorithm for HTIN

Routing HTN(s,d);
source node address:s,, $p_1, Sp_2, ---; S1, S0
destination node address: d,, d,,—1, dy—2, ..., d1, dy
tag: tn, tn-1,th-2, ..., 1, %o
fori=n:3
if (4/2 =0 and (¢; > 0 or t; = —3)), routedir = North; endif;
if (i/2=0and (t;, <0ort; = 3)), routedir = South; endif;
if (1%2 =1 and (t; > 0 or ¢, = —3)), routedir = East; endif;
if ((%2=1and (t; <0ort; = 3)), routedir = West; endif;
while (¢ # 0) do
N, = outlet,(s,d, L, routedir)
N, = outlet,(s,d, L, routedir)
N, = outlet,(s,d, L, routedir)
BM_Routing(N., Ny, N,)
if (routedir = North or East), move packet to next BM; endif;
if (routedir = South or West), move packet to previous BM; endif;

~ e~

endwhile;
endfor;
BM _Routing(t;, t,, t,)

end
BM_Routing (t2,1,%0);
BM _tag ta, t1,ty = receiving node address (rq,71,79) — destination (da, d1, dy)
fori=2:0
if (¢; > 0 and ¢; < 2) or (¢; < 0 and t; = —3), movedir = positive; endif;
if (t; >0 and t; = 3) or (t; < 0 and ¢; > —2), movedir = negetive; endif;
if (movedir = positive and ¢; > 0), distance = ¢;; endif;
if (movedir = positive and t; < 0), distance = 4 + ¢;; endif;
if (movedir = negative and ¢; < 0), distance = ¢;; endif;
if (movedir = negative and ¢; > 0), distance = —4 + t;; endif;
endfor
while(t2 # 0 or distance; # 0) do
if (movedir = positive), move packet to +2z node; distance; = distances — 1; endif;
if (movedir = negetive), move packet to —z node; distance; = distance; + 1; endif;
endwhile;
while(t; # 0 or distance; # 0) do
if (movedir = positive), move packet to +y node; distance; = distance; — 1; endif;
if (movedir = negetive), move packet to —y node; distance; = distance; + 1; endif;
endwhile;
while(ty # 0 or distancey # 0) do
if (movedir = positive), move packet to +z node; distancey = distancey — 1; endif;
if (movedir = negetive), move packet to —z node; distancey = distancey + 1; endif;
endwhile;
end

Figure 3.5: Routing algorithm of HTN
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3.3 Static Network Performance

The topology of an interconnection network determines many architectural features of
that parallel computer and affects several performance metrics. Although the actual per-
formance of a network depends on many technological and implementation issues. Several
topological properties and performance metrics can be used to evaluate and compare dif-
ferent network topologies in a technology-independent manner. Most of these properties
are derived from the graph model of the network topology.

In this section, we discuss some of the properties and performance metrics that char-
acterize the cost and performance of an interconnection network. Any design of an inter-
connection networks is a trade-off of various requirements. Evaluation parameters to be
considered include node degree, diameter, cost (= degree x diameter), average distance,
bisection width, and connectivity.

3.3.1 Node Degree

The Node Degree (ND) is defined as the number of physical channels emanating from a
node. This attribute is a measure of the node’s I/O complexity. The node degree should
kept constant and as small as possible. Small and constant node degree allows simple and
low cost routers which amortizes the design cost. Constant degree networks are easy to
expand and the cost of the network interface of a node remains unchanged with increasing
size of the network. It is also suitable for efficient VLSI implementation. On the other
hand, small node degree implies less links and lower connectivity and larger distances.
For HTN, the node degree is independent of the network size. Since each node has eight
channels, therefor the degree of a node is 8. This is shown in Fig. 3.6.

WV Level-2 Gate PE
B Level-3 Gate PE

A Lecvel-4 Gate PE
& Level-5 Gate PE
—» X-link

---»  Y-link

A

Figure 3.6: Illustration of degree of HTN
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3.3.2 Diameter

In an interconnection network, communication between two nodes that are not directly
connected must take place through other nodes. The length of a communication path from
a given source node to a given destination node is the number of links traversed along the
path between the two nodes. Most common network topologies provide multiple paths
between pairs of nodes; since the delay is likely to increase with the length of the path,
the shortest path is usually preferred for communication. Thus, the length of the shortest
path between a given pair of nodes becomes an important metric in the evaluation of the
interconnection network. This is captured in the quantity diameter, which is defined as
the maximum among the lengths of shortest paths between all possible pairs of nodes.

In an interconnection network, the diameter can be computed by finding the maximum
among the lengths of the shortest paths between all possible pairs of nodes. Diameter
represents the worst-case distance that any message in the network may have to travel
if routing is always along the shortest paths. If the message delay is proportional to the
number of links traversed, this provides an upper bound on the delay in the absence of any
interfering traffic. The diameter of a network directly affects the time for broadcasting a
message from one node to all the nodes. The lower the diameter of a network the shorter
the time to send a message from one node to the node farthest away from it.

Since reducing the diameter is likely to improve the performance of an interconnection
network, the problem of designing interconnection network with low diameter is still
a current research topic. In this section, we evaluate the diameter of the HTN and
compare it with other network topologies. To evaluate the diameter of the HTN, define
the maximum number of steps of routing in each level as follows:

o D' y=9e=L. The maximum number of steps from source node PE in the BM to the
gate PE at Level-L in the y-axis.

® Dyp_iorus: The maximum number of steps for an (n x n) 2D-torus.

e Dusis move: The maximum number of steps between the gate PEs during a dimension
change from the z-axis to y-axis and vice versa.

o DLevel move: The maximum number of steps between the gate PE in the z-axis and
the gate PE in the z-axis at Level-L.

e DI 27992, The maximum number of steps between the gate nodes in the z-axis
at Level-2 in the BM.

Table 3.1: Diameter of HTN with Level-L
Level (L) 2 3 4 5
No. of PEs 210 [ ol4 1 ol8 1 922
Diameter (D) | 19 | 34 | 49 | 64
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2D-Torus

Diameter (D)

Number of Nodes (N)

Figure 3.7: Diameter of networks as a function of No. of nodes (N)

The routing algorithm gives the diameter of the HTN as follows:

D = Dto y—gate—L + (L - 1)D2D torus + (2L . 3) % D%a}\z; move 4
(L - Q)DLevel move. 4 Dto z—gate—2 (34)

If we choose, m = 4 and n = 4, then the values of each distance in the HTN are given
by D9Y99 ™ = 6. Dyp_jopus = 4, D5 move — 3 - plLevel move — 5 ap plo 2=90te=2 _ ¢
The diameter of the HI'N with Level-L is summarized in Table 3.1.

After simplification, the diameter D in terms of Level-L is D = 15L — 11. The total
number of processing elements of the HTN with Level-L is:

N = 64(16"7") =64 (1677 1) =64 (16 )

D = 15 (log16 %) +4

D = 0O (log16 %) ~ O (log16 N) A 30 (log2 N)

D = O (logN) (3.5)

So, the diameter of the HTN is of O (log N).

Figure 3.7 shows a comparison of network diameter for HT'N with several networks. For
evaluation of diameter for HTN, we have considered the size of BM is (4 x 4 x 4) and the
size of higher level network is (4 x4). The ordinate indicates the diameter of a network for
different sized networks. Each curve stands for a particular family of networks. It is seen
that HTN has much smaller diameter than conventional k-ary 2-cube [26] and H3D-mesh
network [18] and also smaller than TESH network[5-8] for a medium-sized network.



3.3 Static Network Performance 30

3.3.3 Cost

Inter-node distance, message traffic density, and fault-tolerance are dependent on the
diameter and the degree of a node. The product (diameter x degree of a node) is a good
criterion to measure the relationship between cost and performance of a multiprocessor
system [19,20]. An interconnection network with a large diameter has a very low message
passing bandwidth and a network with a high node degree is very expensive. In addition,
a network should be easily expandable; there should be no changes in the basic node
configuration as we increase the number of nodes.

11 T T T T T )

2

2D-Torus

212 213 214 215 216 217 218

Number of Nodes (N)

Figure 3.8: Cost of different networks as a function of No. of nodes (N)

Figure 3.8 shows a comparison of cost for HT'N with several other networks. The
ordinate indicates the cost of a network for different sized networks. Each curve stands
for a particular family of networks. It is seen that HTN has much smaller cost than
conventional k-ary n-cube [26] and H3D-mesh network [18].

3.3.4 Average Distance

Although the diameter is used to compare the network performance of different network
topologies, it may not always be indicative of the actual performance of the networks.
One reason is that a node in a multicomputer network communicates with many other
nodes during the execution of the program; hence, on average, a shorter path than the
diameter will be used. Thus, in practice it is more important to measure the distance
traveled by an ‘average’ message. This is captured in the average distance which is defined
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as the average of the lengths of all paths followed by messages in the network. While the
diameter depends only on the topology of the network, the average distance also depends
on the distribution of the messages among the nodes.

The distance between two nodes is defined by the number of hops in the shortest
path between those nodes. And the Awverage Distance is the mean distance between all
distinct pairs of nodes in a network. For communication-intensive parallel applications,
the blocking time, consequently, the communication latency is expected to grow with
path length. A small average distance allows small communication latency, especially for
distance-sensitive routing, such as store and forward. By waiting for the entire packet to
arrive at a router before forwarding to the next hop, store and forward routing results
in long delays at each hop. Therefore, a smaller average distance of an interconnection
network yields a smaller communication latency of that network. But it is also crucial
for distance-insensitive routing, such as wormhole routing, since short distances imply the
use of fewer links and buffers, and therefore less communication contention.

We have evaluated the average distance for different conventional topologies by the
corresponding formula and of different hierarchical networks by simulation. Figure 3.9
shows a comparison of network average distance between the HTN and several other
networks. Figure 3.10 also shows a comparison of average distance of different networks
with 4096 nodes. It is seen that HTN has the smaller average distance than TESH [5-8],
H3D-mesh [18], and conventional k-ary n-cube [26] networks.

Although the communication performance of a program on a multicomputer depends
on the actual times taken for data transfer, diameter and average distance are useful
metrics for technology-independent analyses.

3.3.5 Connectivity

The Connectivity measures the robustness of a network. It is a measure of the multiplicity
of paths between nodes. The connectivity of a network is defined to be the minimum
number of nodes or links whose removal causes the network to be disconnected into two
or more components. High connectivity improves performance during normal operation by
avoiding congested links, and improves fault tolerance. A network is said to be maximally
fault-tolerant if its connectivity is equal to the degree of the network. Clearly, connectivity
cannot exceed the degree, since the network can be partitioned by removing all neighbors
of a specific node. Figure 3.11 shows that removal of 2 links disconnects the 2D-mesh
network into two parts. This is the minimum value of links to disjoint the 2D-mesh
network. Thus, the connectivity of 2D-mesh network is 2. The connectivity of different
networks including the HTN is shown in Table 3.2.

Table 3.2: Comparison of Connectivity for different networks

2D- 2D- 3D- 3D- TESH | H3D- | HTN | H3D-
mesh | torus | mesh | torus mesh torus

Connectivity 2 4 3 6 2 6 6 3
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Figure 3.11: Illustration of connectivity for 2D-mesh network.

3.3.6 Bisection Width

The Bisection width (BW) is an important topological parameter for interconnection
networks and is crucial to their cost of VLSI layout and performance. The bisection
width of a network is defined as the minimum number of communication links that have
to be removed to partition the network into two equal halves. Bisection width is a measure
of the volume of traffic that can be handled by the network. It is also useful in estimating
the area required for a VLSI implementation of the network. The bisection width of a ring
network is 2, since any partition cuts across only 2 communication links. The bisection
width of the HTN is calculated by:

BW (HTN) = 21" x (m x n) (3.6)

It is calculated by counting the number of links that need to be removed to partition
the highest level (Level-L) torus. This equation is valid for higher level networks. We
don’t consider here the interconnection of basic modules. The basic module is simply a
3D-torus network so its bisection width is 2m?.

Many problems can be solved in parallel using binary divide-and-conquer: split the
input data set into two halves and solve them recursively on both halves of the intercon-
nection network in parallel, and then merge the results in both halves into the final result.
Small bisection width implies low bandwidth between both halves and it can slowdown
the final merging phase. On the other hand, a large bisection width is undesirable for
VLSI design of an interconnection network, since it implies a lot of extra chip wires.

Figure 3.12 shows a comparison of bisection width between the HTN and several other
networks. The ordinate indicates the bisection width of a network for different sized
networks. Each curve stands for a particular family of networks. It is seen that the
bisection width of the HTN is larger than TESH [5-8] and smaller than conventional k-
ary n-cube [26] networks. Thus, the bisection width of HTN is better than other networks.
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Figure 3.12: Bisection width of networks as a function of No. of nodes (N)

3.4 Wafer Stacked Implementation

3.4.1 3D Stacked Implementation

M. Little et.al. [1] developed a 3D-computer made of a 32 x 32 cellular array and organized
as a b wafer stack containing two types of wafers. A three dimensional stacked imple-
mentation is attractive for massively parallel computers [2]. Figure 3.13 illustrates the
structure of a 3D stacked implementation. The vertical links between wafers interconnect
PEs on adjacent silicon planes. To implement a network in 3D stacked silicon planes, a
sub-network is mapped to a silicon plane and sub-networks are interconnected by vertical
links between silicon planes. The vertical links between adjacent planes is implemented
by wafer feedthroughs and microbridges [1][2] shown in Fig. 3.14.

Vertical links (composed of feedthroughs and microbridges) realize the shortest pass
between planes. However, the area of vertical links between silicon planes amount to
hundred of pm? shown in Fig. 3.14. Thus, unconstrained use is prohibited. An efficient
3D interconnection requires reducing the number of vertical links.

3.4.2 Peak Number of Vertical Links

An important consideration in the design of a new network is the feasibility of 3D imple-
mentation. In the implementation of an interconnection network on 3D-stacked planes,
one of the most important parameters is the peak number of vertical links Cy.qr between
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Figure 3.13: Structure of 3D stacked implementation

Feed Through

300mm (3D-neuro,1993)

Figure 3.14: Structure of Microbridge and Feedthrough

adjacent silicon planes. The word peak here refers to the bulge due to the crowding of
wires running between various planes.

As shown in Fig. 3.15, the PEs are placed on a square array on each silicon plane. Let
h be the number of silicon planes, M be the number of PEs on each plane, and N be the
total number of PEs. The relation between the h, M, N is as follows:

N=hxM (3.7)

Figure 3.16 illustrates the 3D stacked implementation of a 2D mesh network with 16
PEs on 4 stacked planes. According to Eq. 3.7, here, N = 16, M = 4, and h = 4. The
maximum number of links between wafers is 4. For this case, as shown in Fig. 3.16,
the peak number of vertical links is 4. The same scenario is illustrated in Fig. 3.17 for
a 2D-torus network with 16 PEs. In this case, the peak number of vertical links is 8.
Here, the peak number of vertical links is doubled because of the wraparound connections
of the torus network. Thus, the peak number of vertical links of an interconnection
network depends upon the architecture of the network. The illustration shown here uses
bi-directional links. The peak number of vertical links using unidirectional links becomes
twice as much as that using bidirectional links.
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Figure 3.15: PE array in a silicon plane for wafer stacked implementation
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Figure 3.17: Vertical links of 2D-torus in 3D stacked implementation
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3.4.3 Peak Number of Vertical Links for HTIN

In this section, we evaluate the peak number of vertical links for the Hierarchical Torus
Network. The PEs are placed on a square array on each silicon plane. In a hierarchical
interconnection network such as HTN, let n be the number of PEs in a BM, g be the
number of subnetworks at the Level-(: — 1) (1 < L < L). Let Ly = 1+ [logg %J be the

highest level on a plane, and s = m mod ng*~! be the number of hierarchies at L,. The
BM of the HTN is a 3D-torus network. It consists of (m x m x m) PEs. For instance,
if m = 4, the BM consist of 64 PEs and is implemented on a silicon plane. Then the
mapping of the HTN is given by:

1. HTN (L) is divided into h subnets in the address order.

2. Level-L; are mapped on s silicon planes. Since interconnection between PEs at
higher level is a 2D-torus, the inline scheme is applied to alignment of PEs.

3. The mapping process is repeated until Level-L is reached.

Since HTN interconnects PEs at higher levels through subnets, the peak number of
vertical links at Level-L is obtained by summing the peak number of vertical links at
lower levels. Thus, the peak number of vertical links Cj.qr is the summation of the
peak number when one subnet of Level-i (1 <4 < L) is assigned on a silicon plane. HTN
interconnects subnets at different levels using a 2D-torus with the same size as the number
of BMs in the subnet. The peak number of vertical links C)qi of Level-L; is given by:

Cpeak = Chear (2D — torus,16, Sp;)
[ 1o(eh?) s =1 58)
Co | 12(16m?) s =4 '

where, Sy, is the number of subnets on a silicon plane of Level-L;. Thus, the peak number
of vertical links Cpeqr of HTN is given by:

L
Coeat = Cpaat (2D = t0ru5,16,5) 1677 & 3 Cpege (2D — torus 16,1) 167
Li:Ld+1

L
Cpeat = Cpear (2D — torus,16,5) 1672+ >~ 5 (16" ?) (3.9)
Li=Lg+1

Chear, is calculated for the number of planes h = 16. The ordinate indicates the peak
number of vertical links C)eq, needed for different sized networks. Each curve stands for
particular set of networks. The 3D-torus network requires the largest C.q; among the
evaluated 3D networks.

Figure 3.18 shows that the peak number of vertical links Cqr for an HTN network is
exactly same as the TESH network. Thus, HTN is suitable for medium-sized networks.
However, a more quantitative way to compare different network families would be to use
a figure of merit such as f = N/ (Cpear X D) [5, 8], where N denotes the total number of
nodes, Cpeqr is the peak number of vertical links, and D is the network diameter of the
network.
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Figure 3.18: A comparison of peak number of vertical links of HTN with other networks

3.4.4 Layout Area

To discuss a suitable network for 3D stacked implementation, layout areas of network
have to be evaluated. The following defines formulations of layout area of networks in 3D
stacked implementations.

Let Wpg X Wpg be the chip size of a PE, Wy, g X Wy, be the size of a microbridge,
Wiine be the width of a line, and p be the number of lines per link. Figure 3.19 illustrates
the layout area of a 2D-torus for the case of N =16, L =4, and p = 1.

Fukuda and Horiguchi [30] proposed the layout for CCC (Cube Connected Cycles) using
HC links (Hypercube links) in a 3D stacked implementation. The HC links are comprised
of the 28 —1 = N — 1 links of a k-hypercube. Since M PEs are allocated into VM x /M
on a silicon plane, ¢, = ¢, = vV/M — 1. The wiring space is subjected to the maximum
number of links in a row and column of the PE array. Let ¢, and ¢, be the maximum
number of links in rows and columns, respectively. The wiring spaces of the links between
PE arrays in z-direction and y-direction are as follows:

STL,:): =V Mt:vpVVline (310)

5’TL,y =V MtypI/Vlzne (311)

The same scheme is applied to HTN. The maximum number of torus links ¢,, ¢, in
xy-plane depend on the number of levels on a silicon plane. For one BM on a silicon
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Figure 3.19: Layout Area of 2D-torus for N =16, L =4 and p = 1.
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plane, we have t, = ¢, = 8. Links connected Level-2 are not counted into ¢, and ¢,. For
levels higher than Level-3, the same number of links are required for a 2D-torus consisting
of number of BMs in a subnet. The maximum number of torus links for levels higher than
3 is proportional to the number of BMs in a subnet at each level. Therefore, ¢,, ¢, for the
HTN are given by:

m
L. = |log, 3.12
{ng 64w ( )
8 L. <2
to=1t, = Lo (3.13)
S 8423 (477 Le>2 '
t=L,

All the parameters needed to calculate the layout area is in 3D wafer stacked imple-
mentation are summarized in Table 3.3. Let us consider an interconnection network with
4096 PEs. For this network, the designer may implement a TESH in 16 silicon planes,
and each plane has 16 Level-2 networks. Then, 16 silicon planes are required to build a
stack with a total of 4096 nodes. For simplicity of presentation we will ignore the redun-
dancy at various levels in this subsection. These issues are considered in [4]. Suppose
the PEs are medium grained processors each with 2.00mm x 2.00mm effective area and
3.00mm x 3.00mm tile area in a 1um CMOS technology. The total area required in the
plane is 4.8cm x 4.8cm. Clearly, a large ULSI chip or a small wafer can easily support
the sub-network and its associated control and power wiring.

Two or more high level subnets of the hierarchical network can be placed on larger
silicon devices, which would correspondingly reduce the number of silicon planes in the
stack. In particular, we assume a part of Level-2 sub-network per plane. Sixteen such
planes would require building a stack with 4096 nodes. Given below is an estimation of
the vertical wiring needed to interconnect the planes.

e Link width = w bits bits

e Number of BM in each Level-2 network = 16
e Peak number of Level-3 links per BM = 10

e Number of vertical links = 16 x 10 = 160

e Number of vertical wires= 160 x w

For stacked planes the wiring pitch on an area basis is approximately 300pm x 300um.
Since the vertical channel includes multiplexers to connect vertical links between silicon
planes, we compute the area needed for the vertical connections of network using 500um x
500pm.
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Table 3.3: Parameters for layout area in 3D stacked implementation

Parameter ‘

Expression

Size of a PE

Wpr X Wpg

Size of a microbridge

Wys X Wus

No. of lines per links

No. of blocks

p
VL x /L

Peak number of links in R & C

Ly, ty

Size of a PE array on a plane

Sreg = VmWpg, Sprey = VmWeg

Wiring space of links bet” PEs

STL,:): Y mt:vpVVlinea STL,x Y mtxpVVline

Wiring space of links bet™ micro

SpMB,

— CmaxpVVlinea SDMB,y - Cma:vpVVline

Size of a block without microbridge

Wl
W,

Spes+ Sris + SpMB.a,
Spey + Sty + SpmBys

Block size without microbridge

T o 7
Wh, =22 W, =%

Area of microbridge in a block

Wy = [—C%ZB Wus

Block size with microbridge

— ! — 1!
Wpoe=Wg, W =Wg, +wy

Total layout size

W, =Wg VL, W, =Wg VL

Total layout area

A=W, xW,
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Clearly, the silicon plane described earlier can easily support the wiring needed for
the vertical connections. For comparison, the number of vertical wires required for the
2D-torus, 3D-torus, TESH, and HTN with 4096 nodes are considered.

Figure 3.20 shows a normalized layout area by 2D-torus for comparison with several
other networks. HTN can be implemented on a smaller silicon area (about 84%) than
the silicon area of the 2D-torus. The peak number of vertical links for an HTN is exactly
same as the TESH network [5-8], but the layout area is around 17% less.

3.4.5 Maximum Wire Length

The cost of VLSI systems is predominantly that of connecting wires, and the performance
is limited by the delay introduced by these interconnections. Thus, to achieve the required
performance, the network must make efficient use of the available wires. The length of the
longest wire [18] is an important parameter in the design of an interconnection network.
The performance of a network is strongly influenced by the longest links.

The operating speed of a network is limited by the physical length of its links. Thus, the
maximum length of a wire can be used to describe and compare the maximum physical
speeds that the various network topologies can attain. The length of the longest wire
may become more important than the diameter of the network. We will assume that all
networks have a planar implementation. The formula commonly used to describe the wire
length [26] of k-ary n-cubes is:

LENyax(k,n) = k27! (3.14)

This assumes a square layout of nodes with each side having /N nodes. The above

formula underestimates the maximum length because it does not take into account the

length of the wrap-around link. For a regular layout, the length of the wrap-around link
is given by:

N .
LENyax(k,n) = VN - - =KEUk -1 (3.15)

A similar formula can be developed for the HTN. The maximum wire length in a regular
layout, representing the length of wrap-around links of the highest level torus is

LENyax(HTN) = (n*7')(m—1)+ (n""' = 1) (3.16)

The formula shown in Eq. 3.16 is a conservative estimation. Here we assume that
the basic module is realized plane-by-plane as the physical interconnection of a 3D-torus.
This is not a real 2D-planner realization. The real 2D-planner realization of a 3D-torus
network is shown in Fig. 3.21. Our intuition is that a 3D wafer stacked implementation,
can be considered, for brevity, by the equation shown in 3.16.

A comparison of the maximum wire length of different networks with the HTN is shown
in Tables 3.4 for 256, 1024 and 4096 nodes. It is shown that the maximum wire length of
HTN is smaller than other networks.
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Figure 3.21: 2D-planner realization of 3D-torus network.

Table 3.4: Comparison of maximum wire length of different networks

H No. of nodes ‘ Network ‘ Maximum Wire Length H
2D-Torus 15
Binary 8-cube 8
256 8 x 2° CCC 8
TESH (2,2,0) 12
HTN 7
2D-Torus 31
Binary 10-cube 16
1024 X X
X X
HTN 15
2D-Torus 63
Binary 12-cube 32
4096 16 x 28 CCC 32
TESH (2,3,0) 48
HTN 31
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An important advantage of a 3D implementation is the reduction of the length of the
interconnects. The longest wires in a planner Level-3 network are the wraparound wires
which interconnect the physically farthest Level-2 subnetwork, and there are 63. The
length of this longest interconnect is 63 x width of a processor(in tile) = 63 x 3.0 mm =
18.90 em. However in the 3D wafer stacked implementation of a Level-3 network described
in Section 3.2.2, these long wires run vertically and the longest vertical wire has a length
of 16t where ¢ is the thickness of a wafer plus the length of the microbridge between wafers
is about 0.02 inch = 0.051 em and the length of the microbridge is 0.002 inch = 0.005 cm
[2]. Thus, t is about 0.056 ¢m and the longest vertical wire has a length of 0.90 ¢m. In
this case, the longest wires of the Level-3 HTN are the horizontal wires within the Level-2
subnetworks, and there are 15. Now, the longest wire has a length of 15x3.0 mm = 4.5 cm
which gives rise to a factor of 4.20 improvement over the planner implementation.

3.5 Conclusions

In this chapter, we have presented a new hierarchical interconnection network, called Hi-
erarchical Torus Network (HTN) for massively parallel computer systems. The proposed
HTN has tremendous potential to be used as an interconnection network for massively
parallel computer system since the HTN can connect millions of nodes while keeping good
network features. The architecture of the HTN, routing of messages, static network per-
formance, and 3D-integration issues were discussed in detail. From the static network
performance, it can be seen that the HTN possesses several attractive features including
fixed diameter, small diameter, small average distance, and moderate bisection width.
The network is well suited for 3D stacked implementations. It was shown that the peak
number of vertical links in 3D-stacked implementations is lower for HTN as compared to
other similar networks. Thus, HTN permits efficient VLSI/ULSI/WSI realization. The
layout area of HTN in 3D stacked implementations is amenable to 3D implementation.
In part, this is due to the fewer numbers of vertical wires needed than almost all other
multi-computers networks.



Chapter 4

“There are no traffic jams when you go the ex-
tra mile.”
— Anonymous

Deadlock-Free Routing for HTIN

4.1 Introduction

The basic function of an interconnection network is to transfer information among the
communicating nodes of a multiprocessor or multicomputer in an efficient manner. Rout-
ing is the act of transfering information across the interconnection network from a source
to destination. In a broad sense, routing refers to the communication methods and algo-
rithms used to implement this function. The basic issues of routing include: how to set
up a communication path in the network, how to choose a path from many alternatives,
and how to handle contention for resources in the network.

Routing involves finding a path from a source node to a destination node in a particular
topology, and it provides communication performance. By developing a good routing
algorithm, both throughput and latency can be improved. Careless design of routing
algorithm may cause various problems such as deadlock. Once a deadlock has occurred,
the dynamic performance is drastically reduced. Therefore, a deadlock free routing is
very essential to achieve good communication performance. The most important issues
in the design of a routing algorithm are high throughput, low latency message delivery,
avoidance of deadlocks, livelocks, and starvation [34].

Wormbhole routing is particularly susceptible to deadlocks. Deadlocks occur as a result
of cyclic waits for resources by two or more communication requests. By multiplexing the
physical channel into multiple virtual channels and controlling the allocation of virtual
channels to communication requests, cyclic wait situation can be prevented. Dally and
Seitz [32] showed that deadlocks can occur only if the channel dependency graph of the
channel allocation scheme has a directed cycle. The routing algorithm is to be deadlock
free if the channel dependency graph has no cycles.

This chapter is organized as follows: Some primitive considerations for deadlock free
routing are presented in Section 4.2. The concept of channel dependency graph and its
use to detect the deadlock in a network are described in Section 4.3. To make the ring
network deadlock-free by using channel dependency graph is also shown in Section 4.3.
The deadlock free routing for Hierarchical Torus Network (HTN) and investigation of
minimum number of virtual channels to make the HTN deadlock free are described in
Section 4.4 and 4.5, respectively. Finally, Section 4.6 concludes this chapter.
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4.2 Primitive Considerations

4.2.1 Wormhole Routing

The wormhole (WH) [31,32,37] routing has been a popular switching technique in new
generation of multicomputers because of its low network latency and less hardware re-
quirement. Implementations of WH routing typically divide each message into packets,
which are then divided into flits (flow control digits). A flit is the smallest unit of in-
formation that a buffer or a channel can accept or refuse. The size of the flits depends
on various system parameters. Normally the bits constituting a flit are transmitted in
parallel between adjacent nodes.

The header flit of a packet contains the routing information. As the header flit advances
along the specified route according to the routing information, the remaining data flits of
the packet follow the header flit through the network in a pipelined fashion, as illustrated
in Fig. 4.1. Each incoming data flit of a message is simply forwarded along the same
output channel as the preceding data flit. The header flit will reserve network resources
exclusively for its message and the tail flit will release each resource after it has passed it.
Thus, the message will traverse a network like a worm through a hole. By the pipelined
nature of WH routing, network latency is insensitive of path length. When the header
arrives at an intermediate router, the router immediately forwards the message header to
the neighboring router if a usable output channel is available. In wormhole routing, once
a packet occupies a channel, the channel is not released until the entire packet passes
through the channel. If the header flit is blocked during advancing through the network,
the trailing data flits must be blocked also, that is, wait for next channel to be available
while holding channels in place.

In wormhole routing, if the required output channel is busy, the message is blocked in
place. For example, in Fig. 4.2 illustrates a snapshot of a message being transmitted
through routers Ry, Ry, R3, Rs. At router R, message A requires an output channel
that is being used by message B. The desired outgoing channel for the message A is not
available. Hence, the header flit is buffered in R, and the data flits are also buffered in
the corresponding router.

The time-space diagram of a wormhole-routed message is shown in Fig. 4.3. The
shaded rectangles illustrate the propagation of header flits across the physical channels.
The clear rectangles illustrate the propagation of data flits across the physical channel.
The unit of flow control in wormhole routing is a single flit and, as a consequence, the
use of small buffer. This figure shows the activities of each node over time when a packet
is transmitted from a source node S to a destination node D through three intermediate
nodes, I1, 12, and I3. The time required to transfer the packet between the source
processor and its router, and between the last router and the destination processor, is
ignored. The communication latency of the wormhole routing is nearly independent of
the distance between the source and destination node. The small buffer requirements and
message pipelining enable the construction of routers that are small, compact, and fast.
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4.2.2 Routing Algorithm

An interconnection network topology must allow every node to send packet to every
other node. In the absence of complete topology, routing determines the path selected by
a message to reach its destination. Messages are divided into packets before transmission.
Therefore, message and packet will be used interchangeably. Any routing algorithm for
multicomputers should ensure the following:

e Fach and every message injected into the network is delivered to its destination.
e Each message delivered to its destination is removed from the network in finite time.

Most of the interconnection networks use distributed routing. In distributed routing,
the path is determined in a distributed manner while the packet travels across the network.
Each node, upon receiving a packet, decides whether it should be delivered to the local
node or forwarded to a neighboring node. In this case, the routing algorithm invoked
to determine to which neighbor the packet should be sent. In a practical router design,
the routing decision process must be as fast as possible to reduce the network latency.
A good routing algorithm should also be easily implemented in hardware. Furthermore,
the decision process usually does not require global state information of the network.
Providing such information to each router creates additional traffic and requires additional
storage space in each router.

Many properties of the interconnection network are a direct consequence of the routing
algorithm used. Among these properties the most important ones are as follows:

e Connectivity: Ability to route packets from any source node to any destination
node.

o Adaptivity: Ability to route packets through alternative paths in the presence of
contention or faulty components.

e Deadlock and livelock freedom: Ability to guarantee that packets will not block or
wander across the network forever.

e Fault tolerance: Ability to route packets in the presence of faulty components.
Although it seems that fault tolerance implies adaptivity, this is not necessarily
true. Fault tolerance can be achieved without adaptivity by routing a packet in two
or more phases, storing in some intermediate nodes. Fault tolerance also requires
some additional hardware mechanisms.

Routing can be classified two classes such as deterministic or adaptive routing. Under
deterministic routing, the path taken by a packet is determined solely by the source and
destination pair. Given the same pair of source and destination, the same path is always
used regardless of other network condition. This method is also called oblivious routing.

On the other hand, adaptive routing takes different path for a given source and des-
tination according to the dynamic network condition such as presence of congested and
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faulty channel. Adaptive routing algorithms are classified into partially adaptive or fully
adaptive routing algorithms. Fully adaptive routing algorithms is one in which all possi-
ble path between source and destination node are of potential use at the time when the
sending of a packet is initiated. Partially adaptive routing algorithms use only a subset
of all possible route between source and destination node.

A routing algorithm is said to be minimal if the path selected is one of the shortest
paths between source and destination pair. Using the minimal routing algorithms, every
channel visited will bring the packet closer to the destination. A monminimal routing
algorithm allows packets to follow a longer path, usually in response to current network
conditions. If nonminimal routing algorithm is used, care must be taken to avoid the
situation called livelock, in which a packet continues to be routed through network but
never reach the destination.

4.2.3 Deadlock, Livelock, and Starvation

The nodes of an interconnection network send and receive messages or packets through the
router. In an interconnection network, packets usually travel across several intermediate
nodes before reaching the destination. As each packet whose header has not already
arrived at its destination requests some buffers while keeping the buffers currently storing
the packet, a deadlock may occurred. A deadlock [32,35] occurs when some packets
can not advances toward their destination because the buffers requested by them are
full. Every packet is requesting resources held by other packet(s) while holding resources
requested by other packet(s). Figure 4.4 shows an example of deadlock in wormhole
routing involving four packets. All the packets involved in a deadlocked configuration are
blocked forever.

Deadlock is by far the most difficult problem to solve. There are three strategies for
deadlock handling: deadlock prevention, deadlock avoidance, and deadlock recovery. In
the deadlock prevention, resources are granted to a packet in such a way that a request
never leads to a deadlock. It can be achieved by reserving all the required resources
before starting packet transmission. In the deadlock avoidance, resources are requested
as a packet advances through the network. However, a resource is granted to a packet
only if the resulting global state is safe. Finally, the deadlock recovery strategies are
optimistic. Deadlock recovery strategies take no action to prohibit deadlock but detect the
occurrence of deadlock and resolve the deadlock. This scheme is based on the observation
that deadlock is very rare phenomenon in the real world.

A different situation arises when some packets are not able to reach their destination,
even if they never block permanently. A packet may be traveling around its destination
node, never reaching it because the channels required to do so are occupied by other
packets. This situation is known as livelock [9]. It can only occur when packets are
allowed to follow nonminimal paths.

Livelock is relatively easy to avoid. The simplest way consists of using only minimal
path. This restriction usually increases performance in networks using wormhole switching
because packets do not occupy more channels than the ones strictly necessary to reach
their destination. The main motivation for the use of nonminimal paths is fault tolerance.
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Figure 4.4: An example of deadlock involving four packets

Even when the nonminimal paths are used, livelock can be prevented by limiting the
number of misrouting-routing operations.

Another situation may also arise, such that a packet may be permanently stopped if
traffic is intense and the resources requested by it are always granted to other packets also
requesting them. This situation is known as starvation [9] and it usually occurs when an
incorrect resource assignment scheme is used to attribute in case of conflict. Starvation
can be avoided by allocating resources such as communication channels and buffers in
First-In-First-Out (FIFO) order.

Deadlock, livelock, and starvation arise because the number of resources is finite. Ad-
ditionally, some of these situations may produce the others. For instance, a deadlock
permanently blocks some packets. As those packets are occupying some buffers, other
packets may require them to reach their destination, being continuously misrouted around
their destination node and producing livelock.

4.2.4 Virtual Channel

Deadlock is a network state where no messages can advance because each message requires
a channel occupied by another message. Wormhole routing is particularly susceptible to
deadlock situation by its nature. Virtual channel was introduced by Dally and Seitz
[32,38] to construct a deadlock-free wormhole routing algorithm. A virtual channel is a
logical entity associated with a physical channel used to distinguish multiple data streams
traversing the same physical channel. Virtual channels are multiplexed over the physical
channel in a demand-driven manner, with bandwidth allocated to each virtual channel
as needed. It can be used for solving deadlock problem by imposing restriction on using
them to break cyclic dependencies in the network [32].

Figure 4.5 shows the schematic diagram of virtual channels. Each virtual channel is
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realized by an independently managed pair of message buffers. Handshake signal makes
the bridge between input buffer and output buffer. Each message can share the physical
channel on a flit-by-flit basis.

Adding virtual channels to an interconnection network is analogous to adding lanes to
a street network. A network without virtual channels is composed of one-lane streets. In
such a network, a single blocked message blocks all following messages. Adding virtual
channels to the network adds lanes to the streets allowing blocked messages to be passed.
Adding virtual channels to wormhole-routed networks greatly improves performance be-
cause they reduce blocking by acting as bypass lanes for non-blocked messages.

Virtual channel can also be used to improve message latency and network throughput
by reducing physical link idle time [38]. By allowing messages to share a physical channel,
messages can make progress rather than remain blocked. Splitting each physical channel
into several virtual channels increases the number of routing choices, allowing messages
to pass blocked messages. For example, Fig. 4.6 shows two messages crossing the physical
channel between router R2 and R3. Only one physical channel is used here. With no
virtual channels message A will prevent message B from advancing until the transmission
of message A has been completed. In wormhole-routed network, message A may be
blocked due to the contention elsewhere in the network while still holding its buffer and
preventing message B. In this case, some channels are idle even though there may be
other message in the network, e.g., message B can make productive use of these channels.

The problem of idle channels arise because of resource coupling. That is, a channel and
a buffer allocated together and released together. Virtual channel decouple allocation of
buffers from allocation of channels by providing multiple buffers for each channel in the
network. As illustrated in Fig. 4.7, there are two single flit virtual channels multiplexed
over each physical channel. By multiplexing the two messages on a flit-by-flit basis, both
messages continue to make progress. The overall time a message spends blocked at a
router waiting for a free channel is reduced leading to an overall reduction in individual
message latency. The network throughput will also increased due to increased physical
channel utilization.

4.3 Channel Dependency Graph

The theoretical model of deadlock avoidance presented in this chapter relies on the concept
of channel dependency graph [32][33]. Deterministic, Dimension Order Routing is used
for evaluation the dynamic communication performance of the HTN. Thus, we keep the
study of channel dependency graph on dimension order routing only.

When a packet is holding a channel, and then it requests the use of another channel,
there is a dependency between those channels. Both channels are in one of the paths that
may be followed by the packet. If wormhole switching is used, those channels are not
necessarily adjacent because a packet may hold several channels simultaneously. Channel
dependency graph is used for detecting deadlocks in a wormhole routing algorithm.

The behavior of packets regarding is different depending on routing choice of each
node. With dimension order routing, packets have a single routing option at each node.
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Consider a set of packets such that every packet in the set has reserved a channel and it
requests a channel held by another packet in the set. Obviously, that channel can not be
granted, and that situation will last forever. Thus, it is necessary to remove all the cyclic
dependencies between channels to prevent deadlock.

Definition 4.1 An interconnection network I is a strongly connected directed graph, I =
G(N,C). The vertices (N) of the graph represent the set of processing nodes. The edge
(C) of the graph represent the set of communication channels.

Definition 4.2 A routing function R: C x N — C maps the current channel c. and
destination node ng to the next channel ¢, on the route from c. to ng, R(cc,nqg) = ¢,. A
channel is not allowed to route itself, c. # ¢,.

Definition 4.3 A channel dependency graph D for a given interconnection network I and
routing function R, is a directed graph, D = G(C, E). The vertices of D are the channels
of the interconnection network I. The edges of D are the pairs of channels (¢;, c;) such
that there is a channel dependency from ¢; to c;.

The edges are determined by the following equation
E = {(ci,¢j)|R(c;,n) = ¢j for some n € N} . (4.1)

Definition 4.4 A configuration is an assignment of a list of nodes to each queue. The
number of flits in the queue for channel ¢; will be denoted as size(c;). If the first flit in
the queue for channel ¢; is destined for node ng, then head(c;) = ngq. A configuration is
legal if

Ve, € O, size(c;) < cap(c;). (4.2)

Here, cap(¢;) be the capacity of the queue of channel ¢;, size(¢;) be the number of flits
enqueued for channel ¢;, and head(c;) be the destination of the header flit enqueued for
channel c;.

Definition 4.5 A deadlock configuration for a routing function R is a nonempty legal
configuration of channel queues >

Ve; € C, (head(c;) # d; and ¢; = R(ci,n) = size(cj) = cap(cj)). (4.3)

In this configuration no flit is one step from its destination and no flit can advance
because the queue for the next channel is full. A routing function R is deadlock free on
an interconnection network I if no deadlock configuration exists for that function on that
network.

Theorem 4.1 A routing function R (deterministic) for an interconnection network I is
deadlock free if and only if there are no cycles in the channel dependency graph D.
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Figure 4.8: (a) A ring network with unidirectional channels. (b) The associated channel
dependency graph contains a cycle. (c) Each physical channel is logically split into two
virtual channels. (d) A modified channel dependency graph without cycles.
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In Theorem 4.1 if-and-only-if relationship is used between the deadlock and the cycles
in the channel dependency graph. The network becomes deadlock free by breaking the
cycles. Splitting each physical channel along a cycle into multiple virtual channels and
then restricting the routing so that the dependence between the virtual channels is acyclic.

Figure 4.8.(a) illustrates the phenomena of channel dependency graph and breaking
the cycle by using virtual channels in a four-noded uni-directional ring network. The
nodes are denoted by n;, i = {0, 1,2,3}. A unidirectional channel connecting each pair of
adjacent nodes. Let, ¢;, i = {0, 1,2, 3} be the outgoing channel from node n;. In this case,
it is easy to define a routing function. It can be stated as follows: If a current node n; is
equal to the destination node n;, store the packet. Otherwise, use ¢;, Vj # i. The channel
dependency graph of Fig. 4.8.(a) is shown in Fig. 4.8.(b). There is a cyclic dependency
between ¢; channel. Effectively, a packet at node ng destined for ny can reserve ¢y and
then request ¢;. A packet at node n, destined for nz can reserve ¢; and then request c,. A
packet at node ny destined for ny can reserve ¢, and then request c¢3. Finally, one packet
at node n3 destined for n; can reserve c3 and then request ¢y. A configuration containing
the above-mentioned packets is deadlocked because every packet has reserved one channel
and is waiting for a channel occupied by another packet. This deadlock configuration is
illustrated in Fig. 4.8.(b) by channel dependency graph.

Now consider that every physical channel ¢; is split into two virtual channels, cyo; and
c1i, as shown in Fig. 4.8.(c). co; is the first virtual channel of physical channel 7. Similarly,
c1; is the second virtual channel of physical channel ¢. Now, the new routing function can
be stated as follows: If the current node n; is equal to the destination node n;, store the
packet. Otherwise, use cy;, if j < @ or ¢y;, if 7 > 7. As can be seen, the cyclic dependency
has been removed because after using channel cy3, node ng is reached. This phenomenon
of breaking the cyclic dependency is illustrated in 4.8.(d).

There is no deadlock configuration after using 2 channels and restricted routing function.
If there were a packet stored in the queue of channel ¢;5, it would be destined for n; and
flits could advance. So ¢15 must be empty. Also, if there were a packet stored in the queue
of channel ¢, it would be destined for ny or nz. As c¢19 is empty, flits could also advance
and c;; must be empty. If there were a packet stored in the queue of c¢ig, it would be
destined for nq, ny, or n3. As ¢1; and ¢ are empty, flits could also advance and ¢ must
be empty. Similarly it can be shown that the remaining channels can be emptied.

4.3.1 Deadlock Configuration of Mesh and Torus Networks

In mesh interconnection networks, cyclic dependency can occur due to the inter-dimensio-
nal turns made by the messages [35]. All the possible turns a message can make are shown
in Fig. 4.9. The deadlock situation in mesh network are prevented by proper routing
algorithms.

In torus interconnection network, end to end nodes are connected by wrap-around con-
nections. Due to this wrap around connection, besides inter-dimensional turns, cyclic
dependency can also occur in the same dimension [35]. The possible deadlock configura-
tions for a torus network are shown in Fig. 4.10. Additional virtual channel is required
to break the wrap-around dependencies of the torus network.
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Figure 4.10: Deadlock configuration in torus network
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4.4 Deadlock-Free Routing for HTN

4.4.1 Necessity of Deadlock-Free Routing

Interconnection network routing algorithms aim to minimize message blocking by effi-
ciently utilizing network virtual channel and physical channel resources while ensuring
deadlock freedom. Deadlock in an interconnection network is the situation in which some
messages can not advance forever because of blocking by other messages. If a deadlock
occurs, packet delivery is delayed indefinitely. In addition to this message delivery is also
reduced. In short, once a deadlock has occurred, the dynamic performance is drastically
reduced. A good wormhole routing algorithm must reduce network latency as much as
possible without deadlock.

4.4.2 Dimension Order Routing

Dimension order routing algorithm is very popular and receives several names, like XY
routing [37] (for 2D-mesh network) or e-cube [32] (for Hypercube network). In the di-
mension order routing, the header of the message contains the address of the destination
relative to the current location. It is updated after each transmission. The routing mech-
anism is described as: first, determine whether the packet has reached its destination
or not and second, if this is not the case, determine the lowest dimension in which the
message still has to move and route the message in that dimension. The dimension order
routing algorithm determines the only route for the source and destination pair. Figure
4.11 illustrates the mechanism of dimension order routing in a 2D-mesh network.

Al33
All32
Alll3.

__T’>

00 10 20 30

Figure 4.11: A set of routing paths created by the dimension order routing in a 2D-mesh
network

Deadlocks are mainly avoided by using a proper routing algorithm within the network.
One approach to designing a deadlock-free routing algorithm for a WH switched network
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is to ensure that cycles are avoided in the channel dependency graph [32]. This can be
achieved by assigning each channel a unique number and allocating channels to packet
in strictly ascending or descending order. Routing is restricted to visiting the channel in
order (ascending or descending) to eliminate cycles in the graph. If the routing restriction
disconnects the network, physical channels are split into virtual channels to connect the
network again.

In the dimension order routing, each packet is routed in one dimension at a time, arriv-
ing at the proper coordinate in each dimension before proceeding to the next dimension.
By enforcing a strictly monotonic order on the dimension traversed, deadlock-free routing
is guaranteed.

The network load and the availability of network resources do not influence the routing
of a message. Thus, the dimension order routing algorithm is exceedingly simple to
implement in hardware and provides low latency and high bandwidth. Additionally,
switches can be decomposed into smaller and faster switches, thus increasing speed. It
is well suited for uniform traffic distribution. The main disadvantages of deterministic
routing is that it cannot respond to dynamic network condition.

4.4.3 Routing Algorithm for HTN

As mentioned earlier, in this thesis paper, we use wormhole routing for switching and
popular deterministic, dimension order routing algorithm for routing messages.

We recall the routing algorithm stated in Section 3.2.3. The HTN performs routing of
messages from the top level to the bottom level as in TESH [5, 36]. We divide the routing
path of Level-L HTN into three phases, such as phase-1, phase-2, and phase-3. In phase-1
and phase-3, intra-BM communication is performed. Phase-1 is for source-BM and phase-
3 is for destination-BM. In phase-2, inter-BM communication is performed. In phase-1,
messages are transferred from source node to the outlet node of source-BM for higher
level transfer. In phase-2, messages are transferred from the outlet node of source-BM to
the inlet node of destination-BM, i.e., higher level communication is performed. Phase-2
is again divided into sub-phases, which is described in below. In phase-3, messages are
transferred from inlet node of destination-BM to the destination of the message.

The above taxonomy of routing algorithm for the HTN is summarized in the following
way:

e Phase 1: Intra-BM transfer path from source PE to the face of the BM.
e Phase 2: Higher level transfer path

sub-phase 2.i.1 : Intra-BM transfer to the outlet PE of Level (L — i) through the
y-link.
sub-phase 2.i.2 : Inter-BM transfer of Level (L — 4) through the y-link.

sub-phase 2.i.3 : Intra-BM transfer to the outlet PE of Level (L — i) through the
z-link.
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sub-phase 2.i.4 : Inter-BM transfer of Level (L — i) through the z-link.
Here, 0 <i < (L — 2).

e Phase 3: Intra-BM transfer path from the outlet of the inter-BM transfer path to
the destination PE.

Routing of the HTN is strictly defined by the source node address and the destination
node address. Let a source node address be s,,s, 1,5, 9, ..., S1, So, a destination node
address be d,,, d,, 1,d, o, ...,d;,dy, and a routing tag be t,,t, 1,t, o, ...,t1,ty, where, t; =
d; — s;. The source node address of HTN is expressed as:

S = Sa2r,52L-1,52L-2, -5 52,51, S0

= (s21.521-1); -, (82, 81, S0) (4.4)
Similarly, the destination node address is expressed as:

d = d2Lad2L717d2L727"'7d27d17d0
- (dzLdzL_l),...,(dg,dl,dg) (45)

Hence, n = 2L, where, L is the level number and n is the position of the node. Figure
4.12 shows the routing algorithm for the HTN.

As an example, consider the routing between PFE( 300y and PE3 2230y At first, in
phase-1 routing, the packets move to the outlet node P F(g )(0,0,0) of the source-BM. Next,
in phase-2 routing, the packets move to the node whose address in the y-axis is the same.
The packets are transferred to node PE3p)0,3,0). Then, in z-axis routing of phase-2,
the packets are transferred from PE(3)0,3,0) t0 PE(32)0,3,0). Finally, in phase-3 routing,
the routing is performed in the destination-BM and the packets are moved to the des-
tination PE32)2,3,0). The complete route is P Eg )3,0,0) — PE(0,0)0,00) = PE3,0)0,3,0) —
PE@30)033) — PEg1)03,0 — PE31)033) — PE32)03,0 = PEz2)130 = PE32)23,0)-
The above mentioned scenario is illustrated in Fig. 4.13.

4.4.4 Deadlock-free Routing

A deadlock-free routing algorithm can be constructed for an arbitrary interconnection
networks by introducing virtual channels. In this section, we investigate the number
of virtual channels required to make the routing algorithm deadlock-free for the HTN.
We also present a proof that the HTN is deadlock-free by these virtual channels. The
proposed routing algorithm enforce some routing restrictions to avoid deadlocks [32][33]

As dimension order routing is used in HTN, routing at the higher level is performed
firstly in the y-direction and then in the x-direction. In a basic module (BM), the routing
order is initially in the z-direction, then in the y-direction, and finally in the z-direction.

The interconnection of the BM and the higher level network of HTN is toroidal connec-
tion. By using the following lemma and corollary, the number of virtual channels required
to make deadlock free routing of HTN is evaluated.
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Routing Algorithm for HTIN

Routing HTN(s,d);
source node address:s,, $p_1, Sp_2, ---; S1, S0
destination node address: d,, d,,—1, dy—2, ..., d1, dy
tag: tn, tn-1,th-2, ..., 1, %o
fori=n:3
if (4/2 =0 and (¢; > 0 or t; = —3)), routedir = North; endif;
if (i/2=0and (t;, <0ort; = 3)), routedir = South; endif;
if (1%2 =1 and (t; > 0 or ¢, = —3)), routedir = East; endif;
if ((%2=1and (t; <0ort; = 3)), routedir = West; endif;
while (¢ # 0) do
N, = outlet,(s,d, L, routedir)
N, = outlet,(s,d, L, routedir)
N, = outlet,(s,d, L, routedir)
BM_Routing(N., Ny, N,)
if (routedir = North or East), move packet to next BM; endif;
if (routedir = South or West), move packet to previous BM; endif;

~ e~

endwhile;
endfor;
BM _Routing(t;, t,, t,)

end
BM_Routing (t2,1,%0);
BM _tag ta, t1,ty = receiving node address (rq,71,79) — destination (da, d1, dy)
fori=2:0
if (¢; > 0 and ¢; < 2) or (¢; < 0 and t; = —3), movedir = positive; endif;
if (t; >0 and t; = 3) or (t; < 0 and ¢; > —2), movedir = negetive; endif;
if (movedir = positive and ¢; > 0), distance = ¢;; endif;
if (movedir = positive and t; < 0), distance = 4 + ¢;; endif;
if (movedir = negative and ¢; < 0), distance = ¢;; endif;
if (movedir = negative and ¢; > 0), distance = —4 + t;; endif;
endfor
while(t2 # 0 or distance; # 0) do
if (movedir = positive), move packet to +2z node; distance; = distances — 1; endif;
if (movedir = negetive), move packet to —z node; distance; = distance; + 1; endif;
endwhile;
while(t; # 0 or distance; # 0) do
if (movedir = positive), move packet to +y node; distance; = distance; — 1; endif;
if (movedir = negetive), move packet to —y node; distance; = distance; + 1; endif;
endwhile;
while(ty # 0 or distancey # 0) do
if (movedir = positive), move packet to +z node; distancey = distancey — 1; endif;
if (movedir = negetive), move packet to —z node; distancey = distancey + 1; endif;
endwhile;
end

Figure 4.12: Routing algorithm of HTN
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Figure 4.13: An example of message routing in HTN

Lemma 4.1 If a message is routed in the order z — y — x in a 3D-torus network, then
the network is deadlock-free with 2 virtual channels.

Proof: In torus interconnection networks, cyclic dependencies can occur in two ways.
Firstly, due to the inter-dimensional turns made by the messages. Secondly, due to wrap-
around connection in the same direction. In order to avoid these cyclic dependencies, we
need two virtual channels, one for inter-dimensional turns and another for wrap-around
connections. Initially, messages are routed over virtual channel 0. Then, messages are
routed over virtual channel 1 if the packet is going to use a wrap-around channel. The
channels are allocated as shown in Eq. 4.6 for a 3D-torus network. Enforcing this routing
restriction and use of virtual channels avoid cyclic dependencies. Thus, deadlock freeness
is proved.

(I,ve,n), 2+ channel,

(l,vc,4 —ny), z— channel,

B (l,ve,ny), y+ channel,
¢ = ), y— channel, (4.6)
(I,ve,ng), x4+ channel,
)

| (l,ve,4 —ng), x— channel

Here, [ = {0,1,2,3,4,5} are the links used in the BM, [ = {0,1},l = {2,3}, and | = {4, 5}
are the used in the z—direction, y—direction, and x—direction, respectively. ve = {0, 1} are
virtual channels, and ng, ny, and ny are the PE addresses in the BM.
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Corollary 4.1 If the message is routed in the y — x direction in a 2D-torus network,
then the network is deadlock-free with 2 virtual channels.

Proof: 1f the channels are allocated as shown in Eq. 4.7 for a 2D-torus network then
the deadlock freeness is proved.

(I,ve,nar), y+ channel,

_ (l,ve,4 —ngr), y— channel,
“= (I,ve,nar,-1), @+ channel, (4.7)

(I,ve,4 —nor—1), x— channel

Here, | = {6,7} are the links used for higher-level interconnection, ve = {0,1} are
virtual channels, and ny;, and nsy;, ; are the PE addresses in the higher level where L is
the level number. Links-6 is used in the interconnection of East and West direction, and
Links-7 is used in the interconnection of North and South direction.

Theorem 4.2 A Hierarchical Torus Network (HTN) with 6 virtual channels is deadlock-
free.

Proof: Both the BM and the higher levels of the HTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-BM,
respectively. The BM of the HTN is a 3D-torus network. According to Lemma 4.1, the
number of necessary virtual channels for each of phase-1 and phase-3 is 2. Intra-BM
links between inter-BM links on the xy-plane of the BM are used in sub-phase 2.:.1 and
sub-phase 2.:.3. Sub-phase 2.:.1 and sub-phase 2.7.3 utilizes channels over intra-BM links.
They share either the channels of phase-1 or phase-3. Nodes at the contours of zy-plane
are assigned to each high level as gate nodes. Links at the edge of the BM are used
in sub-phase 2.7.2 and sub-phase 2.i.4, and these links form a 2D-torus network. This
2D-torus network is the higher-level interconnection of the HTN. According to Corollary
4.1, the number of necessary virtual channels for this 2D-torus network is 2.

Therefore, the total number of necessary virtual channels for the whole network is 6.

4.5 Minimum Number of Virtual Channels

Virtual channel is used to solve the problems of deadlock in wormhole-routed interconnec-
tion networks. The use of virtual channels requires a careful analyses in order to maximize
the benefits and minimize the drawbacks. Dally [38] has been pointed out that the larger
the number of virtual channels, the higher the performance achieved. Aoyama and Chien
[41] compare the cost of adding virtual channels for wormhole switched networks. They
have been shown that a 30% penalty in router speed per extra virtual channel.
Multiplexing large number of virtual channels on a physical channel reduces the band-
width of individual virtual channel. As the consequence, it will reduce the data rate of
individual messages and increase the message latency. Crossbar controller speed which
is determined by the routinhg algorithm is also reduced for additional virtual channels.
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Increasing the number of virtual channel makes the link controllers more complex since
they must support the arbitration between multiple virtual channel for physical channel.
Again, the hardware cost is increasing along with the increase of number of virtual chan-
nels. A good wormbhole routing algorithm must reduce network latency as much as possible
without excessive hardware requirement. Thus, the deadlock free routing algorithm with
minimum number of virtual channels is needed. In this section, we have investigated the
minimum number of virtual channels for deadlock-free routing of the HTN.

Theorem 4.3 A Hierarchical Torus Network (HTN) with 2 virtual channels is deadlock-
free.

Proof: Both the BM and the higher levels of the HTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-BM,
respectively. The BM of the HTN is a 3D-torus network. According to Lemma 4.1, the
number of necessary virtual channels for phase-1 and phase-3 is 2. Intra-BM links between
inter-BM links on the xy-plane of the BM are used in sub-phase 2.i.1 and sub-phase 2.:.3.
Sub-phase 2.i.1 and sub-phase 2.:.3 utilizes channels over intra-BM links. They share
either the channels of phase-1 or phase-3. PEs at the contours of zy-plane are assigned
to each high level as gate nodes. Links at the edge of the BM are used in sub-phase 2.7.2
and sub-phase 2.7.4, and these links form a 2D-torus network. This 2D-torus network
is the higher-level interconnection of the HTN. According to Corollary 4.1, the number
of necessary virtual channels for this 2D-torus network is also 2. The main idea is that
messages are routed over one virtual channel. Then, messages are switched over the other
virtual channel if the packet is going to use a wrap-around connection.

Therefore, the total number of necessary virtual channels for the whole network is 2.

4.6 Conclusions

This chapter prsented the concept of deadlock in interconnection network and the require-
ments for deadlock free routing algorithms. In addition, we examined the deadlock-free
routing algorithm for HTN by using virtual channels. Wormbhole routing is used for
switching, because it requires the small number of buffers and can control data flow as
pipelined fashion reducing communication overhead. Dimension order routing for message
passing because of its simplicity. Investigation of number of virtual channels required for
deadlock free routing of HTN is also studied in this Chapter. At first, it is shown that 6
virtual channels per physical channel guarantees the deadlock-free routing algorithm for
HTN. However, the hardware cost is high for this large number of virtual channels. In
order to reduce the hardware cost, we have investigated the minimum number of virtual
channel for deadlock free routing of HTN. It has been proved that 2 virtual channels per
physical channel are sufficient for the deadlock-free routing algorithm of the HTN and
this is the minimum value.



Chapter 5

“There are three principal means of acquir-
ing knowledge... observation of nature, reflec-
tion, and experimentation. Observation collects
facts; Reflection combines them; Fxperimenta-
tion verifies the result of that combination.”

— Denis Diderot
Performance of the HT'IN

5.1 Introduction

The design of an interconnection network for a multicomputer inevitably involves trade-
offs between performance and cost. The goal in the design of an interconnection network
is to achieve the highest performance at a given cost, or to minimize the cost subject to
given performance constraints. Thus, there is a requirement to estimate the performance
of the network before it is actually constructed or integrated into the system. Performance
evaluation of an interconnection networks includes: the hardware cost, the message delay,
the network throughput, the potential for fault tolerance, the embedding capability, and
the partitioning capability.

In an interconnection network, the hardware cost is expressed in terms of number of
links and node degree. The message delay is expressed theoretically by the network
diameter and the average distance. Diameter is the upper bound of message delay. In
practice, the message delay is expressed by the average latency of messages between the
time of their departure from their source and the time of their arrival at their destination.
The network throughput is measured by the average number of delivered messages per
unit of time. The fault tolerance of a network is the number of elements that can fail
without the network becoming disconnected. In other words, a fault tolerant network has
the ability to route information even if certain network components (processors, switches,
links) fail. The embedding capability is the ability of a network to efficiently emulate
other topological structures. The partitioning capability is the ability of a network to
subdivide into subgraphs of identical topological structures.

The details of hardware cost is addressed in Chapter 3. This Chapter deals with the
performance issue of Hierarchical Torus Network (HTN). Dynamic communication perfor-
mance (message delay and network throughput), system yield by providing redundancy,
and suitability of some advanced applications are studied in this Chapter. The embedding
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issue and partitioning issue are beyond the scope of this paper. These two issues are kept
in mind for future research.

The outline of this chapter is as follows: Section 5.2 discusses the dynamic communica-
tion performance of HTN as well as its applicability to several commonly used networks for
parallel computers. The critical issues of fault tolerance and yield are examined in Section
5.3. Next, mapping of of some advanced applications such as bitonic merge algorithm,
Fast Fourier Transform (FFT) and finding the maximum to the HTN is considered briefly
in Section 5.4. Finally, some concluding remarks of this chapter are given in Section 5.5.

5.2 Dynamic Communication Performance

The overall performance of a multicomputer system is affected by the performance of the
interconnection network as well as the performance of the node. Continuing advances in
VLSI/WSI technology promise to deliver more power to the individual node processor.
On the other hand, the low performance of the communication network severely limits
the speed of entire multicomputer system [39]. The principal performance measure of
multicomputer communication network is message latency and network throughput. For
the network to have good performance, low latency and high throughput must be achieved.

5.2.1 Performance Metrics

The performance of an interconnection network is characterized by two parameters —
message latency and network throughput. Message latency refers to the time elapsed by
messages as they traverse from source to destination, from the instant when the first flit is
injected to the network at the source till when the last flit of the message is received at the
destination. Network throughput, on the other hand, refers to the number of messages
delivered per unit of time through the network.

The general definition of latency is vague, and can be interpreted in different ways.
If the study only considers the network hardware, latency is usually defined as the time
elapsed since the message header is injected into the network at the source node until the
last unit of information is received at the destination node. If the study also considers the
injection queues, the queuing at the source node is added to the latency. This queuing
time is usually negligible unless the network is close to its saturation point. When the
messaging layer is also being considered, latency is defined as the time elapsed since the
system call to send a message is initiated at the source node until the system call to
receive that message returns control to the user program at the destination node. Unless
otherwise stated, the message latency presented in this chapter, is the average value of
the time elapsed since the message header is injected into the network at the source node
until the last unit of the data flit is received at the destination node. Latency is measured
in time units. However, when comparing several design choices, the absolute value is not
important. As the comparison is performed by computer simulation, latency is measured
in simulator clock cycles.
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Throughput is the maximum amount of information delivered per unit of time. It
can also be defined as the maximum traffic accepted by the network, where traffic is
the amount of information delivered per unit of time. Throughput could be measured
in messages per second or messages per clock cycle, depending on whether absolute or
relative timing is used. However, throughput would depend on message and network size.
So, throughput is usually normalized, dividing it by message size and network size. When
the throughput is compared by computer simulation, and wormhole routing is used for
switching, throughput can be measured in flits per node and clock cycle.

In wormhole routing, packets are buffered in a distributed manner. It use small buffer.
In this system with finite buffers, packets may be discarded because of lack of buffer-space.
Thus, the network becomes unstable beyond certain sustainable throughput, resulting in
a steep rise in the message latency, and the throughput might even decrease in this region
with a further increase of messages in the network.

5.2.2 Simulation Parameter

The simulation parameters affecting simulation results are as follows:

1. Network Topology
Including our proposed HTN, we have been considered TESH, H3D-mesh, H3D-
torus, 2D-mesh, and 2D-torus networks for the purpose of comparison.

2. Network Size
We have used 256, 512, and 1024 noded networks for simulation.

3. Switching
We use wormhole routing algorithm for switching technique. This is an emerging
switching technique for current generation multicomputers.

4. Routing Strategy
We have chosen dimension order routing algorithm because it is representative of
routing strategy for existing multicomputers. The dimension order routing algo-
rithm provides the only route for the source and destination pair.

5. Number of Virtual Channels
2 virtual channels per physical channel is simulated, which is the minimum number
of virtual channels required to implement the deadlock-free routing algorithm for
HTN. We have also used 3, 4, and 6 virtual channels.

6. Arbitration of Virtual Channels
The virtual channels are arbitrated by round-robin algorithm.

7. Message Length
Three messages are used for simulation, such as short message (16 Flits), medium
message (64 Flits), and long message (256 Flits). 2 flits are used as a header flit.
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8. Traffic Pattern
Network performance is largely affected by the message traffic pattern. The message
traffic pattern is used in our simulation is uniform traffic pattern. In this pattern,
every nodes send messages every other nodes with equal probability. That is, source
and destination are randomly selected.

9. Simulation Time
Simulation time is 20000 cycles. In each clock cycle, one flit is transferred from input
buffer to output buffer or from output buffer to input buffer. Thus, for transferring
data between two nodes it takes two clock cycles.

5.2.3 Experimental Result

In this section, we have shown some simulation results of algorithm proposed in Chapter
4. Figure 5.1 shows a comparison of dynamic communication performance of HTN with
H3D-mesh network and mesh network under uniform-random traffic pattern. The inter-
level connectivity is 0. We have used as much virtual channels as possible to make the
corresponding network deadlock free. We have emphasized on deadlock free routing only.
The use of virtual channel is not uniform for different networks. We have used 1, 5, and
6 virtual channels for mesh network, H3D-mesh network, and HTN, respectively. Thus,
a fair comparison of the communication performance of these families of interconnection
networks is not shown in Fig. 5.1.
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Figure 5.1: Dynamic communication performance of different networks with dimension
order routing algorithm for short message: 1024 nodes, different virtual channels.
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Figure 5.2: Dynamic communication performance of different networks with dimension
order routing algorithm for short message: 1024 nodes, 3 virtual channels.

We have tried to reduce the number of virtual channels for deadlock free routing of
HTN and H3D-mesh network. In fact, we have made a fair comparison of dynamic
communication performance between different networks. Figure 5.2, shows a comparison
of dynamic communication performance between HTN, H3D-mesh network, and mesh
network with 3 virtual channels.

Figure 5.2 shows that the communication performance of HTN is better than H3D-
mesh network but the maximum throughput of HTN is less than mesh network. To
improve the throughput of HTN, inter-level connectivity (¢) of HTN is increased from 0
to 1. With this condition, we have evaluated the dynamic communication performance of
HTN, H3D-mesh and mesh networks and presented in Fig. 5.3 and 5.4. It is shown that
the dynamic communication performance of HTN with 3 virtual channels is better than
H3D-mesh and mesh networks. Under uniform traffic pattern, the message latency of
HTN is lower and the network throughput is higher than H3D-mesh and mesh networks.

The hardware cost of an interconnection network is increased along with the increase
of number of virtual channels. That’s why, we have investigated the minimum number of
virtual channels for deadlock free routing of HT'N. 2 virtual channel per physical channel is
the optimal number of virtual channels required to implement the deadlock free routing of
HTN. We have simulated the dynamic communication performance of different networks
with 2 virtual channels.

In Fig. 5.5, we can see that the communication performance of HTN with 2 virtual
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Figure 5.3: Dynamic communication performance of different networks with dimension
order routing algorithm for short message: 1024 nodes, 3 virtual channels.

800 y y T g T ' T
700
600
500
400
300

200

Average Transfer Time (Cycles)

100

0
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Throughput (Flits/Cycle/Node)

Figure 5.4: Dynamic communication performance of different networks with dimension
order routing algorithm for medium message: 1024 nodes, 3 virtual channels.
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channels is better than H3D-mesh, mesh and torus networks. Under uniform traffic pat-
tern, the message latency of HTN is slightly lower than H3D-mesh network but it is far
lower than mesh and torus networks. The maximum throughput of HTN is higher than
H3D-mesh, mesh, and torus networks. Figure 5.6 and 5.7 show the communication perfor-
mance for medium and long messages. From Fig. 5.5, 5.6, and 5.7, it has been seen that
the dynamic communication performance of HTN is significantly better than H3D-mesh,
mesh and torus networks.

A comparison of the communication performance between different hierarchical inter-
connection networks such as HTN, TESH, H3D-mesh, and H3D-torus is not an easy task
because each networks have different architecture for interconnection. That’s why, it is
hardly match the total number of nodes of different networks. According to Lemma 3.3,
the total number of nodes in the HTN is N = [m?’ X nZ(Lfl)]. Ifm=4,n=2 and L =2,
then the total number of nodes is 256. Level-2 TESH, Level-2 H3DM, 16 x 16 mesh, and
16 x 16 torus networks have 256 nodes.

It has already been shown that the communication performance of HTN is better than
mesh and torus networks and it is also better than hierarchical interconnection network
H3D-mesh network. In Fig. 5.8 and 5.9, we can see that the message latency of HTN is
remarkably lower than TESH network. The maximum throughput of HTN is far higher
than TESH network. Figure 5.9 is a little modification of Fig. 5.8, which contains the
graph of different hierarchical networks. We have also evaluated the dynamic communi-
cation performance of these hierarchical interconnection networks for short message and
3 virtual channels. The result is plotted in Fig. 5.10. Simulation is also carried out for
medium and long messages. These results are also plotted in Fig. 5.11 and 5.12.

Figure 5.9, 5.10, 5.11, and 5.12 compare the communication performance of different
hierarchical interconnection networks for short, medium, and long messages, respectively.
It is shown in these figures that the communication performance of HTN is significantly
better than H3D-mesh and TESH networks. Here it is also mentioned that the inter-level
connectivity of different hierarchical interconnection networks is 1 (¢ = 1).

As mentioned earlier that it is hardly match the number of nodes of different net-
works. We have considered a rectangular HTN as shown in Fig. 5.13.(a) to match the
total number of nodes with H3D-torus network. The structure of the H3D-torus is also
shown in Fig. 5.13.(b). We have evaluated the dynamic communication performance of
HTN and H3D-torus network of 512 nodes. The comparison of communication perfor-
mance between HTN and H3D-torus network is shown in Fig. 5.14. Here the inter-level
connectivity is 0 and 3 virtual channels are used for simulation. From the graph, it is
seen that the average transfer time of HTN is lower than H3D-torus network and the
maximum throughput of HT'N is far higher than H3D-torus network. Thus, the dynamic
communication performance of HTN is far better than H3D-torus network.

Figure 5.15 shows the throughput as a function of probability of packet generation rate.
As shown in figure 5.15, throughput of the proposed routing algorithm on HTN declines
later than H3D-mesh, mesh, and torus networks, because it saturates later than those
networks. Therefore, the throughput of HTN is better than H3D-mesh, mesh, and torus
networks.
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Figure 5.5: Dynamic communication performance of different networks with dimension
order routing algorithm for short message: 1024 nodes, 2 virtual channels.
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Figure 5.6: Dynamic communication performance of different networks with dimension
order routing algorithm for medium message: 1024 nodes, 2 virtual channels.



5.2 Dynamic Communication Performance 72

2000

1500

1000

500

Average Transfer Time (Cycles)

0 L L L L L
0 0.01 0.02 0.03 0.04 0.05

Throughput (Flits/Cycle/Node)

Figure 5.7: Dynamic communication performance of different networks with dimension
order routing algorithm for long message: 1024 nodes, 2 virtual channels.
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Figure 5.8: Dynamic communication performance of different networks with dimension
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Figure 5.9: Dynamic communication performance of different hierarchical network with

dimension order routing algorithm for short message: 256 nodes, 2 virtual channels.
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Figure 5.10: Dynamic communication performance of different hierarchical network with

dimension order routing algorithm for short message: 256 nodes, 3 virtual channels.



5.2 Dynamic Communication Performance 74

600

500

400

300

200

Average Transfer Time (Cycles)

100

O L L L L L L L L L

0 001 002 003 004 005 006 0.07 0.08 0.09
Throughput (Flits/Cycle/Node)

Figure 5.11: Dynamic communication performance of different hierarchical network with
dimension order routing algorithm for medium message: 256 nodes, 2 virtual channels.
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Figure 5.12: Dynamic communication performance of different hierarchical network with
dimension order routing algorithm for long message: 256 nodes, 2 virtual channels.
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Figure 5.13: (a) An HTN with 512 nodes. (b) An H3D-torus network with 512 nodes.

450

400

350

300

250

200

150

100

Average Transfer Time (Cycles)

50

O L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03

Throughput (Flits’Cycle/Node)

Figure 5.14: Dynamic communication performance between HTN and H3D-torus network
with dimension order routing algorithm for short message: 512 nodes, 2 virtual channels.
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Figure 5.15: Effect of Flits generation rate for short message: 1024 nodes, 2 virtual
channels, and

5.2.4 Effect of Message Length

In this section, we have analyzed the effect of message length on performance. Figure
5.16 and 5.17 show the average message latency divided by message length for uniform
traffic pattern. In Fig. 5.16, we have considered 3 virtual channels. Here, the dynamic
communication performance is simulated for short and medium messages. It is shown
that the dynamic communication performance of medium message is better than short
message for all networks. For the sake of clarity, Fig. 5.17 shows only the curve of HTN
with short, medium, and long messages. In this case, 2 virtual channels per physical
channel is used for evaluating dynamic communication performance.

The average message latency is smaller for long messages. The reason is that wormhole
switching is used. Thus, they are pipelined in nature. Path setup time is amortized among
more flits when messages are long. Moreover, data flit can advance faster than message
headers because headers have to be take the routing decision. Hence, headers have to
wait for the routing control unit to compute the output channel, and possibly waiting for
the output channel to become free. Therefore, when the header reaches the destination
node, data flits advance faster, thus favoring long message.

Figure 5.17 shows that average transfer time is decreasing and the maximum throughput
is increasing in Hierarchical Torus Network (HTN) along with the increase of message
length.
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of different networks: 1024 nodes, 3 virtual channels.

Average Transfer Time (Cycles/Flit)

0.01 0.02 0.03 0.04 0.05
Throughput (Flits/Cycle/Node)

Figure 5.17: Average message latency divided by message length vs. network throughput
of HTN: 1024 nodes, 2 virtual channels.
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5.2.5 Effect of the Number of Virtual Channel

Splitting each physical channel into several virtual channels increases the number of rout-
ing choices, allowing messages to pass blocked messages. On the other hand, flits from
several messages are multiplexed onto the same physical channel, slowing down both mes-
sages. The effect of increasing the number of virtual channels has been analyzed in [38]
for deterministic routing algorithm on a 2D-mesh network.

In [38], it has been pointed out that the larger the number of virtual channels, the
higher the performance achieved. Unfortunately, this is not true for all the topologies and
network traffic conditions [40]. The first approach may be choosing the optimal number
of virtual channels for a given network. However, that optimal number depends on several
parameters, including network traffic. In this section, we have examined the effect of the
number of virtual channels on the performance of the HTN.

Figure 5.18 shows the behavior of the dimension order routing algorithm with 2, 3, 4,
and 6 virtual channels per physical channel on the HTN. The dynamic communication
performance of HTN with different virtual channels is almost same. Adding more virtual
channels does not increase communication performance considerably. Because the buffer
size is smaller and blocked message occupy more channels. As a result, throughput in-
creases by a very small amount. Also, message latency slightly increases when adding
virtual channels.
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Figure 5.18: Effect of the number of virtual channels on dimension order routing algorithm
for HTN: 1024 nodes, 16 flits
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5.3 Fault Tolerance Performance

Performance and fault tolerance are two dominant issues facing the design of intercon-
nection networks for massively parallel computers. Fault tolerance is the ability of the
network to function in the presence of component failures. However, techniques used
to realize fault tolerance are often at the expense of considerable performance degrada-
tion. Conversely, making high-performance communication techniques resilient to network
faults posses challenging problems. In this section, we have pointed out the redundancy
and yield of the Hierarchical Torus Network (HTN).

5.3.1 Path Substitution

Faulty PEs are replaced by means of substitution paths. A substitution path is defined
as a sequence of adjacent PEs beginning with a faulty PE and ending in a spare PE. It
must contain exactly one faulty PE, one spare PE, and zero or more healthy PEs. Two
substitution paths are disjoint if they don’t share a PE. Basic types of substitution paths,
depicted in Fig. 5.19, are Shift, L-shaped, and Diagonal [42]. A Shift substitution path
replaces a faulty PE by shifting the PEs along a single row or column. An L-Shaped
substitution path borrows spare nodes from other rows or columns to replace the faulty
PE by the spare PE of that borrowed rows or columns. A Diagonal substitution path
replaces a faulty node by a spare node that are surrounded by faulty nodes.

Shift L-Shaped Diagonal

Healthy Node B Faulty Node B Spare Node

Figure 5.19: Substitution paths

5.3.2 Redundancy and Yield

The Hierarchical Torus Network (HTN) is implemented with redundancy at each level
of hierarchy, i.e., basic modules have spare PEs, the Level-2 network has spare BMs,
the Level-3 network has spare Level-2 subnetworks and so on. This is devised for fault
tolerance. This hierarchical redundancy scheme is portrayed in Fig. 5.20.

Let us focus on the basic module. The BM of HTN is an (m x m x m) 3D-torus
network. A redundant BM includes m columns of spare nodes as well as the necessary
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Figure 5.20: Hierarchical redundancy

switches to reconfigure the module using the healthy nodes. We need more switches to
reconfigure the BM since it is a 3D-torus network. To reduce the number of switches and
reconfiguration complexity we have restricted the reconfiguration strategy. Each plane in
the zy-plane of the BM includes a column of spare nodes to replace the faulty nodes of
that plane using the healthy nodes of the spare column. Each plane in the zy-plane of
the BM is a 2D-torus network. For example, in a (4 x 4 x 4) redundant basic module
with the 4 columns of spare nodes have 5 x 4 x 4 = 80 PEs, while only 64 are needed.
Thus, each plane has 5 x 4 = 20 PEs, while only 16 are needed. With this arrangement,
a maximum of 4 faulty PEs per plane can be tolerated through replacement by the spare
PEs, as illustrated in Fig. 5.21, 5.22, and 5.23. Needless to say that more than 4 PE per
plane turn out to be defective or faulty in which the BM is declared as non-reconfigurable.
In fact, switches and links must also be taken into account. The switch states useful for
reconfiguration, are (a) no connect, (b) north-to-south and east-to-west, (¢) north-to-west
and south-to-east, and (d) north-to-east and south-to-west connects.

At the second level, a row of spare BMs is provided so that a faulty BM may be replaced
by one of the spare BMs. We should remark that the scheme can be improved upon by
mutual sharing of the spare column between adjacent planes of the basic module and
adjacent BMs. This can enhance the harvesting even further.

To assess the effectiveness of the fault tolerance strategy, let us compute the yield of the
system. Assuming that the defect distribution in the PEs, switches and links is Poisson.
Yield is defined as the probability of obtaining a fault free network. The yield of a basic
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Figure 5.21: Reconfiguration of a BM in the presence of faulty PEs.
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(5.1)

That is the probability of a healthy BM is estimated as the product of (a) the probability
of having a minimum of 64 healthy PEs and (b) the probability of all links and switches
being healthy. This is a conservative estimation. In a (4 x 4 x 4) BM, a maximum of 4
faulty PEs can be tolerated in each plane, the yield of the PEs per plane of the BM can
be estimated by Eq. 5.2. 4 planes are available in that BM. Thus, the yield of the PEs
per BM can be estimated by Eq. 5.3. Here, Y,,,4. is the probability that a PE is fault

free.
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Figure 5.22: Reconfiguration of a BM in the presence of faulty PEs.
e 004D where D denotes the fault density per em square.

channel width of 1.0 mm between PEs, the tile area is 9.00 mm?.
4 mm?, the total channel area per tile becomes 5.00 mm?.

then Y, 46
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Figure 5.23: Reconfiguration of a BM in the presence of faulty PEs.

that the area occupied by the switches and links is about 30% of the channel area [6];
further, we assume that 50% of this is critical area. Therefore, the critical area used by
the switches and links per tile is 0.75 mm?. As stated above, each redundant planes of
the BM consists of 20 PEs or titles. Thus, the total critical area of switches and links per
plane is 20 x 0.75 = 15.00 mm? = 0.15 cm?. Therefore the yield of the switches and links
is computed as:

)/;witches, links —

=[]

. , . 4
[e—Cmtzcal Area of Switches & LmlcsxD] (54)

4

For the second level, as mentioned above, a row of spare BMs is provided. Therefore,
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Figure 5.24: Yield for BM and Level-2 network vs. fault density with spare node

the second level network yield becomes as follows:

20 20 k 20—k
Yiecond_tevel = Z k YBM (1 - YBM) (55)

k=16

For different fault densities with and without spare elements the yield is shown in Fig.
5.24 and Fig. 5.25, respectively. It is shown that the use of an additional column of
nodes in each plane of the BM, a spare row of BMs for each second level network, a spare
column of second level subnetworks at the third level, and so on, results in remarkable
enhancement of network yield. Thus, with a 25% redundancy at each level, the yield
at the second level is estimated to range from 0.995 to 0.378 corresponding to the fault
density ranging from 0.10 defects/cm? to 0.50 defects/cm?. Thus, the yielding of HTN
is satisfactory.

5.4 Application Mapping

One of the desirable attributes of designing interconnection network is convenient mapping
of applications, specially those with regularity of computations in the designed network
[30]. Mapping an algorithm to an interconnection network involve mapping computations
to processors so that the algorithm runs efficiently. There are two cases of mapping
algorithms to interconnection networks. In the first case, a known parallel algorithm
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Figure 5.25: Yield for BM and Level-2 network vs. fault density without spare node

for solving the problem is mapped to the interconnection network to achieve maximum
parallelism. This does not modifying the computation behavior of the algorithm. In
many cases, however, the communication behavior of the algorithm can not be supported
efficiently by the given network, and a new parallel algorithm may need to be designed to
take the advantages of the underlying network. Thus, mapping also includes the design
of parallel algorithms for a specific interconnection network.

In this section, we will discuss the mapping of advanced applications, namely bitonic
merge, Fast Fourier Transform (FFT) and finding the maximum.

5.4.1 Converge and Diverge

Several interesting applications involve an input vector consisting of N pieces of data and
utilize a divide-and-conquer scheme. Therefore, it is useful to first map the CONVERGE
and DIVERGE function to the hierarchical networks.

Let N be an integer number, where N = 2% the value of data be d[m], where (m =

0,1,2, 0 oo N-1).

DIVERGE function executes an operation between 2°, 2,22 .. ... ... , 2F=2 2k=1 On the
other hand, CONVERGE function executes an operation between 2¥=1 2+k=2 . , 21,20,
CONVERGE and DIVERGE functions are defined by:

CONVERGE():

forj=k—-1:-1:0
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for 0 <m < N — 1 do in parallel
if a; = 0,0PERATION (m, m + 27); endif;
endfor;
endfor;
end;

DIVERGE();
forj=0:k—-1
for 0 < m < N — 1 do in parallel
if a; = 0,0PERATION (m, m + 27); endif;
endfor;
endfor;
end;

Where a; be the j-th bit of the binary representation of m, OPERATION (m, m+27) is
an operation between d[m| and d[m+27]. Figure 5.26 illustrates the execution of converge

on a 4 X 4 2D-mesh.

d[4]

d[0] | d[1] | d[2] | d[3] <:

dro] | d[a | d2] | d[3j

d[4]

do] | drag |

Figure 5.26: CONVERGE on a

4 x 4 2D-mesh
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5.4.2 Converge and Diverge on HTN

First we begin by mapping CONVERGE on a basic module of HTN. CONVERGE on a
BM of HTN is given as follows:

CONVERGE_BM();

for each element m in z-axis(a,! = 0,1) do in parallel
OPERATION(z[m, 1], z[m, i + 2]);

endfor;

for each element m in z-axis(a,' = 0,2) do in parallel
OPERATION(z[m, ], zlm,i + 1]);

endfor; for each element m in y-axis(a,’ = 0,1) do in parallel
OPERATION (y[m, ], y[m, i + 2]);

endfor;

for each element m in y-axis(a,' = 0,2) do in parallel
OPERATION((y[m, i], y[m, i + 1]);

endfor;  for each element m in z-axis(a,' = 0,1) do in parallel
OPERATION (z[m, ], z[m, i + 2]);

endfor;

for each element m in z-axis(a,' = 0,2) do in parallel
OPERATION(z[m, i], x[m, i + 1]);

endfor;

Similarly the DIVERGE function can be obtained if the CONVERGE function is ex-
ecuted in reverse order. Both the CONVERGE and DIVERGE function can also be
executed by higher level networks. Now we discuss the CONVERGE of higher level net-
work of HTN.

CONVERGE_HTN-L();
for each element m in y-axis(a,” = 0,1) do in parallel
OPERATION ((y[m, i], y[m, i + 2]);
endfor;
for each element m in y-axis(a,” = 0,2) do in parallel
OPERATION(y[m, ], y[m, i + 1]);
endfor; for each element m in z-axis(a,” = 0,1) do in parallel
OPERATION (z[m, i], x[m, i + 2]);
endfor;
for each element m in z-axis(a,” = 0,2) do in parallel
OPERATION ((z[m, i], z[m, i + 1]);
endfor;
Here, the z-axis and y-axis at higher levels correspond a sequence of subnets. CON-
VERGE operation at Level-2 executes between BMs. CONVERGE operation at Level-3
executes between Level-2 networks.
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5.4.3 Bitonic Merge

Sorting is an important operation for arranging data in many applications. Many efficient
sorting algorithms have been developed over the years, using a variety of techniques.
Sorting involves comparing different pairs of data items and rearranging them.

In this section, we discuss the bitonic merge [44,45] and estimate the processing time
of bitonic merging algorithm on HTN. The following definition and theorem provide the
background of bitonic merge.

Definition 5.1 A sequence aq, as, az, ......... , Aoy, 1S Satd to be bitonic if either
1. there is an integer 1 < j < 2n such that a; < as < a3z < ...... <aj > ajp > Qi >
...... Z a2n

2. the sequence does not initially satisfy condition (1) but can be shifted cyclically until
condition (1) is satisfied.

For example, {1,3,5,6,7,9,4, 2} is a bitonic sequence as it satisfies condition (1). Simi-
larly, the sequence {7,8,6,4,3,1,2,5}, which does not satisfy condition (1), is also bitonic
as it can be shifted cyclically to obtain {2,5,7,8,6,4,3,1}.

Theorem 5.1 Let {ay,as,as, ......... ,agn } be a bitonic sequence. If d; = min(a;, a,y;) and
e; = max(a;, ap1q) for 1 <i < n, then

1. {dy,ds,ds, ...... ,dy} and {e1, eq, €3, ...... ,€n} are each bitonic, and

2. max(dy, dy, ds, ...... ,dy) < min(ey, ey, €3, ...... ,En)-

The bitonic merging algorithm sorts a bitonic sequence in either ascending or descending
order. Its routine falls in the class of either CONVERGE or DIVERGE functions. The
operation to make a bitonic list is given by:

OPERATION (m,m-27)

{

move Ri(m + 27) to Ry(m);

if aj+1:0,
1 [Ri(m), Be(m)]=[min{ Ry (m), Rz(m) }max{Ri(m), Ra(m)}] ;
gﬁf{ (m), Bz (m)]=[max{R(m), Ry(m) },min{ R (m), Ry (m)}];

move Ry(m) to Ry(m + 27);

}

According to theorem 5.1.(1), the bitonic merge operation becomes as follows:
OPERATION (m,m+27)

{
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move Ri(m + 27) to Ry(m);
[R1(m), Re(m)]=[min{R:(m), Ra(m)}, max{Ri(m), Ra(m)}];
move Ry(m) to Ry(m + 27);

}

This algorithm has two important steps. The ‘move step’ is used to transfer data from
one node to another, and the comparison (min, max) step.

5.4.4 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) has wide and variety applications and it requires very high
speed computation. FFT is an efficient algorithm for the computation of the discrete
Fourier transform:

N—-1
X[k = > an] wik k=0,1,2,... ... , N—1 (5.6)

k=0

where, Wy = exp(fglvz”). The basic operation of the decimation in frequency FFT

algorithm is the following butterfly operation:

xm[p] = -'L'm_l[p]+1'm_1[Q]
Tmld] = (Tma[p] = Tm1[g)W, (5.7)

here, kK = log N, and m is the number of stages for butterfly.

Since the two input data of a butterfly in the m-th stage are 25~™ locations apart, the
FFT algorithm falls in the CONVERGE function class. Thus, the CONVERGE function
is modified to perform an FFT algorithm as follows:

OPERATION (m,m+27)

{
move Ri(m + 27) to Ry(m);
Temp(m) = Ri(m) + Ry(m);
Ry(m) = (Ri(m) — Ra(m)) « Wy'"
Ry (m) = Temp(m); ,
move Ry(m) to Ry(m + 27);

}

The total time required to perform the FFT on N pieces of data is the same as the
time required to sort /N pieces of data by the bitonic merge algorithm except that Toprr
is different. It is the time required to perform the operations in the middle 3 lines of the
above pseudo-code.
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5.4.5 Finding the Maximum

To find the maximum or minimum value among a large number of data, CONVERGE
is iteratively used. However, the recursive execution is not necessary for finding the
maximum. Therefore, the CONVERGE operation becomes simpler as follows:

CONVERGE();
forj=k—-1:-1:0
for0 <m < %ki]fl — 1 do in parallel
if a; =0, OPERATION (m, m + 27); endif;
endfor;
endfor;
end;

Thus, the operation to find the maximum is given by:
OPERATION (m, m + 27)
{
move Ry (m + 27) to Ry(m);
Ry (m) = max|[R;(m), Ra(m)];
¥
The total operation to find the maximum is given by:
MAX
{
CONVERGE_BM();
forj=2:1L
if a/ 7 =0 and al/ 7% =0 and a7 = 0,OPERATION (m, m+27);endif;
CONVERGE_network-j();
endif;
endfor;

}

5.4.6 Processing Time

To estimate the processing time of an application on interconnection network of massively
parallel computers, we define communication time and execution time. Communication
time is defined as the time required for unit distance routing-step, i.e., moving one data of
a sequence from a node to one of its neighboring nodes. Execution time is defined as the
time required for execution of one OPERATION. CONVERGE and DIVERGE functions
require logN steps. Thus, the total time required for an application is as follows:

T = ax Tmove + lOgN X TOPE'R (58)
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Where,

a =

Tmove -

Total number of communication steps.

Transfer time between adjacent nodes.

Toper = Execution time for OPERATION.

The performance of an application mapping is discussed by using the total number of
communication steps in an interconnection network. The total number of communication
steps of different networks are obtained as follows:

2D-Torus
2D—Torus __
S bitonic -
2D—Torus __
Smam -
3D-Torus
3D—Torus __
Sbitonic -
SSDfTorus —

max

4 (VN -1) (5.9)

2 (VN -1) (5.10)
logN% N%

3 (%)

6 (N —1) (5.11)

3(N3 —1) (5.12)

The total communication steps for finding the maximum is half of the bitonic merge,
because the finding of maximum of maximum does not necessary for return data in 2D-

torus and 3D-torus networks.

H3D-Torus

SH 3D—Torus
bitonic

= 6(L—1)x

H3D—-Torus
Smam

= 6(L—1)x

Z Y X NBM + ngj\/[mc (513)
i=1

! N% 1

090N, Ns§n
Z 2] + Sgt](‘ibic (514)
Jj=1
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L = Level number.
Ny, = Size of the higher level network.
Ny = Size of the basic module.

SBM

vitonic = Number of communication steps in basic module.

If the size of the basic module is (4 x 4 x 4) and the size of the higher level network is
(4 x 4 x 4), then

Spitomie. 00 = 1152(L — 1) +18 (5.15)
SH3D—Torus  — 18], (5.16)
H3D-Mesh
logv/Nu1 /N N
SHSD-Mesh — g, —1)x Y ( 2],“) X ZMJFS,,’?}O{%.C (5.17)
7=1
logv/Nur /N
SHSD-Mesh — ([, —1)x Y ( 2]3L>+S££§m (5.18)
j=1

If the size of the basic module is (4 x 4 x 4) and the size of the higher level network is
(4 x 4), then

Spiiomie <= 192(L — 1) + 18 (5.19)
SHSD=Mesh— — 12([, — 1) 4 18 (5.20)
HTN
HTN R m? BM
Spot o = 4(L—1 — So 5.21
bitonic ( ) X ]z::I 27 X m X q + bitonic ( )
logn
SHIN  — 4(L 1) x Eg: 2+ sBM (5.22)
max = 9] bitonic :

If m =4 and n = 4, i.e., the size of the basic module is (4 x 4 x 4) and the size of the
higher level network is (4 x 4), then

SN = 192(L — 1) + 18 (5.23)
SHIN  — 12(L — 1)+ 18 (5.24)



5.4 Application Mapping

5.4.7 Mapping Performance

Table 5.1 summarizes the total number of communication steps on a network for bitonic

merge, FFT, and finding the maximum.

Table 5.1: The total number of communication steps on a network for bitonic merge,

FFT, and finding the maximum.

‘ Bitonic Merge ‘

FET

‘ Finding the maximum H

Figure 5.27:
networks

2D-torus 4(v/N — 1) 4(v/N — 1) 2(v/N — 1)
3D-torus 6(vVN —1) 6(vN —1) 3(VN —1)
H3D-torus | 1152(L — 1) + 18 | 1152(L — 1) + 18 18L
H3D-mesh | 192(L —1) +18 | 192(L — 1) + 18 12(L—1)+18
HTN 192(L—1)+18 | 192(L—1)+18 12(L—1)+ 18
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The total number of communication steps of the bitonic merge in different

Figure 5.27 shows the total number of communication steps of bitonic merge on different
networks. Hierarchical networks execute this operation using O(logN) communication
steps. Since bitonic merge requires a large number of communication between all PEs
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Figure 5.28: The total number of communication steps of the FF'T in different networks
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Figure 5.29: The total number of communication steps for finding the maximum in dif-
ferent networks
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at each step, the total number of communication steps in HTN is larger than 2D-torus
and 3D-torus for thousands of PEs. For millions of PEs, however, HTN shows better
performance than 2D-torus and 3D-torus networks. Also, HT'N shows better performance
than H3D-torus network. This Fig. 5.27 also represents the communication steps of FFT
on different networks. Figure 5.28 also shows the communication steps of FFT on different
networks. The total communication steps of FF'T on HTN is smaller than TESH network
and k-ary m-cube networks. Thus, the total communication steps of bitonic merge on
HTN is smaller than TESH network.

Figure 5.29 shows the total number of communication steps for finding the maximum.
Here it is shown that HTN shows better performance than 2D-torus and 3D-torus net-
works.

5.5 Conclusions

In this chapter, we have studied the performance of Hierarchical Torus Network (HTN),
analyzed the effect of network traffic and dependencies on some evaluation standards. Dy-
namic communication performance is simulated for HTN as well as several other networks
for parallel computers. It is seen that the average transfer time of HTN is smaller than
mesh, torus, TESH, H3D-mesh, and H3D-torus networks. Maximum throughput of HTN
is also higher than those networks. The comparison is made under uniform traffic pattern
and it reveals that HT'N outperforms mesh, torus, TESH, H3D-mesh, and H3D-torus
networks. Redundancy and yield of HTN are also indicated. Finally, we have discussed
mapping of advanced application namely bitonic merge algorithm, FFT, and finding the
maximum value on HTN. It is shown that the number of communication steps of these
advanced applications on HTN is smaller than other networks.



Chapter 6

“Still round the corner there may wait, A new
road or a secret gate.”
- J.R.R. Tolkein

Conclusions

6.1 Conclusions

Parallel computers are generally built from processing elements which are interconnected
using a network. A new hierarchical interconnection network, Hierarchical Torus Network
(HTN) for massively parallel computer systems have been proposed in this thesis paper.
Using the proposed HTN, millions of nodes can be connected together with retaining
good network properties. Any design of an interconnection network is a trade-off of
various evaluation standards. We studied various aspects of HT'N in order to obtain a
better interconnection network.

The interconnection philosophy of the HTN, routing of messages in the network, static
network performance, and 3D-integration issues were discussed in detail. From the static
network performance, it is seen that the HTN possesses several attractive features in-
cluding fixed degree, small diameter, and small average distance. High bisection width
matches the communication requirements for a given computational rate. On the other
hand, a large bisection width is undesirable for a VLSI design of the interconnection
network, since it implies a lot of extra chip wires. The bisection width of the HTN is
higher than TESH and H3D-mesh network, equal to H3D-torus network and smaller than
conventional topologies, respectively.

The network is well suited to 3D wafer stacked implementations. It is shown that the
peak number of vertical links in a 3D wafer stacked implementation is quite small for HTN
as compared to other similar networks. Thus, HTN permits efficient VLSI/ULSI/WSI
realization. The layout area of HTN in a 3D wafer stacked implementation is amenable
to 3D implementation, due to the smaller number of vertical wires needed than almost
all other multi-computer networks.

We have used wormhole routing for switching, because it requires a small number of
buffers and can control data flow in a pipelined fashion, reducing communication overhead.
The characteristics of wormhole routing makes it particularly susceptible to deadlock. We
have presented a deadlock-free routing algorithm for HTN using virtual channels. We used
a deterministic dimension order routing algorithm for message passing. A dimension order
routing algorithm is exceedingly simple and provides low latency and high bandwidth. It
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is well-suited for uniform traffic patterns. Firstly, we have shown that six virtual channels
per physical channel are sufficient for deadlock-free routing algorithm of an HTN. However,
the hardware cost is high for this large number of virtual channels. In order to reduce
the hardware cost, we have investigated the minimum number of virtual channels for
deadlock-free routing of HTN. It has been proven that two virtual channels per physical
channel are sufficient for deadlock-free routing algorithm of the HTN and this is the
optimum value.

An interconnection network should transfer a maximum number of messages in the
shortest time with minimum cost and maximal reliability. Interprocessor communication
is a critical issue for interconnection networks. For good performance of a network, low
latency and high throughput are indispensable. We have evaluated the dynamic com-
munication performance of HT'N as well as several other commonly used networks and
hierarchical interconnection networks for parallel computers by dimension order routing
under uniform traffic pattern. Evaluation of dynamic communication performance was
carried out by computer simulation. The simulation studies were performed for short
(16 Flits), medium (64 Flits), and long (256 flits) messages. It has been shown that the
average transfer time of an HTN is smaller than mesh, torus, TESH, H3D-mesh, and H3D-
torus networks. Maximum throughput of the HTN is also higher than those networks.
The comparison of dynamic communication performance reveals that HTN outperforms
mesh, torus, TESH, H3D-mesh, and H3D-torus networks.

Fault tolerant networks are essential for the reliability of massively parallel computer
systems. Introducing redundancy in a network is a well-known technique for fault toler-
ance in interconnection networks. We have evaluated the redundancy and yield of HTN.
It is shown that the yield of HTN is satisfactory with 25% redundancy.

The interconnection network used in a multicomputer in a parallel computer system
plays a key role in determining how fast applications can be executed on the system. To
show the suitability of the HTN, we have discussed mapping of advanced applications such
as bitonic merge, Fast Fourier Transform (FFT), and finding the maximum value on HTN.
It is shown that the number of communication steps of different advanced applications on
HTN is better than other networks.

6.2 Future Works

This thesis focuses on the performance of interconnection network, the importance of
other issues should be kept in mind. The issues of further exploration are as follows:

e We have evaluated the dynamic communication performance for 256-node, 512-
node, and 1024-node networks. According to the interconnection philosophy of
HTN, millions of nodes can be connected. We are planning to evaluate the dynamic
communication performance of the HTN for Level-3 networks or more using this
proposed routing algorithm.

e We limited our attention to deterministic routing algorithms and uniform traffic pat-
terns for evaluating dynamic communication performance. However, the adaptive
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routing algorithm gives several routing options and selects one of them according
to the state of the network. It is automatically adjusted to compensate for network
changes such as traffic patterns, channel availability, or equipment failures. Eventu-
ally, it will increase the dynamic communication performance. We are planning to
use an adaptive routing algorithm to assess the performance improvement of HTN.
We plan to extend our analyses to other traffic patterns.

e [t has been observed that large machines tend to be less reliable than smaller ones
and that parallel computers tended to be quite large. As such they could stand to
benefit from fault-tolerant capabilities. Redundancy and yield of HTN is presented
in this thesis but is not sufficient for fault tolerance. Therefore, we would like to
develop fault-tolerant routing algorithms for an HT'N with faulty nodes.

e The suitability of an interconnection network depends on how many algorithms have
been optimally mapped onto the network. For instance, two dimensional intercon-
nection networks (Mesh, Torus) are suited to image processing, computer vision,
matrix computations, and computational geometry applications. We have only dis-
cussed a FF'T on HTN. We would like to study some other advanced applications
on HTN.

e The ability of a network topology to simulate another topology efficiently is often
of considerable interest while designing parallel algorithms for a multicomputer net-
work. The communication patterns in some parallel algorithms inherently favor
certain topologies — for example, matrix operations often map naturally to a mesh
network and divide-and-conquer algorithms are easily implemented on a hypercube.
Thus, we plan to investigate the embedding of other frequently used topologies into
the HTN.

Of course, we would like to see the Hierarchical Torus Network made fully operational
and in use by the research community.
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