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Abstract

Interference is a fundamental issue in wireless communication systems, in which
multiple transmissions occur at the same time over a common medium. Due to
the tremendous increase of number of wireless communication devices in the re-
cent years, this issue has now become more crucial than ever. Conventionally,
in the design of a wireless communication system, interference is usually avoided
because it may substantially limit the reliability and the throughput of the sys-
tem. However, with massive number of wireless communication devices and limited
wireless communication resources, avoiding interference becomes almost impossi-
ble. Compute-and-forward is a new technique that deals with this issue elegantly.
Rather than avoiding interference or treating it as noise, compute-and-forward em-
braces and exploits it by computing linear functions of the transmitted messages
directly from interfering signal. Thus, it allows simultaneous transmissions, which
consequently results in an increase of network throughput.

Owing to its promising advantages, compute-and-forward has found many ap-
plications in various wireless communication scenarios such as multi-source multi-
relay channels, two-way relay channels, multiple-access relay channels, multiple-
input multiple-output (MIMO) systems, etc. In this dissertation, we study ap-
plications of compute-and-forward methods in wireless communication systems,
investigate the issues that arise in the existing work, and then propose some so-
lutions to solve them such that the system performance, e.g., network throughput
and outage probability, is improved. In particular, this dissertation focuses on
two different wireless communication scenarios: multiple-access relay channels and
precoded MIMO systems.

In the multiple-access relay channels with compute-and-forward, the destina-
tion and the relay compute linear functions of the transmitted messages which are
then used by the destination to recover the transmitted messages. The main issue
in this system is that the final linear functions obtained by the destination must
be linearly independent, and hence, cooperation between the destination and the
relay must be carefully designed. To cope with this issue, we propose two cooper-
ation strategies. In the first strategy, the relay helps the destination by forwarding
its “local best” linear functions without taking into account whether it is linearly
independent of that of the destination. While in the second strategy, the relay
forwards its optimal linear function ensuring the linear functions obtained by the
destination are linearly independent. We show that both of the strategies outper-
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form existing strategies available in the literature. It is also shown that the second
strategy achieves better error performance compared to the first one with the cost
of additional overhead for feedback.

For precoded MIMO systems, we are particularly interested in the unitary
precoded integer-forcing (UPIF) MIMO where a unitary matrix is used as the pre-
coder matrix for MIMO systems employing integer-forcing linear receivers. Integer-
forcing is essentially another form of compute-and-forward. It has been shown that
UPIF achieves full diversity gain while allowing full transmission rate. However,
it is not easy to find the optimal unitary precoder matrix. No efficient algorithm
is available for this problem. Instead of unitary precoder matrices, we propose
orthogonal precoder matrices for the same systems. We show that not only has
lower complexity, the proposed orthogonal precoder has performance advantage in
terms of achievable rate and error rate. Further, we propose an efficient algorithm
based on the steepest gradient algorithm that exploits the geometrical properties
of orthogonal matrices as a Lie group. The proposed algorithm has low complex-
ity and can be easily applied to an arbitrary MIMO configuration. We also show
that the proposed orthogonal precoder outperforms the X-precoder, a precoder
designed specifically for quadrature amplitude modulation (QAM), in high-order
QAM schemes, e.g., 64- and 256-QAM.

Keywords: Lattice network coding, multiple-access relay channel, compute-
and-forward, integer-forcing, MIMO
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Chapter 1
Introduction

1.1 Background and Motivation

Wireless communication systems have become indispensable parts in our life. This

can be seen from the fact that the number of connected wireless devices around

us is dramatically increasing. A recent study shows that over the next few years,

wireless data traffic will increase by multiple orders of magnitude [4]. This tremen-

dous growing traffic is a result of the proliferation of mobile devices such as tablets,

smart-phones and the growing demands for high-quality data services such as video

on demand, online gaming, social networking. Meanwhile, the wireless communi-

cation resources, i.e., wireless radio spectrum and power, are limited. Thus, it is a

major challenge for wireless industry to cope with this issue.

With a huge number of wirelessly-connected devices and limited wireless radio

spectrum, it is quite likely that multiple devices transmit their information simul-

taneously via a common wireless medium. This situation results in interference

that degrades the reliability of the information transmission. In fact, interference

has long been one of fundamental wireless communication problems. In the conven-

tional design of a wireless communication system, interference is usually avoided

because it may substantially limit the reliability and the throughput of the system.

However, in this current situation, avoiding interference becomes harder than ever.

A few years back, the way of thinking about interference changed with the in-

troduction of network coding [5] and physical-layer network coding (PLNC) [6–9].

Rather than treating interference as an unwanted enemy, network coding and in

particular PLNC embrace and make use of it to improve wireless resource utiliza-



2

tion. Network coding was initially proposed for wired networks to boost network

throughput by allowing intermediate nodes to forward functions of their received

packets rather than just route them. This idea was then extended to the physical

layer, and hence the name, where the network coding operation occurs naturally

in superimposed electromagnetic (EM) waves. It is widely understood that when

multiple EM waves come together in the same medium, they add. This addition

operation can be considered as an aspect of network coding that is performed by

nature. Because PLNC allows multiple terminals to make transmission simultane-

ously, it is easy to see that it can significantly improve network throughput. Due

to this promising advantage, a large number of strategies have been proposed to

realize PLNC. For examples, Katti et al. proposed analog network coding in [10]

and XORs in the air in [11]. Other PLNC schemes can be found in [6–9,12,13].

Compute-and-forward [14] is one of PLNC schemes that has drawn a lot of

attention. It was proposed by Nazer and Gastpar based on nested lattice codes

[15,16] which have been proven to achieve additive white Gaussian noise (AWGN)

channel capacity [17]. Compute-and-forward exploits the property of lattice codes

where a superposition or a linear combination of codewords is another codeword.

This means that a linear combination can be decoded directly without decoding

each original codeword. Compute-and-forward does not only simplifies the way of

computing a function of the transmitted messages, but also tackles a fundamental

problem faced by other PLNC schemes, the fading problem, which is another

impairment of the wireless medium. Unlike other strategies, compute-and-forward

infers a linear combinations of the transmitted messages by introducing integer

coefficients that are selected based on fading coefficients. It turns out that this

feature allows compute-and-forward to achieve higher spectral efficiency and to

handle a variety of wireless communication scenarios.

Since its introduction, compute-and-forward has found various applications

such as the two-way relay channels (TWRC) [18, 19], multi-source multi-relay

channels [14], multiple-access relay channels (MARC) [20–22], and multiple-access

channels (MAC) [23]. In some wireless scenarios, compute-and-forward has been

shown to be preferable compared to other network coding strategies. As an ex-

ample, we may take a look at the application of compute-and-forward to TWRC

[18,19], which is a classic network scenario where network coding enhances network

throughput significantly [8, 24, 25]. The achievable-rate performance of compute-
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Fig. 1.1. Achievable-rates of compute-and-forward, decode-and-forward, and amplify-and-
forward for the two-way relay channels (TWRC) [1].

and-forward, decode-and-forward, and amplify-and-forward strategies for TWRC

is presented in Fig. 1.1, see [1] for details. It can be clearly seen that compute-

and-forward offers significantly higher achievable rate than the others. In high

signal-to-noise power ratio (SNR), compute-and-forward achieves rates close to

the upper-bound.

Besides its application to multi-terminal relaying networks, compute-and-forward

has also been applied to multiple-input multiple-output (MIMO) systems [3, 26].

The idea of compute-and-forward is extended to create a new type of linear MIMO

receivers called integer-forcing linear receivers [26]. Instead of attempting to re-

cover the transmitted messages directly, integer-forcing receivers compute integer

linear combinations of the transmitted codewords first and then decodes the trans-

mitted messages by solving a simple linear equation system. It has been shown

that integer-forcing linear receivers yields higher achievable rates compared to the

widely known zero-forcing (ZF) and minimum mean square error (MMSE) re-

ceivers [27] with nearly the same decoding complexity as those for slow-fading
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channels. Furthermore, integer-forcing receivers have been proven to achieve the

optimal diversity-multiplexing tradefoff [28].

Despite its promising advantages, there are some issues that need to be tack-

led for applying compute-and-forward to a wireless network system. For instance,

when applying compute-and-forward to a multi-source multi-relay network, lin-

ear combinations obtained by the final destination must be linearly independent.

Therefore, a careful design is needed for applying compute-and-forward to a cer-

tain network scenario. This dissertation focuses on applications of compute-and-

forward to some wireless scenarios, investigate the potential problems, and propose

solutions for them. The final objective is to improve the network performance, e.g.,

error rate and throughput, of the considered networks.

1.2 Contributions

This dissertation has two major contributions: (i) two new cooperation strategies

for employing compute-and-forward to multiple-access relay channels (MARC) and

(ii) a new orthogonal precoding scheme for MIMO with integer-forcing. Short

summaries are given below, but the details are provided in Chapters 3 and 4.

1.2.1 Cooperation Strategies for MARC with Compute-and-Forward

In MARC, multiple sources want to deliver their information to one common des-

tination with the help of one relay terminal. When compute-and-forward is em-

ployed, the sources are allowed to transmit their information simultaneously to

both the destination and the relay, which results in an increase of the network

throughput. The relay computes an integer linear combination of the transmitted

messages and forwards it to the destination. The destination then tries to recover

the original messages from its own linear combinations and the one forwarded by

the relay. The main challenge of this network scenario is that to correctly decode

the transmitted messages, the linear combinations obtained by the destination

needs to be linearly independent. Therefore the relay somehow has to take into

account the linear combinations possessed by the destination when selecting its

linear combination. Some effort has been made to cope with this challenge. For

example, Soussi et al. [20] proposed a global optimization for finding global optimal

linear combinations. Their proposed approach successfully improves the achievable
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rate. However, this improvement comes with the cost of a large communication

overhead since it assumes that channel state information (CSI) are known to all

nodes. Insausti et al. [22] propose a further improvement by treating a linear

combination forwarded by the relay as a helper. Both [20] and [22] focused on

improving achievable rate performance and ignore the outage probability perfor-

mance which is one of the main objectives of cooperative or relaying networks. We

found that both of them fail to achieve full diversity gain. In this dissertation,

we propose two cooperation strategies for MARC with CF. We show that the pro-

posed strategies outperform the existing strategies in terms of outage probability.

We also show that one of our proposed strategies achieves full diversity gain. See

Chapter 3 for more details.

1.2.2 Orthogonal Precoder for Integer-Forcing MIMO

The compute-and-forward idea was extended to MIMO systems producing a new

MIMO linear receiver named as integer-forcing [26]. It was shown that integer-

forcing achieves diversity-multiplexing tradefoff [28, 29]. In a recent work, Sakzad

and Viterbo proposed a precoding scheme for MIMO with integer-forcing where

precoder matrices are selected from unitary groups.1 It was shown that their

precoding scheme achieves full diversity gain while allowing full-rate transmission.

The main issue in this scheme is that it is hard to find the optimal unitary precoder

matrices. To the best of our knowledge, there is no efficient algorithm available to

solve this problem in the literature. In this dissertation, instead of unitary groups,

we propose a similar precoding scheme based on orthogonal groups. It is quite

intuitive that by selecting precoder matrices from orthogonal groups, the complex-

ity of the system can be greatly reduced. One may think that the complexity

advantage comes with the cost of performance. However, we show an interesting

result that the performance, e.g., achievable rate and error-rate, of the orthogonal

precoding scheme is better than the unitary one. Further, we propose an efficient

algorithm for finding “good” orthogonal precoder matrices based on the steepest

gradient algorithm with Lie group approach. In addition, we numerically show

that for higher quadrature amplitude modulations (QAM), the proposed precod-

ing scheme outperforms the X-precoder [30] even though it is designed specifically

for QAM. For the details, see Chapter 4.

1Unitary groups are groups of unitary matrices.
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1.3 Dissertation Outline

This dissertation is organized as follows.

In Chapter 1 (this chapter), we describe the background and motivation of this

research. We then summarize the contributions of this research and describe the

organization of this dissertation. The general notations adopted in this dissertation

are presented at the end of this chapter.

Chapter 2 provides a brief introduction of background knowledge required in

this research. It includes lattices (and lattice codes), and compute-and-forward

which is the main topic of this research.

We discuss one application of compute-and-forward in wireless cooperative

networks in Chapter 3. In particular, we investigate how to efficiently employ

compute-and-forward in MARC where multiple sources want to deliver informa-

tion to a common destination with the help of a relay terminal. Two new coop-

eration protocols for MARC employing compute-and-forward are proposed. Semi-

theoretical and numerical analyses are given along with discussion of the advan-

tages and disadvantages of the proposed protocols. The comparison between the

proposed protocols and existing protocols are also presented.

Subsequently, we investigate another application of compute-and-forward to

a precoded MIMO system in Chapter 4. We are particularly interested in the

work of Sakzad and Viterbo [3] where a unitary precoder is employed in MIMO

systems with integer-forcing.2 They showed that their proposed scheme achieves

full diversity while allowing full transmission rate. In this chapter, instead of a

unitary precoder, we propose an orthogonal precoder for the same systems. In

addition to its computational complexity advantage, the orthogonal precoder is

shown to achieve better performance in terms of achievable rates, error-rate, and

outage probability. We also propose an efficient algorithm based on steepest gra-

dient descent with Lie groups approach for finding a “good” orthogonal precoder.

Complexity analysis and numerical results are presented.

Finally, in Chapter 5, we summarize the general conclusions and direction of

future work.
2Integer-forcing is essentially another form of compute-and-forward scheme.
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1.4 General Notations

In this dissertation we use the following general notations.

R,C,Z denote real, complex, and integer numbers, respectively. Z[i] denotes

the Gaussian integers. Fp represents the finite field of size p, where p is always

assumed to be a prime number. In the finite field domain, ⊕ denotes addition

and
⊕

denotes summation.3 For any complex number, =(·) and <(·) denote its

real and imaginary components, respectively. Boldface lowercase letters denote

column vectors, e.g., a ∈ Zn, while boldface uppercase letters denote matrices,

e.g., A ∈ Zn×n. The Hermitian and the regular transpose operations are expressed

by (·)H and (·)T , e.g., AH and AT , respectively. The inversion of the regular

transpose is denoted by (·)−T , e.g., A−T , (AT )−1. The determinant of a matrix

is denoted as det (·), e.g., det (A). rank(·) denotes the rank of a matrix, e.g.,

rank(A). I denotes the identity matrix, where the dimension is clear from the

context.

O(n) and U(n) respectively denote the orthogonal and unitary groups of di-

mension n.4 The matrix exponential is defined as exp(A) ,
∑∞

m=0
Am

m!
. We define

log+(x) , max(log(x), 0) and the general logarithm operation is with base 2, unless

otherwise stated. E{·} denotes the expectation of a random variable.

3Any multiplication operation within a formula containing ⊕ or
⊕

is also over finite field.
4Orthogonal and unitary groups are groups of orthogonal and unitary matrices, respectively.



Chapter 2
Preliminaries

The main role of this chapter is to provide basic knowledge required in under-

standing this dissertation. First, an overview of lattices and lattice codes is briefly

given. For more details, the reader is referred to [15, 16, 31]. Subsequently, the

main concept of the compute-and-forward scheme [14] which is the main topic of

this dissertation is described.

2.1 Lattices and Lattice Codes

2.1.1 Lattices

A lattice is a discrete subgroup of the Euclidean space with the ordinary vector

addition operation. The origin, i.e., the zero vector 0, is the identity element of

any lattice. Let Λ be a lattice. If t is an element of Λ, then so is −t. For any

t1, t2 ∈ Λ, an integer linear combination of those elements (points) will result in

another element of Λ, i.e., a1t1 + a2t2 ∈ Λ, with a1, a2 ∈ Z. This is one of lattice

properties that is exploited by the compute-and-forward scheme as we will see

later. It is easy to see that lattices are countably infinite sets. Using a generator

matrix, lattices can be formally defined as follows.

Definition 2.1.1 (Lattice): Let column vectors g1, . . .gn ∈ Rn be a basis forming

a full-rank generator matrix G = [g1, . . . ,gn] ∈ Rn×n.1 The lattice formed by G

1A generator of a lattice need not to be full-rank. However, in this dissertation we limit our discussion
to only lattices with full-rank generator matrices.
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Fig. 2.1. The two-dimensional integer lattice Z2.

is defined as all integral combinations of the column vectors of G, i.e.,2

Λ(G) = {Ga : a ∈ Zn}. (2.1)

The simplest lattice is the integer lattice, Zn. In one dimension, this is just the

integers . . . ,−2,−1, 0, 1, 2, . . . . For two dimension, the integer lattice is visualized

in Fig 2.1. Zn can be generated using the identity matrix of dimension n. In other

words,

Zn = {Ia : a ∈ Zn}. (2.2)

Given a lattice, the generator matrix is not unique. A lattice is invariant to a

unimodular transformation of its basis.

Example 2.1.1 (Hexagonal lattice): The two-dimensional hexagonal lattice, shown

in Fig 2.2, can be generated by the basis g1 = [0, 2]T and g2 = [
√

3, 1]T . It can

also be generated by another basis, e.g., g̃1 = [−
√

3, 1]T and g̃2 = [−
√

3,−1]T .

Let G = [g1,g2] and G̃ = [g̃1, g̃2]. It can be shown that G and G̃ are related by

2We use Λ to denote a lattice when its generator matrix is undefined.
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g2g̃1

g̃2

Fig. 2.2. The hexagonal lattice can be generated using basis vectors g1 = [
√

3, 1]T and g2 =
[0, 2]T . It can also be generated by another basis, e.g., g̃1 = [−

√
3, 1]T and g̃2 = [−

√
3,−1]T .

a unimodular matrix T.3 To be precise,

G = G̃T, T =

[
1 0

−1 −1

]
. (2.3)

A subgroup of a lattice is also a lattice, and this lattice is said to be nested in

the other lattice.

Definition 2.1.2 (Nested Lattices): Given lattices Λ and Λ1, it is said that the lat-

tic Λ is nested in Λ1, if Λ ⊆ Λ1. More generally, a sequence of lattices Λ,Λ1, . . . ,ΛL

is nested if Λ ⊆ Λ1 ⊆ · · · ⊆ ΛL.

There are some important notions associated with lattices. A lattice quantizer

maps any point in Rn to the nearest lattice point. In particular, this quantizer will

be used in the decoding of a lattice.

Definition 2.1.3 (Lattice Quantization): A lattice quantizer QΛ : Rn → Λ maps

every point x ∈ Rn to the nearest t ∈ Λ in Euclidean distance,

QΛ(x) = arg min
t∈Λ

‖x− t‖ . (2.4)

3A unimodular matrix T is an integer matrix with a unit absolute determinant, det (T) = ±1
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Fig. 2.3. The Voronoi regions of the hexagonal lattice. The middle one is the fundamental
Voronoi region, i.e., the Voronoi region with respect to the origin.

A lattice induces a partition of the Euclidean space into congruent regions.

With respect to a given lattice Λ, there are many ways to divide the space into

congruent regions. The most important one is the Voronoi region.

Definition 2.1.4 (Voronoi Region): The Voronoi region of an n-dimensional real-

valued lattice Λ associated with a lattice point t, denoted by Vt, consists of all

points of the underlying space that are closer to t than to any other lattice point,

Vt =
{
x ∈ Rn : |x− t| ≤

∣∣x− t̃
∣∣ for all t̃ ∈ Λ\t

}
. (2.5)

Using the lattice quantization definition, it can also be written as Vt = {x ∈
Rn : QΛ(x) = t}. In this work, we use the term fundamental Voronoi region to

represent the Voronoi region associated with the origin 0;

VΛ = {x ∈ Rn : QΛ(x) = 0}. (2.6)

Note that there are some points in the space that have equal distance to two

or more lattice points. However, each point can belong to only one Voronoi re-

gion. The tie-breaking is performed in a systematic manner such that the resulting

Voronoi regions are congruent. The volume of the Voronoi region of a lattice Λ
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with a generator matrix G is given by

Vol(VΛ) = |det (G)| , Vol (Λ) (2.7)

Definition 2.1.5 (Moments): The second moment of a lattice Λ is defined as

the second moment per dimension of a random variable X which is uniformly

distributed over the fundamental Voronoi region VΛ

σ2
Λ =

1

n
E{‖X‖2} =

1

nVol(VΛ)

∫
VΛ

‖x‖2 dx. (2.8)

The normalized second moment of a lattice is given by

G(Λ) =
σ2

Λ

(Vol(VΛ))2/n
. (2.9)

Any point x ∈ Rn can be uniquely expressed as the sum of a lattice point and

a point in the fundamental Voronoi region, i.e, x = QΛ(x) + (x − QΛ(x)), where

x − QΛ(x) is the quantization error from which we can define the lattice modulo

operation.

Definition 2.1.6 (Modulus): Modulo operation with respect to the lattice Λ on

a point x ∈ Rn is defined as the residual of the lattice quantization,

[x] mod Λ = x−QΛ(x). (2.10)

For all x,y ∈ Rn, a ∈ Z, β ∈ R, and Λ ⊆ Λ1, the mod Λ operation satisfies:

[x + y] mod Λ = [[x] mod Λ + y] mod Λ, (2.11)

[QΛ1(x)] mod Λ = [QΛ1([x] mod Λ)] mod Λ, (2.12)

[ax] mod Λ = [a[x] mod Λ] mod Λ, (2.13)

β[x] mod Λ = [βx] mod βΛ. (2.14)

Similar to any vector space, a lattice also has a dual space. Lattices Λ and Λ∗

are dual or reciprocal if the inner products of their points are integers, i.e., for all

t ∈ Λ and t∗ ∈ Λ∗, 〈t, t∗〉 ∈ Z. Using the generator matrix, it can also be defined

as follows.



13

Definition 2.1.7 (Dual Lattice): For a lattice Λ(G) with a full-rank generator

matrix G ∈ Rn×n, the dual lattice is

Λ∗(G) , Λ(G−T ) = {G−Ta : a ∈ Zn}. (2.15)

Another important notion related to a lattice is the successive-minima which

will be exploited in the Chapters 3 and 4.

Definition 2.1.8 (Successive Minima): For an n-dimensional lattice Λ(G), the

l-th successive minimum, 1 ≤ l ≤ n, is defined as

λl(G) , min
v1,...,vl∈Λ(G)

max{‖v1‖ , ..., ‖vl‖}, (2.16)

where the minimum is taken over all sets of l linearly independent vectors in Λ(G).

In other words, λl(G) is the smallest real number r such that there exist l linearly

independent vectors v1, ...,vl ∈ Λ(G) with ‖v1‖ , ..., ‖vl‖ ≤ r.

Note that the first successive minimum of Λ(G), i.e., λ1(G), is its minimum

distance. The successive minima are non-decreasing,

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). (2.17)

All the definitions given above are specifically for real-valued lattices. However,

it can be extended to complex-valued lattices.

Definition 2.1.9 (Complex-Valued Lattice): Given a full-rank generator matrix

Ğ ∈ Cn×n, the complex-valued lattice Λ(Ğ) is defined similarly to real-valued

lattices as

Λ(Ğ) = {Ğă : ă ∈ Z[i]n}. (2.18)

Note that Z[i] = {a+ bi : a, b ∈ Z}.

2.1.2 Lattice Codes

A lattice is an infinite structure that has no power constraint. In order to be useful

for communications, it is necessary to select finite subset of the lattice points such

that a certain power constraint is satisfied. A lattice code C is finite codebook

whose codewords are selected from a lattice.
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Given a lattice Λs and x ∈ Rn, the set x + Λs is a coset of Λs in R. Consider

nested lattices Λs ⊆ Λc.
4 For each t ∈ Λc, t + Λs is called a coset of Λs in Λc.

Further, the point of t mod Λs is called the coset leader of t + Λs. We then define

a quotient Λc/Λs as the set of all distinct cosets of Λs in Λc.

Definition 2.1.10 (Nested Lattice Code [15–17]): Given two lattices Λc and Λs

where Λs ⊆ Λc, the nested lattice code C(Λc/Λs) is defined as the coset leaders of

the quotient group Λc/Λs;

C(Λc/Λs) = Λc mod Λs = {t mod Λs : t ∈ Λc}. (2.19)

Geometrically, C(Λc/Λs) contains all points of Λc that are within the funda-

mental Voronoi region of Λs, i.e.,

C(Λc/Λs) = Λc ∩ VΛs . (2.20)

The rate of a nested lattice code is

R =
1

n
log |C(Λc/Λs)| =

1

n
log

Vol (VΛs)

Vol (VΛc)
. (2.21)

Example 2.1.2 (Nested Hexagonal Lattice): Let A2 denote the hexagonal lattice

in two dimensions. Let Λc = A2 and Λs = 3A2. The nested hexagonal lattice can

be constructed by taking all the coset leaders of the quotient A2/3A2. This code

is visualized in Fig 2.4. The rate of this code is

R =
1

2
log

Vol (3A2)

Vol (A2)
= log 3. (2.22)

This type of nested lattice code where the shaping and coding lattices are self-

similar is called self-similar nested lattice codes [31].

2.2 Compute-and-Forward

Compute-and-forward has found many applications including Gaussian networks,

multiple-access relay channels, random access, MIMO, etc. In this section, we

4In this dissertation, we use Λc to denote a fine lattice that is used for coding and Λs to denote a
coarse lattice that is usually used for shaping.
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Fig. 2.4. The nested lattice code constructed from the hexagonal lattice A2. In this figure,
Λc = A2 and Λs = 3A2. The red point is a point in Λs, the gray points are in Λc, and the blue
points are codewords of C(Λc/Λs).

provide a brief introduction of compute-and-forward in a very simple network con-

figuration where there are multiple transmitters expecting to transmit information

to one common receiver. The receiver is interested in computing a linear combi-

nation of all the transmitted messages, rather than each individual message. The

receiver may forward the decoded linear combination to another node if needed —

this is a common transmission pattern in wireless cooperative networks. Conven-

tionally, the problem of computing a linear combination of transmitted messages

is solved using a multiple access technique such as successive interference cancella-

tion (SIC); each message is successively decoded, re-encoded, and subtracted from

the received signal, and finally a linear combination is computed from the decoded

messages. In contrast, compute-and-forward only employs one time single-input

single-output (SISO) decoding to retrieve a linear combination, which is very effi-

cient. Moreover, the achievable rate of compute-and-forward is often higher than

that achieved by the conventional techniques.

Let C , C(Λc/Λs) be a nested lattice code of n-dimension with rate R. The

second moment of the shaping lattice Λs is assumed to be P . Consider a network

with M transmitters and one receiver. For simplicity, we assume a symmetric
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Fig. 2.5. M transmitters transmit messages to one common receiver. Instead of each individual
message of the transmitters, the receiver is interested in a linear combination of the transmitted
messages.

transmission scenario where all transmitters employ the same code C (with the

same rate R). The extension to an asymmetric case can be found in [14,32,33]. The

compute-and-forward scheme is illustrated in Fig. 2.5. Each transmitter, indexed

by m = 1, . . . ,M , randomly generates a message wm ∈ FnRp . The receiver desires

to retrieve a linear combination of wm. Let u be the desired linear combination in

the form of

u =
M⊕
m=1

qmwm, (2.23)

where qm is a coefficient taking value in Fp. The summation denoted by
⊕

and

the multiplication operations are performed over Fp. Note that the receiver is

not limited to decode only one linear combination, it is possible for it to compute

multiple linear combinations.

Let E be a bijective mapping from a finite field FnRp to the codebook C, i.e.,

E : FnRp → C. Using E , wm is encoded to a codeword tm ∈ C as

tm = E(wm). (2.24)

Prior to transmission, a random dither vector dm distributed uniformly over VΛs

is added to form a symbol xm:

xm = [tm − dm] mod Λs. (2.25)
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The purpose of adding a dither vector is to make the transmitted vector xm inde-

pendent of the underlying lattice point tm and uniformly distributed over VΛs [17].

It also ensures that E{‖xm‖2} = nP . Dither vectors are made available at the

receiver.5

The transmitters simultaneously transmit xm, and accordingly the receiver re-

ceives a noisy superposition signal

y =
M∑
m=1

hmxm + z, (2.26)

where hm denotes a channel coefficient from transmitter m and the receiver, and z

denotes a noise vector at the receiver. All channel coefficient hm and all elements

of z are randomly distributed over Gaussian distribution N (0, 1).

With our bijective mapping E , we can retrieve the desired linear combination

u if we have an equivalent linear combination (equation) of lattice codewords in

C. Let v be a lattice equation defined as follows.

Definition 2.2.1 (Lattice Equation): A lattice equation v is an integral combi-

nation of lattice codewords tm ∈ C modulo the shaping lattice Λs:

v =
M∑
m=1

amtm mod Λs, (2.27)

where am ∈ Z. We refer to a = [a1, . . . , aM ]T as a coefficient vector.

In order to retrieve u, we first need to obtain v. However, we have to overcome

two sources of noise before we decode v. The first one is the channel noise z

and the second is the one caused by the fact that channel coefficients hm are not

equal to the desired equation coefficients. To overcome these, we scale the received

signal appropriately such that the scaled channel coefficients are close to the integer

coefficients and the resulting effective noise is as small as possible. Subsequently,

we remove the dither vectors and quantize the resulting signal to the nearest lattice

point. To be precise, using α ∈ R, the received signal y is scaled and the dither

5It has been shown that random dithers can be replaced by deterministic ones which means that no
common randomness is required [14].
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vectors are removed as

ỹ =

[
αy +

M∑
m=1

amdm

]
mod Λs (2.28)

=

[
M∑
m=1

αhmxm + αz +
M∑
m=1

amdm

]
mod Λs (2.29)

=

[
M∑
m=1

amxm +
M∑
m=1

amdm +
M∑
m=1

(αhm − am)xm + αz

]
mod Λs (2.30)

=

[
M∑
m=1

am [tm − dm] mod Λs +
M∑
m=1

amdm +
M∑
m=1

(αhm − am)xm + αz

]
mod Λs

=

[
M∑
m=1

amtm +
M∑
m=1

(αhm − am)xm + αz

]
mod Λs (2.31)

= [v + zeff] mod Λs, (2.32)

where zeff =
∑M

m=1(αhm − am)xm + αz is the resulting effective noise. Owing to

the dither vectors, zeff is independent of v and its variance can be defined as [14]

σ2
eff ,

1

n
E{‖zeff‖2} (2.33)

= ‖αh− a‖2 P + α2, (2.34)

where h = [h1, . . . , hM ]T is the channel coefficient vector.

The receiver then produces an estimate for v by applying the lattice quantizer

associated with Λc to ỹ:

v̂ = [QΛc(ỹ)] mod Λs. (2.35)

Let VΛc be the fundamental Voronoi region of Λc. The probability that the receiver

estimates v incorrectly is upper bounded by the probability that the effective noise

zeff lies outside VΛc :

Pr(v̂ 6= v) ≤ Pr (zeff /∈ VΛc) . (2.36)

Given an integer coefficient vector a, the scaling factor α has to be determined

such that σ2
eff is minimized. This ensures that the error probability is minimized.
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From [14], it is found that the optimal value of α is the minimum mean square

error (MMSE) coefficient

αopt =
PhTa

1 + P ‖h‖2 . (2.37)

Once the receiver obtains v̂, an estimate of the desired linear equation u can

be recovered by applying to v̂ the inverse of E ,

û = E−1(v̂). (2.38)

Note that because E is a bijective mapping, Pr(û 6= u) = Pr(v̂ 6= v).

The achievable rate of the compute-and-forward scheme is given in the following

theorem.

Theorem 2.2.1 (Computation Rate for Real-Valued Channels [14]): Consider

a real-valued Gaussian network with M transmitters that simultaneously trans-

mit their messages with average power constraint P to a receiver. Let h =

[h1, . . . , hM ]T ∈ RM be the channel coefficients. The receiver can decode an integer

linear combination of the transmitted messages with low error probability so long

as the message rate is less than the computation rate given by

Rcp(a,h) =
1

2
log+

((
‖a‖2 − P (hTa)2

1 + P ‖h‖2

)−1
)

(2.39)

where a = [a1, . . . , aM ]T ∈ ZM denotes the integer coefficient vector.

In the above discussion we only assume real-valued channels. However, the

compute-and-forward scheme also works similarly in complex-valued channels. One

way to deal with complex-valued channels will be demonstrated in Chapter 3.



Chapter 3
Compute-and-Forward in

Multiple Access Relay Channels

In this chapter, we study the application of compute-and-forward to multiple ac-

cess relay channels (MARC). How to apply compute-and-forward to the MARC

is not straightforward. Cooperation between the destination and the relay has to

be designed carefully such that the destination can recover transmitted messages

correctly with higher probability. Our work here focuses on the design of coop-

eration strategies between the destination and the relay in the MARC employing

compute-and-forward.

3.1 Introduction

3.1.1 Background and Related Work

Network coding [5, 9, 19, 34] has become an important networking strategy to im-

prove the spectral efficiency of wireless communication networks. In contrast to

simple forwarding, network coding allows intermediate nodes to “combine” the

received messages before forwarding them to next nodes, to reduce the required

number of transmissions. On the other hand, cooperative communication is an

effective method to enlarge network coverage, increase transmission robustness,

and improve power efficiency by exploiting spatial diversity without additional an-

tennas [35–37]. However, the gains achieved by cooperative communications in

practice come with a loss of spectral efficiency due to half-duplex operation [36].
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Thus, it is beneficial to apply network coding to cooperative networks to achieve

reliable communications with high spectral efficiency.

In this chapter, we design a network coding scheme for multiple access relay

channel (MARC), which is an important class of wireless cooperative networks.

In the MARC, multiple sources want to deliver messages to one common desti-

nation with the present of one relay terminal [38–42]. The applications of such

networks include sensor and ad-hoc networks and uplink for cellular networks with

an intermediate node as a relay. The MARC also has found a use case in the

LTE Advanced mobile communication standard [22, 43]. It has been shown that

network coding significantly improves the spectral efficiency of the MARC. For

example, in the conventional two-source MARC, four orthogonal transmissions are

required, where the sources transmit their messages in turn and the relay forwards

the messages one by one to the destination. With network coding, number of

transmissions is reduced to only three; the first and the second transmissions are

used by the sources to transmit messages in turn, while the third transmission is

used by the relay to forward the network coded version of the transmitted messages

to the destination [39].

Recently, Nazer and Gastpar proposed a new network coding and relaying

scheme, known as compute-and-forward [14]. It views interference as an advan-

tage rather than a severe problem to avoid and allows sources in a relay network

to simultaneously transmit their messages via a non-orthogonal channel. Each

relay directly computes an integer linear combination of the transmitted messages

from the received superimposed signals without decoding each transmitted mes-

sage separately, and then forwards it to the destination. Given a sufficient number

of linear combinations, the destination can recover the transmitted messages so

long as the coefficient matrix, that is the matrix composed of the coefficients of

the linear combinations, is full rank.

Allowing sources to transmit their messages via one non-orthogonal channel

is an appealing advantage of compute-and-forward. It is easy to see its potential

for improving the spectral efficiency of the MARC. When compute-and-forward is

applied to the MARC, the required number of transmissions can be reduced to only

two; the first is used by the sources to broadcast their messages to the relay and

destination at once and the second is used by the relay to forward its computed

linear combination to the destination. Note that this advantage is applicable to any
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MARC with any number of sources, not limited to the MARC with two sources.

Despite its promising advantage, however, it is not straightforward to efficiently

apply compute-and-forward to MARC as the destination requires the resulting

coefficient matrix to be full rank.

It is possible to naively apply the original compute-and-forward [14] to the

MARC by allowing the destination and the relay to compute their local opti-

mal integer linear combinations independently. Nevertheless, it may result in a

rank deficient coefficient matrix which causes a decoding failure. Therefore, co-

operation between the destination and the relay in computing their integer linear

combinations is necessary. In [20], Soussi et al. made an attempt to solve this is-

sue. They proposed a global optimization technique such that the destination and

the relay select the global optimal linearly independent combinations with respect

to achievable rate. They showed that with this strategy, compute-and-forward

achieves higher achievable symmetric-rate compared to other relaying strategies

such as decode-and-forward and amplify-and-forward. The achievable rate im-

provement in their work, however, relies on the assumption that all channel state

information (CSI) are known to all nodes. Insausti et al. proposed another strat-

egy for applying compute-and-forward to the MARC. Different with [20], the relay

is allowed to select its local best linear combination; based on this the destination

adjusts its linear combination ensuring a full rank coefficient matrix. This strategy

is more efficient than the one proposed in [20]. Moreover, it was shown that it also

achieves higher achievable rate. Both of the aforementioned works focused on the

achievable rate performance without investigating outage performance. Because

one of the main objectives of wireless cooperative networks is to increase trans-

mission reliability, it is important to make sure that the outage performance is

also increased when compute-and-forward is employed. In this work we design ef-

ficient cooperation strategies for the MARC employing compute-and-forward that

improve outage performance as well.

3.1.2 Summary of Contributions

In this chapter we propose two efficient cooperation strategies for applying compute-

and-forward to the MARC. Both of the proposed strategies utilize as few transmis-

sions as possible while improving the outage probability performance. We provide

semi-theoretical and numerical analyses to evaluate the outage performance of the
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proposed strategies.

The first proposed strategy helps the destination by forwarding its best linear

combinations without taking into account whether the resulting coefficient matrix

is full rank. We show that even though it does not achieve full diversity gain,1

it outperforms the existing strategies [20, 22] in terms of outage probability and

throughput. The second strategy is similar to the first except that the relay helps

the destination by a sending “good” linear combination that ensures a full rank

coefficient matrix. We show that the second strategy offers the best performance

in terms of outage probability and network throughput. Moreover, we show that

it achieves full diversity gain of the MARC.

3.2 Multiple Access Relay Channel Model

r

Relay

d

Destination

s1

s2

sM

Sources

δsd = 1

δsr δrd

trans. round 1

trans. round 2

Fig. 3.1. M -users MARC model.

We begin by describing the system model of the MARC considered in this

chapter. As illustrated in Fig. 3.1, our model consists of M sources denoted as sm,

m = 1, . . . ,M , one destination d and one relay terminal r. The sources want to

transmit information messages to the destination. All wireless links are assumed

1In this work, we consider the full-diversity gain of the MARC is the order of two. This is because
all the sources transmit independent messages.
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to be Rayleigh block fading channels where the fading coefficients remain constant

within a block of symbols, but change independently from one block to the other

according to a circularly symmetric complex Gaussian distribution with zero mean

and unit variance.

As shown in Fig. 3.1, there are three types of directed transmission links:

sources-destination, sources-relay, and relay-destination links. All transmitters

(sources and relay) have the same average transmit power P . For i ∈ {s1, . . . , sM , r},
j ∈ {r, d}, and i 6= j, let γij, δij, gij, and hij be the average signal-to-noise power

ratio (SNR), distance, geometric gain, and channel gain of wireless link from ter-

minal i to terminal j, respectively. The geometric gain captures the effect of path

loss which is a function of distance, i.e., gij = δ−κij , where κ is the path loss expo-

nent [44,45]. The channel gain hij and noise at every node are randomly distributed

over CN (0, 1). Thus, the average SNR can be defined as γij , Pgij. For simplic-

ity, we assume that all sources have the same distance to the destination and also

have the same distance to the relay, To be more precise, let δsd and δsr be positive

real scalars. We assume that for all m ∈ {1, . . . ,M}, δsmd = δsd and δsmr = δsr.

This assumption implies that the sources have one common geometric gain to the

destination and another common geometric gain to the relay, i.e., ∀m, gsmd = gsd

and gsmr = gsr. Accordingly, the average SNR of each source to the destination

can be defined as γsmd = γsd = Pgsd, and to the relay as γsmr = γsr = Pgsr.

3.3 MARC with Compute-and-Forward (MARC-CF)

3.3.1 Encoding Scheme

For simplicity, we consider symmetric MARC where all sources transmit with the

same rate R. For a positive integer n, consider nested lattices Λs ⊆ Λc ⊂ Rn and

let C , C(Λc/Λs) be a nested lattice code with rate R/2. Similar to the previous

chapter, Λc represents a fine lattice used for coding and Λs represents a coarse

lattice used for shaping to ensure that the average power constraint is satisfied.

The second moment of Λs is assumed to be P/2. For a prime number p, let E be

a bijective mapping from FnR/2p to C, i.e.,

E : FnR/2p → C. (3.1)
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The bijective mapping E will be employed by the sources and the relay for encoding

their messages to lattice codewords.

The encoding scheme is performed as follows. Each source sm randomly gen-

erates two information vectors wRe
m ,w

Im
m ∈ FnR/2p . Together, these information

vectors form wm = (wRe
m ,w

Im
m ) ∈ FnRp , which is then encoded to a complex-valued

vector in the following way. wRe
m and wIm

m are respectively mapped to xRe
m ∈ C and

xIm
m ∈ C using E , i.e.,

xRe
m = E(wRe

m ), (3.2)

xIm
m = E(wIm

m ). (3.3)

Subsequently, these vectors form a complex-valued vectors xm = xRe
m + ixIm

m ∈ Cn

which is to be broadcast to the destination and the relay. We assume that a

dithering technique is employed. However, we omit the notations for the sake of

ease exposition. Dithering is important for ensuring the resulting effective noise

is independent of the underlying lattice codewords. Furthermore, it ensures that

each xm satisfies the average power constraint E{‖xm‖2} ≤ nP .

3.3.2 Transmission Rounds

The end-to-end information transmission is divided into two rounds. In the first

round, the sources simultaneously broadcast xm to the destination and the relay.

For j ∈ {r, d}, let zj be a noise vector at terminal j, and recall that hij denotes

the channel coefficient from terminal i to j, i ∈ {s1, . . . , sM}. The destination and

the relay respectively receive noisy superposition signals

y
(1)
d =

M∑
m=1

√
gsdhsmdxm + z

(1)
d , (3.4)

y(1)
r =

M∑
m=1

√
gsrhsmrxm + z(1)

r . (3.5)

At the end of the first round, the relay does not attempt to decode w1, . . . ,wM

separately as usually done in conventional MARC schemes. Rather, it adopts

the compute-and-forward technique to directly decode a linear combination of

w1, . . . ,wM . Let ur , fr(w1, . . . ,wM) be the desired linear combination. How to

select a “good” ur is one of the problems that we will tackle in the next section. In
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the second round, the relay encodes ur to a complex-valued vector xr ∈ Cn using

the same encoding scheme described in Subsection 3.3.1 and forwards it to the

destination. We shall note that to increase the transmission efficiency, the second

round is only used when some conditions is met. It will be discussed further in

Section 3.4. The received signal at the destination is given by

y
(2)
d =

√
grdhrdxr + z

(2)
d . (3.6)

3.3.3 Computing Linear Combinations

As mentioned above, by the end of the first transmission round, the relay decodes

a combination of the transmitted information messages. In fact, it is not only

the relay. Because at least M linear combinations are required to recover all the

transmitted information messages, the destination also needs to decode at least

M − 1 linear combinations. For simplicity, let us focus on how a receiver, which

may represent either the destination or the relay, decodes some linear combinations.

Before going further, let us rewrite the received signals (3.4) or (3.5) in a

simpler form, omitting the notations for the relay or the destination. Let h =

[h1, . . . , hM ] ∈ CM be the channel coefficient vector and g be the geometric gain

from the sources to the receiver. The received signal is rewritten as

y =
M∑
m=1

√
ghmxm + z. (3.7)

Assume that the receiver expects to decode L ≤M linear combinations u1, . . . ,uL ∈
FnRp . For l ∈ {1, . . . , L}, the receiver selects coefficients qRe

lm, q
Im
lm ∈ Fp and attempts

to decode two equations

uRe
l =

M⊕
m=1

qRe
lmwRe

m ⊕ (−qIm
lm)wIm

m , (3.8)

uIm
l =

M⊕
m=1

qIm
lmwRe

m ⊕ (qRe
lm)wIm

m , (3.9)

where (−qm) denotes the additive inverse of qm. The linear combinations ul is then

obtained as ul , (uRe
l ,u

Im
l ).

Although the desired linear combinations are evaluated over the finite field
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Fp, the channels operates over the complex field C. This issue can be overcome

by exploiting the real-valued decomposition of a complex-valued number. To be

precise, the receiver selects an integer linear coefficient al = [al1, . . . , alM ] ∈ Z[i]M

and decodes the corresponding lattice equation

vl =
M∑
m=1

almxm mod Λs. (3.10)

Now, vl can be written as vl = vRe
l + ivIm

l , where

vRe
l , <(vl) =

[
M∑
m=1

<(alm)xRe
m −=(alm)xIm

m

]
mod Λs (3.11)

vIm
l , =(vl) =

[
M∑
m=1

=(alm)xRe
m + <(alm)xIm

m

]
mod Λs. (3.12)

Once the destination obtains vl, it can recover uRe
l and uIm

l using the inverse of E
as follows

uRe
l , E−1(vRe

l ) =
M⊕
m=1

qRe
lmwRe

m ⊕ (−qIm
lm)wIm

m , (3.13)

uIm
l , E−1(vIm

l ) =
M⊕
m=1

qIm
lmwRe

m ⊕ (qRe
lm)wIm

m . (3.14)

Given the choice of al, q
Re
lm and qIm

lm are equivalent to qRe
lm = <(alm) mod p and

qIm
lm = =(alm) mod p. This implies that the selection of integer coefficient in the

Gaussian integer domain corresponds to the selection of coefficients in the finite

field domain. How to select “good” integer coefficients will be addressed later.

The next problem is then how to obtain the lattice equation vl. Similar to

the compute-and-forward with real-valued channels described in Chapter 2, the

receiver scales y with a scaling factor αl ∈ C and computes

ỹl = [αly] mod Λs (3.15)

=

[
M∑
m=1

αl
√
ghmxm + αlz

]
mod Λs (3.16)
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=

[
M∑
m=1

almxm +
M∑
m=1

(αl
√
ghmxm − almxm) + αlz

]
mod Λs (3.17)

= [vl + zeff(αl, al,h, g)] mod Λs, (3.18)

where

zeff(αl, al,h, g) =
M∑
m=1

(αl
√
ghmxm − almxm) + αlz (3.19)

is the effective noise. Subsequently, it produces estimates of vRe
l and vIm

l by quan-

tizing the real and imaginary components of ỹl with respect to Λc and performs

modulo operation on them with respect to Λs, i.e.,

v̂Re
l = QΛc (<(ỹl)) mod Λs (3.20)

v̂Im
l = QΛc (=(ỹl)) mod Λs. (3.21)

Finally, the estimates of uRe
l and uIm

l are obtained by using the inverse of E ,

ûRe
l = E−1

(
v̂Re
l

)
, (3.22)

ûIm
l = E−1

(
v̂Im
l

)
. (3.23)

The estimate of ul is then recovered as ûl =
(
ûRe
l , û

Im
l

)
.

In order for the receiver to be able to decode ul with low error probability,

the scaling factor αl has to be chosen such that the variance of the effective noise

zeff(αl, al,h, g) is minimized. Let σ2
eff(αl, al,h, g) be the variance of zeff(αl, al,h, g)

defined as

σ2
eff(αl, al,h, g) ,

1

n
E
{
‖zeff(αl, al,h, g)‖2} (3.24)

= ‖αl
√
gh− al‖2 P + |αl|2 . (3.25)

One can easily show that the optimal value for αl is given by

αopt
l , arg min

αl

σ2
eff(αl, al,h, g) (3.26)

=
P
√
ghHal

1 + Pg ‖h‖2 . (3.27)
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As a summary, the receiver decodes linear combination ul in the following way.

It first selects an integer coefficient vector al ∈ Z[i]M , then computes αopt
l and uses

it as the scaling factor αl. Next, it scales the received signal and performs modulo

operation with respect to Λs. Finally, the desired linear combination is obtained by

performing operations described in (3.20), (3.21), (3.22), and (3.23) sequentially.

The next question is then how to choose the integer coefficient vector al. In

principle, it is possible for the receiver to choose any integer coefficient vector.

However, the selection of the coefficient vector has a significant impact on the

achievable computation rate and consequently on the error performance. There-

fore, al has to be chosen wisely.

The achievable computation rate of compute-and-forward in complex-valued

channels is given in the following theorem.

Theorem 3.3.1 (Computation Rate for Complex-Valued Channels [14]): Con-

sider a complex-valued Gaussian network with M transmitters that simultane-

ously transmit their messages with average power constraint P to a receiver. Let

h = [h1, . . . , hM ]T ∈ CM be the channel coefficients and g be the geometric gain

from the transmitters to the receiver. Given a coefficient vector a = [a1, . . . , aM ] ∈
Z[i], the receiver can decode the corresponding linear combination of transmitted

messages with low error probability so long as the message rate is less than the

computation rate given by

Rcp(al,h, g) = log+

(‖a‖2 −
Pg
∣∣hHa

∣∣2
1 + Pg ‖h‖2

)−1
 . (3.28)

From the above theorem, it is clear that integer coefficient vectors should be

chosen such that the computation rate is maximized. For l ∈ {1, . . . , L}, let al

be the integer coefficient vectors of the desired linear combination ul, respectively.

Let A = [a1, . . . , aL]T . Note that a1, . . . , aL are linearly independent, and thus,

rank(A) = L. The receiver should choose A such that

A = arg max
Ã=[ã1,...,ãL]∈Z[i]L×M ,

rank(Ã)=L

min
l=1,...,L

Rcp(ãl,h, g). (3.29)
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It can be shown that the computation rate Rcp(al,h, g) can be written as [13]

Rcp(al,h, g) = log+

(
1

aHl Mal

)
, (3.30)

where

M = I− Pg

1 + Pg ‖h‖2 hhH . (3.31)

One can observe that M is a positive definite matrix, and thus, using Cholesky

factorization, it can further be decomposed into

M = BHB, (3.32)

where B is an upper triangular matrix.

The problem defined in (3.29) now can be written as

A = arg max
Ã=[ã1,...,ãL]∈Z[i]L×M ,

rank(Ã)=L

min
l=1,...,L

log+

(
1

ãl
HMãl

)
(3.33)

= arg min
Ã=[ã1,...,ãL]∈Z[i]L×M ,

rank(Ã)=L

max
l=1,...,L

ãl
HMãl (3.34)

= arg min
Ã=[ã1,...,ãL]inZ[i]L×M ,

rank(Ã)=L

max
l=1,...,L

‖Bãl‖2 . (3.35)

From (3.35), it can be said that finding L “best” integer coefficient vectors a1, . . . , aL

with respect to the computation rate is equivalent to finding integer vectors provid-

ing L successive minima of the lattice with generator matrix B. See the definition

of the successive minima of a lattice in Definition 2.1.8. Thus, to find A, we

can employ existing algorithms for finding the successive minima of a lattice such

that the Fincke-Pohst algorithm [46], the Schnorr-Euchner algorithm [47], the LLL

algorithm [48], and their variations [49–54].

3.3.4 Recovering Information Messages

We have discussed that upon receiving noisy superposition signal in (3.4) and (3.5),

the destination and the relay compute linear combinations of the transmitted mes-
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sages. However, the ultimate goal of the destination is to recover the transmitted

information messages w1, . . . ,wM . To this end, the destination requires at least

M linear combinations. Let us assume that the destination possesses linear com-

binations û1, . . . , ûM . These linear combinations may be obtained either by itself,

or with the help of the relay. How these linear combinations are obtained will be

addressed in the next section.

Let a1, . . . , aM ∈ Z[i]M be the integer coefficient vectors corresponding to

û1, . . . , ûM and let A = [a1, . . . , aM ]T ; we refer to A as the integer coefficient

matrix or just coefficient matrix. The corresponding coefficient matrix in Fp can

be written as

Q =

[
<(A) −=(A)

=(A) <(A)

]
mod p, (3.36)

where the modulo operation is element-wise. For all m ∈ {1, . . . ,M}, let ŵm =

(ŵRe
m , ŵ

Im
m ) be the estimate of wm. The destination decodes the transmitted infor-

mation messages by solving the following linear equation

ûRe
1
...

ûRe
M

ûIm
1
...

ûIm
M


= Q



ŵRe
1
...

ŵRe
M

ŵIm
1
...

ŵIm
M


(3.37)

where all operations are performed over finite field Fp. It should be noted that the

destination can solve the above linear equation system if and only if the matrix Q

is full-rank. Therefore, we should take into account the probability that the coef-

ficient matrix is not full rank when designing MARC with compute-and-forward.

Nevertheless, it has been shown in [14, Sec. VI] by taking the blocklength n and

field size p to be large enough, rather than checking rank of Q over Fq, it is suffice

to check whether A is full-rank over C, which is certainly easier.



32

3.4 Proposed Cooperation Strategies

In this section we propose two cooperation strategies between the destination and

the relay. In the first strategy, the relay helps the destination by providing its

local “best” linear combination without taking into account whether the resulting

coefficient matrix is full-rank or not. In the second strategy, the relay assists the

destination by forwarding the “best” linear combination that ensures the resulting

coefficient matrix is full-rank. Since the relay needs to know the linear combina-

tions that the destination possesses, a sufficient amount of feedback is needed in

the second strategy.

Before performing cooperation, the destination and the relay prepare M lin-

early independent coefficient vectors. Note that at this stage, the corresponding

linear combinations are not yet decoded. Let Ad = {ad1 , . . . , adM} and Ar =

{ar1 , . . . , arM} be the sets of coefficient vectors prepared by the destination and

the relay, respectively. The elements of Ad and Ar are sorted based on the

resulting computation rates. Specifically, let hsd = [hs1d, . . . , hsMd] and hsr =

[hs1r, . . . , hsMr], and define

R
(m)
cp,d , Rcp(adm ,hsd, gsd), (3.38)

R(m)
cp,r , Rcp(arm ,hsr, gsr). (3.39)

The coefficient vectors ad1 , . . . , adM and ar1 , . . . , arM are respectively sorted such

that R
(1)
cp,d ≥ · · · ≥ R

(M)
cp,d and R

(1)
cp,r ≥ · · · ≥ R

(M)
cp,r . Moreover, the elements of Ad

and Ar are integer vectors that provide M successive minima of their correspond-

ing lattices generated by a matrix B described in (3.32). This implies that ad1

and ar1 are the local optimal coefficient vectors at the destination and the relay,

respectively.

Based on Ad and Ar, we propose two cooperation strategies as follows.

3.4.1 Limited Feedback Strategy

The first strategy is very simple, yet it outperforms the existing cooperation strate-

gies in the literature. In this strategy, there are two steps for decoding the trans-

mitted messages. The first is, upon receiving y
(1)
d , the destination directly at-

tempts to decode the transmitted information messages without the help of the
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relay. We refer to this step of decoding as the direct decoding. Specifically, based

on the integer coefficient vector in Ad, the destination decodes the corresponding

M linear combinations. Let ûd1 , . . . , ûdM be the decoded linear combinations and

Ad = [ad1 , . . . , adM ]T . Based on ûd1 , . . . , ûdM and Ad, the transmitted messages

are recovered by solving the resulting equation system similar to (3.37).

If the destination successfully decodes the transmitted messages, the sources

can transmit the next messages. Otherwise, the destination sends feedback to

the sources and the relay, asking the sources to wait and the relay to help the

decoding. The feedback size is limited to only 1-bit and is assumed to always

be received correctly.2 Note that by default, the second round of transmission is

not required; the destination will not send any feedback when the direct decoding

succeeds. This scheme ensures high transmission efficiency.

The second step of decoding, to which we refer as the cooperative decoding,

is carried out when the relay receives feedback from the destination. The relay

chooses its local best coefficient vector ar1 , decodes the corresponding linear com-

binations and forwards it to the destination. Let ûr1 be the linear combination

forwarded by the relay. The destination now has an additional linear combina-

tion ûr1 with coefficient vector ar1 . Let Acop = [ar1 , ad1 , . . . , adM−1
]T . Based on

ûr1 , ûd1 , . . . , ûdM−1
and Acop, the destination then again decodes the transmitted

messages. We shall note that Acop may not be full-rank which clearly will prevent

the destination to decode the information messages correctly.

3.4.2 Sufficient Feedback Strategy

The second strategy is quite similar to the first in the sense that it also uses two

decoding steps. The first step is exactly the same as the limited feedback strategy.

The destination attempts to directly decode the information messages by using

its own linear combinations. Using ûd1 , . . . , ûdM and Ad the destination recovers

w1, . . . ,wM by solving an equation system similar to (3.37) . If the direct decoding

succeeds, the sources can transmit their next information messages. Otherwise, the

destination sends feedback to the sources and the relay. The feedback must contain

information about the M − 1 best integer coefficient vectors of the destination,

i.e., ad1 , . . . , adM−1
. Compared to the first strategy, the feedback size is sufficiently

2The destination can only ask for help one time. The case for multiple requests in the form of an
automatic repeat request (ARQ) protocol is left for future work, cf. Chapter 5
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bigger. However, it is far smaller compared to the overhead used in [20] where

channel gains are known to all terminals. Besides perfectly received, it is also

assumed that the feedback size is negligible compared to the amount of information

that can be transmitted within one coherence time. In practice, the feedback

required will require at least M(M − 1) log p bits.

Let ar∗ be the integer coefficient vector selected by the relay. Let Arl =

[arl , ad1 , . . . , adM−1
]T . The relay must select ar∗ such that

ar∗ = arg max
arl
∈ar1 ,...,arM

,

rank(Arl)=M

R(l)
cp,r. (3.40)

This way of selecting coefficient vector ensures that the resulting coefficient matrix

is full rank while keeping the achievable rate as high as possible. Subsequently,

the relay decodes the linear combination of the messages that corresponds to the

selected coefficient vector ar∗ and the forwards it to the destination. Now, because

the destination has enough linear combinations, it can re-decode the information

messages by solving the resulting linear equation system according to (3.37).

3.5 Performance Analysis

This section provides performance analysis of the proposed cooperation strategies

in terms of outage probability. In wireless communication systems, an outage event

is the situation where the channel condition is poor such that transmitters and

receivers cannot communicate reliably at a certain fixed data rate. The probability

of outage events is widely used as a metric to evaluate the performance of wireless

communication systems. It is a very useful metric that can be used to analyze the

relationship among the communication efficiency, reliability, SNR, and channel

fading [55].

3.5.1 Limited Feedback Strategy

We start from the performance analysis of the limited feedback (lim-FB) strategy.

In this strategy, the destination has two possible ways of decoding the transmitted

messages, the direct decoding and cooperative decoding. In the direct decoding,

the destination attempts to decode the transmitted messages by itself. Specifi-

cally, it computes linear combinations with coefficients ad1 , . . . , adM and solves the
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corresponding linear equation system. Let e1 be the outage event for the direct

decoding. e1 is defined as

e1 ,

{
min

m∈{1,...,M}
R

(m)
cp,d < R

}
(3.41)

=
{
R

(M)
cp,d < R

}
, (3.42)

where R is the coding rate employed by the sources and the relay. Note that (3.42)

is due to the fact Rcp,d(1) ≥ · · · ≥ R
(M)
cp,d , see Section 3.4. Intuitively, we can think

that the outage event for direct decoding is determined by the worst coefficient

vector adM .

In the cooperative decoding, the relay forwards its local best linear combina-

tion and the destination uses its M − 1 best linear combinations and solves the

resulting linear equation system to decode the transmitted messages. In order for

the cooperative decoding to succeed, all the linear combinations have to be cor-

rectly decoded and the resulting coefficient matrix has to be full rank. Let e2 be

the outage event for the cooperative decoding and A be the resulting coefficient

matrix. The outage event in the cooperative decoding is defined as

e2 ,
{

min
m∈{1,...,M−1}

R
(m)
cp,d < R

}
∪
{
R(1)

cp,r < R
}
∪
{
Rrd < R

}
∪
{

rank(A) < M
}

=
{
R

(M−1)
cp,d < R

}
∪
{
R(1)

cp,r < R
}
∪
{
Rrd < R

}
∪
{

rank(A) < M
}

(3.43)

where Rrd = log(1 + |hrd|2 γrd) is the achievable rate of the point-to-point relay-

destination link.

Let Pdef , Pr(rank(A) < M). At the end, the destination fails to decode the

transmitted messages if and only if both the direct and the cooperative decodings

fail. Therefore, the outage probability is given by

Pout , Pr(e1 ∩ e2) (3.44)

= Pr
(
{R(M)

cp,d < R} ∩
(
{R(M−1)

cp,d < R} ∪ {R(1)
cp,r < R} ∪ {Rrd < R}

∪ {rank(A) < M}
))

= Pr
(
{R(M−1)

cp,d < R} ∪
(
{R(M)

cp,d < R} ∩ {R(1)
cp,r < R}

)
∪
(
{R(M)

cp,d < R} ∩ {Rrd < R}
)
∪
(
{R(M)

cp,d < R} ∩ {rank(A) < M}
))
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(a)

≤ Pr
(
{R(M−1)

cp,d < R}
)

+ Pr
(
{R(M)

cp,d < R} ∩ {R(1)
cp,r < R}

)
+ Pr

(
{R(M)

cp,d < R} ∩ {Rrd < R}
)

+ Pr
(
{R(M)

cp,d < R} ∩ {rank(A) < M}
))

(b)

≤ Pr
(
R

(M−1)
cp,d < R

)
+ Pr

(
R

(M)
cp,d < R

)
Pr
(
R(1)

cp,r < R
)

+ Pr
(
R

(M)
cp,d < R

)
Pr
(
Rrd < R

)
+ min

{
Pr
(
R

(M)
cp,d < R

)
, Pdef

}
(3.45)

where (a) is due to the union bound and (b) is because the channels of sources-

destination, sources-relay, and relay-destination are independent. The last part of

(b) is due to the Fréchet bound.

Let us recall the definition of diversity order [29] achieved by a system.

Definition 3.5.1 (Diversity order): For a system with outage probability Pout,

the diversity order of the system is defined as

d , − lim
γ→∞

logPout

log γ
, (3.46)

where γ is the average SNR of the channel.

From the above definition, we can estimate the diversity order of a system

from its outage probability curve. We will use this for observing our numerical

results from computer simulations. For simplicity of presentation, we will use the

following notation.

Definition 3.5.2 (Exponential Equality): A function f(γ) is said to be exponen-

tially equal to b, denoted by f(γ)
.
= γb, if

lim
γ→∞

log f(γ)

log b
= b. (3.47)

The relation ≤̇ is defined similarly.

From (3.45), we can see that the diversity order achieved by the lim-FB strat-

egy depends on the outage probability of the selected linear combinations at the

destination and the relay, the outage probability of the relay-destination link, and

the probability of rank deficient coefficient matrix during the cooperative decoding.

For the relay-destination link, because it is just a normal point-to-point wireless

communication, the achieved diversity order is one [27]. For the compute-and-

forward at the destination and the relay, it is possible to prove that they achieve
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Fig. 3.2. The outage probability of the M = 3 best linear equations of a compute-and-forward
system with three transmitters. The first best equation achieves third-order diversity, while the
second achieves second-order diversity. The last equation achieves first-order diversity.

full diversity gain when they use their best coefficient vector. However, we found

that it is very hard to theoretically show the achieved diversity order when a non-

best linear coefficient vector is selected. For this reason, we numerically evaluate

the outage probabilities of the compute-and-forward with M best linear coefficient

vectors. By “best” here, we mean the coefficient vectors that provide successive

minima of the resulting lattice B in (3.32). In Fig. 3.2, we show numerical results

of outage probabilities for each equation of a compute-and-forward system with

three transmitters. Based on the slopes of the outage probability curves, we can see

that the first best linear equation achieves diversity gain of order three, while the

second best achieves diversity gain of order two. Lastly, the worst linear equation

achieves first-order diversity gain. Similar results for the MARC with two sources

are also shown if Fig. 3.3 where the best linear equation achieves full diversity or-

der and the worst linear equation only achieves the first-order. Therefore, we can
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Fig. 3.3. The outage probability of the M = 2 best linear equations of a compute-and-forward
system with two transmitters. The first best equation achieves second-order diversity and the
last equation achieves first-order diversity.

conjecture that the m-th best linear equation of a compute-and-forward system

achieves diversity gain of order M −m+ 1.

Now we are left with the probability of rank deficient coefficient matrix. Un-

fortunately, it is also hard to obtain a closed-form expression for Pdef. Similarly,

we use a numerical approach to show the behavior of Pdef. In Fig. 3.4, we show the

rank deficient probability of the coefficient matrices constructed during the coop-

erative decoding of the lim-FB strategy. The evaluation is performed by adjusting

the position of the relay relative to the sources δsr which impacts the average SNR.

We assume that the relay-destination link is perfect. It can be observed that the

rank deficient probability gets lower as the position of the relay is closer to the

sources. Moreover, we can also observe from the slopes of the curves that the rank

deficient probability has an equivalent diversity gain of order less than one.

Let k be the diversity order related to the rank deficient probability of the
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Fig. 3.4. Probability of rank deficient coefficient matrix (Pdef) of MARC with two sources.

coefficient matrix. From the above numerical results, we conjecture that k < 1.

The outage probability of the lim-FB strategy now can be written as

Pout ≤ Pr
(
R

(M−1)
cp,d < R

)
+ Pr

(
R

(M)
cp,d < R

)
Pr
(
R(1)

cp,r < R
)

+ Pr
(
R

(M)
cp,d < R

)
Pr
(
Rrd < R

)
+ min

{
Pr
(
R

(M)
cp,d < R

)
, Pdef

}
(a)

≤̇ ξ1

γ2
sd

+
ξ2

γsd

ξ3

γMsd
+

ξ2

γsd

ξ4

γsd
+

ξ2

γsd
(3.48)

≤̇ ξ

γsd
, (3.49)

where ξ, ξ1, ξ2, ξ3, and ξ4 are positive constants. In (a), because k < 1, in the high

SNR regime, min{Pr(R
(M)
cp,d < R), Pdef} = Pr(R

(M)
cp,d < R). From the above result,

we can see that the lim-FB cannot achieve the full-diversity gain of the MARC.

However, the bound in (3.49) is loose because of the Fréchet bound. As we will

see in the next section, the lim-FB nearly achieves diversity gain of order two and
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its outage performance is significantly better compared to the existing strategies.

3.5.2 Sufficient Feedback Strategy

The outage performance of the sufficient feedback (suf-FB) strategy is quite similar

to the lim-FB strategy. In the suf-FB strategy, there are also two possible ways

for the destination to decode the transmitted messages. The first one is the direct

decoding, which is exactly the same as that of the lim-FB. Therefore, the outage

event of the direct decoding in the suf-FB is also given by

e1 =
{
R

(M)
cp,d < R

}
. (3.50)

The second one is the cooperative decoding, where the relay select its best linear

combination ar∗ that is linearly independent of the first M −1 linear combinations

of the destination. Therefore, the resulting coefficient matrix is always full rank.

As a result, the outage event of the cooperative decoding depends only on the

sources-destination, the sources-relay, and the relay-destination links. Let R
(∗)
cp,r ,

Rcp(ar∗ ,hsr, gsr). The outage probability of the suf-FB strategy is given by

e2 ,
{

min
m∈{1,...,M−1}

R
(m)
cp,d < R

}
∪
{
R(∗)

cp,r < R
}
∪
{
Rrd < R

}
=
{
R

(M−1)
cp,d < R

}
∪
{
R(∗)

cp,r < R
}
∪
{
Rrd < R

}
(3.51)

Similar to the lim-FB strategy, the overall outage for the suf-FB strategy occurs

if and only if the direct and the cooperative decodings fail. Therefore, the outage

probability of the suf-FB is given by

Pout , Pr(e1 ∩ e2) (3.52)

= Pr
(
{R(M)

cp,d < R} ∩
(
{R(M−1)

cp,d < R} ∪ {R(∗)
cp,r < R} ∪ {Rrd < R}

)
= Pr

(
{R(M−1)

cp,d < R} ∪
(
{R(M)

cp,d < R} ∩ {R(∗)
cp,r < R}

)
∪
(
{R(M)

cp,d < R} ∩ {Rrd < R}
)

(a)

≤ Pr
(
R

(M−1)
cp,d < R

)
+ Pr

(
R

(M)
cp,d < R

)
Pr
(
R(∗)

cp,r < R
)

+ Pr
(
R

(M)
cp,d < R

)
Pr
(
Rrd < R

)
(b)

≤ Pr
(
R

(M−1)
cp,d < R

)
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(
R

(M)
cp,d < R

)
Pr
(
R(M)

cp,r < R
)
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+ Pr
(
R

(M)
cp,d < R

)
Pr
(
Rrd < R

)
(3.53)

where (a) is due to union bound and in (b) we bound Pout by selecting the worst

linear combinations at the relay.

Using the results shown in the previous subsection, we can see that the suf-FB

strategy can achieve second-order diversity. Specifically, Pout can be written as

Pout ≤ Pr
(
R

(M−1)
cp,d < R

)
+ Pr

(
R

(M)
cp,d < R

)
Pr
(
R(M)

cp,r < R
)

+ Pr
(
R

(M)
cp,d < R

)
Pr
(
Rrd < R

)
(3.54)

≤̇ ξ1

γ2
sd

+
ξ2

γsd

ξ3

γsd
+

ξ2

γsd

ξ4

γsd
(3.55)

≤̇ ξ

γ2
sd

, (3.56)

with other positive constants ξ, ξ1, ξ2, ξ3, and ξ4.

3.6 Numerical Evaluation

In this section, we provide results of computer simulations performed to evaluate

the performance of the proposed cooperation strategies compared to the approaches

found in the literature. Since we focus on the design of cooperation strategies for

applying compute-and-forward to the MARC, we mainly compare our proposed

strategies to the approaches proposed by Soussi et al. [20] and Insausti et al. [22].

To the best of our knowledge, [20] and [22] are the only works available in the

literature that addressed the problem of applying compute-and-forward to MARC.

Before going into the details, let us first briefly describe the approaches pro-

posed in [20] and [22]. In [20], Soussi et al. proposed a global optimization for

choosing linear combinations at the relay and the destination. Given channel state

information (CSI) is known to all terminals, the relay and the destination select

their optimal linear combinations maximizing the achievable rate. The relay then

forwards its linear combination to the destination. Finally, having sufficient lin-

ear combinations, the destination attempts to recover the transmitted messages.

We shall note that this approaches was proposed specifically for MARC with two

sources. Extending it to MARC with any number of sources would require a signif-

icant effort. It has been shown that this approach achieves better achievable rate
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compared to other relaying strategies such as amplify-and-forward and decode-

and-forward. However, it has a drawback that it requires huge communication

overhead due to the fact that all CSI is known to all terminals. Moreover, it is

easy to prove that this approach does not achieve full-diversity gain as it has a

bottleneck in the link between the relay and the destination.

In [22], Insausti et al. proposed a different approach where the relay is allowed

to choose its best linear combination yielding optimal computation rate and to for-

ward it to the destination. The destination then chooses linear combinations that

are linearly independent of the one from the relay and decodes the transmitted

messages. If the decoding fails, the destination computes one more linear combi-

nation from its received signal and again decodes the transmitted messages. This

approach is quite similar to our proposed strategy with limited feedback. Indeed,

they achieve the same outage probability performance as we will see later. They

differ in the way they utilize the transmission rounds. In the Insausti approach,

two transmission rounds are always used. While in our proposed strategy, we try to

use only one transmission round as much as possible to maintain the transmission

efficiency.

Recall that we assume all the sources have the same distance to the destination

and also to the relay. The distance from the sources to the destination is denoted by

δsd, and to the relay is denoted by δsr. The relay has distance δrd to the destination.

For simplicity, we normalize δsd = 1, and assume δsr+δrd = δsd. See the illustration

in Fig. 3.1. The corresponding average SNRs are calculated with the assumption of

path-loss exponent is equal to 3.52 [44,45]. In the simulations, we consider MARC

with two sources and transmission rate R = 2. The performance is evaluated in

three scenarios as follows.

1. First scenario: In this scenario, we evaluate the condition where the relay is

closer to the sources than to the destination. Specifically, we set the distance

from the sources to the relay δsr = 0.25, while from the relay to the destination

is δrd = 0.75. This scenario is equivalent to the setting of average SNRs

γsr = γsd + 21.19 dB and γrd = γsd + 4.39 dB.

2. Second scenario: In this scenario, we assume the distance from the sources

to the relay is equal to the distance from the relay to the destination, i.e.,

δsr = δrd = 0.5. In other words, the relay is half-way between the sources
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Fig. 3.5. Outage probabilities of the two-source MARC in the first scenario.

and the destination. With the same path-loss exponent, the resulting average

SNRs are γsr = γrd = γsr + 10.59 dB.

3. Third scenario: This scenario is the opposite of the first one. It is assumed

that the relay is positioned closer to the destination than to the relay. In

particular, we assume δsr = 0.25 and δrd = 0.75. As a result, the average

γsr = γsd + 4.39 dB and γrd = γsd + 21.19 dB.

The outage probability results for the first, second, and third scenarios are

presented in Figs. 3.5, 3.6, and 3.7, respectively. Additionally, we present the

baseline outage probability for the case when the sources send their information to

the destination without a relay so that we can see how much improvement is gained

when the relay is employed. Furthermore, outage probability bounds (3.45) and

(3.53) are also presented. It can be observed that the outage probability bound

of the lim-FB is quite loose which is a result of using the Fréchet bound in the

derivation. From here on we refer to the strategy proposed by Soussi et al. [20] as
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Fig. 3.6. Outage probabilities of the two-source MARC in the second scenario.

the Soussi strategy, and the strategy proposed by Insausti et al. [22] as the Insausti

strategy.

From Figs. 3.5 and 3.6, we can clearly see that the Soussi strategy exhibits the

highest outage performance. This is because even though the linear combinations

selected by the relay and the destination are globally optimized, the destination

can correctly recover the transmitted message if and only if it correctly decodes its

own linear combination and the one from the relay. Therefore, if there is an outage

in either sources-relay link, sources-destination link, or relay-destination link, the

final decoding at the destination will fail. This means that the relay does not act

as a helper, rather, its presence is mandatory. Even though compute-and-forward

at the destination and the relay may achieve good outage performance, the point-

to-point communication from the relay to the destination can only achieve the

first-order diversity gain. And hence, the Soussi strategy suffers from a bottleneck

performance at the relay-destination link. This fact can be seen from the three

scenarios where the outage performance of the Soussi strategy gets better as the
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Fig. 3.7. Outage probabilities of the two-source MARC in the third scenario.

distance of the relay to the destination gets closer, i.e., γrd gets larger. Moreover,

it can be seen from the slopes of the outage probability curves that this strategy

can only achieve the first-order diversity.

In Figs. 3.5 and 3.6, it is shown that a significant outage performance improve-

ment over the Soussi strategy is achieved by the Insausti strategy in the first and

the second scenarios. For the third scenario, even though at low SNR regime the

Soussi strategy has lower outage probability, it can be predicted that eventually

the Insausti strategy is better in high SNR regime as the slope of its outage prob-

ability curve is steeper. This improvement is a result of giving the destination two

possible ways of decoding the transmitting messages. The first is with the help of

the relay, and the second is by using linear combinations decoded by itself. Thus, it

can be thought that the relay acts as a helper where its existence is not mandatory,

i.e., it is possible for the destination to decode the transmitted messages without

the relay. It can also be observed that our proposed lim-FB strategy achieves the

same outage performance as the Insausti strategy. This is because they are quite
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similar in the sense that the destination has two possible ways for decoding the

transmitted messages and treat the relay as a useful helper. If we carefully observe

the slopes of the outage performance of the lim-FB and the Insausti strategies,

they do not achieve second-order diversity gain. The main reason behind this is

that the local best linear combination selected by the relay may not be linearly

independent of the M − 1 best linearly combinations of the destination. We also

observe that the performance of the Insausti and the lim-FB strategies degrades

as the relay gets closer to the destination or as the average SNR from the sources

to the relay gets smaller. This is related to the probability of the rank deficient

coefficient matrix. As we have seen in Fig. 3.4, the smaller the difference between

γsd and γsr, the higher the probability of rank deficient coefficient matrix. Hence,

for the lim-FB and the Insausti strategies, it is better to place the relay closer to

the sources.

The best outage performance is achieved by the suf-FB strategy. Based on

the slopes of the curves shown in Figs. 3.5, 3.6, and 3.7, one can see that the

suf-FB strategy achieves the second-order diversity gain. This agrees with our

analysis in Subsection 3.5.2. The main reason for this is that the destination

has two possible ways in decoding the transmitted messages, the direct and the

cooperative decoding. Moreover, unlike in the lim-FB, the resulting coefficient

matrices in the suf-FB are guaranteed to always be full-rank.

Next, we evaluate network throughput performance which is defined as the

ratio of the correctly received messages to number of transmission rounds utilized.

For the proposed strategies, because the second round of transmission is utilized

only when the direct decoding fails, the network throughput is defined as

Tprop =
M(1− Pout)

1 + P dir
out

, (3.57)

where P dir
out , Pr{R(M)

cp,d < R} is the outage probability of the direct decoding.

On the other hand, because the Soussi and the Insausti strategies always use two

transmission round, their network throughput is given by

Texist =
M(1− Pout)

2
. (3.58)

We found that in terms of network throughput, the performance of each strat-
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Fig. 3.8. Network throughput of the two-source MARC in the second scenario.

egy in all scenarios is similar. Therefore, it is sufficient to only present the network

throughput performance of one of the three scenarios; Fig. 3.8 presents the net-

work throughput of the second scenario. It can be clearly seen that both the

proposed strategies nearly achieve the maximum throughput of two messages per

transmission, while the existing strategies can only approach maximum of one mes-

sage per transmission. This is because the proposed strategies requires less than

two transmissions on average to deliver two messages. In fact, in the high SNR

regime, close to one transmission is required on average. On the other hand, the

existing strategies always utilize two transmission rounds to deliver two messages.

Therefore, the maximum network throughput they can achieve is one message per

transmission rounds. Thus, it can be concluded that the proposed strategies have

higher transmission efficiency compared to the existing strategies.

We shall note that the proposed strategies, in particular the suf-FB strategy,

indeed need additional communication overhead for achieving the aforementioned

advantages. However, the additional overhead size is not as big as the Soussi
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strategy. Moreover, the feedback is only sent when the destination fails to decode

the transmitted messages by itself. Hence, in the higher SNR regime, only a small

amount of feedback is required.

3.7 Summary

In this chapter, we have studied the application of compute-and-forward to multiple-

access relay channels (MARC). We proposed two cooperation strategies between

the relay and the destination. The proposed strategies are opportunistic in the

sense that they use transmission rounds as few as possible to increase the trans-

mission efficiency while improving outage probability performance of MARC. We

have shown that both of the proposed strategies improves network throughput

remarkably, twice of that of the existing strategies [20, 22]. It is shown that the

first strategy called the lim-FB strategy achieves diversity gain close to the second-

order, which is a significant improvement over [20]. A better outage probability

enhancement is achieved the second strategy, namely the suf-FB strategy, where

the full-diversity gain of the MARC is achieved.



Chapter 4
Compute-and-Forward in

Precoded MIMO Systems

Different from Chapter 3, in this chapter we study another type of wireless com-

munication scenarios that adopts compute-and-forward methods. In particular,

we study precoded multiple-input multiple-output (MIMO) systems that employ

integer-forcing linear receivers [26]. Note that integer-forcing in principle is another

form compute-and-forward methods.

4.1 Introduction

4.1.1 Background and Related Work

MIMO systems where multiple antennas are used at both transmitter and re-

ceiver in a wireless communication system has been regarded as one key technol-

ogy to cope with major wireless network challenges. As we are aware that wireless

networks are now facing unprecedented challenges as the number of wirelessly-

connected devices such as smartphones, tablets, computers, and sensors is dramat-

ically increasing. Furthermore, the emergence of abundant software applications

demanding high quality media, e.g., images and videos, results in the tremendous

increase of the global network traffic. This situation leads to the demands of mas-

sive wireless network access and high data transmission rate. The scarcity of the

available spectrum frequency makes these challenges more difficult to overcome.

In this situation MIMO strategy comes in handy because by exploiting multi-path
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scattering, MIMO offers significant improvement in terms of transmission reliabil-

ity (diversity gain) and data transmission rate.

To realize the advantages of MIMO, it is important to design an optimal or

near-optimal receiver. A maximum likelihood (ML) receiver has optimal rates

and probability of error [49]. However, its complexity increases exponentially with

respect to the number of antennas. As alternatives, zero-forcing (ZF) or minimum

mean square error (MMSE) receivers are often employed [27]. These receivers apply

a linear transformation such that the MIMO channel can be seen as a sequence of

single-input single-output (SISO) channels, and hence, the decoding complexity is

greatly reduced. However, this advantage comes with the cost of a performance

loss which can be significant especially in the low signal-to-noise power ratio (SNR)

regime. Inspired by compute-and-forward, Zhan et al. proposed a MIMO linear

receiver called integer-forcing (IF) receiver [26] which achieves significantly better

error performance than ZF and MMSE receivers with nearly the same decoding

complexity for slow-fading channels. Similar to the compute-and-forward case,

the transmitter in the IF receiver framework employs nested lattice codes and the

receiver approximates the channels with a “good” full rank integer matrix A. Since

an integer linear combination of lattice codewords is again a codeword, the receiver

can use SISO decoding to decode each linear combination, and subsequently recover

the transmitted messages by solving a simple linear equation system. It has been

shown that IF receivers achieve the optimal diversity-multiplexing tradeoff (DMT)

[28, 29] and yield numerical error performance that is quite close to that of the

optimal ML receiver [26,54].

While the advantages of MIMO can be achieved when the channel state in-

formation (CSI) is only available at the receiver, these can be further enhanced

when the transmitter has some level of knowledge of CSI. The transmitter exploits

CSI for encoding information symbols prior to transmissions to increase the relia-

bility against the channel fluctuations; this technique is known as precoding [56].

Many precoding schemes are designed for MIMO with quadrature amplitude mod-

ulations (QAM) and ML receivers. For instance, Vrigneau et al. [57] proposed

a specific precoding scheme for 4-QAM MIMO systems with ML receivers. This

precoding is optimal and has been shown to outperform all MMSE receiver-based

precodings. However, despite its optimality, it is hard to further extend the idea

to higher-order QAM because of its high complexity. In [30], Mohammed et al.
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proposed precoding schemes for more general QAM with ML receivers, namely X-

and Y-precoders. These precoding schemes can achieve error performance close

to that of [57] and can be easily employed for an arbitrary MIMO configuration.

However, when full transmission rate is used, X- and Y-precoders cannot achieve

full diversity gain. Moreover, since they are designed based on the minimum dis-

tance of the received QAM constellations, the error performance degrades as the

constellation size increases.

In this chapter we focus on precoding schemes for MIMO with integer-forcing

receivers (IF-MIMO). The performance of this kind of precoding is not dictated

by the minimum distance of received constellations, and hence, it can excel in

high-order modulation schemes. In [3], Sakzad and Viterbo proposed unitary pre-

coded integer-forcing (UPIF), a precoding scheme designed for IF-MIMO where

the precoder matrices are from groups of unitary matrices. They showed that

UPIF achieves full diversity gain while allowing full rate transmission. Two types

of UPIF were introduced. The first type of precoder (UPIF I) is designed for each

channel realization based on the minimum distance of a lattice generated by the

precoder matrix. The second type of precoder (UPIF II) is designed for all channel

realizations based on the minimum product distance [58] of the generated lattice.

We are particularly interested in UPIF I where the precoder matrix adapts to each

channel realization. Finding the optimal precoder matrix of UPIF I is a hard prob-

lem due to the involvement of the unitary constraint [59] and the lattice minimum

distance problem [46, 47, 60]. For 2 × 2 MIMO systems, a simple parameteriza-

tion technique finds the optimal UPIF I precoder matrix [3]. But for higher-order

MIMO, this technique is computationally expensive because an exhaustive search

over multiple parameters is required. Our work here addresses this problem and

proposes an efficient algorithm for finding good orthogonal precoder matrices that

are applicable to any MIMO dimension.

4.1.2 Summary of Contributions

The summary and contributions of our work in this chapter are as follows.

1. In [3] it is shown that the search space for optimal UPIF I precoder ma-

trices is groups of unitary matrices. However, we argue that it is sufficient

and even superior to only search over groups of orthogonal matrices.1 Uni-
1Groups of orthogonal matrices are sub-groups of groups of unitary matrices.
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tary precoder matrices do not guarantee better achievable rate and outage

probability than orthogonal precoder matrices; this is shown using Proposi-

tions 4.3.1 and 4.4.1. Via numerical evaluations we confirm that indeed the

orthogonal precoder outperforms its unitary counterpart in terms of achiev-

able rate, outage probability, and error rate. Besides the performance advan-

tage, the orthogonal precoder also has lower complexity as the dimension of

orthogonal matrices is half that of unitary matrices in real-valued domain.

In other words, we show that the orthogonal precoder is more favorable in

terms of both performance and complexity compared to unitary precoder for

UPIF I.

2. We propose an efficient algorithm for finding good orthogonal precoder matri-

ces. This algorithm is based on the steepest gradient algorithm and exploits

the geometrical properties of orthogonal matrices as a Lie group [2, 59, 61].

The main difficulty of the optimization problem comes from the simultane-

ous inclusions of (i) an orthogonality constraint and (ii) the lattice minimum

distance problem. Without the minimum distance problem, we could imme-

diately use existing steepest gradient algorithms. However, the inclusion of

(ii) makes the optimization problem non-differentiable and much harder. Our

approach is to divide the problem into two sub-problems, and develop algo-

rithms based on steepest gradient and random search algorithms to solve

them. Discussion of the proposed algorithm is presented in Section 4.5.

Compared to the parameterization technique [3, 62], the proposed algorithm

has lower complexity — the proposed algorithm has polynomial complex-

ity of O(M4 logM), while the parameterization technique has exponential

O(νM(M−1)/2)M4 logM), where M is the number of antennas and ν is a con-

stant, cf. Section 4.6.

3. We present and analyze the results of computer simulations comparing the

proposed schemes with existing schemes. The numerical results show that:

• Orthogonal precoder matrices are superior to unitary precoder matrices

for integer-forcing MIMO.

• Despite its lower complexity, the proposed steepest gradient-based algo-

rithm achieves performance identical to the parameterization technique.
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• Even though X-precoders are designed specifically for QAM, our pro-

posed schemes are remarkably better (in terms probability of error) in

high-order QAM schemes, e.g., 64- and 256-QAM.

• The proposed schemes outperform UPIF II in some scenarios, e.g., 4× 4

MIMO.

4.2 Integer-Forcing MIMO with Orthogonal Precoder

Without loss of generality, we consider a point-to-point MIMO system where each

transmission end is equipped with M antennas, i.e., an M ×M MIMO system.

The channels are assumed to be quasi-static flat-fading, remaining constant over

one coherence interval. CSI is known to both transmitter and receiver. Denoted

by H ∈ CM×M , the channel matrix is decomposed to H = WDVH using the

singular value decomposition (SVD). W,V ∈ CM×M are unitary matrices, i.e.,

WWH = VVH = I, and D , diag(d1, d2, ..., dM) ∈ RM×M is a diagonal matrix

with d1 ≥ d2 ≥ · · · ≥ dM .

Let C be a codebook of a nested lattice Λc/Λs ⊂ Cn with coding rate R. Let wm,

m = 1, ...,M , be information messages to be transmitted across MIMO channels.

These messages are encoded to lattice codewords xm ∈ C using a bijective mapping

E , i.e., E(wm) = xm. Each xm satisfies 1
n
E||xm||2 = γ. Let X = [x1 · · · xM ]T ∈

CM×n. Prior to transmissions, X is precoded such that Xprec = VPX, where

P ∈ RM×M is an orthogonal matrix. We refer to the matrix P as the precoder

matrix, which is subject to the optimization problem in this work. The received

signal at the receiver is

Y = HXprec + Z. (4.1)

The entries of H and Z ∈ CN×n are i.i.d. complex Gaussian random variables

∼ CN (0, 1). We assume that random dithering is employed to ensure that the xm

is uniformly distributed over the fundamental Voronoi region of Λs. However, for

simplicity, we omit the dithering notations from the exposition. Upon receiving

Y, the receiver multiplies it by WH , and thus,

Ỹ = WHY = WHHXprec + WHZ (4.2)

= WHWDVHVPX + WHZ (4.3)
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= DPX + Z̃, (4.4)

with Z̃ = WHZ whose entries still follow CN (0, 1) because W is unitary.

The receiver employs an IF receiver [26] which transforms the resulting channel

in (4.4) into M effective point-to-point sub-channels. Hence the receiver can de-

code the transmitted messages using a SISO decoding rather than joint decoding

across all receive antennas. In principle, the IF receiver approximates the resulting

MIMO channel DP with an invertible integer matrix2 A ∈ ZM×M by selecting an

equalizing matrix B ∈ RM×M and computes3

Yeff = [BỸ] mod Λs (4.5)

= [BDPX + BZ̃] mod Λs (4.6)

= [AX + (BDP−A)X + BZ̃] mod Λs. (4.7)

Let yTeff,m, aTm, and bTm be the m-th rows of Yeff, A, and B, respectively. The

effective received signal at sub-channel m can be written as

yTeff,m = [aTmX + (bTmDP− aTm)X + bTmZ̃] mod Λs (4.8)

= [cTm + zTeff,m] mod Λs, (4.9)

where cTm = aTmX mod Λs is the desired linear combination, and

zTeff,m = [(bTmDP− aTm)X + bTmZ̃] mod Λs (4.10)

is the effective noise at sub-channel m.

Owing to the linearity property of C, the linear combination cm happens to be

a codeword, and thus, the next step of the IF receiver is to decode cm from the

effective point-to-point sub-channel in (4.9). Let ĉm be the estimate of cm. ĉm

is obtained using ĉm = QΛc(yeff,m), where QΛc(·) is the decoding or quantization

function with respect to Λc. Let Ĉ = [ĉ1, ..., ĉM ]T , and X̂ and ŵm be the estimates

of X and wm, respectively. The transmitted symbols are obtained by solving X̂ =

A−1Ĉ, and finally the information messages are recovered using ŵm = E−1(x̂m).

2Note that if P is a unitary matrix (complex-valued), then A ∈ Z[i]M×M and B ∈ CM×M .
3mod Λs is modulo operation on each row of the corresponding matrix with respect to the shaping

lattice Λs.
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4.3 Performance Metrics

Consider the performance of this MIMO system. First, define the variance of zeff,m

as

σ2
eff,m ,

1

n
E
∥∥∥(bTmDP− aTm)X + bTmZ̃

∥∥∥2

= γ
∥∥bTmDP− aTm

∥∥2
+
∥∥bTm∥∥2

. (4.11)

To achieve a reliable communication system, bm should be chosen such that the

effective noise variance σ2
eff,m is minimized. The optimal bm is [3]

bTopt,m = γaTm(DP)T (I + γDP(DP)T )−1. (4.12)

Substituting bTopt,m into (4.11) results in

σ2
eff,m = γaTm(I + γ(DP)TDP)−1am (4.13)

= γaTmPT (I + γDTD)−1Pam. (4.14)

Because (I + γDTD)−1 is a positive definite matrix, it admits Cholesky decompo-

sition

(I + γDTD)−1 = LLT . (4.15)

Now let

LP , PTL. (4.16)

Hence, σ2
eff,m can be expressed as

σ2
eff,m = γaTmPTLLTPam (4.17)

= γ
∥∥LT

Pam
∥∥2
. (4.18)

Define the effective SNR of the worst sub-channel, i.e., the channel with the

highest effective noise variance, as

SNReff , min
m=1,...,M

1
n
E ‖cm‖2

σ2
eff,m

(4.19)
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= min
m=1,...,M

1

‖LT
Pam‖

2 . (4.20)

Note that because cm is a codeword, 1
n
E ‖cm‖2 = γ. Clearly, to recover the infor-

mation messages, all cm’s must be decoded correctly. Therefore, the matrix A has

to be chosen such that SNReff is maximized. Define the optimal matrix A as

Aopt = arg max
A∈ZM×M

det(A)6=0

min
m=1,...,M

1

‖LT
Pam‖

2 (4.21)

= arg min
A∈ZM×M

det(A)6=0

max
m=1,...,M

∥∥LT
Pam

∥∥2
. (4.22)

If Aopt is employed, then we have the optimal SNReff as

SNReff,opt =
1

λ2
M(LT

P)
, (4.23)

where λM(LT
P) is the largest successive minimum of the lattice Λ(LT

P), see the defi-

nition of successive minima given in (2.16). Finding Aopt is one of crucial problems

in the IF framework. Because this problem is equivalent to finding successive min-

ima of a lattice, we can conveniently employ the sphere decoding algorithms [46,49]

or the LLL algorithms [48, 63]. We can also use the recently proposed algorithms

specifically for IF-MIMO [50,51,53,54,64,65].

Assume that a “good” nested lattice code C [14, 16, 17, 26] is employed at the

transmitter. In the IF receiver framework, the worst sub-channel constitutes a

performance bottleneck. Therefore, if the rate of C satisfies

R < log(SNReff,opt), (4.24)

then all sub-channels m = 1, ...,M can decode their linear combination cm with a

low error probability. This implies that the achievable rate of this MIMO system

is

RIF = M log(SNReff,opt). (4.25)

Let Rt be the target rate of the system. The outage probability of the system
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is defined as

Pout , Pr(RIF < Rt) = Pr(M log(SNReff,opt) < Rt) (4.26)

= Pr
(
SNReff,opt < 2Rt/M

)
. (4.27)

From (4.25) and (4.27), we know that to improve the performance in terms of

achievable rate and outage probability, SNReff,opt should be maximized. This max-

imization is rather difficult because SNReff,opt is a function of the largest successive

minimum of a lattice. However, we can bound SNReff,opt with the minimum distance

of its dual lattice, which makes the optimization easier. For this purpose, we use

the following proposition.

Proposition 4.3.1: Consider the aforementioned IF-MIMO system with an or-

thogonal precoder matrix P. The effective SNR of the worst sub-channel is lower

bounded by

SNReff,opt ≥
λ2

1(L−1
P )

M2
, (4.28)

where LP is defined in (4.16) and λ1(L−1
P ) is the minimum distance of lattice

Λ(L−1
P ), which is the dual lattice of Λ(LT

P).

Proof. The proof follows the one given in [28]. Let Λ(G) be a real-valued lattice

generated by a full rank matrix G ∈ RM×M and let Λ(G−T ) be its dual lattice.

In [66] Banaszczyk proved that the successive minima of Λ(G) and Λ(G−T ) have

the following relationship

λm(G)λM−m+1(G−T ) ≤M, (4.29)

for 1 ≤ m ≤M .

From (4.23), we have SNReff,opt = 1/λ2
M(LT

P). The dual lattice of Λ(LT
P) is

Λ(L−1
P ), see Definition 2.1.7. And thus, by (4.29), it follows that

SNReff,opt ≥
λ2

1(L−1
P )

M2
, (4.30)

which is the desired result. �

Using Proposition 4.3.1, we now can bound the achievable rate of the system
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as

RIF = M log(SNReff,opt) (4.31)

≥M log
(λ2

1(L−1
P )

M2

)
(4.32)

= 2M
(

log(λ1(L−1
P ))− log(M)

)
, (4.33)

and the outage probability as

Pout = Pr
(
SNReff,opt < 2Rt/M

)
(4.34)

≤ Pr
(λ2

1(L−1
P )

M2
< 2Rt/M

)
(4.35)

= Pr
(
λ2

1(L−1
P ) < M22Rt/M

)
. (4.36)

Define the error probability of the system as

Pe = Pr
(
(ŵ1, ..., ŵM) 6= (w1, ...,wM)

)
. (4.37)

This error probability is dependent of the nested lattice code C employed by the

system. From a practical point of view we may consider 22q-QAM constellations

for a positive integer q, e.g., 4-QAM, 16-QAM, and 64-QAM. These constellations

are equivalent to the nested lattice code Λc/Λs with Λc = αZ[i] and Λs = 2qΛc,

where α is a positive real number. Employing this code, the error probability of

the system is given by the following proposition.

Proposition 4.3.2: If nested lattice code Λc/Λs, with Λc = αZ[i] and Λs = 2qΛc,

where 1 < q ∈ Z and α =
√

6γ/22q, is employed in an M ×M IF-MIMO system,

the error probability is bounded as

Pe ≤ 4M exp
(
− 3λ2

1(L−1
P )

24q+1M2

)
, (4.38)

where LP is defined in (4.16).

Proof. See Appendix A. �
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4.4 Problem Statement

The performance metrics derived in (4.33), (4.36), and (4.38) suggest that to

achieve a good performance in terms of achievable rate, outage probability, and

error probability, we should choose precoder matrix P such that λ2
1(L−1

P ) is maxi-

mized. Formally, we define the problem of finding the optimal P as

Popt = arg max
P∈O(M)

λ2
1(L−1

P ) (4.39)

= arg max
P∈O(M)

min
v∈ZM\0

∥∥L−1Pv
∥∥2
. (4.40)

In other words, we have to find an orthogonal matrix P such that the minimum

distance of lattice Λ(L−1P) is maximized.

Based on (4.40), one may argue that unitary precoder matrices can yield a

larger λ1(L−1
P ) than the orthogonal one. Indeed, that is the case. But, recall that

we derive the bounds on performance metrics in (4.33), (4.36), and (4.38) in order

to ease the optimization process. The performance of the system is more directly

affected by SNReff,opt or λM(LT
P) rather than by λ1(L−1

P ). We introduce the following

proposition for the case where a unitary matrix is employed as the precoder matrix.

Proposition 4.4.1: Consider a precoded IF-MIMO system similar to the afore-

mentioned one except that the precoder matrix is unitary. Let P̆ ∈ U(M) be

the precoder matrix and LP̆ = P̆HL be the matrix corresponding to (4.16) in the

orthogonal precoder case. The effective SNR of the worst sub-channel is bounded

as

SNReff,opt ≥
1

4M2
λ2

1(L−1

P̆
). (4.41)

Proof. Because P̆ is a unitary matrix of dimension M , which is complex-valued,

the resulting lattice Λ(LH
P̆

) and its dual are also complex-valued with dimension M .

In the real-valued domain, those lattices have dimension of 2M . Hence, following

the proof of Proposition 4.3.1, the desired result is obtained. �

From Propositions 4.3.1 and 4.4.1, we can see that a larger λ2
1(L−1

P̆
) of unitary

precoder cannot guarantee that the corresponding SNReff,opt is also higher than

that of orthogonal precoder. In particular, consider the case where λ2
1(L−1

P ) ≤
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λ2
1(L−1

P̆
) < 4λ2

1(L−1
P ).4 Even though λ2

1(L−1

P̆
) ≥ λ2

1(L−1
P ), the corresponding lower

bound on SNReff,opt of unitary precoder is lower than that of orthogonal precoder.

Hence, if we search for a precoder matrix over unitary groups, we may end up ob-

taining lower SNReff,opt than in the case when we search over orthogonal groups even

though the obtained optimal unitary precoder matrix may have larger λ2
1(L−1

P̆
).

According to (4.25) and (4.27), a lower SNReff,opt implies lower achievable rate and

higher outage probability. To illustrate this phenomena more clearly, we provide

a simple example in the following.

Example 4.4.1: Consider γ = 30 dB and a randomly generated channel matrix

H with the resulting

L =

[
0.0138 0

0 0.1595

]
. (4.42)

Performing optimization (4.40) over orthogonal matrices, we found a good orthog-

onal matrix

P =

[
0.5475 −0.8368

0.8368 0.5475

]
. (4.43)

This matrix yields λ1(L−1
P ) = 22.7196 and λM(LT

P) = 0.0499. The corresponding

SNReff,opt achieved by P is 26.04 dB.

On the other hand, searching over unitary matrices, we found a good unitary

matrix

P̆ =

[
0.0008− 0.9387i −0.3386 + 0.0654i

0.3053 + 0.1602i −0.2698 + 0.8991i

]
. (4.44)

With this matrix we have λ1(L−1

P̆
) = 25.0441, λM(LH

P̆
) = 0.0550, and SNReff,opt =

25.19 dB.

If we only consider (4.40), surely we will choose P̆ as our precoder matrix

because λ1(L−1

P̆
) > λ1(L−1

P ). However, if we take a look at the resulting SNReff,opt,

then we must choose P as our precoder matrix because the resulting SNReff,opt is

higher which implies higher achievable rate and lower error-rate.

4Note that LP corresponds to the orthogonal precoder case, while LP̆ to the unitary case. From
computer simulations, we found that most of the time (99.8%), orthogonal and unitary precoders result
in this particular case.
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The above example illustrates that the search for a precoder matrix over uni-

tary matrices does not always result in better performance than the search over

orthogonal matrices. We shall note that here we do not claim theoretically that

orthogonal precoder is always better than its unitary counterpart. Rather, the fact

that the search for precoder matrix over unitary groups may result in worse per-

formance than the search over orthogonal groups in spite of its higher complexity,

gives us sufficient reason to adopt and recommend the orthogonal precoder.

One numerical example may not be able to validate the superiority of orthog-

onal precoder in terms of performance. Therefore, we also carried out numerical

simulations with more than 105 channel realizations for each evaluated SNR and

present the results in Figs 4.3 and 4.4 in Section 4.7. These results confirm that on

average, indeed even though λ2
1(L−1

P̆
) is higher than λ2

1(L−1
P ), orthogonal precoder

achieves higher average SNReff,opt and achievable rate, and lower outage and error

probabilities than unitary precoder. Thus, now we can claim that finding the op-

timal IF-MIMO precoder matrix over orthogonal groups instead of unitary groups

is beneficial in terms of both complexity and performance.

4.5 Finding the Optimal Precoder Matrix

To find the optimal orthogonal precoder matrix, let us first define the objective

function as follow

J(P) = min
v∈ZM\0

∥∥L−1Pv
∥∥2
. (4.45)

The optimization problem in (4.40) can now be written as

Popt = arg max
P∈O(M)

J(P). (4.46)

The difficulties of solving the optimization problem above lie within the combina-

tion of two major obstacles: (i) orthogonal matrix constraint and (ii) finding the

minimum distance of the lattice Λ(L−1P).

For a 2 × 2 MIMO system, a convenient parameterization of 2-dimensional

orthogonal group was proposed in [3]. The orthogonal matrix P is parameterized
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using one angle θ as

P(θ) =

[
cos θ sin θ

− sin θ cos θ

]
. (4.47)

With this parameterization, Popt can be estimated easily by performing a simple

exhaustive search over only one parameter θ ∈ [0, π/4]. Indeed, this technique

performs very well for 2-dimensional orthogonal group. However, beyond that, it

becomes unwieldy and prohibitively complex because the exhaustive search has to

be done over M(M − 1)/2 parameters (angles) [62] and the minimum distance of

the resulting lattice has to be checked at every search or iteration.

A simple approach to solving optimization problems with orthogonality con-

straint is to perform gradient-based search algorithm such as the steepest gradient

(SG) algorithm. Interestingly, by exploiting the geometrical properties of orthogo-

nal group as a Lie group [2,59,61], the orthogonality constraint is always naturally

satisfied at every step of the SG algorithm. This means that an optimization

problem with an orthogonality constraint is transformed into an unconstrained

one, which makes the optimization process easier. For this reason we will use the

SG algorithm on Lie groups [2, 59, 61] to solve our problem. As general reference

for the Lie group theory, see [67]. Unfortunately, the SG algorithm on Lie groups

is not directly applicable to our problem. This is because our objective function

in (4.45) in not purely constrained with orthogonality and it is not even differen-

tiable because it depends not only on P, but also on a discrete integer vector v.

To overcome this, we break the problem down into two sub-problems.

4.5.1 Sub-Problem 1: Local Search

Observe that by fixing the integer vector v, we can transform the objective func-

tion in (4.45) into a differentiable function on which the SG algorithm can work.

Assume that we start the search for the solution from an initial Pi ∈ O(M). A

vector at the minimum distance of Λ(L−1Pi) is given by an integer vector vi, i.e.,

λ1(L−1Pi) = ‖L−1Pivi‖. Define

J̃(P) =
∥∥L−1Pvi

∥∥2
. (4.48)
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Our first sub-problem is thus, given an initial Pi with the corresponding vi, find a

“good” P̃opt such that

P̃opt = arg max
P∈O(M),

λ1(L−1P)=‖L−1Pvi‖

J̃(P). (4.49)

This means that we must find P̃opt that maximizes (4.48) such that the minimum

distance of Λ(L−1P̃opt) is still given by vi, i.e., λ1(L−1P̃opt) =
∥∥∥L−1P̃optvi

∥∥∥.5 Be-

cause O(M) is a manifold, we can think geometrically that the search is done by

moving over the surface of O(M) starting from Pi to a point that satisfies (4.49).

We can also think of this search as rotating the whole lattice points L−1PiZ until

a certain degree such that its minimum distance is maximized while keeping the

integer vector giving its minimum distance remains unchanged.

Like the conventional SG algorithm, the search for the solution is performed by

iteratively moving from one point to another in the search space in the steepest

direction. Particularly, at `-th iteration, a move from the current point P` to P`+1

over O(M) is made. This move is equivalent to the move from I to some point

R` ∈ O(M) such that P`+1 = R`P`. The question is then how to choose the

movement matrix R`.

For defining a movement in the steepest direction, we will make use of the

corresponding Lie algebra o(M) instead of O(M) which is closed only under matrix

multiplication. The Lie algebra o(M) is the vector space of the M × M skew-

symmetric matrices with additional Lie bracket operation in the form of matrix

exponential [68]. Because o(M) is a vector space which is closed under addition and

scalar multiplication, it is easier to define a movement over o(M) rather than over

O(M). O(M) and o(M) are connected by matrix exponential and matrix logarithm

operators [67, Chapter 2]. As illustrated in Fig. 4.1, any point P ∈ O(M) can be

mapped to a point S ∈ o(M) using S = log(P) and any point S′ ∈ o(M) can be

mapped to a point P′ ∈ O(M) using P′ = exp(S′). Thus, any movement in O(M)

is equivalent to a movement in o(M), and vice versa.

Consider our SG algorithm at `-th iteration. To move from I to R`, first, we

map I to a point in o(M), which is 0 because log(I) = 0. Then, from 0 we make

a move to a point S` over o(M). Once S` is found, we can compute R` = exp(S`),

5For any real lattice, ‖L−1Pvi‖ = ‖L−1P(−vi)‖, and thus, we must also include −vi in the constraint.
But for brevity, we omit it.
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P

P′

S

S′

S = log(P)

P′ = exp(S′)

O(M) o(M)

Fig. 4.1. O(M) and o(M) are connected by matrix exponential and logarithm operations [2].
A movement over O(M) can be defined equivalently by a movement over o(M).

and subsequently P`+1 = R`P`. The movement matrix S` has to be decided based

on the steepest gradient of J̃(P`) in the S-space. Define ∆PJ̃(P`) as the gradient

of J̃(P) in the P-space at P = P`. It is easy to derive that

∆PJ̃(P`) = 2(L−1)2P`viv
T
i . (4.50)

Using the result from [2], the steepest gradient of J̃(P) in the S-space at P = P`

is given by

∆SJ̃(P`) = ∆PJ̃(P`)P
T
` −P`(∆PJ̃(P`))

T . (4.51)

For a constant µ, a move from 0 to S` now can be defined as

S` = 0 + µ∆SJ̃(P`) = µ∆SJ̃(P`). (4.52)

We refer to µ as the step size. The move from P` to P`+1 is thus can be written as

P`+1 = exp(µ∆SJ̃(P`))P`. (4.53)

As in the general SG algorithm, choosing an appropriate step size is crucial for

the convergence. A fixed step size can ensure a convergence close to a local opti-

mum, but in general it requires many iterations. Therefore, it is desirable to select

an appropriate step size at each iteration for a faster convergence. The appropriate
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step size is commonly determined based on the objective function. However, in our

problem, the step size depends not only on the objective function, but also on the

problem constraint; that is the integer vector providing the minimum distance of

the corresponding lattice must not change. From here on we refer to this constraint

as integer vector constraint. To select an appropriate step size at every iteration

we propose the following two steps.

Step 1 : In this step, the step size is determined based on the objective function.

Consider a point in O(M) emanating from P` along the steepest direction ∆SJ̃(P`)

as a function of µ

P(µ) = exp(µ∆SJ̃(P`))P`, (4.54)

and define

Ĵ(µ) , J̃(P(µ)). (4.55)

The step size at `-th iteration is initially chosen such that

µ` = arg max
µ

Ĵ(µ). (4.56)

The optimal µ` is difficult to find in general. Fortunately, our objective function

Ĵ(µ) in (4.56) has a desirable property that may be exploited to determine µ`.

The matrix exponential of skew-symmetric matrices in (4.54) induces an almost

periodic [69, 70] behavior of Ĵ(µ) with respect to µ. As an example, given an

orthogonal matrix P ∈ O(4) and a diagonal matrix L ∈ R4×4, Ĵ(µ) is drawn

in Fig. 4.2, where it is shown that Ĵ(µ) is periodic.6 Therefore, to determine

µ`, we can use existing techniques that are used for finding local maximums of

almost periodic functions. In particular, we adopt the polynomial approximation

technique proposed in [70]. With this technique we find the first local maximum of

Ĵ(µ) (point A in Fig. 4.2) and then choose the corresponding µ as the our initial µ`.

If the integer vector constraint is satisfied with this initial µ`, a further adjustment

is not needed.

Step 2 : µ` obtained in the step 1 is chosen such that Ĵ(µ) is maximized. This

will not lead us to the solution of (4.49) if the integer vector constraint is not

6Ĵ(µ) function in Fig. 4.2 is periodic, but in general, matrix exponential of of skew-symmetric matrices
induces almost periodic function [70].
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Ĵ
(µ

)

Fig. 4.2. An example of Ĵ(µ) emanating from an orthogonal matrix P` ∈ O(4) and a diagonal
matrix L ∈ R4×4 randomly generated at γ = 30 dB.

satisfied, i.e., the integer vector providing the minimum distance of Λ(L−1P(µ`))

is different from that of Λ(L−1Pi). Therefore µ` obtained in the step 1 has to be

further adjusted such that the constraint is always satisfied. Because the initial µ`

from the step 1 provides the first local maximum of Ĵ(µ), it is now easy to make

readjustment. This adjustment is performed by iteratively halving µ` or dividing

µ` by a constant ζ > 1 until the constraint in satisfied.

We shall note that the process of finding µ` above always converges. From the

step 1, µ` is initialized with a value giving the first local maximum of Ĵ(µ) (µ
(1)
`

in Fig. 4.2). If at this point, the integer vector constraint is satisfied, then µ` is

found and step 2 is not needed. Otherwise, we have to reduce µ`, by dividing it

with ζ > 1. For example, with ζ = 2, in Fig. 4.2 µ` will be reduced to µ
(2)
` that

results in point B. If at this point the integer vector constraint is satisfied, then µ`

is found. Otherwise, the process is repeated until the integer constraint is satisfied.

Hence, it can be observed that this process always converges.

The summary of the algorithm for solving the sub-problem 1 is presented in

Algorithm 1. This algorithm has two stopping conditions. The first one is the

maximum number of iterations. This condition ensures that the complexity of
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Algorithm 1 Local search: Finding a local optimal P̃opt from an initial orthogonal
matrix Pi.

Input: L−1 and Pi.
Output: An estimate of local optimal precoder matrix P̃opt.

1: Find vi ∈ ZM such that λ1(L−1Pi) =
∥∥L−1Pivi

∥∥.
2: Initialize ` = 0, P` = Pi.
3: Compute ∆SJ̃(P`) as in (4.51).
4: Find µ` using the polynomial approximation [70].
5: Further adjust µ`:

while λ1(L−1P(µ`)) 6=
∥∥L−1P(µ`)vi

∥∥, set µ` := µ`/2.
6: Update P`+1 = P(µ`) and ` := ` + 1. Iterate the steps 3 - 6 until convergence or

until maximum iteration.
7: return P̃opt = P`.

the algorithm does not exceed a certain level of complexity. The second condition

is when the algorithm converges to a certain value. This means that if at some

iteration, no further improvement on J̃(P`) is achieved, then the algorithm stops.

It has been shown that the SG algorithm with Lie group approach converges to

an optimal point [2, 61]. If the integer vector constraint is ignored, our algorithm

essentially tries to reach the same point. However, due to the constraint, our

algorithm stops earlier at an edge point where the constraint is still being satisfied.

Therefore, it is easy to see that the proposed algorithm also converges.

In Algorithm 1, the minimum distance of a lattice needs to be calculated. To

this end, algorithms such as the Fincke-Pohst [46] algorithm or sphere decoding [49]

algorithm and its variants [47, 52, 71], may be employed. One can also use the

Lenstra-Lenstra-Lovász (LLL) algorithm [48] that exhibits much lower complexity.

We found that the LLL algorithm proposed [64] also yields good performance when

employed in our algorithm.

4.5.2 Sub-Problem 2: Global Search

The solution of the sub-problem 1 may not be the global optimal solution because

given a starting point Pi, the search is performed over the surface limited to

only around Pi. Therefore, to find the global optimal solution, it is crucial to

select a good starting point Pi, which becomes our second sub-problem. We state

our second sub-problem as follows: from O(M), find a good matrix Pi such that

λ1(L−1Pi) is as large as possible. This problem is indeed similar to our original
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Algorithm 2 Global search: Finding a “good” initial orthogonal matrix Pi for Algo-
rithm 1.

Input: L−1.
Output: Pi ∈ O(M) such that λ1(L−1Pi) is large.

1: Initialize ` = 0, Pi := I.
2: Generate a random orthogonal matrix P` with Haar measure distribution using [74].

3: If λ1(L−1P`) > λ1(L−1Pi), Pi := P`.
4: ` := `+ 1 and repeat from step 2 for some iterations.
5: return Pi.

problem in (4.46), except that the solution of this sub-problem does not have to

be optimal. A better or possibly optimal solution will be derived by refining the

solution using Algorithm 1.

To solve this sub-problem, we adopt a random search technique. Random search

has been widely used and is very suitable for ill-structured global optimization

problem, where the objective function may be not differentiable, and possibly

discontinuous over a continuous, discrete, or mixed continuous-discrete domain [72]

just like exactly what we have in (4.46). Random search in general does not

guarantee finding a global optimal solution. But it offers finding a good solution

quickly. In literature, it has been shown that random search converges to the

global optimal solution with some probability [72, 73].

The random search algorithm that we employ is quite straightforward and is

summarized in Algorithm 2. The algorithm starts by initializing Pi = I. Then, at

every iteration ` an orthogonal matrix P` is randomly generated with Haar mea-

sure distribution [74] and the minimum distance of the resulting lattice Λ(L−1P`)

is evaluated. If λ1(L−1P`) > λ1(L−1Pi), then P` is kept as the temporary solution,

i.e., Pi := P`. The more iterations we have, the higher probability that resulting

Pi is close to the global optimal solution Popt. However, the complexity also in-

creases as the number of iterations increases. Therefore, the stopping condition of

Algorithm 2 depends on the desired level complexity, i.e., the maximum number

of iterations allowed in the algorithm. In practice, we do not need many itera-

tions because the result will be further refined using Algorithm 1. From computer

simulations, we found that no significant gain is achieved after 30 iterations.

We shall emphasize that the proposed Algorithm 2 does not guarantee a conver-

gence. This is because the algorithm is proposed based on a random search to cope
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Algorithm 3 Finding Popt for the original problem (4.40).

Input: L−1.
Output: Popt, a solution for (4.40).

1: Use Algorithm 2 to find Pi.
2: With input Pi, perform Algorithm 1 to obtain P̃opt.
3: Set Popt := P̃opt.
4: return Popt.

with our ill-structured optimization problem, which is non-differentiable and has a

mixed continuous-discrete domain. It is well known that a random search does not

guarantee a convergence, rather it may converge with some probability [72,73].

4.5.3 Summary of the Proposed Algorithm

To find the solution for our original problem in (4.46), first, we perform a global

search for a good candidate of Pi over O(M) using Algorithm 2. The resulting

Pi is then used as the starting point of the gradient-based local search following

Algorithm 1, of which the result is expected to be an estimate of the global optimal

solution. The overall algorithm is summarized in Algorithm 3.

We shall note that the proposed algorithm can also be applied to the unitary

precoder case [3] with some modifications. First, all the regular matrix transpose

operations are replaced with the Hermitian transpose. Then, the gradient in (4.50)

is replaced with ∆PJ̃(P`) = (L−1)HL−1P`viv
H
i and obviously we should generate

a random unitary matrix instead of orthogonal one in the step 2 of Algorithm 2.

The complexity of the unitary precoder case is clearly higher than the orthogonal

precoder because most of the operations are done in complex-valued domain rather

than real-valued domain.

4.6 Complexity Analysis

4.6.1 Complexity of Algorithm 3

This sub-section provides evaluation of computational complexity of Algorithm 3

and compares it to that of parameterization technique [3].

The parameterization technique introduced in [3] can be extended to higher di-

mensional MIMO [62]. In this case, the search for the optimal orthogonal precoder
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matrix is carried out over at least M(M − 1)/2 parameters (angles). Denote these

parameters as θ1, ..., θM(M−1)/2. For simplicity, assume that θi,∀i = 1, ..,M(M −
1)/2, has a search space of [0, 2π) which is discretized to ν samples. For each com-

bination of samples of θi, an orthogonal matrix P(θ1, ..., θM(M−1)/2) is constructed

and the minimum distance of the resulting lattice Λ(L−1P(θ1, ..., θM(M−1)/2)) is

evaluated. Subsequently P(θ1, ..., θM(M−1)/2) that yields the largest minimum dis-

tance of Λ(L−1P(θ1, ..., θM(M−1)/2)) is chosen as the solution. To keep a low com-

plexity, let us assume that the LLL algorithm with complexity of O(M4 logM) [64]

is employed. The overall complexity of the parameterization technique is thus

O(νM(M−1)/2M4 logM).

Because the complexity of Algorithm 3 is dominated by the step 2 where Al-

gorithm 1 is run, we only need to evaluate the complexity of Algorithm 1. The

dominant operations in the Algorithm 1 are finding minimum distance of a lattice

in the steps 1 and 5 and calculating matrix exponential in the steps 3, 4, and 5. To

find the minimum distance of a lattice, we employ the same LLL algorithm with

complexity of O(M4 logM) [64]. While for matrix exponential, there are many

ways to calculate it. In literature, we found that the most efficient methods for cal-

culating the matrix exponential exhibit computational complexity of O(M3) [68].

Because the complexity of finding the minimum distance of a lattice is more dom-

inant, we can ignore the complexity of computing a matrix exponential. Assume

that we need ξi number of iterations to adjust the step size µ` in the step 5 and ξo

number of iterations for Algorithm 1 to converge. Thus, the overall computational

complexity of Algorithm 3 is O(ξoξiM
4 logM) or simply O(M4 logM). Now we

can clearly see that the complexity of the proposed algorithm is much smaller than

that of the parameterization technique.

4.6.2 Decoding Complexity

At the receiver side, the decoding complexity of the proposed scheme is nearly

the same as ZF and MMSE receivers. This is because the IF receiver manipulates

MIMO channels such that a SISO decoding can be employed, which is similar to

ZF and MMSE receivers. An additional complexity comes from the step of finding

a full-rank integer matrix A. Consider slow-fading channels where the channel

coefficients remain constant over a long period called quasi-static channel interval.

Because A is essentially an approximation of the MIMO channels which remains
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constant during the interval, the search for A needs to be done only once in each

static interval. This is in contrast to the general joint ML MIMO decoding in slow-

fading channels. Assume that within the static interval, there are T ∈ Z number

of codeword transmissions that can be made. In the joint ML decoding case, an

optimal algorithm such as sphere decoding (SD) algorithm [46, 49] which has an

exponential complexity has to be performed for each transmission; T times in one

static interval. Assume that to find the optimal A, the proposed scheme utilizes

the same SD algorithm. In this case, the joint ML decoding would exhibit T times

higher complexity than the proposed scheme.

Even though a brute force method for finding the optimal integer matrix A

has a high complexity of O(γM) [14], some effort has been made to develop more

efficient algorithms. For instance, Ding et al. [50] developed an optimal algorithm

based on the Schnorr-Euchner (SE) algorithm [47] to find the optimal A with

computational complexity of O
(
M4 (Mπ)M/2

Γ(M/2+1)

)
, where Γ(·) is the Gamma function.

In a different approach, Wen et al. [51, 65] also exploited the SE algorithm to

find the optimal A with significantly lower complexity. They showed that their

algorithm is Ω(M) faster than [50], making it currently the most efficient existing

optimal algorithm for finding the optimal integer matrix A. To further reduce

the complexity, Sakzad et al. [54] proposed an approximation algorithm based

on the LLL algorithm with polynomial complexity of O(M4 log(2M)). They also

investigated other approximation algorithms based on Hermite-Korkine-Zolotareff

(HKZ) and Minkowski lattice basis reduction algorithms, see [54] for more detail

discussion. Other efficient algorithms can be found in [53,64].

4.7 Numerical Evaluation

This section presents and analyzes the numerical results obtained from computer

simulations conducted to compare the performance of the proposed schemes with

existing schemes.

First, we compare the performance of orthogonal and unitary precoders.7 For

finding good orthogonal and unitary precoder matrices in the sense of (4.39), we

use Algorithm 3 and its modified version described in Subsection 4.5.3, respec-

7Here, the orthogonal and unitary precoders refer to the precoders described in Section 4.2 where the
precoder matrix is selected from groups of orthogonal and unitary matrices, respectively. The unitary
precoder is exactly UPIF I.
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tively. Let λ
(o)
1 , λ1(LP

−1) and λ
(u)
1 , λ1(LP̆

−1) denote the minimum distance

of the resulting dual lattices of orthogonal and unitary precoders, respectively (cf.

Propositions 4.3.1 and 4.4.1). Fig. 4.3(a) shows the average of λ
(o)
1 and λ

(u)
1 . Based

on Fig. 4.3(a) and our main optimization problem (4.39), one may conclude that

unitary precoder is better than orthogonal precoder because λ
(u)
1 is larger than

λ
(o)
1 . However, Fig. 4.3(b) shows the opposite, that orthogonal precoder has higher

average achievable rates. A similar result is shown in Fig. 4.4 where orthogonal

precoder has lower outage probability and word-error-rate (WER) than unitary

precoder.8 These results confirm our claim that for IF-MIMO precoding, in addi-

tion to the complexity advantage, searching for precoder matrices over orthogonal

groups instead of unitary groups also offers performance advantage. This addi-

tional advantage is because the lower bound on SNReff,opt of unitary precoder is

smaller than that of orthogonal precoder as shown in Propositions 4.3.1 and 4.4.1.

In fact, since the dimension of unitary matrices are twice that of orthogonal matri-

ces in the real-valued domain, the largest successive minimum of the prime lattice

Λ(LH
P̆

) of unitary precoder is generally larger than that of the prime lattice Λ(LT
P)

of orthogonal precoder, and hence its SNReff,opt is smaller (see (4.23)), implying

lower achievable rate and higher outage probability.

We then compare the performance of the parameterization technique [3] (pro-

posed for UPIF I) and Algorithm 3. The parameterization was proposed in [3] for

finding good orthogonal matrices for 2 × 2 IF-MIMO. Even though it is possible

to extend this technique to higher dimension [62], it exhibits exponential complex-

ity as described in Section 4.6.1. For this reason, we only compared them in the

2 × 2 IF-MIMO case. Fig. 4.5 depicts the results of achievable rate and WER

performance of the parameterization algorithm of [3] compared to our proposed

algorithm. It can be clearly seen that Algorithm 3 achieves nearly identical per-

formance to the parameterization technique in various cases. Since Algorithm 3

has low complexity and yields good performance, we can easily employ it to realize

orthogonal precoder for higher dimension IF-MIMO as we will see later.

Next, we compare the performance of the proposed orthogonal precoder with

UPIF II. We employ Algorithm 3 for the proposed precoder. According to [3],

the optimal precoder matrix for UPIF II should be chosen from unitary groups

8We define a word as (w1, . . . ,wM ). For calculating WER, we declare an error event when
(ŵ1, . . . , ŵM ) 6= (w1, . . . ,wM ).
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such that it has the largest minimum product distance [58]. However, finding the

minimum product distance of a lattice is a hard problem, especially for unitary

matrices. To the best of our knowledge, currently there is no optimal unitary

matrix with respect to minimum product distance known. However, there are

some available orthogonal matrices having good minimum product distance prop-

erties listed in [75]. We used these matrices for the UPIF II simulations. Fig. 4.6

shows the results of WER for 4 × 4 and 8 × 8 MIMO configurations each with

4/16/64/256-QAM. One can see that the proposed precoder and UPIF II yield

nearly the same performance in the 8× 8 MIMO case. While in the 4× 4 MIMO

case, the proposed precoder outperforms UPIF II for all 4/16/64/256-QAM. Even

though we cannot confirm that the proposed precoder is better than UPIF II for

all MIMO configurations, we can say that the proposed precoder can perform bet-

ter in some scenarios. Moreover, the proposed precoder can be employed for any

MIMO dimension, while for dimension beyond 30, it is hard to realize UPIF II

because no “good” orthogonal matrix for UPIF II with dimension beyond 30 is

currently available in literature.

Lastly, we compare the proposed precoder to the X-precoder [30], an ML- and

QAM-based precoding scheme. In Fig. 4.7, we present WER performance for 4×4

and 8× 8 MIMO configurations with various QAM constellations. In both MIMO

configurations, the behavior of WER curves is similar. One can see that the X-

precoder is better than the proposed precoder for 4-QAM case, while for 16-QAM,

both schemes achieve almost the same performance in high SNR regime. However,

for 64- and 256-QAM, we can clearly see the significant advantage of the proposed

precoder over the X-precoder in terms of WER. This advantage comes from the

fact that the error performance of the X-precoder is characterized by the minimum

distance of received QAM constellations which gets smaller as the constellations

size increases. Therefore, the error performance degrades as the constellation size

increases. On the other hand, the error performance of the proposed precoder is

characterized by the effective SNR, and thus, it is not significantly affected by the

constellation size. Moreover, it is known that the X-precoder does not achieve

full diversity gain, while similar to UPIF I [3], the proposed precoder achieves full

diversity gain. We conclude that the proposed orthogonal precoder is superior to

the X-precoder for high order QAM.



78

5 10 15 20 25 30 35 40 45 50
10−6

10−5

10−4

10−3

10−2

10−1

100

4-QAM

16-QAM

64-QAM

256-QAM

SNR = γ (dB)

W
o
rd

-e
rr

o
r-

ra
te

Proposed Prec.

X-Precoder

(a) 4× 4 MIMO

5 10 15 20 25 30 35 40 45 50
10−6

10−5

10−4

10−3

10−2

10−1

100

4-QAM

16-QAM

64-QAM

256-QAM

SNR = γ (dB)

W
o
rd

-e
rr

o
r-

ra
te

Proposed Prec.

X-Precoder

(b) 8× 8 MIMO

Fig. 4.7. WER of the proposed precoder and X-precoder in: (a) 4× 4 MIMO, (b) 8× 8 MIMO.



79

4.8 Summary

We have considered an orthogonal precoding scheme for MIMO with integer-forcing

receivers (IF-MIMO). We showed that the proposed orthogonal precoder is better

than its unitary counterpart in terms of both performance and complexity. We

then proposed methods based on the steepest gradient algorithm on Lie groups

and a random search algorithm for finding good orthogonal matrices for the pro-

posed precoder. These methods exhibit lower complexity than the parameteriza-

tion technique, and can be applied to any MIMO configuration. The numerical

results confirmed that the proposed precoder outperforms UPIF II and the X-

precoder in some scenarios. Even though the X-precoder is designed specifically

for QAM constellations, the proposed precoder yields better error performance in

high order QAM cases, e.g., 64/256-QAM.



Chapter 5
Conclusions

5.1 General Conclusions

In this dissertation, we have investigated applications of compute-and-forward

methods to two different types of wireless communications systems, namely mul-

tiple access relay channels and precoded MIMO systems. For each system, we

identified the problems that arise in the existing schemes and proposed solutions

to solve them and to improve their performance.

The first main results dealt with the main issue of applying compute-and-

forward methods the MARC; that is the linear combinations received by the final

destination must be linearly independent. We proposed two cooperation strategies

where the transmission is performed as efficiently as possible while keeping the

outage probability as low as possible. We showed the performance improvement

in terms of outage probability and network throughput achieved by our proposed

strategies over existing strategies. It is also shown that the second strategy achieves

full-diversity gain of the MARC.

As the second results, we developed an orthogonal precoding scheme for IF-

MIMO. Our scheme was proposed based on UPIF [3] which uses a precoder matrix

from unitary groups for IF-MIMO. It is quite obvious that the proposed orthogonal

precoding has lower complexity than the unitary precoding. One may expect that

this complexity advantage is obtained with the cost of performance degradation.

However, we showed that the opposite is true — that the proposed precoding

outperforms unitary precoding in terms of achievable rate and outage probability.

We further proposed an efficient algorithm for finding a “good” precoder matrix
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based on the steepest gradient algorithm that exploits the geometrical properties

of orthogonal matrices as a Lie group.

5.2 Future Work

Having intensively investigated applications of compute-and-forward methods in

some wireless communication systems, we found several interesting problems that

may be addressed as future work. We conclude this dissertation with a short

discussion of some research directions related to the problems considered in this

dissertation.

1. Diversity-Multiplexing Tradeoff (DMT) Analysis. In this dissertation,

we have focused on the design of cooperation strategies for multiple-access

relay channels employing compute-and-forward with a main objective of en-

hancing outage probability performance. The considered MARC utilizes full

multiplexing gain where each source transmits message streams independent

of the others. However, there may be cases where only a certain level of mul-

tiplexing gain is required in exchange for higher order diversity gain. There-

fore, the optimal diversity-multiplexing tradeoff in the multiple-access relay

channels with compute-and-forward should be investigated. This is a quite

challenging problem because the diversity gain of the M best linear equations

of a compute-and-forward scheme has to be devised — this problem is related

to the successive minima problem of a lattice.

While DMT analysis is commonly characterized with the asymptotic (infi-

nite) SNR assumption, one may also have an interest in the analysis where

SNR is finite. This analysis is particularly useful because in practice, wire-

less communication systems often use sufficiently low or moderate SNR. The

analysis can reveal the diversity gain and multiplexing behavior of a system

with realistic (finite) SNR. To the best of our knowledge, there is no work

in the literature that addresses the finite-SNR DMT analysis for either the

MARC with compute-and-forward or IF-MIMO.

2. MARC-CF with Imperfect Feedback. Our results in Chapter 3 are based

on assumption that the feedback from the destination are always received

perfectly. In practice, however, it may not be always the case. It would be of
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interest to investigate the performance of MARC with compute-and-forward

assuming noisy or imperfect feedback channels. In particular, we think that

assuming the same channel model for both feedforward and feedback channels

is an interesting open problem. Interested readers are referred to [76–78].

3. ARQ-based Compute-and-Forward Schemes. We have shown that with

the help of feedback we can improve the outage performance of the MARC-

CF significantly. Even though the lim-FB strategy could not achieve the

full-diversity gain of the MARC, it can be further improved by introducing

an automatic repeat request (ARQ) protocol. In this dissertation, we only

limit the destination to request for help to the relay only one time. It is also of

interest to investigate the network performance in the case multiple requests

are allowed. See [79] for the performance of an ARQ protocol in a MARC

with decode-and-forward. To the best of our knowledge, there is no work

in the literature that investigates the performance of a compute-and-forward

scheme with an ARQ protocol.

4. IF-MIMO Precoding Without CSIT. We have developed a precoding

scheme for IF-MIMO with assumption that all channel state information

(CSI) is known by all nodes including transmitters (CSIT). However, let-

ting the transmitters know CSI requires a large amount of communication

overhead which is less practical. Therefore, designing a precoding scheme

without CSIT would be of interest. One insight may be obtained from the

blind compute-and-forward [80] where the need of CSI is eliminated for em-

ploying compute-and-forward.



Appendix A
Proof of Proposition 4.3.2

Recall that a bijective mapping E is employed to map wm to a codeword xm.

Further, given a full rank matrix A, all xm’s can be decoded correctly if and only

if all sub-channels decode their linear combination cm correctly. Therefore, (4.37)

is equivalent to

Pe = Pr
(
(ŵ1, ..., ŵM) 6= (w1, ...,wM)

)
(A.1)

= Pr
(
(x̂1, ..., x̂M) 6= (x1, ...,xM)

)
(A.2)

= Pr
(
(ĉ1, ..., ĉM) 6= (c1, ..., cM)

)
. (A.3)

Define the error probability at sub-channel m as

Pe,m = Pr(ĉm 6= cm). (A.4)

Because Λc = αZ[i] and Λs = 22qΛc, the resulting linear combination and effective

noise in (4.9) respectively become cm ∈ αZ[i] and zeff,m ∈ C, i.e., they are one-

dimensional complex-valued vectors. Thus,

Pe,m = Pr
(
{<(ĉm) 6= <(cm)} ∪ {=(ĉm) 6= =(cm)}

)
≤ 2 Pr

(
<(ĉm) 6= <(cm)

)
(A.5)

= 2 Pr
(
|<(zeff,m)| ≥ α

2

)
(A.6)

= 4 Pr
(
<(zeff,m) ≥ α

2

)
, (A.7)
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where (A.5) is due to union bound and the fact that <(cm) and =(cm) have an

identical probability distribution, (A.6) is because <(cm) and =(cm) are decoded

using the nearest-neighbor quantizer with respect to αZ[i], and (A.7) follows the

symmetry of probability density function of <(zeff,m) around zero. Using [28,

Lemma 4], we have

Pe,m ≤ 4 Pr
(
<(zeff,m) ≥ α

2

)
(A.8)

≤ 4 exp

(
− α2

4σ2
eff,m

)
= 4 exp

(
− α2

4γ ‖LT
Pam‖

2

)
. (A.9)

If Aopt is employed, then

Pe,m ≤ 4 exp

(
− α2

4γλ2
m(LT

P)

)
= 4 exp

(
− 3

24q+1λ2
m(LT

P)

)
(A.10)

Now, due to (2.17), for all m = {1, ...,M}, we have

Pe,m ≤ 4 exp

(
− 3

24q+1λ2
M(LT

P)

)
(A.11)

≤ 4 exp

(
−3λ2

1(L−1
P )

24q+1M2

)
, (A.12)

where (A.12) follows (4.29).

With union bound, we derive the total error probability of the system as

Pe = Pr
(
(ĉ1, ..., ĉM) 6= (c1, ..., cM)

)
(A.13)

≤
M∑
m=1

Pe,m = 4M exp

(
−3λ2

1(L−1
P )

24q+1M2

)
, (A.14)

which completes the proof.
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